Colorectal Cancer Screening: A Decision Analysis for the U.S. Preventive Services Task Force

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. HHSA-290-2015-00007-I

Prepared by:

The Cancer Intervention and Surveillance Modeling Network (CISNET) Colorectal Cancer Working Group

Investigators:

Amy B. Knudsen, PhD Carolyn M. Rutter, PhD Elisabeth F. P. Peterse, PhD Anna P. Lietz, BA Claudia L. Seguin, BA Reinier G. S. Meester, PhD Leslie A. Perdue, MPH Jennifer S. Lin, MD Rebecca L. Siegel, MPH Ann G. Zauber, PhD Karen M. Kuntz, ScD Iris Lansdorp-Vogelaar, PhD

AHRQ Publication No. 20-05271-EF-2 October 2020

This report is based on research conducted by the CISNET Colorectal Cancer Working Group under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2015-00007-I), via the Kaiser Permanente Evidence-based Practice Center (EPC). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

The final report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

While this project was funded by AHRQ, the models used in this analysis were supported by Grant Number U01 CA199335 from the National Cancer Institute as part of CISNET. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute. None of the authors have any affiliations or financial involvements that conflict with the material presented in this report.

Rebecca Siegel, MPH, is Scientific Director of Surveillance Research at the American Cancer Society. Her contributions to the report are solely the responsibility of the author and do not represent the official view of the American Cancer Society. Ms. Siegel has no other conflicts of interest to report.

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Tina Fan, MD, MPH, Tracy Wolff, MD, MPH, and Quyen Ngo-Metzger, MD, MPH, of AHRQ; members of the U.S. Preventive Services Task Force who contributed to the decision analysis work plan; Douglas Corley, MD, PhD, MPH, Jennifer Croswell, MD, MPH, and Jason Dominitz, MD, MHS, for their content expertise and review of the draft report; the Multi-Society Task Force on Colorectal Cancer for sharing surveillance recommendations; Caitlin Senger, MPH, from the Kaiser Permanente EPC for assistance and guidance; and Eric "Rocky" Feuer, PhD, of the National Cancer Institute for continued support of the CISNET Colorectal Cancer Working Group.

Authors' Contributions

Drs. Zauber, Kuntz, and Lansdorp-Vogelaar contributed equally to this report.

Navigation

The text includes a large number of in-line references to Tables, Figures, Appendixes, and specific sections of the report.

Mac users can navigate directly to the referenced item by clicking on the name of the item.

PC users can navigate directly to the item by clicking on the name of the item while pressing the "control" key. To return to the original place in the text, click the back arrow key while pressing the "alt" key.

Structured Abstract

Importance: The U.S. Preventive Services Task Force (USPSTF) is updating its 2016 recommendations for screening for colorectal cancer.

Objective: To inform the USPSTF by providing model-based estimates of the benefits and harms of a wide range of colorectal cancer screening strategies that vary by the ages to begin and end screening, screening modality, and screening interval. Analyses also identify the set of strategies that provide an efficient balance of the life-years gained (LYG) from screening and the screening burden.

Design, Setting, and Participants: Comparative modeling using three microsimulation models that simulate outcomes with and without colorectal cancer screening in a hypothetical cohort of previously unscreened US 40-year-olds with no prior colorectal cancer diagnosis.

Exposures: Screening from ages 45, 50 or 55 years to ages 70, 75, 80, or 85 years with fecal immunochemical testing (FIT), multi-target stool DNA testing (FIT-DNA), flexible sigmoidoscopy (SIG) alone or in conjunction with interval FIT, CT colonography, colonoscopy, or "hybrid" strategies that involve starting screening with FIT and changing to colonoscopy, or starting with colonoscopy and changing to FIT. Screening intervals varied by modality. Perfect adherence with all screening, follow-up, and surveillance procedures was assumed.

Main Outcome and Measures: LYG relative to no screening (benefit), lifetime number of colonoscopies (burden), number of complications from screening (harms), and balance of incremental burden and benefit (efficiency ratios) per 1000 40-year-olds.

Results: LYG from screening ranged from 171 to 381 per 1000 40-year-olds, and the lifetime number of colonoscopies and colonoscopy complications ranged from 624 to 6817 and 5 to 22 per 1000 persons, respectively. Fifty-seven screening strategies were found to be efficient options by all 3 models; screening began at age 45 for the majority (47/57) of these strategies. In contrast, no one age to end screening was predominant among the efficient strategies, though the increases in LYG from continuing screening after age 75 were generally small assuming full adherence with prior screening. An exception to this was efficient stool-based strategies, which demonstrated larger increases in LYG for strategies that extended screening to age 80. None of the screening strategies included in the 2016 USPSTF colorectal cancer screening recommendations, all of which involved screening from ages 50 to 75, were efficient in all 3 models. For colonoscopy every 10 years to age 75, lowering the age to begin screening from 50 to 45 yielded 16 to 34 additional LYG per 1000 across the 3 models. This strategy required 756 to 800 additional colonoscopies and resulted in 2 additional complications per 1000 40-year-olds who initiated screening. Screening with annual FIT from ages 45 to 75 instead of ages 50 to 75 yielded 17 to 33 additional LYG per 1000. It required 3387 to 3520 additional FITs and 175 to 205 additional colonoscopies per 1000 and resulted in less than 1 additional complication per 1000 40-year-olds screened.

Efficient stool-based screening strategies were generally those involving FIT (11/16 efficient stool-based strategies across all 3 models). The models predicted that even the most intensive SIG strategy generally had lower LYG than efficient strategies that used other modalities. All

three models estimated that the efficient hybrid screening strategies provided outcomes similar to their non-hybrid counterparts, supporting the idea that among effective screening modalities, the specific modality (or modalities) used is less important than participation in screening.

Sensitivity analyses indicated that there was little advantage to customizing screening by sex and race; the numbers of LYG, colonoscopies, and complications were similar across sex-race groups, as were the efficient strategies and their ratios. Sensitivity analyses also demonstrated that efficient strategies were similar across 3 scenarios for the population risk of colorectal cancer, including one in which the assumed risk increase was less conservative than the assumption for the base-case analysis.

The impact of imperfect adherence on outcomes was estimated by comparing strategies with different ages to begin screening (to examine delays in uptake) or with strategies with different screening intervals (to examine delays in rescreening). For example, the models estimated that extending the interval of repeat colonoscopy screening from 10 to 15 years would result in a loss of 22 to 38 life years per 1000, and extending the interval of FIT screening from annual to triennial testing would result in a loss of 28 to 41 life years per 1000.

Limitations: The models simulate adenoma size, but do not explicitly simulate adenoma histology, nor do they simulate the serrated polyp pathway to CRC. The models assume that the observed increase in colorectal cancer risk among 25- to 44-year-olds in recent years is a cohort effect, so that the increase in risk will be carried forward with age, and that the increase in risk is driven by an increased risk of developing adenomas, as opposed to increased risk due to faster or more frequent progression of adenomas to malignancy.

Conclusions and Relevance: Colorectal cancer screening leads to sizable reductions in the lifetime risks of developing and dying from colorectal cancer and increases population life expectancy. Model predictions suggest that many screening strategies provide an efficient balance of the benefits and harms of screening. When the benefits of screening are measured by the number of LYG, most of the efficient screening strategies identified by all 3 models specified screening starting at age 45. Starting screening at age 45 was generally predicted to result in more LYG than similar strategies with screening starting at age 50 or age 55, albeit with a higher burden of both colonoscopy and non-colonoscopy testing and slightly higher risks of complications.

۷

Table of Contents

Structured Abstracti	iv
Chapter 1. Introduction	1
Chapter 2. Methods	2
Scope and Purpose	2
Key Questions	2
Overview of the Analysis	2
Models	3
Model Calibration	6
Changes From the 2016 Decision Analysis	6
Model Validation	8
Colorectal Cancer Screening Strategies	8
Model Input Parameters	9
Outcomes1	2
Sensitivity and Scenario Analyses1	5
Chapter 3. Results	
Benefits, Burden, and Harms of Screening1	7
Efficient Strategies Within Each Class of Screening Modality1	
Colonoscopy1	8
Findings by Sex and Race	20
Sensitivity Analyses	21
Chapter 4. Discussion	26
Summary of Findings2	26
Caution Regarding the Interpretation of Findings	31
Comparison With the 2016 Decision Analysis	32
Comparison With Decision Analysis for the ACS	34
Potential Implications of Adherence	35
Strengths of the Modeling	37
Limitations of the Modeling	38
Conclusion	1
References 4	2

Tables

 Table 1. Comparison of natural history model structures

Table 2. Estimated dwell times among colorectal cancer cases, by model

Table 3. Age-adjusted rates of colorectal cancer among 20-44-year-olds by period of diagnosis from

the SEER Program, with and without adjustment for delays in reporting

Table 4. Screening strategies evaluated by the models

Table 5. Strategies with screening at the same ages despite different ages to end screening

Table 6. Comparison of the 2020 and 2016 CISNET colorectal cancer screening analyses for the US Preventive Services Task Force

Table 7. Screening test characteristics used in the analysis

Table 8. Surveillance intervals used in the analysis

Table 9. Efficient frontier status and efficiency ratios for colorectal cancer screening strategies highlighted by the USPSTF in 2016, by model

Table 10. Range of outcomes over the lifetime of a cohort of 40-year-olds across the SimCRC, CRC-SPIN, and MISCAN models with no screening and with efficient and near-efficient colonoscopy screening strategies among the total population and by subgroups defined by sex and race

Table 11. Range of outcomes over the lifetime of a cohort of 40-year-olds across the SimCRC, CRC-SPIN, and MISCAN models with no screening and with efficient and near-efficient FIT strategies among the total population and by subgroups defined by sex and race

Table 12. Outcomes for strategies that were efficient or near efficient with SimCRC, CRC-SPIN, and MISCAN with life-years gained as the measure of screening benefit and IRR of 1.19

Table 13. Outcomes from the current analysis (IRR = 1.19) and from the 2016 analysis for the colonoscopy screening strategy highlighted by the USPSTF in 2016 and for the same strategy but with screening beginning at age 45 instead of age 50

Table 14. Outcomes from the current analysis (IRR = 1.19) and from the 2016 analysis for the FIT screening strategy highlighted by the USPSTF in 2016 and for the same strategy but with screening beginning at age 45 instead of age 50

Table 15. Outcomes from the current analysis (IRR = 1.19) and from the 2016 analysis for the annual sDNA-FIT screening strategy highlighted by the USPSTF in 2016 and for the same strategy but with screening beginning at age 45 instead of age 50

Table 16. Outcomes from the current analysis (IRR = 1.19) and from the 2016 analysis for the triennial sDNA-FIT screening strategy highlighted by the USPSTF in 2016 and for the same strategy but with screening beginning at age 45 instead of age 50

Table 17. Outcomes from the current analysis (IRR = 1.19) and from the 2016 analysis for the SIG screening strategy highlighted by the USPSTF in 2016 and for the same strategy but with screening beginning at age 45 instead of age 50

Table 18. Outcomes from the current analysis (IRR = 1.19) and from the 2016 analysis for the SIG+FIT screening strategy highlighted by the USPSTF in 2016 and for the same strategy but with screening beginning at age 45 instead of age 50

Table 19. Outcomes from the current analysis (IRR = 1.19) and from the 2016 analysis for the CTC screening strategy highlighted by the USPSTF in 2016 and for the same strategy but with screening beginning at age 45 instead of age 50

Table 20. Illustration of the changes in outcomes from adherence to screening initiation for sample strategies with screening beginning at age 50, by model (IRR = 1.19)

Table 21. Illustration of the changes in outcomes from adherence to repeat screening for sample strategies with screening beginning at age 50, by model (IRR = 1.19)

Figures

Figure 1. Graphical representation of the natural history of colorectal cancer and the effects of screening as simulated by SimCRC, CRC-SPIN, and MISCAN

Figure 2. Prevalence of adenomas by age from autopsy studies and as predicted by the original models calibrated to (among others) colorectal cancer incidence data from the SEER Program for 1975-1979

Figure 3. Model inputs for distribution of adenomas by location among persons aged 40 and older, by model

Figure 4. Distribution of adenomas by size of the most advanced adenoma among persons aged 40 and older, by age and model

Figure 5. Colorectal cancer cases per 100,000 persons by age and model for models calibrated to incidence rates from the SEER Program for 1975-1979

Figure 6. Distribution of the stage of colorectal cancer at diagnosis among persons aged 40 and older, by model

Figure 7. Colorectal cancer deaths per 100,000 persons by age and model for models calibrated to colorectal cancer incidence rates from the SEER Program for 1975-1979

Figure 8. Model validation based on predicted hazard ratios for colorectal cancer incidence and mortality after 17 years of follow-up among the intervention group compared with the control group of the UK Flexible Sigmoidoscopy Screening Trial

Figure 9. Age-specific excess risks of complications from colonoscopy with polypectomy relative to colonoscopies without polypectomy Figure 10. Illustration of efficient, strongly dominated and weakly dominated strategies Figure 11. Cumulative number of colorectal cancer cases and of colorectal cancer deaths per 1000 persons from age 40 to age 95 in the absence of screening, by model (IRR = 1.19) Figure 12. Colonoscopies and life-years gained for a cohort of 40-year-olds for colonoscopy screening strategies, by model (IRR = 1.19) Figure 13. Colonoscopies and life-years gained for a cohort of 40-year-olds for FIT and sDNA-FIT screening strategies, by model (IRR = 1.19) Figure 14. Colonoscopies and life-years gained for a cohort of 40-year-olds for sigmoidoscopy screening strategies, by model (IRR = 1.19) Figure 15. Colonoscopies and life-years gained for a cohort of 40-year-olds for 10-yearly sigmoidoscopy plus interval FIT screening strategies, by model (IRR = 1.19) Figure 16. Colonoscopies and life-years gained for a cohort of 40-year-olds for computed tomographic colonography screening strategies, by model (IRR = 1.19) Figure 17. Colonoscopies and life-years gained for a cohort of 40-year-olds for screening strategies with once-only colonoscopy, followed by annual FIT, by model (IRR = 1.19) Figure 18. Colonoscopies and life-years gained for a cohort of 40-year-olds for screening strategies with 5 years of annual FIT followed by 10-yearly colonoscopy, by model (IRR = 1.19) Figure 19. Colonoscopies and colorectal cancer deaths averted for a cohort of 40-year-olds for colonoscopy screening strategies, by model (IRR = 1.19) Figure 20. Colonoscopies and colorectal cancer deaths averted for a cohort of 40-year-olds for FIT and sDNA-FIT screening strategies, by model (IRR = 1.19) Figure 21. Colonoscopies and colorectal cancer deaths averted for a cohort of 40-year-olds for sigmoidoscopy screening strategies, by model (IRR = 1.19) Figure 22. Colonoscopies and colorectal cancer deaths averted for a cohort of 40-year-olds for 10yearly sigmoidoscopy plus interval FIT screening strategies, by model (IRR = 1.19) Figure 23. Colonoscopies and colorectal cancer deaths averted for a cohort of 40-year-olds for computed tomographic colonography screening strategies, by model (IRR = 1.19) Figure 24. Colonoscopies and colorectal cancer deaths averted for a cohort of 40-year-olds for screening strategies with once-only colonoscopy, followed by annual FIT, by model (IRR = 1.19) Figure 25. Colonoscopies and colorectal cancer deaths averted for a cohort of 40-year-olds for screening strategies with 5 years of annual FIT followed by 10-yearly colonoscopy, by model (IRR = 1.19) Figure 26. Colonoscopies and life-years gained for a cohort of 40-year-olds for colonoscopy screening strategies, by risk scenario Figure 27. Colonoscopies and life-years gained for a cohort of 40-year-olds for FIT and sDNA-FIT screening strategies, by risk scenario Figure 28. Colonoscopies and life-years gained for a cohort of 40-year-olds for sigmoidoscopy screening strategies, by risk scenario Figure 29. Colonoscopies and life-years gained for a cohort of 40-year-olds for 10-yearly sigmoidoscopy plus interval FIT screening strategies, by risk scenario Figure 30. Colonoscopies and life-years gained for a cohort of 40-year-olds for computed tomographic colonography screening strategies, by risk scenario Figure 31. Colonoscopies and life-years gained for a cohort of 40-year-olds for screening strategies with once-only colonoscopy, followed by annual FIT, by risk scenario Figure 32. Colonoscopies and life-years gained for a cohort of 40-year-olds for screening strategies with 5 years of annual FIT followed by 10-yearly colonoscopy, by risk scenario Figure 33. Benefits, harms and burden of colorectal cancer screening strategies highlighted by the USPSTF in 2016 (with screening from ages 50 to 75 years) and the change in outcomes when screening is started at age 45 instead of at age 50

Appendixes

Appendix 1. Estimation of Increasing Population-Level Risk of Colorectal Cancer

Appendix 2. Additional Information on Test Characteristics

Appendix 3. Inputs for Calculation of Quality-Adjusted Life-Years

Appendix 4. Outcomes with HSgFOBT

Appendix 5. Outcomes with Once-only Colonoscopy Screening Strategies

Appendix 6. Outcomes with Once-only Sigmoidoscopy Strategies

Appendix 7. Outcomes for Each Strategy within a Screening Modality

Appendix 8. Efficiency Ratios by Class of Screening Modality and Model (Benefit of Screening = LYG, IRR = 1.19)

Appendix 9. Efficiency Ratios by Sex and Race

Appendix 10. Efficiency Ratios with QALYG vs. LYG as the Measure of the Benefit of Screening

Appendix 11. Efficiency Status and Efficiency Ratios with Colorectal Cancer Deaths Averted vs.

LYG as the Measure of the Benefit of Screening

Appendix 12. Outcomes and Efficiency Ratios with Increasing Population Risk of Colorectal Cancer

Appendix 13. Efficiency Ratios from the Sensitivity Analysis on Colonoscopy Sensitivity

Appendix 14. Comparison of CISNET Decision Analyses of Colorectal Cancer Screening for the USPSTF and ACS

Appendix 15. Illustration of the Change in Outcomes with Delays in Screening Initiation and Repeat Screening for Sample Strategies with Screening Starting at Age 45

Chapter 1. Introduction

Although colorectal cancer mortality rates have declined 51 percent from 1975 to 2016,¹ colorectal cancer remains the second most common cause of cancer death in the United States (US) with 53,200 deaths expected in 2020.² Randomized trials have shown that screening reduces colorectal cancer incidence and mortality.³⁻¹⁰ While these trials provide the highest quality evidence of screening effectiveness, it is not feasible for trials to examine the full range of potential screening programs. In this context, microsimulation modeling can be used to synthesize available information about screening to provide guidance on the risks, benefits, and burden of different screening strategies to reduce colorectal cancer incidence and mortality.

The US Preventive Services Task Force (USPSTF) first recommended colorectal cancer screening in 2002¹¹ with updated recommendations reported in 2008¹² and 2016.¹³ The latter 2 updates considered outcomes of decision analyses conducted using colorectal cancer models funded by the Cancer Intervention and Surveillance Modeling Network (CISNET) to inform the ages to begin and end screening, intervals of screening, and screening modality.^{14,15} Modeling input was most informative regarding the age to end routine colorectal cancer screening and the screening interval for recommended tests. Currently the USPSTF recommends that average-risk adults undergo screening for colorectal cancer from ages 50 to 75.¹³ Screening strategies highlighted by the USPSTF in 2016 included colonoscopy every 10 years, flexible sigmoidoscopy (SIG) alone every 5 years, SIG every 10 years with annual fecal immunochemical testing (SIG+FIT), computed tomographic colonography (CTC) every 5 years, annual high-sensitivity guaiac-based fecal occult blood testing (HSgFOBT, i.e., Hemoccult SENSA[®] (Beckman Coulter; Brea, CA)), annual fecal immunochemical testing (FIT), or multi-target stool DNA testing (sDNA-FIT, i.e., Cologuard[®] (Exact Sciences; Madison, WI)) either annually or every 3 years.¹³

This decision analysis, with an accompanying systematic evidence review,¹⁶ will be used by the USPSTF to update its 2016 colorectal cancer screening recommendations.¹³

1

Chapter 2. Methods

Scope and Purpose

The USPSTF will use this decision analysis in conjunction with a systematic evidence review from the Kaiser Permanente Evidence-based Practice Center (EPC), to update its 2016 recommendation statement on colorectal cancer screening.¹³ This decision analysis updates our prior analysis¹⁵ of how the benefits, burden, and harms of colorectal cancer screening might vary by screening modality, screening interval, age to begin screening, and age to end screening. It incorporates recent evidence reporting increasing rates of colorectal cancer among adults aged < 50 years¹⁷⁻²³ and evaluates whether the benefits, burden, and harms of screening might vary by sex and race.

Key Questions

The CISNET Colorectal Cancer Working Group, USPSTF members, EPC evidence review team, and Agency for Healthcare Research and Quality (AHRQ) Medical Officer defined the scope and key questions for the decision analysis. The key questions were:

- 1. How do the benefits, burden, and harms of screening average risk, asymptomatic adults for colorectal cancer vary by screening modality, screening interval, age to begin screening, and age to end screening?
- 2. Which screening strategies are efficient in terms of the additional number of colonoscopies per life-year gained? Do the efficient strategies vary by sex and race?
- 3. Do the answers to key questions 1 and 2 change when efficiency is measured as additional number of colonoscopies per quality-adjusted life-year gained? As the additional number of colonoscopies per colorectal cancer death averted?
- 4. Do the answers to key questions 1 and 2 change according to assumptions about the underlying risk of colorectal cancer?

In addition to analyses to address the key questions above, we performed sensitivity analysis to assess the impact of uncertainty in test characteristics. We also provide plausible ways to consider different types of non-adherence with the screening process (i.e., non-adherence with screening initiation, repeat screening, and diagnostic follow-up).

Overview of the Analysis

We used 3 independently-developed microsimulation models of colorectal cancer that are funded by the National Cancer Institute's CISNET consortium – Simulation Model of Colorectal Cancer (SimCRC), Colorectal Cancer Simulated Population model for Incidence and Natural history (CRC-SPIN), and Microsimulation Screening Analysis (MISCAN) for Colorectal Cancer – to predict life-years gained, colorectal cancer incidence and mortality, number of screening tests required, and complications of screening for 239 (221 unique) colorectal cancer screening strategies that vary by screening modality, age to begin screening, age to end screening and screening interval. Each of these strategies is simulated for 3 scenarios of population-level colorectal cancer risk.

Models

The microsimulation models used for this analysis have a long history of use in collaborative modeling analyses, including analyses to inform colorectal cancer screening National Coverage Determinations for the Centers for Medicare and Medicaid Services,²⁴⁻²⁶ to inform screening recommendations by the American Cancer Society (ACS)^{27,28} and the USPSTF,^{14,15} as well as to guide screening programs in South Carolina.²⁹ Each model consists of a demography component, a natural history component, and a screening component. These components were described in detail in the 2016 report³⁰ and are briefly summarized below. Changes to the CRC-SPIN model are highlighted because that model has been revised since 2016.³¹

Demography Component

The 3 CISNET microsimulation^{*} models of colorectal cancer generate a series of individual life histories to form a population according to the characteristics of the US population. For the current analysis we simulated a cohort of previously unscreened 40-year-olds born in 1980 with no prior diagnosis of colorectal cancer. Approximately half of the cohort is male, in accordance with Census projections for 2020.³² Mortality rates from causes other than colorectal cancer were based on the 2017 US life tables from the National Center for Health Statistics.³³

Natural History Component

All 3 microsimulation models describe the natural history of colorectal cancer in an unscreened population, based on the adenoma-carcinoma sequence.³⁴⁻³⁶ Simulated persons begin in a disease-free "no lesion" state and may progress to an adenoma state, a preclinical colorectal cancer state, and a clinically detected colorectal cancer state, from which they may die from colorectal cancer (**Figure 1**). Persons may die from other causes at any time. While the models have a similar natural history framework, they differ in the implementation of the framework. **Table 1** provides a brief comparison of the structure of the natural history components of the 3 models.

A key change from the 2016 decision analysis is that the code for the CRC-SPIN model has been rewritten, after which the model was recalibrated.³¹ Compared with the previous version, the current version of CRC-SPIN (CRC-SPIN 2.0) simulates a longer sojourn time of preclinical colorectal cancer, more in line with the other 2 models, as described later in this report. CRC-SPIN was also revised to more accurately simulate the stage at clinical detection. No changes have been made to the SimCRC and MISCAN models since the 2016 report.

Adenoma Risk

In all 3 models, adenoma risk varies stochastically across individuals and by age and sex. All models allow multiple adenomas within individuals and none allow detectable adenomas in

^{*} Microsimulation means that the models simulate outcomes for individual agents (i.e., individual hypothetical people).

individuals <20 years of age. The risk of having an adenoma is derived to match the prevalence of adenomas by age from autopsy studies (**Figure 2**). None of the models allow regression of adenomas,³⁷⁻⁴¹ nor do they simulate the serrated polyp pathway.^{42,43}

Distribution of Adenomas in the Colon and Rectum

All models assign adenomas a location in the large intestine based on a multinomial distribution. SimCRC and CRC-SPIN inform these distributions using data on the location of adenomas from autopsy studies;⁴⁴⁻⁵³ MISCAN assumes that the distribution of adenomas in the colon and rectum is the same as the distribution of clinically-detected colorectal cancer.⁵⁴ Consequently, the models differ in the distribution of adenomas by location within the colon and rectum (**Figure 3**).

Adenoma Growth

All models allow adenoma growth to vary stochastically across individuals, and across adenomas within individuals. SimCRC and MISCAN define adenoma size categorically (1 to <6 mm, 6 to <10 mm, \geq 10 mm) and do not explicitly specify a maximum size. CRC-SPIN simulates continuous adenoma size using a Richard's growth curve model,⁵⁵ with a minimum detectable size of 1 mm and maximum size of 50 mm. The models also differ in the distribution of the size of the most advanced adenoma (**Figure 4**). For all models the percentage of adenomas that are \geq 10 mm increases with age.

Progression to Preclinical Colorectal Cancer

All models allow multiple preclinical cancers within individuals and allow the time from adenoma onset to progression to preclinical disease to vary stochastically across individuals and across adenomas within individuals. MISCAN and SimCRC do not allow progression to preclinical cancer in adenomas that are <6 mm. CRC-SPIN simulates progression rates that are a function of continuous size, with a very small (non-zero) probability of progression to preclinical cancer in adenomas <6 mm.

MISCAN specifies 2 types of adenomas: non-progressive adenomas, which have no potential of becoming cancerous, and progressive adenomas, which have this potential; the risk that an adenoma is progressive increases with age at initiation. The SimCRC and CRC-SPIN models do not explicitly model non-progressive adenomas; in these models, all adenomas have the potential to progress although most will not within a simulated individual's lifetime.

Progression to Clinically Detected Colorectal Cancer (Sojourn Time)

All models allow sojourn time (i.e., the time from preclinical cancer onset to cancer detection in the absence of screening) to vary stochastically across individuals. Mean sojourn time (for cancers that are ultimately diagnosed) ranges from 3.6 to 4.7 years across the 3 models (**Table 2**). All models assume that when 1 preclinical cancer is detected (either by symptoms or by screening), all are detected. Currently, none of the models explicitly simulate metachronous primary colorectal cancer after colorectal cancer detection. The impact of metachronous primary colorectal cancer is incorporated in rates of colorectal cancer relative survival after diagnosis.

Prior to age 75, the models reproduce age-specific colorectal cancer incidence rates from the Surveillance, Epidemiology, and End Results Program (SEER) from $1975-1979^{54}$ – a period with little to no colorectal cancer screening (**Figure 5**). At older ages SimCRC predicts incidence rates that are higher than those observed in SEER.

The models are calibrated to and generally replicate the stage distribution observed in SEER among a largely unscreened population (**Figure 6**).

Colorectal Cancer Death

All models stochastically assign colorectal cancer death using survival probabilities based on Cox proportional hazards models for relative survival applied to SEER survival data for cases diagnosed from 1/1/1975 to 12/31/2003 with follow-up through 12/31/2010.⁵⁶ Time to colorectal cancer death depends on year at diagnosis, stage, location (colon or rectum), age at diagnosis, sex, and (optionally) race. Rather than project continued improvements in relative survival for persons diagnosed after 2003 (the last diagnosis year included in the statistical analysis, due to a change in the cancer staging algorithm in 2004⁵⁷ and the dissemination of neoadjuvant chemotherapy for rectal cancer⁵⁸⁻⁶⁰), we fixed survival at rates predicted for cases diagnosed in 2003. None of the models allow colorectal cancer death during the lead time (i.e., the time between a screen-detected cancer and the time that the person would have been clinically detected). The age-specific colorectal cancer mortality rates estimated by the models are presented in **Figure 7**.

Non-Colorectal Cancer Death

All models stochastically assign non-colorectal cancer death using all-cause mortality rates reported in the 2017 US life tables from the National Center for Health Statistics.³³ In the absence of screening, life expectancy at age 40 ranged from 40.2 to 40.3 years across models (when calibrated to colorectal cancer incidence rates from SEER for 1975-1979⁵⁴), which is slightly less than the 40.7-year life expectancy from the 2017 US life table for the total population. This difference is expected, because colorectal cancer deaths were not removed from the all-cause mortality rates (i.e., the models treat all-cause mortality rates as non-colorectal cancer death rates).

Screening Component

All models have a screening component that allows the adenoma-carcinoma sequence to be interrupted through detection and removal of preclinical lesions. Each individual's life history is simulated in the absence of screening and in the presence of screening, such that the impact of a given screening strategy on each individual's outcomes are known. The effectiveness of a screening strategy is simulated through a test's ability to detect lesions (that is, adenomas or preclinical colorectal cancer) (**Figure 1**). Once screening is introduced, a simulated person who has an underlying lesion has a chance of having it detected during a screening round depending on the sensitivity of the test for that lesion and, for endoscopic tests, whether the lesion is within the reach of the scope.

We assume that all people with an abnormal (non-colonoscopy) screening test subsequently undergo a follow-up (i.e., diagnostic) colonoscopy. Based on the test characteristics of colonoscopy, the person may be found to (correctly or incorrectly) have no adenomas, 1 or more adenomas, which would be removed via polypectomy, or colorectal cancer. Screened persons without an underlying lesion can have a false-positive test result and undergo an unnecessary follow-up colonoscopy. Non-adenomatous polyps are not simulated explicitly, but their detection is reflected in false-positive rates of the direct visualization tests (colonoscopy, sigmoidoscopy, and CTC). Patient management following cancer detection is not explicitly simulated. Patients with a history of adenomas of any size are assumed to undergo surveillance with colonoscopy. The time to the next surveillance colonoscopy is simulated based on past findings. The models incorporate the risks of both fatal and non-fatal complications from colonoscopy.

The impact of screening depends on the test performed, the associated estimates of sensitivity and specificity for detecting adenomas (by size) and cancer at each screen, and the screening interval.

Model Calibration

Because the natural history of colorectal cancer is largely unobserved, there are limited data to directly inform the parameters of the natural history components of the models. Model parameter values for the natural history components were derived by calibration. Calibration is the process of selecting parameters so that model predictions closely match data from observational studies ("calibration data").⁶¹

All 3 natural history models are calibrated to SEER colorectal cancer incidence rates in 1975-1979⁵⁴ because this period represents colorectal cancer incidence in the US when there was little or no screening for the disease. All models incorporate information about adenoma prevalence from autopsy studies;⁴⁴⁻⁵³ the SimCRC and MISCAN models are calibrated using findings from each study. The CRC-SPIN model incorporates this information by specifying prior distributions for adenoma risk parameters that are based on a meta-analysis of autopsy studies.⁶²

Each model includes additional calibration data. SimCRC was calibrated to outcomes from autopsy studies that report size distribution of adenomas⁴⁵⁻⁵³ and the prevalence of preclinical colorectal cancer^{46-53,63} (by age group and sex, when reported). MISCAN was calibrated to adenoma size distributions from colonoscopy studies,⁶⁴⁻⁶⁶ stage-specific screen-detected and interval cancers from 3 large randomized FOBT trials,⁶⁷ and incidence reduction from the United Kingdom Flexible Sigmoidoscopy Screening (UKFSS) Trial.⁷ CRC-SPIN was calibrated to adenoma prevalence by age and sex,⁶⁸ adenoma size,^{65,69} and prevalence of preclinical colorectal cancer^{64,70} reported in screening studies, and the proportion of adenomas that included colorectal cancer from a clinical series that reported adenoma-level data drawn from pathology records.⁷¹

Changes From the 2016 Decision Analysis

Increasing Population Risk of Colorectal Cancer

Since the mid-1990s, there have been steady increases in colorectal cancer incidence before age 50,¹⁷⁻²³ the age of screening initiation recommended by the USPSTF in 2016. The evidence for increased risk is drawn from age-period-cohort models,²³ which suggests that the increase in colorectal cancer in young adults is primarily driven by a cohort effect, meaning that increased risk observed before age 50 continues as individuals age. Presumably this increase is not observed in colorectal cancer incidence rates among people aged ≥ 50 years because of screening.

To evaluate the effectiveness of screening in the context of increasing population risk, we modified the models to incorporate an increase in background risk. This increase in risk was estimated by the incidence rate ratio (IRR), which reflects the ratio of colorectal cancer incidence in 2012-2016 relative to colorectal cancer incidence in 1975-1979 (the years of SEER data used for model calibration). While there is certainty that colorectal cancer incidence is higher among adults aged <50 years today vs. 40 years ago (i.e., IRR>1), the degree of increase is uncertain. The CISNET modeling group collaborated with USPSTF members and a leading expert on trends in cancer risk to obtain estimates of the magnitude of increasing risk for use in simulation models (see **Appendix 1** and **Table 3**).

In consultation with USPSTF members, we decided that base-case simulations used for our decision analysis would assume an IRR of 1.19 for increasing population risk models, and that this increase would be simulated as a cohort effect,²³ so that the relative increase in risk, which we assume is driven by an increase in adenoma risk, is applied throughout each simulated individuals' lifespan. Sensitivity analyses assume an IRR of 1.52 and of 1 (no increase from 1975-1979). These analyses were selected to capture the likely range of risk elevation.

Analyses by Sex and Race

An important addition to the current analysis compared with the 2016 analysis is the inclusion of subgroup analysis by sex and race. These subgroup analyses allow assessment of whether our results would potentially support differential screening recommendations by sex and race.

Prior to performing these analyses, we conducted a comprehensive review of the literature on race and colorectal cancer.⁷² We concluded that the primary driver of differences in colorectal cancer incidence and mortality by race is access to screening and subsequent care, rather than biological differences in natural history. This research found that black-white differences in colorectal cancer incidence began only after the dissemination of screening, that there is strong evidence that blacks are less likely to be screened for colorectal cancer than whites, and that there is limited evidence for black-white differences in findings at screening, including detection of adenomas, advanced adenomas, and cancer.⁷² A recent study by Warren Andersen and colleagues⁷³ reporting the findings of over 47,000 individuals in the Southern Community Cohort Study (68% African American; 55% with household income <\$15,000) found that the effect of screening on colorectal cancer incidence and mortality did not vary by race or

household income, concluding that addressing the gap in screening use may reduce disparities in colorectal cancer outcomes.

Based on these studies, we assumed no black-white differences in the underlying risk of colorectal cancer, but we did incorporate black-white differences in all-cause mortality³³ and in stage-specific relative survival after diagnosis.⁵⁶ With respect to differences by sex, SimCRC has separately calibrated natural history models for men and women, based on sex-specific calibration targets for adenoma prevalence and size (when available)⁴⁴⁻⁵³ and colorectal cancer incidence.⁵⁴ The CRC-SPIN model allows adenoma incidence and the probability of transition to preclinical cancer to vary by sex. The MISCAN model simulates sex-differences in adenoma risk. All models assume sex- and race-specific analyses, colorectal cancer incidence was simulated under the increasing population risk scenario (IRR = 1.19). We did not simulate sex- and race-specific IRRs, due to the wide and largely overlapping confidence intervals (CIs) for sex- and race-specific IRRs.

Model Validation

We have conducted a series of model comparisons (cross-validation) to better understand differences in model predictions.^{74,75} As mentioned above, the models predict similar adenoma prevalence (**Figure 2**), cancer incidence (**Figure 5**), and stage distribution (**Figure 6**). However, among colorectal cancer cases diagnosed in the absence of screening, the models predict different mean time between adenoma formation and clinical colorectal cancer detection *for adenomas that progress to diagnosed colorectal cancer* ("dwell time," **Table 2**). Dwell time is unobservable and is an important driver of the simulated effectiveness of screening tests. The total time from adenoma formation to clinical cancer detection can be divided into 2 parts: the time from adenoma formation to onset of preclinical cancer ("adenoma dwell time"), and the time from preclinical cancer onset to clinical detection ("sojourn time"). While the models estimate similar mean sojourn time (3.6-4.7 years), they estimate different adenoma dwell times (12-25 years) and therefore different total dwell times (17-29 years). Dwell times are shorter with MISCAN, due to the assumption that some adenomas are non-progressive.

External validation offers an opportunity to evaluate these dwell time assumptions. We externally validated all 3 models,⁷⁶ using them to predict published 10-year results from the UKFSS Trial, a randomized controlled trial of 1-time SIG screening to reduce colorectal cancer mortality.⁷ The MISCAN modeling group subsequently used these data for calibration and afterwards revalidated their model to the Norwegian Colorectal Cancer Prevention SIG study.⁷⁷ All models recently updated their validation against the 17-year outcomes of the UKFSS.⁷⁸ Validation focused on longer-term primary study outcomes: estimated hazard ratios of colorectal cancer incidence and mortality 17 years after screening in intervention versus control participants.⁷⁹ We also examined the ability of the models to predict adenoma detection rates by location in the colon and rectum.⁷⁶ Point predicted and observed variability of outcomes based on 95% intervals estimated by the 2.5th and 97.5th percentiles across 2,000 simulated trials. We found that the 95% credible intervals from model predictions were similar in width to reported 95% CIs and largely overlapped (**Figure 8**); this suggests that models show a reasonable

prediction of the effect of the intervention on CRC-specific incidence and mortality. Predicted adenoma detection rates at baseline SIG (UKFSS: 12.1%, 95% CI 11.8%-12.4%) were too low for SimCRC (8.8%, 95% credible interval 8.5%-9.0%) and too high for CRC-SPIN and MISCAN (13.3%, 95% credible interval 13.0%-13.6% and 27.7%, 95% credible interval 27.2%-28.2%, respectively). The CRC-SPIN modeling group subsequently incorporated UKFSS screen detection rates⁷⁰ into model calibration.

Colorectal Cancer Screening Strategies

In consultation with the USPSTF, we included the following screening modalities: HSgFOBT (i.e., Hemoccult SENSA), FIT with a cutoff of 20 μ g of hemoglobin per g of feces, sDNA-FIT (i.e., Cologuard), SIG (without biopsy), SIG+FIT, colonoscopy, CTC, strategies with once-only colonoscopy then annual FIT, and strategies with annual FIT then 10-yearly colonoscopy (Table 4).

For each modality, we evaluated multiple screening intervals, referring to the timing between subsequent screening tests for persons with a normal test result. Intervals were 1, 2, and 3 years for stool tests; 5 and 10 years for SIG and for CTC; and 5, 10, and 15 years for colonoscopy. For the screening modalities that use SIG+FIT, we simulated sigmoidoscopy at a 10-year interval with FIT at intervals of 1 or 2 years. We also simulated 1-time screens for sigmoidoscopy and colonoscopy.

For each combination of screening modality and interval, we considered ages to begin screening of 45, 50, and 55 and ages to end screening of 70, 75, 80, and 85. These ages were chosen to provide ranges around the recommended ages to begin (age 50) and end (age 75) screening from the 2016 USPSTF recommendations. The age at the last screening test for a particular strategy is not necessarily equal to the age to end screening, but rather it is a function of the age to begin and the screening interval. For example, colonoscopy every 10 years for age to begin 50 and age to end 75 results in 3 screening colonoscopies at ages 50, 60, and 70. We assume no screening occurs after the stopping age, but that colonoscopy surveillance of persons with a history of adenoma(s) is continued through at least age 85 (see **Surveillance** subsection below for more details).

In all, we evaluated 221 unique screening strategies (**Table 4**). Including duplicate strategies, the total number was 239. **Table 5** lists the non-unique strategies, that is, strategies with screening at the same ages despite different ages to end screening (e.g., "COL 50-80, 10" and "COL 50-85, 10", both which have screening colonoscopies at ages 50, 60, 70, and 80).

A comparison of the 2020 and 2016 CISNET colorectal cancer screening analyses is presented in **Table 6**.

Model Input Parameters

Operating Characteristics of Screening Tests

Test characteristics are based primarily on estimates from a systematic evidence review conducted by Lin et al.¹⁶ for the USPSTF.

The sensitivity for direct visualization tests (colonoscopy, SIG, and CTC) is often reported on both a per-lesion and a per-person basis, whereas sensitivity estimates for stool-based tests are always per person. All 3 models specify lesion-level sensitivity for direct visualization tests so that simulated persons with multiple adenomas have a greater likelihood of an abnormal test than persons with only 1 adenoma. For stool tests, CRC-SPIN specifies person-level sensitivity. SimCRC and MISCAN specify lesion-specific sensitivity values that are calibrated so that sensitivity estimates on a person-level match those observed in the selected studies. See **Appendix 2** for more information.

For all tests other than CTC, specificity in the models is defined as the probability of an abnormal test result among persons who do not have any adenomas or colorectal cancer. For CTC, we use a different definition for specificity to match the purpose of CTC for detecting adenomas ≥ 6 mm (see below for details). The lack of specificity with endoscopy reflects the detection of non-adenomatous lesions, which, in the case of sigmoidoscopy, leads to referral to diagnostic colonoscopy.

Model inputs for sensitivity and specificity for each test are provided in **Table 7**. Additional information on the assumptions and sources for test characteristics is provided in **Appendix 2**.

It is important to note the findings of the systematic review for HSgFOBT. The EPC pooled the diagnostic accuracy from 2 studies^{80,81} of the HSgFOBT Hemoccult SENSA. Both used colonoscopy as the reference standard and were deemed 'fair quality'. The 95% CIs for point estimates of the pooled sensitivity for advanced adenomas and for colorectal cancer were wide (0.01 to 0.22 and 0.46 to 0.90, respectively) and only 1 study⁸¹ provided information on sensitivity of non-advanced adenomas and on test specificity using the definition required by the models (i.e., the probability of an abnormal test result among persons who do not have any adenomas or colorectal cancer). Given the uncertainty in the test performance characteristics, there is considerable uncertainty in model predictions for HSgFOBT. As a result, decisions about this test should not be informed by the models. We include model findings for HSgFOBT strategies in **Appendix 4**, rather than with the main results.

Endoscopy Reach

We assume that 5% of persons undergoing colonoscopy have poor bowel preparation⁸² and require 2 procedures to achieve complete visualization, and that the cecum is ultimately visualized in 95% of patients.⁸³ Reach of sigmoidoscopy was based on the UKFSS Trial,⁷⁰ with 76-88% of procedures reaching the junction of the sigmoid and descending colon.

Complications of Screening

Colonoscopy is the main source of reported harms (complications) from colorectal cancer screening. Harms could be from a screening or surveillance colonoscopy, or from a diagnostic colonoscopy to evaluate a patient after an abnormal finding on another screening test. Fatal complications are extremely rare and affect life-years gained from screening. Non-fatal complications are more common, and affect quality of life (and costs, which are <u>not</u> explored in the decision analysis).

Colonoscopy

As noted by Lin et al.,¹⁶ serious adverse events from colonoscopy in asymptomatic persons are relatively uncommon. In a population undergoing colonoscopy for screening, the risks of perforation and major bleeding were 3.3 per 10,000 (95% CI 2.2 to 4.3) and 14.9 per 10,000 (95% CI 9.0 to 20.8), respectively. Complication rates were higher in a population undergoing colonoscopy for either screening or diagnostic follow-up, with 4.8 (95% CI 3.8 to 5.7) perforations and 16.7 (95% CI 12.0 to 21.5) major bleeds per 10,000.

The risks of colonoscopy complications increase with age.¹⁶ Age-specific estimates of the risk of non-fatal complications from colonoscopy used in our analysis are based on results from a study of adverse events (serious gastrointestinal events, other gastrointestinal events, and cardiovascular events) by age among Medicare beneficiaries undergoing outpatient colonoscopy (with or without polypectomy) relative to matched controls.⁸⁴ This study found no evidence of excess risk for complications when colonoscopies did not include polypectomy, and that the risks in therapeutic colonoscopies (i.e., those with polypectomy) increased exponentially with age (**Figure 9**). We assumed 2 fatal complications per 100,000 colonoscopies with polypectomy, based on the risk of perforation at age 65 and the risk of dying of a perforation reported by Gatto et al.⁸⁵

SIG

Lin et al.¹⁶ identified several studies reporting the harms of sigmoidoscopy among the general population. However, none evaluated excess risks relative to a comparison group. As with colonoscopy, we assume risks of complications are conditional on polypectomy. Because we assume that polyps detected at sigmoidoscopy are not removed or biopsied during the procedure, we assumed that there is no risk of complications due to sigmoidoscopy, though complications could occur during colonoscopic follow-up of an abnormal sigmoidoscopy exam.

СТС

Lin et al.¹⁶ found that perforation from CTC itself was rare, with 95% CIs of 0 to 2.9 per 10,000 procedures. Furthermore, these perforations were detected radiologically, so are not on par with serious harms of perforation with colonoscopy. We therefore assumed no complications from CTC, though complications could occur during colonoscopic follow-up of an abnormal CTC exam.

Because CTC is a radiologic procedure, it may increase the risk of radiation-induced cancers. Our models do not account for these risks, although their risks have been estimated to be small relative to the reduction in colorectal cancer risk from CTC screening.⁸⁶

CTC often leads to the detection of suspicious findings outside of the colon.¹⁶ Our models do not include the potential benefits or harms associated with the work-up and possible treatment of these extracolonic findings.

Stool Tests

Given their non-invasive nature, we assumed no direct harms from stool tests. We assumed complications could arise from colonoscopic follow-up of an abnormal stool test.

Surveillance

Simulated persons who have an abnormal screening test but have no adenomas or cancer at the diagnostic colonoscopy return to their original screening modality and schedule 10 years after the normal diagnostic colonoscopy. Simulated persons with adenomas detected at a screening or a diagnostic colonoscopy are assumed to undergo surveillance with colonoscopy. The time to the next surveillance colonoscopy is simulated based on findings at prior colonoscopies, in accordance with the 2020 recommendations of the Multi-Society Task Force on Colorectal Cancer (MSTF).⁸⁷ These recommendations provide intervals for surveillance based on baseline findings and findings at the first surveillance colonoscopy. We assume the intervals provided by the MSTF can be more generally expressed as the intervals based on the most recent colonoscopy ("first-most-recent colonoscopy") and the colonoscopy prior to that ("second-mostrecent colonoscopy") (Table 8). In situations where the MSTF provided a range rather than a single interval, we assumed that the shortest interval would be used in routine practice. Surveillance colonoscopy is assumed to continue through age 85, provided no adenomas or colorectal cancer are detected at the last surveillance colonoscopy (either at or before age 85). Otherwise we continue surveillance according to the clinical findings at the last colonoscopy until no adenomas are detected. For example, if a simulated person has no adenomas detected at a surveillance colonoscopy at age 83, they would stop surveillance because they would be >85years-old at the next surveillance colonoscopy. However, if an adenoma ≥ 10 mm is detected at the surveillance colonoscopy at age 83, another surveillance colonoscopy will be performed at age 86, because the surveillance colonoscopy at or just prior to age 85 was abnormal; if the colonoscopy at age 86 is normal, then surveillance ends.

Adherence

In base-case analyses, we assume perfect adherence to the screening process, including all screening, diagnostic, and surveillance procedures, reflecting the goal of estimating the impact of screening among average risk persons with full willingness to be screened for colorectal cancer.

Lin et al.¹⁶ performed a robust review of the literature on adherence. None of the identified studies provide information on long-term adherence patterns required by the models. Given the limited evidence to inform long-term adherence patterns and the variability in estimates of short-term adherence rates, simulating the impact of imperfect adherence requires numerous

assumptions. As a result, uncertainty surrounding model outcomes with imperfect adherence would be high. We therefore did not perform a formal sensitivity analysis on adherence rates, but instead discuss the potential impact of delayed screening initiation, repeat screening less frequently than recommended, delayed or lack of diagnostic follow-up, and earlier screening cessation than recommended by comparing outcomes across scenarios with perfect adherence but with screening at different ages and intervals. For example, if people start colonoscopy late and only do 1, then the impact on outcomes can be seen through comparison of once-only colonoscopy at age 55 with the recommended colonoscopy strategy. Similarly, if people are non-adherent with annual FIT, the impact can be seen by comparing outcomes with annual FIT vs. with FIT every 2 or 3 years.

Quality of Life Assumptions

When calculating quality-adjusted life-years (QALYs), we accounted for preferences for year of life varying by age, as well as utility losses associated with specific events (e.g., colonoscopy) or health states (e.g., time with CRC). The approach we used is similar to that used by the CISNET breast cancer group in their 2016 analysis for the USPSTF.⁸⁸

Estimates of how preferences for a year of life vary according to age were obtained from the agerelated utility weights from Hanmer et al.⁸⁹ We assumed no disutility from performing stool tests themselves, but for all tests, we accounted for the disutility associated with waiting for test results. Disutilities for colonoscopy were based on a study by Swan et al.⁹⁰ and were assumed for a duration of 36 hours, based on a study by Jonas et al.⁹¹ We assumed the same disutility for sigmoidoscopy and CTC as for colonoscopy, but for shorter time periods because the lack of sedation reduces the time to resolution of normal activities and means that the patient does not require an escort to and from the procedure. See **Appendix 3** for more details on the inputs for QALY calculation.

Outcomes

The models generated a number of outcomes for each screening strategy to capture the health effects and harms over a lifetime. Outcomes included the numbers of stool tests, SIGs, CTCs, colonoscopies by type (screening, diagnostic follow-up, surveillance, or symptom diagnosis), normal and abnormal test results, complications, colorectal cancer cases, colorectal cancer deaths, complication-related deaths, overall life-years and life-years with colorectal cancer by stage at diagnosis. To keep the tables of outputs manageable not all outcomes are included in the summary tables provided in this report (e.g., colonoscopies were reported as screening vs other colonoscopies).

All outcomes are presented for a cohort of persons born in 1980 who are unscreened and free of diagnosed colorectal cancer at age 40.[†] Outcomes are tallied from age 40 to death and expressed

[†] We chose a 40-year-old cohort to maintain consistency with our 2008 and 2016 decision analyses for colorectal cancer screening for the USPSTF. The initial decision to simulate a cohort of 40-year-olds was based on the fact that the 2008 decision analysis included strategies with screening starting at age 40.

per 1,000 persons at age 40. To facilitate interpretation of LYG, they are also expressed in terms of days of life gained per person.

Benefit

We considered life-years gained (LYG) compared with no screening[‡] as the primary outcome for benefits of screening. A small fraction of those who are screened may experience a loss of life-years as a result of fatal complications; these losses are accounted for in the LYG for a given screening strategy.

Harms

We used the lifetime number of required colonoscopies to represent the primary harms and burden of colorectal cancer screening. This metric includes colonoscopies for screening, diagnostic follow-up, and surveillance, as well as colonoscopies for the diagnosis of symptomatic cancers (i.e., cancers detected outside of screening or surveillance). Because the number of colonoscopies does not fully capture the burden of colorectal cancer screening, we also report the number of screening tests by type and the number of complications.

Ratio of Harms (Burden) to Benefit

Ideally, all colorectal cancer screening strategies would be evaluated together in one comprehensive analysis comparing the benefits and harms of screening. However, an analysis such as this would provide an incomplete picture of the tradeoffs across different screening modalities due to large differences in the number of non-colonoscopy tests (i.e., the stool tests, SIGs, and CTCs) across the modalities. We therefore did not perform a comprehensive analysis of all strategies. Instead, we performed separate analyses by screening modality, as described in the sections that follow. Briefly, we first grouped together screening modalities with comparable non-colonoscopy burden to create "classes" of screening modalities. We then identified the subset of efficient screening strategies within each class. A strategy is efficient if no other strategy or combination of strategies within the class provides more life-years with the same (or fewer) number of colonoscopies.

Classes of Comparable Screening Modalities

We grouped FIT and sDNA-FIT together as exclusively stool-based screening modalities with comparable burden. (Outcomes for stool-based modalities including HSgFOBT are included in **Appendix 4.**) The remaining modalities – SIG+FIT, SIG alone, CTC, and colonoscopy – each remained a unique screening class due to differences in bowel preparation, invasiveness, the need for sedation, and in the need for, type of, and number of non-colonoscopy tests. After this grouping, we were left with seven classes of screening modalities: stool-based modalities,

[‡] The number of life-years gained with a given strategy was calculated as the difference in model-predicted life expectancy between the strategy of interest and the no screening strategy.

SIG+FIT, SIG alone, CTC, colonoscopy alone, and strategies involving colonoscopy either preceded by or followed by annual FIT.

Efficient Strategies Within a Class of Screening Modality

Our goal was not to identify a "best" test or set of tests, but, as noted in Key Question 2, to identify efficient screening strategies within each class of screening modality. We first identified screening strategies that were projected to require more colonoscopies and provide lower LYG than another strategy within the class; these strategies are strongly dominated and were deemed inefficient (**Figure 10**). For each of the remaining strategies within a class of screening modality we calculated the incremental number of lifetime colonoscopies (Δ COL) and the incremental LYG (Δ LYG), relative to the next least effective strategy. We then calculated an "efficiency ratio," defined as the incremental number of colonoscopies required to achieve an additional LYG (Δ COL/ Δ LYG). In an approach that mirrors that of incremental cost-effectiveness analysis, strategies that provided lower LYG than another and had a higher efficiency ratio were weakly dominated and deemed inefficient.

We then derived an "efficient frontier" for each class of screening modality, which is the line connecting all non-dominated strategies when the strategies are plotted in colonoscopy versus LYG space. The inverse of the slope of the efficient frontier is the efficiency ratio, which is the number of additional colonoscopies required to achieve an additional LYG compared with the next less effective and less costly strategy on the efficient frontier. This ratio is akin to the incremental cost-effectiveness ratio in a cost-effectiveness analysis. As the efficient frontier gets flatter, the efficiency ratio increases, indicating diminishing returns from each additional colonoscopy performed.

It should be noted that there is no standard for determining the optimal point on the efficient frontier. In cost-effectiveness analysis, decision makers typically refer to estimates of the willingness to pay for a year of (quality-adjusted) life gained as a benchmark for deciding which of the efficient strategies provide good vs. poor value.⁹²⁻⁹⁴ There is no comparable metric in this setting, where efficiency is expressed as the number of additional colonoscopies per LYG. To aid in interpretation of the tradeoff between life expectancy gains and colonoscopies across strategies within a class of screening modality, we also present the results as the number of additional days of life gained per additional colonoscopy performed ($\Delta DLG/\Delta COL$) in a summary table provided in the **Discussion**. This metric is equivalent to the slope of the efficient frontier, but with the benefit of screening expressed in terms of days of life gained instead of years of life gained. It conveys the "bang" (additional days of life gained) for each additional colonoscopy "buck."

Lastly, because it is possible that a dominated strategy that provides outcomes that are very similar to an efficient strategy may be a reasonable option for another reason,⁹⁵ such as for patient ease or for consistency of starting and stopping ages across screening modalities, we also identified "near-efficient" strategies, which we defined as a dominated strategy with ≤ 3 days of life gained per person of the efficient frontier. There is no standard for what constitutes a reasonable number of days from the frontier for a strategy to be near efficient. We chose an absolute distance of 3 days per person, which, for the strategies highlighted by the USPSTF in

2016, is largely in line with the relative measure that we used in the 2016 decision analysis, namely LYG within 2% of the efficient frontier.

