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Executive Summary 

This report summarizes the methods and results of simulation modeling of alternative digital 
mammography breast cancer screening strategies for the U.S. female population. Six established 
simulation models from the Cancer Intervention and Surveillance Modeling Network and 
investigators from the Breast Cancer Surveillance Consortium were commissioned by the U.S. 
Preventive Services Task Force to evaluate the benefits and harms of strategies that varied by 
age of screening initiation and cessation and screening intervals for average-risk women. In 
secondary analyses, we assessed how disutility related to the screening process and its 
consequences affected the balance of benefits and harms of the different screening strategies. 
Additionally, we conducted analyses to examine how the balance changed if the screening 
approach considered risk for breast cancer, breast density, or comorbidity. Finally, we conducted 
sensitivity analyses and analyses validating the models.  

The models portray four molecular subtypes of breast cancer based on hormone receptor and 
human epidermal growth factor-2 receptor status. They used a lifetime perspective and common 
data inputs on incidence, risk and breast density prevalence, digital mammography performance, 
treatment effects, and other-cause mortality among a cohort of women born in the United States 
in 1970. The specific strategies assessed included screening beginning from ages 40, 45, or 50 
years to age 74 years at annual or biennial intervals, or annually from ages 40 to 49 or 45 to 49 
years and biennially thereafter. All strategies are compared to the counterfactual situation of no 
screening; strategies are all compared incrementally to each other. To evaluate program efficacy, 
all analyses assumed 100 percent screening adherence and used subtype-specific, guideline-
recommended systemic treatment. Outcomes were considered over the entire lifetime of the 
cohort. There were several benefit outcome metrics considered, including the percent reduction 
in breast cancer mortality (vs. no screening); breast cancer deaths averted; life-years gained; and 
quality-adjusted life-years gained. Harms included number of mammograms; false-positives; and 
benign biopsies. Another metric was overdiagnosis, defined as cases that would not have been 
clinically detected in a woman’s lifetime in the absence of screening because of lack of 
progressive potential or death from competing mortality. This was operationally calculated in the 
models by subtracting the total number of cases in a screening scenario from the total number of 
cases diagnosed in the absence of screening.  

In validation analyses, the models reproduced results of trends in observed U.S. incidence and 
mortality as well as 13-year followup results from the U.K. trial on screening women annually in 
their 40s.  

In an unscreened population, the models predict a median 12.9 percent cumulative probability of 
developing breast cancer from ages 40 to 100 years (range across models, 12.0% to 14.0%). 
Without screening, the median probability of dying of breast cancer is 2.5 percent (range, 1.5% 
to 3.2%). Thus, if a particular screening strategy leads to a 30 percent reduction in breast cancer 
mortality, then the probability of breast cancer mortality would be reduced from 2.5 to 1.8 
percent, or 7.5 breast cancer deaths averted per 1,000 women screened.  

The six models produced consistent rankings of the strategies evaluated. Screening biennially 
from ages 50 to 74 years achieves a median 25.8 percent (range, 24.1% to 31.8%) breast cancer 
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mortality reduction versus no screening, and averts 7.1 (range, 3.8 to 8.7) breast cancer deaths. 
Biennial strategies maintain an average 81.2 percent (range across strategies and models, 68.3% 
to 98.9%) of annual screening benefits with almost half the false-positives and fewer 
overdiagnosed cases. Compared to biennial screening from ages 50 to 74 years, annual screening 
from ages 40 to 74 years reduces mortality an additional 12.0 percent (range, 5.7% to 17.2%) and 
averts 3 more breast cancer deaths, but yields 1,988 more false-positives and 11 more 
overdiagnoses per 1,000 women screened. Of note, compared to alternative strategies, annual 
screening from ages 50 to 74 years is consistently dominated (that is, uses more resources but 
has less benefit) across all outcome metrics, and would be considered inefficient. This is because 
there is only a small added incremental benefit of annual versus biennial screening in the 50- to 
74-year-old age group, while annual screening requires twice as many mammograms and 
generates nearly double the number of false-positives. 

If disutility of screening, having a false-positive, living with cancer, and having decrements in 
general health with aging are considered, the ranking of strategies changes, although the benefits 
are reduced (i.e., quality-adjusted life-years are lower than life-years). Screening continues to 
have benefits, albeit smaller, in all age groups, including those ages 40 to 49 years. Sensitivity 
analyses examining a range of disutility values did not change conclusions of the analyses. 

We specifically examined risk levels applied starting from age 40 years until death that were  
1.3-, 2-, and 4-fold higher than average, corresponding to women in their 40s who have 
heterogeneously or extremely dense breasts, a family history of a first-degree relative with breast 
cancer (excluding risk for BRCA1 and BRCA2 gene mutations), or a combination of family 
history and other risk factors, respectively. The ranking of strategies does not change when 
screening is based on risk levels; annual screening from ages 50 to 74 years remains dominated 
by other approaches. However, the balance of benefits and harms over a range of risk groups 
differs, with women who have higher risk obtaining greater gains from screening and 
experiencing lower rates of false-positives than women in the lowest-risk groups. Screening 
higher-risk women also yields a lower proportion of overdiagnosed cases per death averted than 
screening women of average population risk. For women in their 40s with a 2- to 4-fold increase 
in breast cancer risk compared to the average population in their age group, annual screening 
starting at age 40 or 45 years would have a similar or more favorable harm to benefit ratio (based 
on false-positives per death averted) than biennial screening in average-risk women from ages 50 
to 74 years. For women with even a 1.3-fold increase in risk, biennial screening starting at age 40 
years would have a similar ratio of harms to benefits as biennial screening of average-risk groups 
from ages 50 to 74 years. Results are generally similar for ratios of harms to benefits based on 
other outcome metrics. 

Considering breast density alone or in combination with other risk factors does not affect the 
ranking of strategies, and annual screening from ages 50 to 74 years continues to be dominated 
for all breast density groups. For women with no comorbidity who have an average of a 17-year 
remaining life expectancy, screening would be efficient through ages 78 to 80 years and would 
have a minimal increase in overdiagnosis compared to stopping at age 74 years. However, for 
women with moderate to severe comorbidity, screening cessation could occur at about age 68 
years.  
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While the models produced very consistent results in the ranking of screening approaches, there 
are acknowledged limitations to the modeling analysis. First, there is expected variability across 
models in estimates of benefits and harms based on differences in model structure and 
assumptions. The models have the greatest variability in results for overdiagnosis, since this is an 
unobservable phenomenon for which there are currently no primary biologically-based data. 
Thus, overdiagnosis must be inferred indirectly. Many methods for this have been proposed, and 
there is no gold standard approach. Modeling makes a useful contribution to estimating 
overdiagnosis since it explicitly considers lead-time and competing mortality and takes a lifetime 
perspective. Overall, using multiple models produces a range of results for overdiagnosis (and 
other screening outcomes) that can be useful to decisionmakers.  

Second, the modeling did not consider other imaging technologies, polygenic risk, or risk of 
breast cancer related to screening. Also, we assumed 100 percent adherence to screening, prompt 
evaluation of abnormal results, and full use of optimal treatment to evaluate program efficacy. 
Benefits will always fall short of the projected results since access and use is not universal. 
Finally, these analyses were designed to provide modeling data for use in public health 
decisionmaking for populations of women; the results are not intended to guide individual 
screening decisions.  

In summary, from the vantage point of public health programs developed for the overall U.S. 
female population, the six models produce a consistent ranking of the various breast cancer 
screening strategies and conclude that biennial screening strategies are most frequently the most 
efficient. All six modeling groups also project some benefits associated with screening women 
starting at age 40 years, and while screening initiation at age 40 years has the greatest benefits, it 
also has the greatest harms. Thus decisions depend on tolerance for additional false-positives, 
biopsies, and overdiagnosed cases. The ranking of strategies is not affected by risk level or breast 
density; however, annual screening of women ages 40 to 74 years with a 2- to 4-fold increased 
risk or biennial screening of those with a 1.3-fold increased risk has a comparable ratio of 
benefits to harms as biennial screening from age 50 to 74 years in the average-risk population. 
Among women with severe or moderate levels of comorbidity, harms of screening seem to 
outweigh benefits prior to age 74 years, but for those with no or mild levels of comorbidity, 
screening benefits continue to age 78 to 80 years, with minimal increases in overdiagnosis. 
Choices about optimal ages of initiation and cessation will ultimately depend on program goals, 
weight attached to the balance of harms and benefits, and considerations of efficiency. 
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Chapter 1. Introduction 

We used six established simulation models to synthesize data and evaluate multiple digital 
mammography screening strategies in the U.S. population (1-3). Modeling has the advantage of 
providing a quantitative summary of the net balance of harms and benefits and considering 
preferences (utilities) while holding selected conditions (e.g., screening intervals or test 
sensitivity) constant, facilitating strategy comparisons. Because all models make assumptions 
about unobservable events, collaboration of several models provides a range of plausible effects 
and can illustrate the effects of differences in model assumptions (2-4).  

In this report, we summarize model methods, data sources, and results and discuss the strengths 
and limits of our approach to evaluating screening with digital mammography from ages 40, 45, 
or 50 years to age 74 years at different intervals among average-risk women. In secondary 
analyses, we also examined how breast density and risk or comorbidity level affects results, and 
whether utilities for health states related to screening and its downstream consequences affect 
conclusions.  
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Chapter 2. Methods 

The breast cancer models were developed within the Breast Working Group (BWG) of the 
Cancer Intervention and Surveillance Modeling Network (CISNET) of the National Cancer 
Institute (5-11) and were exempt from institutional review board approval. As the oldest, 
longest-funded CISNET group, the BWG has demonstrated the value of collaborative modeling. 
The six models were independently developed to examine the impact of breast cancer control 
interventions on population trends in incidence and mortality, but they share common features, 
including: 1) following multiple birth cohorts over time, 2) incorporating known data on breast 
cancer biology, 3) using common data about screening behavior and treatment use based on 
known accuracy or effectiveness, and 4) projecting future benefits. The six BWG groups consist 
of scientists from complementary disciplines, including actuarial science, biostatistics, 
economics, epidemiology, industrial and systems engineering, health services and health policy 
research, medicine, and oncology. The groups are joined by key national partners to ensure that 
the modeling research reflects state-of-the-art knowledge and available data and can be readily 
disseminated. Over the past 14 years, the BWG has been highly productive, collectively 
publishing 162 manuscripts, including those that have engaged the research and policy 
communities in collaborative modeling activities that have had a direct public health impact (2, 
3, 12). 

The models in the CISNET BWG include Model D (Dana-Farber Cancer Institute, Boston, MA), 
Model E (Erasmus Medical Center, Rotterdam, the Netherlands), Model G-E (Georgetown 
University Medical Center, Washington, DC, and Albert Einstein College of Medicine, Bronx, 
NY), Model M (M.D. Anderson Cancer Center, Houston, TX), Model S (Stanford University, 
Stanford, CA), and Model W (University of Wisconsin, Madison, WI, and Harvard Pilgrim 
Health Care, Boston, MA). 

Each model portrays four distinct molecular subtypes, each with its own trajectories and 
responses to therapy, based on estrogen receptor (ER) and human epidermal growth factor-2 
receptor (HER2) status (4). The models have been recently updated to reflect current population 
trends in incidence (13, 14) and competing nonbreast cancer mortality. Screening performance 
reflects modern digital technology and the most current therapeutic trial results. All models 
except one (Model S) includes ductal carcinoma in situ (DCIS); Model S only portrays invasive 
cancer. The general modeling approach is summarized below, followed by specific details about 
each model.  

The models begin with estimates of overall breast cancer incidence and ER/HER2-specific 
survival trends without screening or adjuvant treatment and then overlay data on screening use 
and reductions in mortality associated with adjuvant treatment for each molecular subtype to 
generate observed U.S. population incidence and mortality trends; the models assume that all 
women diagnosed with breast cancer receive local treatment (2-4, 15-18). Women are assumed 
to have average risk; risk levels, including risk associated with breast density, can modify 
incidence. Each breast cancer is depicted as having a distribution of preclinical screening-
detectable periods (sojourn time) and a clinical detection point. Age, screening round and 
interval, and breast density affect mammography performance. On the basis of digital 
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mammography sensitivity (or thresholds of detection), screening identifies disease in the 
preclinical screening-detection period and results in the identification of earlier stage or smaller 
tumors than might occur via clinical detection, resulting in local and systemic treatment with a 
corresponding reduction in breast cancer mortality. At the time of diagnosis, ER/HER2 status is 
assigned based on stage and age. Molecular subtype–specific treatment reduces the hazards of 
breast cancer death (Models D, G-E, M, and S) or results in a cure for some fraction of cases 
(Models E and W). Women can die of breast cancer or other causes.  

Dana-Farber (Model D) 

Model D is a stochastic model that depicts the early detection process of screening and predicts 
breast cancer mortality as a function of the disease natural history, detection process, and 
treatment (9, 19). Model D takes an analytical approach to estimate the impact of mammography 
screening and treatment on incidence and mortality of breast cancer. The factors that influence 
mortality in Model D are: examination schedule and sensitivity, transition into the preclinical and 
clinical states, distribution of the preclinical sojourn time, age distribution of the population, 
length of followup, incidence of disease by age and other risk factors, and unique factors 
associated with the natural history of the disease.  

Model D characterizes the natural history of invasive breast cancer by four health states: S0 is a 
disease-free state (disease-free or disease cannot be detected by any screening modality), Sp is a 
preclinical state (disease can be diagnosed by a screening test), Sc is a clinical state 
(symptomatic disease), and Sd is a disease-specific death state. There are two main model 
assumptions: 1) invasive breast cancer is progressive and described by the transitions from S0 to 
Sp to Sc, and some eventually progresses to Sd; and 2) the mortality benefit from screening is 
from a stage shift in diagnosis. The main goal of screening is to diagnose individuals in Sp, 
where subjects have an early-state disease with no symptoms. The stage shift implies the subjects 
are diagnosed earlier (in Sp), before symptoms surface (in Sc). Model D mathematically derives 
a distribution of the lead-time in the presence of screening and adjusts the lead-time bias in 
mortality modeling. The model assumptions have been validated by projecting the results from 
randomized screening trials and comparing model outputs to published trial results (20).  

Since 2009, a second potential path of DCIS was incorporated into Model D, as shown in Figure 
1. The revised Model D envisions that normal tissue can progress to either early-stage DCIS or 
preclinical invasive breast cancer. Invasive breast cancer follows the health states described 
above. For early-stage DCIS (preclinical DCIS), Model D assumes it can potentially take one of 
these three paths: 1) stay in the early stage of DCIS and/or eventually regress to normal; 2) 
progress to invasive breast cancer; or 3) progress to a later stage of DCIS (clinical DCIS), where 
clinical symptoms appear. It is assumed one does not die of DCIS. Furthermore, it is assumed 
that mammography screening finds individuals with preclinical DCIS. For preclinical DCIS that 
will eventually progress to clinical DCIS (i.e., path 3), the mean sojourn time was estimated to be 
2 to 3 years, with exponential distribution using DCIS incidence data from the Surveillance, 
Epidemiology and End Results (SEER) program from 1973 to 1979 (i.e., the prescreening era). 
The transition probability from early- to late-stage DCIS, W1b(t), was estimated using age-
period-cohort (APC)-based DCIS incidence data in the absence of screening for the 1970 birth 
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cohort. A net transition probability of [W1a(t)-Wr(t)- W1c(t)] to the reservoir of early-stage 
DCIS (entering–leaving the reservoir) was estimated using the method described by Lee and 
Zelen (21). 

The main assumption in Model D is that mortality benefits from screening are due to a stage shift 
by finding disease earlier, when prognosis is more favorable. For example, approximately 50 
percent of women diagnosed in the clinical state (usual care) tend to be in a node-negative stage 
compared to 70 to 80 percent of women diagnosed by an early detection program (e.g., 
mammography). Therefore, the survival distribution (conditional on disease stage at early 
diagnosis) will be more favorable for women whose cancer is screen detected versus clinically 
detected. Model D utilizes the stage distribution data by the mode of detection provided by 
BCSC. Model D incorporates the probability distribution of the lead-time in adjusting mortality 
for screen-diagnosed cases.  