Sensitivity and Scenario Analyses

Many of the sensitivity and scenario analyses have been described above, although not in those terms. Through the use of 3 independently-developed models, the primary analysis includes a sensitivity analysis on model structure. We also evaluated outcomes for 2 scenarios of colorectal cancer risk (IRR of 1.52, and 1), in addition to the scenario for the base-case analysis (IRR = 1.19). Additional analyses focused on subgroups defined by sex and race (IRR = 1.19).

Two additional sensitivity analyses were performed. First, because there are multiple ways to express the benefit of screening, we presented results using 3 metrics: LYG (the metric for base-case analyses); quality-adjusted life-years gained (QALYG);[§] and colorectal cancer deaths averted.^{**} Additional information on calculation of quality-adjusted life-years is provided in **Appendix 3**. We assumed that a dominated strategy with \leq 3 quality-adjusted days of life gained per person of the efficient frontier is near efficient, which is similar to the approach used for LYG (i.e., \leq 3 days of life gained per person of the efficient frontier is near efficient, we assumed a dominated strategy with \leq 0.75 deaths averted per 1,000 of the efficient frontier is near efficient.

Second, to address colonoscopy quality, which varies across endoscopists,^{83,96-101} we performed a sensitivity analysis on the sensitivity of colonoscopy for detecting adenomas by size. Values for colonoscopy sensitivity (**Table 7**) were based on a 2019 systematic review and meta-analysis of tandem colonoscopy studies by Zhao et al.¹⁰²

To keep the number of model simulations at a manageable number, in consultation with USPSTF members, subgroup analyses by sex and race and sensitivity analyses of colonoscopy sensitivity were limited to 1 risk scenario (IRR=1.19) and 2 screening modalities (colonoscopy and FIT). Even so, these additional analyses required 355 additional simulations for each model.

Note that, while not technically a sensitivity or scenario analysis, we also provide plausible ways to consider different types of non-adherence with the screening process; these comparisons are presented in the Discussion (see "**Potential Implications of Adherence**"). For example, outcomes accounting for non-adherence with screening initiation can be calculated by a weighted average of outcomes with a given screening strategy and with no screening. The impact of delayed screening initiation can be estimated by comparing output across strategies with different ages to begin screening. Similarly, the impact of non-adherence with repeat screening can be estimated by comparison of strategies with different screening intervals.

[§] The number of quality-adjusted life-years gained with a given strategy was calculated as the difference in modelpredicted quality-adjusted life expectancy between the strategy of interest and the no screening strategy.

^{**} The number of colorectal cancer deaths averted with a given strategy was calculated as the difference in the model-predicted number of colorectal cancer deaths with the no screening strategy and the strategy of interest.

Chapter 3. Results

Benefits, Burden, and Harms of Screening

As noted in the Methods, primary analyses are based on models calibrated to reflect the increasing population risk of colorectal cancer (see **Appendix 1** for details). Screening strategies are referred to by *modality age to begin-age to end, interval*. For example, annual FIT from ages 55 to 70 is FIT 55-70, 1. The strategy combining SIG every 10 years with annual fecal immunochemical testing from ages 50 to 80 is SIG+FIT 50-80, 10_1.

Findings in the Absence of Screening

In the absence of screening, the models simulated identical life expectancy among 40-year-olds with no prior diagnosis of colorectal cancer: 40.2 years. Models estimated that out of 1000 40-years-olds, 77 to 85 would be diagnosed with colorectal cancer in their lifetimes and 32 to 34 would die from the disease (**Figure 11**).

General Findings in the Presence of Screening

Outcomes for HSgFOBT strategies, once-only colonoscopy strategies, and once-only SIG strategies are presented in **Appendix 4**, **Appendix 5**, and **Appendix 6**, respectively; findings of these strategies are not discussed.

Outcomes with each screening strategy are shown in **Appendix 7**. Although the *absolute* estimates of the benefits, burden and harms of screening differed across models, *relative* predictions and rankings of screening strategies within each screening modality were consistent across models. Compared to no screening, all colorectal cancer screening strategies yielded substantial increases in life expectancy and substantial reductions in the lifetime number of colorectal cancer cases and deaths. LYG from screening ranged from 171 to 381 per 1000 40-year-olds (63 to 139 days of life gained per person); within each model, LYG were lowest with FIT 55-70, 3 and highest with COL 45-85, 5.

With screening, the lifetime number of colorectal cancer cases diagnosed ranged from 9 to 65 per 1000 40-year-olds, and the lifetime number of colorectal cancer deaths ranged from 2 to 20 per 1000, depending upon the screening strategy and model. Within each model, the numbers of cases diagnosed and colorectal cancer deaths were generally lowest with COL 45-85, 5 and highest with FIT 55-70, 3. The benefits of screening were generally highest with SimCRC and lowest with MISCAN, with results from CRC-SPIN falling in between.

The required number of lifetime colonoscopies – the primary measure of the burden of screening – ranged from 624 to 6817 per 1000 40-year-olds (<1 to nearly 7 per person) and were lowest with FIT 55-70, 3 and highest with COL 45-85, 5 across models. Harms from screening – the number of colonoscopy complications – ranged from 5 to 22 per 1000 40-year-olds and the strategies with the fewest and most complications were generally the same as the strategies with the lowest and highest number of colonoscopies (**Appendix 7**). Fatal complications were rare,

ranging from 4.2 to 23.1 per million 40-year-olds; the years of life lost from these deaths were accounted for in the estimation of the LYG from screening. The strategies with the lowest and highest number of total complications and of fatal complications generally tracked with the strategies with the lowest and highest number of lifetime colonoscopies.

Efficient Strategies Within Each Class of Screening Modality

Efficiency ratios for the screening strategies highlighted by the USPSTF in 2016 are in **Table 9**. As a reminder, a strategy is efficient if no other strategy or combination of strategies within the class of screening modality provides more life-years with the same (or fewer) number of colonoscopies. Efficiency ratios are calculated within a class of screening modality and can be interpreted as the number of additional colonoscopies required to achieve an additional LYG.

Colonoscopy

Of the 26 unique colonoscopy strategies, 11 were efficient or near efficient with SimCRC, 12 with CRC-SPIN, and 17 with MISCAN (**Appendix Table 8.1**). Eleven strategies were efficient or near efficient with all 3 models; 9 of the 11 were strategies with screening beginning at age 45. The MISCAN model predicted that several strategies with screening starting at age 50 or age 55 would also be efficient or near-efficient options (**Figure 12**). No single age to end screening or screening interval was predominant among the on the efficient strategies. Among strategies that were efficient or near efficient in all 3 models, strategies with screening ending at age 80 or 85 had efficiency ratios of \geq 169 additional colonoscopies per LYG, and strategies with a 5-year interval had efficiency ratios ranging from 84 to >2000 (**Appendix Table 8.1**). Across the 3 models, LYG per 1000 were lowest for COL 55-70, 15 (250 to 285 across models) and highest for COL 45-85, 5 (323 to 381 across models, **Figure 12**); the number of complications for these strategies ranged from 13 to 14 per 1000 and from 20 to 22 per 1000, respectively (**Appendix Table 7.1**).

Stool Tests (FIT and sDNA-FIT)

Seventy-two strategies used stool testing (FIT or sDNA-FIT) alone. Of these, 21 were efficient or near efficient with SimCRC, 21 with CRC-SPIN, and 32 with MISCAN; 16 strategies were efficient or near efficient with all 3 models (**Appendix Table 8.2**). Efficient and near-efficient strategies in all 3 models were primarily those with screening beginning at age 45 (14 of 16 strategies) The MISCAN model again included several (17 out of 32) strategies with screening starting at age 50 or age 55 as efficient or near-efficient options (**Figure 13**).

In all 3 models, efficient and near-efficient stool testing strategies were primarily those with FIT as the stool test (**Figure 13**) (14 of 21 with SimCRC, 13 of 21 with CRC-SPIN; 27 of 32 with MISCAN); efficiency ratios were \leq 43 additional colonoscopies per LYG across models for the efficient and near-efficient FIT strategies in all 3 models (**Appendix Table 8.2**). Annual and biennial sDNA-FIT strategies (with screening starting at age 45) were also efficient or near efficient in all 3 models with efficiency ratios ranging from 26 to 375 additional colonoscopies per LYG. sDNA-FIT strategies with a 3-year interval were not efficient or near efficient in any model.

Efficiency ratios for the subset of efficient and near-efficient FIT strategies in all 3 models with screening ending at age 85 ranged from 12 to 43 additional colonoscopies per LYG (**Appendix Table 8.2**). Across models, FIT 55-70, 3 yielded the fewest LYG (171 to 203 per 1000), and sDNA-FIT 45-85, 1 provided the most LYG (313 to 368 per 1000, **Figure 13**). The number of complications for these strategies ranged from 5 to 7 per 1000 for FIT 55-70, 3 and from 14 to 16 per 1000 for sDNA-FIT 45-85, 1 (**Appendix Tables 7.2 and 7.3**).

Findings for stool-based screening modalities including HSgFOBT are in Appendix 4.

SIG

Of the 20 unique SIG strategies, 7 were efficient or near efficient with SimCRC, 8 with CRC-SPIN, and 15 with MISCAN (**Appendix Table 8.3**). Seven strategies were efficient or near efficient with all 3 models, and in all but 1 strategy screening begins at age 45. With MISCAN, strategies with screening starting at age 50 were also efficient or near efficient (**Figure 14**). All 4 ages to end screening and both screening intervals were included among the strategies that were efficient or near efficient across all 3 models; efficiency ratios with screening to age 85 ranged from 78 to 98 additional colonoscopies per LYG and efficiency ratios for strategies with a 5-year screening interval ranged from 11 to 98 additional colonoscopies per LYG (**Appendix Table 8.3**). Across models, LYG were lowest for SIG 55-70, 10 (range 204 to 210 per 1000) and highest with SIG 45-85, 5 (272 to 312 per 1000, **Figure 14**); the number of complications for these 2 strategies ranged from 7 to 10 per 1000 and from 12 to 13 per 1000, respectively (**Appendix Table 7.4**).

SIG+FIT

Of the 24 SIG+FIT strategies evaluated, the number that were efficient or near efficient was 10, 10, and 20 for the SimCRC, CRC-SPIN, and MISCAN models, respectively (**Appendix Table 8.4**). Ten strategies were efficient or near efficient with all 3 models, and strategies with screening beginning at age 45 were predominant among them (8 of 10 strategies). As with other modalities, with MISCAN, strategies with screening starting at age 50 or 55 were also among those that were efficient or near efficient (**Figure 15**, **Appendix Table 8.4**). Among strategies that were efficient or near efficient in all 3 models, no single age to end screening or interval for FIT was predominant. Across the 3 models, SIG+FIT 55-70, 10_2 provided the fewest LYG (241 to 266 per 1000) and SIG+FIT 45-85, 10_1 provided the most (309 to 367 per 1000, **Figure 15**); the number of complications for these strategies ranged from 8 to 11 per 1000 and from 14 to 16 per 1000, respectively (**Appendix Table 7.5**).^{††}

^{††} As a reminder, the intervals noted in the reference to the SIG+FIT strategies, 10_1 and 10_2, refer to the interval for SIG (10 years) and for FIT (either 1 or 2 years).

СТС

Findings with CTC were similar to those with SIG: of the 20 unique CTC strategies, 7 were efficient or near efficient with SimCRC, 8 with CRC-SPIN, and 14 with MISCAN (Appendix **Table 8.5**). Five strategies were efficient or near efficient with all 3 models, and all but 1 had screening beginning at age 45. The MISCAN model predicted that strategies with screening beginning at age 50 and 55 would also be efficient or near efficient (**Figure 16**). Among strategies that were efficient or near efficient in all 3 models, no 1 age to end screening emerged as efficient, but efficient strategies were generally those with a 5-year interval. Across models, CTC 55-70, 10 yielded the fewest LYG (181 to 245 per 1000) and CTC 45-85, 5 provided the most (290 to 359 per 1000, **Figure 16**); the number of complications for these strategies ranged from 7 to 9 per 1000 and from 12 to 15 per 1000, respectively (**Appendix Table 7.6**).

Strategies With Once-Only Colonoscopy, Followed by Annual FIT

Of the 8 strategies with once-only colonoscopy followed by annual FIT 10 years later (for those with no findings at colonoscopy), 5 were efficient or near efficient with SimCRC and CRC-SPIN and all 8 were efficient or near efficient with MISCAN (**Appendix Table 8.6**). Strategies with once-only colonoscopy at age 45 comprised 4 of the 5 strategies that were efficient or near efficient in all 3 models with efficiency ratios ranging from 6 to 46 additional colonoscopies per LYG; no single age to end annual FIT screening was predominant (**Figure 17**). In all 3 models, once-only colonoscopy at age 50 followed by FIT 60-70, 1 provided the fewest LYG (259 to 316 per 1000) and once-only colonoscopy at age 45 followed by FIT 55-85, 1 provided the most (301 to 364 per 1000, **Figure 17**); the number of complications for these strategies ranged from 9 to 12 per 1000 and from 12 to 15 per 1000, respectively (**Appendix Table 7.7**).

Strategies With 5 Years of Annual FIT, Followed by Colonoscopy Every 10 Years

In all 3 models, 3 of the 4 strategies that simulated annual FIT followed by colonoscopy were efficient (efficiency ratios of 8 to 216 additional colonoscopies per LYG depending on the end age for colonoscopy) (**Appendix Table 8.7**). LYG ranged from 288 to 331 for FIT 50-54, 1; COL 55-75, 10 to 305 to 365 with FIT 45-49, 1; COL 50-80, 10 (**Figure 18**); the number of complications for these strategies ranged from 15 to 16 per 1000 and from 16 to 18 per 1000, respectively (**Appendix Table 7.8**).

Findings by Sex and Race

Analyses by sex and race were performed only for colonoscopy modalities alone and FIT modalities alone. In the absence of screening, the model-predicted life expectancy was approximately 2 to 3 years lower for black males and black females, respectively, compared to their white counterparts: 35.2 years for black males vs. 38.4 years for white males, and 40.1 years for black females vs. 42.2 years for white females.

Due to the lower life expectancy, the models estimated that the risk of being diagnosed with colorectal cancer over the course of a lifetime is lower among black males and females, compared to their white counterparts; for example, the models estimate that 68 to 78 per 1000 black males will be diagnosed with colorectal cancer over their lifetimes, compared with 80 to 92 per 1000 white males (**Table 10**). Days of life gained per person from screening follow a similar pattern. The lifetime risk of dying from colorectal cancer was lower for black males compared with white males (31 to 35 per 1000 vs. 33 to 37 per 1000, respectively), but not for black vs. white females (31 to 33 per 1000 vs. 30 to 32 per 1000, respectively).

Efficient and near-efficient strategies for the total population and for subgroups defined by sex and race are also shown in **Table 10** for colonoscopy and in **Table 11** for FIT (efficient and nearefficient strategies by model and their efficiency ratios are showing in **Appendix 9**); strategies that were dominated in all groups are not shown. Efficient and near-efficient strategies by sex and race were generally the same as those for the population as a whole, and efficiency ratios were similar (**Appendix Tables 9.1 and 9.2**). Efficiency ratios for black subgroups were generally slightly lower (i.e., slightly more favorable) than those for white subgroups by sex, and in 2 models, SimCRC and MISCAN, efficiency ratios were generally more favorable for men than for women by race. Results for colonoscopy are described below, followed by those for FIT.

For colonoscopy screening, the SimCRC and CRC-SPIN models found that for each of the 4 sexrace subgroups, the efficient and near-efficient strategies were the same as those for the population as a whole (**Appendix Tables 9.1a and 9.1b**). With MISCAN, differences in conclusions about efficiency only occurred for COL 55-85, 15, which was near efficient among black males and dominated in all other groups, including the total population (**Appendix Table 9.1c**). With SimCRC and MISCAN, efficiency ratios for a given colonoscopy strategy were generally lower (i.e., more favorable) for males than for females, while the opposite was true with CRC-SPIN. Across all 3 models, efficiency ratios were slightly more favorable for a given colonoscopy strategy for black subgroups vs. white subgroups by sex. For example, the efficiency ratio for COL 45-75, 10 was 52 vs. 56 additional colonoscopies per LYG for black vs. white males and 66 vs. 76 for black vs. white females (reported ratios are from SimCRC, **Appendix Table 9.1a**).

For FIT screening, efficient and near-efficient strategies with SimCRC were the same as those for the population as a whole (**Appendix Table 9.2a**). With CRC-SPIN and MISCAN, differences in efficiency across populations occurred almost exclusively in strategies with biennial and triennial screening (**Appendix Tables 9.2b and 9.2c**). With CRC-SPIN, strategies that were dominated among the total population and among white and black males were near efficient among white and black females. No clear patterns were observed for changes in efficiency across subgroups with MISCAN. As with colonoscopy screening strategies, efficiency ratios for a given FIT strategy were generally the same as or lower (more favorable) for males than for females in SimCRC and MISCAN, while the opposite was true with CRC-SPIN. Across all 3 models, efficiency ratios for a given FIT strategy were generally equal to or slightly lower (more favorable) for black subgroups vs. white subgroups by sex. For example, the efficiency ratio for FIT 45-80, 1 was 28 vs. 32 additional colonoscopies per LYG for black vs. white males and 21 vs. 23 for black vs. white females (reported ratios are from CRC-SPIN, **Appendix Tables 9.2b**).

Sensitivity Analyses

Measure of the Benefit of Screening

QALYG

QALYG from screening ranged from 144 to 358 per 1000 40-year-olds, which is lower than the range for LYG (171 to 381 per 1000, **Appendix Tables 7.1-7.8**). In general, we found a larger impact of quality-adjustment of LYG for strategies and models that had more colorectal cancer cases (i.e., stool-based strategies, compared with direct-visualization tests (colonoscopy, CTC, and sigmoidoscopy), and MISCAN, compared with SimCRC and CRC-SPIN), due to the relatively large decrement in quality of life associated with colorectal cancer (Appendix Table 3.4 vs. Appendix Tables 3.2 and 3.3).

Efficient and near-efficient strategies within each class of screening modality with QALYG as the measure of benefit were nearly identical to those with LYG (**Appendix Tables 10.1-10.7**; **Appendix Figures 10.1-10.7**). QALYG with a given screening strategy were lower than the LYG, shifting the efficient frontier down. For each class of screening modality, efficient and near-efficient screening strategies continued to be primarily those with screening starting at age 45; MISCAN continued to find additional strategies with screening starting at age 50 or 55 to be efficient. Across classes of screening modalities and models, efficiency ratios were generally the same or higher (i.e., less favorable) with QALYG vs. LYG as the measure of screening benefit, though the differences in efficiency ratios were small for most strategies (**Appendix Tables 10.1-10.7**). For example, with SIG 45-75, 5 efficiency ratios with LYG and QALYG were 20 and 23 with SimCRC, 27 and 31 with CRC-SPIN, and 19 and 23 with MISCAN (**Appendix Table 10.3**).

Colorectal Cancer Deaths Averted

The number of colorectal cancer deaths averted ranged from 15 to 32 per 1000 (**Appendix Tables 7.1-7.8**). Within each class of screening modality, the ranking of strategies by the number of colorectal cancer deaths averted differed from the ranking by the number of LYG. As a result, the strategies deemed efficient or near efficient changed when the number of colorectal cancer deaths averted was used as the measure of the benefit of screening, instead of LYG (Appendix **Tables 11.1-11.7**; **Figures 19-25**). Efficient and near-efficient strategies included those with all 3 ages to begin screening, all 4 ages to end screening, and all simulated screening intervals. Incremental numbers of colonoscopies required to prevent an additional colorectal cancer death are presented in **Appendix Tables 11.8-11.14**.

Colonoscopy Strategies

The colonoscopy screening strategy with the fewest colorectal cancer deaths averted varied across models (**Figure 19**): COL 55-70, 10 with SimCRC (27 colorectal cancer deaths averted per 1000 40-year-olds); COL 55-70, 15 with CRC-SPIN (24 colorectal cancer deaths averted per 1000); and COL 45-70, 15 with MISCAN (22 colorectal cancer deaths averted per 1000). The number of colorectal cancer deaths averted was highest with COL 45-85, 5 with all 3 models (28 to 32 to per 1000, **Appendix Table 7.1**). The number of efficient or near-efficient colonoscopy

screening strategies was 16 with SimCRC, 15 with CRC-SPIN, and 23 with MISCAN; 13 strategies were efficient or near efficient in all 3 models (**Appendix Table 11.8**). Compared to COL 55-70, 15, COL 50-70, 10 required 380 to 712 additional colonoscopies per colorectal cancer death averted. This number increased to over 3000 colonoscopies per colorectal cancer death averted for COL 45-85, 5 vs. COL 45-80, 5.

Stool Tests

With SimCRC and CRC-SPIN, FIT 55-70, 3 prevented the fewest colorectal cancer deaths (15 to 17 per 1000), while with MISCAN FIT 50-70, 3 prevented the fewest (15 per 1000) (**Figure 20**). In all 3 models, sDNA-FIT 45-85, 1 prevented the most colorectal cancer deaths (27 to 31 per 1000). The number of efficient and near-efficient stool test strategies was 24 with SimCRC, 40 with CRC-SPIN, and 23 with MISCAN; 18 strategies were efficient or near efficient in all 3 models. For these strategies, the number of additional colonoscopies per colorectal cancer death averted were 35 to 54 with FIT 55-75, 3; 317 to 531 with FIT 50-80, 1; and 783 to over 1200 with sDNA-FIT 45-85, 1 (**Appendix Table 11.9**). Efficient or near-efficient strategies in all 3 models included all ages to begin and end screening and screening intervals, but were primarily those with FIT, as opposed to sDNA-FIT. sDNA-FIT strategies with a 3-year interval were not efficient or near efficient in 2 of the models and were near efficient with MISCAN (>300 additional colonoscopies per colorectal cancer death averted).

Other Modalities

For all but 1 other screening modality, the strategies yielding the fewest and most colorectal cancer deaths averted did not vary across models. For SIG and CTC, screening from ages 55 to 70 every 10 years (SIG or CTC 55-70, 10) yielded the fewest colorectal cancer deaths averted (18 to 19 per 1000 with SIG (Figure 21); 16 to 22 with CTC (Figure 23)), and screening from ages 45 to 85 every 5 years (45-85, 5) yielded the most colorectal cancer deaths averted (23 to 27 with SIG; 25 to 31 with CTC). For SIG+FIT, screening from ages 55 to 70 with SIG every 10 years and biennial FIT (SIG+FIT 55-70, 10_2) yielded the fewest colorectal cancer deaths averted (22 to 24 per 1000 (Figure 22)) and screening from ages 45 to 85 with SIG every 10 years and annual FIT (SIG+FIT 45-85, 10_1) yielded the most (27 to 31 per 1000). For strategies with once-only colonoscopy followed 10 years later by annual FIT, the number of colorectal cancer deaths averted was lowest with colonoscopy at age 50 followed by annual FIT from ages 60 to 70 (22 to 26 per 1000) and highest with colonoscopy at age 45 followed by annual FIT from ages 55 to 85 (26 to 31 per 1000 (Figure 24)). Finally, for strategies with 5 years of annual FIT followed by 10-yearly colonoscopy (Figure 25), the number of colorectal cancer deaths averted was lowest with SimCRC and CRC-SPIN with annual FIT from 50 to 54, followed by colonoscopy every 10 years from ages 55 to 75 (26 to 30 deaths averted per 1000) and with MISCAN the number was lowest with annual FIT from 45 to 49, followed by colonoscopy every 10 years from ages 50 to 70 (26 deaths averted per 1000). For all models the number of colorectal cancer deaths averted was highest with annual FIT from 45 to 49, followed by colonoscopy every 10 years from ages 50 to 80 (26 to 31 per 1000).

Efficient or near-efficient SIG (**Appendix Table 11.10**) and CTC (**Appendix Table 11.12**) strategies with all 3 models included all 3 ages to begin screening, all 4 ages to end screening, and both screening intervals. With SIG+FIT, no ages to begin or end screening or FIT interval

were predominant among the efficient and near-efficient strategies in all 3 models (**Appendix Table 11.11**). All but 1 of the 6 once-only colonoscopy strategies followed by annual FIT 10years later that were efficient or near efficient in all 3 models had screening begin at age 50 (**Appendix Table 11.13**). Finally, only 3 strategies with 5 years of annual FIT followed by colonoscopy every 10 years were efficient across all 3 models, and the ages to begin and end screening differed across them (**Appendix Table 11.14**).

Population-Level Risk (IRR)

Adenoma prevalence and colorectal cancer incidence when models were calibrated to achieve an IRR of 1.52 are presented in **Appendix 12**. Adenoma prevalence and colorectal cancer incidence were fairly similar with SimCRC and MISCAN: prevalence increased to a maximum of 63% to 65% by approximately age 85 (**Appendix Figure 12.6**) and the lifetime incidence of colorectal cancer was 103 to 105 cases per 1000 (**Appendix Figure 12.9**). With CRC-SPIN smaller changes in adenoma onset were needed to achieve an IRR of 1.52; adenoma prevalence was at most 47% by age 79, and lifetime incidence of colorectal cancer was 91 cases per 1000. For all models, predicted adenoma prevalence was still within the range observed in autopsy studies.

Within each class of screening modality, the efficient and near-efficient strategies, based on lifeyears gained, were nearly identical across the 3 scenarios for colorectal cancer risk (Appendix Tables 12.1-12.7, Figures 26-32). Across all models, efficient strategies were generally those with screening beginning at age 45. Efficiency ratios generally decreased (i.e., became more favorable) as risk increased. Changes for specific classes of modalities are highlighted below.

Colonoscopy

With SimCRC and CRC-SPIN the efficient and near-efficient colonoscopy screening strategies did not change across scenarios of population colorectal cancer risk (**Appendix Tables 12.1a**, **12.1b**; **Figures 26a**, **26b**). With MISCAN, COL 50-75, 5 was not efficient or near efficient at the highest assumed increase in population risk (IRR = 1.52); it was dominated by COL 45-70, 5 but was near efficient at lower risk (**Appendix Table 12.1c**; **Figure 26c**). As noted above, efficiency ratios generally fell (i.e., became more favorable) as risk increased. For example, the efficiency ratio for COL 45-70, 10 fell from 39 to 58 across models with IRR = 1, to 34 to 45 across models with IRR = 1.19, and to 29 to 40 across models with IRR = 1.52, respectively.

Stool Tests

With all models, efficient and near-efficient stool strategies changed across scenarios of population colorectal cancer risk. For SimCRC, FIT 50-75, 3 was only efficient or near efficient at IRR = 1, and sDNA-FIT 45-70, 1 was not efficient or near efficient at IRR = 1.52 (Appendix Table 12.2a; Figure 27a). For CRC-SPIN, 4 strategies (FIT 55-75, 3; FIT 55-70, 2; FIT 50-75, 3; and FIT 50-70, 2) were only efficient or near efficient at IRR = 1 (no increase in risk from 1975-1979 levels) (Appendix Table 12.2b; Figure 27b). For MISCAN, 3 FIT strategies that were efficient or near efficient at IRR = 1 were not near efficient or near efficient at higher levels of colorectal cancer risk and an additional 5 strategies were efficient or near-efficient at only the two lower levels of risk (IRR = 1 and IRR = 1.19), including the 2016 USPSTF-highlighted FIT strategy (FIT 50-75, 1) (Appendix Table 12.2c; Figure 27c). The efficiency ratio for FIT 45-75,

1, for example, fell (i.e., became more favorable) as risk increased: the range across models was 16 to 18 with IRR = 1, 15 to 16 with IRR = 1.19, and 13 to 15 with IRR = 1.52.

SIG

With CRC-SPIN, efficient and near-efficient SIG strategies did not change across scenarios of population colorectal cancer risk (**Appendix Table 12.3b**; **Figure 28b**). With SimCRC, SIG 45-85, 10 was only efficient or near efficient at IRR = 1 (**Appendix Table 12.3a**; **Figure 28a**). Similarly, with MISCAN, SIG 55-75, 10 and SIG 55-75, 5 were only efficient or near efficient at IRR = 1 (**Appendix Table 12.3c**; **Figure 28c**), and SIG 45-85, 10 was only efficient or near efficient with IRR = 1 and IRR = 1.19 but not IRR = 1.52. The efficiency ratio for SIG 45-75, 5, for example, fell (i.e., became more favorable) as risk increased: the range across models was 22 to 29 with IRR = 1, 19 to 27 with IRR = 1.19, and 16 to 24 with IRR = 1.52.

SIG+FIT

With SimCRC and CRC-SPIN, efficient and near-efficient SIG+FIT strategies did not change across scenarios of population colorectal cancer risk (**Appendix Tables 12.4a, 12.4b**; **Figures 29a, 29b**). With MISCAN, 2 strategies (SIG+FIT 55-75, 10_2 and SIG+FIT 55-80, 10_2) were not efficient or near efficient at IRR = 1.52 (**Appendix Table 12.4c**; **Figure 29c**).

CTC

As with SIG strategies, efficient and near-efficient CTC strategies with CRC-SPIN did not change across scenarios of population colorectal cancer risk (**Appendix Table 12.5b**; **Figure 30b**). With SimCRC, CTC 45-85, 10 was only efficient or near efficient at IRR = 1 (**Appendix Table 12.5a**; **Figure 30a**). With MISCAN, both CTC 55-75, 10 and CTC 45-75, 10 were only efficient or near efficient at IRR = 1 (**Appendix Table 12.5c**; **Figure 30c**), and CTC 55-80, 5 was not efficient or near efficient at IRR = 1.52. The efficiency ratio for CTC 45-75, 5, for example, became more favorable as risk increased; the range across models was 12 to 22 with IRR = 1, 11 to 21 with IRR = 1.19, and 8 to 19 with IRR = 1.52.

Once-Only Colonoscopy, Followed by Annual FIT

With all 3 models, efficient and near-efficient strategies with once-only colonoscopy followed by annual FIT changed across scenarios of population colorectal cancer risk (**Appendix Table 12.6**; **Figure 31**). With SimCRC and CRC-SPIN, the strategy of once-only colonoscopy at age 50 with FIT 60-75, 1 was only efficient at IRR = 1 (**Appendix Tables 12.6a, 12.6b**; **Figures 31a, 31b**). With MISCAN, COL at 45 followed by annual FIT from aged 55 to 70 was not efficient at IRR = 1.52 (**Appendix Table 12.6c**).

Strategies With 5 Years of Annual FIT, Followed by Colonoscopy Every 10 Years

With SimCRC and CRC-SPIN, efficient and near-efficient strategies with 5 years of annual FIT, followed by colonoscopy every 10 years did not change across scenarios of population colorectal cancer risk (**Appendix Tables 12.7a**, **12.7b**; **Figures 32a**, **32b**). With MISCAN, annual FIT from ages 50 through 54, followed by COL 55-85, 10 was only efficient or near efficient at IRR = 1.52 (**Appendix Table 12.7c; Figure 32c**).

Colonoscopy Sensitivity

Sensitivity analyses on colonoscopy sensitivity were performed only for colonoscopy modalities alone and FIT modalities alone. For colonoscopy strategies (**Appendix Table 13.1**), efficient and near-efficient strategies were unchanged across all models when alternative (lower) values for the sensitivity of colonoscopy (**Table 7**) were used. For efficient and near-efficient colonoscopy strategies with a 10- or 15-year screening interval, changes in efficiency ratios were small. For FIT (**Appendix Table 13.2**), efficient and near-efficient strategies were nearly identical with use of the alternative values for colonoscopy sensitivity; the exception was that with CRC-SPIN 1 additional strategy (FIT 55-75, 3) was included as near efficient (**Appendix Table 13.2**). All changes in efficiency ratios were small. Efficiency ratios generally decreased from the base-case estimates.

Chapter 4. Discussion

The goal of this decision analysis was to estimate how the benefits, burden, and harms of screening average risk, asymptomatic adults for colorectal cancer vary by class of screening modality, screening interval, age to begin screening, and age to end screening. The decision analysis examined a large number of screening strategies, with 8 screening modalities, 3 ages to begin screening, 4 ages to end screening, and multiple screening intervals. Analyses were also carried out under 3 assumptions about population risk of colorectal cancer, and they examined the sensitivity of results to reductions in the sensitivity of colonoscopy and the potential for targeted screening strategies based on sex and race.

Our analysis is not intended for individual-level decision-making, which would consider information about personal risk and patient preferences that would likely affect screening behavior. Previous model-based analyses have evaluated screening strategies tailored to individuals at increased risk due to family history,¹⁰³ genetics,¹⁰⁴ and other reasons,¹⁰⁵ comorbidity status,¹⁰⁶ and screening history.¹⁰⁷

Summary of Findings

Compared to no screening, all of the colorectal cancer screening strategies evaluated by the models yielded substantial increases in both life expectancy (171 to 381 LYG per 1000 40-yearolds) and quality-adjusted life expectancy (144 to 358 QALYG per 1000) and substantial reductions in the lifetime number of colorectal cancer cases (16 to 74 cases averted per 1000) and deaths (15 to 32 deaths averted per 1000).^{‡‡} In consultation with USPSTF members, our report focuses on LYG as the primary measure of the benefit of screening, although numbers of other events are also provided. Across screening strategies LYG from screening were lowest with FIT 55-70, 3 and highest with COL 45-85, 5. The total number of colonoscopies needed to achieve these benefits was generally lowest for FIT and highest for colonoscopy, and strategies with fewer colonoscopies also resulted in fewer harms from screening. Although non-colonoscopies for diagnostic follow-up of positive tests, for surveillance, and for detection of colorectal cancer by symptoms. The number of such colonoscopies varied by modality and ranged from 0.6 to 2.0 per person with FIT, 1.1 to 2.9 per person with sDNA-FIT, 0.9 to 2.2 per person with SIG, and 0.9 to 1.9 per person with CTC.

Efficient screening strategies within a class of screening modality are those that best balance the benefits and burdens of screening, with burdens measured in terms of the number of colonoscopies. Our decision analysis focused on describing screening strategies that were efficient or near efficient based on LYG, and not on identifying a best set of strategies. Efficiency ratios were only used to compare strategies within a class of screening modality. Many screening strategies were efficient or near efficient or near efficient, and not on identifying a best set of screening modality.

^{‡‡} Ranges exclude HSgFOBT, once-only colonoscopy, and once-only sigmoidoscopy; outcomes for these strategies are presented in **Appendix 4**, **Appendix 5**, and **Appendix 6**, respectively.

and with some exceptions, results were similar across models. Across three scenarios for increasing population risk of colorectal cancer, most of the strategies that were efficient or near efficient across all 3 models specified screening beginning at age 45.

Table 12 summarizes the strategies that were efficient or near efficient across all 3 models with LYG as the measure of the benefit of screening and IRR of 1.19. [Efficient and near-efficient strategies with QALYG as the measure of benefit were nearly identical to those identified based on LYG, and findings were generally robust across the 3 scenarios of population risk of colorectal cancer.] **Table 12** also includes the strategies highlighted by the USPSTF in 2016, for comparison. Summarizing across the 57 efficient and near-efficient strategies is challenging, but we offer some observations below.

The numbers of colonoscopies and colonoscopy complications were highest with colonoscopy screening alone (as many as 6.5 to 6.8 lifetime colonoscopies per person), followed by the hybrid strategies that begin with 5 years of annual FIT before changing to colonoscopy every 10 years (as many as 3.8 to 4.0 lifetime colonoscopies per person). They were generally lowest with FIT (at most 1.8 to 2.0 colonoscopies per person), followed by CTC and SIG (at most 1.8 to 1.9 and 1.8 to 2.2 lifetime colonoscopies per person, respectively). Among the stool-based options, the number of colonoscopies was higher with sDNA-FIT compared with FIT alone (at most 2.7 to 2.9 vs. 1.8 to 2.0 colonoscopies per person). The risk of serious complications was generally low (at most 22 per 1000 with COL 45-85, 5). Even the most intensive SIG-alone strategy (SIG 45-85, 5) generally had lower LYG and more colorectal cancer deaths than efficient and near-efficient strategies with other classes of modalities. LYG and colorectal cancer deaths with SIG 45-85, 5 were comparable to those with biennial FIT from age 45 to age 75, 80, or 85.

With the exception of colonoscopy strategies with a 5-year screening interval, for each colonoscopy screening strategy that was efficient or near efficient in all 3 models there is generally a strategy from each class of modality (potentially with the exception of SIG alone) that yields similar LYG, colorectal cancer deaths, and/or number of complications. For example, strategies that yield similar LYG and colorectal cancer deaths per 1000 as COL 45-70, 10 (292 to 361 LYG; 4-10 colorectal cancer deaths) include:

- FIT 45-75, 1 (291 to 348 LYG; 6-10 colorectal cancer deaths);
- FIT 45-80, 1 (300 to 355 LYG; 5-9 colorectal cancer deaths);
- SIG+FIT 45-75, 10_2 (294 to 354 LYG; 5 to 9 colorectal cancer deaths);
- SIG+FIT 45-80, 10_2 (296 to 357 LYG; 4 to 9 colorectal cancer deaths);
- SIG+FIT 45-85, 10_2 (298 to 358 LYG; 4 to 8 colorectal cancer deaths);
- SIG+FIT 45-75, 10_1 (304 to 363 LYG; 4 to 9 colorectal cancer deaths);
- CTC 45-80, 5 (288 to 358 LYG; 4 to 9 colorectal cancer deaths);
- CTC 45-85, 5 (290 to 359 LYG; 4 to 9 colorectal cancer deaths);
- Once-only colonoscopy at age 45, followed by FIT 55-80, 1 (297 to 362 LYG; 4 to 9 colorectal cancer deaths);
- Once-only colonoscopy at age 45, followed by FIT 55-85, 1 (301 to 364 LYG; 4 to 9 colorectal cancer deaths);
- FIT 50-54, 1 then COL 55-75, 10 (288-331 LYG; 5 to 9 colorectal cancer deaths); and
- FIT 45-49, 1 then COL 50-70, 10 (300-361 LYG; 4 to 9 colorectal cancer deaths).

A similar exercise can be undertaken for other strategies that are of particular interest.

Finally, the majority of efficient or near-efficient strategies in all 3 models were those with screening starting at age 45 (47/57). With the exception of the efficient FIT strategies, the efficiency ratio generally increased sharply among strategies in which screening continues beyond age 75 (assuming full adherence with prior screening), indicating an increasing number of colonoscopies is needed for a limited increase in LYG. For colonoscopy, there is a sharp increase in efficiency ratio almost quadruples for strategies involving sDNA-FIT. An alternative way to present the results is in terms of the additional days of life gained per additional colonoscopy performed. Compared to the next-best option, 8 to 11 additional days of life are gained per additional colonoscopy performed with COL 45-75, 10. The number of additional days gained per additional colonoscopy approaches 0 with COL 45-85, 10, or when the colonoscopy screening interval is every 5 years.

We included 2 types of "hybrid" screening strategies that involve initiating screening with one modality, then changing to another. In one strategy, screening is initiated with FIT, then changed to colonoscopy; in the other screening is initiated with colonoscopy, then changed to FIT. We found that both hybrid approaches were likely to reduce the burden of colorectal cancer and provide outcomes similar to their non-hybrid counterparts. For example, screening from ages 45 to 49 with annual FIT before changing to colonoscopy screening every 10 years from ages 50 to 70 yielded very similar outcomes as starting at age 45 with 10-yearly colonoscopy (i.e., COL 45-75, 10) (Table 12): 14 to 36 vs. 12 to 34 diagnosed cases of colorectal cancer; 4 to 9 vs. 3 to 8 colorectal cancer deaths; and 300 to 361 vs. 301-369 LYG (all outcomes are per 1000 40-yearolds). Undergoing a once-only screening colonoscopy at age 45, then screening with annual FIT from ages 55 to 75 results in slightly fewer colorectal cancer cases and deaths than starting annual FIT at age 45 (i.e., FIT 45-75, 1): 117 to 44 vs. 20 to 46 diagnosed colorectal cancer cases per 1000 and 5 to 11 vs. 6 to 10 colorectal cancer deaths per 1000; LYG from screening largely overlapped (288 to 357 with the hybrid strategy vs. 291 to 348 per 1000 with FIT 45-75, 1). These findings support the idea that among effective screening modalities, the specific modality (or modalities) used is less important than participation in screening.

Sensitivity analyses that examined differential screening benefit for colonoscopy and FIT modalities by population subgroups indicated that there was little advantage to customizing screening by sex and race; the numbers of colonoscopies, colorectal cancer cases and deaths, and life-years gained were similar across sex-race groups (**Tables 10-11**). Similarly, efficient and near-efficient strategies identified for each sex-race group were generally the same as those for the population as a whole, and efficiency ratios were similar. Note that our analyses assumed that racial differences arise only in all-cause mortality³³ and in stage-specific relative survival after diagnosis.⁵⁶ As noted in "**Analyses by Sex and Race**", while access to screening and treatment is thought to be the largest driver of black-white differences in colorectal cancer incidence and mortality, differences in biology^{108,109} and/or risk factors^{110,111} may also contribute. In that event, it is possible that efficient and near-efficient strategies and their efficiency ratios would vary across subgroups defined by sex and race.

Similarly, efficient and near-efficient strategies were similar across 3 scenarios for population risk of colorectal cancer, including one in which the assumed risk increase is less conservative than the assumption for the base-case analysis. However, at the highest level of risk increase evaluated (IRR of 1.52), efficiency ratios were generally more favorable than for the base-case analysis, indicating that at this rate of risk increase more intensive strategies could result in a similar balance between harms and benefits as less intensive strategies in the base-case.

Based on sensitivity analysis, we did not find evidence that reduced sensitivity of colonoscopy would impact predicted efficient and near-efficient colonoscopy and FIT strategies.

Across the 3 models, the predicted benefits and burdens of screening were generally highest with SimCRC and lowest with MISCAN, with results from CRC-SPIN falling in between. The SimCRC and CRC-SPIN models predicted that most (and often, nearly all) of the efficient strategies would begin at age 45. While the strategies starting at age 45 that were efficient with SimCRC and CRC-SPIN were generally also efficient with MISCAN, MISCAN found strategies with screening beginning at age 50 or even at age 55 were also efficient. Based on prior extensive work to understand the differences in our models,^{74,75} we believe that differences in model predictions are primarily attributable differences in adenoma dwell times. As explained in the section "Natural History Component", MISCAN simulates a shorter adenoma dwell time than the SimCRC and CRC-SPIN models (Table 2), which arises from the assumption that some adenomas are assumed to be non-progressive. The probability that an adenoma in MISCAN is progressive increases with the age at adenoma initiation (see "Progression to Preclinical Colorectal Cancer"). CRC-SPIN also allows the risk of adenoma progression to be a function of the age at adenoma initiation, but all adenomas in CRC-SPIN have the potential to progress. In SimCRC, the risk of progression is based on the current age, not the age at adenoma initiation, and as with CRC-SPIN, all adenomas have the potential to progress. We suspect that the smaller incremental benefit from a first screen with adenoma removal at age 45 compared to a first screen with adenoma removal at age 50 in MISCAN compared to the other 2 models is attributable to MISCAN's assumption that an adenoma that forms between ages 45 and 50 is more likely to be progressive and has a higher risk of progression than an adenoma that forms before age 45.

Unlike the age to begin screening, there were no consistent patterns across models in the age to end screening. For colonoscopy screening, efficiency ratios were relatively high when screening was extended to age 80 or 85 (>169 additional colonoscopies per LYG; **Table 12**), assuming full adherence with prior screening; efficiency ratios were considerably lower for the efficient and near-efficient FIT strategies in all 3 models with screening to age 85 (< 43 additional colonoscopies per LYG). With the hybrid strategy of annual FIT from ages 45 to 49, followed by colonoscopy every 10 years, the efficiency ratio increased substantially when an additional screening colonoscopy and CTC strategies with screen to age 85 (**Table 12**).

Two models (SimCRC and CRC-SPIN) found that the screening strategies highlighted by the USPSTF in 2016 were not among the efficient or near-efficient options at any IRR^{§§} (see **Table 9** for IRR = 1.19; the efficiency of these strategies with IRR = 1 and IRR = 1.52 can be gleaned from **Appendix Tables 12.1-12.7**). With MISCAN, all strategies highlighted by the USPSTF in 2016 were efficient options in this analysis with IRR = 1 and IRR = 1.19, with the exception of the 2 highlighted sDNA-FIT strategies; these strategies were not efficient or near efficient at any of the three IRRs with any model. Additionally, at IRR = 1.52, FIT 50-75, 1 was no longer an efficient or near-efficient option with MISCAN. As summarized in **Table 12**, in the current analysis, many strategies within each class of screening modality were efficient or near efficient in all 3 models; across classes of modalities, 57 strategies were efficient or near efficient in all 3 models. [Note that the strategies highlighted by the USPSTF in 2016 were generally only efficient in the 2016 analysis when strategies with screening beginning at age 45 were removed from consideration – see Knudsen et al.¹⁵ for details. Even then, the USPSTF-highlighted strategy of sDNA-FIT every 3 years was not efficient in any of the models.]

Estimation of the tradeoffs involved with starting screening at age 45 vs. age 50 is challenging because multiple strategies with screening starting at age 45 are efficient or near efficient (**Table 12**). In **Figure 33** and **Tables 13-19**, we show the changes in outcomes for the strategies highlighted by the USPSTF in 2016 if screening were to begin at age 45 instead of age 50, and in **Tables 13-19** we compare these changes with those from the 2016 decision analysis. Despite different assumptions about colorectal cancer risk (IRR = 1.19 vs. IRR = 1), and the use of different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model, the changes in outcomes between screening at age 45 vs age 50 were similar in the current and the 2016 decision analyses. Below we summarize the outcomes for each screening strategy highlighted by the USPSTF in 2016. *All outcomes are expressed per 1000 40-year-olds*.

Colonoscopy Every 10 Years to Age 75

For colonoscopy every 10 years to age 75, lowering the age to begin screening from 50 to 45 prevented 2 to 4 diagnosed cases of colorectal cancer and 1 to 2 colorectal cancer deaths and yielded 16 to 34 additional LYG. However, it also required 756 to 800 additional colonoscopies and resulted in 2 additional complications (**Table 13**).

Annual FIT to Age 75

Screening with annual FIT from ages 45 to 75 instead of from ages 50 to 75 prevented 1 to 4 cases of diagnosed colorectal cancer, prevented approximately 1 colorectal cancer death, and

^{§§} These strategies were not efficient or near efficient with SimCRC or CRC-SPIN in 2016 when strategies with screening beginning at age 45 were included in the analysis; with the exception of DNA-FIT 50-75, 3, all recommended strategies in 2016 were efficient or near efficient in all 3 models when strategies starting at age 45 were eliminated from the analysis.

yielded 17 to 33 additional LYG. It also required 3387 to 3520 additional FITs and 175 to 205 additional colonoscopies and resulted in <1 additional complication (**Table 14**).

Annual sDNA-FIT to Age 75

For annual sDNA-FIT to age 75, lowering the age to begin screening from 50 to 45 prevented 1 to 4 diagnosed cases of colorectal cancer and approximately 1 colorectal cancer death. It resulted in 16 to 33 additional LYG. The number of additional tests were as follows: 2361 to 2425 additional sDNA-FITs and 305 to 322 additional colonoscopies. It resulted in <1 additional complication (Table 15).

Triennial sDNA-FIT to Age 75

For sDNA-FIT every 3 years to age 75, lowering the age to begin screening from 50 to 45 prevented 1 to 4 diagnosed cases of colorectal cancer and approximately 1 colorectal cancer death, and it yielded 16 to 31 additional LYG. It required 1166 to 1201 additional sDNA-FITs and 177 to 196 additional colonoscopies and resulted in <1 additional complication (Table 16).

SIG Every 5 Years to Age 75

Lowering the age to begin 5-yearly FIT screening from age 50 to age 45 (with screening ending at age 75) resulted in 1 to 3 fewer cases of diagnosed colorectal cancer, approximately 1 fewer colorectal cancer death, and 13 to 30 additional LYG. It required 743 to 801 additional SIGs and 170 to 192 additional colonoscopies, and resulted in <1 additional complication (Table 17).

SIG Every 10 Years With Annual FIT to Age 75

For the USPSTF-highlighted strategy combining SIG every 10 years and annual FIT to age 75, the benefits of lowering the age to begin screening from age 50 to age 45 were as follows: 2 to 4 fewer diagnosed cases of colorectal cancer; about 1 fewer colorectal cancer death; and 17 to 33 additional LYG. The burdens and harms associated with this change were: 458 to 493 additional SIGs; 3018 to 3112 additional FITs; 263 to 284 additional colonoscopies; and <1 additional complication (**Table 18**).

CTC Every 5 Years to Age 75

For CTC every 5 years to age 75, lowering the ages to begin screening from age 50 to age 45 averted 1 to 3 diagnosed colorectal cancer cases and about 1 colorectal cancer death, yielding 14 to 31 additional LYG. It required 798 to 806 additional CTCs and 153 to 165 additional colonoscopies and resulted in approximately 1 additional complication (Table 19).

Caution Regarding the Interpretation of Findings

It is important to remember that, with the exception of colonoscopy, all screening modalities involve additional screening procedures, some of which result in the referral to colonoscopy.

These additional non-colonoscopy screening procedures represent a screening burden and are not accounted for in the assessment of efficiency, which measures burden only in terms of number of colonoscopies. When comparing efficiency ratios across classes of modalities, it would not be appropriate to assume a colonoscopy strategy and a non-colonoscopy strategy with the same efficiency ratios are equivalent. An equivalent non-colonoscopy strategy would have a lower efficiency ratio (i.e., to account for the increased burden). How much lower is a matter of judgement.

Comparison With the 2016 Decision Analysis

A key change from the 2016 decision analysis of colorectal cancer screening for the USPSTF to the current decision analysis is the assumption of increasing population risk of colorectal cancer in the current base-case analysis (IRR of 1.19) vs. stable population risk in the 2016 analysis (IRR of 1). However, as shown in Figures 26-32, efficient and near-efficient strategies were similar across risk scenarios, as were efficiency ratios (Appendix Tables 12.1-12.7). The systematic evidence review found few new studies informing test performance characteristics,¹⁶ so inputs for test sensitivity and specificity were similar to those in the prior analysis. It is therefore not surprising that the findings from this decision analyses are similar to those of the 2016 decision analysis for the USPSTF. In both the current and the 2016 decision analyses, all 3 models found that when LYG are used as the measure of screening benefit (LYG was the only measure of benefit used in the 2016 analysis), efficient strategies were primarily those with screening beginning at age 45. In 2016, there was little evidence to support screening before age 50. While data on the yield of screening among asymptomatic adults aged 45 to 49 remain sparse, there is now evidence that colorectal cancer incidence in the US is increasing before age 50, and that this increase is likely a cohort effect that will be carried forward with each generation as they age.²³

As in 2016, the models continue to differ in terms of the magnitude of the benefit from starting screening at age 45 instead of at age 50; benefits from starting at age 45 are greater with SimCRC and CRC-SPIN than with MISCAN. In 2016 we used an algorithm to select sets of recommendable strategies from the efficient options for each class of screening modality. Doing so made it relatively easy to identify and quantify the differences in outcomes across strategies with different ages to begin and end screening. Because recommending strategies is the role of the USPSTF, current analyses identify the efficient and near-efficient options with each class of modality but do not include further analyses to identify "model-recommendable" strategies. In addition, the current analysis compares a much larger number of strategies than the 2016 report, and each can be evaluated on several dimensions (i.e., life expectancy, colorectal cancer deaths averted, numbers of colonoscopies and harms). This makes it difficult to identify and communicate key differences between strategies.

As in 2016, we found that efficient stool testing strategies are generally those that involve FIT (11/16 efficient stool-based strategies across all three models, **Table 12**). While annual sDNA-FIT (referred to as "FIT-DNA" in the 2016 analyses) strategies are also among the efficient strategies, the efficiency ratios for those strategies are high compared to those of FIT. The sensitivity of sDNA-FIT for adenomas by size and for colorectal cancer is higher than that of FIT (**Table 7**). As a result, annual sDNA-FIT yields more LYG and prevents more colorectal cancer

deaths than annual FIT. However, sDNA-FIT has lower specificity than FIT, so the additional LYG with sDNA-FIT come with more colonoscopies – colonoscopies for follow-up of truepositive and of false-positive sDNA-FITs, and colonoscopies for surveillance of persons with detected adenomas. The high efficiency ratios for sDNA-FIT strategies imply that the LYG from the superior sensitivity of sDNA-FIT are small relative to the large increase in colonoscopies due to the lower specificity. sDNA-FIT strategies with a 3-year interval are not efficient or near efficient; this finding indicates that repeated FIT screening can be more effective than 3-yearly sDNA-FIT while requiring fewer colonoscopies. This finding is the same as in the 2016 decision analysis.

In both the current and the 2016 decision analyses, we found that older ages to end screening could be supported for stool tests. For example, in the current analyses, efficiency ratios for annual FIT strategies with screening from age 45 increased slowly as the age to end screening was extended from age 75 to age 80 and to age 85 (efficiency ratios 15-16, 14-27, and 19-43 additional colonoscopies per LYG, respectively, **Appendix Table 8.2**); for comparison, efficiency ratios for 10-yearly colonoscopy strategies with screening from age 45 often more than doubled as the age of the last scheduled screening colonoscopies per LYG, respectively, **Appendix Table 8.2**); for comparison, efficiency ratios 34-45, 52-112, and 227-828 additional colonoscopies per LYG, respectively, **Appendix Table 8.1**). Note that strategies with annual FIT from ages 50 to 80 or 85 were dominated with SimCRC and CRC-SPIN but not with MISCAN, and with colonoscopy, strategies with 10-yearly screening from age 50 to age 80, which is the same as to age 85, were also dominated with SimCRC and CRC-SPIN but not with MISCAN. It is important to remember that the FIT strategies require FITs that are not accounted for in the efficiency assessment.

As in the 2016 decision analysis, predictions from SimCRC and CRC-SPIN models were very similar. All 3 models resulted in similar relative performance across screening strategies. In some cases, findings differed for the MISCAN model, which posits a shorter adenoma dwell time (Table 2).

The models continued to differ regarding COL 45-75, 15. A key finding from the 2016 decision analysis was that in 2 models (SimCRC and CRC-SPIN) COL 45-75, 15 was an efficient screening strategy that had LYG slightly higher than the LYG with COL 50-75, 10, while with MISCAN, COL 45-75, 15 was strongly dominated by COL 50-75, 10, that is, it provided fewer LYG and required more colonoscopies (see **Figure 10** for an example). This finding is the same in the current decision analysis (**Figure 12**). However, in the current decision analysis, both strongly- and weakly-dominated strategies may be deemed near efficient, provided they meet the benefit criterion (e.g., ≤ 3 days of life gained per person of the efficient frontier); with MISCAN, the COL 45-75, 15 is strongly dominated and has LYG ≤ 3 days per person of the efficient frontier; so is near efficient. In the 2016 analysis, only weakly dominated strategies were eligible for near-efficient status and as a result, COL 45-75, 15 was not included as a near-efficient option with MISCAN.

Finally, in both analyses, we found that efficiency ratios for strategies with colonoscopy screening every 5 years were generally high (\geq 84 additional colonoscopies per LYG, **Appendix Table 8.1**), as were efficiency ratios for strategies with annual sDNA-FIT, relative to screening with annual FIT (**Appendix Table 8.2**).

For outcomes assessed in both the 2016 and the current decision analysis, there were no major differences in findings.

Comparison With Decision Analysis for the ACS

The ACS requested 2 decision analyses from CISNET to evaluate the age to begin colorectal cancer screening for their 2018 colorectal cancer screening guidelines. These analyses focused on the rising colorectal cancer incidence observed in young adults (performed by MISCAN)²⁷ and on subgroups defined by race and sex (performed by MISCAN and SimCRC).^{27,28} Citing the studies by Siegel et al.^{23,112} and the CISNET decision analyses,^{27,28} the ACS gave a qualified recommendation that average-risk adults, regardless of sex or race, begin screening for colorectal cancer at age 45 years.¹¹³ Our current analysis, based on all 3 CISNET models, similarly finds that beginning screening at age 45 years provides an efficient balance of colonoscopies required (a measure of the burden of screening that correlates with harms) and LYG, for the asymptomatic average-risk population as a whole and for subgroups defined by sex and race.

While analyses reached similar conclusions, there are several noteworthy differences (summarized in Appendix 14). First, there is uncertainty about by how much risk has increased, and the ACS and USPSTF analyses made different assumptions that were incorporated into model calibration to colorectal cancer incidence. Due to differences in SEER case selection and in methods for estimating the increase in risk (see Appendix 1), the USPSTF analyses use a lower elevation in risk (IRR of 1.19 in base-case analyses, vs. 1.59 in the ACS analyses), and this resulted in a lower estimated absolute benefit of screening. However, the strategies with screening beginning at age 45 were predominant among the efficient strategies in both the current USPSTF and the ACS analyses. Additionally, in sensitivity analyses we found that our results were robust to a wide range of assumptions about the magnitude of the increase in colorectal cancer risk. Comparing 10-yearly colonoscopy screening from ages 45 to 75 years (COL 45-75, 10) to ages 50 to 75 years (COL 50-70, 10) resulted in 34, 32 and 16 additional LYG and 798, 800 and 756 additional colonoscopies per 1000 unscreened 40-year-olds for SimCRC, CRC-SPIN and MISCAN, respectively. In the analysis for the ACS,²⁷ MISCAN estimated a difference of 25 LYG and 810 colonoscopies, resulting in a slightly more favorable balance between the benefits and burden of screening initiation at age 45 years than MISCAN's current estimate. However, the current analysis demonstrates that MISCAN is the most conservative model when estimating the burden-to-benefit ratio of screening initiation at age 45 years (Tables 13-19).

Second, the differences in outcomes for subgroups by sex and race in this analysis were smaller than in the ACS analysis.² This differences can be explained by the assumptions about the underlying risk of colorectal cancer by race across the two analyses. While both the ACS and USPSTF analyses incorporated sex- and race-specific estimates of relative survival after diagnosis with colorectal cancer⁵⁶ and sex- and race-specific all-cause mortality rates,³³ only the analyses for the ACS allowed for a difference by race in the underlying risk of developing colorectal cancer. As noted in the section **Analyses by Sex and Race**, we reviewed the literature on race and colorectal cancer immediately prior to performing this analysis for the USPSTF. We concluded that the primary driver of differences in colorectal cancer incidence and mortality by race is access to screening and subsequent care, rather than biological differences in natural

history,⁷² and therefore did not allow for differential risk of adenoma onset or colorectal cancer incidence by race in the USPSTF analyses. The outcomes from the USPSTF analysis likely better reflect the benefits, harms and burden of colorectal cancer screening in race- and sexspecific subgroups. Still findings are in line, because the race-specific analysis for ACS incorporating the increase in CRC risk also showed that efficient screening recommendations were similar for different races and hence the ACS did not issue differential screening recommendations by race.¹¹³

Third, more screening strategies were evaluated in our USPSTF analysis; the hybrid strategies (screen first with FIT, then change to COL, and vice-versa), once-only strategies, and strategies that end screening at age 70 years were not included in the analyses for the ACS. Furthermore, our USPSTF analysis included strategies with screening starting at ages 45, 50, and 55 years, whereas the comparable analysis for the ACS evaluated start ages of 40, 45, and 50 years.²⁷ The entire set of strategies considered affects estimated efficiency ratios, and several of the strategies included in the USPSTF, but not ACS analyses were efficient or near-efficient options. For example, a strategy that is now efficient with all 3 models is colonoscopy screening at ages 45, 55 and 65 years (COL 45-70, 10), which was not included in the ACS analysis. As a result, the efficiency ratios for 10-yearly colonoscopy screening from ages 45 to 75 years (COL 45-75, 10) were higher in the current analysis, as the LYG and number of colonoscopies were being compared to a different strategy (10-yearly colonoscopy screening from ages 45 to 70 years in current analysis vs. 10-yearly colonoscopy screening from ages 50 to 75 years in ACS analysis).

Potential Implications of Adherence

Because this analysis is meant to inform population guidelines, our analyses assumed perfect adherence to screening strategies, including receipt of all screening, diagnostic follow-up (i.e., for abnormal stool tests), and surveillance tests in order to predict the maximum achievable benefit for each strategy. In practice, such high adherence is not observed.¹⁶ Because of the complexities and uncertainties of long-term adherence, we highlight the potential implications of non-adherence.

There are at least 3 different types of non-adherence associated with colorectal cancer screening: initial screening, repeat screening, and diagnostic colonoscopy. Below, we discuss evidence available related to each type of screening failure, and plausible ways to consider the impact of non-adherence on outcomes.

Screening Initiation

Adherence to initial screening, also referred to as screening uptake, is arguably the most important type of adherence in terms of its impact on health benefits. Not initiating screening is equivalent to remaining unscreened, and results in no "screening" benefit. The impact of screening uptake on outcomes can be compared by taking a weighted average of results with a given screening strategy and with no screening.

The impact of delayed uptake (e.g., a person who is recommended to start screening at age 50 doesn't get her first screen until the age of 53 years) can be gleaned from the differences in the

effectiveness based on different start ages. For example, with annual FIT to age 75, delaying the start age from age 50 to age 55 could result in 3 to 6 additional diagnosed cases of colorectal cancer per 1000, 1 to 2 additional colorectal cancer deaths per 1000, and a loss of 28 to 41 LYG per 1000 (**Table 20**). Changes in outcomes with delayed screening uptake may be similar with colonoscopy screening every 10 years to age 75: a 5-year delay (i.e., starting at age 55 instead of 50) could result in 1 to 4 additional cases per 1000, 0.1 to 0.4 additional colorectal cancer deaths per 1000, and a loss of 22 to 38 LYG per 1000. Changes in outcomes associated with 5- and 10-year delays in screening initiation relative to colorectal cancer screening starting at age 45 are presented in **Appendix 15**.

Appendix G of the systematic evidence review reports wide ranges of the adherence to initial screening based on both US and non-US studies performed over the past 3 decades.¹⁶ A population-based estimate from the Behavioral Risk Factor Surveillance System survey shows that 26% of the US population of screening age have never been screened, indicating an uptake of 74%.¹¹⁴ For those who do initiate screening the benefit, of course, depends on the adherence with repeat screening and follow-up diagnostic colonoscopy (if applicable).

Repeat Screening

Once a first test is done, adherence to the recommended tests at each interval is necessary to achieve the full benefit of the screening strategy. We know that the first screening test provides the greatest benefit compared with the magnitude of the benefit associated with subsequent screening (i.e., the LYG moving from no screening to once-only colonoscopy is about 3 to 6 times greater than moving from once-only screening to twice-in-a-lifetime colonoscopy). If people don't get screened at the recommended interval but instead undergo delayed screening, the benefit of that non-adherent schedule would be similar to a strategy with the same test but with a longer interval between tests. For example, it has been shown that if, on average, 60% to 70% of people show up for their repeat screening tests, then the benefit would be similar to a doubling of the interval.^{115,116}

In our analysis we found that, for example, extending the interval for FIT 50-75 from 1 to 2 years could result in 9 to 11 additional diagnosed cases of colorectal cancer per 1000, 3 additional colorectal cancer deaths per 1000, and a loss of 33 to 37 LYG per 1000 (**Table 21**). When the interval is extended from 1 to 3 years, there could be as many as 14 to 19 additional diagnosed cases of colorectal cancer per 1000, 5 to 6 additional colorectal cancer deaths per 1000, and a loss of 60 to 65 LYG per 1000. For colonoscopy screening from ages 50 to 75, extending the interval from 10 to 15 years could result in 3 to 5 additional diagnosed cases of colorectal cancer per 1000. If the interval is extended such that only 1 colonoscopy is performed, the changes could be considerably larger: 15 to 22 additional diagnosed cases of colorectal cancer per 1000, 6 to 9 additional colorectal cancer deaths per 1000, and a loss of 53 to 87 LYG per 1000. Changes in outcomes associated with extending the screening interval for strategies with screening beginning at age 45 are presented in **Appendix 15**.

Appendix G of the systematic evidence review reports limited data on adherence with repeated tests in the short term.¹⁶ One study found adherence over the subsequent 3 years after the initial FIT to be as high as 75.3% to 86.1%.¹¹⁷

Diagnostic Colonoscopy

Most tests other than colonoscopy require adherence with a diagnostic colonoscopy following a positive screen in order for that screen to have any benefit. If a test is done that requires follow-up diagnostic colonoscopy and the follow-up test is never done, then it is equivalent, benefit-wise, to the screening test not being done in the first place. This type of adherence has the most impact on non-colonoscopy test strategies. Alternatively, the follow-up could just be delayed. For example, a delay of 1 year in getting follow-up diagnostic colonoscopy after a positive FIT reduces life years gained by 2.0% to 9.5%.^{118,119}

A recent systematic review reported adherence to follow-up diagnostic colonoscopy of 80.4%.¹²⁰

Much of the evidence on adherence assesses whether the test recommended at a particular time was performed at or near that time. If it was not performed at or near that time, then the alternative is either that the test was never performed again or that it was just delayed, which would have different implications. Very little information is available about screening behaviors needed for models to simulate the impact of these behaviors on efficacy. This information includes whether screening delays are clustered within individuals and how delays vary across screening tests.

Strengths of the Modeling

Although randomized controlled trials are the gold standard for determining the effectiveness of screening, they have their limitations. They are expensive and time consuming and therefore limited in the number of strategies that can be evaluated. Decision models provide a useful tool to extrapolate evidence from randomized trials and project outcomes of screening strategies that vary by age to begin, age to end and interval of screening, as well as explore new evidence on the natural history such as the increase in cancers observed among younger ages. Our microsimulation models synthesize available evidence about the natural history of developing adenomas and subsequent progression to colorectal cancer and incorporate the evidence available from randomized trials to determine the impact of alternative screening strategies on colorectal cancer incidence and mortality.

We use 3 distinct simulation models to project benefits and harms of alternative screening strategies. Each model is based on different assumptions about the adenoma-carcinoma sequence, though all are calibrated to similar data on adenoma prevalence and cancer incidence.⁷⁴ The models have a range of differences (e.g., in dwell times, size and location of adenomas, progressive vs. non-progressive adenomas, continuous vs. categorical adenoma size), which provides us with a range of outcomes that reflect a sensitivity analysis of the different underlying model assumptions. To the extent that the models lead to similar conclusions in terms of relative predictions across classes of screening modalities and similar rankings within classes of screening modalities provides a robust case for model results. We find that differences in relative predictions of screening effectiveness are most influenced by the dwell times associated with each model. Longer dwell times correspond to longer periods of time during which screening can result in identification and removal of preclinical lesions (adenomas and preclinical colorectal cancer). Differences in the distribution of adenomas by location (**Figure 3**)

have the biggest impact on the model-predicted effectiveness of strategies involving sigmoidoscopy alone. For example, with MISCAN, 63% of adenomas are within reach of the sigmoidoscope, and the sigmoidoscopy strategy highlighted by the USPSTF in 2016 (Table 17) yields 90% of the LYG achieved by the USPSTF-highlighted colonoscopy strategy (Table 13). The proportion of adenomas within reach of the sigmoidoscope with SimCRC and CRC-SPIN are lower (38% and 45%, respectively), as are the relative LYG of the highlighted sigmoidoscopy strategy compared to the highlighted colonoscopy strategy in 2016 (83% for both models).

Limitations of the Modeling

Despite the strengths of modeling, some limitations are noteworthy.

We did not include some tests that have been used for colorectal cancer screening. One such test is the low-sensitivity fecal occult blood test, Hemoccult II[®] (Beckman Coulter; Brea, CA), which, in consultation with USPSTF members, we excluded due to the availability of similar tests with better sensitivity. [Hemoccult II was also excluded from the 2016 decision analysis.] For HSgFOBT (a similar test with better sensitivity) we only present results in Appendix 4 due to the high degree of uncertainty in its test characteristics and the fact that FIT is easier to administer and has better test characteristics.¹⁶ In addition, we did not evaluate tests that have not yet been FDA-approved (i.e., blood-based methylated septin 9 DNA, which has only been FDAapproved for individuals not willing to do any of the USPSTF-recommended CRC screening tests) or tests with very limited evidence among screening populations (i.e., magnetic resonance colonography and capsule colonoscopy). For tests that we did simulate, we did not carry out a complete examination of the uncertainty in test characteristics, though the accompanying systematic review indicated that there was little to no evidence about the ability of screening tests to detect small (<6 mm) adenomas), and limited information about the sensitivity of tests to detect preclinical colorectal cancers.¹⁶ If the findings for the sensitivity analysis on colonoscopy test characteristics hold for other classes of screening modalities, then the impact of uncertainty in test characteristics on our results is likely to be modest.

Although our modeled results provide a lifetime framework for evaluating benefits and harms from a program of screening, much of our empiric data on sensitivity and specificity of screening tests are based on a single round of screening with relatively short periods of follow-up. Currently, there only is long-term evidence for Hemoccult II and sigmoidoscopy, which our models have shown to successfully reproduce.^{67,76,77} However, outcomes for repeat rounds of FIT and HSgFOBT have only been reported in a few small studies; these studies suggest that test performance in repeat screening is not independent like we assumed in the current analysis.^{121,122} Future larger studies are needed to confirm these findings so they can be used to inform our assumptions and inputs. An analysis using the MISCAN model previously showed that the impact of assuming correlation of outcomes in repeat screening rounds is likely to be modest.¹²¹

We model the adenoma-carcinoma sequence using the size of adenomas as an indicator for advanced adenomas. We do not explicitly simulate histology of tubulovillous, villous, or high-grade dysplasia in our definition of advanced adenoma, which is based on a size of 10 mm or larger. Given the high correlation between histology and size, the impact of this assumption on

our results is likely small. We also do not simulate regression of adenomas,³⁷⁻⁴¹ nor do the models include the serrated polyp pathway,^{42,43} in part due to insufficient evidence on the prevalence of serrated polyps by age and location, their malignant potential, and the ability of screening tests to detect them. The impact of the omission of this pathway is uncertain. On the one hand, we currently assume that all colorectal cancers arise from adenomas, which means the models overestimate the malignant progression of adenomas. With lower progression rates screening would become more effective. On the other hand, there is evidence that endoscopy and FIT have lower sensitivity for sessile serrated polyps, which means we may have overestimated screening effectiveness. One modeling study previously assessed the impact of the serrated polyp pathway on screening effectiveness and found very little difference in results between a model assuming 0% of cancers arrive from this pathway vs. a model assuming 30%.¹²³ Analyses with an expanded version of the MISCAN model that included a first exploratory serrated polyp pathway also showed that inclusion is needed to fully incorporate this pathway into our models.

We assumed that the current generation of 40-year-olds will carry forward the same elevated disease risk as they age, and that the increase in colorectal cancer incidence is caused by an increase in adenoma risk. Although the increasing background risk is likely a cohort effect that will be carried forward with this generation as they age,²³ it is unlikely that it will be observed in colorectal cancer incidence data, especially at ages \geq 55 years, because it is counteracted by the increased uptake of screening. Furthermore, it is not known whether the increase in colorectal cancer incidence is caused by an increase in adenoma risk, a faster adenoma progression to malignancy, or some combination of the two. In MISCAN's analysis for the ACS, the effects of each of these assumptions were evaluated; the model recommendation of screening initiation at age 45 years was robust. Future research is needed to determine the cause and carcinogenic pathway of the increase in colorectal cancer incidence.

In analyses by sex and race we assumed that the natural history of colorectal cancer does not vary by race. This assumption was based on a comprehensive review of the literature that found that the primary driver of differential risks by race is access to care, not biological differences in natural history.⁷² This assumption is also supported by the recently-published findings from the Southern Community Cohort Study⁷³ (see the section "Analyses by Sex and Race" for more details on the findings of these studies). While differences in biology^{108,109} and/or risk factors^{110,111} may also contribute to black-white differences in colorectal cancer incidence and mortality rates, mounting evidence suggests that the magnitude is likely small relative to the role of access to screening¹²⁴⁻¹²⁶ and treatment.^{127,128}

We expressed results using 3 different metrics of efficiency, differing with respect to the measure of benefit. When LYG (or QALYG) is used as a measure of benefit, screening strategies beginning at age 45 years mostly dominate the efficient frontiers, whereas when using death averted, strategies that begin screening at ages 50 or 55 years are also efficient. The advantage of using deaths averted as the measure of benefit is that patients and clinicians find it easier to interpret.¹²⁹ However, this measure does not tell us how premature the avoided death would have been.¹³⁰ Using LYG as a measure of benefit accounts for a larger gain in life expectancy from, for example, preventing a colorectal cancer death in a 45-year-old individual compared to a 75-

year-old individual. To provide guidance with interpretation, we also expressed the LYG from each screening strategy in terms of the number of days of life gained per person.

We did not perform analyses to identify the optimal ages to begin and end screening among all possible ages to begin and end. In consultation with Task Force members, analyses were limited to 3 ages to being screening (45, 50, and 55) and 4 ages to end screening (70, 75, 80, and 85). It is possible that strategies with screening starting prior to age 45 would also be efficient options. Analysis performed by MISCAN for the 2018 ACS colorectal cancer screening recommendations included strategies with screening beginning at age 40, 45, and 50.²⁷ Although screening strategies starting at age 40 were efficient, there were diminishing returns from lowering the age to begin screening, and the benefits of starting at age 40 rather than at age 45 were small. For example, for colonoscopy strategies that involve 4 screening colonoscopies at 10-year intervals (i.e., COL 40-70, 10; COL 45-75, 10, and COL 50-80, 10), starting at age 45 rather than at age 50 increased LYG by 5%, whereas starting at age 40 instead of at age 45 increased LYG by 2%.

We did not perform a comprehensive analysis directly comparing all available screening strategies. Cost-effectiveness analysis would be a way to perform such a comprehensive analysis, however cost analysis is not part of the USPSTF evaluation. As there is no consensus on the appropriate metric to assess efficiency when costs are not considered, we used the number of required colonoscopies as our proxy for harms and burden of screening. Because of the required cathartic preparation and its invasive nature, it is likely to contribute most to the burden and harms of screening. However, not all components of screening burden and/or harm are captured this way. For example, many patients may also consider collecting feces for stool testing or undergoing a sigmoidoscopy to be burdensome. Furthermore, CTC, like colonoscopy, generally requires cathartic bowel preparation and is associated with radiation exposure. Because of this, we assessed the relative efficiency of strategies within a class of screening modalities; we did not assess relative efficiency across classes of modalities. A comprehensive analysis comparing all tests based on the number of required colonoscopies would penalize colonoscopy strategies compared to strategies with other screening modalities. Future measures need to be developed that can provide a common denominator for resources other than costs that would make comparison of screening strategies across tests more informative.

Additionally, as alluded to in the limitations described above, there is uncertainty in many model inputs and assumptions, from natural history and changes in colorectal cancer risk over time to test characteristics and their correlation. Additional uncertainty not focused on here surrounds assumptions for risks of fatal and non-fatal complications, endoscopy reach, surveillance intervals (the MSTF provides ranges, rather than a single interval), and utility weights for health states. Furthermore, we did not account for increasing colonoscopy quality over time, via increasing emphasis among the gastrointestinal endoscopy community on improving adenoma detection rates,^{96-101,131} which have been shown to inversely correlate with both interval colorectal cancer cases^{96-98,100,132} and interval colorectal cancer deaths.^{97,100} Similarly, we were unable to account for possible improvements in relative survival following colorectal cancer diagnosis after 2003, due to a changes in the staging algorithm used by the SEER Program⁵⁷ and in the use of neoadjuvant chemotherapy over time.⁵⁸⁻⁶⁰ We also did not perform a probabilistic sensitivity analysis (PSA) to characterize the simultaneous impact of all uncertain model parameters on our findings; high-performance computing resources would be required to

perform a PSA for models of this level of complexity and an analysis of this magnitude. Instead, the impact of uncertainty in model structure and natural history parameters are explored through the use of 3 independently-developed models, and sensitivity analysis on other key assumptions and parameters (IRR, colonoscopy sensitivity) are explored in sensitivity analysis.

Finally, it is important to remember that models approximate reality. The models used in this report have been extensively calibrated and validated, and are able to approximate observed outcomes. However, as mentioned above, there remains uncertainty about the accuracy of screening tests, which use colonoscopy as the reference standard, and the true natural history of colorectal cancer, which cannot be directly observed. In addition, simulations evaluate screening regimens that patients are unlikely to follow exactly (e.g., most patients opting for annual FIT will not be screened at exact one-year intervals). The intent of these analyses was to compare the predicted benefits (i.e., efficacy), harms, burden, and efficiency of different screening regimens, it was not to estimate the effectiveness of regimens in real-world settings. These model-based estimates are important because they provide patients and their clinicians with information they can use to make decisions about when and how to screen for colorectal cancer, decisions that would otherwise be left to individual judgement, as that information cannot feasibly be obtained from clinical studies. Modeling studies are no substitute for empirical evidence. Instead they synthesize, build from, and extend empirical results to provide useful insight into questions about screening practices.

Conclusion

This decision analysis suggests that colorectal cancer screening may lead to sizable reductions in the lifetime risks of developing and dying from the disease and increases population life expectancy. Model predictions suggest that many screening strategies provide an efficient balance of the benefits and harms of screening; these strategies encompass a range of screening modalities, intervals, and ages. However, when the benefits of screening are measured by the number of LYG, most of the efficient screening strategies identified by all 3 models specified screening starting at age 45. Starting screening at age 45 was generally predicted to result in more LYG and QALYG and fewer colorectal cancer cases and deaths than similar strategies with screening starting at age 50 or age 55, albeit with a higher burden of both colonoscopy and non-colonoscopy testing and slightly higher risks of complications.

References

- Howlader N, Noone AM, Krapcho M, et al. (eds). SEER Cancer Statistics Review, 1975-2016. National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2016/, based on November 2018 SEER data submission, posted to the SEER web site, April 2019.
- 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020.
- 3. Mandel JS, Bond JH, Church TR, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. *N Engl J Med.* 1993;328(19):1365-1371.
- 4. Hardcastle JD, Chamberlain JO, Robinson MH, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. *Lancet.* 1996;348(9040):1472-1477.
- Kronborg O, Fenger C, Olsen J, Jorgensen OD, Sondergaard O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. *Lancet*. 1996;348(9040):1467-1471.
- 6. Shaukat A, Mongin SJ, Geisser MS, et al. Long-term mortality after screening for colorectal cancer. *N Engl J Med.* 2013;369(12):1106-1114.
- Atkin WS, Edwards R, Kralj-Hans I, et al. Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial. *Lancet*. 2010;375(9726):1624-1633.
- 8. Segnan N, Armaroli P, Bonelli L, et al. Once-only sigmoidoscopy in colorectal cancer screening: follow-up findings of the Italian Randomized Controlled Trial--SCORE. *J Natl Cancer Inst.* 2011;103(17):1310-1322.
- 9. Schoen RE, Pinsky PF, Weissfeld JL, et al. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. *N Engl J Med.* 2012;366(25):2345-2357.
- Holme O, Loberg M, Kalager M, et al. Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: a randomized clinical trial. *JAMA*. 2014;312(6):606-615.
- 11. U.S. Preventive Services Task Force. Screening for colorectal cancer: recommendation and rationale. *Ann Intern Med.* 2002;137(2):129-131.
- 12. U.S. Preventive Services Task Force. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. *Ann Intern Med.* 2008;149(9):627-637.
- 13. U.S. Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. *JAMA*. 2016;315(23):2564-2575.
- 14. Zauber AG, Lansdorp-Vogelaar I, Knudsen AB, Wilschut J, van Ballegooijen M, Kuntz KM. Evaluating test strategies for colorectal cancer screening: a decision analysis for the U.S. Preventive Services Task Force. *Ann Intern Med.* 2008;149(9):659-669.
- 15. Knudsen AB, Zauber AG, Rutter CM, et al. Estimation of benefits, burden, and harms of colorectal cancer screening strategies: modeling study for the US Preventive Services Task Force. *JAMA*. 2016;315(23):2595-2609.
- 16. Lin JS, Perdue LA, Henrikson NB, Bean SI, Blasi PR. Screening for colorectal cancer: An evidence update for the U.S. Preventive Services Task Force. Rockville, MD: Agency for Healthcare Research and Quality; 2020.
- 17. O'Connell JB, Maggard MA, Liu JH, Etzioni DA, Livingston EH, Ko CY. Rates of colon and rectal cancers are increasing in young adults. *Am Surg.* 2003;69(10):866-872.

- Siegel RL, Jemal A, Ward EM. Increase in incidence of colorectal cancer among young men and women in the United States. *Cancer Epidemiol Biomarkers Prev.* 2009;18(6):1695-1698.
- 19. Singh KE, Taylor TH, Pan CG, Stamos MJ, Zell JA. Colorectal cancer incidence among young adults in California. *J Adolesc Young Adult Oncol.* 2014;3(4):176-184.
- 20. Austin H, Henley SJ, King J, Richardson LC, Eheman C. Changes in colorectal cancer incidence rates in young and older adults in the United States: what does it tell us about screening. *Cancer Causes Control.* 2014;25(2):191-201.
- 21. Bailey CE, Hu CY, You YN, et al. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. *JAMA Surg.* 2015;150(1):17-22.
- 22. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. *CA Cancer J Clin.* 2017;67(3):177-193.
- 23. Siegel RL, Fedewa SA, Anderson WF, et al. Colorectal cancer incidence patterns in the United States, 1974-2013. *J Natl Cancer Inst.* 2017;109(8).
- 24. Knudsen AB, Lansdorp-Vogelaar I, Rutter CM, et al. Cost-effectiveness of computed tomographic colonography screening for colorectal cancer in the Medicare population. *J Natl Cancer Inst.* 2010;102(16):1238-1252.
- 25. Lansdorp-Vogelaar I, Kuntz KM, Knudsen AB, Wilschut JA, Zauber AG, van Ballegooijen M. Stool DNA testing to screen for colorectal cancer in the Medicare population: a cost-effectiveness analysis. *Ann Intern Med.* 2010;153(6):368-377.
- 26. Naber SK, Knudsen AB, Zauber AG, et al. Cost-effectiveness of a multitarget stool DNA test for colorectal cancer screening of Medicare beneficiaries. *PLoS One*. 2019;14(9):e0220234.
- 27. Peterse EFP, Meester RGS, Siegel RL, et al. The impact of the rising colorectal cancer incidence in young adults on the optimal age to start screening: microsimulation analysis I to inform the American Cancer Society colorectal cancer screening guideline. *Cancer*. 2018;124(14):2964-2973.
- 28. Meester RGS, Peterse EFP, Knudsen AB, et al. Optimizing colorectal cancer screening by race and sex: microsimulation analysis II to inform the American Cancer Society colorectal cancer screening guideline. *Cancer*. 2018;124(14):2974-2985.
- 29. van der Steen A, Knudsen AB, van Hees F, et al. Optimal colorectal cancer screening in states' low-income, uninsured populations the case of South Carolina. *Health Serv Res.* 2015;50(3):768-789.
- 30. Zauber AG, Knudsen AB, Rutter CM, et al. *Evaluating the Benefits and Harms of Colorectal Cancer Screening Strategies: A Collaborative Modeling Approach. AHRQ Publication No. 14-05203-EF-2* 2015. Available at www.uspreventiveservicestaskforce.org/Page/Document/modeling-report/colorectalcancer-screening2.
- 31. Rutter CM, Ozik J, DeYoreo M, Collier N. Microsimulation model calibration using incremental mixture approximate Bayesian computation. *Ann. Appl. Stat.* 2019;13(4):2189-2212.
- 32. United States Census Bureau. 2017 National Population Projections Datasets. Projected Population by Single Year of Age, Sex, Race, and Hispanic Origin for the United States: 2016 to 2060 (np2017_d2011.csv). Available at: https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html.

- 33. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics; 2019.
- 34. Morson B. President's address. The polyp-cancer sequence in the large bowel. *Proc R Soc Med.* 1974;67(6 Pt 1):451-457.
- 35. Morson BC. Evolution of cancer of the colon and rectum. *Cancer*. 1974;34(3):suppl:845-849.
- 36. Morson BC. The evolution of colorectal carcinoma. *Clin Radiol.* 1984;35(6):425-431.
- 37. Knoernschild HE. Growth rate and malignant potential of colonic polyps: Early results. *Surg Forum.* 1963;14:137-138.
- 38. Hoff G, Foerster A, Vatn MH, Sauar J, Larsen S. Epidemiology of polyps in the rectum and colon. Recovery and evaluation of unresected polyps 2 years after detection. *Scand J Gastroenterol.* 1986;21(7):853-862.
- 39. Hofstad B, Vatn MH, Andersen SN, et al. Growth of colorectal polyps: redetection and evaluation of unresected polyps for a period of three years. *Gut.* 1996;39(3):449-456.
- 40. Pickhardt PJ, Kim DH, Pooler BD, et al. Assessment of volumetric growth rates of small colorectal polyps with CT colonography: a longitudinal study of natural history. *Lancet Oncol.* 2013;14(8):711-720.
- 41. Tutein Nolthenius CJ, Boellaard TN, de Haan MC, et al. Evolution of screen-detected small (6-9 mm) polyps after a 3-year surveillance interval: Assessment of growth with CT colonography compared with histopathology. *Am J Gastroenterol.* 2015;110(12):1682-1690.
- 42. Rex DK, Ahnen DJ, Baron JA, et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. *Am J Gastroenterol*. 2012;107(9):1315-1329.
- 43. Snover DC. Update on the serrated pathway to colorectal carcinoma. *Hum Pathol.* 2011;42(1):1-10.
- 44. Chapman I. Adenomatous polypi of large intestine: incidence and distribution. *Ann Surg.* 1963;157(2):223-226.
- 45. Bombi JA. Polyps of the colon in Barcelona, Spain. An autopsy study. *Cancer*. 1988;61(7):1472-1476.
- 46. Arminski TC, McLean DW. Incidence and distribution of adenomatous polyps of the colon and rectum based on 1,000 autopsy examinations. *Dis Colon Rectum*. 1964;7(4):249-261.
- 47. Blatt L. Polyps of the colon and rectum: incidence and distribution. *Dis Colon Rectum*. 1961;4(4):277-282.
- 48. Clark JC, Collan Y, Eide TJ, et al. Prevalence of polyps in an autopsy series from areas with varying incidence of large-bowel cancer. *Int J Cancer*. 1985;36(2):179-186.
- 49. Jass JR, Young PJ, Robinson EM. Predictors of presence, multiplicity, size and dysplasia of colorectal adenomas. A necropsy study in New Zealand. *Gut.* 1992;33(11):1508-1514.
- 50. Johannsen LG, Momsen O, Jacobsen NO. Polyps of the large intestine in Aarhus, Denmark. An autopsy study. *Scand J Gastroenterol*. 1989;24(7):799-806.
- 51. Rickert RR, Auerbach O, Garfinkel L, Hammond EC, Frasca JM. Adenomatous lesions of the large bowel: an autopsy survey. *Cancer*. 1979;43(5):1847-1857.
- 52. Vatn MH, Stalsberg H. The prevalence of polyps of the large intestine in Oslo: an autopsy study. *Cancer*. 1982;49(4):819-825.
- 53. Williams AR, Balasooriya BA, Day DW. Polyps and cancer of the large bowel: a necropsy study in Liverpool. *Gut.* 1982;23(10):835-842.

- 54. SEER*Stat Database: Incidence SEER 9 Regs Public-Use, Nov 2003 Sub (1973-2001). Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov).
- 55. Tjørve E, Tjørve KM. A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. *Journal of Theoretical Biology*. 2010;267(3):417-425.
- 56. Rutter CM, Johnson EA, Feuer EJ, Knudsen AB, Kuntz KM, Schrag D. Secular trends in colon and rectal cancer relative survival. *J Natl Cancer Inst.* 2013;105(23):1806-1813.
- 57. National Cancer Institute. Adjusted AJCC 6th ed. T, N, M, and Stage. https://seer.cancer.gov/seerstat/variables/seer/ajcc-stage/6th/. Accessed May 6, 2020.
- 58. Hu KY, Simpson MT, Blank JJ, et al. Use of neoadjuvant chemotherapy in the treatment of locally advanced rectal cancer. *J Surg Res.* 2019;243:447-452.
- 59. Schrag D. Evolving role of neoadjuvant therapy in rectal cancer. *Curr Treat Options Oncol.* 2013;14(3):350-364.
- 60. Feeney G, Sehgal R, Sheehan M, et al. Neoadjuvant radiotherapy for rectal cancer management. *World J Gastroenterol*. 2019;25(33):4850-4869.
- 61. Stout NK, Knudsen AB, Kong CY, McMahon PM, Gazelle GS. Calibration methods used in cancer simulation models and suggested reporting guidelines. *PharmacoEconomics*. 2009;27(7):533-545.
- 62. Rutter CM, Yu O, Miglioretti DL. A hierarchical non-homogenous Poisson model for meta-analysis of adenoma counts. *Stat Med.* 2007;26(1):98-109.
- 63. Berg JW, Downing A, Lukes RJ. Prevalence of undiagnosed cancer of the large bowel found at autopsy in different races. *Cancer*. 1970;25(5):1076-1080.
- 64. Imperiale TF, Wagner DR, Lin CY, Larkin GN, Rogge JD, Ransohoff DF. Risk of advanced proximal neoplasms in asymptomatic adults according to the distal colorectal findings. *N Engl J Med.* 2000;343(3):169-174.
- 65. Lieberman DA, Weiss DG, Bond JH, Ahnen DJ, Garewal H, Chejfec G. Use of colonoscopy to screen asymptomatic adults for colorectal cancer. Veterans Affairs Cooperative Study Group 380. *N Engl J Med.* 2000;343(3):162-168.
- 66. Stoop EM, de Haan MC, de Wijkerslooth TR, et al. Participation and yield of colonoscopy versus non-cathartic CT colonography in population-based screening for colorectal cancer: a randomised controlled trial. *Lancet Oncol.* 2012;13(1):55-64.
- 67. Lansdorp-Vogelaar I, van Ballegooijen M, Boer R, Zauber A, Habbema JD. A novel hypothesis on the sensitivity of the fecal occult blood test: Results of a joint analysis of 3 randomized controlled trials. *Cancer*. 2009;115(11):2410-2419.
- 68. Corley DA, Jensen CD, Marks AR, et al. Variation of adenoma prevalence by age, sex, race, and colon location in a large population: implications for screening and quality programs. *Clin Gastroenterol Hepatol.* 2013;11(2):172-180.
- 69. Pickhardt PJ, Choi JR, Hwang I, et al. Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. *N Engl J Med*. 2003;349(23):2191-2200.
- 70. Atkin WS, Cook CF, Cuzick J, Edwards R, Northover JM, Wardle J. Single flexible sigmoidoscopy screening to prevent colorectal cancer: baseline findings of a UK multicentre randomised trial. *Lancet.* 2002;359(9314):1291-1300.
- 71. Church JM. Clinical significance of small colorectal polyps. *Dis Colon Rectum*. 2004;47(4):481-485.

- 72. Rutter CM, Knudsen AB, Lin JS, Bouskill K. Black and white differences in colorectal cancer screening and screening outcomes: A narrative review. *Cancer Epidemiol Biomarkers Prev.* (in press).
- 73. Warren Andersen S, Blot WJ, Lipworth L, Steinwandel M, Murff HJ, Zheng W. Association of race and socioeconomic status with colorectal cancer screening, colorectal cancer risk, and mortality in southern US adults. *JAMA Netw Open*. 2019;2(12):e1917995.
- 74. Kuntz KM, Lansdorp-Vogelaar I, Rutter CM, et al. A systematic comparison of microsimulation models of colorectal cancer: the role of assumptions about adenoma progression. *Med Decis Making*. 2011;31(4):530-539.
- 75. van Ballegooijen M, Rutter CM, Knudsen AB, et al. Clarifying differences in natural history between models of screening: the case of colorectal cancer. *Med Decis Making*. 2011;31(4):540-549.
- Rutter CM, Knudsen AB, Marsh TL, et al. Validation of models used to inform colorectal cancer screening guidelines: Accuracy and implications. *Med Decis Making*. 2016;36(5):604-614.
- 77. Buskermolen M, Gini A, Naber SK, Toes-Zoutendijk E, de Koning HJ, Lansdorp-Vogelaar I. Modeling in colorectal cancer screening: Assessing external and predictive validity of MISCAN-Colon microsimulation model using NORCCAP trial results. *Med Decis Making*. 2018;38(8):917-929.
- 78. DeYoreo M, Lansdorp-Vogelaar I, Knudsen AB, Kuntz KM, Zauber AG, Rutter CM. Validation of colorectal cancer models on long-term outcomes from a randomized controlled trial. *Med Decis Making*. (in press).
- 79. Atkin W, Wooldrage K, Parkin DM, et al. Long term effects of once-only flexible sigmoidoscopy screening after 17 years of follow-up: the UK Flexible Sigmoidoscopy Screening randomised controlled trial. *Lancet.* 2017;389(10076):1299-1311.
- 80. Shapiro JA, Bobo JK, Church TR, et al. A comparison of fecal immunochemical and high-sensitivity guaiac tests for colorectal cancer screening. *Am J Gastroenterol*. 2017;112(11):1728-1735.
- 81. Ahlquist DA, Sargent DJ, Loprinzi CL, et al. Stool DNA and occult blood testing for screen detection of colorectal neoplasia. *Ann Intern Med.* 2008;149(7):441-450, W481.
- 82. Calderwood AH, Thompson KD, Schroy PC, 3rd, Lieberman DA, Jacobson BC. Good is better than excellent: bowel preparation quality and adenoma detection rates. *Gastrointest Endosc*. 2015;81(3):691-699 e691.
- 83. Rex DK, Schoenfeld PS, Cohen J, et al. Quality indicators for colonoscopy. *Gastrointest Endosc*. 2015;81(1):31-53.
- 84. van Hees F, Zauber AG, Klabunde CN, Goede SL, Lansdorp-Vogelaar I, van Ballegooijen M. The appropriateness of more intensive colonoscopy screening than recommended in Medicare beneficiaries: a modeling study. *JAMA Intern Med*. 2014;174(10):1568-1576.
- 85. Gatto NM, Frucht H, Sundararajan V, Jacobson JS, Grann VR, Neugut AI. Risk of perforation after colonoscopy and sigmoidoscopy: a population-based study. *J Natl Cancer Inst.* 2003;95(3):230-236.
- 86. Berrington de Gonzalez A, Kim KP, Knudsen AB, et al. Radiation-related cancer risks from CT colonography screening: a risk-benefit analysis. *AJR Am J Roentgenol*. 2011;196(4):816-823.

- 87. Gupta S, Lieberman D, Anderson JC, et al. Recommendations for follow-up after colonoscopy and polypectomy: A consensus update by the US Multi-Society Task Force on Colorectal Cancer. *Am J Gastroenterol.* 2020;115(3):415-434.
- 88. Mandelblatt JS, Stout NK, Schechter CB, et al. Collaborative modeling of the benefits and harms associated with different U.S. breast cancer screening strategies. *Ann Intern Med.* 2016;164(4):215-225.
- 89. Hanmer J, Lawrence WF, Anderson JP, Kaplan RM, Fryback DG. Report of nationally representative values for the noninstitutionalized US adult population for 7 health-related quality-of-life scores. *Med Decis Making*. 2006;26(4):391-400.
- 90. Swan JS, Kong CY, Hur C, et al. Comparing morbidities of testing with a new index: screening colonoscopy versus core-needle breast biopsy. *J Am Coll Radiol*. 2015;12(3):295-301.
- 91. Jonas DE, Russell LB, Sandler RS, Chou J, Pignone M. Patient time requirements for screening colonoscopy. *Am J Gastroenterol*. 2007;102(11):2401-2410.
- 92. Neumann PJ, Cohen JT, Weinstein MC. Updating cost-effectiveness--the curious resilience of the \$50,000-per-QALY threshold. *N Engl J Med.* 2014;371(9):796-797.
- 93. Owens DK, Qaseem A, Chou R, Shekelle P. High-value, cost-conscious health care: concepts for clinicians to evaluate the benefits, harms, and costs of medical interventions. *Ann Intern Med.* 2011;154(3):174-180.
- 94. Braithwaite RS, Meltzer DO, King JT, Jr., Leslie D, Roberts MS. What does the value of modern medicine say about the \$50,000 per quality-adjusted life-year decision rule? *Med Care*. 2008;46(4):349-356.
- 95. Mark DH. Visualizing cost-effectiveness analysis. *JAMA*. 2002;287(18):2428-2429.
- 96. Kaminski MF, Regula J, Kraszewska E, et al. Quality indicators for colonoscopy and the risk of interval cancer. *N Engl J Med.* 2010;362(19):1795-1803.
- 97. Corley DA, Jensen CD, Marks AR, et al. Adenoma detection rate and risk of colorectal cancer and death. *N Engl J Med.* 2014;370(14):1298-1306.
- 98. Shaukat A, Rector TS, Church TR, et al. Longer withdrawal time is associated wwith a reduced incidence of interval cancer after screening colonoscopy. *Gastroenterology*. 2015;149(4):952-957.
- 99. Kaminski MF, Anderson J, Valori R, et al. Leadership training to improve adenoma detection rate in screening colonoscopy: a randomised trial. *Gut.* 2016;65(4):616-624.
- 100. Kaminski MF, Wieszczy P, Rupinski M, et al. Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. *Gastroenterology*. 2017;153(1):98-105.
- 101. Rex DK. Detection measures for colonoscopy: Considerations on the adenoma detection rate, recommended detection thresholds, withdrawal times, and potential updates to measures. *J Clin Gastroenterol.* 2020;54(2):130-135.
- 102. Zhao S, Wang S, Pan P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: A systematic review and meta-analysis. *Gastroenterology*. 2019;156(6):1661-1674 e1611.
- 103. Naber SK, Kuntz KM, Henrikson NB, et al. Cost effectiveness of age-specific screening intervals for people with family histories of colorectal cancer. *Gastroenterology*. 2018;154(1):105-116 e120.

- 104. Cenin DR, Naber SK, de Weerdt AC, et al. Cost-effectiveness of personalized screening for colorectal cancer based on polygenic risk and family history. *Cancer Epidemiol Biomarkers Prev.* 2019.
- 105. Gini A, Meester RGS, Keshavarz H, et al. Cost-effectiveness of colonoscopy-based colorectal cancer screening in childhood cancer survivors. J Natl Cancer Inst. 2019;111(11):1161-1169.
- 106. Lansdorp-Vogelaar I, Gulati R, Mariotto AB, et al. Personalizing age of cancer screening cessation based on comorbid conditions: model estimates of harms and benefits. *Ann Intern Med.* 2014;161(2):104-112.
- 107. van Hees F, Habbema JD, Meester RG, Lansdorp-Vogelaar I, van Ballegooijen M, Zauber AG. Should colorectal cancer screening be considered in elderly persons without previous screening? a cost-effectiveness analysis. *Ann Intern Med.* 2014;160(11):750-759.
- 108. Agrawal S, Bhupinderjit A, Bhutani MS, et al. Colorectal cancer in African Americans. *Am J Gastroenterol.* 2005;100(3):515-523; discussion 514.
- 109. Carethers JM. Screening for colorectal cancer in African Americans: determinants and rationale for an earlier age to commence screening. *Dig Dis Sci.* 2015;60(3):711-721.
- 110. Kauh J, Brawley OW, Berger M. Racial disparities in colorectal cancer. *Curr Probl Cancer*. 2007;31(3):123-133.
- 111. Goding Sauer A, Siegel RL, Jemal A, Fedewa SA. Current prevalence of major cancer risk factors and screening test use in the United States: Disparities by education and race/ethnicity. *Cancer Epidemiol Biomarkers Prev.* 2019;28(4):629-642.
- 112. Siegel RL, Miller KD, Jemal A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970-2014. *JAMA*. 2017;318(6):572-574.
- 113. Wolf AMD, Fontham ETH, Church TR, et al. Colorectal cancer screening for averagerisk adults: 2018 guideline update from the American Cancer Society. *CA Cancer J Clin.* 2018;68(4):250-281.
- 114. Joseph DA, King JB, Richards TB, Thomas CC, Richardson LC. Use of colorectal cancer screening tests by state. *Prev Chronic Dis.* 2018;15:E80.
- 115. Frazier AL, Colditz GA, Fuchs CS, Kuntz KM. Cost-effectiveness of screening for colorectal cancer in the general population. *JAMA*. 2000;284(15):1954-1961.
- 116. Vanness DJ, Knudsen AB, Lansdorp-Vogelaar I, et al. Comparative economic evaluation of data from the ACRIN National CT Colonography Trial with three cancer intervention and surveillance modeling network microsimulations. *Radiology*. 2011;261(2):487-498.
- Jensen CD, Corley DA, Quinn VP, et al. Fecal immunochemical test program performance over 4 rounds of annual screening: A retrospective cohort study. *Ann Intern Med.* 2016;164(7):456-463.
- 118. Rutter CM, Kim JJ, Meester RGS, et al. Effect of time to diagnostic testing for breast, cervical, and colorectal cancer screening abnormalities on screening efficacy: a modeling study. *Cancer Epidemiol Biomarkers Prev.* 2018;27(2):158-164.
- 119. Meester RG, Zauber AG, Doubeni CA, et al. Consequences of increasing time to colonoscopy examination after positive result from fecal colorectal cancer screening test. *Clin Gastroenterol Hepatol.* 2016;14(10):1445-1451 e1448.
- 120. Gingold-Belfer R, Leibovitzh H, Boltin D, et al. The compliance rate for the second diagnostic evaluation after a positive fecal occult blood test: A systematic review and meta-analysis. *United European Gastroenterol J.* 2019;7(3):424-448.

- 121. van der Meulen MP, Lansdorp-Vogelaar I, van Heijningen EM, Kuipers EJ, van Ballegooijen M. Nonbleeding adenomas: Evidence of systematic false-negative fecal immunochemical test results and their implications for screening effectiveness-A modeling study. *Cancer*. 2016;122(11):1680-1688.
- 122. Hubbard RA, Johnson E, Hsia R, Rutter CM. The cumulative risk of false-positive fecal occult blood test after 10 years of colorectal cancer screening. *Cancer Epidemiol Biomarkers Prev.* 2013;22(9):1612-1619.
- 123. Greuter MJ, Demirel E, Lew JB, et al. Long-term impact of the Dutch colorectal cancer screening program on cancer incidence and mortality model-based exploration of the serrated pathway. *Cancer Epidemiol Biomarkers Prev.* 2016;25(1):135-144.
- 124. Irby K, Anderson WF, Henson DE, Devesa SS. Emerging and widening colorectal carcinoma disparities between Blacks and Whites in the United States (1975-2002). *Cancer Epidemiol Biomarkers Prev.* 2006;15(4):792-797.
- 125. Laiyemo AO, Doubeni C, Pinsky PF, et al. Race and colorectal cancer disparities: healthcare utilization vs different cancer susceptibilities. *J Natl Cancer Inst.* 2010;102(8):538-546.
- 126. Mendelsohn RB, Winawer SJ, Jammula A, et al. Adenoma prevalence in backs and whites having equal adherence to screening colonoscopy: The National Colonoscopy Study. *Clin Gastroenterol Hepatol.* 2017;15(9):1469-1470.
- 127. Shavers VL, Brown ML. Racial and ethnic disparities in the receipt of cancer treatment. *J Natl Cancer Inst.* 2002;94(5):334-357.
- 128. Esnaola NF, Ford ME. Racial differences and disparities in cancer care and outcomes: where's the rub? *Surg Oncol Clin N Am.* 2012;21(3):417-437, viii.
- 129. Detsky AS, Redelmeier DA. Measuring health outcomes--putting gains into perspective. *N Engl J Med.* 1998;339(6):402-404.
- 130. Wright JC, Weinstein MC. Gains in life expectancy from medical interventions-standardizing data on outcomes. *N Engl J Med.* 1998;339(6):380-386.
- 131. Rex DK, Schoenfeld PS, Cohen J, et al. Quality indicators for colonoscopy. *Am J Gastroenterol.* 2015;110(1):72-90.
- 132. Rogal SS, Pinsky PF, Schoen RE. Relationship between detection of adenomas by flexible sigmoidoscopy and interval distal colorectal cancer. *Clin Gastroenterol Hepatol*. 2013;11(1):73-78.
- 133. Schroy PC, 3rd, Coe A, Chen CA, O'Brien MJ, Heeren TC. Prevalence of advanced colorectal neoplasia in white and black patients undergoing screening colonoscopy in a safety-net hospital. *Ann Intern Med.* 2013;159(1):13-20.
- 134. van Rijn JC, Reitsma JB, Stoker J, Bossuyt PM, van Deventer SJ, Dekker E. Polyp miss rate determined by tandem colonoscopy: a systematic review. *Am J Gastroenterol*. 2006;101(2):343-350.
- 135. Weissfeld JL, Schoen RE, Pinsky PF, et al. Flexible sigmoidoscopy in the PLCO cancer screening trial: results from the baseline screening examination of a randomized trial. *J Natl Cancer Inst.* 2005;97(13):989-997.
- 136. Johnson CD, Chen MH, Toledano AY, et al. Accuracy of CT colonography for detection of large adenomas and cancers. *N Engl J Med.* 2008;359(12):1207-1217.
- 137. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov).
 SEER*Stat Database: Incidence SEER 9 Regs Research Data, Nov 2018 Sub (1975-2016) <Katrina/Rita Population Adjustment> Linked To County Attributes Total U.S.,

1969-2017 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2019, based on the November 2018 submission.

- 138. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov). SEER*Stat Database: Incidence - SEER 9 Regs Research Data with Delay-Adjustment, Malignant Only, Nov 2018 Sub (1975-2016) <Katrina/Rita Population Adjustment> -Linked To County Attributes - Total U.S., 1969-2017 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2019, based on the November 2018 submission.
- 139. Clegg LX, Feuer EJ, Midthune DN, Fay MP, Hankey BF. Impact of reporting delay and reporting error on cancer incidence rates and trends. *J Natl Cancer Inst.* 2002;94(20):1537-1545.
- 140. Midthune D, Fay M, Clegg L, Feuer E. Modeling reporting delays and reporting corrections in cancer registry data. *Journal of the American Statistical Association*. 2005;100(469):61-70.
- 141. Smith TR, Wakefield J. A review and comparison of age-period-cohort models for cancer incidence. *Statistical Science*. 2016;31(4):591-610.
- 142. Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. *Cancer*. 2015;121(4):589-597.
- 143. Kirkegaard P, Edwards A, Larsen MB, Andersen B. Waiting for diagnostic colonoscopy: a qualitative exploration of screening participants' experiences in a FIT-based colorectal cancer screening program. *Patient Prefer Adherence*. 2018;12:845-852.
- 144. Ness RM, Holmes AM, Klein R, Dittus R. Utility valuations for outcome states of colorectal cancer. *Am J Gastroenterol*. 1999;94(6):1650-1657.
- 145. Dachman AH. Virtual colonoscopy. https://radiology.uchicago.edu/sectionsprograms/virtual-colonoscopy. Accessed December 16, 2019.
- 146. Maryland Digestive Disease Center. Patient instructions for flexibe sigmoidoscopy https://www.capitaldigestivecare.com/assets/downloads/PREP-Flexible_Sigmoidoscopy_02-17-15_English.pdf. Accessed December 16, 2019.
- 147. Forest Canyon Endoscopy and Surgery Center. Flexile sigmoidoscopy preparation instructions https://www.nazgastro.com/docs/Flexible%20Sigmoidoscopy.pdf. Accessed December 16, 2019.

Table 1. Comparison of Natural History Model Structures

Property	SimCRC	CRC-SPIN	MISCAN
Adenoma risk			
Mechanism	Logistic function	Poisson process	Poisson process
Risk varies:			
Randomly across individuals	Yes	Yes	Yes
Systematically with age and sex	Yes	Yes	Yes
Adenoma growth			
Mechanism	Time in each size category	Growth curve	Time in each size category
Size modeled as continuous	No	Yes	No
Risk varies:			
Randomly across individuals	Yes	Yes	Yes
Systematically with location	Yes*	Yes*	No
Transition times correlated across size categories	No	Yes	Yes
Transition to preclinical CRC			
Mechanism	Logistic function	Adenoma size at transition	Overall transition probability
Risk varies:			p. 00000000
Randomly across adenomas by size within individuals	Yes	Yes	No [†]
Systematically with:			
Sex	Yes	Yes	No
Age	Yes	Yes [∎]	Yes [‡]
Adenoma size	No	Yes	Yes
Location	Yes*	Yes*	No
Transition times correlated across preclinical stages	No	Not applicable	Yes
Transition to clinical CRC			
Mechanism	Time to transition	Time to transition	Time to transition
Transition times:			
Vary randomly across CRCs within individuals	Yes	Yes	Yes
Vary systematically with:			
Sex	No	No	Yes
Location	Yes [§]	Yes§	Yes§
Correlated with duration of preclinical CRC	No	No	Yes

* Varies by proximal colon, distal colon, and rectum for SimCRC and by colon and rectum for CRC-SPIN.

† The probability of transition is 0 for all non-progressive adenomas and for adenomas <6 mm, 0.3 for progressive adenomas 6 to <10 mm, and 1 for progressive adenomas ≥10 mm.</p>

‡ The probability that an adenoma is progressive depends on age at adenoma initiation.

Depends on age at adenoma initiation.

§ Varies by proximal colon, distal colon and rectum for SimCRC and MISCAN and by colon and rectum for CRC-SPIN.

Table 2. Estimated Dwell Times Among Colorectal Cancer Cases: Mean (Interquartile Ranges) in Years Across Simulated Individuals, by Model

Dwell time component	SimCRC	CRC-SPIN	MISCAN
Adenoma onset to preclinical colorectal cancer onset (adenoma dwell time)	21.2 (12-29)	25.4 (16-33)	12.5 (4-18)
Preclinical colorectal cancer onset to colorectal cancer diagnosis (sojourn time)	4.0 (2-5)	3.6 (2-5)	4.7 (1-7)
Adenoma onset to colorectal cancer diagnosis (total dwell time)	25.2 (15-33)	29.0 (20-37)	17.2 (9-24)

Note: Dwell time is calculated for diagnosed colorectal cancers and is defined as the time from adenoma onset to symptomdetection of colorectal cancer in the absence of screening. Table 3. Age-Adjusted Rates of Colorectal Cancer Among 20- to 44-Year-Olds by Period ofDiagnosis (1975-1979 and 2012-2016) From the Surveillance, Epidemiology, and End ResultsProgram, With and Without Adjustment for Delays in Reporting

Delay-adjustment status/ Period of diagnosis	Cases per 100,000 (95% CI)	Incidence rate ratio (95% CI)
With delay adjustment		
1975-1979	4.92 (4.74, 5.12)	
2012-2016	6.15 (5.98, 6.32)	1.25 (1.19, 1.31)
Without delay adjustment		
1975-1979	4.94 (4.68, 5.21)	
2012-2016	6.06 (5.84, 6.29)	1.23 (1.15, 1.31)

Modality	Age to begin screening, y	Age to end screening*, y	Screening interval, y	Number of (unique) runs
Strategies with once-o	nly screening [†]			
COL	45, 50, 55, 60, 65		Once only	5 (5)
SIG	45, 50, 55, 60, 65		Once only	5 (5)
Strategies with repeate	ed screening using	the same modality/n	nodalities	
COL	45, 50, 55	70, 75, 80, 85	5, 10, 15	36 (26)
СТС	45, 50, 55	70, 75, 80, 85	5, 10	24 (20)
SIG	45, 50, 55	70, 75, 80, 85	5, 10	24 (20)
FIT	45, 50, 55	70, 75, 80, 85	1, 2, 3	36 (36)
HSgFOBT [†]	45, 50, 55	70, 75, 80, 85	1, 2, 3	36 (36)
sDNA-FIT	45, 50, 55	70, 75, 80, 85	1, 2, 3	36 (36)
SIG + FIT [‡]	45, 50, 55	70, 75, 80, 85	10 (SIG) + 1 (FIT), 10 (SIG) + 2 (FIT)	24 (24)
Strategies with screen	ing using different i	modalities by age		
Annual FIT 45-49y then COL	50 (COL)	70, 80 (COL)	10 (COL)	2 (2)
Annual FIT 50-54y then COL	55 (COL)	75, 85 (COL)	10 (COL)	2 (2)
COL at 45y then FIT	55 (FIT)	70, 75, 80, 85 (FIT)	1 (FIT)	4 (4)
COL at 50y then FIT	60 (FIT)	70, 75, 80, 85 (FIT)	1 (FIT)	4 (4)
Additional strategy				
No screening				1 (1)
TOTAL NUMBER OF F	RUNS FOR BASE-C			239 (221)

Table 4. Screening Strategies Evaluated by the Models

FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; HSgFOBT – high sensitivity guaiac-based fecal occult blood test (i.e., Hemoccult SENSA); sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test, i.e., Cologuard); SIG – sigmoidoscopy without biopsy; CTC – computed tomographic colonography; COL – colonoscopy.