Model D derived the lead-time distributions for DCIS and invasive breast cancer in the presence 
of screening. Using these distributions, the probability of overdiagnosis conditional on being 
screen-detected (i.e., lead-time is longer than residual survival time) was estimated for DCIS and 
invasive breast cancer. These probabilities were applied to the screen-detected cases to quantify 
overdiagnosis. This method of estimating overdiagnosis was compared to the difference between 
total number of diagnosed cases in the presence and absence of screening. There was good 
agreement.  

The survival benefits of various adjuvant therapies were assessed based on a meta-analysis of 
clinical trial results (22). The reported estimates on proportional reduction in the annual odds of 
death for treatment by age groups and ER/HER2 status were applied to the baseline survival. The 
baseline survival in the absence of treatment was assessed using SEER breast cancer–specific 
survival data from cases diagnosed in 1975 to 1979. For the 1970 birth cohort, the best available 
treatment benefit by ER/HER2 status was applied.  

Erasmus (Model E) 

Model E is called the MISCAN-Fadia (MIcrosimulation of SCreening Analysis–Fatal diameter) 
model. It is a microsimulation model generating independent life histories. MISCAN-Fadia is 
unique in that it explicitly models invasive tumor growth in combination with the concept of a 
fatal diameter (10). The model also includes DCIS. Model E simulates a large population of 
women using the demographic characteristics of the U.S. female population. The simulated 
population consists of individual life histories, in which some women develop breast cancer and 
some die of the disease. A certain percentage of the modeled population develops preclinical 
disease. This percentage varies between birth cohorts and is based on cumulative incidence (23). 
The cohorts have the same age distribution of onset of breast cancer. The age distribution of 
onset is based on 1975 age-specific incidence rates, with a shift to younger ages, because onset 
of tumor growth was earlier than clinical diagnosis in the 1975 prescreening era. The simulated 
woman dies of breast cancer or of other causes, whichever comes first. The following sections 
include a summary of the structure and assumptions for each component of the model. 
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Among those who develop disease, the natural history of breast cancer is modeled as a 
continuously growing tumor. Each tumor has a size (the fatal diameter, which differs between 
tumors) at which diagnosis and treatment will no longer result in cure given available treatment 
options. If the tumor is diagnosed (either on the basis of clinical presentation with symptoms or 
by screening) and treated before it reaches the fatal diameter, the woman will be cured (and will 
die of nonbreast cancer causes). Variation between tumors is modeled by probability 
distributions of tumor growth, threshold diameter of screen detection, clinical diagnosis 
diameter, and fatal disease diameter. The tumor growth rate, survival duration since fatal 
diameter, threshold diameter for screen detection, clinical detection diameter, clinical diagnosis 
because of distant metastases, and correlations are estimated using data from the Two County 
Study (24, 25). The fatal diameter was calibrated to U.S. data based on 1975 stage distribution 
and survival (26). Survival is modeled from the time of fatal diameter. For observed survival, the 
time between clinical diagnosis and the time the tumor reached the fatal diameter is subtracted.  

MISCAN-Fadia includes a submodel for DCIS. DCIS can either regress, become invasive, or be 
clinically diagnosed at exponential rates. These rates are estimated using SEER American Joint 
Committee on Cancer (AJCC) stage- and age-specific incidence rates for DCIS and invasive 
cancer from 1975 to 1999. For example, the rate at which DCIS becomes clinically diagnosed is 
based on the small percentage of DCIS that was diagnosed prior to use of screening in 1975 to 
1979. This natural history approach readily lends itself to defining separate distributions for each 
of these parameters based on risk groups and molecular tumor subtype.  

When a screening program is applied, the preclinical tumor may be detected by screening. Each 
simulated tumor has a diameter at which it will be clinically diagnosed and a threshold diameter 
of screen detection. For the latter, screening test sensitivity is 0 percent below and 100 percent 
above this diameter. The threshold diameter depends on the calendar year and age of the woman 
(decreasing with calendar year and older age). Screening benefits result from detection of more 
tumors at a nonfatal size. The dissemination of mammography is modeled based on the actual 
dissemination in the U.S. population (27). In addition, specified screening programs (with fixed 
screening intervals and starting and stopping ages) can be incorporated in the model. This 
structure provides flexibility to define different thresholds of detection for any screening test 
based on molecular subtypes of cancer.  

Model E simulates life histories for individual women. The model uses the so-called parallel 
universe approach and first simulates the individual life histories for women in the absence of 
screening and then assesses how these histories would change as a consequence of a screening. 
To estimate the amount of overdiagnosis, the number of breast cancers detected in these two 
situations are compared. Overdiagnosis is defined as “the detection of tumors that would not 
have been detected in a woman’s lifetime in the absence of screening.” Overdiagnosis can occur 
because of lack of progressive potential (e.g., of DCIS) or because a woman dies from another 
cause before the breast cancer would have been clinically detected. The amount of overdiagnosis 
is calculated by subtracting the number of breast cancer diagnoses in the absence of screening 
from the number of breast cancer diagnoses in the presence of screening.  

The benefit of adjuvant treatment is modeled as a shift in the fatal diameter for treated women. 
For each adjuvant treatment, a cure proportion is estimated (depending on age) using treatment 
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effectiveness data (based on meta-analyses of the Early Breast Cancer Trialists’ Collaborative 
Group) (22). These cure proportions are then translated into corresponding fatal diameters (i.e., a 
more effective treatment can cure a larger tumor).  

Georgetown-Einstein (Model G-E) 

Model G-E is a microsimulation of breast cancer in the U.S. population, implemented in C++ 
programming language, that is specifically oriented toward estimating the impact of screening 
and adjuvant treatment innovations that have taken place since 1975 (6). The approach is 
phenomenological; there is no attempt to model any specific biology of breast cancer. The 
impact of screening and treatment are managed by creating “parallel universes,” whereby the 
same life history is subjected to different real or counterfactual screening or treatment strategies 
and the varying results are directly compared. The model’s inputs have been calibrated to 
produce a reasonable approximation to SEER incidence and mortality over the period of 1975 to 
2010. The mortality risk conferred by any given breast cancer depends upon the biomarkers, the 
patient’s age at diagnosis, the stage at diagnosis, and the treatment provided.  

Breast cancer is assumed to exist in two forms: progressive and nonprogressive. Nonprogressive 
lesions have a transient existence and are never identified clinically, but may be detected through 
screening and present as DCIS when they are. Nonprogressive breast cancer has no mortality 
associated with it. Progressive lesions may present clinically or through screen detection, in any 
of the AJCC stages, and all of these lesions carry a risk of breast cancer mortality. All breast 
cancers, progressive or nonprogressive, may be classified by the presence or absence of two 
biomarkers: ER and HER2. The incidence of breast cancer depends on a woman’s birth cohort 
and varies with age. The age-specific incidence rates, in turn, depend on the woman’s breast 
density. The mortality risk conferred by any given breast cancer depends upon these biomarkers, 
the patient’s age at diagnosis, the stage at diagnosis, and the treatment provided. 

In the simulation, construction of a life history begins by selecting a birth cohort for each 
woman, sampled from the distribution of population birth years from U.S. Census data, or, in 
some applications, a single birth cohort is simulated. A date of death from nonbreast cancer 
causes is sampled from a birth cohort–specific life table.  

Incidence of breast cancer in the (counterfactual) absence of screening is based on a modification 
of an APC model (23), extended beyond its covered ages and cohorts by applying year-on-year 
incidence ratios (13, 14) and then further calibrated to improve match to SEER incidence from 
1975 to 2010. A time-to-event distribution for onset of clinical breast cancer is sampled to 
determine when, if ever, the woman will develop clinically apparent breast cancer. If clinically 
apparent breast cancer will develop, it is assigned a stage by sampling the age-specific stage 
distribution for clinically detected cancer, and is then given a biomarker classification by 
sampling the biomarker distribution conditional on age and stage. Survival from the time of 
clinical diagnosis in the absence of treatment is then sampled from a time-to-event distribution 
conditional on age, stage, and biomarkers using the survival functions describing prognosis of 
breast cancer in 1975, and the corresponding date of death from breast cancer (which may be 
before or after the date of nonbreast cancer death) is calculated. Finally, a sojourn time for the 
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lesion is sampled. The sojourn time distributions are conditional on age at clinical presentation 
and biomarkers. All of the conditional distributions are assumed to be gamma distributions with 
a common shape parameter. (The value of the shape parameter is an input, as are age-biomarker– 
specific means.) A date preceding the date of clinical onset of breast cancer by the duration of 
the sojourn time is identified as the onset of the sojourn period for this lesion. If no clinically 
apparent breast cancer is to develop, time-to-event distributions for onset and regression of 
nonprogressive lesions are sampled to determine when, if ever, such a lesion develops. 
Parameters of these distributions are among those calibrated to produce a match to SEER 
incidence after the dissemination of screening in the United States. The nonprogressive lesion is 
assigned an ER/HER2 classification by sampling from the biomarker distribution of all DCIS 
lesions for a woman of her age, and its stage is set to DCIS. 

The above steps create a basic life history describing breast cancer in the absence of screening or 
adjuvant treatment, characterizing each simulated woman by a birth date, date of death from 
nonbreast cancer causes, and, in women with breast cancer, dates of sojourn onset, clinical 
presentation, and death from breast cancer. 

Each woman is assigned to a mammography screening schedule (or, in simulations including 
counterfactual screening strategies, several screening schedules). The dissemination screening 
schedule is randomly sampled to produce birth cohort–specific screening schedules that are 
thought to resemble actual screening behavior among women in the United States. 
Counterfactual, strictly periodic screening schedules, such as “every 2 years from ages 50 to 74 
years,” can be simulated as well, as can scenarios in which screening intervals vary with age or 
breast density. If a screening mammogram is carried out during the sojourn interval of a breast 
cancer, there is a probability that it will be detected. This probability, known as the sensitivity, 
depends on the woman’s age at the time of the screening; whether it is an initial or subsequent 
screening; in some analyses, the woman’s breast density; and whether the mammogram uses film 
or digital technology. Note that this sensitivity is an abstract, unobservable parameter of the 
model that is calibrated to reproduce 1-year screen-detection hit rates from BCSC. The actual 
outcome of the simulated screening is determined by sampling a uniform random number and 
comparing that to the sensitivity. If screen detection occurs, a new stage, possibly earlier than the 
clinical stage, is assigned to the lesion. To do this, the model draws on distributions of stage 
dwell. The distributions are assumed to be exponential, and the means are unconditional program 
inputs. Based on the lead-time obtained by screening and the dwell time distributions, a screened 
stage is sampled from a Bayesian posterior distribution. Survival in the absence of adjuvant 
treatment is then recalculated based on the new age and stage at diagnosis (the biomarkers are 
assumed to be the same as if the lesion were diagnosed clinically), and the date of death from 
breast cancer is revised accordingly. 

In light of the above, the effect of screening on breast cancer mortality is based entirely on stage 
shift and age shift. Once a lesion has been screen detected, screening terminates. If a lesion goes 
undetected at every screening examination, it will still present clinically at its clinical 
presentation date (unless it is nonprogressive, in which case it will eventually regress). Screening 
examinations conducted before the sojourn period or in a woman with no breast cancer in her life 
history have a probability of leading to a false-positive result. This probability is 1 minus the 
specificity of the test. Test specificity is conditional on age; whether it is an initial or subsequent 
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screening; screening technology; and, in certain analyses, breast density. False-positive screening 
tests do not interrupt the screening schedule. 

As described above, nonprogressive lesions have a transient existence and are never identified 
clinically, but may be detected through screening and present as DCIS when they are. DCIS can 
either regress, become invasive, or be clinically diagnosed at a specified nonexponential 
distribution. Model G-E assumes that all invasive disease can progress to lethality; therefore, 
invasive overdiagnosis arises only as a result of other-cause mortality intervening between screen 
detection and the date when the lesion would present clinically. 

Upon clinical diagnosis or screen detection, a woman with a breast cancer diagnosis is assigned a 
treatment. In the basic model, this is done by sampling from a distribution of treatments specific 
to age, stage, year of diagnosis, and biomarker. These distributions are program inputs thought to 
represent the dissemination of adjuvant therapies in the U.S. population. Counterfactual 
treatment distributions (e.g., every woman receives the most effective treatment available at the 
time for her age and biomarker combination) are also available. Each combination of treatment 
and lesion characteristics (age at diagnosis, stage, and biomarkers) is associated with a hazard 
ratio less than or equal to 1, which specifies the treatment effectiveness. Although the model is 
programmed to also apply cure fractions in association with treatment, all implementations of the 
model so far have assumed that all cure fractions are zero and have relied exclusively on hazard 
reduction. The survival curve for the lesion, with the treatment-associated hazard ratio applied, is 
sampled to determine a new survival duration, and the date of death from breast cancer is 
modified accordingly. 

Model G-E has been through one major and several minor revisions since its first appearance in 
2001. Most of the changes have been enhancements to the code and its numerical and sampling 
algorithms to make it run more efficiently, including a change from modular coding in C in the 
original, to object-oriented programming in C++ in 2006 to 2007, to an upgrade from ANSI 
standard C++ to ISO standard C++ in 2012 to 2013. These changes, along with improvements in 
hardware and operating systems, have greatly enhanced the scope of simulations. Whereas 
simulation of a single scenario for N=50,000,000 required more than 24 hours of computing time 
in the original version, we can now simulate N=200,000,000 for 15 parallel scenarios in 
approximately 2 hours. 

A number of substantive changes to the program, reflecting the modelers’ emerging perspectives 
on breast cancer, have also occurred. These are briefly summarized here. 

1. The original program simulated only a single scenario (combination of screening and 
treatment strategies) at a time and maintained all events in an event queue. There was only 
minimal parallelism between the life histories generated in different scenarios. When the 
model was reprogrammed in 2006, the event queue was eliminated, and all relevant dates 
were maintained in a life-history object. Since then, any number of scenarios can be 
processed in parallel, and the same underlying life histories are used for all scenarios. In 
addition, depending on the nature of the scenario, it is sometimes possible to impose 
parallelism among different screening programs or treatment plans. 

U.S. Breast Cancer Screening Strategies 8 CISNET/BCSC 



2. Natural histories were not distinguished by biomarker categories in the original model 
(although responses to treatment were). These former were added in 2011. 

3. Sojourn time distributions were all assumed to be exponential in the original model; this 
constraint to the gamma family was relaxed in 2012 when it became apparent that the model 
was overgenerating lesions with extremely long or short sojourn times. 

4. Density-specific natural histories and screening operating characteristics were added in 2012. 
5. Nonprogressive disease was added in 2006. 
6. The original simulation output provided only counts of mammograms, incident cases in each 

stage, breast cancer deaths, and surviving population for each age and calendar year 
combination. Numerous additional outputs have been added, including counts of 
nonprogressive cases diagnosed, overdiagnosed cases, and life-years (overall and in specific 
stages of breast cancer treatment). 

In addition to the structural model changes noted above, parameter estimates have changed over 
time, driven by the awareness of new knowledge and the need to calibrate the incidence outputs 
to more recent SEER data. Specific Model G-E changes include:  

1. While all CISNET models have adopted a new APC model as the basis for estimating breast 
cancer incidence in the absence of screening, several variants of that model are in use. We 
begin with the Holford APC model (23) and extend it to cover older ages and more recent 
birth cohorts by applying year-on-year incidence ratios (14). We then add an additional 
period effect that rises from 1987 through 1997 and then declines again through 2007. 

2. Nonprogressive disease incidence is calculated as a fixed proportion of all DCIS. (Previously 
this was calculated as a fixed proportion of all breast cancer.) 

3. Mammography dissemination is slightly modified from the Cronin-Krapcho model (27) to 
reduce the amount of mammography use by women born before 1948 during the first half of 
the 1980s. 