* Age to end screening is the last age at which screening happens; screening may happen during this age but no later.

† Outcomes are included in Appendix 4 (HSgFOBT), Appendix 5 (once-only colonoscopy) and Appendix 6 (once-only sigmoidoscopy).

‡ If performed at the same time, assume FIT is performed first, and SIG is only performed if FIT is negative. If FIT is positive, skip the SIG and go directly to colonoscopy.

	Age to	o begin-age to end, inter	·val (y)
Modality/ screening ages (y)	Strategy	Equivalent strategy 1	Equivalent strategy 2
Colonoscopy/sigmoidosco	opy/CT colonography		
45, 55, 65, 75	45-75, 10	45-80, 10	
50, 60, 70	50-70, 10	50-75, 10	
50, 60, 70, 80	50-80, 10	50-85, 10	
55, 65, 75	55-75, 10	55-80, 10	
Colonoscopy			
45, 60, 75	45-75, 15	45-80, 15	45-85, 15
50, 65	50-70, 15	50-75, 15	
50, 65, 80	50-80, 15	50-85, 15	
55, 70	55-70, 15	55-75, 15	55-80, 15

Table 5. Strategies With Screening at the Same Ages Despite Different Ages to End Screening

Note: Table 4 notes that there are 239 screening strategies but only 221 unique strategies, therefore 18 strategies are effectively equivalent to another strategy with a different age to end screening. These equivalent strategies are listed here. For example, colonoscopy from ages 50-75 every 10 years and from 50-70 every 10 years both involved colonoscopy screening at ages 50, 60, and 70.

Table 6. Comparison of the 2020 and 2016 CISNET Colorectal Cancer Screening Analyses for theU.S. Preventive Services Task Force

Characteristic	2020 analysis	2016 analysis
Simulation models	SimCRC, CRC-SPIN, MISCAN	SimCRC, CRC-SPIN, MISCAN
Cohort of interest	US average-risk 40-year-olds*	US average-risk 40-year-olds*
Cohort year of birth	1980	1975
US life table (for other-cause mortality rates)	2017	2009
CRC incidence	Models calibrated to incidence rate ratio from SEER for 20-44-year-olds in 2012-2016 vs. 1975-1979	Models calibrated to rates from 1975-1979 SEER data
CRC relative survival	SEER (1975-2003) [†]	SEER (1975-2003) [†]
Age to begin screening (y)	45, 50, 55	45, 50, 55
Age to end screening (y)	70, 75, 80, 85	75, 80, 85
Stool based screening modalities	HSgFOBT (1, 2, 3) [‡]	HSgFOBT (1, 2, 3)
(intervals (y))	FIT (1, 2, 3)	FIT (1, 2, 3)
	sDNA-FIT (1, 2, 3)	sDNA-FIT (1, 3, 5)
Other screening modalities	COL (5, 10, 15)	COL (5, 10, 15)
(intervals (y))	SIG (5, 10)	SIG (5, 10)
	SIG + FIT (10_1, 10_2)	SIG + FIT (5_2, 5_3, 10_1, 10_2)
	Not simulated	SIG + HSgFOBT (5_2, 5_3, 10_1, 10_2)
	CTC (5, 10)	CTC (5, 10)
	Once-only COL to FIT (1)	Not simulated
	Five years of FIT (1) to COL (10)	Not simulated
Management of persons with a false-positive non-colonoscopy test [§]	Resume screening with original modality and schedule 10 years after the false-positive test	Resume screening with original modality and schedule 10 years after the false-positive test
Age to end surveillance	85, assuming the last surveillance colonoscopy detected no adenomas	85, assuming the last surveillance colonoscopy detected no adenomation
Adherence with all procedures	100%	100%

COL – colonoscopy; CTC – computed tomographic colonography; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); HSgFOBT – high sensitivity guaiac-based fecal occult blood test; SEER – Surveillance, Epidemiology and End Results Program; SIG – sigmoidoscopy.

* Previously unscreened for colorectal cancer and free of diagnosed colorectal cancer.

[†] CRC relative survival estimates from models fit to SEER data from 1975-2003 that predict stage-specific survival as a function of age at diagnosis, time since diagnosis, diagnosis year, sex, and (optionally) race.⁵⁶ Rather than project continued improvements in relative survival for persons diagnosed after 2003 (the last year of diagnosis included in the statistical analysis), we fixed survival at rates predicted for cases diagnosed in 2003.

[‡] Due to uncertainty in the test performance characteristics of HSgFOBT, outcomes with this modality are included in Appendix 4.

§ A positive non-colonoscopy test followed by a normal diagnostic colonoscopy (i.e., no adenomas or colorectal detected).

Table 7. Screening Test Characteristics Used in the Analysis

Test characteristic	Base-case value	Source	Value in sensitivity analysis	Source
HSgFOBT (per person)		Lin, 2020 ¹⁶	Not varied	Not applicable
Specificity	0.97			
Sensitivity for adenomas 1 to <6 mm Sensitivity for adenomas 6 to <10 mm	0.05*			
Sensitivity for adenomas ≥10 mm	0.11 [†]			
Sensitivity for colorectal cancer	0.68			
FIT (per person)		Lin, 2020 ¹⁶	Not varied	Not applicable
Specificity	0.97			
Sensitivity for adenomas 1 to <6 mm Sensitivity for adenomas 6 to <10 mm	0.07*			
Sensitivity for adenomas ≥10 mm	0.22†			
Sensitivity for colorectal cancer	0.74			
sDNA-FIT (per person)		Lin, 2020 ¹⁶	Not varied	Not applicable
Specificity	0.91			
Sensitivity for adenomas 1 to <6 mm Sensitivity for adenomas 6 to <10 mm	0.15*			
Sensitivity for adenomas ≥10 mm	0.42†			
Sensitivity for colorectal cancer	0.94			
Colonoscopy (within reach, per lesion) [‡]				
Specificity	0.86 [§]	Schroy, 2013 ¹³³	Not varied	Not applicable
Sensitivity for adenomas 1 to <6 mm	0.75	van Rijn, 2006 ¹³⁴	0.69	Zhao, 2019 ¹⁰²
Sensitivity for adenomas 6 to <10 mm Sensitivity for adenomas ≥10 mm	0.85 0.95	van Rijn, 2006 ¹³⁴ van Rijn, 2006 ¹³⁴	0.81 0.91	Zhao, 2019 ¹⁰² Zhao, 2019 ¹⁰²
Sensitivity for colorectal cancer	0.95	By assumption	Not varied	Not applicable
	0.00	By assumption		
SIG (within reach, per lesion) Specificity	0.87§	Weissfeld, 2005 ¹³⁵	Not varied	Not applicable
Specificity Sensitivity for adenomas 1 to <6 mm	0.873	By assumption		
Sensitivity for adenomas 6 to <10 mm	0.85	By assumption		
Sensitivity for adenomas ≥10 mm	0.95	By assumption		
Sensitivity for colorectal cancer	0.95	By assumption		
CTC (per lesion)		Johnson, 2008 ¹³⁶	Not varied	Not applicable
Specificity	0.88 ^{II}			
Sensitivity for adenomas 1 to <6 mm				
Sensitivity for adenomas 6 to <10 mm	0.57			
Sensitivity for adenomas ≥10 mm	0.84			
Sensitivity for colorectal cancer	0.84			

CTC – computed tomographic colonography; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); HSgFOBT – high sensitivity guaiac-based fecal occult blood test; SIG – sigmoidoscopy; -- indicates sensitivity is not provided because adenoma size is smaller than the referral threshold for a colonoscopy of 6 mm.

* Sensitivity for persons with nonadvanced adenomas. For persons with 1 to <6 mm adenomas, we assume that the sensitivity is equal to the positivity rate in persons without adenomas. The sensitivity for persons with 6 to <10 mm adenomas was chosen such that the weighted average sensitivity for persons with 1 to < 6 mm and with 6 to <10 mm adenoma(s) is equal to the sensitivity for non-advanced adenomas.

† Sensitivity for persons with advanced adenomas (i.e., adenomas ≥10 mm and/or adenomas with advanced histology). Sensitivity was not reported for the subset of ≥10 mm adenomas.

[‡] We assume the same test characteristics for screening, diagnostic follow-up, surveillance colonoscopies. We assume no correlation in findings between CTC or SIG and subsequent diagnostic colonoscopy.

§ The lack of specificity with endoscopy reflects the detection of non-adenomatous polyps, which, in the case of sigmoidoscopy, may lead to unnecessary diagnostic colonoscopy, and in the case of colonoscopy, leads to unnecessary polypectomy, which is associated with an increased risk of complications.

The lack of specificity with CTC reflects the detection of ≥ 6 mm non-adenomatous lesions, artifacts, stool, and adenomas smaller than the 6 mm threshold for referral to colonoscopy that are measured as ≥ 6 mm.

Finding at second-most recent colonoscopy* [†]	Finding at first-most recent colonoscopy* [†]	Interval [‡] to next colonoscopy, y
No prior colonoscopy	Normal colonoscopy	See note below§
	1-2 adenomas <10 mm	7
	3-4 adenomas <10 mm	3
	5-10 adenomas <10 mm or any adenoma ≥10 mm	3
	> 10 adenomas	1
Normal colonoscopy	Normal colonoscopy	10
	1-2 adenomas <10 mm	7
	3-4 adenomas <10 mm	3
	5-10 adenomas <10 mm or any adenoma ≥10 mm	3
	> 10 adenomas	1
1-2 adenomas <10 mm	Normal colonoscopy	10
	1-2 adenomas <10 mm	7
	3-4 adenomas <10 mm	3
	5-10 adenomas <10 mm or any adenoma ≥10 mm	3
	> 10 adenomas	1
3-4 adenomas <10 mm	Normal colonoscopy	10
	1-2 adenomas <10 mm	7
	3-4 adenomas <10 mm	3
	5-10 adenomas <10 mm or any adenoma ≥10 mm	3
	> 10 adenomas	1
5-10 adenomas <10 mm	Normal colonoscopy	5
or	1-2 adenomas <10 mm	5
any adenoma ≥10 mm	3-4 adenomas <10 mm	3
	5-10 adenomas <10 mm or any adenoma ≥10 mm	3
	> 10 adenomas	1
> 10 adenomas of any	Normal colonoscopy	5
	1-2 adenomas <10 mm	5
	3-4 adenomas <10 mm	3

Note: Intervals are based on surveillance recommendations for individuals with a personal history of adenomas from the Multi-Society Task Force on Colorectal Cancer.⁸⁷

5-10 adenomas <10 mm or any adenoma ≥10 mm

>10 adenomas

* A normal colonoscopy is one in which no adenomas, sessile-serrated polyps (not currently simulated), or colorectal cancer is detected.

[†] This table omits the case where colorectal cancer is detected at a screening, diagnostic, or surveillance colonoscopy because the CISNET colorectal cancer models do not simulate detailed events following colorectal cancer diagnosis.

‡ The Multi-Society Task Force provides a range for some intervals (e.g., the interval for 3-4 adenomas <10 mm is 3-5 years). In such cases, we selected the shortest interval provided.

§ A person whose first screening or diagnostic colonoscopy is normal does not enter surveillance but instead resumes screening with the original modality 10 years after the normal colonoscopy. The exception to the 10-year waiting period is when the first colonoscopy is a screening colonoscopy with an *x*-year interval, where x > 10. In that case, the next colonoscopy is in *x* years.

3

1

Table 9. Efficient Frontier Status and Efficiency Ratios (i.e., Number of Additional Colonoscopies per Additional Life-Year Gained) for Colorectal Cancer Screening Strategies Highlighted by the USPSTF in 2016, by Model (Benefit of Screening = LYG; IRR = 1.19)

	Efficient front	tier status (efficien	cy ratio*), by model
Strategy	SimCRC	CRC-SPIN	MISCAN
COL 50-75, 10	Dominated	Dominated	Efficient (ER = 28)
SIG 50-75, 5	Dominated	Dominated	Near efficient [‡] (ER = 19)
SIG+FIT 50-75, 10_1	Dominated	Dominated	Near efficient [‡] (ER = 18)
CTC 50-75, 5	Dominated	Dominated	Efficient (ER = 9)
FIT 50-75, 1 [†]	Dominated	Dominated	Near efficient [‡] (ER = 29)
sDNA-FIT 50-75, 1†	Dominated	Dominated	Dominated
sDNA-FIT 50-75, 3 [†]	Dominated	Dominated	Dominated

COL - colonoscopy; SIG – sigmoidoscopy; CTC – computed tomographic colonography FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); ER = efficiency ratio.*

* Expressed as the number of additional colonoscopies per additional life-year gained.

[†] For FIT and sDNA-FIT, efficient frontier status and efficiency ratio did not change with inclusion of HSgFOBT. HSgFOBT was highlighted by the USPSTF in 2016 but is not included in this table.

 \ddagger Dominated strategy with \leq 3 days of life gained per person of the efficient frontier.

Table 10. Range of Outcomes Over the Lifetime of a Cohort of 40-Year-Olds Across the SimCRC, CRC-SPIN, and MISCAN Models With No Screening and With Efficient and Near-Efficient Colonoscopy Screening Strategies Among the Total Population and by Subgroups Defined by Sex and Race (Benefit of Screening = LYG; IRR = 1.19)

										0						tion gro	up								
		Colonos	copies p	oer 1000		Colorectal cancer cases per 1000					Colorectal cancer deaths per 1000					Days	of life	gained	l per pe	erson	Efficiency ratio (Δ COL / Δ LYG)				
Strategy	ТР	WM	вМ	WF	BF	TP	WM	BM	WF	BF	ТР	WM	вМ	WF	BF	ТР	WM	вМ	WF	BF	TP	WM	вМ	WF	BF
No screening	77- 85	80- 92	68- 78	74- 78	68- 72	77- 85	80- 92	68- 78	74- 78	68- 72	32- 34	33- 37	31- 35	30- 32	31- 33	0	0	0	0	0					
COL 55-70, 15	2532- 2630	2560- 2658	2320- 2411	2522- 2647	2387- 2503	21- 40	21- 44	19- 39	21- 38	19- 35	7- 11	7- 12	8- 12	7- 10	7- 11	91- 104	92- 106	81- 96	89- 98	88- 99					
COL 50-70, 15	2734-	2788-	2575-	2695-	2580-	18-	17-	15-	19-	17-	6-	6-	6-	6-	7-	96-	98-	87-	94-	93-	6*-	7-	8-	5*-	6*-
	2868	2929	2704	2855	2728	40	44	38	38	35	11	12	12	10	11	116	119	108	110	111	18	17	18	17	18
COL 45-70, 15	2829-	2903-	2732-	2768-	2678-	18-	16-	14-	19-	18-	6-	6-	5-	6-	7-	97-	99-	89-	93-	93-	6-	7-	8-	5-	5-
	3006	3104	2916	2966	2862	41	45	39	39	36	12	13	13	11	12	123	125	115	116	118	85*	52*	45*	26*	280*
COL 45-75, 15	3463-	3475-	3199-	3472-	3311-	14-	13-	12-	15-	14-	4-	4-	4-	4-	4-	103-	104-	93-	99-	99-	38*-	35*-	33*-	44*-	40*-
	3558	3620	3340	3567	3404	37	41	36	35	33	10	10	11	9	10	129	131	120	122	124	59*	70*	72*	55*	50*
COL 45-70, 10	3679-	3714-	3483-	3661-	3532-	13-	12-	11-	15-	14-	4-	4-	4-	4-	5-	107-	109-	98-	103-	103-	34-	33-	32-	38-	35-
	3782	3865	3623	3788	3650	37	40	35	35	32	10	10	10	9	10	132	134	123	125	127	45	49	49	55	50
COL 45-75, 10	4212-	4180-	3865-	4268-	4080-	12-	11-	10-	12-	11-	3-	4-	4-	3-	3-	110-	112-	100-	106-	106-	52-	48-	46-	57-	51-
	4300	4306	3988	4318	4129	34	38	33	32	30	8	9	9	8	8	135	137	126	128	130	112	143	142	100	93
COL 45-85, 10	4449-	4341-	3994-	4572-	4343-	11-	11-	10-	12-	11-	3-	3-	3-	2-	3-	110-	112-	100-	107-	107-	227*-	228*-	187*-	270*-	219*-
	4566	4504	4136	4653	4419	34	38	33	32	30	8	9	9	7	8	135	137	126	128	130	828*	870*	395*	574*	416*
COL 45-70, 5	5626-	5456-	5129-	5802-	5596-	10-	10-	9-	11-	10-	3-	3-	3-	2-	3-	116-	118-	106-	112-	112-	84-	74-	74-	95-	92-
	5789	5689	5347	5917	5710	32	35	30	30	28	8	8	8	7	8	138	140	129	130	133	180*	187	203	206	185*
COL 45-75, 5	6016-	5764-	5384-	6270-	6020-	10-	9-	8-	9-	9-	3-	3-	3-	2-	2-	117-	119-	107-	113-	113-	116-	110-	103-	129-	115-
	6235	6060	5653	6444	6186	31	34	30	29	27	7	8	8	7	7	139	141	130	131	134	344	450	414	322	299
COL 45-80, 5	6320-	5989-	5560-	6649-	6354-	9-	9-	8-	9-	8-	2-	3-	3-	2-	2-	118-	119-	108-	114-	114-	169-	163-	145-	210-	175-
	6581	6333	5867	6866	6558	30	33	29	28	26	7	7	8	6	7	139	141	130	131	134	736	1030	843	680	605
COL 45-85, 5	6516- 6817	6122- 6506	5660- 5997	6909- 7167	6579- 6819	9- 30	9- 33	8- 29	9- 28	8- 26	2- 7	3- 7	3- 8	2- 6	2- 7	118- 139	119- 141	108- 130	114- 132	114- 134	926- 2190	934- 8876	724- 4827	1100- 3557	863-

TP - total population; WM - white males; BM - black males; WF - white females; BF - black females; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient.

Table 11. Range of Outcomes Over the Lifetime of a Cohort of 40-Year-Olds Across the SimCRC, CRC-SPIN, and MISCAN Models With No Screening and With Efficient and Near-Efficient FIT Strategies Among the Total Population and by Subgroups Defined by Sex and Race (Benefit of Screening = LYG; IRR = 1.19)

									Rar	nge of o	utcome	s acros	s mode	els, by	popula	tion gro	up								
		Colonos	copies p	oer 1000		C	Colorectal cancer cases per 1000					Colorectal cancer deaths per 1000					of life	gained	d per pe	erson	Efficiency ratio (Δ COL / Δ LYG)				
Strategy	ТР	WM	вм	WF	BF	TP	WM	BM	WF	BF	TP	WM	BM	WF	BF	ТР	WM	BM	WF	BF	ТР	WМ	BM	WF	BF
No screening	77- 85	80- 92	68- 78	74- 78	68- 72	77- 85	80- 92	68- 78	74- 78	68- 72	32- 34	33- 37	31- 35	30- 32	31- 33	0	0	0	0	0					
FIT 55-70, 3	624- 754	687- 845	607- 747	566- 668	529- 624	47- 65	47- 70	42- 61	46- 62	43- 57	17- 20	17- 20	16- 20	15- 18	17- 19	63- 74	64- 77	55- 67	61- 70	59- 67					
FIT 50-70, 3	691-	760-	682-	627-	591-	43-	43-	37-	43-	40-	15-	15-	15-	14-	16-	67-	69-	60-	66-	63-	2-	3-	3-	2-	2-
	858	968	869	754	708	64	69	60	61	56	20	20	20	18	19	84	88	77	80	78	6*	10*	7*	6*	6*
FIT 45-70, 3	810-	886-	801-	739-	699-	38-	38-	33-	39-	36-	13-	13-	12-	13-	14-	75-	77-	67-	73-	70-	3-	4-	4-	3-	3-
	1007	1137	1027	883	834	62	67	58	59	55	18	19	19	17	18	97	100	90	92	90	6*	6*	6*	7*	7*
FIT 45-75, 3	917-	1000-	894-	842-	793-	36-	35-	31-	36-	34-	11-	11-	11-	10-	11-	82-	84-	73-	80-	78-	5-	6-	6-	5-	5-
	1110	1243	1114	984	926	60	65	57	57	53	16	16	16	14	16	104	108	96	99	97	7*	9*	9*	9*	10*
FIT 45-80, 3	971-	1054-	937-	896-	840-	35-	34-	30-	35-	33-	10-	10-	11-	9-	10-	85-	87-	75-	83-	80-	6-	6-	6-	7-	7-
	1163	1294	1154	1039	974	60	65	57	56	52	14	15	15	13	14	107	110	98	102	99	8*	10*	10*	7	7*
FIT 45-75, 2	1147-	1239-	1113-	1063-	1001-	29-	28-	25-	30-	28-	9-	8-	8-	8-	9-	93-	96-	84-	91-	88-	7-	7-	7-	8-	7-
	1361	1512	1360	1219	1149	55	60	52	52	48	13	13	14	12	13	116	119	107	109	108	9	11	11	8	10*
FIT 45-80, 2	1220-	1307-	1170-	1138-	1068-	28-	27-	24-	28-	26-	7-	7-	8-	6-	8-	96-	98-	86-	94-	91-	8-	8-	8-	8-	8-
	1426	1574	1409	1289	1211	54	59	52	51	47	12	12	13	11	12	119	122	109	112	111	12	19*	16*	13	14*
FIT 45-85, 2	1288-	1358-	1209-	1218-	1138-	27-	26-	24-	28-	26-	6-	6-	7-	5-	7-	98-	100-	87-	96-	93-	12-	13-	11-	12-	11-
	1492	1632	1453	1363	1275	54	59	52	51	47	11	11	12	10	11	120	123	110	114	112	25*	22*	19*	21*	17*
FIT 45-75, 1	1602-	1702-	1540-	1513-	1431-	20-	19-	17-	21-	20-	6-	6-	6-	5-	6-	106-	109-	97-	103-	101-	15*-	14*-	13*-	15-	14-
	1824	1990	1805	1670	1581	46	50	44	44	40	10	11	11	10	11	127	131	119	120	120	16	20	22	17	15
FIT 45-80, 1	1710-	1791-	1614-	1633-	1538-	19-	18-	16-	20-	19-	5-	5-	5-	4-	5-	110-	112-	99-	106-	105-	14-	14-	13-	15-	13-
	1923	2080	1876	1780	1678	45	49	43	42	39	9	9	10	8	9	129	133	120	122	123	27	32	28	23	21
FIT 45-85, 1	1769-	1841-	1652-	1717-	1611-	19-	18-	16-	19-	18-	4-	4-	5-	3-	4-	111-	113-	100-	108-	106-	19-	20-	17-	20-	17-
	1990	2136	1919	1859	1747	44	49	43	41	38	8	9	9	7	8	130	133	121	123	123	43	63	52	42	35

TP - total population; WM - white males; BM - black males; WF - white females; BF - black females; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained). * Near efficient.

	Unique strategies		ficient or near-efficient ategies with all models [†]		Range of ou	tcomes pe	er 1000 :	across n	nodels			Efficiency ratio	Alternative ratio
Class of modality	simulated, N	Ν	Strategy	COLs	Non-COL tests [‡]	Compli- cations		CRC deaths	LYG	QALYG	DLG	(∆ COL / ∆ LYG)§	(∆ DLG / ∆ COL)§
Colonoscopy	26	11	COL 55-70, 15	2532-2630	0	13-14	21-40	7-11	250-285	223-265	91-104		
			COL 50-70, 15	2734-2868	0	11-13	18-40	6-11	264-318	237-298	96-116	6*-18	21-61*
			COL 45-70, 15	2829-3006	0	10-12	18-41	6-12	265-336	240-316	97-123	6-85*	4*-63
			COL 45-75, 15	3463-3558	0	15-16	14-37	4-10	281-352	253-331		38*-59*	6*-10*
			COL 45-70, 10	3679-3782	0	12-14	13-37	4-10	292-361	265-340	107-132	34-45	8-11
			COL 45-75, 10	4212-4300	0	15-17	12-34	3-8	301-369	272-347	110-135	52-112	3-7
			COL 45-85, 10	4449-4566	0	17-19	11-34	3-8	302-370	273-347	110-135	227*-828*	0*-2*
			COL 45-70, 5	5626-5789	0	15-17	10-32	3-8	318-377	288-355	116-138	84-180*	2*-4
			COL 45-75, 5	6016-6235	0	17-19	10-31	3-7	321-380	291-357	117-139	116-344	1-3
			COL 45-80, 5	6320-6581	0	19-20	9-30	2-7	323-381	293-358	118-139	169-736	0-2
			COL 45-85, 5	6516-6817	0	20-22	9-30	2-7	323-381	293-358	118-139	926-2190	0-0
COL strategy highlig	ghted in 2016		COL 50-75, 10	3414-3500	0	13-15	15-36	5-9	286-335	257-314	104-122	D, D, 28	D, D, 13
FIT or sDNA-FIT	72	16	FIT 55-70, 3	624-754	4637-4710	5-7	47-65	17-20	171-203	144-181	63-74		
			FIT 50-70, 3	691-858	5663-5757	5-7	43-64	15-20	184-231	156-208	67-84	2-6*	65*-155
			FIT 45-70, 3	810-1007	7299-7435	6-8	38-62	13-18	205-266	175-241	75-97	3-6*	59*-106
			FIT 45-75, 3	917-1110	8300-8475	7-9	36-60	11-16	226-286	192-258	82-104	5-7*	49*-68
			FIT 45-80, 3	971-1163	8866-9043	8-10	35-60	10-14	233-293	198-264	85-107	6-8*	44*-59
			FIT 45-75, 2	1147-1361	11420-11731	8-11	29-55	9-13	256-318	221-289	93-116	7-9	39-50
			FIT 45-80, 2	1220-1426	12249-12576	9-12	28-54	7-12	264-325	227-295	96-119	8-12	29-47
			FIT 45-85, 2	1288-1492	13160-13487	10-13	27-54	6-11	269-329	231-298	98-120	12-25*	14*-31
			FIT 45-75, 1	1602-1824	18950-19680	10-13	20-46	6-10	291-348	256-321	106-127	15*-16	22-25*
			FIT 45-80, 1	1710-1923	20622-21368	11-14	19-45	5-9	300-355	263-326	110-129	14-27	13-27
			FIT 45-85, 1	1769-1990	21850-22567	12-15	19-44	4-8	303-356		111-130	19-43	8-19
			sDNA-FIT 45-80, 2	2012-2181	9928-10167	11-14	18-43	5-9	298-356	262-329	109-130	26*-176*	2*-14*
			sDNA-FIT 45-85, 2	2114-2275	10620-10828	13-15	17-42	4-8	301-358	265-330		69*-375*	1*-5*
			sDNA-FIT 45-75, 1	2462-2617	13494-13888	12-14	15-38	4-9	306-363	272-337	112-133	53-251*	1*-7
			sDNA-FIT 45-80, 1	2614-2758	14608-14966	13-15	14-37	4-8	311-367		114-134	62-104*	4*-6
			sDNA-FIT 45-85, 1	2713-2856	15424-15721	14-16	14-36	3-8	313-368	278-341	114-134	94-111	3-4
			sDNA-FIT 50-75, 3	1405-1576	5939-6074	9-12	26-50	8-12	257-304	223-278	94-111	D, D, D	D, D, D
FIT and sDNA-FIT s	strategies		FIT 50-75, 1	1423-1619	15562-16160	9-12	23-47	7-11	274-316		100-115	D, D, 29*	D, D, 13*
highlighted in 2016			sDNA-FIT 50-75, 1	2156-2295	11132-11463	11-14	18-39	6-9	290-330	257-305	106-121	D, D, D	D, D, D
SIG	20	7	SIG 55-70, 10	907-1340	1623-1708	7-10	35-48	13-16	204-210	182-197	74-77		
			SIG 45-70, 10	1155-1635	2480-2622	7-10	29-45	11-14	234-262	210-246	85-96	4-73*	5*-86
			SIG 45-75, 10	1360-1800	2946-3173	9-12	26-43	9-12	245-278	220-260		13*-18	21-27*
			SIG 45-70, 5	1586-2020	4013-4446	9-11	25-40	9-12	263-302	237-284		11-20	18-34
			SIG 45-75, 5	1680-2119	4389-4935	10-12	24-39	8-11	269-309	241-289	98-113	19-27	13-19
			SIG 45-80, 5	1749-2196	4681-5326	11-13	23-38	7-10	271-311	244-291	99-114	29-49	7-12
			SIG 45-85, 5	1793-2235	4877-5602	12-13	23-38	7-10	272-312	244-292		78-98	4-5
SIG strategy highlig	hted in 2016		SIG 50-75, 5	1510-1927	3646-4134	10-12	26-40	9-11	256-279	229-260	93-102	D, D, 19*	D, D, 19*
SIG+FIT	24	10	SIG+FIT 55-70, 10_2	1230-1547	6084-6685	8-11	27-45	9-13	241-266	213-245	88-97		
		-				-	-						

Table 12. Outcomes for Strategies That Were Efficient or Near Efficient With SimCRC, CRC-SPIN, and MISCAN With Life-Years Gained as the Measure of Screening Benefit and IRR of 1.19

s	Unique strategies		Efficient or near-efficient trategies with all models [†]		Range of out	comes pe	er 1000 a	across n	nodels			Efficiency ratio	Alternative ratio
Class of modality s	imulated, N	Ν	Strategy	COLs	Non-COL tests [‡]	Compli- cations	CRC cases	CRC deaths	LYG	QALYG	DLG	(∆ COL / ∆ LYG)§	(∆ DLG / ∆ COL)§
			SIG+FIT 50-70, 10_2	1512-1835	8519-9277	9-12	22-42	7-11	274-314	243-291	100-115	6*-9	42-63*
			SIG+FIT 45-70, 10_2	1617-1947	10174-11005	9-12	20-42	7-11	280-340	250-316	102-124	5-24*	15*-70
			SIG+FIT 45-75, 10_2	1835-2130	11710-12693	11-13	18-39	5-9	294-354	262-329	108-129	15-22	17-24
			SIG+FIT 45-80, 10_2	1889-2154	12266-13375	11-14	17-39	4-9	296-357	264-331	108-130	15-25	15-24
			SIG+FIT 45-70, 10_1	1903-2148	15867-17141	10-13	17-40	6-10	292-353	261-329	107-129	19*-88*	4*-20*
			SIG+FIT 45-85, 10_2	1988-2235	13131-14286	13-15	17-39	4-8	298-358	265-332	109-131	38*-78*	5*-10*
			SIG+FIT 45-75, 10_1	2102-2331	17858-19217	11-14	15-37	4-9	304-363	272-338	111-133	22*-34	11-17*
			SIG+FIT 45-80, 10_1	2203-2379	19076-20649	12-15	15-37	4-8	307-366	274-340	112-134	21-53	7-17
			SIG+FIT 45-85, 10_1	2293-2463	20204-21763	14-16	14-37	3-8	309-367	275-341	113-134	46-81	5-8
SIG+FIT strategy highl	ighted in 2	016	SIG+FIT 50-75, 10_1	1840-2048	14257-15636	11-13	18-39	6-10	287-330	255-306	105-121	D, D, 18*	D, D, 21*
CTC	20	5	CTC 55-70, 10	939-1029	1695-1705	7-9	32-57	12-19	181-245	159-227	66-90		
			CTC 45-70, 5	1569-1677	4372-4436	9-11	20-45	6-12	271-348	241-326	99-127	11-21*	17*-33
			CTC 45-75, 5	1672-1791	4804-4893	10-13	18-42	5-11	283-355	251-332	103-130	11-21	17-33
			CTC 45-80, 5	1744-1882	5131-5254	11-14	17-40	4-9	288-358	256-335	105-131	13-38	10-28
			CTC 45-85, 5	1790-1939	5348-5504	12-15	17-40	4-9	290-359	257-335	106-131	32-104	4-12
CTC strategy highlighte	ed in 2016		CTC 50-75, 5	1519-1626	4006-4088	10-12	20-43	6-11	268-325	238-302	98-119	D, D, 9	D, D, 41
Once-only	8	5	COL 50; FIT 60-70, 1	2128-2299	5459-6319	9-12	20-46	7-13	259-316	231-295	95-115		
colonoscopy,			COL 45; FIT 55-70, 1	2311-2518	8674-9554	9-12	19-46	6-13	272-345	242-323	99-126	6-12*	31*-58
followed by			COL 45; FIT 55-75, 1	2451-2641	10765-11649	10-13	17-44	5-11	288-357	256-333	105-130	12*-18	20-30*
annual FIT			COL 45; FIT 55-80, 1	2559-2736	12481-13309	11-14	16-42	4-9	297-362	263-338	108-132	11-28	13-34
			COL 45; FIT 55-85, 1	2631-2801	13768-14491	12-15	15-42	4-9	301-364	266-339	110-133	16-46	8-23
Five years of annual	4	3	FIT 50-54, 1; COL 55-75, 10	3197-3282	4352-4419	15-16	16-36	5-9	288-331	257-307	105-121		
FIT, followed by 10-			FIT 45-49, 1; COL 50-70, 10	3458-3561	4492-4555	13-15	14-36	4-9	300-361	270-338	110-132	8-23	16-3
yearly colonoscopy			FIT 45-49, 1; COL 50-80, 10	3850-3967	4492-4555	16-18	13-34	3-8	305-365	274-341	111-133	81-216	2-5
Total	174	57											

Note: For comparison purposes, the strategies highlighted in the 2016 USPSTF recommendations are included (in gray) even though they are not efficient or near-efficient in all 3 models.

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; D – dominated; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

[†] For comparison purposes, the strategies highlighted by the USPSTF in 2016 (in bold italics) are included even though they are not efficient or near-efficient in all 3 models.

‡ For SIG+FIT, this is the sum of the 2 tests. Numbers of each test can be found in Appendix Table 8.4.

§ None of the strategies highlighted by the USPSTF in 2016 were efficient or near efficient in all 3 models. For these strategies, the efficiency ratio and alternative ratio columns indicate whether the 2016 highlighted strategy was dominated and not near efficient (D) or if efficient, the efficiency ratio (or alternative ratio) in the SimCRC, CRC-SPIN, and MISCAN models, respectively. For all other strategies, these columns indicate the range of efficiency ratios/alternative ratios across the 3 models.

Outcomes per 1000 unscreened 40-year-olds free from diagnosed colorectal cancer CRC CRC Stool Compli-LYG SIGs CTCs COLs QALYG DLG Strategy by model cations deaths[†] tests cases Colonoscopy every 10 years to age 75 - current analysis SimCRC COL 50-75, 10 COL 45-75, 10 +2 -4 -2 Difference[‡] +798 +34 +33 +12 **CRC-SPIN** COL 50-75, 10 COL 45-75, 10 **Difference**[‡] +2 -3 -1 +12 +800 +32 +30 MISCAN COL 50-75, 10 COL 45-75, 10 **Difference**[‡] +756 +2 -2 -1 +15 +16 +6 Colonoscopy every 10 years to age 75 – 2016 analysis SimCRC COL 50-70, 10 COL 45-75, 10 **Difference**[‡] +2 -4 -1 +26 +846+28 +10 **CRC-SPIN** COL 50-70, 10 COL 45-75, 10 **Difference**[‡] +856 +2 -3 -1 +19 +18 +7 MISCAN COL 50-70, 10

Table 13. Outcomes From the Current Analysis (IRR = 1.19) and From the 2016 Analysis* for the Colonoscopy Screening Strategy Highlighted by the USPSTF in 2016 and for the Same Strategy But With Screening Beginning at Age 45 Instead of Age 50

SIG = sigmoidoscopy; CTC – computed tomographic colonography; COL – colonoscopy; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

+1

-2

-0.8

+15

* The current and 2016 decision analyses make different assumptions about CRC risk (IRR 1.19 vs 1) and use different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model.

+827

[†] Includes deaths from complications of screening.

COL 45-75, 10

Difference[‡]

‡ Due to rounding, reported difference may not match calculated difference.

+14

+5

Table 14. Outcomes From the Current Analysis (IRR = 1.19) and From the 2016 Analysis* for the FIT Screening Strategy Highlighted by the USPSTF in 2016 and for the Same Strategy But With Screening Beginning at Age 45 Instead of Age 50

		Outcomes	per 1000 uns	screened 40	-year-olds fre	e from diag	nosed colored	ctal cancer		
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Annual fecal immunochem	ical testing to ag	ge 75 – curr	ent analysis							
SimCRC										
FIT 50-75, 1	16160	0	0	1423	9	30	7	316	289	115
FIT 45-75, 1	19680	0	0	1602	10	26	6	348	321	127
Difference [‡]	+3520	0	0	+179	+0.2	-4	-1	+33	+32	+12
CRC-SPIN										
FIT 50-75, 1	15562	0	0	1619	12	23	7	285	266	104
FIT 45-75, 1	18950	0	0	1824	13	20	6	314	293	115
Difference [‡]	+3387	0	0	+205	+0.4	-3	-1	+29	+28	+11
MISCAN										
FIT 50-75, 1	16097	0	0	1445	10	47	11	274	240	100
FIT 45-75, 1	19607	0	0	1620	10	46	10	291	256	106
Difference [‡]	+3510	0	0	+175	+0.2	-1	-0.6	+17	+16	+6
Annual fecal immunochem	ical testing to a	ue 75 – 2016	analysis							
SimCRC		,	,							
FIT 50-75, 1	15778	0	0	1739	10	23	5	260	240	95
FIT 45-75, 1	19196	0	0	1979	10	20	4	287	267	105
Difference [‡]	+3418	0	0	+239	+0.2	-3	-1	+27	+27	+10
CRC-SPIN										
FIT 50-75, 1	15444	0	0	1899	11	20	5	244	231	89
FIT 45-75, 1	18733	0	0	2163	11	17	4	263	250	96
Difference [‡]	+3289	0	0	+263	+0.2	-3	-0.8	+19	+19	+7
MISCAN										
FIT 50-75, 1	15843	0	0	1757	10	35	8	231	205	84
FIT 45-75, 1	19256	0	0	1995	10	34	7	247	221	90
Difference [‡]	+3413	0	0	+238	+0.2	-2	-0.7	+16	+16	+6

FIT – fecal immunochemical testing with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG = sigmoidoscopy; CTC – computed tomographic colonography; COL – colonoscopy; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* The current and 2016 decision analyses make different assumptions about CRC risk (IRR 1.19 vs 1) and use different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model.

[†] Includes deaths from complications of screening.

Table 15. Outcomes From the Current Analysis (IRR = 1.19) and From the 2016 Analysis* for the Annual sDNA-FIT Screening Strategy Highlighted by the USPSTF in 2016 and for the Same Strategy But With Screening Beginning at Age 45 Instead of Age 50

		Outcomes	per 1000 uns	screened 40	-year-olds fre	e from diag	nosed colore	ctal cancer		
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Annual multi-target stool DN	A testing to ag	je 75 – curre	ent analysis							
SimCRC										
sDNA-FIT 50-75, 1	11463	0	0	2156	11	22	6	330	305	121
sDNA-FIT 45-75, 1	13888	0	0	2462	12	19	4	363	337	133
Difference [‡]	+2425	0	0	+305	+0.2	-4	-1	+33	+32	+12
CRC-SPIN										
sDNA-FIT 50-75, 1	11132	0	0	2295	14	18	6	301	281	110
sDNA-FIT 45-75, 1	13494	0	0	2617	14	15	5	331	309	121
Difference [‡]	+2361	0	0	+322	+0.4	-3	-1	+30	+28	+11
MISCAN										
sDNA-FIT 50-75, 1	11315	0	0	2211	12	39	9	290	257	106
sDNA-FIT 45-75, 1	13698	0	0	2515	12	38	9	306	272	112
Difference [‡]	+2383	0	0	+305	+0.2	-1	-0.6	+16	+15	+6
Annual multi-target stool DN	A testing to ac	ie 75 – 2016	analysis							
SimCRC		,• .• _• .•								
sDNA-FIT 50-75, 1	11041	0	0	2601	12	17	4	271	252	99
sDNA-FIT 45-75, 1	13372	0	0	2978	12	14	3	298	278	109
Difference [‡]	+2331	0	0	+378	+0.2	-3	-1	+26	+26	+10
CRC-SPIN										
sDNA-FIT 50-75, 1	10745	0	0	2729	13	13	4	261	249	95
sDNA-FIT 45-75, 1	12989	0	0	3122	13	11	3	279	267	102
Difference [‡]	+2244	0	0	+393	+0.2	-2	-0.7	+18	+18	+7
MISCAN										
sDNA-FIT 50-75, 1	11025	0	0	2662	12	28	6	246	222	90
sDNA-FIT 45-75, 1	13328	0	0	3044	12	27	6	261	236	95
Difference [‡]	+2303	0	0	+382	+0.2	-1	-0.6	+15	+14	+5

sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG = sigmoidoscopy; CTC – computed tomographic colonography; COL – colonoscopy; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* The current and 2016 decision analyses make different assumptions about CRC risk (IRR 1.19 vs 1) and use different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model.

[†] Includes deaths from complications of screening.

Table 16. Outcomes From the Current Analysis (IRR = 1.19) and From the 2016 Analysis* for the Triennial sDNA-FIT Screening Strategy Highlighted by the USPSTF in 2016 and for the Same Strategy But With Screening Beginning at Age 45 Instead of Age 50

		Outcomes	per 1000 uns	screened 40	-year-olds fre	e from diag	nosed colored	ctal cancer		
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Triennial multi-target stool D	NA testing to a	age 75 – cur	rent analysi	is						
SimCRC										
sDNA-FIT 50-75, 3	6074	0	0	1405	9	34	8	304	278	111
sDNA-FIT 45-75, 3	7274	0	0	1582	9	30	7	335	308	122
Difference [‡]	+1201	0	0	+177	+0.2	-4	-1	+31	+30	+11
CRC-SPIN										
sDNA-FIT 50-75, 3	5939	0	0	1576	12	26	8	271	253	99
sDNA-FIT 45-75, 3	7105	0	0	1772	12	23	7	301	281	110
Difference [‡]	+1166	0	0	+196	+0.4	-3	-1	+30	+28	+11
MISCAN										
sDNA-FIT 50-75, 3	6006	0	0	1449	9	50	12	257	223	94
sDNA-FIT 45-75, 3	7204	0	0	1629	10	49	12	273	239	100
Difference [‡]	+1199	0	0	+179	+0.2	-1	-0.6	+16	+15	+6
Triennial multi-target stool D	NA testing to a	age 75 – 201	6 analvsis							
SimCRC	5	J								
sDNA-FIT 50-75, 3	5990	0	0	1701	9	26	6	250	229	91
sDNA-FIT 45-75, 3	7158	0	0	1928	9	23	5	274	254	100
Difference [‡]	+1168	0	0	+226	+0.2	-3	-1	+25	+24	+9
CRC-SPIN										
sDNA-FIT 50-75, 3	5927	0	0	1827	10	23	7	226	215	83
sDNA-FIT 45-75, 3	7061	0	0	2073	10	20	6	244	232	89
Difference [‡]	+1134	0	0	+245	+0.2	-3	-0.8	+18	+18	+6
MISCAN										
sDNA-FIT 50-75, 3	5779	0	0	1714	9	38	9	215	190	79
sDNA-FIT 45-75, 3	7086	0	0	1965	10	36	8	231	205	84
Difference [‡]	+1308	0	0	+251	+0.4	-2	-0.9	+16	+15	+6

sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG = sigmoidoscopy; CTC – computed tomographic colonography; COL – colonoscopy; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* The current and 2016 decision analyses make different assumptions about CRC risk (IRR 1.19 vs 1) and use different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model.

† Includes deaths from complications of screening.

		Outcomes	per 1000 uns	screened 40	-year-olds fre	e from diag	nosed colore	ctal cancer		
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Sigmoidoscopy every 5 yea	ars to age 75 – c	urrent analy	/sis							
SimCRC										
SIG 50-75, 5	0	4058	0	1544	10	29	9	279	260	102
SIG 45-75, 5	0	4846	0	1720	10	25	8	309	289	113
Difference [‡]	0	+788	0	+176	+0.1	-3	-1	+30	+29	+11
CRC-SPIN										
SIG 50-75, 5	0	4134	0	1510	11	26	9	256	241	94
SIG 45-75, 5	0	4935	0	1680	12	24	9	280	264	102
Difference [‡]	0	+801	0	+170	+0.2	-2	-0.9	+24	+22	+9
MISCAN										
SIG 50-75, 5	0	3646	0	1927	12	40	11	256	229	93
SIG 45-75, 5	0	4389	0	2119	12	39	11	269	241	98
Difference [‡]	0	+743	0	+192	0	-1	-0.4	+13	+12	+5
Sigmoidoscopy every 5 yea	ars to age 75 – 2	016 analysi	S							
SimCRC	U	•								
SIG 50-75, 5	0	4111	0	1820	10	23	7	227	207	83
SIG 45-75, 5	0	4912	0	2039	11	20	6	251	230	91
Difference [‡]	0	+800	0	+219	+0.2	-3	-1	+24	+23	+9
CRC-SPIN										
SIG 50-75, 5	0	4298	0	1493	9	30	10	181	169	66
SIG 45-75, 5	0	5128	0	1669	9	28	10	193	180	70
Difference [‡]	0	+830	0	+176	+0.1	-1	-0.4	+12	+11	+4
MISCAN										
SIG 50-75, 5	0	3807	0	2287	12	29	8	221	196	81
SIG 45-75, 5	0	4572	0	2533	12	28	7	234	207	85
Difference [‡]	0	+765	0	+246	+0.2	-1	-0.5	+12	+11	+5

Table 17. Outcomes From the Current Analysis (IRR = 1.19) and From the 2016 Analysis* for the SIG Screening Strategy Highlighted by the USPSTF in 2016 and for the Same Strategy But With Screening Beginning at Age 45 Instead of Age 50

SIG - sigmoidoscopy; CTC - computed tomographic colonography; COL - colonoscopy; CRC - colorectal cancer; LYG - life-years gained compared with no screening; QALYG - quality-adjusted life-years gained compared with no screening; DLG - days of life gained per person, compared with no screening.

* The current and 2016 decision analyses make different assumptions about CRC risk (IRR 1.19 vs 1) and use different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model.

[†] Includes deaths from complications of screening.

Table 18. Outcomes From the Current Analysis (IRR = 1.19) and From the 2016 Analysis* for the SIG+FIT Screening Strategy Highlighted by the USPSTF in 2016 and for the Same Strategy But With Screening Beginning at Age 45 Instead of Age 50

		Outcomes	per 1000 uns	screened 40	-year-olds fre	e from diag	nosed colore	ctal cancer		
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Sigmoidoscopy every 10 years	s with annual	fecal immu	nochemical	testing to a	age 75 – curr	ent analysi	S			
SimCRC										
SIG+FIT 50-75, 10_1	13537	2099	0	1840	11	22	6	330	306	121
SIG+FIT 45-75, 10_1	16648	2568	0	2102	11	18	4	363	338	133
Difference [‡]	+3112	+469	0	+263	+0.6	-4	-1	+33	+32	+12
CRC-SPIN										
SIG+FIT 50-75, 10_1	13305	2067	0	1973	13	18	6	301	282	110
SIG+FIT 45-75, 10_1	16322	2525	0	2237	14	15	5	330	309	120
Difference [‡]	+3018	+458	0	+265	+0.5	-3	-1	+29	+27	+11
MISCAN										
SIG+FIT 50-75, 10_1	12357	1900	0	2048	12	39	10	287	255	105
SIG+FIT 45-75, 10_1	15466	2393	0	2331	13	37	9	304	272	111
Difference [‡]	+3109	+493	0	+284	+0.8	-2	-0.9	+17	+17	+6
Sigmoidoscopy every 10 years	s with annual	fecal immu	nochomical	testing to	200 75 - 2016	Sanalveie				
SimCRC	s with annual		mochennica	lesting to a	age 75 – 2010	anaiysis				
SIG+FIT 50-75, 10_1	13393	2097	0	2248	11	17	4	270	250	99
SIG+FIT 45-75, 10_1	16427	2553	0	2560	12	13	3	298	276	109
Difference [‡]	+3034	+456	0	+312	+0.4	-3	-1	+28	+27	+10
CRC-SPIN										
SIG+FIT 50-75, 10_1	13404	2079	0	2289	12	15	4	256	242	93
SIG+FIT 45-75, 10_1	16356	2523	0	2606	12	12	3	274	260	100
Difference [‡]	+2952	+444	0	+317	+0.3	-3	-0.8	+18	+18	+7
MISCAN										
SIG+FIT 50-75, 10_1	12642	1903	0	2490	12	28	6	246	220	90
SIG+FIT 45-75, 10_1	15711	2397	0	2826	13	26	5	262	235	96
Difference [‡]	+3069	+494	0	+336	+0.6	-2	-0.8	+16	+15	+6

SIG = sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; CTC - computed tomographic colonography; COL - colonoscopy; CRC - colorectal cancer; LYG - life-years gained compared with no screening; QALYG - quality-adjusted life-years gained compared with no screening; DLG - days of life gained per person, compared with no screening.

* The current and 2016 decision analyses make different assumptions about CRC risk (IRR 1.19 vs 1) and use different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model.

[†] Includes deaths from complications of screening.

Table 19. Outcomes From the Current Analysis (IRR = 1.19) and From the 2016 Analysis* for the CTC Screening Strategy Highlighted by the USPSTF in 2016 and for the Same Strategy But With Screening Beginning at Age 45 Instead of Age 50

		Outcomes	per 1000 uns	screened 40	-year-olds fre	e from diag	nosed colore	ctal cancer		
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Computed tomographic col	onography ever	ry 5 years to	o age 75 – cu	urrent analy	sis					
SimCRC										
CTC 50-75, 5	0	0	4006	1624	11	21	6	325	302	119
CTC 45-75, 5	0	0	4804	1788	11	18	5	355	332	130
Difference [‡]	0	0	+798	+164	+0.1	-3	-1	+31	+30	+11
CRC-SPIN										
CTC 50-75, 5	0	0	4088	1626	12	20	7	287	270	105
CTC 45-75, 5	0	0	4893	1791	13	18	6	313	294	114
Difference [‡]	0	0	+805	+165	+0.2	-2	-1	+26	+24	+9
MISCAN										
CTC 50-75, 5	0	0	4075	1519	10	43	11	268	238	98
CTC 45-75, 5	0	0	4881	1672	10	42	11	283	251	103
Difference [‡]	0	0	+806	+153	+0.1	-1	-0.5	+14	+14	+5
Computed tomographic col	onography ever	rv 5 vears to) age 75 – 20)16 analysis	5					
SimCRC		, . ,		, , ,						
CTC 50-75, 5	0	0	4069	1927	11	16	4	265	241	97
CTC 45-75, 5	0	0	4879	2133	11	13	3	290	265	106
Difference [‡]	0	0	+811	+206	+0.2	-3	-1	+25	+24	+9
CRC-SPIN										
CTC 50-75, 5	0	0	4254	1654	10	16	5	248	232	91
CTC 45-75, 5	0	0	5106	1807	10	14	4	264	246	96
Difference [‡]	0	0	+852	+153	+0.1	-2	-0.5	+15	+14	+6
MISCAN										
CTC 50-75, 5	0	0	4171	1743	10	33	8	226	196	82
CTC 45-75, 5	0	0	4990	1933	10	32	7	239	207	87
Difference [‡]	0	0	+819	+190	+0.2	-1	-0.5	+14	+12	+5

CTC – computed tomographic colonography; SIG = sigmoidoscopy; COL – colonoscopy; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* The current and 2016 decision analyses make different assumptions about CRC risk (IRR 1.19 vs 1) and use different all-cause mortality rates, different surveillance intervals, and a different version of CRC-SPIN model.

† Includes deaths from complications of screening.

 Table 20. Illustration of the Changes in Outcomes From Adherence to Screening Initiation for Sample Strategies With Screening Beginning at Age 50, by Model* (IRR = 1.19)

Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Colonoscopy (COL)										
SimCRC										
COL 50-75, 10	0	0	0	3414	13	18	5	335	314	122
Delay start by 5y	0	0	0	-262	+2	+4	+1	-38	-38	-14
CRC-SPIN										
COL 50-75, 10	0	0	0	3500	15	15	5	308	291	112
Delay start by 5y	0	0	0	-285	+1	+3	+1	-30	-30	-11
MISCAN										
COL 50-75, 10	0	0	0	3476	14	36	9	286	257	104
Delay start by 5y	0	0	0	-296	+1	+1	+0.4	-22	-21	-8
Sigmoidoscopy (SIG)										
SimCRC										
SIG 50-75, 5	0	4058	0	1544	10	29	9	279	260	102
Delay start by 5y	0	-755	0	-187	-0.2	+5	+2	-37	-36	-14
CRC-SPIN										
SIG 50-75, 5	0	4134	0	1510	11	26	9	256	241	94
Delay start by 5y	0	-770	0	-185	-0.4	+4	+1	-27	-27	-10
MISCAN										
SIG 50-75, 5	0	3646	0	1927	12	40	11	256	229	93
Delay start by 5y	0	-686	0	-215	-0.1	+2	+0.9	-22	-21	-8
Sigmoidoscopy plus interva	al fecal immunoc	hemical tes	ting (SIG+FI	Г)						
SimCRC										
SIG+FIT 50-75, 10_1	13537	2099	0	1840	11	22	6	330	306	121
Delay start by 5y	-2885	-269	0	-190	+0.4	+5	+2	-40	-39	-15
CRC-SPIN										
SIG+FIT 50-75, 10_1	13305	2067	0	1973	13	18	6	301	282	110
Benefits and Harms of Colorectal	Cancer Screening			72			CIS	SNET Colored	tal Cancer Wor	king Gr

Beginning at Age 50, by r		1.19)								
Delay start by 5y	-2828	-257	0	-232	-0.2	+4	+1	-31	-31	-12
MISCAN										
SIG+FIT 50-75, 10_1	12357	1900	0	2048	12	39	10	287	255	105
Delay start by 5y	-2732	-169	0	-177	+0.6	+1	+0.6	-24	-22	-9
Computed tomographic colo	onography (CTC	C)								
SimCRC										
CTC 50-75, 5	0	0	4006	1624	11	21	6	325	302	119
Delay start by 5y	0	0	-760	-177	-0.2	+5	+2	-41	-40	-15
CRC-SPIN										
CTC 50-75, 5	0	0	4088	1626	12	20	7	287	270	105
Delay start by 5y	0	0	-768	-186	-0.4	+4	+1	-30	-30	-11
MISCAN										
CTC 50-75, 5	0	0	4075	1519	10	43	11	268	238	98
Delay start by 5y	0	0	-766	-169	-0.2	+2	+1	-24	-23	-9
Fecal immunochemical testi	ng (FIT)									
SimCRC										
FIT 50-75, 1	16160	0	0	1423	9	30	7	316	289	115
Delay start by 5y	-3370	0	0	-191	-0.3	+6	+2	-41	-40	-15
CRC-SPIN										
FIT 50-75, 1	15562	0	0	1619	12	23	7	285	266	104
Delay start by 5y	-3221	0	0	-225	-0.6	+5	+2	-35	-34	-13
MISCAN										
FIT 50-75, 1	16097	0	0	1445	10	47	11	274	240	100
Delay start by 5y	-3340	0	0	-193	-0.3	+3	+1	-28	-26	-10
Multi-target stool DNA test (sDNA-FIT), 1-ye	ear interval								
SimCRC										
sDNA-FIT 50-75, 1	11463	0	0	2156	11	22	6	330	305	121
Delay start by 5y	-2291	0	0	-307	-0.2	+5	+2	-41	-40	-15
CRC-SPIN										
sDNA-FIT 50-75, 1	11132	0	0	2295	14	18	6	301	281	110

Table 20. Illustration of the Changes in Outcomes From Adherence to Screening Initiation for Sample Strategies With ScreeningBeginning at Age 50, by Model* (IRR = 1.19)

Benefits and Harms of Colorectal Cancer Screening

Delay start by 5y	-2222	0	0	-331	-0.5	+5	+2	-33	-33	-12
MISCAN										
sDNA-FIT 50-75, 1	11315	0	0	2211	12	39	9	290	257	106
Delay start by 5y	-2225	0	0	-314	-0.2	+2	+1	-27	-25	-10
Multi-target stool DNA test ((sDNA-FIT), 3-ye	ar interval								
SimCRC										
sDNA-FIT 50-75, 3	6074	0	0	1405	9	34	8	304	278	111
Delay start by 5y	-1344	0	0	-218	-0.5	+6	+2	-43	-41	-16
CRC-SPIN										
sDNA-FIT 50-75, 3	5939	0	0	1576	12	26	8	271	253	99
Delay start by 5y	-1306	0	0	-244	-0.8	+5	+2	-35	-34	-13
MISCAN										
sDNA-FIT 50-75, 3	6006	0	0	1449	9	50	12	257	223	94
Delay start by 5y	-1321	0	0	-218	-0.5	+3	+1	-28	-26	-10

Table 20. Illustration of the Changes in Outcomes From Adherence to Screening Initiation for Sample Strategies With Screening Beginning at Age 50, by Model* (IRR = 1.19)

CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* These strategies were selected for illustration purposes. Inclusion in this table should not be interpreted as endorsement of these strategies.