4. The sojourn period of nonprogressive lesions is 6 years up until 1995. Reflecting increased 
efforts by radiologists to detect ever smaller lesions with plain film mammography, the 
sojourn times increase linearly between 1995 and 2005, topping out at 12 years and 
remaining level thereafter. The increased sojourn time of nonprogressive lesions is achieved 
by allowing them to become detectable at an earlier point in their lifespan. 

5. Treatment hazard ratios are based on earlier estimates from the Early Breast Cancer Trialists’ 
Collaborative Group meta-analysis (22) rather than the more recent treatment dissemination 
parameters that some other CISNET models use, since the former reflects greater treatment 
effects over time that are more consistent with changes in clinical practice.  

M.D. Anderson (Model M) 

Model M is a Bayesian simulation model (7). It simulates a population of 1 million women that 
has the age distribution of the United States in 1975. For each virtual woman, the model 
simulates a natural course of her life separate from breast cancer. Each year, each woman is 
diagnosed with breast cancer or not, depending on the incidence of the disease for women her 
age in that year, whether she had a screening mammogram that year, and her history of 
mammography. In the absence of screening, Model M assumes that incidence is the same as it 
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was in the prescreening era based on rates reported to SEER from 1975 to 1979, with an 
essentially flat trend over time; no cohort trend is included. The model keeps track of which 
women are diagnosed with breast cancer in each year and which women die of breast cancer and 
from other causes. The model considers births and deaths.  

Model M is not a natural history model. S(t) denotes the probability of surviving breast cancer to 
time t after diagnosis for cancer detected in the absence of both screening and adjuvant therapy. 
S(t) depends on age, stage, and ER/HER2 status. Model M uses the standard CISNET estimate 
for S(t) (4) but allows for uncertainty in this estimate by incorporating an unknown parameter h. 
This parameter affects the hazard function of S(t) multiplicatively so that the resulting new 
survival function is S(t) raised to the power of h. Consistent with the Bayesian approach, Model 
M assesses prior probability distributions for all unknown parameters. The parameters of interest 
are those that affect the diagnosis of breast cancer (screening) and its course once the disease is 
diagnosed (treatment). The joint prior distribution of these parameters is updated using Bayes’ 
rule and based on SEER breast cancer mortality over time. The calculation process is to first 
generate a vector of values from the joint prior distribution of the parameters. Together with the 
known inputs, these parameters are sufficiently specific to enable generation of the breast cancer 
history of each woman in the entire virtual population, including whether and when breast cancer 
is the cause of death. This vector of parameter values is accepted as an observation from the joint 
posterior distribution if the simulated breast cancer mortality over time is sufficiently close to 
SEER breast cancer mortality. This process is repeated many times to accumulate enough 
acceptances to allow for adequately estimating the posterior distribution. This posterior 
distribution is used to make inferences about the unknown parameters and to produce additional 
simulations assuming hypothetical screening histories, treatments, and treatment effects. 

Screening helps detect cancer in an earlier stage (stage shift). Screen-detected cases are also less 
likely to result in breast cancer death than similar clinically-detected cases. This is called 
“beyond stage shift.” Screening parameters also include a cure fraction for AJCC stage I and II 
cancers. 

Overdiagnosis is the difference between the number of cases of breast cancer when there is the 
indicated amount of screening versus no screening. Treatment parameters include those for the 
effects of combinations of adjuvant hormone therapy; adjuvant trastuzumab; adjuvant therapy 
with cyclophosphamide, methotrexate, and fluorouracil; adjuvant anthracycline-based therapy; 
and adjuvant taxanes. Treatment affects mortality by a hazard reduction and cure fraction by 
mode of diagnosis. 

Stanford (Model S) 

Model S is a multibirth cohort model that simulates the impact of breast cancer screening and 
adjuvant treatment on U.S. breast cancer incidence and mortality trends (8). Model S generates a 
series of breast cancer–specific events in the life history of individual breast cancer patients, then 
aggregates these patient-specific events to produce population-level trends. For each individual 
patient’s life history, Model S generates her age at detection, mode of detection (screening vs. 
symptoms), tumor size, survival time, and cause of death (breast cancer vs. other causes). 
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Moreover, Model S describes the preclinical progression of each patient’s disease prior to 
symptoms in order to determine the likelihood of detection by screening and the smaller tumor 
size attributed to screen detection. Each simulated event in an individual patient’s history is a 
random variable, drawn from a probability distribution function.  

The natural history of invasive breast cancer is modeled as progressive disease, where an 
individual patient’s tumor grows exponentially in size and has an increasing probability of 
advancing to regional and distant stages (or the comparable AJCC stages) at larger sizes (8, 28). 
Each simulated patient is randomly assigned a tumor volume-doubling time, drawn from a 
distribution that is conditional on her age at clinical detection in the absence of screening. 
Younger women have faster growing tumors than older women. The tumor’s history is 
reconstructed “backward” from the time of symptomatic detection to the moment it had been 2 
mm in diameter, as opposed to being reconstructed “forward” from initiation of the first 
malignant cell. Progression from preinvasive disease, such as DCIS, to invasive disease is not 
modeled, but could be included in future work. As such, Model S is the only BWG model that 
does not include DCIS. Model S incorporates the use of underlying breast cancer–specific 
survival by ER/HER2 subtype, as well as its predicted distribution at clinical detection in the 
absence of screening.  

Breast cancer incidence in the absence of screening is estimated using the APC model commonly 
used among modeling groups (14, 23). However, contrary to other groups, Model S does not rely 
simply on this input. Instead, Model S uses background breast cancer incidence derived from a 
novel approach developed under the APC framework that explicitly considers the effects of 
screening and menopausal hormone therapy (MHT). Breast cancer incidence in the presence of 
screening is computed by modeling the interaction between screening and the natural history of 
breast cancer. 

Model S quantifies the effects of MHT in breast cancer incidence and mortality trends. For this 
purpose, the Stanford team developed a MHT dissemination model for women who were older 
than age 50 years before and after 2002. All parameters related to MHT modeling were 
calibrated to reproduce breast cancer incidence trends with increasing MHT use before 2002 and, 
as validation, to predict a rapid decline in incidence following the decline of MHT use in 2002. 
The Model S team tested the hypothesis that MHT increases tumor growth and decreases 
mammographic detectability and found that it is consistent with SEER data. 

Tumor detection in the absence of screening is modeled as a stochastic process where the 
probability of detection increases over time, as a function of increasing tumor size. In the 
presence of screening, the tumor is either screen- or interval-detected (i.e., symptomatically 
detected in the interval between screening examinations). The impact of screening is computed 
by superimposing the times at screening on the natural history of the disease. If the tumor is in 
the preclinical phase and above the screen detection threshold at the time of screening, it is 
detected and its size is derived from the natural history model; if it is not detected by screening 
and becomes symptomatic before the next screening examination , it is classified as interval-
detected. The dissemination of screening mammography is inferred from the common screening 
parameter with patterns of use derived from BCSC and national self-reported survey data (27). 
The detection function for screening mammography is characterized by a tumor size threshold; 
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above the threshold, the tumor is detectable, and below the threshold, the tumor is not detectable. 
Each individual is randomly assigned a screen-detection threshold, dependent on her age at the 
time of screening. Compared to older women, younger women have a higher detection threshold, 
which translates into lower program sensitivity.  

Model S does not include DCIS and assumes that all invasive disease can progress to lethality. 
Treatment efficacy was originally modeled assuming proportional hazard; in other words, that 
the benefits were proportionally distributed across the years following diagnosis. In recent years, 
Model S has been updated to incorporate nonproportional hazard, to the effect that treatment 
depends on the ER status of each breast cancer case.  

Wisconsin (Model W) 

Model W is a discrete-event microsimulation model that uses a systems engineering approach to 
replicate breast cancer epidemiology in the U.S. population over time. It was developed at the 
University of Wisconsin and has been continuously maintained and enhanced for more than 10 
years. Model W is a population-based model that simulates the lifetimes of individual women 
through the interaction of four main components: breast cancer natural history, detection, 
treatment, and mortality (5). Each woman enters the model at age 20 years and ages in 6-month 
cycles. Model W has several distinguishing features. First, the natural history component of the 
model incorporates heterogeneity in tumor characteristics. The model allows for a subset of 
clinically insignificant DCIS and early-stage invasive tumors that are more likely to be screen 
detected and do not lead to breast cancer mortality. On the other end of the spectrum, the model 
allows for another subset of tumors to be “aggressive” by entering them into regional and distant 
stages early in their development. These hypotheses about the natural history arose through the 
process of model calibration by testing the fit of alternative model structures to observed data. 
Using these natural history assumptions, Model W is able to closely replicate the dramatic 
increase in U.S. breast cancer incidence during the 1980s as well as the subsequent trends in 
breast cancer mortality. Second, the model incorporates second-order uncertainty in model 
outcomes. The calibration procedure uses acceptance sampling techniques whereby a joint 
posterior-like distribution across model parameters is produced. By conducting analyses with 
random samples from this distribution, the model results and conclusions reflect the effects of 
parameter uncertainty.  

The interplay of the modules defines the individual life histories of the simulated women. Model 
output is highly customizable in its level of detail, like an omniscient cancer registry, and can 
include underlying disease states as well as observed clinical outcomes by age, race, and 
calendar year. The model uses common random numbers to reduce random variation in model 
outcomes and directly calculate quantities, such as overdiagnosis and lead-time (29). Model W 
incorporates second-order uncertainty in model outcomes such that model results and 
conclusions reflect the effects of parameter uncertainty. The model, programmed in C++, runs on 
both Microsoft Windows and UNIX platforms. A brief description of each component as 
currently programmed follows here. 
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Breast cancer occult inception is modeled as a function of a woman’s birth year and age and 
accounts for secular trends in risk (23). After onset, cancers are assumed to grow according to a 
stochastic Gompertz-type model controlling for tumor size (30-32). Tumor spread is described 
by a Poisson process determined by tumor size and growth rate. Tumors are assigned a SEER 
historical stage (in situ, localized, regional, or distant) based on size and lymph node 
involvement at the time of diagnosis. The natural history component incorporates heterogeneity 
in tumor characteristics. A fraction of tumors are assumed to be of limited malignant potential 
(LMP) and do not pose a lethal threat. Model parameters that control the natural history and 
detection of breast cancer were estimated through the process of calibration to fit observed age-
adjusted, stage-specific breast cancer incidence data from the SEER program and breast cancer 
mortality data from 1975 through 2010 reported by the National Center for Health Statistics. The 
calibration procedure uses acceptance sampling techniques whereby a joint posterior-like 
distribution across model parameters is produced (33). The model has been separately cross-
validated against data from the Wisconsin Cancer Reporting System, a member of the North 
American Association of Central Cancer Registries, and the Iowa SEER registry. Separate 
analyses with this model produced results that were congruent with those from analyses based on 
other models of the natural history of breast cancer (5). 

Breast cancer can be detected by one of two methods: by breast imaging or by symptoms (the 
combination of self-detection and clinical examination). Breast screening utilization, screening 
sensitivity, and the likelihood of symptomatic detection are functions of a woman’s age and 
tumor size as well as calendar year to account for improvements in technology and increased 
awareness of the disease. The sensitivity of mammography has been calibrated to match 
observed estimates (34). Mammography utilization follows observed age-specific U.S. screening 
patterns (27), or the user can set screening utilization to follow fixed criteria, such as for starting 
and ending ages and frequency of use. Race-specific utilization of mammography was added to 
the model under recent funding (35, 36). The detection module can be configured for any 
screening test and has been extended to incorporate digital mammography (37). 

Model W allows for a subset of clinically insignificant DCIS and early-stage invasive tumors 
that are more likely to be screen detected and do not lead to breast cancer mortality. As described 
above, a fraction of tumors are assumed to be of LMP and do not pose a lethal threat. LMP 
tumors are programmed with the following characteristics: 1) they start to grow at the same rate 
as lethal tumors; 2) they stop growing at a small size; and 3) they disappear if undetected after a 
fixed length of time. 

The model assumes all women receive standard treatment at the time of detection. Adjuvant 
therapy with chemotherapy and/or endocrine therapy follows observed U.S. dissemination 
patterns (38, 39). Treatment effectiveness is a function of age at diagnosis, stage at diagnosis, 
ER/HER2 status, and receipt of adjuvant treatment and new treatment modalities, and is modeled 
independent of the method of cancer detection. An effective treatment is assumed to halt breast 
cancer progression (“cure”). Tumors that are not “cured” continue to grow until they reach a 
metastatic stage; survival time is assigned based on observed SEER cancer survival. 
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Analysis 

For this modeling analysis, the six BWG models were used to assess screening outcomes for a 
cohort of women born in 1970 who are followed beginning at age 25 years (since breast cancer is 
rare before this age, accounting for only 0.08% of cases) until death. We report their screening 
outcomes from ages 40 to 100 years.  

Model Data Input Parameters 

The modeling groups began with a common set of age-specific variables for breast cancer 
incidence, breast density prevalence and probability of transition to lower breast density with 
age, digital mammography test characteristics, ER/HER2-specific treatments, and average and 
comorbidity-specific nonbreast cancer competing causes of death (Table 1). The models also 
used a common set of utility values.  

In addition to the common parameters in Table 1, each model included model-specific inputs (or 
intermediate outputs) to represent preclinical detection times, lead-time, and age- and ER/HER2-
specific stage distribution in screen- versus nonscreen-detected women on the basis of model 
structure (2-11). The model-specific parameters were based on reasonable assumptions about 
combinations of values that reproduce U.S. trends in incidence and mortality, including 
assumptions about proportions of DCIS that are nonprogressive and would not be detected 
without screening. Model W also assumed that some small invasive cancers are nonprogressive. 
Using a Bayesian approach, Model M accepted distributions of parameter sets that reproduce 
observed trends; these could include some nonprogressive DCIS and invasive cancer.  

All models except one (Model M) used APC methods to project overall breast cancer incidence 
rates for the 1970 birth cohort in the absence of screening (13, 14, 23). Model M used incidence 
in the absence of screening based on rates reported to SEER from 1975 to 1979 without any 
specific cohort effects, so essentially a flat temporal trend.  

To isolate the effect of technical screening effectiveness and assess the effect of screening on 
mortality while holding treatment constant, the models assumed 100 percent adherence to 
screening and receipt of and adherence to the most effective treatment.  

Four groups used the age-specific digital mammography sensitivity values observed in the BCSC 
for detection of all cases of breast cancer (invasive and in situ) (Table 2).  

Separate values were used for initial and subsequent mammography performed at either annual 
or biennial intervals, where annual interval was defined as 9 to 18 months between examinations 
and biennial interval as 19 to 30 months (unpublished data). One model (D) used these data 
directly as input variables (9) and three models (G-E, S, and W) used the data for calibration (5, 
6, 8). The other models (E and M) used the BCSC data as a guide and fitted estimates from this 
and other sources (7, 10). 
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All women who had ER-positive invasive tumors received 5 years of hormonal therapy 
(tamoxifen if age at diagnosis was <50 years and anastrozole if ≥50 years) and nonhormonal 
treatment with an anthracycline-based regimen accompanied by a taxane. Women with ER-
negative invasive tumors received nonhormonal treatment only. Those who had HER2-positive 
tumors received trastuzumab. Women with DCIS who had ER-positive tumors received 
hormonal therapy (39). Systemic treatment effectiveness was based on synthesis of recent 
clinical trials and was modeled as a proportionate reduction in mortality risk from the underlying 
ER/HER2-specific survival in the absence of therapy or the proportion cured (22), and assumed 
women received surgery (and radiation) as local therapy. To isolate the effectiveness of 
screening and to assess the impact of screening on mortality while holding treatment constant, 
models assumed 100 percent adherence to indicated treatment. 

Benefits 

Screening benefits occur because of reductions in breast cancer mortality due to detection at an 
earlier stage (or smaller size) than would have occurred without screening (with 100% 
treatment). Benefits are accumulated through ages 40 to 100 years to capture lifetime reductions 
in breast cancer mortality occurring years after the start (and end) of screening. We also 
examined breast cancer deaths averted, undiscounted life-years saved (LYS), and quality-
adjusted life-years (QALYs) gained because of averted or delayed breast cancer death.  

To quality adjust life-years, we applied a decrement in LYS related to age- and sex-specific 
average population general health (43, 44). Additional disutilities were then considered using 
multiplicative methods (44), including screening (-0.006 for 1 week), evaluation of a positive 
screen (-0.105 for 5 weeks), initial treatment by stage (for the first 2 years after diagnosis), and 
distant disease (for the last year of life for all women who die of breast cancer) (Table 3) (45, 
46). The harm of overdiagnosis is captured by decrements in utility based on being in a cancer 
state and undergoing treatment but dying of other causes without a change in life expectancy. 

Harms 

As measures of the burden that a regular screening program imposes on a population, several 
different potential screening harms were examined: total number of mammograms, false-positive 
mammograms, benign biopsies, and overdiagnosis. We defined the rate of false-positive 
mammograms as the number of mammograms read as abnormal or needing further followup in 
women without cancer divided by the total number of screening mammograms. We defined 
benign biopsies post-hoc as the proportion of women with false-positive screening results who 
received a biopsy (47). We defined overdiagnosis as cases that would not have been clinically 
detected in a woman’s lifetime in the absence of screening (because of lack of progressive 
potential or death from competing mortality).  

Screening Scenarios 

We compared model results for eight screening strategies varying by starting age (40, 45, or 50 
years) and interval (annual, biennial, or hybrid [annual from ages 40 to 49 or 45 to 49 years and 
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biennial in the 50s]). All screening strategies stopped at age 74 years. We included a “no 
screening” base-case scenario to estimate the percent mortality reduction associated with any 
given strategy.  

Strategies were arrayed from the least to the most harmful (or use of mammograms). We 
considered a strategy more efficient than a comparison strategy if it resulted in more benefits for 
a given increase in harm (or use). A strategy that entails more harms (or use) but less benefit was 
considered inefficient or dominated by other strategies. After eliminating all dominated and 
weakly dominated strategies, we represented the remaining strategies as points on a graph 
plotting the average amount of harm versus benefit for each model. We obtained the efficiency 
frontier for each graph by identifying the sequence of points that represented the largest 
incremental gain in percentage of mortality reduction (or LYS or QALYs) per additional harm 
entailed. Screening strategies that fall on this frontier were considered the most efficient (i.e., no 
alternative exists that provides more benefit with fewer harms).  

Subpopulation and Sensitivity Analysis 

We conducted additional analyses to evaluate whether the ranking of strategies changes when 
different subpopulations or input variable levels are modeled. First, we investigated the effect of 
breast density on harms and benefits. We considered four density subpopulation groups for 
analyses (a=entirely fatty; b=scattered density; c=heterogeneously dense; and d=extremely 
dense) and grouped them for reporting into low density (a and b) and high density (c and d). 
Density was assigned at age 40 years and could decrease by one level or remain the same at age 
50 years and again at age 65 years based on observed age-specific prevalence rates from the 
BCSC (unpublished data) (Table 4). Density modifies mammography sensitivity and specificity 
based on age-, interval-, and screening round–specific data observed in the BCSC (unpublished 
data). Density also modifies age-specific risk of developing breast cancer (age groups, 40 to 49, 
50 to 64, and ≥65 years), using marginal population density–related risk in each age group as the 
referent group (BCSC personal communication). 

We also increased the underlying risk of breast cancer from nondensity-related causes from a 
relative risk of 1 (average population) to test the impact of risk level on benefits and harms for 
women in their 40s. Risk levels were applied at age 40 years and were assumed to persist at the 
same levels for the remainder of a woman’s life. The exemplar risk levels were 1.3 (e.g., 
corresponding to postmenopausal obesity) (48), 2 (e.g., family history of one first-degree relative 
with onset before age 50 years) (49), and 4 (e.g., family history of ≥2 first-degree relatives) (49, 
50). Higher risk levels, such as having a BRCA1 or BRCA2 gene mutation, were not considered 
since such women have specific screening guidelines. Finally, we examined the impact of 
combinations of breast density and risk level (Table 5). We made the simplifying assumption 
that risk only affects incidence (except breast density, which also affects sensitivity and 
specificity), and did not modify other aspects of disease.  

In other subpopulation analyses, we examined the impact of comorbidity-specific versus overall 
population competing mortality on upper ages of screening cessation based on comorbidity-
specific life expectancy (51-53). We compared results for continuing to screen biennially past 
age 74 years among women with lower than average comorbidity or stopping earlier than age 74 
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years among those with moderate or high comorbidity. These analyses only included women 
who have survived and not developed breast cancer up until the point where screening is to be 
extended or stopped.  

In sensitivity analysis, we considered the impact of varying the values for disutilities to identify 
if there was a level of disutility where there were no longer meaningful screening benefits.  

Model Validation and Uncertainty 

Each model had a different structure and assumptions and some varying input variables, so no 
single method could be used to validate results against an external standard. Therefore, we used 
several approaches. First, considering actual screening and treatment patterns instead of the 
efficacy strategies simulated in the base case, we compared model projections of incidence, 
mortality, and stage distribution to those reported by the SEER program for the period of 1975 to 
2010. In our previous work, results of each model accurately projected incidence and mortality 
trends by ER status for the period of 1975 to 2000 (4). Next, we approximated the AGE 
screening trial (54), assuming perfect adherence to invitation for annual screening and 13-year 
followup of women ages 40 to 49 years. In addition, one model also estimated AGE trial effects 
assuming actual trial attendance patterns (54). Last, we examined consistency of results across 
models. Overall, using six models to project a range of plausible screening outcomes provided 
implicit cross-validation, with the range of results from the models as a measure of uncertainty. 
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Chapter 3. Results 

Validation 

The models closely estimated observed U.S. trends in incidence and mortality, stage distribution 
(not shown), and the AGE trial results. Using input for actual dissemination of screening and 
treatment in the United States, as shown in Figures 2a–c, the models all captured the major 
trends in incidence over time, with early increases with the advent of mammography in the mid-
1980s, a downturn in the 2000s, and then leveling off. The models also captured the general 
shape of mortality decreases over time.  

The models also simulated the conditions of the AGE trial, a screening trial conducted in the 
United Kingdom to evaluate the benefits of screening women in their 40s. Women were 
randomized and invited to seven to eight rounds of annual screening versus no screening; all 
women were invited to biennial screening at age 50 years, and breast cancer mortality was 
tracked over 13 years. Screening was done with two views initially and a single view thereafter, 
and included plain film and digital mammography. Based on an intention-to-treat analysis of 
women invited to screen, the trial found a 0.83 (95% confidence interval [CI], 0.66 to 1.04) 
relative risk of death from breast cancer in the group invited to screen versus controls. In 
analyses that examined actual screening use in the trial (i.e., not all women invited to screening 
actually attended), the relative risk reduction was 0.76 (95% CI, 0.51 to 1.01). The models 
considered actual use but assumed 100 percent compliance with screening and 100 percent use of 
treatment based on U.S. approaches. Thus, the models projected a relative risk of 0.72 (95% CI, 
0.65 to 0.75), a similar but slightly more optimistic risk reduction for screening than that of 
women in their 40s (Table 6). However, these results indicate good validation by models of trial 
results.  

Probability of Disease 

In an unscreened population, the models predicted a median 12.9 percent cumulative probability 
of developing breast cancer from ages 40 to 100 years (range across models, 12.0% to 14.0%). 
Without screening, the median probability of dying of breast cancer was 2.5% (range, 1.5% to 
3.2%). Thus, if a screening strategy leads to a 30 percent reduction in breast cancer mortality, the 
probability of breast cancer death would be reduced from 2.5 to 1.8 percent, or 7.5 deaths averted 
per 1,000 women screened.  

Benefits 

The models produced consistent rankings of screening strategies (Tables 7a–c). Biennial 
screening from ages 50 to 74 years yielded a median 25.8 percent reduction in lifetime breast 
cancer mortality compared to no screening (range across models, 24.1% to 31.8%). This 
translates into 7.1 (range, 3.8 to 8.7) deaths averted per 1,000 women (Table 8). Annual 
screening from ages 50 to 74 years was dominated in half of the models, but annual screening 
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from ages 40 to 74 years could result in a 37.8 percent median mortality reduction (range, 32.5% 
to 43.6%) and avert 10.1 (range, 6.3 to 11.2) deaths compared to no screening. Biennial 
strategies maintained, on average, 81.2 percent (mortality reduction range across strategies and 
models, 68.3% to 98.9%) of the benefit of annual screening (Table 9). Rankings were similar for 
LYS and QALYs, except that annual screening from ages 50 to 74 years was dominated in all six 
models using these benefit metrics (Tables 7b and c). Table 8 summarizes the median benefits 
and range across models for all strategies.  

Incremental Benefits 

Incremental benefits of starting screening at age 40 versus 50 years were slightly greater in terms 
of breast cancer deaths averted for annual versus biennial screening (median, 1.3 [range, 1.1 to 
1.7] vs. 1.0 [range, 0.8 to 1.7] per 1,000 women, respectively). Screening starting at age 45 years 
(vs. age 50 years) resulted in a similar pattern, but about 0.6 fewer deaths averted per 1,000 
women than when starting at age 40 years (Tables 10a and b).  

Harms 

All of the models projected that there are nearly twice as many false-positive results and more 
overdiagnosed cases with annual versus biennial schedules and starting at age 40 versus 50 years 
(Table 11). For instance, if biennial screening begins at age 40 years instead of age 50 years, for 
every 1,000 women screened there would be a median 1 more death averted, but 576 more false-
positive results, 67 more induced biopsies among women with false-positives, and 2 additional 
overdiagnosed cases. The most intensive screening strategy (annual screening from ages 40 to 74 
years) would save 3 more deaths than biennial screening from ages 50 to 74 years, with nearly 
2,000 more false-positives and 11 more overdiagnosed cases. The majority of these 
overdiagnosed cases are DCIS. A hybrid strategy (annual screening from ages 45 to 49 years and 
biennial screening from ages 50 to 74 years) preserves the majority of the gains accrued with 
annual screening beginning at age 40 years, with less harm.  

If screening occurs from ages 50 to 74 years, annual screening averts a median 2 more deaths 
from breast cancer for every 1,000 women screened, but nearly doubles the number of false-
positives and increases overdiagnosed cases (Table 11).  

The percent of all cases diagnosed that are overdiagnosed increases as the age of initiation 
decreases from 50 to 40 years, and increases the most with annual versus biennial screening 
(Table 12).  

Efficiency Frontiers 

Biennial strategies starting at ages 40, 45, and 50 years would generally be considered efficient 
in most models when examining the balance of screening benefits and harms across most metrics 
(Figures 3 and 4). The hybrid strategy of annual screening starting at age 40 or 45 years was also 
efficient. The most intensive strategy (annual screening from ages 40 to 74 years) was the upper 
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anchor in all efficiency assessments. Annual screening from ages 50 to 74 years was dominated 
and not on the efficiency frontier in almost all the models (e.g., 4/6 models for mortality 
reductions per mammogram, or 6/6 for LYS per mammogram) and for nearly all outcome 
metrics (two of which are shown here). Figures for QALYs, false-positive mammograms, and 
overdiagnosed cases are not shown, but patterns were similar as for other metrics, and all models 
indicated that annual screening from ages 50 to 74 years was dominated for these metrics.  

Subpopulation Analyses 

The ranking of strategies did not change when screening occurred in groups of women with 
increasing risk levels (from 1.3 to 4 times the average); annual screening from ages 50 to 74 
years remained dominated by other approaches across risk levels (Table 13a). However, the 
balance of benefits and harms varied by risk level. As risk increases, benefits increase and harms 
generally decrease. For example, among women with a 2- to 4-fold increase in risk, annual 
screening starting at age 40 years (or 45 years) would have a similar or more favorable harm to 
benefit ratio (based on false-positives or overdiagnosed cases) than biennial screening in 
average-risk women from ages 50 to 74 years (Table 13b). For women with even a 1.3-fold 
increase in risk, biennial screening starting at age 40 years would have a similar or more 
favorable harm to benefit ratio as biennial screening in average-risk women from ages 50 to 74 
years (Table 13b).  

Breast density varies with age, but considering breast density did not affect the ranking of 
strategies versus no screening; annual screening from ages 50 to 74 years remained dominated 
for all breast density groups (Table 13c). Women with low breast density (BI-RADS density a 
and b) had more of their cases detected and therefore greater mortality reduction (vs. no 
screening) than those with higher breast density (BI-RADS density c and d) (Table 13c). 
However, when women with dense breasts had their cancer detected, there were more deaths 
averted and greater LYS compared to women with less dense breasts (Table 13c), since there 
were more cases in women with high breast density, and high breast density is most often seen in 
younger women with longer life expectancy. The ratios of harm to benefit are summarized in 
Table 13d. The aforementioned trends are also consistently seen when screening strategies 
consider both risk and density (Tables 13e and 13f). 

For women with no comorbidity who have an average of a 17-year remaining life expectancy 
(Table 14), screening would be efficient through age 78 to 80 years and would have a minimal 
increase in overdiagnosis compared to stopping at age 74 years. However, for women with 
severe comorbidity, screening cessation could occur at about age 68 years (Figure 5).  

Sensitivity Analyses 

Consideration of utilities decreased estimates of LYS (Table 15), but did not affect the ranking 
of strategies (Tables 7a–c). The largest decrement related to quality adjustment accrued because 
of declines in general health as women aged. There were also substantial percent decrements in 
QALYs attributed to the disutility of undergoing diagnostic evaluation of an abnormal screening 
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examination and having cancer (approximate 15% decrease for each QALY beyond general 
health). The disutility associated with undergoing screening itself had a minimal impact on 
QALYs. There were proportionally fewer losses in QALYs in biennial versus annual screening 
strategies, given that the latter had a greater number of false-positives relative to benefits than 
biennial screening. Overall, there were persistent QALY gains under all screening strategies, but 
the magnitude became smaller when the highest disutility estimates were used (Figure 6; Table 
15). 
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Chapter 4. Discussion 

Limitations 

The conclusions about the ranking of screening strategies are fairly robust across six independent 
models and should provide greater credibility than inferences based on one model alone. Despite 
the general consistency of results across models, there are several caveats that should be 
considered in evaluating the modeling results. First, our goal was to consider and compare 
program efficacy, so we assumed 100 percent use of periodic screening, prompt evaluation of 
abnormal results, and full use of optimal treatment. Actual benefits will always fall short of the 
projected results since use and access is not perfect. If actual usage patterns vary systematically 
by age, risk, or other factors, it is possible that the ranking of strategies could change.  

Second, there is expected variability across models in absolute estimates of benefit and harm 
metrics based on differences in model structure and assumptions. However, the value of having 
multiple models collaborate using the same inputs is that they produce a credible range of results. 
The overall conclusions were also similar across models for mostly all analyses. The models 
have the greatest variability in results for overdiagnosis since this is an unobservable event for 
which there is no primary biologically-based data. Thus, overdiagnosis must be inferred 
indirectly. Many methods for this have been proposed, and there is no gold standard approach 
(55, 56). Modeling makes a useful contribution to estimating overdiagnosis since it explicitly 
considers lead-time and competing mortality and takes a lifetime perspective. Overall, using 
multiple models produces a range of results for overdiagnosis (and other screening outcomes) 
that can be useful to decisionmakers.  

Third, we did not consider other imaging technologies, such as computer-assisted diagnosis (57), 
tomosynthesis, or magnetic resonance imaging, or the risk of breast cancer induced by radiation 
related to screening. There are emerging data on their performance in general populations (58), 
so this will be important to consider once additional data are available. Next, we assumed that 
risk factors influenced the incidence but not natural history of breast cancer, and that, except for 
breast density–related risk, this risk was constant over a woman’s lifetime. However, certain risk 
factors, such as family history, are age-dependent in their effects (49, 59). Thus, our estimates of 
benefit could be overestimated or underestimated based on specific risk factors (16). Additional 
modeling of risk and breast density and consideration of a wider array of screening approaches is 
warranted. 