[†] Includes deaths from complications of screening.

Table 21. Illustration of the Changes in Outcomes From Adherence to Repeat Screening for Sample Strategies With Screening Beginning at Age 50, by Model* (IRR = 1.19)

	Absolute outo	omes and c	hange in outo	omes per 10	00 unscreened	l 40-year-old	s free from dia	gnosed colo	prectal cancer	
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
Colonoscopy (COL)										
SimCRC										
COL 50-75, 10	0	0	0	3414	13	18	5	335	314	122
Increase interval to 15y	0	0	0	-680	-2	+5	+2	-17	-16	-6
Once-only	0	0	0	-1695	-6	+22	+9	-79	-73	-29
CRC-SPIN										
COL 50-75, 10	0	0	0	3500	15	15	5	308	291	112
Increase interval to 15y	0	0	0	-676	-2	+3	+1	-12	-11	-4
Once-only	0	0	0	-1621	-6	+15	+6	-53	-50	-20
MISCAN										
COL 50-75, 10	0	0	0	3476	14	36	9	286	257	104
Increase interval to 15y	0	0	0	-608	-1	+4	+2	-22	-20	-8
Once-only	0	0	0	-1535	-5	+16	+9	-87	-77	-32
Sigmoidoscopy (SIG)										
SimCRC										
SIG 50-75, 5	0	4058	0	1544	10	29	9	279	260	102
Increase interval to 10y	0	-1593	0	-407	-2	+8	+3	-32	-30	-12
Once-only	0	-3087	0	-1001	-6	+32	+14	-129	-120	-47
CRC-SPIN										
SIG 50-75, 5	0	4134	0	1510	11	26	9	256	241	94
Increase interval to 10y	0	-1680	0	-294	-1	+4	+2	-16	-15	-6
Once-only	0	-3162	0	-816	-5	+21	+9	-83	-77	-30
MISCAN										
SIG 50-75, 5	0	3646	0	1927	12	40	11	256	229	93
Increase interval to 10y	0	-1349	0	-346	-1	+4	+2	-23	-21	-8
Once-only	0	-2675	0	-1030	-6	+21	+12	-119	-105	-43

Sigmoidoscopy plus interval fecal immunochemical testing (SIG+FIT)

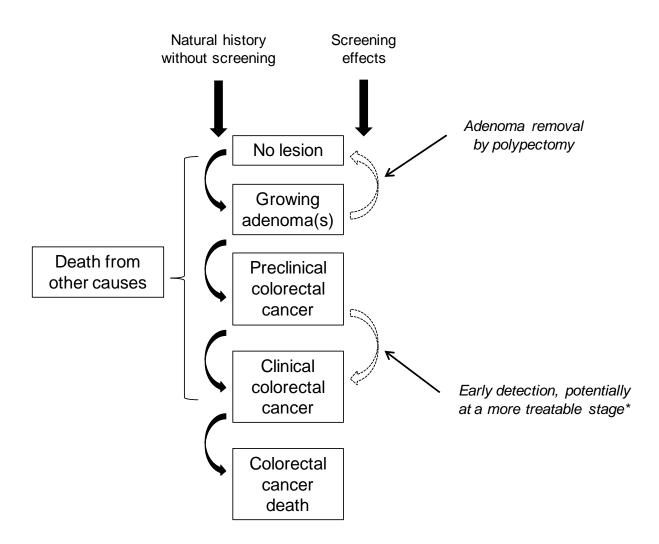
SimCRC

Table 21. Illustration of the Changes in Outcomes From Adherence to Repeat Screening for Sample Strategies With Screening Beginning at Age 50, by Model* (IRR = 1.19)

SIG+FIT 50-75, 10_1	13537	2099	0	1840	11	22	6	330	306	121
Increase FIT interval to 2y	-5605	+97	0	-261	-1	+4	+1	-11	-11	-4
CRC-SPIN										
SIG+FIT 50-75, 10_1	13305	2067	0	1973	13	18	6	301	282	110
Increase FIT interval to 2y	-5462	+96	0	-265	-0.9	+3	+1	-10	-9	-4
MISCAN										
SIG+FIT 50-75, 10_1	12357	1900	0	2048	12	39	10	287	255	105
Increase FIT interval to 2y	-5180	+138	0	-181	-0.5	+2	+0.7	-10	-10	-4
Computed tomographic colono	graphy (CTC))								
SimCRC	3									
CTC 50-75, 5	0	0	4006	1624	11	21	6	325	302	119
Increase interval to 10y	0	0	-1566	-396	-2	+8	+3	-30	-28	-11
CRC-SPIN										
CTC 50-75, 5	0	0	4088	1626	12	20	7	287	270	105
Increase interval to 10y	0	0	-1626	-366	-2	+6	+3	-28	-25	-10
MISCAN										
CTC 50-75, 5	0	0	4075	1519	10	43	11	268	238	98
Increase interval to 10y	0	0	-1622	-382	-2	+9	+4	-49	-46	-18
Fecal immunochemical testing	(FIT)									
SimCRC										
FIT 50-75, 1	16160	0	0	1423	9	30	7	316	289	115
Increase interval to 2y	-6714	0	0	-417	-2	+11	+3	-33	-33	-12
Increase interval to 3y	-9215	0	0	-609	-3	+19	+6	-60	-60	-22
CRC-SPIN										
FIT 50-75, 1	15562	0	0	1619	12	23	7	285	266	104
Increase interval to 2y	-6357	0	0	-426	-2	+9	+3	-37	-35	-13
Increase interval to 3y	-8745	0	0	-638	-3	+16	+6	-65	-62	-24
MISCAN										
FIT 50-75, 1	16097	0	0	1445	10	47	11	274	240	100
Banafits and Harms of Coloractal Can	cer Screening			76			CIS	NET Colorecta	I Cancer Worl	

Benefits and Harms of Colorectal Cancer Screening

Increase interval to 2y	-6703	0	0	-407	-2	+9	+3	-37	-36	-13
Increase interval to 3y	-9192	0	0	-598	-3	+14	+5	-65	-63	-24
Multi-target stool DNA testing	(sDNA-FIT)									
SimCRC										
sDNA-FIT 50-75, 1	11463	0	0	2156	11	22	6	330	305	121
Increase interval to 2y	-3735	0	0	-498	-2	+6	+1	-13	-13	-5
Increase interval to 3y	-5389	0	0	-752	-2	+11	+3	-26	-27	-10
CRC-SPIN										
sDNA-FIT 50-75, 1	11132	0	0	2295	14	18	6	301	281	110
Increase interval to 2y	-3607	0	0	-474	-1	+4	+1	-14	-14	-5
Increase interval to 3y	-5194	0	0	-720	-2	+8	+3	-30	-28	-11
MISCAN										
sDNA-FIT 50-75, 1	11315	0	0	2211	12	39	9	290	257	106
Increase interval to 2y	-3672	0	0	-502	-2	+6	+1	-16	-16	-6
Increase interval to 3y	-5309	0	0	-761	-3	+11	+3	-33	-34	-12


Table 21. Illustration of the Changes in Outcomes From Adherence to Repeat Screening for Sample Strategies With Screening Beginning at Age 50, by Model* (IRR = 1.19)

CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* These strategies were selected for illustration purposes. Inclusion in this table should not be interpreted as endorsement of these strategies.

[†] Includes deaths from complications of screening.

Figure 1. Graphical Representation of the Natural History of Colorectal Cancer and the Effects of Screening as Simulated by SimCRC, CRC-SPIN, and MISCAN

- **Note:** The opportunity to intervene in the natural history through screening (adenoma detection and removal, and early detection) is noted by the dotted lines. Screening can either remove a precancerous lesion (i.e., adenoma), thus moving a person to the "No lesion" state, or diagnose a preclinical cancer, which, if detected at an earlier stage, may be more amenable to treatment.
- * Early detection of colorectal cancer through screening (moving from preclinical to clinically-detected) may allow for detection of cancer at an earlier stage than symptom-detected cancer, and therefore create the conditions necessary for a better prognosis.

Figure 2. Prevalence of Adenomas by Age From Autopsy Studies and as Predicted by the Original Models Calibrated to (Among Others) Colorectal Cancer Incidence Data From the Surveillance, Epidemiology, and End Results Program for 1975-1979

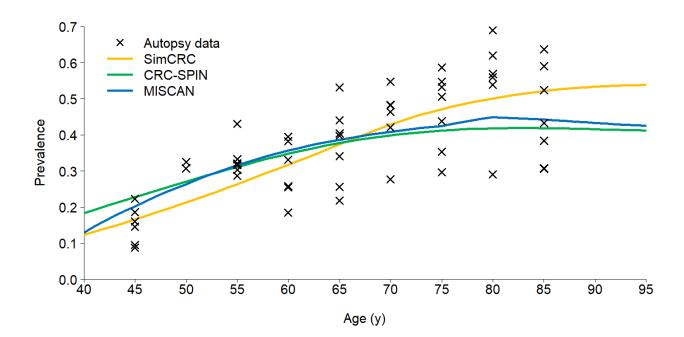
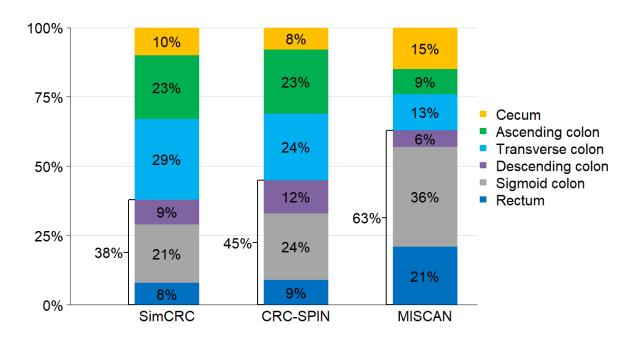
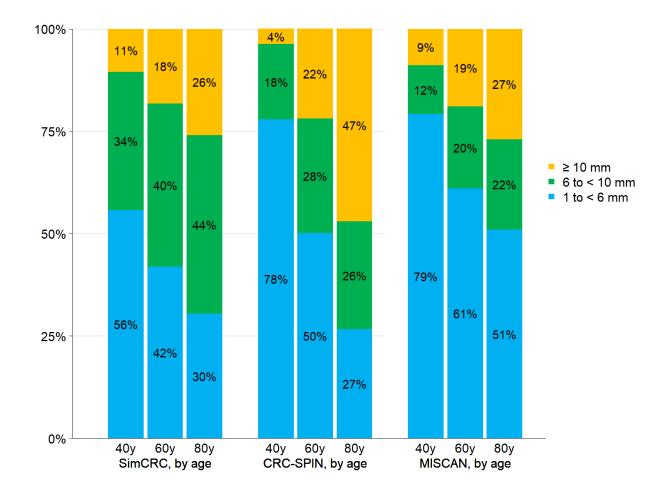
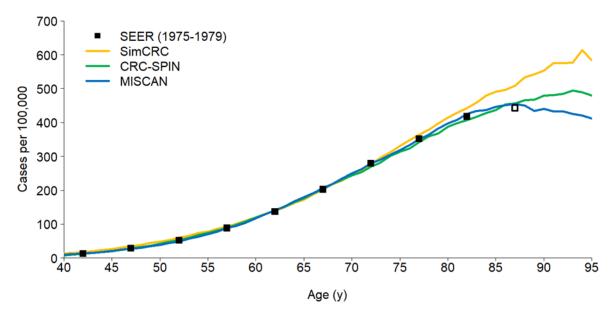
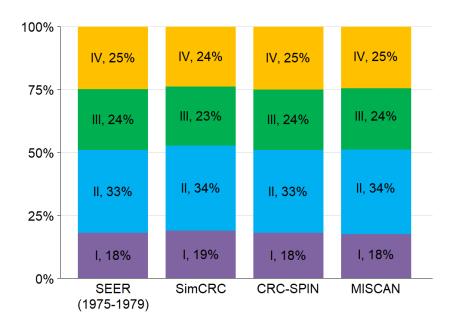



Figure 3. Model Inputs for Distribution of Adenomas by Location (Including Proportion in the Distal Colon or Rectum) Among Persons Aged 40 and Older, by Model


Figure 4. Distribution of Adenomas by Size of the Most Advanced Adenoma Among Persons Aged 40 and Older, by Age and Model

Note: Model predictions are from the original models calibrated to (among others) colorectal cancer incidence data from the Surveillance, Epidemiology, and End Results Program for 1975-1979.

Figure 5. Colorectal Cancer Cases per 100,000 Persons by Age and Model for Models Calibrated to Incidence Rates From the Surveillance, Epidemiology, and End Results (SEER) Program for 1975-1979*

* This period was chosen because incidence rates at that time are likely to reflect those among a largely unscreened population. Note that open symbols indicate incidence rates for the 85+ age group (plotted at age 87 for convenience). Figure 6. Distribution of the Stage of Colorectal Cancer at Diagnosis Among Persons Aged 40 and Older, by Model*

Note: Model predictions are from the original models calibrated to (among others) colorectal cancer incidence data from the Surveillance, Epidemiology and End Results Program for 1975-1979.

* Distributions may not sum to 100% due to rounding.

Figure 7. Colorectal Cancer Deaths per 100,000 Persons by Age and Model for Models Calibrated to Colorectal Cancer Incidence Rates From the Surveillance, Epidemiology, and End Results Program for 1975-1979

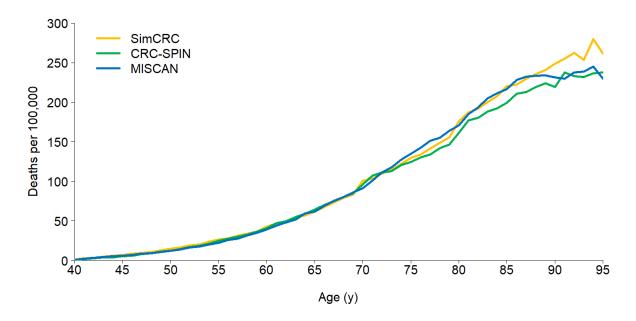
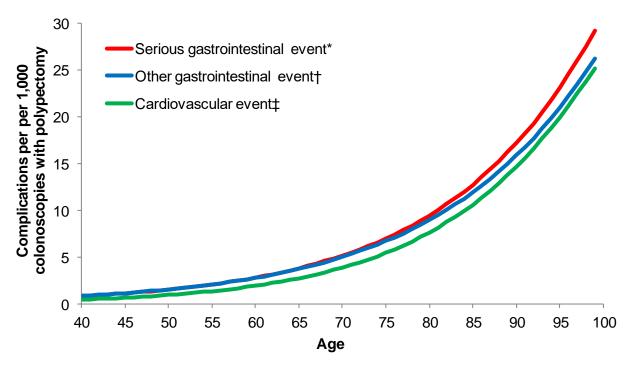
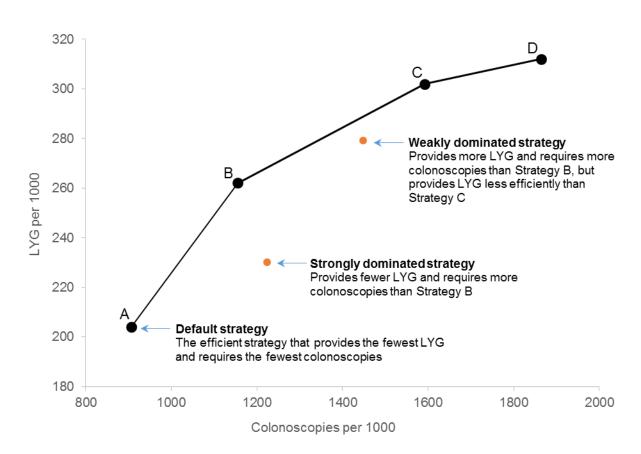
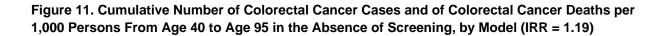
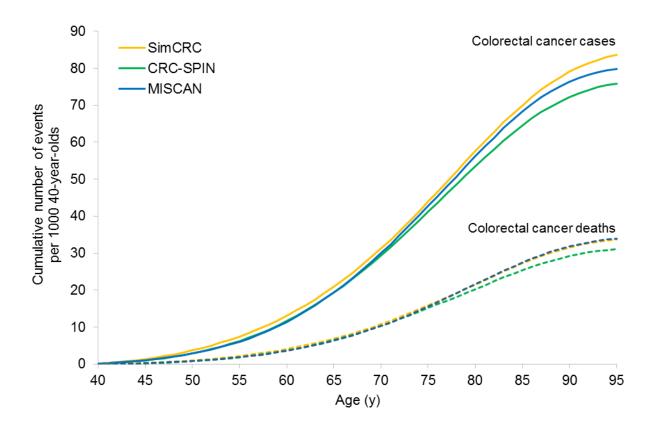



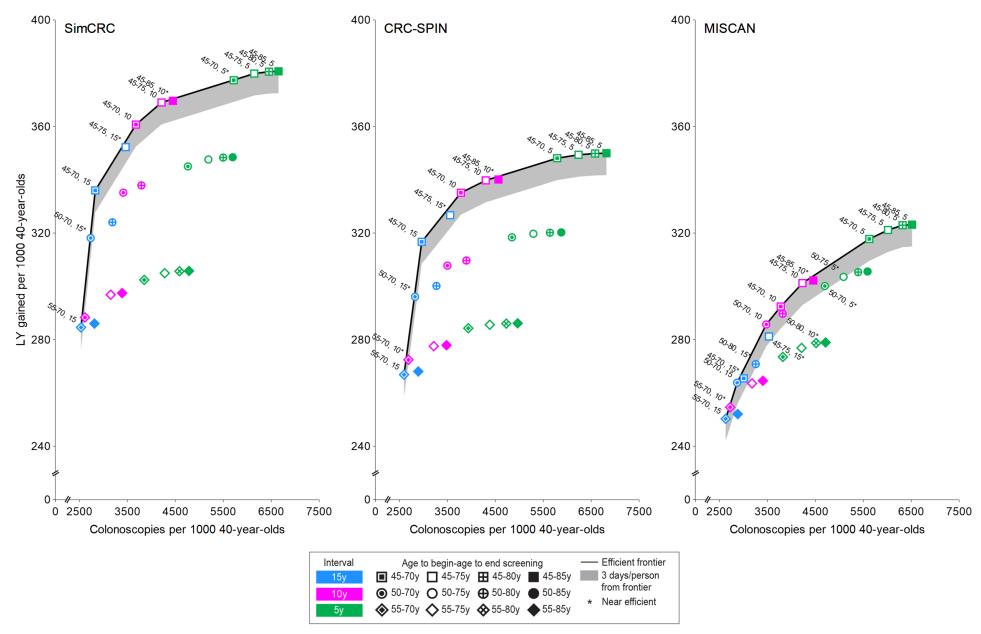
Figure 8. Model validation Based on Predicted Hazard Ratios for Colorectal Cancer Incidence and Mortality After 17 Years of Followup Among the Intervention Group Compared With the Control Group of the UK Flexible Sigmoidoscopy Screening Trial (UKFSS)

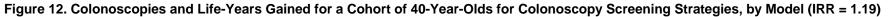


* Hazard ratios and confidence intervals are from the per-protocol analysis.79

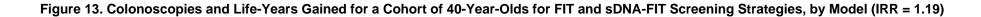

Note: Complications include serious gastrointestinal events, other gastrointestinal events, and cardiovascular events.

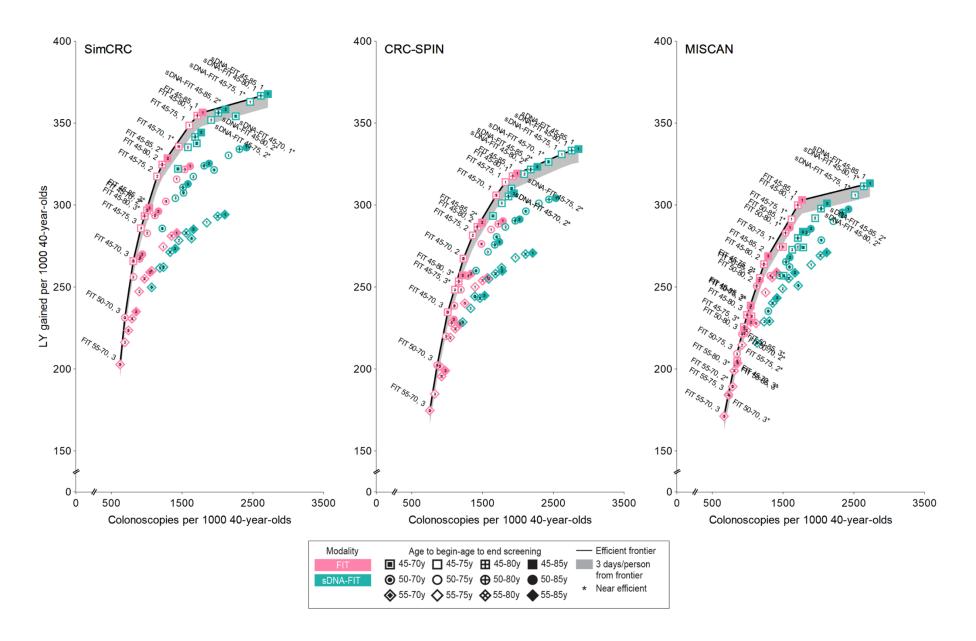

- * Perforations, gastrointestinal bleeding or transfusions. Excess risk per colonoscopy with polypectomy = $1/[exp(9.27953 0.06105 \times Age) + 1] 1/[exp(10.78719 0.06105 \times Age) + 1].$
- [†] Paralytic ileus, nausea and vomiting, dehydration, abdominal pain. Excess risk per colonoscopy with polypectomy $= 1/[\exp(8.81404 0.05903 \times \text{Age}) + 1] 1/[\exp(9.61197 0.05903 \times \text{Age}) + 1].$
- ‡ Myocardial infarction or angina, arrhythmias, congestive heart failure, cardiac or respiratory arrest, syncope, hypotension, or shock. Excess risk per colonoscopy with polypectomy = 1/[exp(9.09053 - 0.07056 × Age) + 1] -1/[exp(9.38297 - 0.07056 × Age) + 1]




Figure 10. Illustration of Efficient, Strongly Dominated and Weakly Dominated Strategies

Note: Strategies A, B, C, and D are efficient. The line connecting the efficient strategies is the *efficient frontier*. The inverse of the slope of the efficient frontier between 2 adjacent efficient strategies is the *efficiency ratio*. A steep efficient frontier implies a big increase in LYG from the additional colonoscopies (i.e., a low efficiency ratio); a flat efficient frontier implies a small increase in LYG from the additional colonoscopies (i.e., a high efficiency ratio).





Note: Here, color indicates modality; screening interval (1, 2, or 3y) is noted on each symbol.

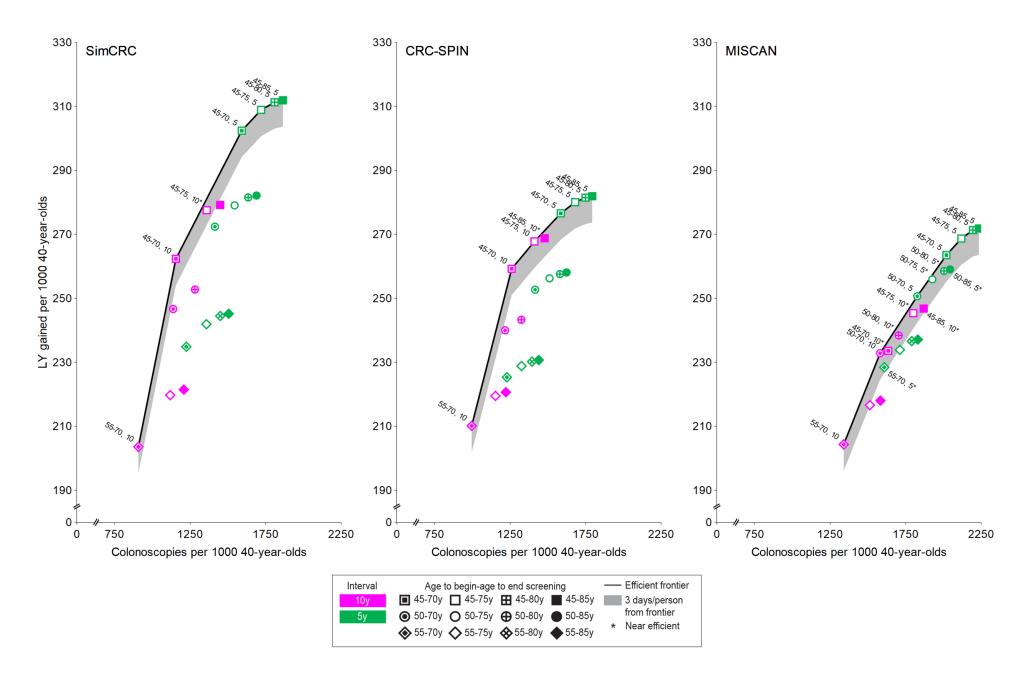


Figure 14. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Sigmoidoscopy Screening Strategies, by Model (IRR = 1.19)

Figure 15. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies, by Model (IRR = 1.19)

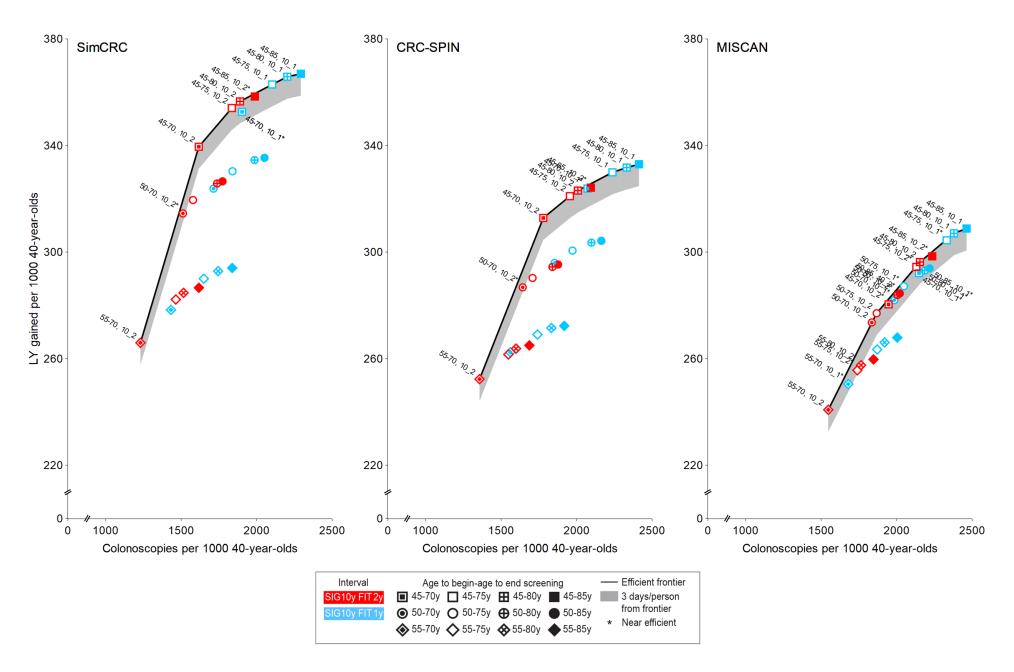


Figure 16. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies, by Model (IRR = 1.19)

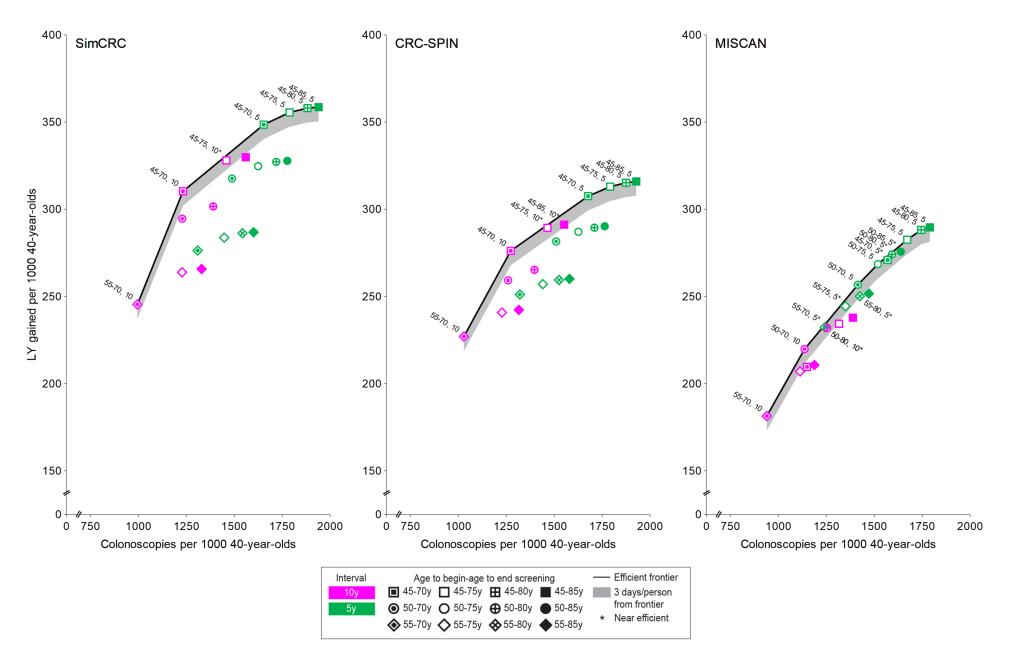


Figure 17. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With Once-Only Colonoscopy, Followed by Annual FIT, by Model (IRR = 1.19)

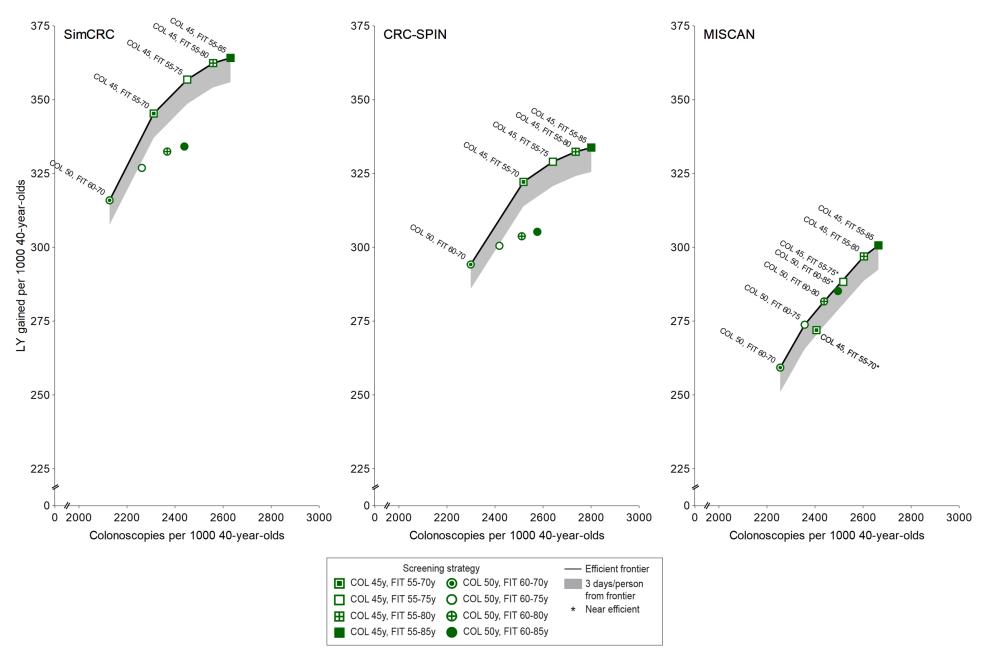


Figure 18. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy, by Model (IRR = 1.19)

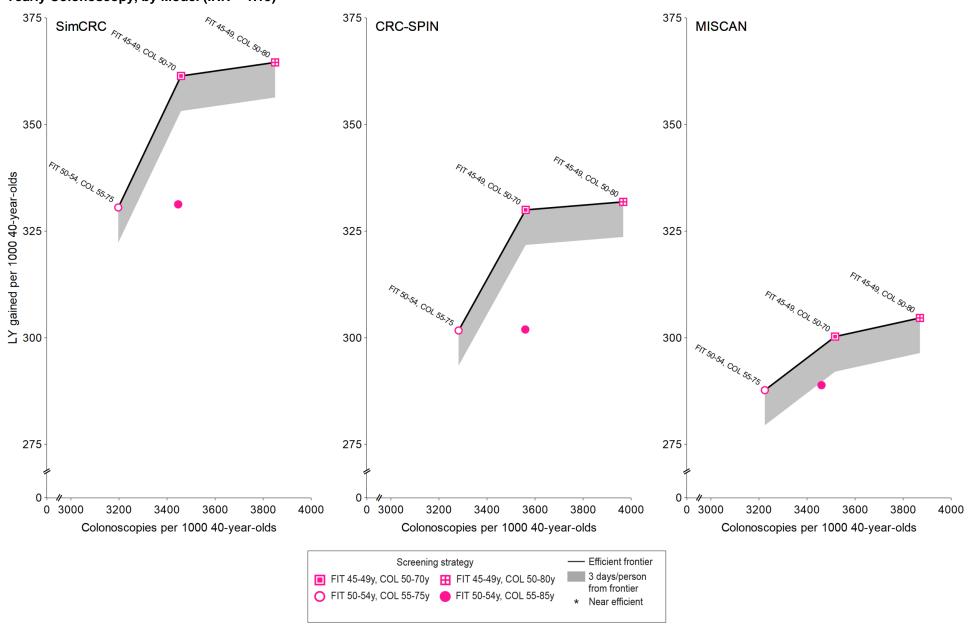


Figure 19. Colonoscopies and Colorectal Cancer Deaths Averted for a Cohort of 40-Year-Olds for Colonoscopy Screening Strategies, by Model (IRR = 1.19)

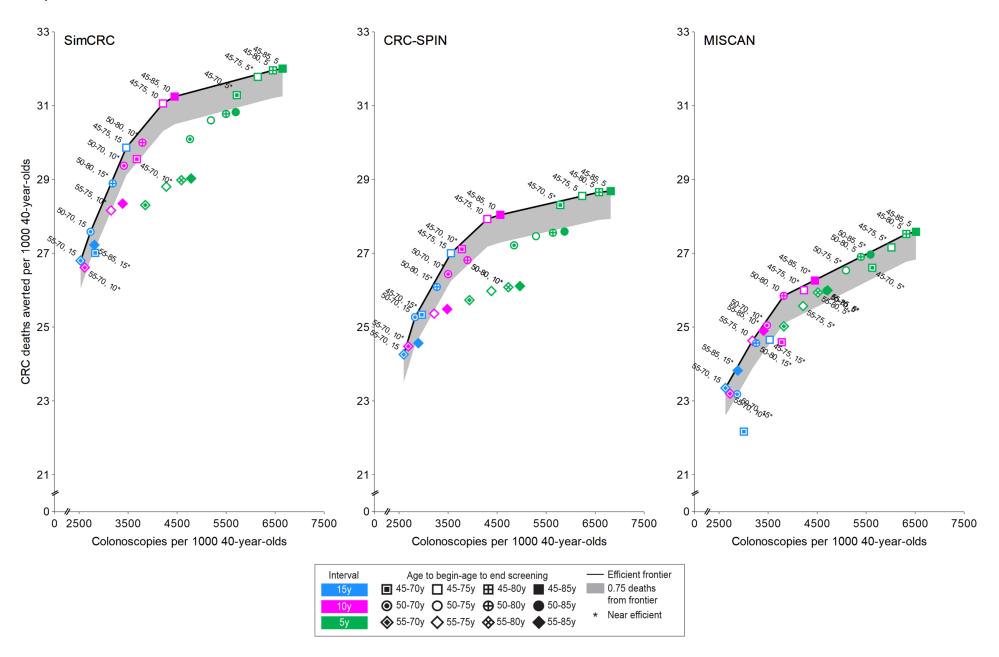


Figure 20. Colonoscopies and Colorectal Cancer Deaths Averted for a Cohort of 40-Year-Olds for FIT and sDNA-FIT Screening Strategies, by Model (IRR = 1.19)

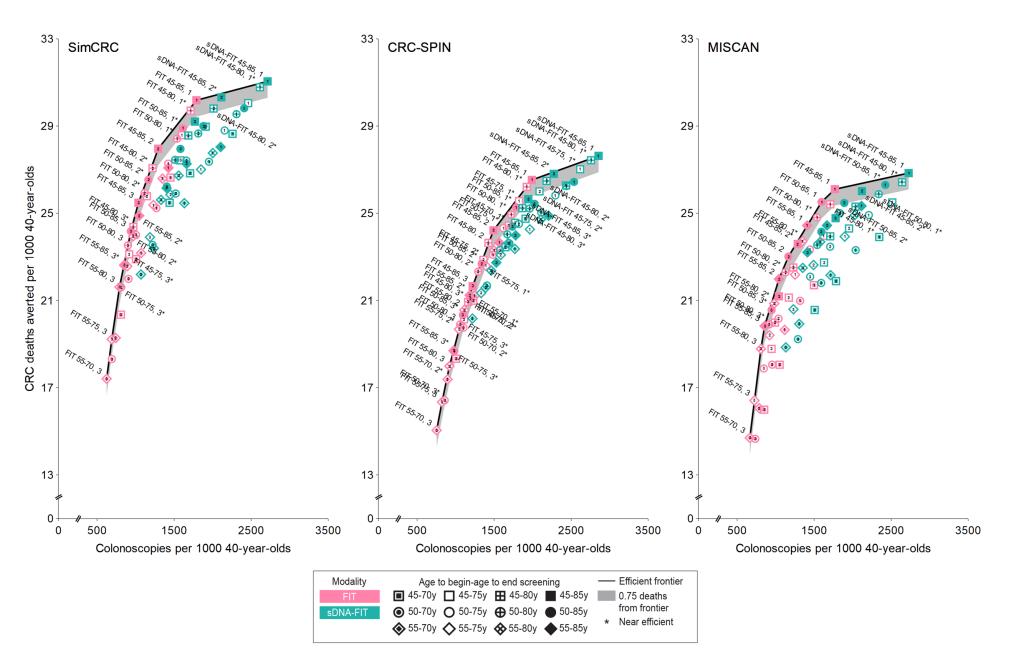


Figure 21. Colonoscopies and Colorectal Cancer Deaths Averted for a Cohort of 40-Year-Olds for Sigmoidoscopy Screening Strategies, by Model (IRR = 1.19)

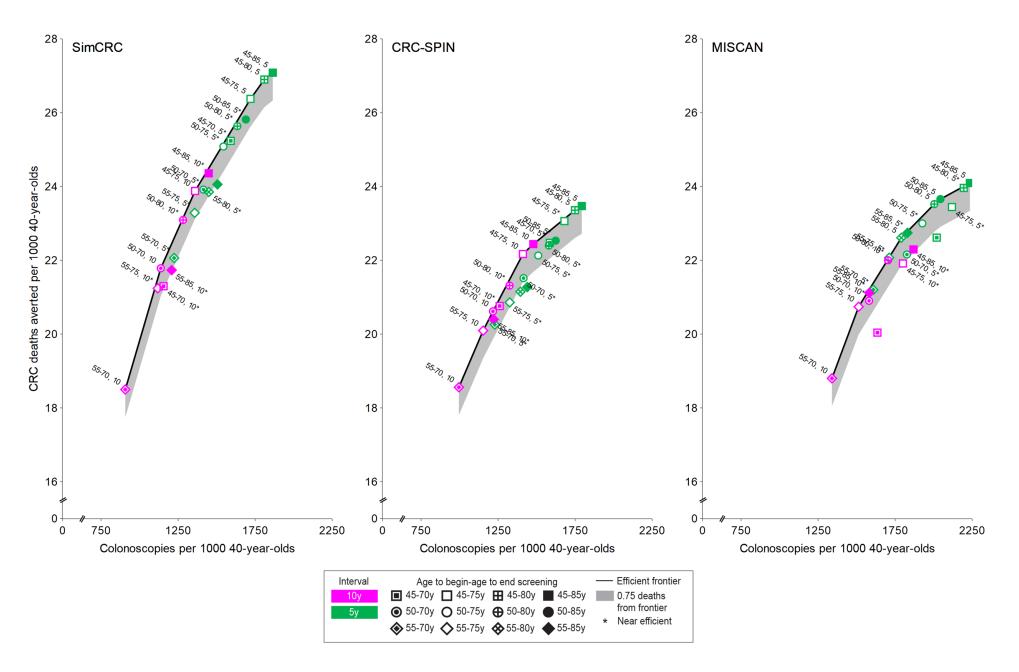


Figure 22. Colonoscopies and Colorectal Cancer Deaths Averted for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies, by Model (IRR = 1.19)

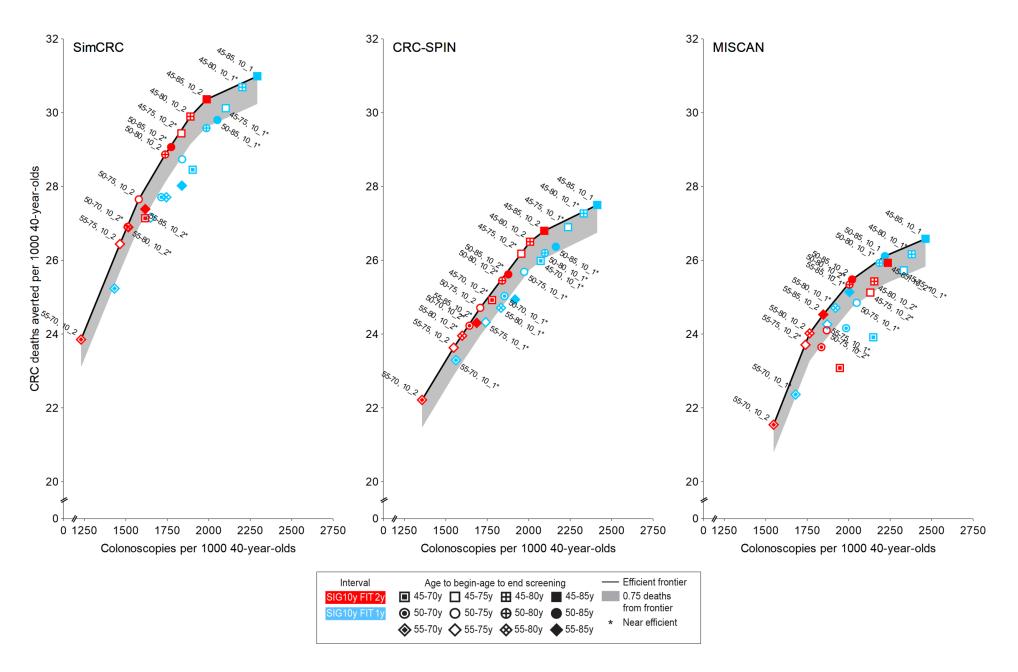


Figure 23. Colonoscopies and Colorectal Cancer Deaths Averted for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies, by Model (IRR = 1.19)

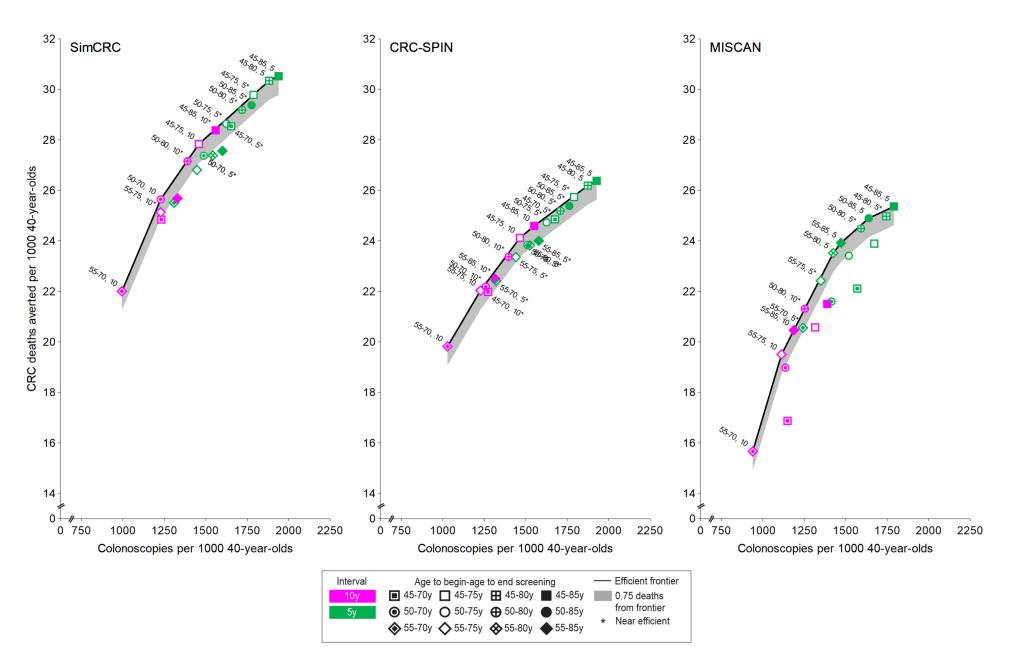
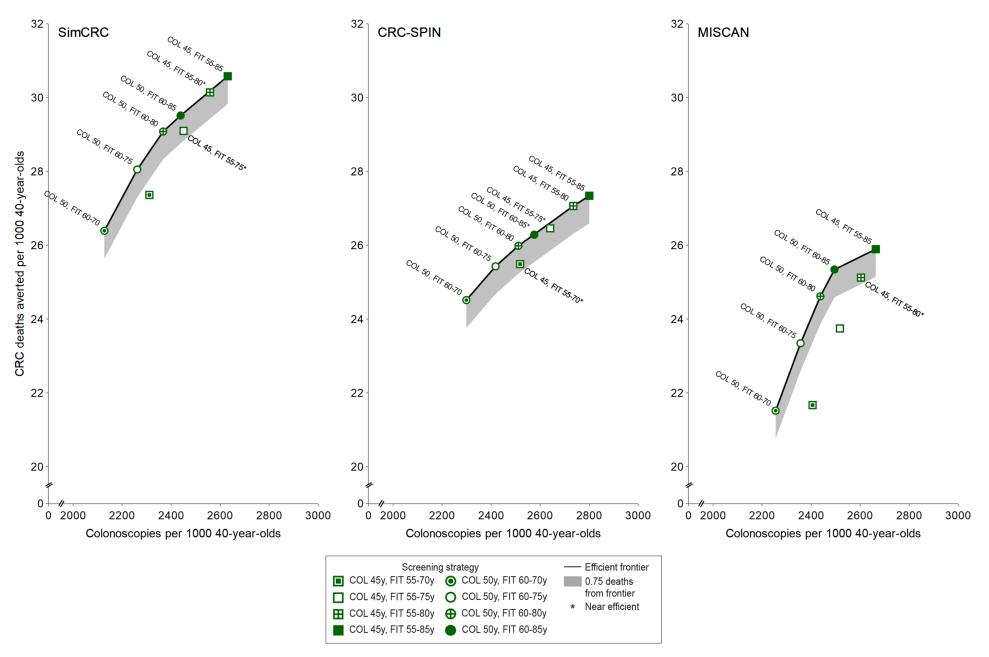
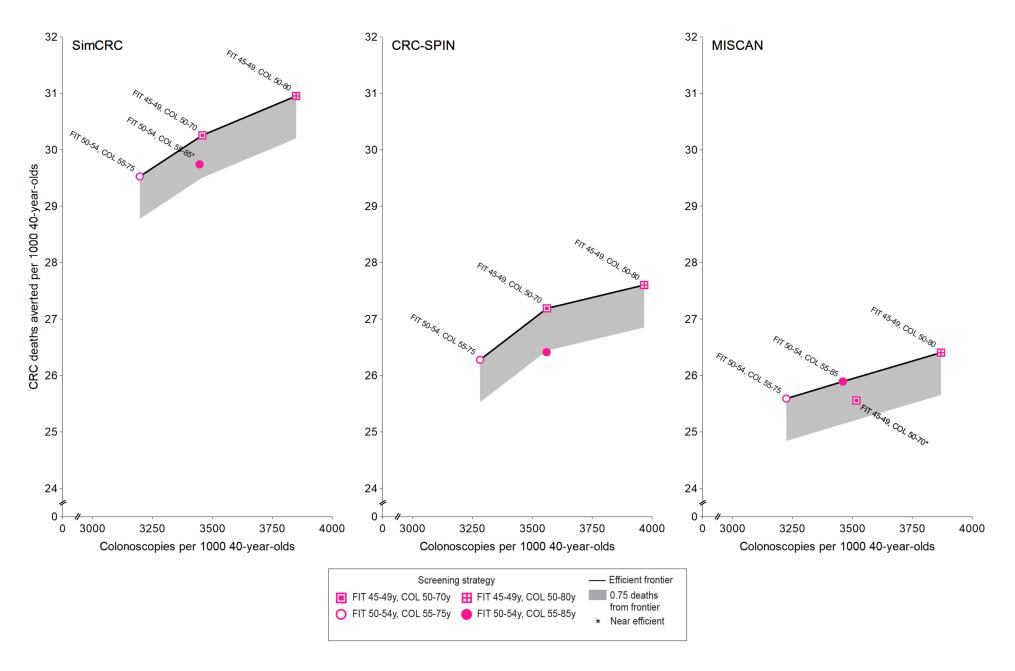
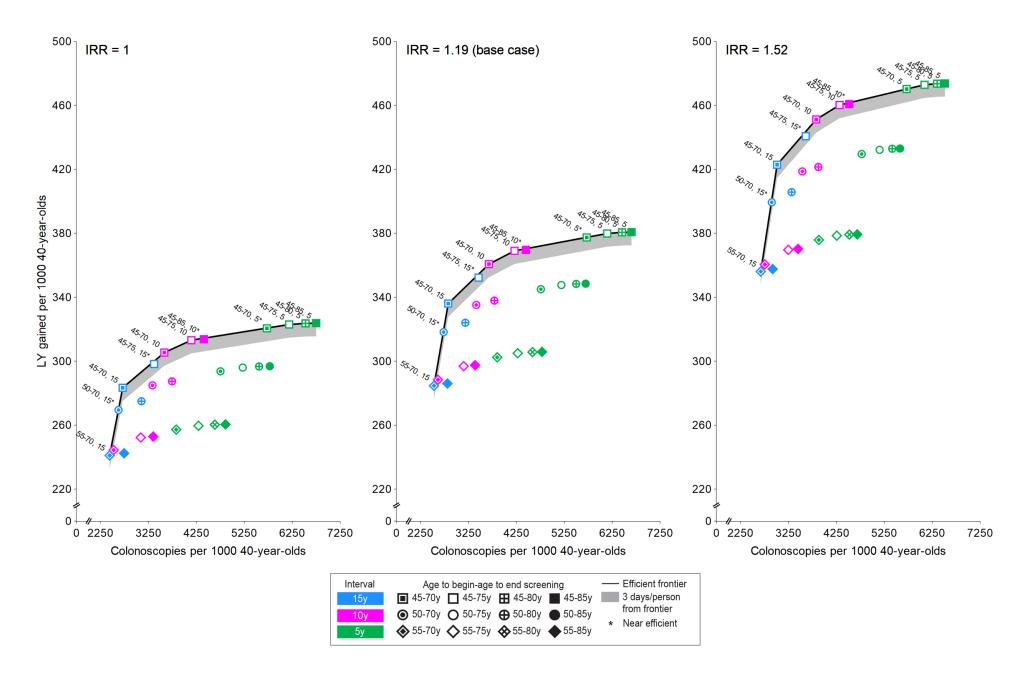
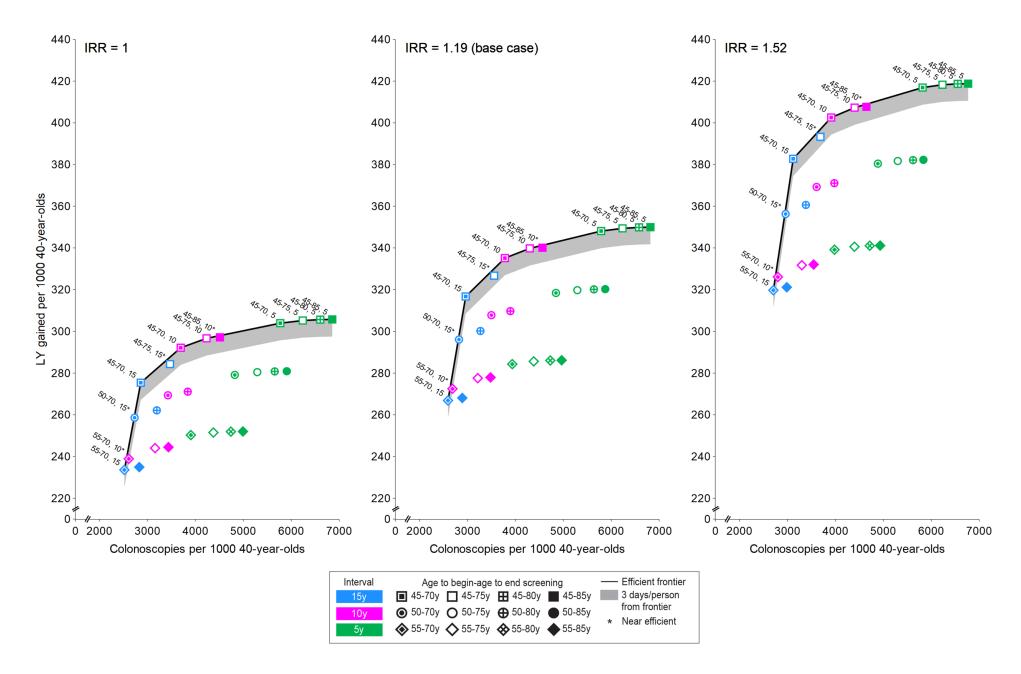
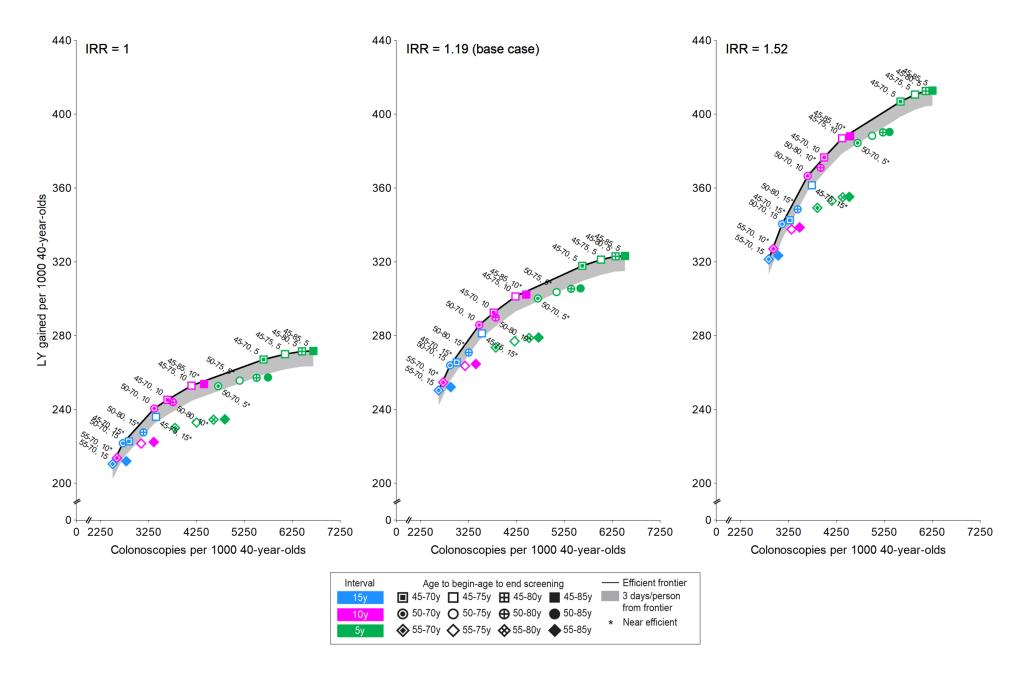