While several countries are now testing genetic risk–based screening, we did not consider 
polygenic risk related to panels of gene polymorphisms. This is an important emerging area for 
future research, especially as genetic profiles can be linked to risk of specific molecular subtypes 
(60-62). Compared to our earlier research (3), the models all estimated similar but somewhat 
greater mortality reductions from screening (e.g., 22% vs. 25.8% median mortality reduction 
with biennial screening from ages 50 to 74 years in 2009 vs. current models, respectively). The 
primary reasons for this modeled improvement relate to the increased sensitivity of digital versus 
film mammography, advances in molecular subtype–directed adjuvant therapy, and changes in 
underlying breast cancer trends.  
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Additionally, while we externally validated the models to the AGE trial, we did not match all of 
the trial conditions. It will be important to conduct a fuller model validation of the trial in the 
future. It is also unclear which of the different outcome metrics is optimal for use in 
decisionmaking. However, the conclusions about which screening strategies are on the efficiency 
frontier were fairly consistent across metrics. Finally, these analyses were designed to provide 
modeling data for use in public health decisionmaking for populations of women; the results are 
not intended to guide individual screening decisions.  

Summary 

This report summarizes research by six established models with differing approaches and 
assumptions to estimate the potential efficacy of various screening strategies for the U.S. 
population and subpopulation groups based on risk, breast density, and comorbidity. All six 
modeling groups projected some benefits associated with screening women from ages 40 to 49 
years. The models consistently ranked strategies and concluded that biennial screening strategies 
were most frequently on the efficiency frontier. Screening initiation at age 40 years had the 
greatest benefit but also the greatest harms. Thus, decisions depend on tolerance for additional 
false-positive screens, biopsies, and overdiagnosed cases. The ranking of strategies was not 
affected by risk level or breast density, but absolute benefts and harms did change by risk level 
and breast density. Annual screening in women ages 40 to 74 years with a 2- to 4-fold increased 
risk or biennial screening in those with a 1.3-fold increased risk have a comparable ratio of 
benefits to harms as biennial screening in the general population from ages 50 to 74 years. 
Consideration of disutilities reduced but did not eliminate the magnitude of benefit from all 
strategies. Among women with severe or moderate levels of comorbidity, harms of screening 
seemed to outweigh benefits prior to age 74 years. Choices about optimal ages of initiation and 
cessation will ultimately depend on program goals, weight attached to the balance of harms and 
benefits, and considerations of efficiency.  
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Figure 1. Natural History of Breast Cancer in Model D 
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Figure 2a. Modeled Invasive Incidence Using Actual U.S. Screening vs. SEER, Ages 40 to 100 
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Figure 2b. Modeled Invasive and DCIS* Incidence Using Actual U.S. Screening vs. SEER, Ages 40 
to 100 Years 

*Model S does not include DCIS; Model G-E peaks in 2005 due to transition from plain film to digital mammography 
in a single year, since digital mammography has higher sensitivity/DCIS detection than plain film mammography. 
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Figure 2c. Modeled Mortality Using Actual U.S. Screening and Treatment vs. Observed, Ages 40 to 
100 Years 
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Figure 3. Efficiency Frontier for Harms (Average Number of Screening Examinations) and Benefits 
(Percent Mortality Reduction) by Model and Screening Strategy 

The panels show an efficiency frontier graph for each model. The graph plots the average number of mammograms 
performed per 1,000 women against the percentage of mortality reduction for each screening strategy (vs. no 
screening). We plot efficient strategies (i.e., those in which increases in use of mammography results in greater 
mortality reduction than the next least-intensive strategy) in all six models. The line between strategies represents the 
“efficiency frontier.” Strategies on this line would be considered efficient because they achieve the greatest gain per 
mammography performed compared with the point (or strategy) immediately below it. Points that fall below the line 
are not considered as efficient as those on the line. When the slope in the efficiency frontier plot levels off, the 
additional reductions in mortality per unit increase in use of mammography are small relative to the previous 
strategies and could indicate a point at which additional investment (use of screening) might be considered as having 
a low return (benefit). Green strategies are efficient; yellow strategies are close to the efficiency frontier; and red 
strategies are dominated (inefficient). 
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Figure 4. Efficiency Frontier for Harms (Average Number of Screening Examinations) and Benefits 
(Life-Years Gained) by Model and Screening Strategy 

The panels show an efficiency frontier graph for each model. The graph plots the average number of mammograms 
per 1,000 women against the life-years gained for each screening strategy (vs. no screening). We plot efficient 
strategies (i.e., those in which increases in mammography use results in greater life-years gained than the next least-
intensive strategy) in all six models. The line between strategies represents the “efficiency frontier.” Strategies on this 
line would be considered efficient because they achieve the greatest gain per mammography compared with the point 
(or strategy) immediately below it. Points that fall below the line are not as efficient as those on the line. When the 
slope in the efficiency frontier plot levels off, the additional life-years gained per increase in mammography are small 
relative to the previous strategies and could indicate a point at which additional screening might be considered as 
having a low return (benefit). Green strategies are efficient; yellow strategies are close to the efficiency frontier; and 
red strategies are dominated (inefficient). 
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Figure 5. Incremental Benefit to Harm Ratio of an Additional Biennial Screening Mammogram 
Relative to Stopping Screening at Age 74 Years by Comorbidity Level–Specific Life Expectancy 
and Model: Life-Years Gained per 1,000 Mammograms 

Results are for having 1 additional mammogram after the last one at age X. The solid red lines represent the results 
in terms of life-years gained per 1,000 women for screening once more at age 76 years vs. stopping at age 74 years 
for a population with average comorbidity level–associated life expectancy. Results within this “threshold” are those 
implied by recommendations to stop screening at age 74 years. The life-years gained per 1,000 biennial screens are 
shown at each age for four comorbidity groups: none (blue), low (dark orange), moderate (green), and severe 
(yellow). These analyses start with populations of women who are alive and have never developed breast cancer 
prior to the age of the start of the simulation. For example, in both models, women with no comorbidity who are alive 
and cancer-free at age 74 years are screened again at age 76 years. Since this result is within current thresholds, 
those who are still alive and cancer free at age 76 years might consider another screen at age 78 years and remain 
within the threshold. Conversely, those with severe comorbidity (yellow line) who are alive and cancer free at age 66 
years will fall below the threshold at age 68 years, indicating that screening might stop earlier. 

0

2

4

6

8

10

12

14

16

18

20

66 71 76

Li
fe

 Y
ea

rs
 G

ai
ne

d 
/ 

1,
00

0 
M

am
m

og
ra

m
s 

Age 

Model G-E 

No Comorbidity

Low Comorbidity

Moderate Comorbidity

Severe Comorbidity

U.S. Breast Cancer Screening Strategies 34 CISNET/BCSC 

0
2
4
6
8

10
12
14
16
18
20

66 71 76Li
fe

 Y
ea

rs
 G

ai
ne

d 
/ 

1,
00

0 
M

am
m

og
ra

m
s 

Age 

Model E 

No Comorbidity

Low Comorbidity

Moderate Comorbidity

Severe Comorbidity



Figure 6. Quality of Life Adjustments by Health State Across Strategies 
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Table 1. General Model Data Input Parameters and Model Assumptions 

Parameter Description Data Source 
Demographic 
Birth cohorts 1970 birth cohort (40) 
Natural History 
Incidence in the 
absence of 
screening 

An age-period-cohort model is used as a starting point for most 
models (except Model M) 

(14) 

Stage distribution  Stage distribution among clinically-detected and digital screen-
detected women by age group (<50, 50–64, ≥65 years), screening 
round (first, subsequent), and screening interval (annual, biennial). 
Screen-detected: Cancer diagnosed within 12 months after a 
positive screen and prior to the next screening mammogram (with 
and without self-reported symptoms). 
Interval-detected: Cancer diagnosed within 6 months after or 30 
days before a diagnostic mammogram, with a screening 
mammogram within 42 months prior to that mammogram. 
Clinical-detected: A diagnostic mammogram between 6 months 
prior to and 30 days after the cancer diagnosis and no prior 
mammogram within 3.5 years (42 months) of the diagnostic 
mammogram. 

BCSC data from 
1994–2013 (digital 
from 2003–2013; 
excluded first year of 
transition to digital) 

ER/HER2 joint 
distribution  

The probability of ER/HER2 conditional on age and stage at 
diagnosis 

BCSC  

Sojourn time  Sojourn time by joint ER/HER2 status and age group (4) 
Mean stage dwell 
time/tumor growth 
rates 

Varies by models based on model structure; can vary by age 
and/or ER/HER2 status 

(6, 10) 

Other-cause 
mortality 

Age- and cohort-specific all-cause mortality rates by year Jackson H et al 
(personal 
communication) 

Screening 
Mammography 
rates  

Assume all women age ≥40 years are screened by digital 
mammography  

(27, 41) 

Sensitivity/ 
detection rates of 
digital screening 

Sensitivity of initial and subsequent digital mammography by age 
group, screening interval (annual, biennial), and breast density 

BCSC 

Specificity False-positive mammograms are calculated as the difference 
between the overall number of positive mammograms in a 
screening scenario minus the number of positive mammograms 
among breast cancer cases 

 

Survival  26-year breast cancer survival before adjuvant treatment by joint 
ER/HER2 status, age group, and AJCC/SEER stage or tumor size 

(4) 

Treatment 
Treatment patterns Assume receipt of and adherence to the most effective available 

treatment 
1997–2010 (38, 39) 

Treatment effects Meta-analyses of clinical trial results  (22) 
Prevalence of 
breast density  

Prevalence of breast density (BI-RADS a, b, c, d) by age group. 
Density is assigned at age 40 years and can decrease by one level 
or remain the same at age 50 years and again at age 65 years. 

BCSC 

Risk levels for 
density 

Risk of breast cancer based on BI-RADS relative to average 
density by age group.  

BCSC 

Comorbidity 
Life tables by 
comorbidity 

Comorbidity-adjusted life expectancy among individuals without 
cancer 

(42) 

Note: Not all models use all parameters; some models use parameters as direct inputs and others use them as a 
target for calibration or other estimation. 
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Table 2. Digital Mammography Characteristics From the Breast Cancer Surveillance Consortium* 

Breast Density Age Interval† Sensitivity–Invasive Sensitivity–DCIS Specificity 
All 40–49 First 0.846 0.957 0.805 

Annual 0.65 0.928 0.881 
Biennial 0.777 0.949 0.881 

50–64 First 0.909 0.957 0.854 
Annual 0.772 0.928 0.912 
Biennial 0.864 0.949 0.912 

≥65 First 0.94 0.956 0.879 
Annual 0.841 0.926 0.928 
Biennial 0.909 0.948 0.928 

BI-RADS a 40–49 First 0.921 0.954 0.872 
Annual 0.806 0.919 0.93 
Biennial 0.881 0.942 0.925 

50–64 First 0.948 0.955 0.903 
Annual 0.868 0.921 0.948 
Biennial 0.921 0.943 0.944 

≥65 First 0.963 0.955 0.916 
Annual 0.903 0.922 0.955 
Biennial 0.943 0.944 0.952 

BI-RADS b 40–49 First 0.894 0.948 0.797 
Annual 0.751 0.911 0.884 
Biennial 0.844 0.935 0.876 

50–64 First 0.93 0.949 0.843 
Annual 0.826 0.912 0.912 
Biennial 0.895 0.937 0.906 

≥65 First 0.95 0.95 0.863 
Annual 0.871 0.913 0.924 
Biennial 0.924 0.937 0.919 

BI-RADS c 40–49 First 0.817 0.964 0.76 
Annual 0.615 0.937 0.86 
Biennial 0.74 0.955 0.851 

50–64 First 0.876 0.965 0.812 
Annual 0.716 0.938 0.894 
Biennial 0.818 0.956 0.886 

≥65 First 0.909 0.965 0.836 
Annual 0.782 0.938 0.908 
Biennial 0.865 0.956 0.901 

BI-RADS d 40–49 First 0.746 0.943 0.815 
Annual 0.512 0.902 0.895 
Biennial 0.652 0.929 0.888 

50–64 First 0.822 0.944 0.857 
Annual 0.623 0.904 0.921 
Biennial 0.747 0.93 0.915 

≥65 First 0.868 0.944 0.876 
Annual 0.702 0.904 0.932 
Biennial 0.808 0.931 0.927 

*BCSC, DR285, 2003–2013.  
†Screen-detected cancers diagnosed in 1 year; cut-off at next screening.
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Table 3. Utility Input Parameter Values for Cancer-Related States 

State Utility 
Disutility  

(Worst Case, 150% and 200%) Duration Unit 
Cancer treatment for local or DCIS 0.9 0.1 (0.15, 0.20) 2 Year 
Cancer treatment for regional 0.75 0.25 (0.375, 0.50) 2 Year 
Cancer treatment for distant 0.6 0.4 (0.6, 0.8) Until death  
Screening attendance (routine screening) 0.994 0.006 (0.009, 0.012) 1 Week 
Diagnostic phase (evaluation of positive screen) 0.895 0.105 (0.158, 0.210) 5 Weeks 

Source: references 45 and 46. 
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Table 4. Prevalence of Breast Density Group by Age From the Breast Cancer Surveillance 
Consortium 

Age 
BI-RADS a 

Almost Entirely Fat 
BI-RADS b 

Scattered Fibrodens 
BI-RADS c 

Heterogeneously Dense 
BI-RADS d 

Extremely Dense 
40–44 0.046 0.338 0.472 0.144 
45–49 0.055 0.364 0.458 0.123 
50–54 0.075 0.422 0.416 0.086 
55–59 0.098 0.471 0.373 0.058 
60–64 0.117 0.500 0.338 0.045 
65–69 0.130 0.521 0.313 0.036 
70–74 0.136 0.537 0.296 0.031 
75–79 0.139 0.539 0.291 0.031 
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Table 5. Relative Risk Levels by BI-RADS Breast Density and Age Group From the Breast Cancer 
Surveillance Consortium 

Age Group 
BI-RADS 
Density 

Breast Density–
Related Risk* 

Risk Levels Associated With Factors  
Other Than Breast Density† 

RR, 1 RR, 1.3 RR, 2 RR, 4 
40–49 a 0.37 0.37 0.49 0.75 1.49 

b 0.72 0.72 0.93 1.43 2.86 
c 1.16 1.16 1.51 2.32 4.63 
d 1.46 1.46 1.89 2.91 5.83 

50–64 a 0.50 0.50 0.65 1.00 2.00 
b 0.84 0.84 1.10 1.69 3.38 
c 1.25 1.25 1.62 2.50 4.99 
d 1.53 1.53 1.99 3.06 6.13 

65–74 a 0.61 0.61 0.80 1.22 2.45 
b 0.94 0.94 1.22 1.88 3.75 
c 1.28 1.28 1.66 2.56 5.12 
d 1.45 1.45 1.88 2.90 5.79 

*Personal communication with BCSC; referent is average population density. 
†Values for each risk/breast density combination are the product of the breast density–related relative risk x the risk 
level. For example, a group with breast density “d” and an RR of 2 due to a family history of breast cancer has an 
overall relative risk of breast cancer of 2.91 from ages 40 to 49 years. 

BI-RADs density “a” corresponds to almost entirely fatty breasts; “b” to scattered areas of density; “c” to 
heterogeneously dense; and “d” to extremely dense.   

Note: While the models computed results for each of the four density risk groups separately, since there can be 
variability in radiological interpretation of density level, and breast density legislation in most States groups women 
into low (BI-RADS a or b) or high (BI-RADS c or d) density, the data below summarizes the weighted density-related 
risk for breast cancer for low- and high-density groups combined relative to average density. 

Age Group 
BI-RADS 
Density 

Breast Density–
Related Risk 

Prevalence 

40–49 a and b 0.67 41.2% 
c and d 1.23 58.8% 

50–64 a and b 0.79 57.4% 
c and d 1.29 42.7% 

65–74 a and b 0.87 68.9% 
c and d 1.30 31.1% 
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Table 6. Modeling AGE Trial With 13 Years of Followup: Projection of Relative Risk of Breast 
Cancer Death With Annual Screening at Ages 40 to 49 Years; Biennial Screening at Age 50 and 52 
Years vs. Control Biennial Screening at Age 50 and 52 Years 

Model 
Relative Risk of Breast Cancer Death  

With 100% Screening 
D 0.75 
E 0.73 
G-E 0.65 
M 0.72 
S 0.69 
W 0.71 
Median (range) 0.72 (0.65 to 0.75) 

AGE trial invitation (intention to treat) (54): RR, 0.83 (95% CI, 0.66 to 1.04). 
AGE trial results for women who were actually screened (54): RR, 0.76 (95% CI, 0.51 to 1.01). 
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Tables 7a–c. Percent Breast Cancer Mortality Reduction (or Life-Years or Quality-Adjusted Life-
Years Gained) and Average Number of Screening Examinations per 1,000 Women by Model and 
Screening Strategy 

Table 7a. Mortality Reduction 

Strategies 

Average 
Number of 
Screenings 
per 1,000 
Women 

% Breast Cancer Mortality Reduction per  
1,000 Women Screened (vs. No Screening) by Model 

Median  
(Range Across 

Models) D E G-E M S W 
B 50–74 11,205 25.6% 26.0% 31.8% 26.8% 24.1% 25.4% 25.8% (24.1–31.8) 
B 45–74 13,301 26.6% 27.6% 33.9% 28.4% 25.9% 26.7% 27.2% (25.9–33.9) 
H 45–74 16,060 27.7% 29.7% 35.9% 29.2% 27.3% 30.1% 29.5% (27.3–35.9) 
B 40–74 16,112 28.3% 30.3% 35.9% 31.9% 28.2% 30.5% 30.4% (28.2–35.9) 
H 40–74 20,989 29.0% 32.3% 37.9% 31.7% 29.3% 32.8% 32.0% (29.0–37.9) 
A 50–74 21,447 32.1% 33.9% 37.6% 27.1% 29.1% 35.3% 33.0% (27.1–37.6) 
A 45–74 26,280 34.2% 37.6% 41.6% 29.4% 32.3% 39.1% 35.9% (29.4–41.6) 
A 40–74 31,194 35.5% 40.1% 43.6% 32.5% 34.4% 42.6% 37.8% (32.5–43.6) 

Table 7b. Life-Years Gained 

Strategies 

Average 
Number of 
Screenings 
per 1,000 
Women 

Years of Life Gained per 1,000 Women  
(vs. No Screening) by Model 

Median 
(Range Across 

Models) D E G-E M S W 
B 50–74 11,205 153.8 94.0 140.5 146.5 104.2 74.6 122.4 (74.6–153.8) 
B 45–74 13,301 168.4 107.7 161.2 171.3 115.2 84.0 138.2 (84.0–171.3) 
H 45–74 16,060 175.3 117.9 170.2 171.4 125.1 95.7 147.7 (95.7–175.3) 
B 40–74 16,112 183.7 123.7 172.4 194.8 131.6 98.8 152.0 (98.8–194.8) 
H 40–74 20,989 191.1 137.6 187.2 211.5 141.0 110.9 164.1 (110.9–211.5) 
A 50–74 21,447 180.0 125.9 167.3 156.3 133.3 104.3 144.8 (104.3–180.0) 
A 45–74 26,280 201.3 149.3 196.7 177.8 154.2 123.0 166.0 (123.0–201.3) 
A 40–74 31,194 217.1 168.8 213.5 218.1 170.1 140.5 191.8 (140.5–218.1) 

Table 7c. Quality-Adjusted Life Years Gained 

Strategies 

Average 
Number of 
Screenings 
per 1,000 
Women 

Quality-Adjusted Life-Years Gained per 1,000 Women 
(vs. No Screening) by Model 

Median 
(Range Across 

Models) D E G-E M S W 
B 50–74 11,205 114.5 67.3 100.1 109.6 71.9 47.1 86.0 (47.1–114.5) 
B 45–74 13,301 123.8 75.6 114.4 129.4 78.8 51.9 96.6 (51.9–129.4) 
H 45–74 16,060 126.6 80.9 118.3 128.5 84.5 58.3 101.4 (58.3–128.5) 
B 40–74 16,112 133.7 85.4 120.1 148.1 89.1 60.4 104.6 (60.4–148.1) 
H 40–74 20,989 134.2 91.0 126.1 159.4 92.5 64.8 109.3 (64.8–159.4) 
A 50–74 21,447 127.0 84.1 111.4 113.2 87.5 62.4 99.5 (62.4–127.0) 
A 45–74 26,280 138.9 97.3 129.5 129.4 99.5 71.7 114.5 (71.7–138.9) 
A 40–74 31,194 146.6 107.3 137.2 160.6 107.6 80.0 122.4 (80.0–160.6) 

A=Annual; B=Biennial; H=Hybrid. 

Notes: 
1. Average number of mammograms across all models. Not all possible mammograms in the age interval are 
obtained since some women die from other causes before screening would occur.  
2. Model group abbreviations: D (Dana Farber), E (Erasmus Medical Center), G-E (Georgetown University–Einstein 
University), M (M.D. Anderson Cancer Center), S (Stanford University), W (University of Wisconsin/Harvard). 
3. Values in bold show strategies that are dominated (“inefficient”) within a specific model; a strategy is classified as 
dominated if there is another strategy that results in an equal or higher percent mortality reduction/life-years 
gained/quality-adjusted life-years with fewer average screening examinations.  
4. QALYs are adjusted for general health, diagnosis, screening, and treatment. 
5. 100% receive recommended age-, stage-, and ER/HER2-specific adjuvant therapy.
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Table 8. Benefits of Screening Strategies Based on Starting Ages and Intervals 

Scenario 
Number of 
screenings 

Potential Benefits (vs. No Screening) 
Median (Range Across Models) 

% Breast Cancer 
Mortality 

Reduction 

Cancer Deaths 
Averted per 

1,000 Women 
Life-Years Gained 
per 1,000 Women 

Quality-Adjusted 
Life-Years Gained 
per 1,000 Women 

Number of All 
Cancers Diagnosed 
(Invasive and DCIS) 

per 1,000 Women 

Number of DCIS 
Cancers Detected 
per 1,000 Women 

Biennial 
50–74 11,127 25.8% (24.1-31.8) 7.1 (3.8-8.7) 122.4 (74.6-153.8) 86.0 (47.1-114.5) 150.7 (134.1-158.5) 26.7 (25.7-32.3) 
45–74 13,212 27.2% (25.9-33.9) 7.5 (4.0-9.2) 138.2 (84.0-171.3) 96.6 (51.9-129.4) 150.4 (134.0-158.6) 28.7 (27.7-31.7) 
40–74 16,013 30.4% (28.2-35.9) 8.1 (4.5-10.3) 152.0 (98.8-194.8) 104.6 (60.4-148.1) 153.7 (134.2-160.9) 30.5 (30.2-34.7) 
Hybrid 
45–74 15,966 29.5% (27.3-35.9) 7.9 (4.5-9.4) 147.7 (95.7-175.3) 101.4 (58.3-128.5) 154.1 (134.2-160.4) 30.2 (29.8-34.8) 
40–74 20,884 32.0% (29.0-37.9) 8.5 (4.9-10.3) 164.1 (110.9-211.5) 109.3 (64.8-159.4) 154.9 (134.2-164.4) 32.9 (30.2-36.5) 
Annual 
50–74 21,318 33.0% (27.1-37.6) 8.5 (5.3-10.1) 144.8 (104.3-180.0) 99.5 (62.4-127.0) 157.6 (134.5-188.1) 34.3 (30.0-46.3) 
45–74 26,136 35.9% (29.4-41.6) 9.3 (5.8-10.7) 166.0 (123.0-201.3) 114.5 (71.7-138.9) 158.7 (134.5-194.0) 38.4 (30.3-48.7) 
40–74 31,037 37.8% (32.5-43.6) 10.1 (6.3-11.2) 191.8 (140.5-218.1) 122.4 (80.0-160.6) 159.5 (134.5-197.5) 41.5 (30.3-50.3) 
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Table 9. Percent of Annual Mortality Reduction Maintained by Biennial Screening by Strategy and 
Model 

 Age Model D Model E Model G-E Model M Model S Model W Median  
50–74* 79.8% 76.7% 84.6% 98.9% 82.8% 72.0% 81.3% 
45–74** 77.8% 73.4% 81.5% 96.6% 80.2% 68.3% 79.0% 
40–74*** 79.7% 75.6% 82.3% 98.2% 82.0% 71.6% 80.8% 

* Percent of A50–74 maintained by B50–74 = percent mortality reduction B50–74/ percent mortality reduction 
A50–74. 
** Percent of A45–74 maintained by B45–74 = percent mortality reduction B45–74/ percent mortality reduction 
A45–74. 
*** Percent of A40–74 maintained by B40–74 = percent mortality reduction B40–74/ percent mortality reduction 
A40–74.  

Note: Model M does not include a natural history component. It is based on a combination of assumptions regarding 
underlying incidence trends in the absence of screening that essentially yields a long invasive cancer lead-time; thus, 
virtually all cancers found with annual screening can also be detected with biennial screening. 
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Tables 10a and b. Incremental Changes in Benefits by Age of Screening Initiation, Screening 
Interval, and Model 

Table 10a. Start Age of 40 Years (vs. 50 Years)* 

  

Difference in % 
Breast Cancer 

Mortality Reduction 
Breast Cancer 
Deaths Averted 

Life-Years Gained 
per 1,000 Women 

QALYs Gained per 
1,000 Women 

Model Annual Biennial Annual Biennial Annual Biennial Annual Biennial 
D 3.4% 2.7% 1.1 0.9 37.1 29.9 19.6 19.2 
E 6.2% 4.3% 1.5 1.0 42.9 29.7 23.2 18.1 
G-E 6.0% 4.1% 1.5 1.0 46.2 31.9 25.8 20.0 
M 5.3% 5.1% 1.7 1.7 61.8 48.3 47.4 38.5 
S 5.2% 4.1% 1.1 0.9 36.8 27.4 20.1 17.2 
W 7.3% 5.1% 1.1 0.8 36.2 24.2 17.6 13.3 
Median 5.7% 4.2% 1.3 1.0 40.0 29.8 21.7 18.7 

* Incremental difference between starting at age 40 or 45 years vs. 50 years. 

Table 10b. Start Age of 45 Years (vs. 50 Years)* 

  

Difference in % 
Breast Cancer 

Mortality Reduction 
Breast Cancer 
Deaths Averted 

Life-Years Gained 
per 1,000 Women 

QALYs Gained per 
1,000 Women 

Model Annual Biennial Annual Biennial Annual Biennial Annual Biennial 
D 2.1% 1.0% 0.6 0.3 21.3 14.6 11.9 9.3 
E 3.6% 1.6% 0.9 0.4 23.4 13.7 13.2 8.3 
G-E 4.0% 2.2% 1.0 0.5 29.4 20.7 18.1 14.3 
M 2.3% 1.6% 0.7 0.5 21.5 24.8 16.2 19.8 
S 3.1% 1.7% 0.7 0.4 21.5 11.0 12.0 6.9 
W 3.8% 1.3% 0.6 0.2 18.7 9.4 9.3 4.8 
Median 3.4% 1.6% 0.7 0.4 21.5 14.2 12.6 8.8 

* Incremental difference between starting at age 40 or 45 years vs. 50 years. 

Annual = comparing A40–74 (or 45–74) to A50–74.  
Biennial = comparing B40–74 (or 45–74) to B50–74. 
Hybrid = comparing annual screening in the 40s followed by biennial screening from ages 50–74 years to biennial 
screening from ages 50–74 years; for these incremental comparisons, the hybrid results are the same as the annual 
results. 
100% of women receive adjuvant systemic therapy based on recommended stage- and ER/HER2-specific adjuvant 
therapy for pre- and post-menopausal women.
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Table 11. Harms of Screening Strategies Based on Different Starting Ages and Intervals 

Scenario 
Number of 
Screenings 

Potential Harms (vs. No Screening)  
Median (Range Across Models) 

Number of False-
Positives per 1,000 

Women 

Number of Benign 
Biopsies per 1,000 

Women 

Number of Cases of 
Overdiagnosis (All Cancer) 

per 1,000 Women 

Number of Cases of 
Overdiagnosis (DCIS) 

per 1,000 Women 

Number of Cases of 
Overdiagnosis (Invasive) 

per 1,000 Women 
Biennial 
50–74 11,127 953 (830-1325) 145.5 (120.6-205.2) 18.8 (10.8-34.2) 15.6 (9.0-18.8) 2.8 (1.8-15.4) 
45–74 13,212 1220 (930-1599) 176.1 (131.1-232.4) 19.1 (11.1-34.0) 15.3 (9.4-20.9) 2.6 (1.6-13.1) 
40–74 16,013 1529 (1100-1976) 212.6 (153.2-276.0) 21.4 (12.0-37.7) 17.1 (10.2-23.8) 2.9 (1.8-13.8) 
Hybrid 
45–74 15,966 1520 (1160-1968) 202.0 (154.0-266.2) 20.9 (11.6-40.2) 17.1 (9.8-23.5) 2.9 (1.8-16.7) 
40–74 20,884 2106 (1480-2623) 256.2 (184.1-325.2) 23.0 (12.1-44.3) 18.1 (10.3-26.6) 2.9 (1.8-17.7) 
Annual 
50–74 21,318 1798 (1706-2445) 228.0 (219.3-317.4) 25.1 (11.5-67.9) 22.7 (9.4-32.5) 3.2 (2.1-35.4) 
45–74 26,136 2355 (2185-3087) 282.7 (264.6-375.9) 27.9 (12.3-73.8) 24.2 (10.2-37.1) 3.2 (2.1-36.7) 
40–74 31,037 2941 (2550-3742) 338.2 (295.8-434.8) 30.0 (12.7-77.3) 25.0 (10.6-39.9) 3.2 (2.1-37.4) 

1. Overdiagnosed cases are defined as cases that would not have been clinically detected in the absence of screening; includes DCIS and invasive cancer. 
Overdiagnosis is calculated by comparing cases detected in the screening scenario to those detected in the unscreened scenario. Model S is excluded since it 
does not include DCIS. Model M generates very high overdiagnosis based on the assumption that incidence in the absence of screening has essentially remained 
flat since 1975 to 1979, with virtually all of the increases over time attributable to screening. The other models use some form of an age-period-cohort model for 
incidence in the absence of screening, where some of the increases in incidence are due to screening and some to changes in risk factors (e.g., use of hormone 
replacement therapy).  
2. Number of cancers diagnosed is higher in B50–74 vs. B45–74 because the B50–74 group has a screen at age 74 years, when cancer incidence is the highest. 
Although the B45–74 group has two more screens than B50–74, the last screen for B45–74 is at age 73 years.  
3. 100% of women receive adjuvant systemic therapy based on recommended stage- and ER/HER2-specific adjuvant therapy for pre- and post-menopausal 
women.
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Table 12. Percent of Cases (Invasive Cancer and DCIS) Overdiagnosed by Strategy 

Scenario 

Percent of Cases That Are Overdiagnosis  
per 1,000 Women Screened  

Median (Range Across Models)* 
Biennial 
50–74 11.9% (7.9–22.2) 
45–74 12.0% (8.1–22.0) 
40–74 13.3% (8.7–23.9) 
Hybrid 
45–74 13.0% (8.4–25.1) 
40–74 14.2% (8.7–26.9) 
Annual 
50–74 15.3% (8.3–36.1) 
45–74 16.7% (8.9–38.0) 
40–74 17.7% (9.1–39.1) 

Percent of all cases diagnosed under the screening strategy that are overdiagnosed. 