Figure 24. Colonoscopies and Colorectal Cancer Deaths Averted for a Cohort of 40-Year-Olds for Screening Strategies With Once-Only Colonoscopy, Followed by Annual FIT, by Model (IRR = 1.19)





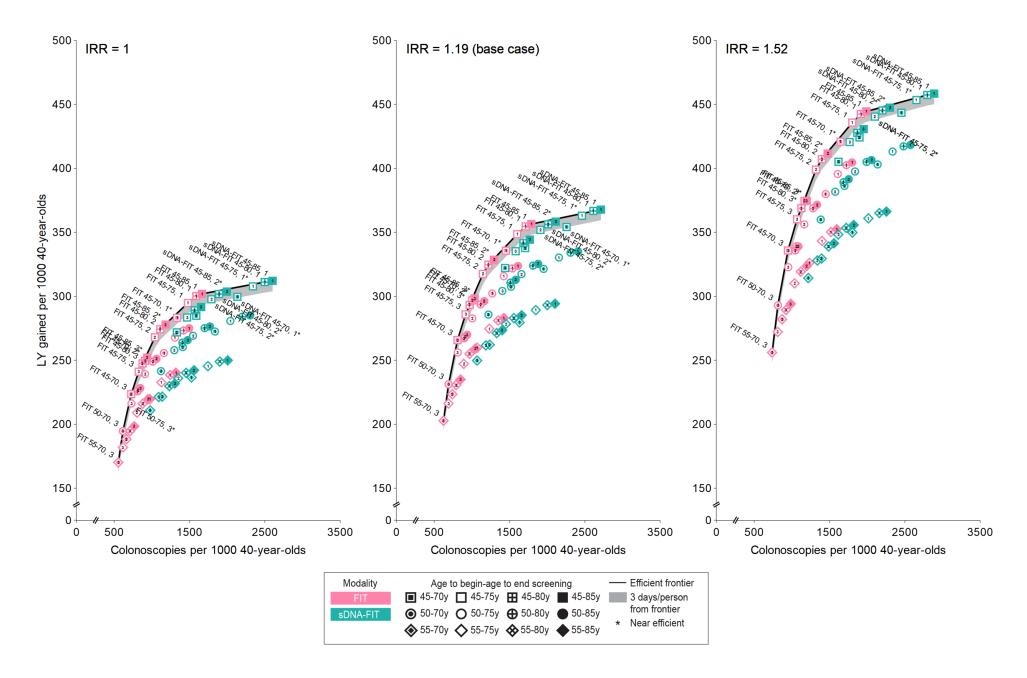
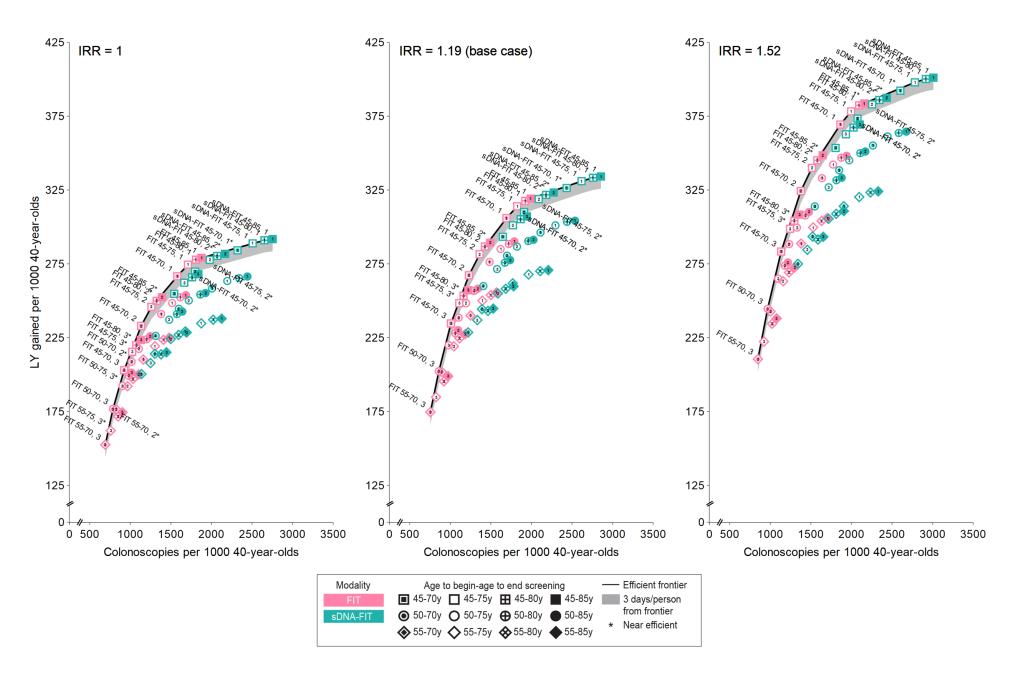
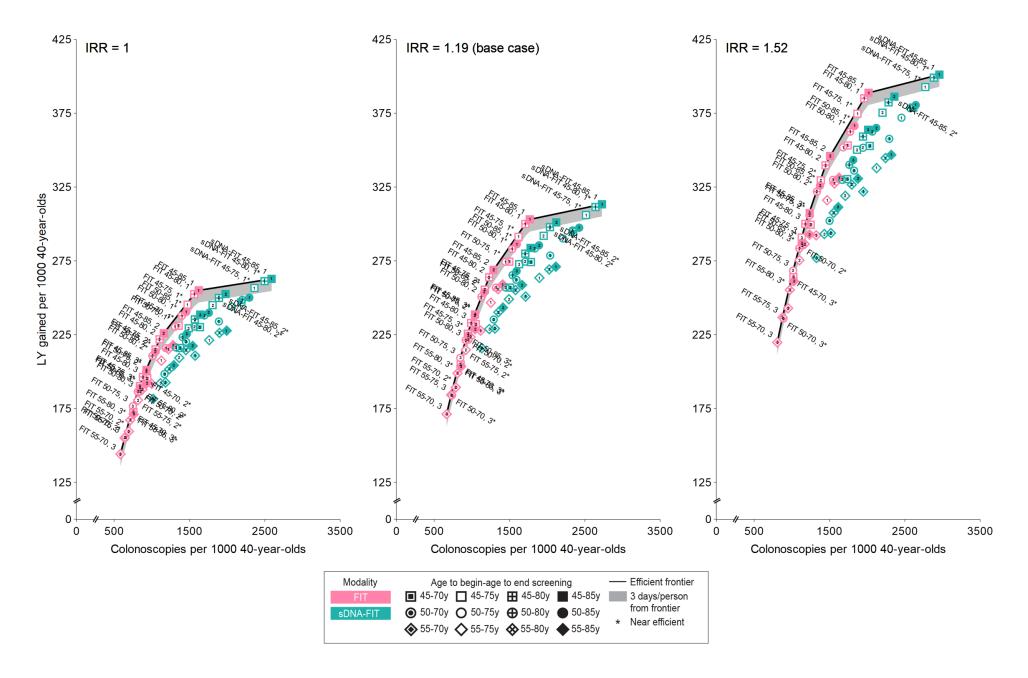
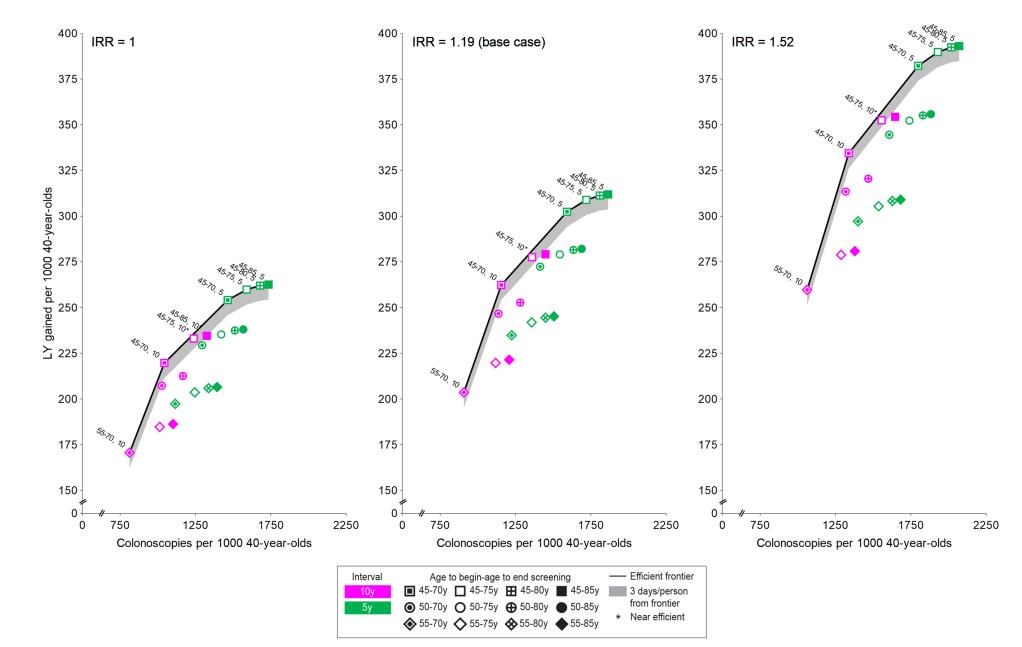


Figure 26a. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Colonoscopy Screening Strategies, by Risk Scenario: SimCRC




Figure 26c. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Colonoscopy Screening Strategies, by Risk Scenario: MISCAN


Figure 27a. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for FIT and sDNA-FIT Screening Strategies, by Risk Scenario: SimCRC

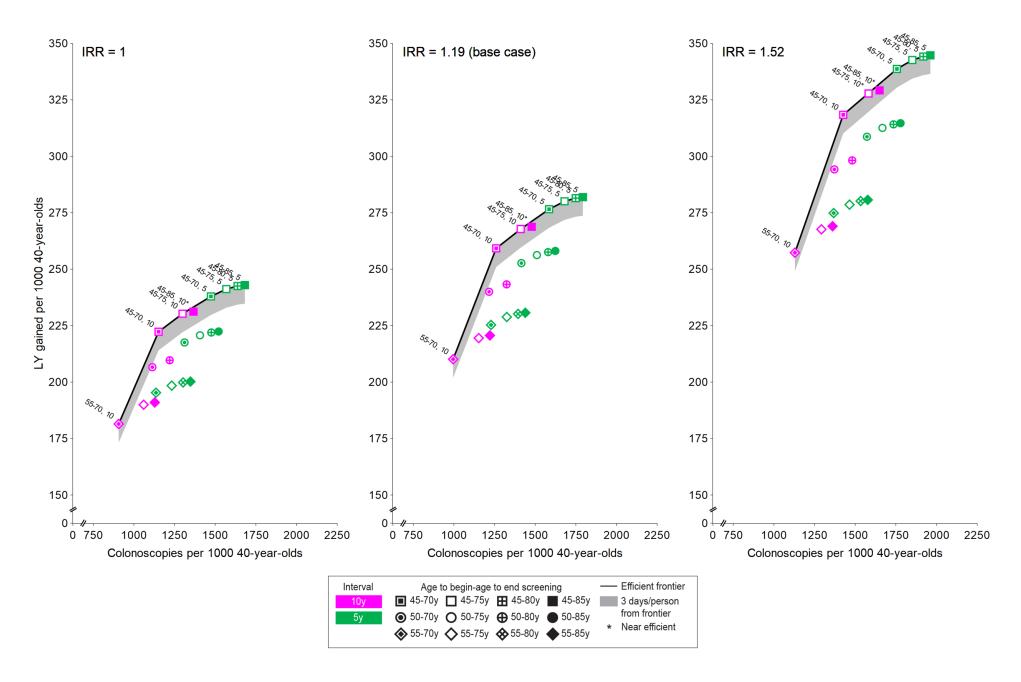


Figure 27b. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for FIT and sDNA-FIT Screening Strategies, by Risk Scenario: CRC-SPIN

Figure 27c. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for FIT and sDNA-FIT Screening Strategies, by Risk Scenario: MISCAN

Figure 28b. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Sigmoidoscopy Screening Strategies, by Risk Scenario: CRC-SPIN

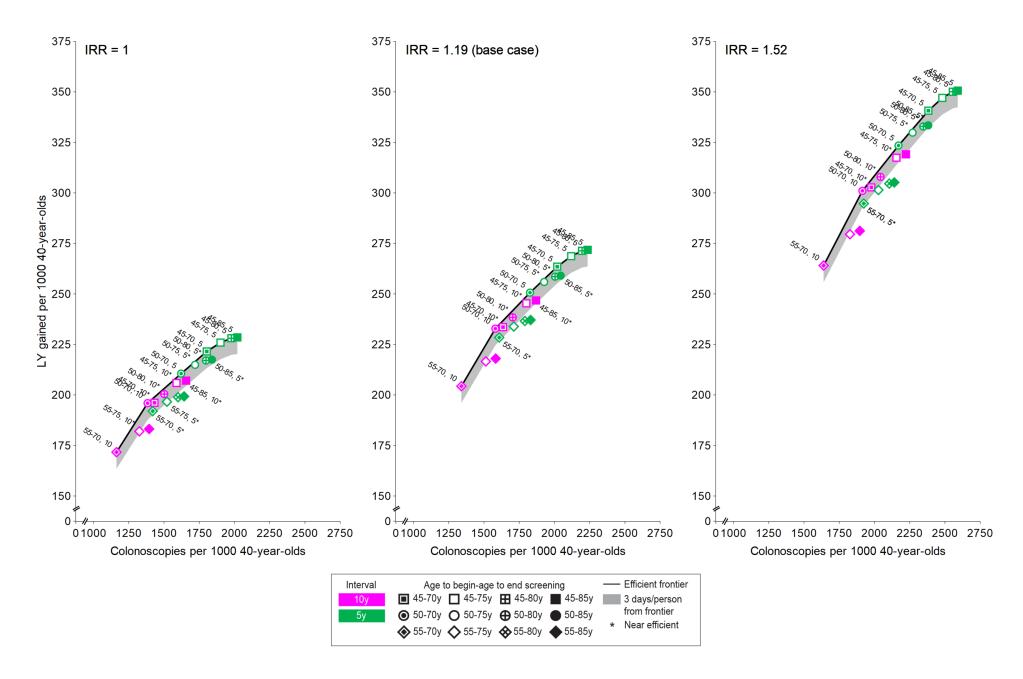


Figure 29a. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies, by Risk Scenario: SimCRC

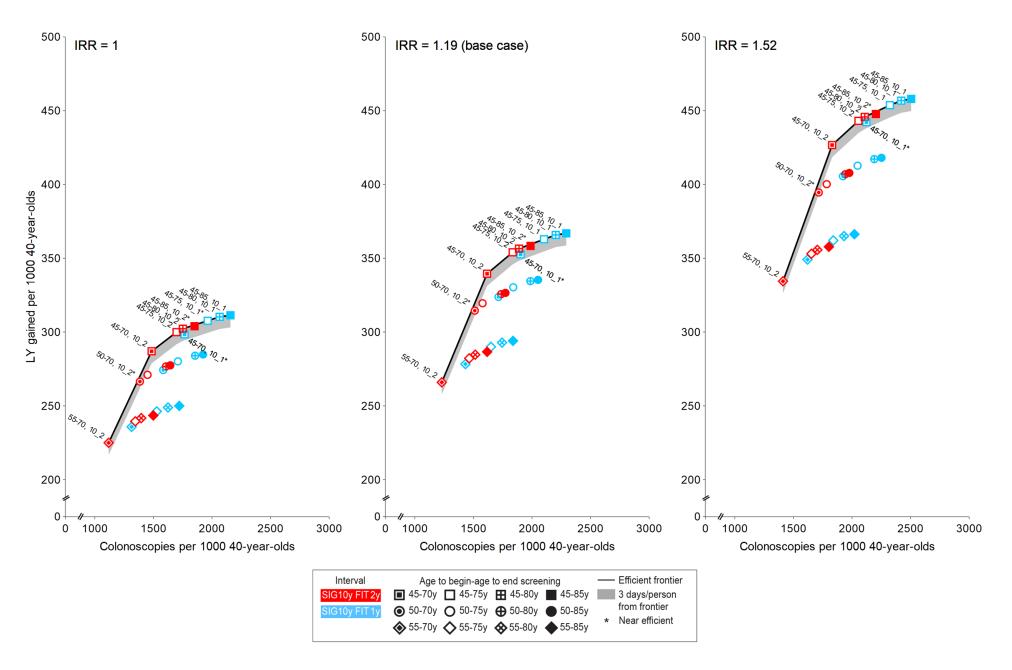


Figure 29b. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies, by Risk Scenario: CRC-SPIN

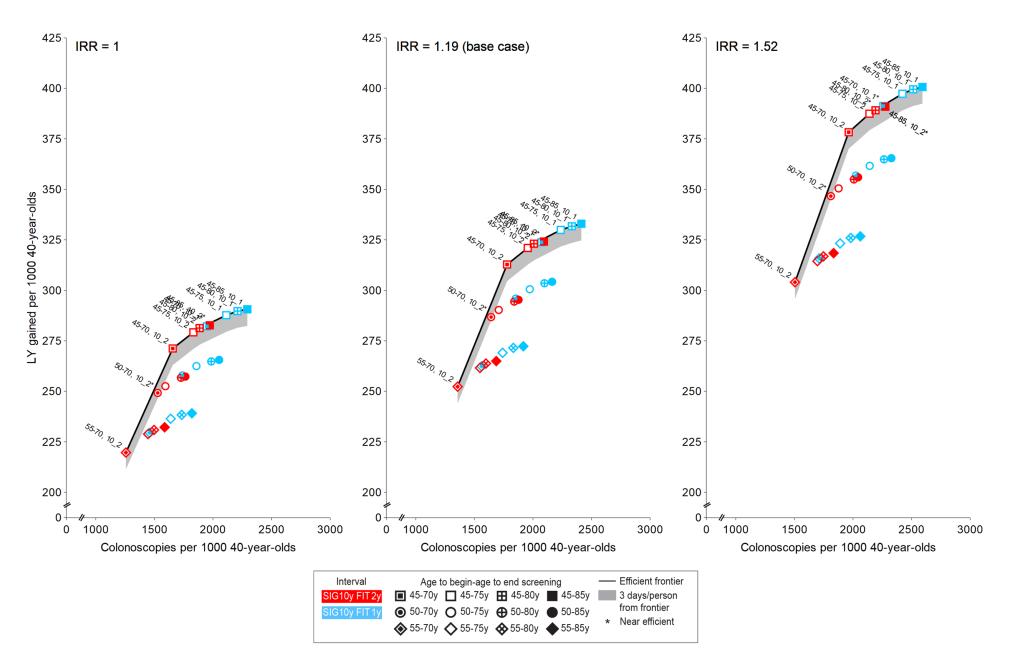


Figure 29c. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies, by Risk Scenario: MISCAN

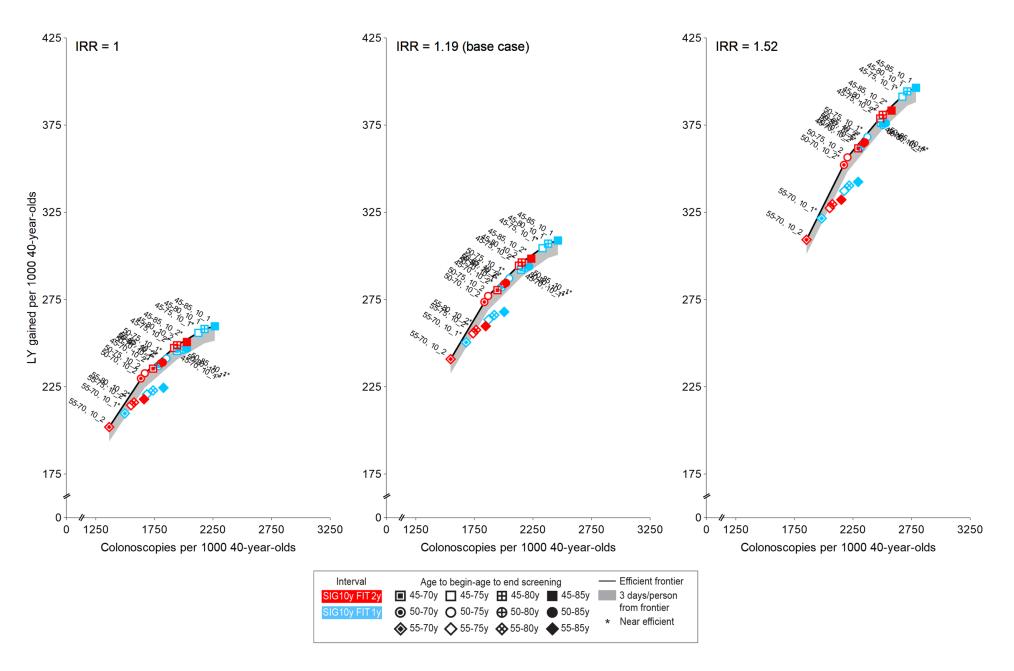


Figure 30a. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies, by Risk Scenario: SimCRC

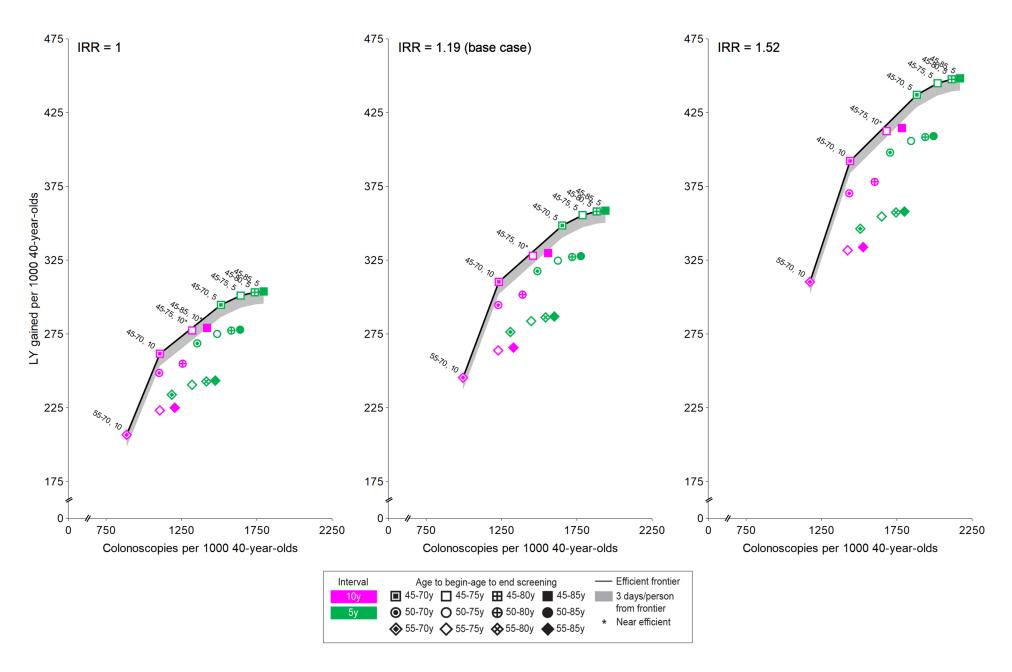


Figure 30b. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies, by Risk Scenario: CRC-SPIN

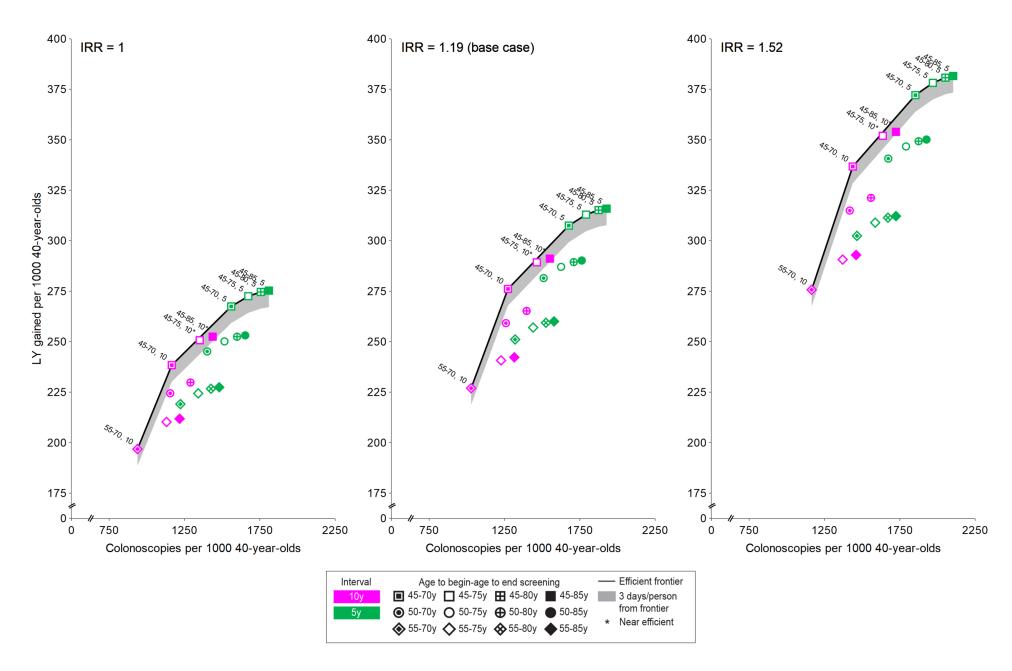


Figure 30c. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies, by Risk Scenario: MISCAN

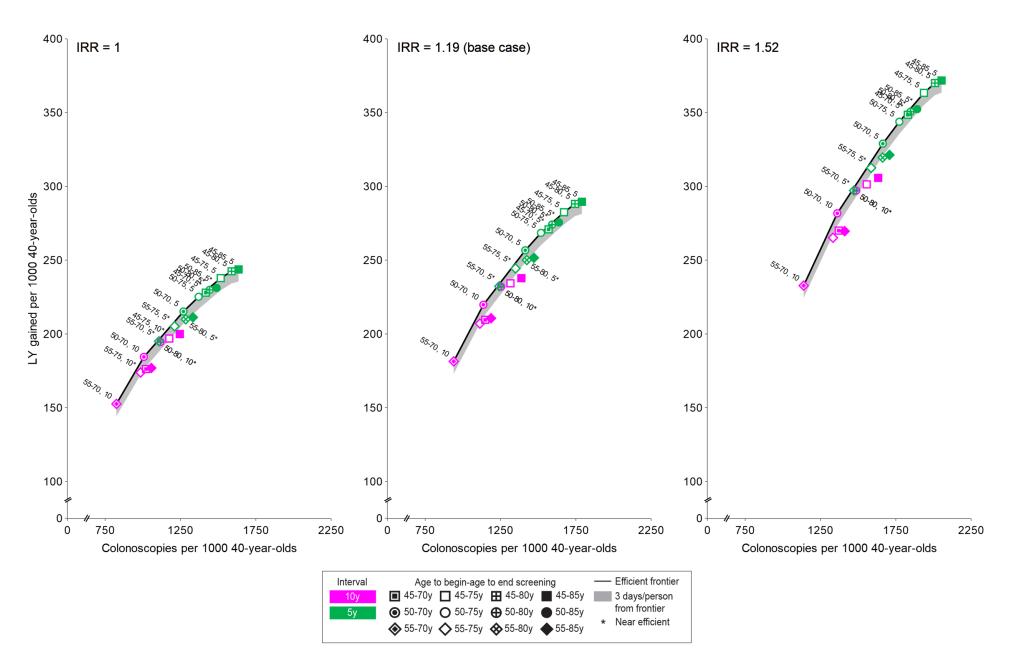


Figure 31a. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With Once-Only Colonoscopy, Followed by Annual FIT, by Risk Scenario: SimCRC

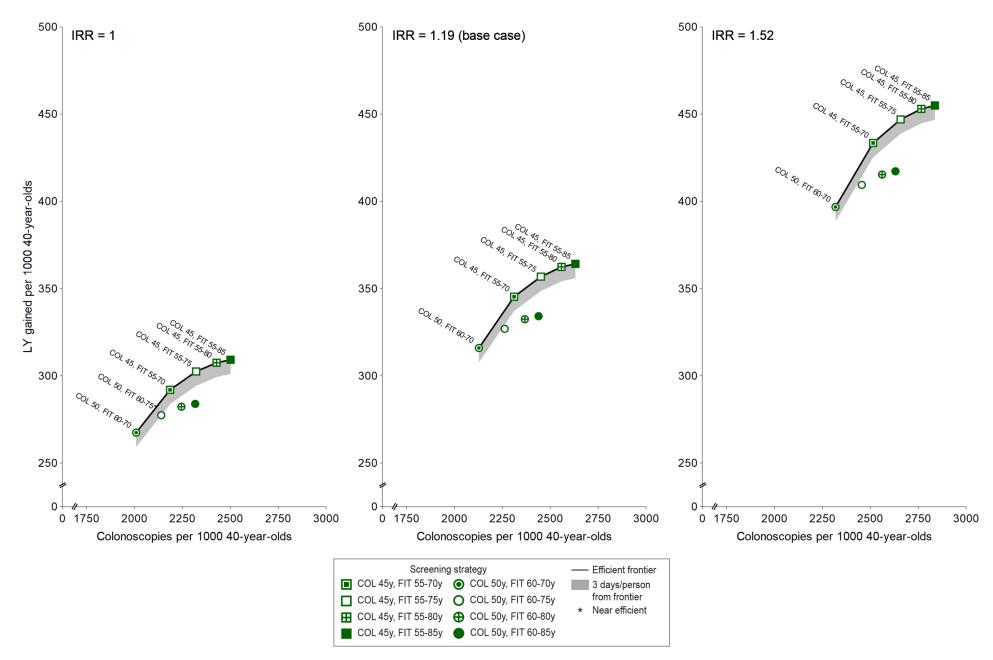


Figure 31b. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With Once-Only Colonoscopy, Followed by Annual FIT, by Risk Scenario: CRC-SPIN

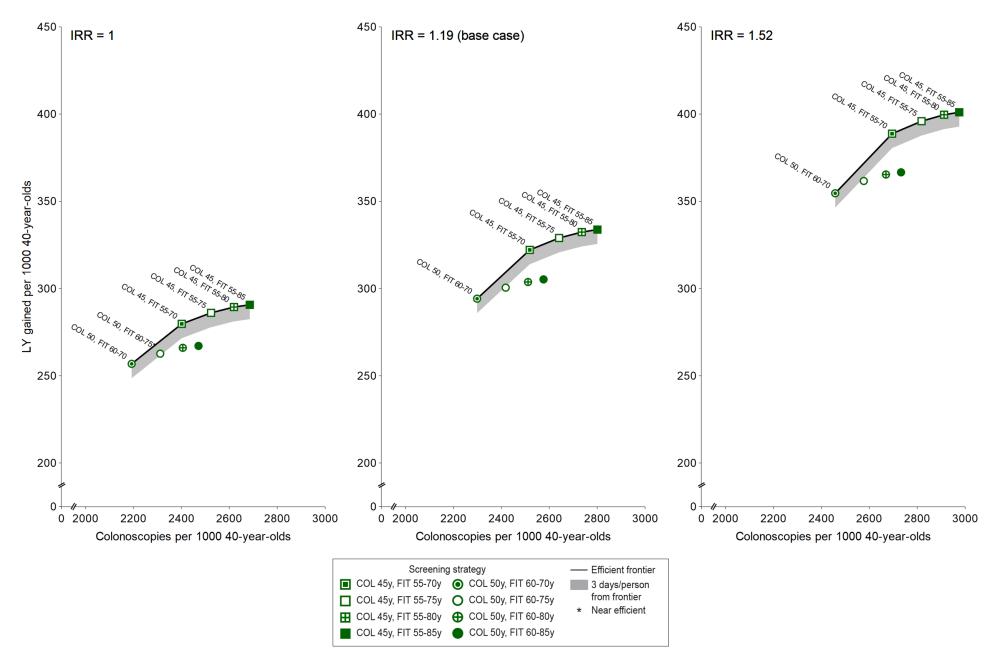


Figure 31c. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With Once-Only Colonoscopy, Followed by Annual FIT, by Risk Scenario: MISCAN

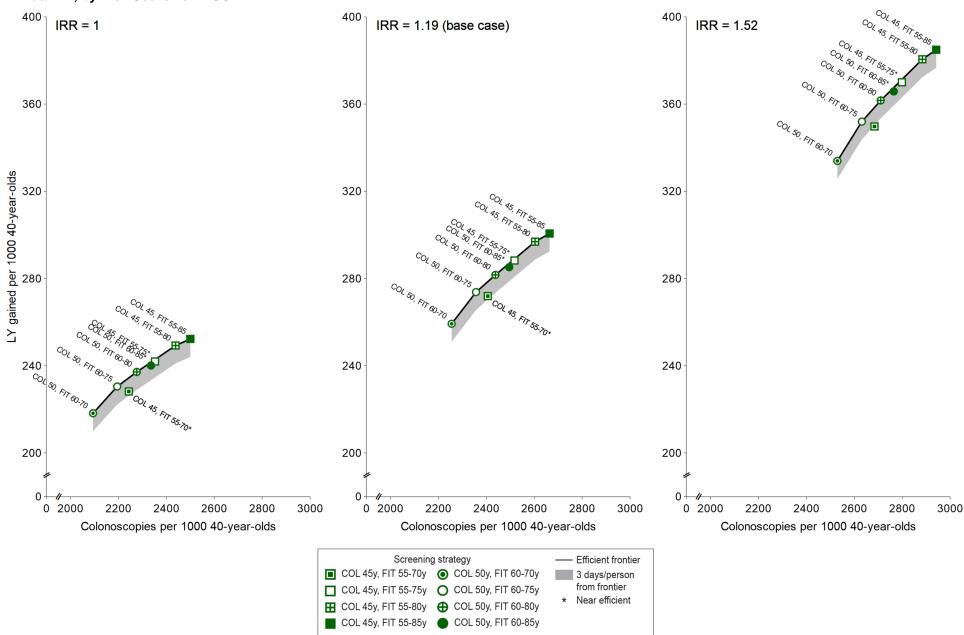


Figure 32a. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy, by Risk Scenario: SimCRC

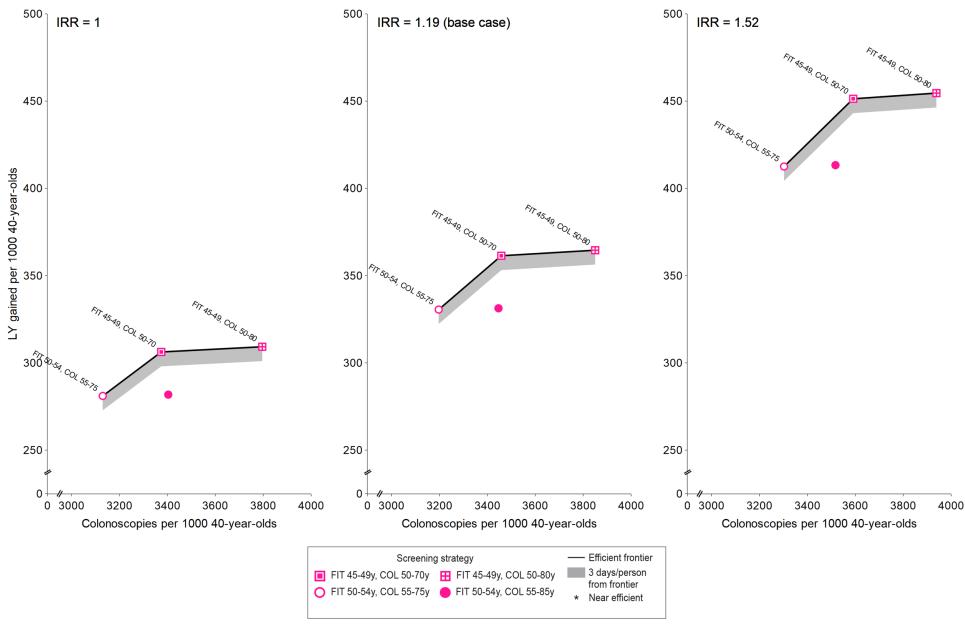


Figure 32b. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy, by Risk Scenario: CRC-SPIN

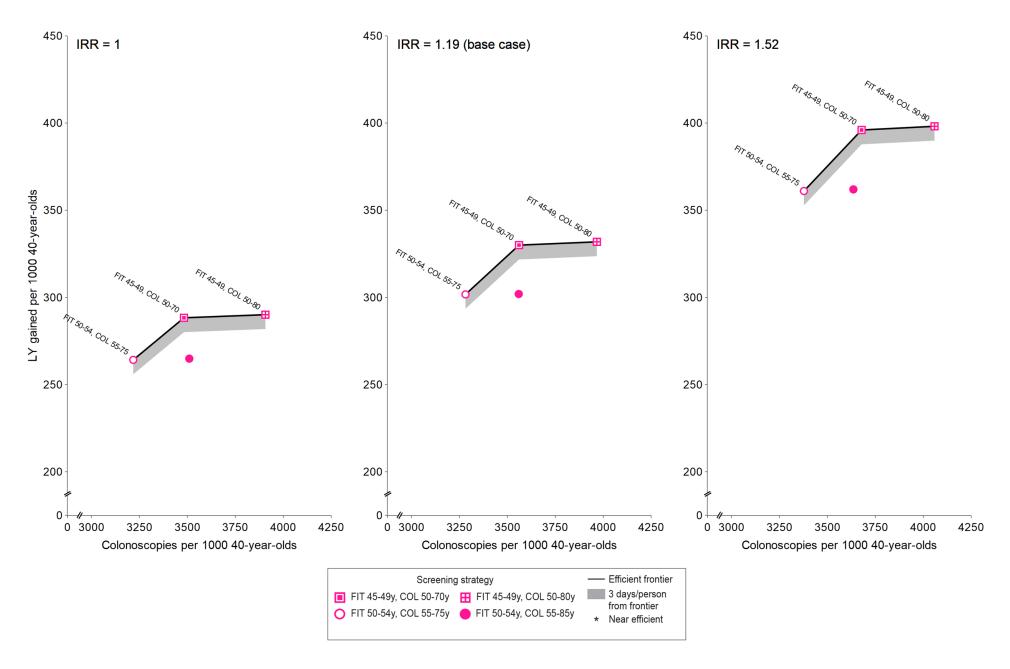
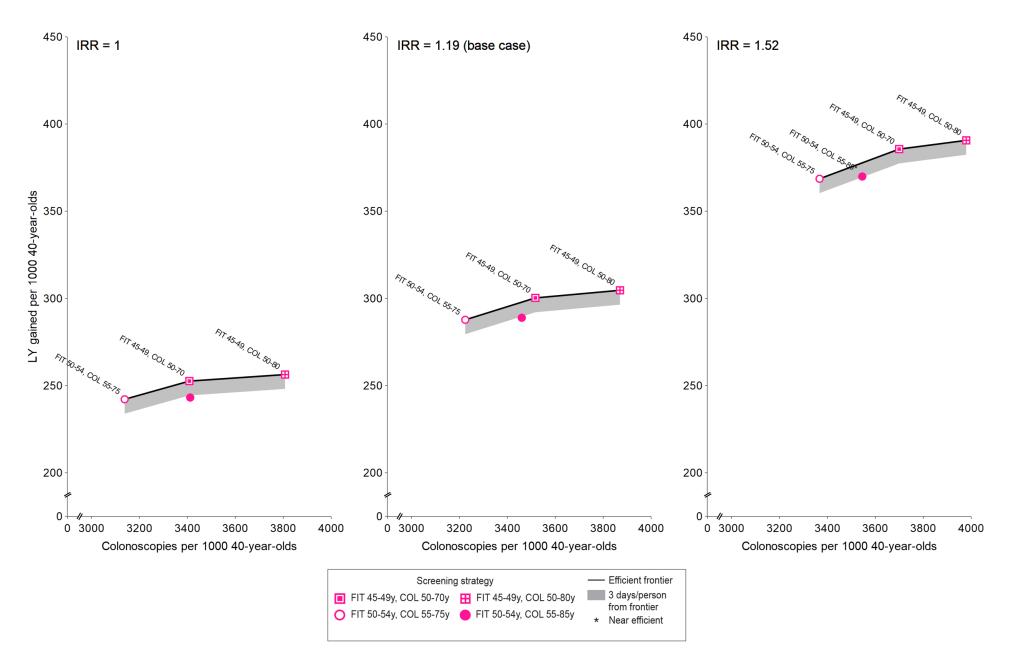



Figure 32c. Colonoscopies and Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy, by Risk Scenario: MISCAN

[A] Benefit: Life-years gained per 1000 individuals screened*

	L	ife-Years Ga	ined* if St	art	Additio	nal Life-Yea	ars Gained	* if Start		
Screening Modality and		eening at A				eening at Ag		Life Veers Gains	d by Ago to Pogin	
Frequency	and Average Across Models SimCRC CRC-SPIN MISCAN Avera					CRC-SPIN		Life-Years Gained by Age to Begin Screening, Model Average		
Stool tests									Age 50	Age 45
FIT 1y	316	285	274	292	+33	+29	+17	+26		
sDNA-FIT 1y	330	301	290	307	+33	+30	+16	+26		
sDNA-FIT $3y^{\dagger}$	304	271	257	278	+31	+30	+16	+25	~	
Direct visualizati	ion tests									
COL 10y	335	308	286	310	+34	+32	+16	+27		
CTC 5y	325	287	268	293	+31	+26	+14	+24		
SIG 5y	279	256	256	264	+30	+24	+13	+22		
SIG 10y + FIT	330	301	287	306	+33	+29	+17	+26		

0 50 100 150 200 250 300 350

[continued on next page]

[B] Benefit: CRC cases averted per 1000 individuals screened*

	CF	RC Cases Av	erted* if St	art	Additio	nal CRC Cas	ses Averteo	I* if Start		
Screening	Scr	eening at A	ge 50 by M	odel		eening at A				
Modality and	an	d Average	Across Mod	lels	an	d Average	Across Mod	lels	CRC Cases Avert	ed by Age to Begin
Frequency	SimCRC	CRC-SPIN	MISCAN	Average	SimCRC	CRC-SPIN	MISCAN	Average	Screening, Mode	el Average
Stool tests									Age 50	Age 45
FIT 1y	55	53	33	47	+4	+3	+1	+3		
sDNA-FIT 1y	63	59	41	54	+4	+3	+1	+3		
sDNA-FIT $3y^{\dagger}$	51	51	31	44	+4	+3	+1	+3		
Direct visualizati	on tests									
COL 10y	67	62	45	58	+4	+3	+2	+3		
CTC 5y	64	57	38	53	+3	+2	+1	+2		
SIG 5y	56	51	41	49	+3	+2	+1	+2		
SIG 10y + FIT	63	59	41	54	+4	+3	+2	+3		

 $0 \quad 5 \quad 10 \ 15 \ 20 \ 25 \ 30 \ 35 \ 40 \ 45 \ 50 \ 55 \ 60 \ 65$

[continued on next page]

[C] Benefit: CRC deaths averted per 1000 individuals screened*

	CR	C Deaths Av	verted* if S	tart	Addition	al CRC Dea	ths Averte			
Screening	Scr	eening at A	ge 50 by M	odel	Scr	eening at A	ge 45 by M	odel		
Modality and	an	d Average A	Across Mod	dels	an	d Average	Across Mod	lels	CRC Deaths Ave	rted by Age to Begin
Frequency	SimCRC	CRC-SPIN	MISCAN	Average	SimCRC	CRC-SPIN	MISCAN	Average	Screening, Mode	el Average
Stool tests									Age 50	Age 45
FIT 1y	27	24	23	25	+1	+1	+0.6	+1		
sDNA-FIT 1y	29	26	25	27	+1	+1	+0.6	+1		
sDNA-FIT 3y [†]	26	23	22	24	+1	+1	+0.6	+1		
Direct visualizat	ion tests									
COL 10y	29	26	25	27	+2	+1	+1	+1		
CTC 5y	29	25	23	26	+1	+1	+0.5	+0.9		
SIG 5y	25	22	23	23	+1	+0.9	+0.4	+0.9		
SIG 10y + FIT	29	26	25	26	+1	+1	+0.9	+1		

[continued on next page]

	Com	plications* if	Start Scre	ening	Addi	tional Comp	lications i				
Screening	a	at Age 50 by	Model and	d	Scr	eening at A	ge 45 by M	odel			
Modality and		Average Ac	ross Model	S	an	d Average	Across Mod	lels	Complications b	y Age to Begin	
Frequency	SimCRC	CRC-SPIN	MISCAN	Average	SimCRC	CRC-SPIN	MISCAN	Average	Screening, Model Average		
Stool tests									Age 50	Mage 45	
FIT 1y	9	12	10	10	+0.2	+0.4	+0.2	+0.2			
sDNA-FIT 1y	11	14	12	12	+0.2	+0.4	+0.2	+0.2			
sDNA-FIT $3y^{\dagger}$	9	12	9	10	+0.2	+0.4	+0.2	+0.3			
Direct visualizat	ion tests										
COL 10y	13	15	14	14	+2	+2	+2	+2			
CTC 5y	11	12	10	11	+0.1	+0.2	+0.1	+0.2			
SIG 5y	10	11	12	11	+0.1	+0.2	+0	+0.1			
SIG 10y + FIT	11	13	12	12	+0.6	+0.5	+0.8	+0.6			

[D] Harms: Complications (gastrointestinal and cardiovascular) of CRC screening and follow-up procedures per 1000 individuals screened*

0 2 4 6 8 10 12 14 16

[continued on next page]

[E] Burden: Lifetime number of colonoscopies per 1000 individuals screened*

	Lifetime	e No. of Col	onoscopies	s* if Start	Addit	ional Colon	oscopies*	if Start			
Screening	g Screening at Age 50 by Model and					eening at a	ge 45 by M	odel			
Modality and		Average Ac	ross Model	s	an	d Average	Across Mod	lels	Lifetime No. of Colonoscopies* by Age t		
Frequency	SimCRC	CRC-SPIN	MISCAN	Average	SimCRC	CRC-SPIN	MISCAN	Average	Begin Screening	, Model Average	
Stool tests									Age 50	Age 45	
FIT 1y	1423	1619	1445	1496	+179	+205	+175	+186			
sDNA-FIT 1y	2156	2295	2211	2221	+305	+322	+305	+311			
sDNA-FIT $3y^{\dagger}$	1405	1576	1449	1477	+177	+196	+179	+184			
Direct visualizat	ion tests										
COL 10y	3414	3500	3476	3464	+798	+800	+756	+784			
CTC 5y	1624	1626	1519	1590	+164	+165	+153	+161			
SIG 5y	1544	1510	1927	1660	+176	+170	+192	+179			
SIG 10y + FIT	1840	1973	2048	1953	+263	+265	+284	+270	*** · · · · · · · · · · · · · · · · · ·		

0 750 1500 2250 3000 3750 4500

[continued on next page]

Screening Modality and	Lifetime No. of Non-Colonoscopy Tests* if Start Screening at Age 50 by Model and Average Across Models				Start S	nal Non-Col Screening a d Average /	t age 45 by	Lifetime No. of Non-Colonoscopy Tests by Age to Begin Screening,		
Frequency	SimCRC	CRC-SPIN	MISCAN	Average	SimCRC	CRC-SPIN	MISCAN	Average	Model Average	
Stool tests									Age 50	Age 45
FIT 1y	16160	15562	16097	15940	+3520	+3387	+3510	+3472		
sDNA-FIT 1y	11463	11132	11315	11303	+2425	+2361	+2383	+2390		
sDNA-FIT $3y^{\dagger}$	6074	5939	6006	6006	+1201	+1166	+1199	+1188		
Direct visualizat	ion tests									
COL 10y	0	0	0	0		No cł	nange			
CTC 5y	4006	4088	4075	4056	+798	+805	+806	+803		
SIG 5y	4058	4134	3646	3946	+788	+801	+743	+777		
SIG 10y + FIT	15636	15371	14257	15088	+3581	+3476	+3602	+3553	0 4000 8000	12000 16000 200

[F] Burden: Lifetime number of other (non-colonoscopy) tests[‡] per 1000 individuals screened*

FIT indicates fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT, multi-target stool DNA test (stool DNA test with a fecal immunochemical test); CTC, computed tomographic colonography; SIG, flexible sigmoidoscopy; CRC, colorectal cancer.

* Outcomes are expressed per 1000 40-year-olds who start screening at age 45 or at age 50.

[†] Compared to other options for stool-based screening, these strategies do not provide an efficient balance of the benefits (life-years gained) vs. harms and burden (i.e., lifetime number of colonoscopies) of screening.

‡ Other (non-colonoscopy) tests include FIT, sDNA-FIT, CTC, SIG.

We considered several incidence rate ratio (IRR) estimates, which we used to characterize observed increases in colorectal cancer risk in adults 50 and younger. A key issue was that a simple IRR estimate, based on comparison of age-adjusted colorectal cancer incidence among those aged 20 to 44 from SEER^{137,138} in 2012 to 2016 (born from 1968 to 1996) relative to 1975-1979 (born 37 years earlier, from 1931 to 1959; this time period corresponds to the years of SEER data used for model calibration) resulted in IRR estimates that were lower than IRR estimates reported by Siegel in 2017.²³

IRR estimates based directly on SEER data, described in section **A1.1**, ranged from 1.23 (95% confidence interval [CI] 1.15 to 1.31) to 1.25 (95% CI 1.19 to 1.31), depending on whether or not rates are delay-adjusted.^{139,140} [Note that our initial analysis, based on non delay-adjusted SEER incidence rates, yielded an IRR of 1.19. We later modified the inclusion criteria for our analysis, yielding the estimates reported above.^{***} Because this initial estimate was within the 95% confidence intervals reported above for our final estimates, we continued to use IRR of 1.19 in our simulations.] In contrast, Siegel and colleagues estimated age-period-cohort (APC) models using SEER data from 1974 to 2013. From these models, they estimate IRRs for colon and rectal cancer for individuals born around 1990 relative to those born around 1950, obtaining estimates of 2.40 for colon cancer (95% CI 1.11 to 5.19) and 4.32 for rectal cancer (95% CI 2.19 to 8.51). We note the high degree of uncertainty in these estimates.

Because of differences in estimated IRRs obtained from analysis of SEER rates and published estimates from APC models, the CISNET Colorectal Cancer Working Group requested that Rebecca Siegel, MPH, of the American Cancer Society fit APC models to SEER data, restricted to 20- to 44-year-olds, to estimate IRRs comparing persons born in 1977 vs. 1937. Consistent with assumptions made for simple SEER comparisons, these analyses excluded carcinoid tumors and other neuroendocrine carcinomas appearing in the colon or rectum, and included SEER data through 2016. The revised IRR was 1.37 (95% CI 1.22 to 1.54). Details of Ms. Siegel's analysis and the differences between her analysis for the CISNET Colorectal Cancer Working Group and her published paper are described in section A1.2.

There are several reasons for uncertainty in estimated IRRs that capture population-level increases in colorectal cancer risk, which we outline below.

• First, in APC models, *age effects* capture the increasing colorectal cancer risk that is reflected in the increases in colorectal cancer incidence with age, which the CISNET models simulate as an increase in adenoma prevalence and in the probability of adenoma transition to cancer with age; *period effects* capture the effect of changes in medical practice, such as the dissemination of screening and the increased use of endoscopic follow-up, over time and can also capture changes in risk, for example, such as changes in diet and exercise or environmental exposures (e.g., antibiotics); *cohort effects* capture

^{***} Our initial analysis included only the following reporting sources: "Hospital inpatient"; "Laboratory only"; "Physician's office/private medical practitioner"; or "Nursing/convalescent home/hospice". Our final analysis also included the following reporting sources: "Radiation treatment centers or medical oncology centers" and "Other hospital outpatient units/surgery centers". In both the initial and final SEER analyses, cases with reporting source coded as "Autopsy only" or "Death certificate only" were excluded.

changes in risk across generations (e.g., smoking rates).¹⁴¹ It is difficult to tease apart period and cohort effects because the time scales of age, period, and cohort effects are linearly dependent. In other words, age + year of birth = year of diagnosis, *i.e.*, age + cohort = period. APC models are not identifiable without adding constraints to the age, period, and cohort effects, and different constraints can lead to different conclusions, especially about cohort effects.¹⁴¹

- Second, there is some uncertainty about which types of cancers to include as colorectal cancers. CISNET modelers focus on specific disease etiology and so include only cancers of the large intestine with histology indicative of colorectal cancer (see Appendix Table 1.1 for the histology codes included as colorectal cancer). In contrast, original analyses by Siegel and colleagues included cancers with a primary location in the large intestine, regardless of histology. This includes cancers with histology coded as "8240: carcinoid tumors, NOS" and "8246: neuroendocrine carcinoma". Carcinoid cancers are a type of neuroendocrine cancer that occur throughout the body and have a somewhat different etiology than colorectal cancer. Neuroendocrine tumors are rare, though their incidence has increased in the last 15 years.¹⁴²
- Third, the different modeling approaches each compared slightly different cohorts.
- Finally, IRR estimates are uncertain because even with rising rates, colorectal cancer remains relatively rare before age 50.

A1.1 Specifications for SEER*Stat Incidence Analyses

Appendix Tables 1.1 and 1.2 detail the SEER*Stat analyses for estimation of age-adjusted colorectal cancer incidence rates among 20- to 44-year-olds in 2012-2016 vs. 1975-1979. Analyses were performed with and without use of delay-adjusted rates.