*The upper range is based on results from one model that essentially assumes incidence in the absence of screening 
remained fairly flat since 1975 to 1979; hence all increases are attributable to screening. The other models use some 
form of an age-period-cohort model for incidence in the absence of screening, where some of the increases in 
incidence are due to screening and some to changes in risk factors (e.g., use of hormone replacement therapy), 
generating lower rates of overdiagnosis. Other sources of variation are related to assumptions about the proportions 
of DCIS cases that never progress to invasive cancer or the number of early invasive cancers that might be 
nonprogressive. Generally, models that assume higher proportions of DCIS and/or invasive cancer to be 
nonprogressive generate higher estimates of overdiagnosis than models that assume less nonprogressive disease. 
Unfortunately, the underlying incidence in the absence of screening and the proportion and types of tumors that are 
nonprogressive are unknown and unobservable. Therefore, the different results across models based on their 
respective assumptions provide a range of possible overdiagnosis.
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Table 13a. Benefits and Harms by Breast Density, Risk Level, and Screening Strategy 

Screening 
Strategy 

Number of 
Mammograms* 

Percent 
Mortality 

Reduction 

Breast Cancer Deaths 
Averted per 1,000 
Women Screened 

Life-Years Saved per 
1,000 Women 

Screened 

False-Positives 
per 1,000 Women 

Screened 

Number of Benign 
Biopsies per 1,000 
Women Screened 

Cases 
Overdiagnosed 

per 1,000 Women 
Screened 

Median (Range) Median (Range) Median (Range) Median (Range) Median (Range) Median (Range) 
B50–74 
RR, 1 11,095 25.4 (22.7-31.8) 5.5 (3.8-7.8) 82.0 (74.6-140.2) 1018 (1015-1325) 151.0 (150.4-205.2) 17.6 (10.8-25.5) 
B40–74 
RR, 1.3 15,742 30.9 (28.6-36.1) 8.5 (5.9-11.3) 151.1 (127.3-220.7) 1723 (1627-1951) 240.4 (225.3-272.6) 25.7 (12.0-35.1) 
RR, 2 15,261 31.2 (29.5-36.5) 12.1 (8.7-16.6) 217.7 (189.4-327.8) 1677 (1566-1895) 234.0 (216.8-264.7) 35.0 (11.9-48.7) 
RR, 4 14,146 33.5 (31.4-37.4) 19.6 (16.3-29.4) 365.3 (354.5-591.9) 1571 (1409-1748) 219.1 (195.0-244.2) 50.5 (12.3-73.3) 
Hybrid 45–74 
RR, 1.3 15,695 30.4 (27.6-36.0) 8.2 (5.8-11.3) 139.9 (122.6-217.5) 1595 (1574-1942) 210.2 (207.5-262.6) 25.1 (11.6-35.0) 
RR, 2 15,202 30.8 (28.3-36.5) 11.6 (8.6-16.6) 200.7 (182.8-323.2) 1548 (1511-1882) 203.9 (198.8-254.4) 34.0 (11.6-48.6) 
RR, 4 14,060 32.9 (29.8-37.3) 18.6 (16.0-29.3) 340.0 (330.6-581.6) 1439 (1350-1725) 189.1 (177.0-233.0) 48.4 (12.1-73.1) 
Hybrid 40–74 
RR, 1.3 20,570 33.6 (30.9-38.1) 9.2 (6.4-11.9) 170.7 (144.2-239.4) 2289 (2175-2595) 281.4 (263.9-321.5) 27.8 (12.1-37.1) 
RR, 2 20,021 34.3 (32.0-38.6) 13.1 (9.5-17.6) 247.2 (216.0-356.2) 2235 (2103-2531) 274.3 (254.5-313.1) 38.1 (12.0-51.6) 
RR, 4 18,733 37.0 (34.4-39.7) 21.4 (18.0-31.2) 419.3 (408.3-646.5) 2109 (1921-2363) 257.7 (230.8-291.0) 55.9 (12.4-77.7) 
A 50-74 
RR, 1.3 20,827 35.5 (30.6-37.7) 9.2 (6.7-11.8) 141.3 (133.0-212.9) 1780 (1767-2402) 223.1 (221.4-312.1) 29.9 (11.7-43.3) 
RR, 2 19,960 36.2 (31.0-37.9) 12.7 (10.1-17.3) 199.3 (198.5-314.6) 1706 (1669-2305) 214.2 (209.5-300.0) 39.9 (12.0-59.9) 
RR, 4 18,014 37.8 (31.2-38.3) 19.4 (18.4-30.2) 362.7 (309.8-557.7) 1541 (1427-2055) 194.1 (180.0-268.7) 54.3 (13.2-89.5) 
A 40–74 
RR, 1.3 30,417 43.0 (38.5-43.9) 11.5 (8.1-13.7) 208.5 (180.2-273.2) 3061 (2952-3694) 354.2 (337.6-429.1) 36.3 (12.8-48.3) 
RR, 2 29,379 43.9 (39.6-44.4) 16.3 (12.1-20.2) 299.7 (270.3-406.0) 2969 (2833-3585) 343.3 (323.6-416.3) 49.3 (13.0-66.8) 
RR, 4 27,003 45.6 (41.8-46.5) 26.0 (22.7-35.8) 501.9 (498.9-735.3) 2756 (2534-3299) 318.3 (288.5-382.7) 70.9 (14.0-99.6) 

*Number of mammograms is the median across models; as risk increases, more women develop and die of breast cancer, therefore the number of lifetime 
screening mammograms decreases. 
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Table 13b. Ratio of Harms to Benefits by Risk Level (Median and Range Across Three Models–E, G-E, W) 

Screening 
Strategy 

Number of 
Mammograms*/Death 

Averted per 1,000 Women 
Screened 

False-
Positives/Death 

Averted per 1,000 
Women Screened 

Number of Benign 
Biopsies/Death Averted per 

1,000 Women Screened 

Overdiagnosed Cases/Death 
Averted per 1,000 Women 

Screened 
Median (Range) Median (Range) Median (Range) Median (Range) 

B50–74 
RR, 1 2024 (1428-2920) 185.8 (169.5-268.0) 27.6 (26.2-39.7) 3.2 (1.4-6.7) 
B40-74 
RR, 1.3 1843 (1407-2681) 201.8 (172.9-278.0) 28.1 (24.2-38.5) 3.0 (1.1-6.0) 
RR, 2 1259 (929-1747) 138.4 (114.0-180.3) 19.3 (15.9-25.0) 2.9 (0.7-5.6) 
RR, 4 723 (486-848) 80.3 (59.4-86.4) 11.2 (8.3-12.0) 2.6 (0.4-4.5) 
Hybrid 45-74 
RR, 1.3 1908 (1404-2715) 193.9 (172.4-273.3) 25.6 (23.3-36.0) 3.1 (1.0-6.1) 
RR, 2 1305 (925-1766) 132.9 (113.3-176.7) 17.5 (15.3-23.3) 2.9 (0.7-5.7) 
RR, 4 757 (482-856) 77.5 (58.8-84.3) 10.2 (7.9-11.1) 2.6 (0.4-4.6) 
Hybrid 40–74 
RR, 1.3 2233 (1740-3226) 248.5 (217.8-341.7) 30.5 (27.0-41.5) 3.0 (1.0-5.8) 
RR, 2 1524 (1152-2089) 170.2 (144.1-220.5) 20.9 (17.8-26.7) 2.9 (0.7-5.4) 
RR, 4 875 (608-1022) 98.5 (75.8-106.7) 12.0 (9.3-12.8) 2.6 (0.4-4.3) 
A 50-74 
RR, 1.3 2276 (1789-3073) 204.0 (194.5-262.5) 26.5 (24.4-32.9) 3.3 (1.0-6.4) 
RR, 2 1568 (1172-1957) 134.0 (133.4-165.9) 17.4 (16.8-20.8) 3.1 (0.7-6.0) 
RR, 4 927 (601-933) 77.5 (68.1-79.3) 9.8 (8.9-10.0) 2.8 (0.4-4.9) 
A 40–74 
RR, 1.3 2646 (2246-3726) 269.5 (266.3-362.8) 31.3 (30.8-41.5) 3.2 (0.9-5.9) 
RR, 2 1806 (1479-2388) 182.5 (177.4-231.9) 21.1 (20.6-26.5) 3.0 (0.6-5.5) 
RR, 4 1038 (768-1158) 105.9 (92.1-111.7) 12.2 (10.7-12.7) 2.7 (0.4-4.4) 

*Number of mammograms is the median across models. 
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Table 13c. Benefits and Harms by Breast Density Group (Median and Range Across Three Models–E, G-E, W) 

Screening 
Strategy 

Number  of 
Mammograms* 

Percent 
Mortality 

Reduction 

Breast Cancer 
Deaths Averted 

per 1,000 Women 
Screened 

Life Years Saved  
per 1,000 Women 

Screened 

False-Positives 
per 1,000 Women 

Screened 

Benign Biopsies per 
1,000 Women 

Screened 

Cases Overdiagnosed 
per 1,000 Women 

Screened 
Median 
(Range) 

Median 
(Range) Median (Range) Median (Range) Median (Range) Median (Range) 

B50–74 
Low 
density† 

11246 31.5 (25.3-39.2) 3.9 (3.0-5.7) 42.9 (42.8-72.5) 923 (869-1154) 136.8 (128.9-179.2) 14.6 (11.0-23.5) 

High density 11083 23.2 (22.4-31.2) 6.3 (3.9-8.5) 95.7 (77.7-152.1) 1198 (1138-1425) 177.7 (168.7-220.7) 20.3 (10.7-23.4) 
B40–74 
Low density 16148 37.4 (32.4-44.6) 5.0 (3.5-6.5) 68.1 (58.1-92.9) 1551 (1500-1742) 195.8 (190.3-223.2) 17.3 (12.3-25.9) 
High density 15973 27.9 (27.7-35.4) 7.9 (4.8-9.6) 139.7 (104.1-188.3) 1998 (1817-2115) 289.1 (260.0-305.7) 24.0 (11.9-26.2) 

Hybrid 45-74 
Low density 16109 36.9 (30.9-44.2) 4.8 (3.5-6.5) 61.7 (56.0-89.8) 1453 (1429-1737) 184.1 (179.9-224.0) 16.9 (11.8-25.7) 
High density 15915 27.4 (26.8-35.4) 7.6 (4.7-9.6) 129.7 (99.7-186.2) 1860 (1761-2106) 255.2 (241.6-297.4) 23.4 (11.5-26.2) 

Hybrid 40–74 
Low density 21037 40.0 (35.1-46.7) 5.4 (3.8-6.8) 77.9 (65.4-100.1) 2083 (1996-2326) 238.7 (229.7-271.0) 18.6 (12.3-27.2) 
High density 20839 30.7 (29.9-37.5) 8.5 (5.2-10.2) 158.0 (119.3-205.4) 2629 (2403-2802) 341.2 (307.2-364.8) 25.8 (12.0-28.1) 

A50-74 
Low density 21540 42.3 (34.3-45.3) 5.3 (4.0-6.6) 59.5 (58.1-84.3) 1654 (1554-2124) 191.4 (179.9-257.2) 20.3 (11.5-30.3) 
High density 21255 32.7 (30.1-37.0) 8.5 (5.6-10.1) 132.2 (110.6-181.9) 2133 (2023-2630) 267.2 (253.4-341.5) 28.4 (11.5-34.1) 

A40-74 
Low density 31292 51.0 (43.9-52.8) 6.8 (4.8-7.7) 94.3 (81.0-112.0) 2764 (2730-3294) 287.7 (283.0-345.5) 24.4 (12.8-33.9) 
High density 30999 40.1 (37.5-43.3) 10.6 (6.8-11.8) 193.8 (152.0-235.0) 3556 (3291-4005) 428.8 (391.3-482.7) 33.9 (12.7-38.4) 
†Low density= BI-RADS a and b; high density= BI-RADS c and d 
*Number of mammograms is the median across models; as density increases, more women develop and die of breast cancer, therefore the number of lifetime 
screening mammograms decreases. 
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Table 13d. Ratio of Harms to Benefits by Breast Density Group† (Median and Range Across Three Models–E, G-E, W) 

Screening 
Strategy 

Number of Mammograms*/ 
Death Averted per 1,000 

Women Screened 

False-
Positives/Death 

Averted per 1,000 
Women Screened 

Benign Biopsies/Death 
Averted per 1,000 Women 

Screened 

Overdiagnosed Cases/Death 
Averted per 1,000 Women 

Screened 
Median (Range) Median (Range) Median (Range) Median (Range) 

B50–74 
Low density 2709 (1975-3777) 223.4 (201.0-309.8) 33.1 (31.2-45.9) 3.7 (1.9-7.9) 
High density 1890 (1309-2779) 188.7 (168.3-288.1) 28.0 (26.1-42.7) 3.2 (1.3-5.9) 
B40–74 
Low density 3092 (2486-4575) 310.8 (266.5-425.0) 39.2 (34.1-53.9) 3.5 (1.9-7.3) 

High density 2147 (1661-3336) 254.5 (219.9-382.6) 36.8 (31.8-54.7) 3.1 (1.2-5.5) 
Hybrid 45-74 
Low density 3231 (2504-4625) 300.0 (268.2-417.1) 37.8 (34.6-52.8) 3.6 (1.8-7.4) 
High density 2214 (1653-3384) 244.9 (218.8-377.4) 33.6 (30.9-51.8) 3.1 (1.2-5.6) 
Hybrid 40–74 
Low density 3764 (3092-5568) 385.9 (339.9-528.2) 44.2 (39.6-60.8) 3.5 (1.8-7.2) 
High density 2565 (2046-3968) 310.7 (275.1-460.9) 40.3 (35.8-58.9) 3.0 (1.2-5.4) 
A50-74 
Low density 3823 (3280-5390) 319.9 (294.3-413.9) 38.7 (34.1-47.9) 3.8 (1.7-7.6) 
High density 2691 (2111-3774) 261.2 (249.9-363.9) 33.9 (31.3-45.6) 3.3 (1.1-6.1) 
A40-74 
Low density 4422 (4080-6499) 425.6 (408.6-566.9) 44.6 (42.5-58.8) 3.6 (1.7-7.0) 
High density 3073 (2633-4496) 340.2 (335.3-482.9) 41.0 (40.4-57.4) 3.2 (1.1-5.6) 

†Low density= BI-RADS a and b; high density= BI-RADS c and d 
*Number of mammograms is the median across models. 
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Table 13e1. Benefits by Risk Level and Breast Density Group† (Median and Range Across Three Models–E, G-E, W) 

Screening 
Strategy 

Number of 
Mammograms* Percent Mortality Reduction 

Breast Cancer Deaths Averted per 
1,000 Women Screened 

Life-Years Saved per 1,000 Women 
Screened 

Median Median (Range) Median (Range) Median (Range) 
Low 

Density 
High 

Density Low Density High Density Low Density High Density Low Density High Density 
B50–74 
RR, 1 11246 11083 31.5 (25.3-39.2) 23.2 (22.4-31.2) 3.9 (3.0-5.7) 6.3 (3.9-8.5) 42.9 (42.8-72.5) 95.7 (77.7-152.1) 
B40–74 
RR, 1.3 15973 15755 37.6 (32.6-44.7) 28.2 (28.1-35.6) 6.3 (4.6-8.4) 9.8 (6.1-12.2) 87.1 (75.1-119.8) 176.0 (132.1-240.4) 
RR, 2 15574 15261 37.8 (33.1-44.7) 29.1 (28.7-35.9) 9.1 (6.8-12.6) 13.9 (9.0-17.9) 127.7 (113.1-180.2) 252.7 (197.7-355.6) 
RR, 4 14520 13971 38.7 (34.1-44.8) 31.0 (30.6-36.8) 15.5 (12.9-23.2) 22.0 (16.8-31.4) 225.0 (215.0-339.7) 419.1 (368.7-636.7) 
Hybrid 45-74 
RR, 1.3 15928 15685 37.0 (31.1-44.3) 27.7 (27.2-35.6) 6.0 (4.5-8.3) 9.5 (6.0-12.2) 78.8 (71.8-115.9) 163.2 (127.4-237.5) 
RR, 2 15518 15164 37.0 (31.5-44.2) 28.2 (28.0-35.9) 8.7 (6.7-12.4) 13.3 (8.9-17.9) 115.1 (107.7-174.2) 233.2 (190.2-350.9) 
RR, 4 14430 13800 37.8 (32.1-44.3) 30.1 (29.5-36.7) 14.6 (12.6-22.9) 20.9 (16.4-31.4) 203.5 (199.7-327.4) 378.9 (352.0-626.3) 
Hybrid 40-74 
RR, 1.3 20840 20595 40.0 (35.3-46.8) 31.0 (30.4-37.7) 6.9 (4.8-8.8) 10.6 (6.7-13.0) 99.8 (83.9-129.4) 199.3 (152.5-262.6) 
RR, 2 20390 20041 40.7 (35.9-46.8) 31.8 (31.5-38.2) 9.9 (7.4-13.2) 15.0 (10.0-19.1) 146.7 (127.7-194.9) 287.9 (228.3-388.9) 
RR, 4 19196 18584 41.9 (37.3-47.0) 34.3 (34.0-39.3) 16.9 (14.0-24.4) 24.1 (18.7-33.5) 260.6 (244.1-368.2) 483.0 (429.9-701.3) 
A 50-74 
RR, 1.3 21205 20847 42.4 (34.3-45.4) 33.0 (30.4-37.2) 6.7 (5.1-8.5) 10.6 (7.1-12.8) 75.4 (74.5-108.7) 164.7 (140.9-232.0) 
RR, 2 20450 19929 42.4 (34.2-45.2) 33.6 (30.7-37.3) 9.5 (7.7-12.7) 14.6 (10.6-18.6) 111.9 (108.3-162.9) 230.0 (209.0-340.3) 
RR, 4 18474 17562 42.9 (33.5-44.9) 34.8 (30.8-37.7) 15.2 (14.3-23.2) 21.9 (19.1-32.2) 209.8 (179.1-303.0) 375.6 (352.9-597.9) 
A 40–74 
RR, 1.3 30906 30549 51.0 (44.2-52.8) 40.4 (38.0-43.6) 8.6 (6.2-9.9) 13.2 (8.7-15.0) 120.4 (103.8-144.3) 243.7 (193.4-300.5) 
RR, 2 30031 29533 51.2 (44.6-52.9) 41.4 (39.1-44.1) 12.3 (9.3-14.9) 18.6 (13.0-22.0) 176.1 (156.4-217.5) 349.2 (289.6-444.7) 
RR, 4 27738 26886 52.2 (45.6-53.1) 43.8 (41.3-45.4) 20.7 (17.4-27.5) 29.3 (24.0-38.7) 308.2 (296.2-410.4) 574.0 (535.8-799.9) 

†Low density= BI-RADS a and b; high density= BI-RADS c and d 
*Number of mammograms is the median across models; as risk (and density) increases, more women develop and die of breast cancer, therefore the number of 
lifetime screening mammograms decreases. 
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Table 13e2. Harms by Risk Level and Breast Density Group† (Median and Range Across Three Models–E, G-E, W) 

Screening 
Strategy 

Number of 
Mammograms* 

False-Positives per 1,000 Women 
Screened 

Benign Biopsies per 1,000 Women 
Screened 

Cases Overdiagnosed per 1,000 
Women Screened 

Median Median (Range) Median (Range) Median (Range) 
Low 

Density 
High 

Density Low Density High Density Low Density High Density Low Density High Density 
B50–74 
RR, 1 11246 11083 923 (869-1154) 1198 (1138-1425) 136.8 (128.9-179.2) 177.7 (168.7-220.7) 14.6 (11.0-23.5) 20.3 (10.7-23.4) 
B40–74 
RR, 1.3 15973 15755 1536 (1482-1727) 1972 (1784-2085) 193.7 (187.8-221.1) 285.4 (255.2-301.5) 21.5 (12.2-32.6) 29.4 (11.8-32.4) 
RR, 2 15574 15261 1503 (1441-1692) 1915 (1708-2018) 189.3 (182.3-216.3) 277.4 (244.6-292.0) 29.9 (12.2-46.5) 39.6 (11.8-44.3) 
RR, 4 14520 13971 1424 (1333-1597) 1783 (1518-1843) 178.5 (167.7-203.5) 258.9 (217.9-267.3) 45.5 (12.4-74.8) 55.7 (12.1-65.0) 
Hybrid 45-74 
RR, 1.3 15928 15685 1434 (1414-1720) 1833 (1726-2074) 181.6 (177.8-221.8) 251.5 (236.8-292.9) 21.0 (11.8-32.5) 28.6 (11.5-32.4) 
RR, 2 15518 15164 1392 (1380-1683) 1774 (1648-2003) 175.9 (173.3-216.8) 243.4 (226.1-283.0) 29.1 (11.8-46.3) 38.4 (11.5-44.4) 
RR, 4 14430 13800 1298 (1281-1582) 1640 (1453-1816) 162.4 (161.1-203.3) 225.0 (199.1-256.9) 44.1 (12.2-74.5) 53.3 (12.0-65.1) 
Hybrid 40-74 
RR, 1.3 20840 20595 2065 (1975-2308) 2598 (2364-2768) 236.4 (227.0-268.8) 337.1 (301.9-360.2) 23.2 (12.3-34.3) 31.7 (11.9-34.7) 
RR, 2 20390 20041 2026 (1927-2269) 2532 (2277-2691) 231.4 (220.8-263.6) 328.2 (290.2-349.9) 32.5 (12.2-48.9) 43.0 (11.9-47.6) 
RR, 4 19196 18584 1932 (1803-2161) 2376 (2055-2490) 219.2 (204.8-249.7) 307.3 (260.8-323.0) 50.2 (12.5-78.8) 61.4 (12.3-69.8) 
A 50-74 
RR, 1.3 21205 20847 1625 (1529-2098) 2089 (1969-2579) 188.2 (177.2-254.1) 262.0 (246.9-335.2) 25.1 (11.6-38.2) 34.5 (11.6-42.1) 
RR, 2 20450 19929 1559 (1476-2037) 1997 (1851-2464) 180.8 (171.3-247.1) 250.8 (232.4-320.8) 34.3 (11.9-54.4) 45.6 (12.1-57.6) 
RR, 4 18474 17562 1390 (1351-1875) 1794 (1558-2168) 161.8 (157.3-228.5) 225.9 (196.6-283.7) 49.9 (13.0-87.1) 60.2 (13.3-83.7) 
A 40–74 
RR, 1.3 30906 30549 2733 (2694-3265) 3503 (3226-3948) 284.3 (279.2-342.3) 422.4 (383.5-475.8) 30.3 (12.8-42.6) 41.4 (12.7-47.5) 
RR, 2 30031 29533 2666 (2614-3197) 3388 (3080-3817) 277.2 (270.6-335.0) 408.7 (366.1-460.3) 42.1 (13.0-60.6) 55.8 (13.0-64.9) 
RR, 4 27738 26886 2505 (2406-3013) 3127 (2717-3478) 259.9 (248.2-315.2) 377.6 (322.9-419.8) 64.0 (13.8-96.9) 78.0 (14.0-94.1) 

†Low density= BI-RADS a and b; high density= BI-RADS c and d 
*Number of mammograms is the median across models; as risk (and density) increases, more women develop and die of breast cancer, therefore the number of 
lifetime screening mammograms decreases. 
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Table 13f. Ratio of Harms to Benefits by Risk Level and Breast Density Group† (Median and Range Across Three Models–E, G-E, W) 

Screening 
Strategy Number of Mammograms*/Death 

Averted per 1,000 Women Screened 
False-Positives/Death Averted per 1,000 

Women Screened 
Benign Biopsies/Death Averted per 

1,000 Women Screened 

Overdiagnosed Cases/Death 
Averted per 1,000 Women 

Screened 
Median (Range) Median (Range) Median (Range) Median (Range) 

Low Density High Density Low Density High Density Low Density High Density Low Density High Density 
B50-74 
RR, 1 2709 (1975-3777) 1890 (1309-2779) 223.4 (201.0-309.8) 188.7 (168.3-288.1) 33.1 (31.2-45.9) 28.0 (26.1-42.7) 3.7 (1.9-7.9) 3.2 (1.3-5.9) 
B40-74  
RR, 1.3 2412 (1917-3509) 1691 (1287-2571) 242.9 (205.4-325.5) 201.0 (170.4-294.2) 30.6 (26.3-41.3) 29.1 (24.6-42.1) 3.4 (1.5-7.2) 3.0 (1.0-5.3) 
RR, 2 1626 (1256-2274) 1157 (851-1663) 164.4 (134.6-210.4) 138.2 (112.5-189.3) 20.7 (17.2-26.6) 20.0 (16.3-27.1) 3.3 (1.0-6.8) 2.9 (0.7-4.9) 
RR, 4 902 (644-1124) 670 (445-807) 92.2 (68.9-103.2) 81.0 (58.7-90.5) 11.6 (8.8-13.0) 11.8 (8.5-13.0) 2.9 (0.5-5.8) 2.5 (0.4-3.9) 
Hybrid 45-74 
RR, 1.3 2520 (1929-3559) 1745 (1281-2600) 234.2 (206.5-320.4) 193.3 (169.4-289.1) 29.5 (26.6-40.6) 26.5 (23.9-39.7) 3.5 (1.4-7.3) 3.0 (0.9-5.4) 
RR, 2 1701 (1265-2314) 1197 (845-1682) 158.5 (135.2-207.6) 133.0 (111.6-185.8) 19.9 (17.4-26.2) 18.2 (15.8-25.5) 3.3 (0.9-6.9) 2.9 (0.6-5.0) 
RR, 4 951 (647-1144) 701 (440-814) 89.1 (69.0-101.6) 78.4 (57.9-88.3) 11.1 (8.9-12.8) 10.8 (8.2-12.1) 3.0 (0.5-5.9) 2.5 (0.4-4.0) 
Hybrid 40-74 
RR, 1.3 2934 (2386-4298) 2023 (1587-3053) 301.2 (262.2-407.3) 245.6 (213.3-353.9) 34.5 (30.5-46.8) 31.9 (27.8-45.2) 3.4 (1.4-7.1) 3.0 (0.9-5.2) 
RR, 2 1980 (1568-2767) 1383 (1052-1976) 203.9 (172.2-261.6) 168.6 (141.3-228.0) 23.3 (20.0-30.0) 21.8 (18.4-29.1) 3.3 (0.9-6.6) 2.9 (0.6-4.8) 
RR, 4 1098 (809-1370) 800 (554-963) 114.1 (88.7-128.7) 98.6 (74.3-109.7) 12.9 (10.3-14.6) 12.8 (9.6-13.9) 3.0 (0.5-5.6) 2.5 (0.4-3.7) 
A50-74 
RR, 1.3 2985 (2520-4135) 2125 (1629-2883) 245.7 (229.8-316.8) 201.6 (197.4-277.1) 29.8 (26.6-36.7) 26.2 (24.8-34.7) 3.8 (1.4-7.4) 3.3 (0.9-5.9) 
RR, 2 2026 (1644-2662) 1469 (1069-1839) 160.1 (156.1-203.0) 136.6 (132.1-175.4) 19.4 (18.1-23.5) 17.2 (17.2-22.0) 3.6 (0.9-7.1) 3.1 (0.6-5.5) 
RR, 4 1153 (831-1288) 876 (545-879) 88.9 (80.7-96.9) 81.7 (67.3-82.0) 10.4 (9.8-11.3) 10.3 (8.8-10.3) 3.3 (0.6-6.1) 2.7 (0.4-4.4) 
A40-74 
RR, 1.3 3444 (3146-5000) 2419 (2036-3453) 328.2 (318.8-435.9) 264.6 (263.1-370.4) 34.4 (33.2-45.2) 31.9 (31.7-44.0) 3.5 (1.3-6.9) 3.1 (0.8-5.5) 
RR, 2 2323 (2058-3234) 1654 (1341-2216) 215.9 (214.7-281.5) 181.8 (173.4-236.9) 22.5 (22.4-29.1) 21.9 (20.9-28.2) 3.4 (0.9-6.5) 3.0 (0.6-5.0) 
RR, 4 1289 (1050-1590) 958 (694-1070) 121.0 (109.6-137.9) 106.6 (89.8-113.3) 12.6 (11.5-14.2) 12.9 (10.8-13.5) 3.1 (0.5-5.6) 2.7 (0.4-3.9) 

†Low density = BI-RADS a and b; high density = BI-RADS c and d 
*Number of mammograms is the median across models. 
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Table 14. Example of Comorbidity Prevalence and Remaining Life Expectancy at Age 74 Years 

Level Types of Diseases Prevalence 
Remaining Life  

Expectancy (Years) 
None None 69% 17 
Mild History of myocardial infarction, acute 

myocardial infarction, ulcer, or rheumatologic 
disease 

2% 15 

Moderate (Cardio)vascular disease; paralysis; diabetes 12% 13 

Severe AIDS; mild or severe liver disease; chronic 
renal failure  

17% 9 

Source: reference 42.
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Table 15. Impact of Disutilities on Screening Benefits by Screening Strategy 

 Undiscounted Benefits per 1,000 Women Screened vs. No Screening 
Model Median (Range Across Models) 

B50–74 B45–74 B40–74 H45–74 H40–74 A50–74 A45–74 A40–74 
LYS 122.4  

(74.6–153.8) 
138.2  

(84.0–171.3) 
152.0  

(98.8–194.8) 
147.7  

(95.7–175.3) 
164.1  

(110.9–211.5) 
144.8  

(104.3–180.0) 
166.0  

(123.0–201.3) 
191.8  

(140.5–218.1) 
QALYs with disutility 
of age-specific 
general health 

91.9  
(56.9–116.9) 

104.4  
(64.5–130.4)  

115.0  
(76.1–149.2)  

111.5  
(73.5–133.8)  

124.4  
(85.7–161.8)  

108.8  
(79.6–136.4)  

125.3  
(94.4–153.2)  

146.3  
(108.2–167.2)  

Percent change 
from LYS 

24.2  
(23.7–25.7) 

23.8  
(23.3–25.3) 

23.5  
(23.0–25.2) 

23.7  
(23.2–25.3) 

23.4  
(22.7–25.0) 

24.2  
(23.7–25.7) 

23.8  
(23.3–25.4) 

23.5  
(22.9–25.1) 

QALYs with general 
health + screening 

90.8  
(55.9–115.8)  

103.1  
(63.2–129.1)  

113.5  
(74.5–147.7)  

110.0  
(72.0–132.3)  

122.4  
(83.7–159.8)  

106.7  
(77.6–134.4)  

122.8  
(91.9–150.7)  

143.3  
(105.3–164.2)  

Percent change 
from prior QALY 

1.2  
(0.9–1.8) 

1.3  
(1.0–1.9) 

1.4  
(1.0–2.0) 

1.4  
(1.2–2.1) 

1.7  
(1.2–2.3) 

1.9  
(1.5–2.5) 

2.0  
(1.6–2.6) 

2.1  
(1.7–2.7) 

QALYs with general 
health + screening + 
diagnosis 

80.8  
(46.9–108.8)  

90.8  
(51.5–128.3)  

98.4  
(59.9–146.8)  

95.3  
(57.8–127.9)  

102.7  
(64.2–158.8)  

93.0  
(61.8–118.9)  

107.1  
(70.9–131.8)  

114.4  
(79.0–162.9)  

Percent change 
from prior QALY 

11.0  
(0.7–16.0) 

11.9  
(0.6–18.5) 

13.2  
(0.6–19.6) 

13.3  
(0.7–19.7) 

16.1  
(0.6–23.3) 

15.7  
(1.0–20.3) 

17.4  
(1.0–22.8) 

19.4  
(0.8–25.0) 

QALYs with general 
health + screening + 
diagnosis + treatment 

86.0  
(47.1–114.5) 

96.6  
(51.9–129.4) 

104.6  
(60.4–148.1) 

101.4  
(58.3–128.5) 

109.3  
(64.8–159.4) 

99.5  
(62.4–127.0) 

114.5  
(71.7–138.9) 

122.4  
(80.0–160.6) 

Percent change 
from prior QALY 

-6.2  
(-8.6 to -0.5) 

-6.2  
(-7.8 to -0.8) 

-6.3  
(-7.1 to -0.8) 

-6.3  
(-7.5 to -0.5) 

-6.4  
(-7.0 to -0.4) 

-6.6  
(-7.4 to 1.9) 

-6.5  
(-7.3 to 1.8) 

-6.3  
(-7.3 to 1.4) 

Percent change from row above. 
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