A1.2. Information on APC Models by Siegel

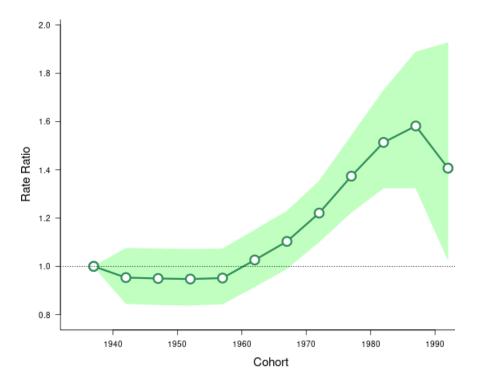
Rebecca Siegel, MPH, of the American Cancer Society, carried out specific analyses for the CISNET Colorectal Cancer Working Group to inform our increased risk assumptions. Ms. Siegel's published analysis²³ was based on all colorectal cancers in the 9 oldest SEER areas that were diagnosed in adults 20 years and older from 1974 through 2013 (the latest SEER data available at the time). Analyses carried out for CISNET include SEER data up through 2016. Ms. Siegel carried out a series of analyses in response to CISNET queries.

First, APC models were used to estimate IRRs comparing CRC incidence in persons born in 1975 vs. 1935 based on SEER data (IRR=1.59).^{23,27}

Next, to rule out that possibility that screening is not adequately accounted for by the model, SEER data were restricted to cancers diagnosed at ages 20 to 44 (IRR=1.52).

Finally, APC-modeled IRRs were generated based on the same case selection criteria used for simple IRR estimates (shown in **Appendix Table 1.1**). This case definition excludes colorectal cancer cases diagnosed at autopsy or death certificate only (these cases were included in the published analysis), second (or later) primaries, and cancers located in the colon and rectum that

do not have histology indicative of colorectal cancer (the published analysis included all cancers in the colon and rectum including, for example, carcinoid tumors and other neuroendocrine carcinomas). The resulting rate ratio for 20- to 44-year-olds diagnosed in 1977 vs. in 1937 is 1.37 (95% CI 1.22-1.54) (**Appendix Figure 1.1**).


Appendix Table 1.1. SEER*Stat 8.3.6 Rate Session Using Delay-Adjusted Rates

Tab	Variables/options
Data	Incidence – SEER 9 Reg Research Data with Delay-Adjustment, Malignant Only, Nov 2018 Sub (1975- 2016) <katrina adjustment="" population="" rita=""></katrina>
	Age variable: Age recode with <1 year olds
	Rates (age-adjusted), include rate ratios with 95% CI
Statistic	Standard population: 2000 US STD Population (19 age groups - Census P25-1130)
	Select "Include Rate Ratios on Last Row Variable Groupings"
Selection	Other.Type of Reporting Source: Unselect 'Autopsy only' and 'Death certificate only' Site and Morphology.ICD-Q-3 Hist/behay = { 8000/3: Neoplasm, malignant', 8001/3: Tumor cells, malignant', 8001/3: Carcinoma, NOS', 80203: Carcinoma, undifferentiated, NOS', 80204: Carcinoma, anaplastic, NOS', 8021/3: Carcinoma, undifferentiated, NOS', 80203: Carcinoma, anaplastic, NOS', 8140/3: Adenocarcinoma, 8141/3: Scirrhous adenocarcinoma', 8145/3: Carcinoma, diffuse type', 8211/3: Hold ardenocarcinoma', 8211/3: Lobalr adenocarcinoma', 8221/3: Serrated adenocarcinoma', 8220/3: Adenocarcinoma in adenomatous polyposis coli', 8221/3: Adenocarcinoma in multiple adenomatous polyps', 8220/3: Solid carcinoma in multiple adenomatous polyps', 820/3: Adenocarcinoma in multiple adenomatous polyps', 8260/3: Papillary adenocarcinoma', 8261/3: Adenocarcinoma in tubulovillous adenoma', 8263/3: Adenocarcinoma', 8481/3: Mucinous adenocarcinoma', 8470/3: Mucinous adenocarcinoma', 8570/3: Adenocarcinoma with neuroendocrine differentiation'} Multiple Primary Fields.Sequence number = (One primary only, 1st of 2 or more primaries) Site and Morpholo
Table	Year of Diagnosis: {1975-1979, 2012-2016}

Appendix Table 1.2. SEER*Stat 8.3.6 Rate Session Using Non-Delay-Adjusted Rates

Tab	Variables/options										
	Incidence – SEER 9 Reg Research Data, Nov 2018 Sub (1975-2016) <katrina adjustment="" population="" rita=""></katrina>										
Data	Age variable: Age recode with <1 year olds										
	Rates (age-adjusted), include rate ratios with 95% CI										
Statistic	Standard population: 2000 US STD Population (19 age groups - Census P25-1130)										
	Select "Include Rate Ratios on Last Row Variable Groupings"										
	<u>Other.Type of Reporting Source</u> : Unselect 'Autopsy only' and 'Death certificate only' Site and Morphology.ICD-O-3 Hist/behav = {										
	8000/3: Neoplasm, malignant', 8001/3: Tumor cells, malignant', 8010/3: Carcinoma, NOS', 8020/3: Carcinoma, undifferentiated, NOS',										
	'8021/3: Carcinoma, anaplastic, NOS', '8022/3: Pleomorphic carcinoma', '8140/3: Adenocarcinoma, NOS', '8141/3: Scirrhous adenocarcinoma',										
	'8144/3: Adenocarcinoma, intestinal type', '8145/3: Carcinoma, diffuse type', '8210/3: Adenocarcinoma in adenomatous polyp', '8211/3: Tubular adenocarcinoma',										
	'8213/3: Serrated adenocarcinoma', '8220/3: Adenocarcinoma in adenomatous polyposis coli', '8221/3: Adenocarcinoma in multiple adenomatous polyps',										
Selection	8230/3: Solid carcinoma, NOS', 8255/3: Adenocarcinoma with mixed subtypes', 8260/3: Papillary adenocarcinoma, NOS',										
	'8261/3: Adenocarcinoma in villous adenoma', '8262/3: Villous adenocarcinoma', '8263/3: Adenocarcinoma in tubulovillous adenoma', '8480/3: Mucinous adenocarcinoma',										
	'8481/3: Mucin-producing adenocarcinoma', '8490/3: Signet ring cell carcinoma', '8560/3: Adenosquamous carcinoma',										
	8570/3: Adenocarcinoma with squamous metaplasia', 8574/3: Adenocarcinoma with neuroendocrine differentiation'}										
	<u>Multiple Primary Fields.Sequence number</u> = {One primary only, 1st of 2 or more primaries}										
	Site and Morphology.Site recode ICD-O-3/WHO 2008 = {Cecum, Ascending Colon, Hepatic Flexure, Transverse Colon, Splenic Flexure, Descending Colon, Sigmoid Colon, Large Intestine NOS, Rectum and Rectosigmoid Junction}										
	Age at Diagnosis.Age recode with <1 year olds = {'20-24 years','25-29 years','30-34 years','35-39 years','40 44 years'}										
	Race, Sex, Year Dx, Registry, County.Year of diagnosis = {'1975','1976','1977','1978','1979','2012','2013', '2014','2015','2016'}										
Table	Year of Diagnosis: {1975-1979, 2012-2016}										

Appendix Figure 1.1. Incidence Rate Ratio and 95% Confidence Interval by Birth Cohort From an Age-Period-Cohort Model Fit to Colorectal Cancer Incidence Rates Among 20- to 44-Year-Olds in SEER

As noted in the section "**Model Input Parameters**", test characteristics are based primarily on estimates from a systematic evidence review conducted by Lin et al. for the USPSTF.¹⁶ Below we provide additional information on the inputs for each screening modality.

Colonoscopy

The EPC identified no new studies reporting test performance characteristics for colonoscopy.¹⁶ We therefore used the same test characteristics as in the 2016 decision analysis¹⁵ (**Table 7**); perlesion colonoscopy sensitivity for adenomas by size category was based on a meta-analysis of tandem colonoscopy studies.¹³⁴ Test specificity was based a screening study of colonoscopy in the Boston University catchment area.¹³³

SIG

The EPC found no studies evaluating the test performance of SIG.¹⁶ As in the 2016 decision analysis,¹⁵ we assumed that SIG had the same sensitivity as colonoscopy *within the reach of the endoscope* (**Table 7**). We assumed that neither biopsies nor polypectomy would be performed during SIG and that persons with any lesion visualized at sigmoidoscopy were deemed positive and referred for diagnostic colonoscopy. This is similar to the sigmoidoscopy approach used in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial in which biopsy and polypectomy were not routinely performed.¹³⁵ Test specificity was based on data from the PLCO Trial.¹³⁵

CTC

The systematic evidence review reported pooled estimates of the per-person sensitivity and specificity of CTC for adenomas by size (adenomas ≥ 10 mm; adenomas ≥ 6 mm). However, the models require *lesion*-based sensitivity *separately* for adenomas 6 to <10 mm and for adenomas ≥ 10 mm. We therefore used the same test characteristics as in the 2016 decision analysis, which were based on test performance data from the American College of Radiology Imaging Network National CT Colonography Trial.¹³⁶ (Table 7).

Stool Tests

The EPC provided pooled estimates of the per-person test sensitivity and specificity for each of the 3 stool tests (FIT, sDNA-FIT, HSgFOBT). We assumed that sensitivity for adenomas ≥ 10 mm was equal to the sensitivity for advanced adenomas, a category that includes any adenoma ≥ 10 mm in size, an adenoma containing high-grade dysplasia or villous histology, and, depending on the study, sessile serrated lesions. Similarly, we assumed that the sensitivity for 1 to <10 mm adenomas was equal to the sensitivity for non-advanced adenomas. In all models, specificity is for any adenoma or cancer.

All 3 models made adjustments to the pooled person-based sensitivity estimates from the EPC. SimCRC and MISCAN derived lesion-based sensitivities that match the pooled person-based

Appendix 2. Additional Information on Test Characteristics

sensitivity estimates. Doing so allowed the probability of a positive test to increase with the number of adenomas a person has. For preclinical cancers and for adenomas ≥ 10 mm, SimCRC and MISCAN simulated stool tests (and diagnostic colonoscopies) under different values for lesion-based sensitivity for the size category of interest to identify the value at which the personbased sensitivity generated by the model matched the corresponding person-based sensitivity from the EPC's pooled analysis. These models assumed that 1 to <6 mm adenomas do not bleed, which implies that the sensitivity of the stool tests for adenomas of this size is 0 (individuals with 1 to <6 mm adenomas are allowed to have a positive test via the sensitivity for co-occurring adenomas ≥ 6 mm, or by the test's false-positive rate). They then derived the person-based sensitivity for a 6 to <10 mm adenoma such that the person-based sensitivity for lesions 1 to <10 mm was equal to the pooled person-based sensitivity for 1 to <10 mm adenomas from the EPC. The resulting lesion-based sensitivity estimates are in **Appendix Table 2.1**.

CRC-SPIN applied person-based sensitivity estimates. Unlike SimCRC and MISCAN, CRC-SPIN allows 1 to <6 mm adenomas to bleed, assuming that the overall sensitivity for persons with these adenomas as the most-advanced finding is 1 to 2 percentage points higher than the test's false positive rate. CRC-SPIN then determined the sensitivity for persons with 6 to <10 mm adenomas as the most advanced finding such that the weighted average sensitivity for 1 to <6 mm adenomas and 6 to <10 mm adenomas was equal to that of 1 to <10 mm adenomas, with weights based on CRC-SPIN's underlying distribution of the size of the most advanced adenoma across these categories. The resulting person-based sensitivity estimates are in Appendix Table 2.2.

Additional information for each of the 3 stool tests is provided below.

<u>FIT</u>: Test characteristics for FIT are for the OC-Sensor family of FITs at a cutoff of 20 μ g of hemoglobin per g of feces.

<u>sDNA-FIT</u>: Test characteristics for sDNA-FIT are for Cologuard.

<u>HSgFOBT</u>: Test characteristics for HSgFOBT are for Hemoccult SENSA. As noted in the section "Model input parameters", the uncertainty, there is considerable uncertainty in test performance characteristics for Hemoccult SENSA and therefore in model predictions for strategies using this modality. Decisions about this test should not be informed by the models. We include model findings for HSgFOBT strategies in Appendix 4, rather than with the main results.

	Per-lesion sensitivity*					
Model/ stool test	Adenoma 1 to <6 mm [†]	Adenoma 6 to <10 mm	Adenoma ≥10 mm	Preclinical colorectal cancer [‡]		
SimCRC						
HSgFOBT	0	0.035	0.061	0.658		
FIT	0	0.060	0.161	0.710		
sDNA-FIT	0	0.103	0.307	0.922		
MISCAN						
HSgFOBT	0	0.056	0.056	0.569 / 0.860		
FIT	0	0.113	0.147	0.630 / 0.888		
sDNA-FIT	0	0.183	0.295	0.895 / 0.975		

Appendix Table 2.1. Per-Lesion Test Sensitivity for Stool Tests Used in the SimCRC and MISCAN Models

FIT – fecal immunochemical test with a cutoff for positivity of 20 μ g of hemoglobin per g of feces; HSgFOBT – high sensitivity guaiac-based fecal occult blood test; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test) * Estimates were derived by calibrating to the person-based sensitivities in Table 7.

† SimCRC and MISCAN assume 1 to <6 mm adenomas do not bleed and therefore cannot cause a positive stool test.

‡ For SimCRC, the value is the sensitivity for any preclinical cancer. For MISCAN, the first value is the sensitivity for a

preclinical cancer while at an earlier stage than it would have been diagnosed in the absence of screening, and the second value is the sensitivity at the stage it would have been diagnosed in the absence of screening.

Appendix Table 2.2. Per-Person Test Sensitivity for Stool Tests Used in the CRC-SPIN Model

	Per-person sensitivity*				
Stool test	Adenoma 1 to <6 mm [†]	Adenoma 6 to <10 mm	Adenoma ≥10 mm	Preclinical colorectal cancer [‡]	
HSgFOBT	0.04	0.09	0.11	0.68	
FIT	0.05	0.15	0.22	0.74	
sDNA-FIT	0.11	0.31	0.42	0.94	

FIT – fecal immunochemical test with a cutoff for positivity of 20 μ g of hemoglobin per g of feces; HSgFOBT – high sensitivity guaiac-based fecal occult blood test; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test) * Estimates were derived by calibrating model outcomes to the per-person sensitivities given in Table 7.

[†] CRC-SPIN assumes that the overall sensitivity for detecting persons with at most 1 to <6 mm adenoma(s) is 1 (HSgFOBT) to 2 (FIT, sDNA-FIT) percentage points higher than the false-positive rate of the test.

To calculate quality-adjusted life-years (QALYs), we assign quality-of-life weights for each year of life that accounts for population health by age, as well as utility losses associated with specific events (e.g. colonoscopy) or health states (e.g., time with colorectal cancer). The approach is similar to that used by the breast cancer CISNET group in their 2016 analysis for the USPSTF.⁸⁸

Utilities Associated With Aging

We obtained estimates of the age-related utility weights from Hanmer et al.,⁸⁹ who reported mean EQ-5D US values for men and women in deciles of age from age 20 to age 89 years. To extrapolate utilities within each 10-year age group (for ages 40 and older) we used data from the 2017 US life table on the mean age by sex and 10-year age group. We then fit a line to predict weights at each age within the age groups and smoothed it to eliminate discontinuities. We extrapolated to estimate risk from age 90 to 99. Finally, we calculated a weighted average age-specific weight using data from the 2017 US life table on the proportion of the population that is female. This step was necessary because our output template did not stratify by sex. Appendix Table 3.1 contains the resulting age-specific weights used in the analysis.

Utility Losses Associated With Screening, Complications, and Cancer Care

Appendix Table 3.2 contains the assumptions for the utility losses associated with each test. Estimates on the disutility of the screening test included those associated with the test itself, and those related to fear or anxiety while waiting for the test result and while waiting for a follow-up colonoscopy after a positive test. A study by Jonas et al.⁹¹ was used to derive estimates of the time spend on the different procedures. As this study only captures colonoscopy, time estimates for the other tests were adjusted based on patient information sheets and expert opinion. A study by Swan et al.⁹⁰ was used for the disutility of a colonoscopy. Due to the lack of data, we assumed that, apart from the shorter procedure times of CTC and SIG, the disutility values of CTC and SIG are equal to those of colonoscopy. For the stool-based tests, we assumed no disutility for performing the test itself. A study by Kirkegaard et al.¹⁴³ and the 2016 USPSTF analysis from the breast cancer CISNET group,⁸⁸ were used to derive estimates for the disutility related to fear or anxiety while waiting for test results. Additional details on the derivation of these utility losses are in the section "Additional details on the disutility of the screening tests" below.

Appendix Table 3.3 contains the assumptions for the utility loss associated with complications. **Appendix Table 3.4** contains the assumptions for the utility losses associated with cancer care by stage at diagnosis and phase of care.

Calculation of QALYs

Using the values in Appendix Tables 3.1-3.4, we calculate QALYs as follows:

 $QALY = sum_i (ly_pop_i * age_wt_i$ $- sum_{j,k} (ly_crc_{i,j,k} * age_wt_i * utility_loss_crc_{j,k})$ $- sum_l (n_fit_{i,l} * age_wt_i * utility_loss_fit_l)$ $- sum_l (n_sen_{i,l} * age_wt_i * utility_loss_sen_l)$ $- sum_l (n_pos_fitdna_{i,l} * age_wt_i * utility_loss_fitdna_l)$ $- sum_l (n_pos_sig_{i,l} * age_wt_i * utility_loss_sig_l)$ $- sum_l (n_cct_{c_{i,l}} * age_wt_i * utility_loss_ct_{c_{l}})$ $- sum_l ((n_screencol_{i,l} + n_diagcol_{i,l} + n_survcol_{i,l}) * age_wt_i * utility_loss_col_l)$ $- sum_{i,j} (n_clin_crc_{i,j} * age_wt_i * utility_loss_symptom_diagnosis)$ $- n_ccol_complication_cardio_i * age_wt_i * utility_loss_complication_cardio_n_seriousGI$ $- n_ccol_complication_otherGI_i * age_wt_i * utility_loss_complication_otherGI)$

where i is age, j is stage at diagnosis, k is phase of care, and l is test result (positive vs. negative).

Additional Details on the Disutility of the Screening Tests

Estimates on the disutility of the screening test included those associated with the test itself, and those related to fear or anxiety while waiting for the test result and while waiting for a follow-up colonoscopy after a positive test.

Assumptions for Utility Losses Associated With the Screening Tests Themselves

The disutility associated with a screening test depends on the time spend on a screening test and the disutility experienced during this time. **Appendix Tables 3.5-3.9** contain the assumptions for time spent on the screening tests. **Appendix Table 3.10** contains the disutility experienced while undergoing the screening test and the total utility losses associated with the screening tests themselves.

Data from the Centers for Medicare and Medicaid Services suggest that 22% of SIG claims are accompanied by a claim for anesthesia services provided by an anesthesiology professional. We therefore assumed the total time spent on sigmoidoscopy (**Appendix Table 3.9**) is the weighted average of the procedures with (22%, **Appendix Table 3.8**) and without (78%, **Appendix Table 3.7**) sedation.

Assumptions for Utility Losses Associated With Fear or Anxiety

Appendix Table 3.11 and **Appendix Table 3.12** contain the utility losses associated with fear or anxiety while waiting for the test result and while waiting for a follow-up colonoscopy after a positive test, respectively.

Appendix Table 3.1. General Health Utility Weights by Age

Age	Utility	Age	Utility	Age	Utility
40	0.888522	60	0.835435	80	0.763673
41	0.885463	61	0.833031	81	0.759805
42	0.882405	62	0.830623	82	0.755897
43	0.879346	63	0.828212	83	0.751944
44	0.876288	64	0.825797	84	0.747941
45	0.873460	65	0.822419	85	0.743880
46	0.870845	66	0.818415	86	0.739750
47	0.868229	67	0.814408	87	0.735546
48	0.865613	68	0.810398	88	0.731258
49	0.862996	69	0.806386	89	0.726879
50	0.860377	70	0.802370	90	0.722403
51	0.857758	71	0.798351	91	0.717824
52	0.855138	72	0.794328	92	0.713137
53	0.852516	73	0.790300	93	0.708341
54	0.849893	74	0.786267	94	0.703433
55	0.847402	75	0.782535	95	0.698415
56	0.845015	76	0.778817	96	0.693291
57	0.842624	77	0.775075	97	0.688068
58	0.840231	78	0.771305	98	0.682755
59	0.837835	79	0.767506	99	0.677363

Appendix Table 3.2. Assumptions for Utility Losses Associated With Each Screening Test

Test type	Utility loss when abnormal	Utility loss when normal
FIT	0.001330	0.000063
sDNA-FIT	0.001394	0.000127
HSgFOBT	0.001330	0.000063
SIG	0.001415	0.000147
СТС	0.001559	0.000292
COL with adenoma polypectomy	0.00	1401
COL without adenoma polypectomy	0.00	0496
COL for symptomatic cancer diagnosis	0.00	01401

COL – colonoscopy; CTC – computed tomography colonography; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; HSgFOBT – high sensitivity guaiac-based fecal occult blood test; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG – sigmoidoscopy

Appendix Table 3.3. Assumptions for Utility Losses Associated With Complications

Complications	Utility loss	Rationale [expert opinion]
Fatal perforation	0	Patient dies
Serious gastrointestinal event	0.005479	4 days at 0.5 utility
Other gastrointestinal event	0.002740	2 days at 0.5 utility
Cardiovascular event	0.004795	3.5 days at 0.5 utility

	Utili	ty loss [sou	rce: Ness et	al. ¹⁴⁴]
Phase of cancer care	Stage I	Stage II	Stage III	Stage IV
Initial phase	0.12	0.18	0.24	0.70
Continuing phase	0.05	0.05	0.24	0.70
Terminal phase, death CRC	0.70	0.70	0.70	0.70
Terminal phase, death other causes	0.05	0.05	0.24	0.70

Appendix Table 3.4. Utility Losses Associated With Cancer Care by Stage at Diagnosis and Phase of Care

CRC - colorectal cancer

Appendix rapid J_{ij} . Time openit on colonoscopy, based on solidas et al	Appendix Table 3.5	. Time Spent on	Colonoscopy,	, Based on Jonas et al ⁹¹
--	--------------------	-----------------	--------------	--------------------------------------

Colonoscopy component	Patient time (in hours)	Assumptions
Bowel preparation	16.70	
Travel to	0.42	
Waiting/preparing	1.40	
Sedation	0.20	Assume always used
Procedure	0.33	
Onsite recovery	0.78	
Travel home	0.58	
Recovery to routine	15.80	
Total	36.22	

Appendix Table 3.6. Time Spent on Computed Tomography Colonography (CTC)

CTC component	Patient time (in hours)	Assumptions
Bowel preparation	16.70	Same as colonoscopy
Travel to	0.42	Same as colonoscopy
Waiting/preparing	1.40	Same as colonoscopy
Sedation	0.00	No sedation
Procedure	0.25	75% of colonoscopy (generally ~15 min ¹⁴⁵)
Onsite recovery	0.00	No on-site recovery
Travel home	0.58	Same as colonoscopy
Recovery to routine	0.00	Immediately back to routine
Total	19.35	

Sigmoidoscopy component	Patient time (in hours)	Assumptions
Bowel preparation	1.50	2 hrs. according to Capital Digestive Group, ¹⁴⁶ 1 h according to Forest Canyon Endoscopy ¹⁴⁷
Travel to	0.42	Same as colonoscopy
Waiting/preparing	0.70	50% of colonoscopy
Sedation	0.00	No sedation
Procedure	0.33	20 minutes according to Walter Reed's info
Onsite recovery	0.39	50% of colonoscopy, due to no sedation
Travel home	0.58	Same as colonoscopy
Recovery to routine	3.95	25% of colonoscopy, due to no sedation
Total	7.88	

Appendix Table 3.8. Time Spent on Sigmoidoscopy With Sedation

Sigmoidoscopy component	Patient time (in hours)	Assumptions
Bowel preparation	1.50	2 hrs. according to Capital Digestive Group, ¹⁴⁶ 1 h according to Forest Canyon Endoscopy ¹⁴⁷
Travel to	0.42	Same as colonoscopy
Waiting/preparing	1.40	Same as colonoscopy
Sedation	0.20	Same as colonoscopy
Procedure	0.33	20 minutes according to Walter Reed's info
Onsite recovery	0.78	Same as colonoscopy, due to sedation
Travel home	0.58	Same as colonoscopy
Recovery to routine	15.80	Same as colonoscopy
Total	21.02	

Appendix Table 3.9. Time Spent on Sigmoidoscopy, Averaged Over Procedures With and Without
Sedation

Sigmoidoscopy component	Patient time (in hours)				
Bowel preparation	1.50				
Travel to	0.42				
Waiting/preparing	0.85				
Sedation	0.04				
Procedure	0.33				
Onsite recovery	0.48				
Travel home	0.58				
Recovery to routine	6.56				
Total	10.77				

Appendix Table 3.10. Assumptions for Utility Losses Associated With the Screening Tests Themselves

Screening modality	Disutility	Source	Time the disutility applies in hours*	Utility loss per event
Colonoscopy (regardless of type)	0.12	Swan et al. 90	36.22	0.000496
СТС	0.12	Same as colonoscopy	19.4	0.000265
SIG	0.12	Same as colonoscopy	10.8	0.000147
FIT	0	Expert opinion	-	0
sDNA-FIT	0	Expert opinion	-	0
HSgFOBT	0	Expert opinion	-	0

 $\overline{\text{COL} - \text{colonoscopy}; \text{CTC} - \text{computed tomography colonography; FIT} - \text{fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; HSgFOBT - high sensitivity guaiac-based fecal occult blood test; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG - sigmoidoscopy$

* See Appendix Tables 3.5-3.9.

Appendix Table 3.11. Assumptions for Utility Losses Associated With Waiting for the Test Result

Screening modality	Disutility	Source	Time the disutility applies in days*	Utility loss per event
COL without polypectomy	0	Immediate results	0	0
COL with polypectomy	0.033036	Expert opinion, same as waiting for a diagnostic follow-up after a positive FIT	10	0.000905
SIG	0	Immediate results (no biopsy or polypectomy)	0	0
СТС			3	0.000027
FIT	0.003304	Expert opinion, 10% of waiting for a diagnostic	7	0.000063
sDNA-FIT	0.003304	follow-up after a positive FIT	14	0.000127
HSgFOBT			7	0.000063

 $\overline{\text{COL} - \text{colonoscopy}; \text{CTC} - \text{computed tomography colonography}; \text{FIT} - \text{fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; HSgFOBT - high sensitivity guaiac-based fecal occult blood test; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG - sigmoidoscopy$

* Time estimates are based on expert opinion.

Appendix Table 3.12. Assumptions for Utility Losses Associated With Waiting for a Diagnostic Followup Colonoscopy

Screening modality	Disutility	Source	Time the disutility applies in days*	Utility loss per event
СТС		12.5% are very worried. ¹⁴³ Assuming		
SIG		they experience half of		
FIT	0.033036	the utility decrement as for a positive	14	0.001267
sDNA-FIT		mammography as		
HSgFOBT		reported by Mandelblatt ⁸⁸		

 $\overline{\text{COL} - \text{colonoscopy}; \text{CTC} - \text{computed tomography colonography}; \text{FIT} - \text{fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; HSgFOBT - high sensitivity guaiac-based fecal occult blood test; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG - sigmoidoscopy$

* Time estimates are based on expert opinion.

Appendix 4. Outcomes With HSgFOBT

As noted in the section "**Model Input Parameters**" there is considerable uncertainty in the diagnostic accuracy of the HSgFOBT Hemoccult SENSA.^{80,81} As a result, model predictions for HSgFOBT should be interpreted with caution and decisions about this test should not be informed by modeling. Outcomes for HSgFOBT strategies using the pooled estimates of test sensitivity and specificity from Lin et al¹⁶ are presented in **Appendix Table 4.1**. Colonoscopies and life-years gained for stool-based modalities are in **Appendix Figure 4.1** and efficient and near-efficient stool-based strategies with inclusion of HSgFOBT strategies are in **Appendix Table 4.2**.

When HSgFOBT is evaluated together with FIT and sDNA-FIT, all 3 models find that HSgFOBT strategies with a 3-year interval are efficient but provide the lowest LYG relative to the other efficient stool-based modalities (**Appendix Figure 4.1**). With MISCAN, a small number of HSgFOBT strategies with shorter screening intervals are also efficient or near efficient.

	Outco			0 unscreen		ear-olds	free fror	n diagr	nosed col	orecta	l cancer	_
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
HSgFOBT 45-70, 1	18001	0	0	0	1321	1321	8	40	10	314	285	115
HSgFOBT 45-70, 2	10362	0	0	0	857	857	6	54	15	262	234	96
HSgFOBT 45-70, 3	7560	0	0	0	668	668	5	61	18	225	200	82
HSgFOBT 45-75, 1	20251	0	0	0	1464	1464	9	36	8	330	299	121
HSgFOBT 45-75, 2	12025	0	0	0	982	982	7	51	12	286	255	105
HSgFOBT 45-75, 3	8651	0	0	0	758	758	6	58	15	248	218	91
HSgFOBT 45-80, 1	22037	0	0	0	1573	1573	10	35	6	338	306	124
HSgFOBT 45-80, 2	12922	0	0	0	1047	1047	8	50	10	296	262	108
HSgFOBT 45-80, 3	9247	0	0	0	803	803	6	58	13	256	225	94
HSgFOBT 45-85, 1	23312	0	0	0	1646	1646	11	35	5	341	308	125
HSgFOBT 45-85, 2	13898	0	0	0	1116	1116	9	50	9	301	266	110
HSgFOBT 45-85, 3	9983	0	0	0	860	860	7	59	12	263	229	96
HSgFOBT 50-70, 1	14431	0	0	0	1138	1138	7	44	11	280	253	102
HSgFOBT 50-70, 2	8582	0	0	0	762	762	6	57	16	235	209	86
HSgFOBT 50-70, 3	5855	0	0	0	560	560	4	64	20	193	170	71
HSgFOBT 50-75, 1	16703	0	0	0	1285	1285	9	41	9	297	268	109
HSgFOBT 50-75, 2	9702	0	0	0	848	848	6	54	13	252	223	92
HSgFOBT 50-75, 3	7096	0	0	0	662	662	5	61	16	220	193	81
HSgFOBT 50-80, 1	18502	0	0	0	1397	1397	10	39	7	306	274	112
HSgFOBT 50-80, 2	11055	0	0	0	947	947	8	53	11	266	234	97
HSgFOBT 50-80, 3	7988	0	0	0	736	736	6	61	14	234	203	85
HSgFOBT 50-85, 1	19784	0	0	0	1471	1471	11	39	7	309	276	113
HSgFOBT 50-85, 2	11710	0	0	0	994	994	9	53	10	270	237	99
HSgFOBT 50-85, 3	8426	0	0	0	769	769	7	61	13	237	205	87
HSgFOBT 55-70, 1	10967	0	0	0	940	940	7	50	14	238	212	87
HSgFOBT 55-70, 2	6246	0	0	0	608	608	5	62	18	192	169	70
HSgFOBT 55-70, 3	4800	0	0	0	498	498	4	67	20	170	148	62
HSgFOBT 55-75, 1	13284	0	0	0	1095	1095	8	46	11	257	229	94
HSgFOBT 55-75, 2	7949	0	0	0	741	741	6	58	15	220	193	80
HSgFOBT 55-75, 3	5468	0	0	0	553	553	5	65	19	184	159	67
HSgFOBT 55-80, 1	15106	0	0	0	1210	1210	10	45	9	266	236	97
HSgFOBT 55-80, 2	8862	0	0	0	810	810	7	57	13	231	200	84
HSgFOBT 55-80, 3	6495	0	0	0	638	638	6	64	16	201	173	73
HSgFOBT 55-85, 1	16399	0	0	0	1286	1286	11	44	9	269	239	98
HSgFOBT 55-85, 2	9852	0	0	0	880	880	8	58	12	236	205	86
HSgFOBT 55-85, 3	7147	0	0	0	689	689	7	65	15	207	177	75

HSgFOBT – high sensitivity guaiac-based fecal occult blood test; COL – colonoscopy; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening * Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

† Includes deaths from complications of screening

	Outco	omes	per 10	00 unscree	ened 40-	year-old	ls free fro	m diagr	nosed col	orecta	I cancer	-
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs		CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
HSgFOBT 45-70, 1	17621	0	0	0	1505	1505	10	30	10	280	260	102
HSgFOBT 45-70, 2	10237	0	0	0	1002	1002	8	43	15	224	206	82
HSgFOBT 45-70, 3	7501	0	0	0	782	782	6	50	18	183	168	67
HSgFOBT 45-75, 1	19829	0	0	0	1637	1637	11	28	8	290	269	106
HSgFOBT 45-75, 2	11876	0	0	0	1122	1122	9	40	12	242	222	88
HSgFOBT 45-75, 3	8576	0	0	0	871	871	7	48	16	199	182	73
HSgFOBT 45-80, 1	21617	0	0	0	1736	1736	12	26	7	296	274	108
HSgFOBT 45-80, 2	12769	0	0	0	1184	1184	10	39	11	248	227	91
HSgFOBT 45-80, 3	9175	0	0	0	915	915	8	47	15	206	188	75
HSgFOBT 45-85, 1	22930	0	0	0	1803	1803	13	26	7	299	276	109
HSgFOBT 45-85, 2	13757	0	0	0	1246	1246	11	39	11	253	231	92
HSgFOBT 45-85, 3	9918	0	0	0	967	967	9	47	14	211	192	77
HSgFOBT 50-70, 1	14154	0	0	0	1293	1293	10	34	11	249	230	91
HSgFOBT 50-70, 2	8495	0	0	0	878	878	7	47	16	195	179	71
HSgFOBT 50-70, 3	5820	0	0	0	649	649	6	55	20	155	142	57
HSgFOBT 50-75, 1	16386	0	0	0	1431	1431	11	32	10	261	241	95
HSgFOBT 50-75, 2	9601	0	0	0	962	962	8	44	14	208	191	76
HSgFOBT 50-75, 3	7051	0	0	0	752	752	7	52	17	175	159	64
HSgFOBT 50-80, 1	18188	0	0	0	1532	1532	12	30	9	267	246	98
HSgFOBT 50-80, 2	10952	0	0	0	1056	1056	9	43	13	219	200	80
HSgFOBT 50-80, 3	7937	0	0	0	821	821	8	50	16	185	168	68
HSgFOBT 50-85, 1	19508	0	0	0	1601	1601	13	30	8	270	248	99
HSgFOBT 50-85, 2	11616	0	0	0	1099	1099	10	43	12	222	202	81
HSgFOBT 50-85, 3	8386	0	0	0	852	852	8	50	15	188	170	69
HSgFOBT 55-70, 1	10797	0	0	0	1058	1058	9	41	13	211	194	77
HSgFOBT 55-70, 2	6202	0	0	0	689	689	6	53	18	161	146	59
HSgFOBT 55-70, 3	4779	0	0	0	561	561	5	58	21	133	120	48
HSgFOBT 55-75, 1	13077	0	0	0	1206	1206	10	37	11	226	207	83
HSgFOBT 55-75, 2	7890	0	0	0	824	824	8	49	16	183	165	67
HSgFOBT 55-75, 3	5447	0	0	0	617	617	6	56	19	143	130	52
HSgFOBT 55-80, 1	14902	0	0	0	1314	1314	11	36	10	233	213	85
HSgFOBT 55-80, 2	8803	0	0	0	890	890	9	48	14	191	172	70
HSgFOBT 55-80, 3	6476	0	0	0	699	699	7	55	18	156	140	57
HSgFOBT 55-85, 1	16233	0	0	0	1384	1384	12	36	10	236	215	86
HSgFOBT 55-85, 2	9809	0	0	0	956	956	10	48	13	196	176	72
HSgFOBT 55-85, 3	7132	0	0	0	747	747	8	54	17	161	144	59

HSgFOBT – high sensitivity guaiac-based fecal occult blood test; COL – colonoscopy; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

[†] Includes deaths from complications of screening

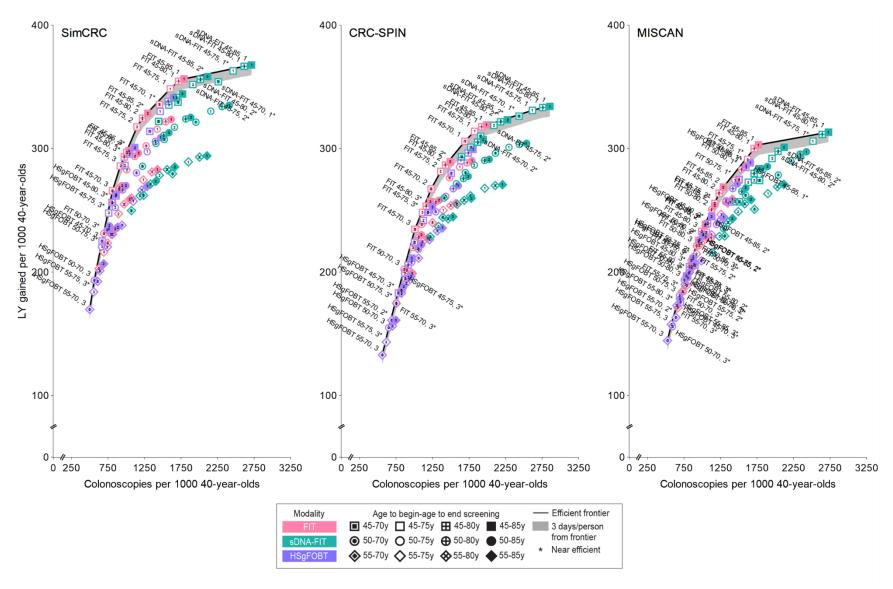
			-	00 unscree	-					orecta	cancer	-
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*		Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
HSgFOBT 45-70, 1	17953	0	0	0	1380	1380	8	55	14	257	222	94
HSgFOBT 45-70, 2	10347	0	0	0	900	900	6	64	19	206	175	75
HSgFOBT 45-70, 3	7548	0	0	0	699	699	5	68	21	176	147	64
HSgFOBT 45-75, 1	20153	0	0	0	1505	1505	9	53	12	275	238	100
HSgFOBT 45-75, 2	11984	0	0	0	1014	1014	7	62	15	230	194	84
HSgFOBT 45-75, 3	8632	0	0	0	785	785	6	67	18	197	163	72
HSgFOBT 45-80, 1	21913	0	0	0	1596	1596	10	52	10	285	245	104
HSgFOBT 45-80, 2	12868	0	0	0	1071	1071	8	62	14	239	201	87
HSgFOBT 45-80, 3	9212	0	0	0	823	823	6	67	17	204	168	75
HSgFOBT 45-85, 1	23187	0	0	0	1656	1656	11	52	9	288	248	105
HSgFOBT 45-85, 2	13836	0	0	0	1128	1128	9	63	13	245	205	89
HSgFOBT 45-85, 3	9944	0	0	0	872	872	7	68	16	211	173	77
HSgFOBT 50-70, 1	14409	0	0	0	1194	1194	8	56	15	238	205	87
HSgFOBT 50-70, 2	8571	0	0	0	801	801	6	65	19	195	164	71
HSgFOBT 50-70, 3	5849	0	0	0	590	590	5	70	22	156	129	57
HSgFOBT 50-75, 1	16641	0	0	0	1324	1324	9	54	12	258	221	94
HSgFOBT 50-75, 2	9677	0	0	0	880	880	7	64	16	212	177	78
HSgFOBT 50-75, 3	7077	0	0	0	687	687	6	68	19	181	148	66
HSgFOBT 50-80, 1	18420	0	0	0	1418	1418	10	53	11	268	229	98
HSgFOBT 50-80, 2	11015	0	0	0	967	967	8	63	14	226	188	83
HSgFOBT 50-80, 3	7965	0	0	0	753	753	7	69	17	194	158	71
HSgFOBT 50-85, 1	19705	0	0	0	1480	1480	11	53	10	271	231	99
HSgFOBT 50-85, 2	11666	0	0	0	1005	1005	8	64	13	230	190	84
HSgFOBT 50-85, 3	8395	0	0	0	780	780	7	69	16	197	160	72
HSgFOBT 55-70, 1	10977	0	0	0	986	986	7	59	16	209	178	76
HSgFOBT 55-70, 2	6249	0	0	0	639	639	5	68	21	163	135	60
HSgFOBT 55-70, 3	4802	0	0	0	522	522	5	71	22	144	118	53
HSgFOBT 55-75, 1	13269	0	0	0	1126	1126	9	57	14	230	195	84
HSgFOBT 55-75, 2	7938	0	0	0	764	764	7	66	17	190	157	69
HSgFOBT 55-75, 3	5460	0	0	0	574	574	5	70	21	158	128	58
HSgFOBT 55-80, 1	15081	0	0	0	1225	1225	10	56	12	241	203	88
HSgFOBT 55-80, 2	8846	0	0	0	825	825	7	66	16	200	164	73
HSgFOBT 55-80, 3	6481	0	0	0	650	650	6	70	18	173	139	63
HSgFOBT 55-85, 1	16384	0	0	0	1289	1289	11	56	11	245	206	89
HSgFOBT 55-85, 2	9835	0	0	0	886	886	8	66	14	206	168	75
HSgFOBT 55-85, 3	7134	0	0	0	696	696	7	71	17	178	142	65

HSgFOBT – high sensitivity guaiac-based fecal occult blood test; COL – colonoscopy; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening * Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

[†] Includes deaths from complications of screening

	Efficiency ratio (Δ COL / Δ LYG)						
Strategy	SimCRC	CRC-SPIN	MISCAN				
HSgFOBT 55-70, 3							
HSgFOBT 55-75, 3	4*	5*	4				
HSgFOBT 50-70, 3	3	4	6*				
HSgFOBT 55-70, 2	Dominated	7*	12*				
FIT 55-70, 3	Dominated	5*	7*				
HSgFOBT 55-80, 3	Dominated	Dominated	5*				
HSgFOBT 50-75, 3	4*	5*	5				
HSgFOBT 45-70, 3	3	5*	7*				
HSgFOBT 55-85, 3	Dominated	Dominated	6*				
FIT 55-75, 3	Dominated	Dominated	11*				
FIT 50-70, 3	4*	4	15*				
HSgFOBT 50-80, 3	Dominated	Dominated	5				
HSgFOBT 55-75, 2	Dominated	Dominated	8*				
HSgFOBT 45-75, 3	4*	5*	10*				
HSgFOBT 50-70, 2	Dominated	Dominated	27*				
HSgFOBT 50-85, 3	Dominated	Dominated	8*				
FIT 55-80, 3	Dominated	Dominated	11*				
HSgFOBT 45-80, 3	4*	Dominated	7*				
FIT 45-70, 3	3	5	9*				
HSgFOBT 55-80, 2	Dominated	Dominated	11*				
FIT 50-75, 3	Dominated	Dominated	6*				
HSgFOBT 50-75, 2	Dominated	Dominated	7*				
FIT 55-85, 3	Dominated	Dominated	11*				
HSgFOBT 45-85, 3	Dominated	Dominated	7*				
FIT 55-75, 2	Dominated	Dominated	8*				
FIT 50-80, 3	Dominated	Dominated	6				
FIT 50-70, 2	Dominated	Dominated	94*				
FIT 45-75, 3	5	7*	7*				
FIT 50-85, 3	Dominated	Dominated	10*				
HSgFOBT 50-80, 2	Dominated	Dominated	9*				
FIT 45-80, 3	7*	8*	6				
HSgFOBT 45-75, 2	Dominated	Dominated	11*				
HSgFOBT 50-85, 2	Dominated	Dominated	10*				
FIT 45-70, 2	8*	7	Dominated				
FIT 50-75, 2	Dominated	Dominated	10*				
FIT 45-85, 3	10*	Dominated	9*				
HSgFOBT 45-80, 2	Dominated	Dominated	13*				
HSgFOBT 45-85, 2	Dominated	Dominated	11*				

Appendix Table 4.2. Efficient and Near-Efficient Stool-Based Screening Strategies (FIT, sDNA-FIT, HSgFOBT), by Model (IRR = 1.19)


FIT 50-80, 2	Dominated	Dominated	8
FIT 45-75, 2	7	9	9*
FIT 50-85, 2	Dominated	Dominated	12*
FIT 45-80, 2	10	12	8
FIT 45-85, 2	19*	25*	12
FIT 50-75, 1	Dominated	Dominated	29*
FIT 45-70, 1	21*	14	Dominated
FIT 50-80, 1	Dominated	Dominated	18*
HSgFOBT 45-80, 1	Dominated	Dominated	19*
FIT 45-75, 1	16	16	15*
FIT 50-85, 1	Dominated	Dominated	18*
HSgFOBT 45-85, 1	Dominated	Dominated	19*
sDNA-FIT 45-70, 2	Dominated	52*	Dominated
FIT 45-80, 1	19	27	14
FIT 45-85, 1	39	43	19
sDNA-FIT 45-75, 2	91*	135*	Dominated
sDNA-FIT 45-80, 2	176*	75*	26*
sDNA-FIT 45-85, 2	175*	69*	375*
sDNA-FIT 45-70, 1	116*	62*	Dominated
sDNA-FIT 45-75, 1	103*	53	251*
sDNA-FIT 45-80, 1	81	62	104*
sDNA-FIT 45-85, 1	95	111	94

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Figure 4.1. Colonoscopies and Life-Years Gained (Compared With No Screening) for a Cohort of 40-Year-Olds for Stool-Based Screening Strategies (FIT, sDNA-FIT, and HSgFOBT), by Model (IRR = 1.19)

Note: Color indicates modality; screening interval (1, 2, or 3y) is noted on each symbol.

	Οι	utcome	s per 1	000 unscree	ened 40-	year-old	s free from	n diagno	sed color	ectal c	ancer	
Model/ Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
SimCRC												
No screening	0	0	0	0	85	85	2	85	34	0	0	0
COL at 45	0	0	0	1037	649	1686	6	45	17	246	233	90
COL at 50	0	0	0	1019	700	1720	7	40	14	256	241	94
COL at 55	0	0	0	991	730	1721	8	37	13	248	232	91
COL at 60	0	0	0	950	691	1640	9	38	13	219	203	80
COL at 65	0	0	0	893	654	1547	11	43	14	177	161	64
CRC-SPIN												
No screening	0	0	0	0	77	77	2	77	32	0	0	0
COL at 45	0	0	0	1038	845	1882	8	33	13	255	242	93
COL at 50	0	0	0	1020	859	1879	9	30	11	254	241	93
COL at 55	0	0	0	992	838	1830	10	29	11	243	229	89
COL at 60	0	0	0	951	751	1702	11	31	12	206	194	75
COL at 65	0	0	0	895	663	1557	11	36	13	167	155	61
MISCAN												
No screening	0	0	0	0	81	81	2	81	34	0	0	0
COL at 45	0	0	0	1038	822	1860	7	58	22	168	153	61
COL at 50	0	0	0	1020	921	1941	8	52	18	199	180	73
COL at 55	0	0	0	992	941	1933	10	48	16	212	190	77
COL at 60	0	0	0	951	855	1806	11	47	15	204	180	74
COL at 65	0	0	0	895	758	1653	12	49	16	171	149	62

Appendix Table 5.1. Outcomes for Once-Only Colonoscopy Screening Strategies by Model (IRR = 1.19)

COL – colonoscopy; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – lifeyears gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

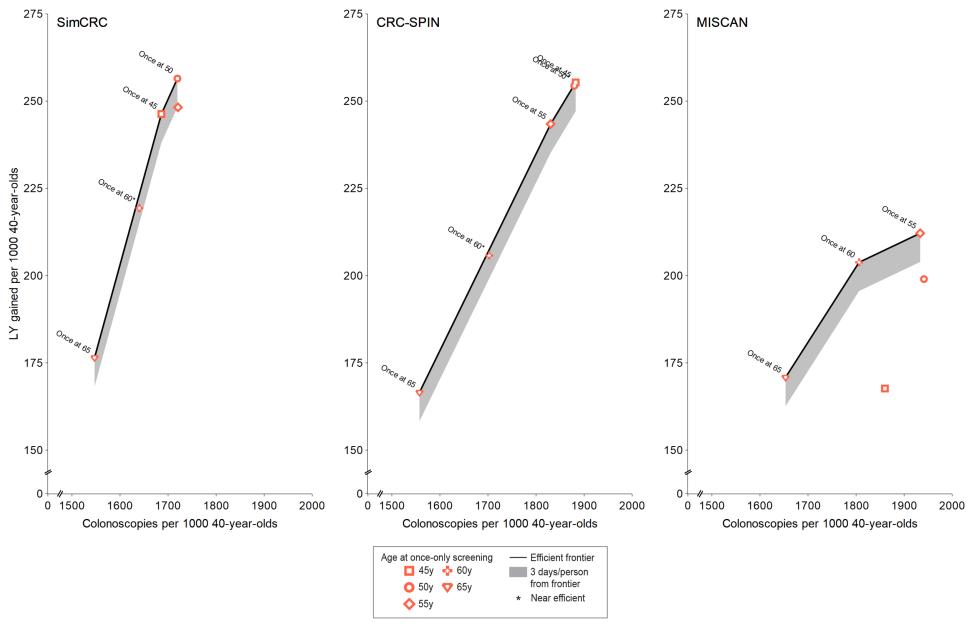
[†] Includes deaths from complications of screening

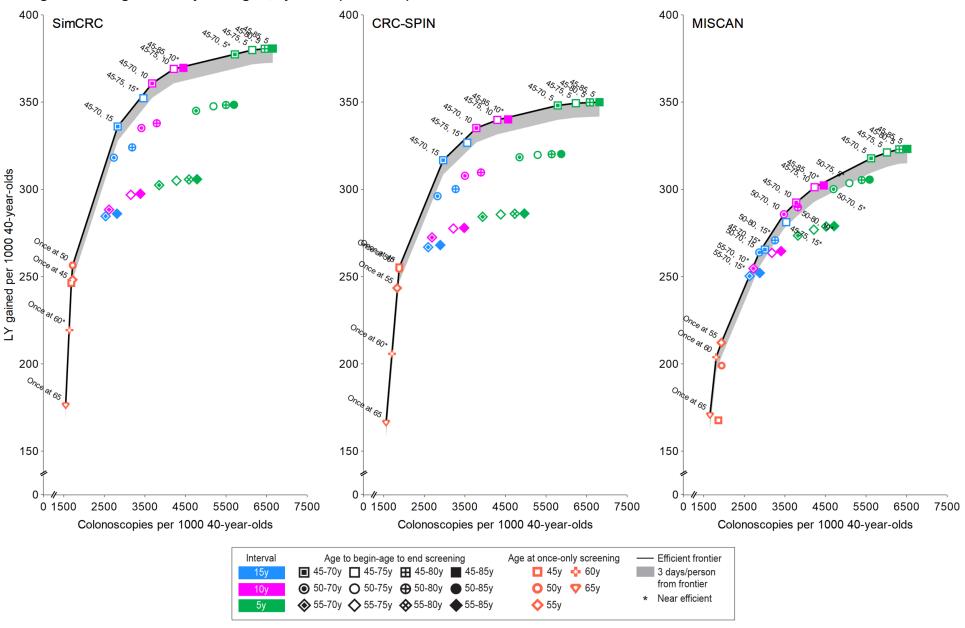
	Effici	ency ratio (Δ COL / Δ I	_YG)
Strategy	SimCRC	CRC-SPIN	MISCAN
COL at 65			
COL at 60	2*	4*	5
COL at 45	2	4	Dominated
COL at 50	3	4*	Dominated
COL at 55	Dominated	4	15

Appendix Table 5.2. Efficient and Near-Efficient Once-Only Colonoscopy Screening Strategies, by Model (IRR = 1.19)

COL - colonoscopy; LYG - life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained). * Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

	Efficiency ratio (Δ COL / Δ LYG)					
Strategy	SimCRC	CRC-SPIN	MISCAN			
COL at 65						
COL at 60	2*	4*	5			
COL at 45	2	4	Dominated			
COL at 50	3	4*	Dominated			
COL at 55	Dominated	4	15			
COL 55-70, 15	Dominated	Dominated	18*			
COL 55-70, 10	Dominated	Dominated	19*			
COL 50-70, 15	Dominated	Dominated	18			
COL 45-70, 15	14	18	85*			
COL 50-80, 15	Dominated	Dominated	56*			
COL 50-70, 10	Dominated	Dominated	28			
COL 45-75, 15	39*	59*	38*			
COL 45-70, 10	34	44	45			
COL 50-80, 10	Dominated	Dominated	86*			
COL 45-75, 10	64	112	52			
COL 45-85, 10	394*	828*	227*			
COL 50-70, 5	Dominated	Dominated	120*			
COL 50-75, 5	Dominated	Dominated	367*			
COL 45-70, 5	180*	179	84			
COL 45-75, 5	178	344	116			
COL 45-80, 5	428	736	169			
COL 45-85, 5	1445	2190	926			


Appendix Table 5.3. Efficient and Near-Efficient Colonoscopy Screening Strategies Including Once-Only Strategies, by Model (IRR = 1.19)


Note: Strategies that were dominated in all 3 models are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Figure 5.1. Colonoscopies and Life-Years Gained (Compared With No Screening) for a Cohort of 40-Year-Olds for Once-Only Colonoscopy Screening Strategies, by Model (IRR = 1.19)

Appendix Figure 5.2. Colonoscopies and Life-Years Gained (Compared With No Screening) for a Cohort of 40-Year-Olds for Colonoscopy Screening Strategies Including Once-Only Strategies, by Model (IRR = 1.19)

	Outcomes per 1000 unscreened 40-year-olds free from diagnosed					reened 40-year-olds free from diagnosed colorectal cancer						
Model/ Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
SimCRC												
No screening	0	0	0	0	85	85	2	85	34	0	0	0
SIG at 45	0	988	0	0	500	500	3	64	25	138	131	51
SIG at 50	0	971	0	0	543	543	4	61	23	150	141	55
SIG at 55	0	944	0	0	579	579	4	58	22	151	141	55
SIG at 60	0	905	0	0	587	587	5	57	21	140	129	51
SIG at 65	0	851	0	0	588	588	6	58	21	117	107	43
CRC-SPIN												
No screening	0	0	0	0	77	77	2	77	32	0	0	0
SIG at 45	0	988	0	0	651	651	5	51	20	165	157	60
SIG at 50	0	971	0	0	695	695	6	47	18	174	165	63
SIG at 55	0	945	0	0	711	711	7	44	17	174	164	64
SIG at 60	0	906	0	0	690	690	7	44	17	151	142	55
SIG at 65	0	852	0	0	646	646	7	47	18	126	117	46
MISCAN												
No screening	0	0	0	0	81	81	2	81	34	0	0	0
SIG at 45	0	988	0	0	769	769	5	66	26	107	97	39
SIG at 50	0	971	0	0	896	896	6	61	23	137	124	50
SIG at 55	0	945	0	0	966	966	7	57	21	155	138	56
SIG at 60	0	906	0	0	955	955	8	55	20	156	138	57
SIG at 65	0	852	0	0	906	906	9	56	20	136	117	50

Appendix Table 6.1. Outcomes for Once-Only SIG Strategies by Model (IRR = 1.19)

COL – colonoscopy; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – lifeyears gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

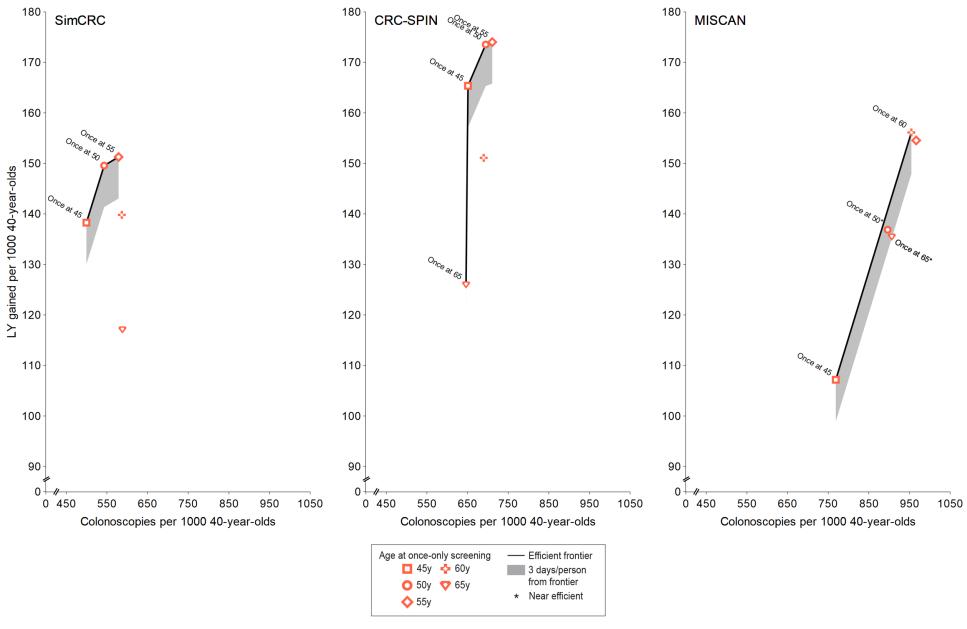
[†] Includes deaths from complications of screening

Appendix Table 6.2. Efficient and Near-Efficient Once-Only Sigmoidoscopy Screening Strategies, by Model (IRR = 1.19)

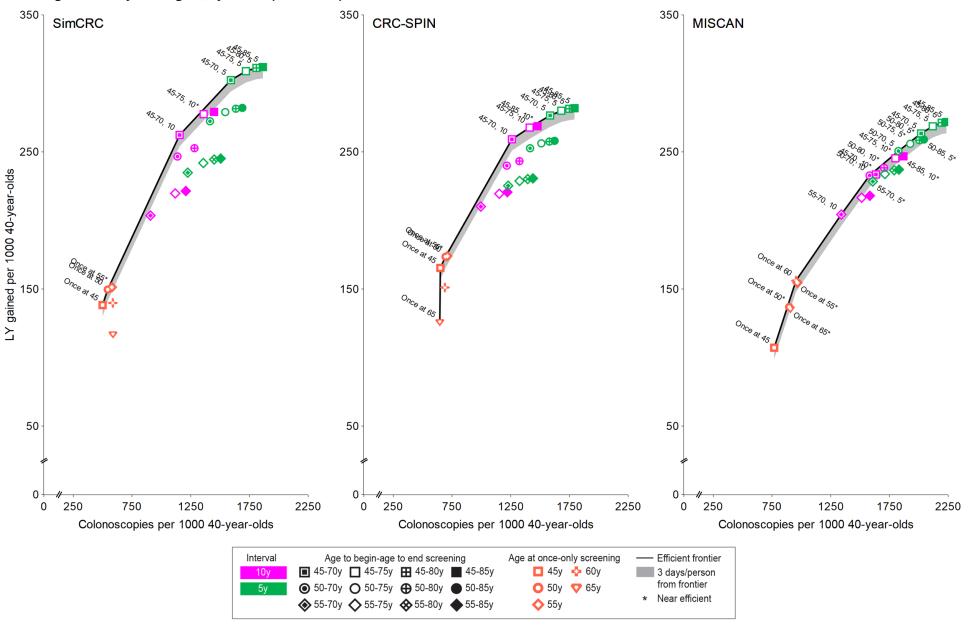
Strategy	Efficiency ratio (Δ COL / Δ LYG)					
	SimCRC	CRC-SPIN	MISCAN			
SIG at 45		<1				
SIG at 50	4	5	4*			
SIG at 55	21	34	Dominated			
SIG at 60	Dominated	Dominated	4			
SIG at 65	Dominated		5*			

COL - colonoscopy; LYG - life-years gained compared with no screening; SIG - sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained). * Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

	Efficiency ratio (Δ COL / Δ LYG)					
Strategy	SimCRC	CRC-SPIN	MISCAN			
SIG at 45		<1				
SIG at 50	4	5	4*			
SIG at 55	21*	34*	4*			
SIG at 60	Dominated	Dominated	4			
SIG at 65	Dominated		5*			
SIG 55-70, 10	G 55-70, 10 Dominated		8			
SIG 50-70, 10 Dominated		Dominated	8			
SIG 45-70, 10	5	7	73*			
SIG 55-70, 5	Dominated	Dominated	11*			
SIG 50-80, 10	Dominated	Dominated	22*			
SIG 45-75, 10	13*	18	18*			
SIG 50-70, 5	Dominated	Dominated	14			
SIG 45-85, 10	Dominated	68*	21*			
SIG 50-75, 5	Dominated	Dominated	19*			
SIG 45-70, 5	11	20	15			
SIG 50-80, 5	50-80, 5 Dominated		23*			
SIG 50-85, 5	Dominated	Dominated	26*			
SIG 45-75, 5	20	27	19			
SIG 45-80, 5	38	49	29			
SIG 45-85, 5	89	98	78			


Appendix Figure 6.1. Colonoscopies and Life-Years Gained (Compared With No Screening) for a Cohort of 40-Year-Olds for Once-Only Sigmoidoscopy Strategies, by Model (IRR = 1.19)

Note: Strategies that were dominated in all 3 models are not shown.


COL - colonoscopy; LYG - life-years gained compared with no screening; SIG - sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Figure 6.2. Colonoscopies and Life-Years Gained (Compared With No Screening) for a Cohort of 40-Year-Olds for Sigmoidoscopy Screening Including Once-Only Strategies, by Model (IRR = 1.19)

	Οι	utcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
COL 45-70, 5	0	0	0	4436	1282	5718	15	12	3	377	355	138
COL 45-70, 10	0	0	0	2537	1142	3679	12	17	5	361	340	132
COL 45-70, 15	0	0	0	1846	983	2829	10	24	7	336	316	123
COL 45-75, 5	0	0	0	4826	1319	6145	17	11	3	380	357	139
COL 45-75, 10	0	0	0	2987	1225	4212	16	14	3	369	347	135
COL 45-75, 15	0	0	0	2351	1112	3463	15	18	4	352	331	129
COL 45-80, 5	0	0	0	5115	1339	6454	19	11	2	381	358	139
COL 45-80, 10	0	0	0	2987	1225	4212	16	14	3	369	347	135
COL 45-80, 15	0	0	0	2351	1112	3463	15	18	4	352	331	129
COL 45-85, 5	0	0	0	5304	1347	6652	21	10	2	381	358	139
COL 45-85, 10	0	0	0	3205	1244	4449	18	14	3	370	347	135
COL 45-85, 15	0	0	0	2351	1112	3463	15	18	4	352	331	129
COL 50-70, 5	0	0	0	3583	1179	4762	15	16	4	345	323	126
COL 50-70, 10	0	0	0	2343	1072	3414	13	18	5	335	314	122
COL 50-70, 15	0	0	0	1742	992	2734	11	23	7	318	298	116
COL 50-75, 5	0	0	0	3973	1216	5189	17	15	4	348	326	127
COL 50-75, 10	0	0	0	2343	1072	3414	13	18	5	335	314	122
COL 50-75, 15	0	0	0	1742	992	2734	11	23	7	318	298	116
COL 50-80, 5	0	0	0	4262	1236	5498	19	14	4	348	326	127
COL 50-80, 10	0	0	0	2676	1116	3792	16	17	4	338	316	123
COL 50-80, 15	0	0	0	2123	1064	3186	16	21	5	324	303	118
COL 50-85, 5	0	0	0	4451	1244	5696	20	14	3	348	326	127
COL 50-85, 10	0	0	0	2676	1116	3792	16	17	4	338	316	123
COL 50-85, 15	0	0	0	2123	1064	3186	16	21	5	324	303	118
COL 55-70, 5	0	0	0	2792	1059	3851	14	21	6	302	282	110
COL 55-70, 10	0	0	0	1666	949	2615	12	26	8	288	269	105
COL 55-70, 15	0	0	0	1617	915	2532	13	26	8	285	265	104
COL 55-75, 5	0	0	0	3182	1096	4279	16	20	5	305	284	111
COL 55-75, 10	0	0	0	2118	1034	3152	15	22	6	297	276	108
COL 55-75, 15	0	0	0	1617	915	2532	13	26	8	285	265	104
COL 55-80, 5	0	0	0	3471	1116	4587	18	19	5	306	284	112
COL 55-80, 10	0	0	0	2118	1034	3152	15	22	6	297	276	108
COL 55-80, 15	0	0	0	1617	915	2532	13	26	8	285	265	104
COL 55-85, 5	0	0	0	3661	1124	4785	20	19	5	306	284	112
COL 55-85, 10	0	0	0	2337	1053	3389	18	22	6	297	277	109
COL 55-85, 15	0	0	0	1866	947	2812	16	25	7	286	266	104

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	Itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
COL 45-70, 5	0	0	0	4379	1410	5789	17	10	3	348	328	127
COL 45-70, 10	0	0	0	2506	1276	3782	14	13	4	335	317	122
COL 45-70, 15	0	0	0	1827	1138	2965	12	18	6	317	300	116
COL 45-75, 5	0	0	0	4804	1431	6235	19	10	3	349	329	128
COL 45-75, 10	0	0	0	2976	1324	4300	17	12	4	340	321	124
COL 45-75, 15	0	0	0	2339	1218	3558	16	14	5	327	309	119
COL 45-80, 5	0	0	0	5138	1443	6581	20	9	3	350	330	128
COL 45-80, 10	0	0	0	2976	1324	4300	17	12	4	340	321	124
COL 45-80, 15	0	0	0	2339	1218	3558	16	14	5	327	309	119
COL 45-85, 5	0	0	0	5369	1448	6817	22	9	3	350	330	128
COL 45-85, 10	0	0	0	3230	1336	4566	19	11	4	340	321	124
COL 45-85, 15	0	0	0	2339	1218	3558	16	14	5	327	309	119
COL 50-70, 5	0	0	0	3571	1276	4847	17	13	4	318	300	116
COL 50-70, 10	0	0	0	2337	1163	3500	15	15	5	308	291	112
COL 50-70, 15	0	0	0	1732	1093	2825	13	18	6	296	280	108
COL 50-75, 5	0	0	0	3996	1297	5293	18	12	4	320	301	117
COL 50-75, 10	0	0	0	2337	1163	3500	15	15	5	308	291	112
COL 50-75, 15	0	0	0	1732	1093	2825	13	18	6	296	280	108
COL 50-80, 5	0	0	0	4329	1310	5639	20	12	4	320	302	117
COL 50-80, 10	0	0	0	2705	1191	3896	18	14	5	310	293	113
COL 50-80, 15	0	0	0	2133	1139	3272	17	16	5	300	284	110
COL 50-85, 5	0	0	0	4560	1315	5875	22	12	4	320	302	117
COL 50-85, 10	0	0	0	2705	1191	3896	18	14	5	310	293	113
COL 50-85, 15	0	0	0	2133	1139	3272	17	16	5	300	284	110
COL 55-70, 5	0	0	0	2815	1121	3936	16	17	6	284	267	104
COL 55-70, 10	0	0	0	1668	1021	2689	14	20	7	272	256	100
COL 55-70, 15	0	0	0	1619	976	2595	14	21	7	267	251	97
COL 55-75, 5	0	0	0	3241	1143	4384	18	16	6	286	268	104
COL 55-75, 10	0	0	0	2142	1073	3216	16	18	6	278	261	101
COL 55-75, 15	0	0	0	1619	976	2595	14	21	7	267	251	97
COL 55-80, 5	0	0	0	3574	1155	4729	19	16	5	286	268	104
COL 55-80, 10	0	0	0	2142	1073	3216	16	18	6	278	261	101
COL 55-80, 15	0	0	0	1619	976	2595	14	21	7	267	251	97
COL 55-85, 5	0	0	0	3805	1160	4966	21	16	5	286	268	105
COL 55-85, 10	0	0	0	2396	1086	3482	18	18	6	278	261	102
COL 55-85, 15	0	0	0	1896	997	2893	17	20	7	268	252	98

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	Itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	liagnos	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
COL 45-70, 5	0	0	0	4147	1479	5626	16	32	8	318	288	116
COL 45-70, 10	0	0	0	2428	1351	3779	13	37	10	292	265	107
COL 45-70, 15	0	0	0	1805	1201	3006	11	41	12	265	240	97
COL 45-75, 5	0	0	0	4518	1498	6016	17	31	7	321	291	117
COL 45-75, 10	0	0	0	2837	1395	4232	15	34	8	301	272	110
COL 45-75, 15	0	0	0	2256	1276	3532	15	37	10	281	253	103
COL 45-80, 5	0	0	0	4808	1512	6320	19	30	7	323	293	118
COL 45-80, 10	0	0	0	2837	1395	4232	15	34	8	301	272	110
COL 45-80, 15	0	0	0	2256	1276	3532	15	37	10	281	253	103
COL 45-85, 5	0	0	0	5001	1515	6516	20	30	7	323	293	118
COL 45-85, 10	0	0	0	3053	1404	4457	17	34	8	302	273	110
COL 45-85, 15	0	0	0	2256	1276	3532	15	37	10	281	253	103
COL 50-70, 5	0	0	0	3341	1357	4698	15	33	8	300	271	110
COL 50-70, 10	0	0	0	2224	1252	3476	14	36	9	286	257	104
COL 50-70, 15	0	0	0	1685	1184	2868	13	40	11	264	237	96
COL 50-75, 5	0	0	0	3713	1376	5089	17	32	8	304	274	111
COL 50-75, 10	0	0	0	2224	1252	3476	14	36	9	286	257	104
COL 50-75, 15	0	0	0	1685	1184	2868	13	40	11	264	237	96
COL 50-80, 5	0	0	0	4002	1390	5393	18	32	8	305	275	112
COL 50-80, 10	0	0	0	2540	1279	3819	16	35	9	290	260	106
COL 50-80, 15	0	0	0	2031	1226	3257	16	38	10	271	242	99
COL 50-85, 5	0	0	0	4196	1393	5589	20	32	7	306	275	112
COL 50-85, 10	0	0	0	2540	1279	3819	16	35	9	290	260	106
COL 50-85, 15	0	0	0	2031	1226	3257	16	38	10	271	242	99
COL 55-70, 5	0	0	0	2618	1204	3822	15	36	9	274	245	100
COL 55-70, 10	0	0	0	1602	1122	2724	13	40	11	255	228	93
COL 55-70, 15	0	0	0	1556	1074	2630	13	40	11	250	223	91
COL 55-75, 5	0	0	0	2990	1223	4213	16	35	9	277	248	101
COL 55-75, 10	0	0	0	2014	1167	3180	15	37	10	264	235	96
COL 55-75, 15	0	0	0	1556	1074	2630	13	40	11	250	223	91
COL 55-80, 5	0	0	0	3279	1238	4517	18	34	8	279	249	102
COL 55-80, 10	0	0	0	2014	1167	3180	15	37	10	264	235	96
COL 55-80, 15	0	0	0	1556	1074	2630	13	40	11	250	223	91
COL 55-85, 5	0	0	0	3473	1240	4713	19	34	8	279	250	102
COL 55-85, 10	0	0	0	2229	1176	3406	17	37	10	265	236	97
COL 55-85, 15	0	0	0	1791	1090	2881	16	40	11	252	224	92

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
FIT 45-70, 1	17539	0	0	0	1453	1453	8	30	8	336	310	123
FIT 45-70, 2	10148	0	0	0	1006	1006	6	42	11	297	271	108
FIT 45-70, 3	7435	0	0	0	810	810	6	49	14	266	241	97
FIT 45-75, 1	19680	0	0	0	1602	1602	10	26	6	348	321	127
FIT 45-75, 2	11731	0	0	0	1147	1147	8	38	9	318	289	116
FIT 45-75, 3	8475	0	0	0	917	917	7	46	11	286	258	104
FIT 45-80, 1	21368	0	0	0	1715	1715	11	25	5	355	326	129
FIT 45-80, 2	12576	0	0	0	1220	1220	9	36	7	325	295	119
FIT 45-80, 3	9043	0	0	0	971	971	8	44	10	293	264	107
FIT 45-85, 1	22567	0	0	0	1790	1790	12	24	4	356	328	130
FIT 45-85, 2	13487	0	0	0	1294	1294	10	36	6	329	298	120
FIT 45-85, 3	9734	0	0	0	1037	1037	9	44	9	298	267	109
FIT 50-70, 1	14004	0	0	0	1271	1271	8	34	9	302	277	110
FIT 50-70, 2	8382	0	0	0	909	909	6	45	12	268	244	98
FIT 50-70, 3	5757	0	0	0	691	691	5	53	16	231	208	84
FIT 50-75, 1	16160	0	0	0	1423	1423	9	30	7	316	289	115
FIT 50-75, 2	9446	0	0	0	1006	1006	7	42	10	283	256	103
FIT 50-75, 3	6945	0	0	0	814	814	6	49	13	256	230	94
FIT 50-80, 1	17856	0	0	0	1538	1538	11	28	6	322	294	118
FIT 50-80, 2	10719	0	0	0	1116	1116	9	40	8	294	265	107
FIT 50-80, 3	7785	0	0	0	900	900	8	47	11	267	238	98
FIT 50-85, 1	19059	0	0	0	1613	1613	12	28	5	324	296	118
FIT 50-85, 2	11329	0	0	0	1166	1166	10	39	8	296	267	108
FIT 50-85, 3	8199	0	0	0	939	939	8	47	10	270	240	99
FIT 55-70, 1	10601	0	0	0	1072	1072	8	40	11	260	236	95
FIT 55-70, 2	6100	0	0	0	742	742	6	51	15	223	201	82
FIT 55-70, 3	4710	0	0	0	624	624	5	56	17	203	181	74
FIT 55-75, 1	12790	0	0	0	1232	1232	9	36	9	275	249	100
FIT 55-75, 2	7715	0	0	0	893	893	7	46	12	247	221	90
FIT 55-75, 3	5351	0	0	0	691	691	6	54	15	216	192	79
FIT 55-80, 1	14502	0	0	0	1349	1349	11	34	8	281	255	103
FIT 55-80, 2	8573	0	0	0	970	970	8	45	10	255	228	93
FIT 55-80, 3	6324	0	0	0	791	791	7	52	13	231	204	84
FIT 55-85, 1	15711	0	0	0	1426	1426	12	33	7	283	256	103
FIT 55-85, 2	9494	0	0	0	1046	1046	10	44	9	259	231	95
FIT 55-85, 3	6931	0	0	0	851	851	9	52	12	235	207	86

COL – colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
FIT 45-70, 1	16882	0	0	0	1692	1692	12	22	7	306	286	112
FIT 45-70, 2	9891	0	0	0	1230	1230	9	32	11	267	249	98
FIT 45-70, 3	7299	0	0	0	1007	1007	8	38	13	235	218	86
FIT 45-75, 1	18950	0	0	0	1824	1824	13	20	6	314	293	115
FIT 45-75, 2	11420	0	0	0	1361	1361	11	29	9	281	262	103
FIT 45-75, 3	8300	0	0	0	1110	1110	9	36	11	248	230	91
FIT 45-80, 1	20622	0	0	0	1923	1923	14	19	5	318	296	116
FIT 45-80, 2	12249	0	0	0	1426	1426	12	28	8	287	266	105
FIT 45-80, 3	8866	0	0	0	1163	1163	10	35	11	253	235	93
FIT 45-85, 1	21850	0	0	0	1990	1990	15	19	5	319	298	117
FIT 45-85, 2	13160	0	0	0	1492	1492	13	27	7	289	268	106
FIT 45-85, 3	9551	0	0	0	1222	1222	11	34	10	257	238	94
FIT 50-70, 1	13481	0	0	0	1483	1483	11	26	8	276	258	101
FIT 50-70, 2	8177	0	0	0	1102	1102	9	35	12	239	222	87
FIT 50-70, 3	5663	0	0	0	858	858	7	43	15	202	188	74
FIT 50-75, 1	15562	0	0	0	1619	1619	12	23	7	285	266	104
FIT 50-75, 2	9206	0	0	0	1194	1194	10	33	10	248	231	91
FIT 50-75, 3	6818	0	0	0	981	981	9	39	13	220	203	80
FIT 50-80, 1	17240	0	0	0	1721	1721	13	22	7	288	268	105
FIT 50-80, 2	10454	0	0	0	1294	1294	11	31	9	257	238	94
FIT 50-80, 3	7634	0	0	0	1059	1059	10	38	12	228	210	83
FIT 50-85, 1	18471	0	0	0	1788	1788	14	22	6	290	270	106
FIT 50-85, 2	11065	0	0	0	1339	1339	12	30	9	258	239	94
FIT 50-85, 3	8055	0	0	0	1096	1096	11	37	11	230	212	84
FIT 55-70, 1	10229	0	0	0	1249	1249	10	31	10	240	222	88
FIT 55-70, 2	5974	0	0	0	896	896	8	41	14	202	186	74
FIT 55-70, 3	4637	0	0	0	754	754	7	47	17	175	161	64
FIT 55-75, 1	12342	0	0	0	1394	1394	12	28	9	250	231	91
FIT 55-75, 2	7539	0	0	0	1043	1043	10	37	12	219	201	80
FIT 55-75, 3	5270	0	0	0	824	824	8	45	15	185	170	67
FIT 55-80, 1	14032	0	0	0	1499	1499	13	27	8	254	235	93
FIT 55-80, 2	8381	0	0	0	1114	1114	11	36	11	225	206	82
FIT 55-80, 3	6226	0	0	0	920	920	9	42	14	195	179	71
FIT 55-85, 1	15273	0	0	0	1568	1568	14	27	8	256	236	93
FIT 55-85, 2	9304	0	0	0	1182	1182	12	36	10	227	208	83
FIT 55-85, 3	6824	0	0	0	973	973	10	42	13	199	181	73

COL – colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
FIT 45-70, 1	17494	0	0	0	1498	1498	9	49	13	274	242	100
FIT 45-70, 2	10116	0	0	0	1052	1052	7	58	16	232	201	85
FIT 45-70, 3	7409	0	0	0	852	852	6	62	18	205	175	75
FIT 45-75, 1	19607	0	0	0	1620	1620	10	46	10	291	256	106
FIT 45-75, 2	11672	0	0	0	1172	1172	8	55	13	256	221	93
FIT 45-75, 3	8437	0	0	0	948	948	7	60	16	226	192	82
FIT 45-80, 1	21300	0	0	0	1710	1710	11	45	9	300	263	110
FIT 45-80, 2	12509	0	0	0	1230	1230	9	54	12	264	227	96
FIT 45-80, 3	8991	0	0	0	991	991	8	60	14	233	198	85
FIT 45-85, 1	22527	0	0	0	1769	1769	12	44	8	303	266	111
FIT 45-85, 2	13423	0	0	0	1288	1288	10	54	11	269	231	98
FIT 45-85, 3	9679	0	0	0	1043	1043	9	60	13	239	202	87
FIT 50-70, 1	13963	0	0	0	1319	1319	9	50	13	257	225	94
FIT 50-70, 2	8347	0	0	0	956	956	7	58	16	222	191	81
FIT 50-70, 3	5736	0	0	0	737	737	6	64	20	184	156	67
FIT 50-75, 1	16097	0	0	0	1445	1445	10	47	11	274	240	100
FIT 50-75, 2	9395	0	0	0	1038	1038	8	56	14	238	204	87
FIT 50-75, 3	6905	0	0	0	847	847	7	61	17	209	177	76
FIT 50-80, 1	17802	0	0	0	1537	1537	11	46	10	283	247	103
FIT 50-80, 2	10658	0	0	0	1127	1127	9	55	12	251	214	92
FIT 50-80, 3	7740	0	0	0	919	919	8	61	15	221	186	81
FIT 50-85, 1	19037	0	0	0	1597	1597	11	45	9	286	249	105
FIT 50-85, 2	11272	0	0	0	1166	1166	10	55	11	254	216	93
FIT 50-85, 3	8148	0	0	0	948	948	8	61	14	224	188	82
FIT 55-70, 1	10580	0	0	0	1118	1118	8	53	15	228	198	83
FIT 55-70, 2	6080	0	0	0	788	788	6	61	18	189	161	69
FIT 55-70, 3	4696	0	0	0	665	665	6	65	20	171	144	63
FIT 55-75, 1	12758	0	0	0	1253	1253	9	50	12	247	214	90
FIT 55-75, 2	7677	0	0	0	921	921	8	58	15	215	182	78
FIT 55-75, 3	5325	0	0	0	725	725	6	63	18	184	154	67
FIT 55-80, 1	14485	0	0	0	1348	1348	10	48	11	256	221	93
FIT 55-80, 2	8530	0	0	0	983	983	8	57	14	223	189	82
FIT 55-80, 3	6288	0	0	0	810	810	7	62	16	199	165	73
FIT 55-85, 1	15731	0	0	0	1410	1410	11	48	10	259	224	95
FIT 55-85, 2	9459	0	0	0	1044	1044	9	57	12	229	193	84
FIT 55-85, 3	6897	0	0	0	858	858	8	63	15	204	169	74

COL – colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
sDNA-FIT 45-70, 1	12498	0	0	0	2258	2258	10	22	6	354	329	129
sDNA-FIT 45-70, 2	8354	0	0	0	1708	1708	9	28	7	338	313	123
sDNA-FIT 45-70, 3	6548	0	0	0	1442	1442	8	33	9	322	297	118
sDNA-FIT 45-75, 1	13888	0	0	0	2462	2462	12	19	4	363	337	133
sDNA-FIT 45-75, 2	9543	0	0	0	1910	1910	10	24	5	352	325	129
sDNA-FIT 45-75, 3	7274	0	0	0	1582	1582	9	30	7	335	308	122
sDNA-FIT 45-80, 1	14966	0	0	0	2614	2614	13	17	4	367	340	134
sDNA-FIT 45-80, 2	10167	0	0	0	2012	2012	11	23	5	356	329	130
sDNA-FIT 45-80, 3	7852	0	0	0	1684	1684	10	28	6	342	313	125
sDNA-FIT 45-85, 1	15721	0	0	0	2713	2713	14	17	3	368	341	134
sDNA-FIT 45-85, 2	10828	0	0	0	2114	2114	13	22	4	358	330	131
sDNA-FIT 45-85, 3	8347	0	0	0	1770	1770	12	28	5	344	315	126
sDNA-FIT 50-70, 1	10087	0	0	0	1953	1953	10	25	7	321	298	117
sDNA-FIT 50-70, 2	6929	0	0	0	1520	1520	9	31	8	307	283	112
sDNA-FIT 50-70, 3	5122	0	0	0	1221	1221	7	38	11	286	262	104
sDNA-FIT 50-75, 1	11463	0	0	0	2156	2156	11	22	6	330	305	121
sDNA-FIT 50-75, 2	7728	0	0	0	1659	1659	10	29	7	317	292	116
sDNA-FIT 50-75, 3	6074	0	0	0	1405	1405	9	34	8	304	278	111
sDNA-FIT 50-80, 1	12548	0	0	0	2310	2310	13	21	5	334	308	122
sDNA-FIT 50-80, 2	8668	0	0	0	1813	1813	12	26	6	324	297	118
sDNA-FIT 50-80, 3	6652	0	0	0	1513	1513	10	32	7	311	283	113
sDNA-FIT 50-85, 1	13305	0	0	0	2410	2410	14	20	4	335	309	122
sDNA-FIT 50-85, 2	9110	0	0	0	1881	1881	13	26	5	325	298	119
sDNA-FIT 50-85, 3	7066	0	0	0	1582	1582	11	32	6	313	285	114
sDNA-FIT 55-70, 1	7737	0	0	0	1633	1633	10	31	9	280	257	102
sDNA-FIT 55-70, 2	5122	0	0	0	1237	1237	8	38	11	262	240	96
sDNA-FIT 55-70, 3	4121	0	0	0	1070	1070	7	42	12	250	227	91
sDNA-FIT 55-75, 1	9171	0	0	0	1849	1849	11	28	7	289	265	106
sDNA-FIT 55-75, 2	6340	0	0	0	1452	1452	10	33	8	278	254	102
sDNA-FIT 55-75, 3	4730	0	0	0	1187	1187	8	39	10	262	237	96
sDNA-FIT 55-80, 1	10246	0	0	0	2002	2002	13	26	7	293	269	107
sDNA-FIT 55-80, 2	6973	0	0	0	1558	1558	11	32	8	283	258	103
sDNA-FIT 55-80, 3	5493	0	0	0	1331	1331	10	37	9	271	245	99
sDNA-FIT 55-85, 1	11009	0	0	0	2104	2104	14	26	6	294	269	107
sDNA-FIT 55-85, 2	7641	0	0	0	1662	1662	13	31	7	285	259	104
sDNA-FIT 55-85, 3	5905	0	0	0	1403	1403	11	37	8	273	247	100

COL – colonoscopy; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	00	itcomes	s per 100	0 unscreen	ed 40-yea			diagnos		ctal car	ncer	-
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
sDNA-FIT 45-70, 1	12107	0	0	0	2433	2433	13	17	5	326	305	119
sDNA-FIT 45-70, 2	8128	0	0	0	1908	1908	12	21	7	310	290	113
sDNA-FIT 45-70, 3	6400	0	0	0	1647	1647	11	25	8	293	274	107
sDNA-FIT 45-75, 1	13494	0	0	0	2617	2617	14	15	5	331	309	121
sDNA-FIT 45-75, 2	9298	0	0	0	2089	2089	13	19	6	319	298	116
sDNA-FIT 45-75, 3	7105	0	0	0	1772	1772	12	23	7	301	281	110
sDNA-FIT 45-80, 1	14608	0	0	0	2758	2758	15	14	4	333	311	122
sDNA-FIT 45-80, 2	9928	0	0	0	2181	2181	14	18	5	322	300	118
sDNA-FIT 45-80, 3	7688	0	0	0	1866	1866	13	21	6	305	285	111
sDNA-FIT 45-85, 1	15424	0	0	0	2856	2856	16	14	4	334	312	122
sDNA-FIT 45-85, 2	10620	0	0	0	2275	2275	15	17	5	323	301	118
sDNA-FIT 45-85, 3	8193	0	0	0	1944	1944	14	21	6	307	286	112
sDNA-FIT 50-70, 1	9760	0	0	0	2111	2111	13	19	7	296	277	108
sDNA-FIT 50-70, 2	6740	0	0	0	1698	1698	12	24	8	281	262	102
sDNA-FIT 50-70, 3	5011	0	0	0	1407	1407	10	29	10	260	243	95
sDNA-FIT 50-75, 1	11132	0	0	0	2295	2295	14	18	6	301	281	110
sDNA-FIT 50-75, 2	7525	0	0	0	1822	1822	13	22	7	287	268	105
sDNA-FIT 50-75, 3	5939	0	0	0	1576	1576	12	26	8	271	253	99
sDNA-FIT 50-80, 1	12255	0	0	0	2438	2438	15	17	5	303	283	111
sDNA-FIT 50-80, 2	8474	0	0	0	1961	1961	14	21	6	290	200	106
sDNA-FIT 50-80, 3	6510	0	0	0	1672	1672	13	25	8	276	257	101
sDNA-FIT 50-85, 1	13073	0	0	0	2537	2537	16	17	5	304	284	111
sDNA-FIT 50-85, 2	8937	0	0	0	2025	2025	15	20	6	291	272	106
sDNA-FIT 50-85, 3	6941	0	0	0	1737	1737	14	24	8 7	278	258	101
sDNA-FIT 55-70, 1	7485	0	0	0	1769	1769	12	24	8	262	244	96
sDNA-FIT 55-70, 2	4987	0	0	0	1390	1390	12	30	10	202	244	89
sDNA-FIT 55-70, 3	4029	0	0	0	1219	1219	10	33	10	229	212	83
		0	0		1964	1964	13	22	7	268	249	98
sDNA-FIT 55-75, 1 sDNA-FIT 55-75, 2	8911 6183	0	0	0 0	1587	1964 1587	13	22	8	200 255	249 236	90 93
sDNA-FIT 55-75, 3	4633	0	0	0	1332	1332	12	31	8 10	233 237	230 219	93 87
sDNA-FIT 55-80, 1	10021	0	0	0	2107	2107	15	21	7	270	251	99 04
sDNA-FIT 55-80, 2 sDNA-FIT 55-80, 3	6820 5301	0	0	0	1683 1463	1683 1463	13 12	26 29	8 9	258 243	239 225	94 80
	5391	0	0	0						243		89
sDNA-FIT 55-85, 1	10845	0	0	0	2207	2207	16	21	7	271	251	99
sDNA-FIT 55-85, 2	7517	0	0	0	1779	1779	14	25	8	260	240	95
sDNA-FIT 55-85, 3	5809	0	0	0	1529	1529	13	29	9	245	226	89

COL – colonoscopy; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

		icomes	per iou	0 unscreene						lai cai		-
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
sDNA-FIT 45-70, 1	12364	0	0	0	2346	2346	11	41	10	295	263	108
sDNA-FIT 45-70, 2	8285	0	0	0	1785	1785	9	47	13	274	243	100
sDNA-FIT 45-70, 3	6493	0	0	0	1507	1507	9	51	14	257	225	94
sDNA-FIT 45-75, 1	13698	0	0	0	2515	2515	12	38	9	306	272	112
sDNA-FIT 45-75, 2	9435	0	0	0	1954	1954	11	44	10	292	258	107
sDNA-FIT 45-75, 3	7204	0	0	0	1629	1629	10	49	12	273	239	100
sDNA-FIT 45-80, 1	14753	0	0	0	2641	2641	13	37	8	311	277	114
sDNA-FIT 45-80, 2	10046	0	0	0	2037	2037	12	43	9	298	262	109
sDNA-FIT 45-80, 3	7760	0	0	0	1709	1709	10	48	10	280	244	102
sDNA-FIT 45-85, 1	15513	0	0	0	2727	2727	14	36	8	313	278	114
sDNA-FIT 45-85, 2	10707	0	0	0	2121	2121	13	42	8	301	265	110
sDNA-FIT 45-85, 3	8255	0	0	0	1780	1780	11	47	10	284	247	104
sDNA-FIT 50-70, 1	9988	0	0	0	2040	2040	11	42	11	279	247	102
sDNA-FIT 50-70, 2	6868	0	0	0	1592	1592	9	48	13	262	230	96
sDNA-FIT 50-70, 3	5080	0	0	0	1291	1291	8	53	15	235	205	86
sDNA-FIT 50-75, 1	11315	0	0	0	2211	2211	12	39	9	290	257	106
sDNA-FIT 50-75, 2	7642	0	0	0	1708	1708	10	46	11	274	241	100
sDNA-FIT 50-75, 3	6006	0	0	0	1449	1449	9	50	12	257	223	94
sDNA-FIT 50-80, 1	12379	0	0	0	2339	2339	13	38	9	296	261	108
sDNA-FIT 50-80, 2	8565	0	0	0	1836	1836	12	44	9	283	248	104
sDNA-FIT 50-80, 3	6579	0	0	0	1540	1540	10	49	11	265	230	97
sDNA-FIT 50-85, 1	13142	0	0	0	2425	2425	14	38	8	297	263	109
sDNA-FIT 50-85, 2	9009	0	0	0	1892	1892	12	44	9	286	250	104
sDNA-FIT 50-85, 3	6984	0	0	0	1595	1595	11	49	10	268	232	98
sDNA-FIT 55-70, 1	7698	0	0	0	1714	1714	11	45	12	251	221	92
sDNA-FIT 55-70, 2	5092	0	0	0	1306	1306	9	51	14	229	200	84
sDNA-FIT 55-70, 3	4099	0	0	0	1133	1133	8	55	16	216	186	79
sDNA-FIT 55-75, 1	9090	0	0	0	1897	1897	12	42	10	264	232	96
sDNA-FIT 55-75, 2	6283	0	0	0	1492	1492	10	48	12	249	217	91
sDNA-FIT 55-75, 3	4684	0	0	0	1232	1232	9	53	14	229	197	84
sDNA-FIT 55-80, 1	10153	0	0	0	2027	2027	13	40	9	269	236	98
sDNA-FIT 55-80, 2	6907	0	0	0	1580	1580	11	46	11	255	222	93
sDNA-FIT 55-80, 3	5436	0	0	0	1352	1352	10	51	12	240	206	88
sDNA-FIT 55-85, 1	10924	0	0	0	2115	2115	14	40	9	271	238	99
sDNA-FIT 55-85, 2	7580	0	0	0	1667	1667	12	46	10	259	224	94
sDNA-FIT 55-85, 3	5853	0	0	0	1413	1413	11	51	11	243	209	89

COL – colonoscopy; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	utcomes	per 100	0 unscreen	ed 40-yea	ar-olds f	ree from o	liagnose	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
SIG 45-70, 5	0	4402	0	0	1592	1592	9	28	9	302	284	110
SIG 45-70, 10	0	2622	0	0	1155	1155	7	37	13	262	246	96
SIG 45-75, 5	0	4846	0	0	1720	1720	10	25	8	309	289	113
SIG 45-75, 10	0	3173	0	0	1360	1360	9	32	10	278	260	101
SIG 45-80, 5	0	5185	0	0	1809	1809	11	24	7	311	291	114
SIG 45-80, 10	0	3173	0	0	1360	1360	9	32	10	278	260	101
SIG 45-85, 5	0	5414	0	0	1864	1864	12	24	7	312	292	114
SIG 45-85, 10	0	3463	0	0	1449	1449	11	32	10	279	261	102
SIG 50-70, 5	0	3611	0	0	1414	1414	9	31	10	272	254	99
SIG 50-70, 10	0	2465	0	0	1138	1138	8	37	13	247	230	90
SIG 50-75, 5	0	4058	0	0	1544	1544	10	29	9	279	260	102
SIG 50-75, 10	0	2465	0	0	1138	1138	8	37	13	247	230	90
SIG 50-80, 5	0	4399	0	0	1634	1634	11	28	9	282	262	103
SIG 50-80, 10	0	2894	0	0	1282	1282	10	34	11	253	235	92
SIG 50-85, 5	0	4629	0	0	1690	1690	12	28	8	282	263	103
SIG 50-85, 10	0	2894	0	0	1282	1282	10	34	11	253	235	92
SIG 55-70, 5	0	2851	0	0	1224	1224	8	36	12	235	218	86
SIG 55-70, 10	0	1708	0	0	907	907	7	45	16	204	189	74
SIG 55-75, 5	0	3302	0	0	1357	1357	10	34	11	242	224	88
SIG 55-75, 10	0	2267	0	0	1118	1118	9	39	13	220	203	80
SIG 55-80, 5	0	3647	0	0	1449	1449	11	33	10	244	226	89
SIG 55-80, 10	0	2267	0	0	1118	1118	9	39	13	220	203	80
SIG 55-85, 5	0	3878	0	0	1505	1505	12	32	10	245	227	90
SIG 55-85, 10	0	2559	0	0	1208	1208	11	39	13	221	205	81

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	itcomes	per 100	0 unscreen	ed 40-yea	ar-olds f	ree from o	liagnose	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
SIG 45-70, 5	0	4446	0	0	1586	1586	11	25	9	277	261	101
SIG 45-70, 10	0	2604	0	0	1260	1260	9	29	11	259	245	95
SIG 45-75, 5	0	4935	0	0	1680	1680	12	24	9	280	264	102
SIG 45-75, 10	0	3169	0	0	1411	1411	11	26	9	268	252	98
SIG 45-80, 5	0	5326	0	0	1749	1749	12	23	8	281	265	103
SIG 45-80, 10	0	3169	0	0	1411	1411	11	26	9	268	252	98
SIG 45-85, 5	0	5602	0	0	1793	1793	13	23	8	282	265	103
SIG 45-85, 10	0	3487	0	0	1479	1479	12	26	9	269	253	98
SIG 50-70, 5	0	3644	0	0	1415	1415	10	27	10	253	238	92
SIG 50-70, 10	0	2454	0	0	1217	1217	10	29	11	240	227	88
SIG 50-75, 5	0	4134	0	0	1510	1510	11	26	9	256	241	94
SIG 50-75, 10	0	2454	0	0	1217	1217	10	29	11	240	227	88
SIG 50-80, 5	0	4525	0	0	1579	1579	12	25	9	258	243	94
SIG 50-80, 10	0	2906	0	0	1324	1324	12	28	10	243	230	89
SIG 50-85, 5	0	4801	0	0	1624	1624	13	25	9	258	243	94
SIG 50-85, 10	0	2906	0	0	1324	1324	12	28	10	243	230	89
SIG 55-70, 5	0	2873	0	0	1228	1228	10	31	11	225	211	82
SIG 55-70, 10	0	1699	0	0	995	995	9	35	13	210	197	77
SIG 55-75, 5	0	3364	0	0	1325	1325	11	29	11	229	214	84
SIG 55-75, 10	0	2268	0	0	1153	1153	11	31	11	219	206	80
SIG 55-80, 5	0	3756	0	0	1395	1395	12	29	10	230	216	84
SIG 55-80, 10	0	2268	0	0	1153	1153	11	31	11	219	206	80
SIG 55-85, 5	0	4032	0	0	1439	1439	13	28	10	231	216	84
SIG 55-85, 10	0	2587	0	0	1221	1221	12	31	11	221	207	81

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	itcomes	per 100	0 unscreen	ed 40-yea	ar-olds f	ree from o	diagnose	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
SIG 45-70, 5	0	4013	0	0	2020	2020	11	40	12	263	237	96
SIG 45-70, 10	0	2480	0	0	1635	1635	10	45	14	234	210	85
SIG 45-75, 5	0	4389	0	0	2119	2119	12	39	11	269	241	98
SIG 45-75, 10	0	2946	0	0	1800	1800	12	43	12	245	220	90
SIG 45-80, 5	0	4681	0	0	2196	2196	13	38	10	271	244	99
SIG 45-80, 10	0	2946	0	0	1800	1800	12	43	12	245	220	90
SIG 45-85, 5	0	4877	0	0	2235	2235	13	38	10	272	244	99
SIG 45-85, 10	0	3193	0	0	1869	1869	13	42	12	247	221	90
SIG 50-70, 5	0	3268	0	0	1826	1826	11	41	12	251	225	92
SIG 50-70, 10	0	2297	0	0	1581	1581	10	44	14	233	208	85
SIG 50-75, 5	0	3646	0	0	1927	1927	12	40	11	256	229	93
SIG 50-75, 10	0	2297	0	0	1581	1581	10	44	14	233	208	85
SIG 50-80, 5	0	3939	0	0	2004	2004	13	39	11	259	231	94
SIG 50-80, 10	0	2660	0	0	1704	1704	12	43	12	238	212	87
SIG 50-85, 5	0	4136	0	0	2044	2044	13	39	11	259	231	95
SIG 50-85, 10	0	2660	0	0	1704	1704	12	43	12	238	212	87
SIG 55-70, 5	0	2578	0	0	1608	1608	11	43	13	228	203	83
SIG 55-70, 10	0	1623	0	0	1340	1340	10	48	16	204	182	75
SIG 55-75, 5	0	2960	0	0	1711	1711	12	42	12	234	208	85
SIG 55-75, 10	0	2094	0	0	1513	1513	11	45	14	217	192	79
SIG 55-80, 5	0	3255	0	0	1790	1790	13	41	12	237	210	86
SIG 55-80, 10	0	2094	0	0	1513	1513	11	45	14	217	192	79
SIG 55-85, 5	0	3453	0	0	1831	1831	13	41	12	237	210	87
SIG 55-85, 10	0	2343	0	0	1583	1583	13	45	13	218	193	80

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
SIG+FIT 45-70, 10_1	14876	2264	0	0	1903	1903	10	22	6	353	329	129
SIG+FIT 45-70, 10_2	8643	2362	0	0	1617	1617	9	26	7	340	316	124
SIG+FIT 45-75, 10_1	16648	2568	0	0	2102	2102	11	18	4	363	338	133
SIG+FIT 45-75, 10_2	9936	2757	0	0	1835	1835	11	22	5	354	329	129
SIG+FIT 45-80, 10_1	17986	2664	0	0	2203	2203	12	17	4	366	340	134
SIG+FIT 45-80, 10_2	10569	2806	0	0	1889	1889	11	21	4	357	331	130
SIG+FIT 45-85, 10_1	18952	2812	0	0	2293	2293	14	17	3	367	341	134
SIG+FIT 45-85, 10_2	11283	3003	0	0	1988	1988	13	20	4	358	332	131
SIG+FIT 50-70, 10_1	11821	2005	0	0	1714	1714	10	24	7	324	301	118
SIG+FIT 50-70, 10_2	7125	2152	0	0	1512	1512	9	27	7	314	291	115
SIG+FIT 50-75, 10_1	13537	2099	0	0	1840	1840	11	22	6	330	306	121
SIG+FIT 50-75, 10_2	7932	2196	0	0	1579	1579	10	26	7	320	296	117
SIG+FIT 50-80, 10_1	14921	2331	0	0	1986	1986	13	21	5	335	310	122
SIG+FIT 50-80, 10_2	8949	2498	0	0	1738	1738	12	24	5	326	301	119
SIG+FIT 50-85, 10_1	15864	2398	0	0	2052	2052	13	20	5	335	310	122
SIG+FIT 50-85, 10_2	9398	2532	0	0	1774	1774	12	24	5	327	301	119
SIG+FIT 55-70, 10_1	8842	1498	0	0	1432	1432	9	31	9	278	257	102
SIG+FIT 55-70, 10_2	5139	1547	0	0	1230	1230	8	35	10	266	245	97
SIG+FIT 55-75, 10_1	10651	1830	0	0	1650	1650	11	27	7	290	267	106
SIG+FIT 55-75, 10_2	6459	1962	0	0	1465	1465	11	30	8	282	259	103
SIG+FIT 55-80, 10_1	11994	1903	0	0	1745	1745	12	26	7	293	269	107
SIG+FIT 55-80, 10_2	7095	1997	0	0	1516	1516	11	29	7	285	261	104
SIG+FIT 55-85, 10_1	12970	2060	0	0	1838	1838	14	26	6	294	270	107
SIG+FIT 55-85, 10_2	7817	2200	0	0	1617	1617	13	29	7	287	262	105

Appendix Table 7.5a. Outcomes for 10-Yearly Sigmoidoscopy Plus Interval FIT Strategies: SimCRC (IRR = 1.19)

 \overline{COL} – colonoscopy; SIG – sigmoidoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-

years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	Itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnos	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
SIG+FIT 45-70, 10_1	14529	2219	0	0	2072	2072	13	17	6	324	304	118
SIG+FIT 45-70, 10_2	8503	2318	0	0	1779	1779	12	20	7	313	294	114
SIG+FIT 45-75, 10_1	16322	2525	0	0	2237	2237	14	15	5	330	309	120
SIG+FIT 45-75, 10_2	9813	2717	0	0	1955	1955	13	18	5	321	301	117
SIG+FIT 45-80, 10_1	17752	2628	0	0	2331	2331	15	15	4	332	311	121
SIG+FIT 45-80, 10_2	10493	2770	0	0	2008	2008	14	17	5	323	303	118
SIG+FIT 45-85, 10_1	18818	2791	0	0	2413	2413	16	14	4	333	312	122
SIG+FIT 45-85, 10_2	11272	2985	0	0	2094	2094	15	17	5	324	304	118
SIG+FIT 50-70, 10_1	11534	1967	0	0	1854	1854	13	19	7	296	278	108
SIG+FIT 50-70, 10_2	7006	2115	0	0	1643	1643	12	22	7	287	269	105
SIG+FIT 50-75, 10_1	13305	2067	0	0	1973	1973	13	18	6	301	282	110
SIG+FIT 50-75, 10_2	7842	2163	0	0	1708	1708	12	21	7	290	272	106
SIG+FIT 50-80, 10_1	14761	2310	0	0	2098	2098	15	17	5	304	284	111
SIG+FIT 50-80, 10_2	8909	2479	0	0	1840	1840	14	19	6	294	276	108
SIG+FIT 50-85, 10_1	15814	2386	0	0	2163	2163	15	17	5	304	285	111
SIG+FIT 50-85, 10_2	9411	2518	0	0	1877	1877	14	19	6	295	277	108
SIG+FIT 55-70, 10_1	8652	1475	0	0	1561	1561	12	24	8	262	245	96
SIG+FIT 55-70, 10_2	5065	1523	0	0	1357	1357	11	27	9	252	236	92
SIG+FIT 55-75, 10_1	10476	1809	0	0	1741	1741	13	22	7	269	251	98
SIG+FIT 55-75, 10_2	6396	1942	0	0	1548	1548	13	24	8	262	244	96
SIG+FIT 55-80, 10_1	11917	1891	0	0	1833	1833	14	21	7	272	253	99
SIG+FIT 55-80, 10_2	7079	1981	0	0	1599	1599	13	24	8	264	246	96
SIG+FIT 55-85, 10_1	12987	2062	0	0	1918	1918	15	21	7	272	253	99
SIG+FIT 55-85, 10_2	7866	2202	0	0	1687	1687	14	23	7	265	246	97

Appendix Table 7.5b. Outcomes for 10-Yearly Sigmoidoscopy Plus Interval FIT Strategies: CRC-SPIN (IRR = 1.19)

COL - colonoscopy; SIG - sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; CRC - colorectal cancer; LYG - life-years gained compared with no screening; QALYG - quality-adjusted life-

years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	tcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	liagnose	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
SIG+FIT 45-70, 10_1	13812	2055	0	0	2148	2148	11	40	10	292	261	107
SIG+FIT 45-70, 10_2	7965	2209	0	0	1947	1947	11	42	11	280	250	102
SIG+FIT 45-75, 10_1	15466	2393	0	0	2331	2331	13	37	9	304	272	111
SIG+FIT 45-75, 10_2	9117	2593	0	0	2130	2130	12	39	9	294	262	108
SIG+FIT 45-80, 10_1	16683	2393	0	0	2379	2379	13	37	8	307	274	112
SIG+FIT 45-80, 10_2	9673	2593	0	0	2154	2154	12	39	9	296	264	108
SIG+FIT 45-85, 10_1	17634	2570	0	0	2463	2463	14	37	8	309	275	113
SIG+FIT 45-85, 10_2	10336	2795	0	0	2235	2235	14	39	8	298	265	109
SIG+FIT 50-70, 10_1	10831	1900	0	0	1984	1984	11	40	10	282	251	103
SIG+FIT 50-70, 10_2	6482	2038	0	0	1835	1835	11	42	11	274	243	100
SIG+FIT 50-75, 10_1	12357	1900	0	0	2048	2048	12	39	10	287	255	105
SIG+FIT 50-75, 10_2	7177	2038	0	0	1867	1867	11	41	10	277	246	101
SIG+FIT 50-80, 10_1	13676	2161	0	0	2185	2185	13	38	8	293	260	107
SIG+FIT 50-80, 10_2	8098	2335	0	0	2005	2005	13	40	9	284	251	104
SIG+FIT 50-85, 10_1	14548	2161	0	0	2218	2218	14	38	8	294	260	107
SIG+FIT 50-85, 10_2	8496	2335	0	0	2021	2021	13	40	9	284	251	104
SIG+FIT 55-70, 10_1	7944	1389	0	0	1680	1680	11	43	12	250	222	91
SIG+FIT 55-70, 10_2	4622	1462	0	0	1547	1547	10	45	13	241	213	88
SIG+FIT 55-75, 10_1	9625	1730	0	0	1871	1871	12	40	10	263	233	96
SIG+FIT 55-75, 10_2	5792	1851	0	0	1739	1739	12	42	11	256	225	93
SIG+FIT 55-80, 10_1	10851	1730	0	0	1920	1920	13	40	10	266	235	97
SIG+FIT 55-80, 10_2	6351	1851	0	0	1764	1764	12	42	10	258	227	94
SIG+FIT 55-85, 10_1	11807	1908	0	0	2004	2004	14	40	9	268	236	98
SIG+FIT 55-85, 10_2	7018	2054	0	0	1847	1847	14	42	10	260	228	95

Appendix Table 7.5c. Outcomes for 10-Yearly Sigmoidoscopy Plus Interval FIT Strategies: MISCAN (IRR = 1.19)

COL - colonoscopy; SIG - sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobinper g of feces; CTC - computed tomographic colonography; CRC - colorectal cancer; LYG - life-years gained compared with noscreening; QALYG - quality-adjusted life-years gained compared with no screening; DLG - days of life gained per person,compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	Itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	liagnose	ed colored	ctal car	icer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
CTC 45-70, 5	0	0	4372	0	1653	1653	9	21	6	348	326	127
CTC 45-70, 10	0	0	2605	0	1233	1233	8	31	9	310	290	113
CTC 45-75, 5	0	0	4804	0	1788	1788	11	18	5	355	332	130
CTC 45-75, 10	0	0	3141	0	1459	1459	10	24	6	328	306	120
CTC 45-80, 5	0	0	5131	0	1882	1882	12	17	4	358	335	131
CTC 45-80, 10	0	0	3141	0	1459	1459	10	24	6	328	306	120
CTC 45-85, 5	0	0	5348	0	1939	1939	13	17	4	359	335	131
CTC 45-85, 10	0	0	3416	0	1559	1559	12	24	6	330	307	120
CTC 50-70, 5	0	0	3573	0	1488	1488	9	24	7	318	296	116
CTC 50-70, 10	0	0	2440	0	1229	1229	8	29	9	295	274	108
CTC 50-75, 5	0	0	4006	0	1624	1624	11	21	6	325	302	119
CTC 50-75, 10	0	0	2440	0	1229	1229	8	29	9	295	274	108
CTC 50-80, 5	0	0	4334	0	1719	1719	12	20	5	327	304	119
CTC 50-80, 10	0	0	2852	0	1390	1390	11	27	7	302	280	110
CTC 50-85, 5	0	0	4551	0	1776	1776	13	20	5	328	305	120
CTC 50-85, 10	0	0	2852	0	1390	1390	11	27	7	302	280	110
CTC 55-70, 5	0	0	2810	0	1309	1309	9	29	9	276	256	101
CTC 55-70, 10	0	0	1695	0	995	995	7	38	12	245	227	90
CTC 55-75, 5	0	0	3246	0	1447	1447	11	26	7	284	263	104
CTC 55-75, 10	0	0	2235	0	1228	1228	10	31	9	264	243	96
CTC 55-80, 5	0	0	3574	0	1543	1543	12	25	7	286	265	105
CTC 55-80, 10	0	0	2235	0	1228	1228	10	31	9	264	243	96
CTC 55-85, 5	0	0	3792	0	1601	1601	13	25	7	287	265	105
CTC 55-85, 10	0	0	2512	0	1329	1329	12	31	9	266	245	97

Appendix Table 7.6a. Outcomes for Computed Tomographic Colonography Strategies: SimCRC (IRR = 1.19)

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	Itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	diagnose	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLC
No screening	0	0	0	0	77	77	2	77	32	0	0	0
CTC 45-70, 5	0	0	4432	0	1677	1677	11	20	7	308	289	112
CTC 45-70, 10	0	0	2621	0	1273	1273	10	27	10	276	260	101
CTC 45-75, 5	0	0	4893	0	1791	1791	13	18	6	313	294	114
CTC 45-75, 10	0	0	3179	0	1465	1465	12	22	7	289	272	106
CTC 45-80, 5	0	0	5254	0	1874	1874	14	17	5	315	296	115
CTC 45-80, 10	0	0	3179	0	1465	1465	12	22	7	289	272	106
CTC 45-85, 5	0	0	5504	0	1927	1927	15	17	5	316	296	115
CTC 45-85, 10	0	0	3483	0	1551	1551	14	21	7	291	273	106
CTC 50-70, 5	0	0	3625	0	1510	1510	11	22	8	281	265	103
CTC 50-70, 10	0	0	2462	0	1259	1259	10	26	9	259	244	95
CTC 50-75, 5	0	0	4088	0	1626	1626	12	20	7	287	270	105
CTC 50-75, 10	0	0	2462	0	1259	1259	10	26	9	259	244	95
CTC 50-80, 5	0	0	4450	0	1709	1709	13	19	6	289	272	106
CTC 50-80, 10	0	0	2903	0	1397	1397	12	23	8	265	250	97
CTC 50-85, 5	0	0	4700	0	1763	1763	14	19	6	290	272	106
CTC 50-85, 10	0	0	2903	0	1397	1397	12	23	8	265	250	97
CTC 55-70, 5	0	0	2854	0	1321	1321	11	26	9	251	235	92
CTC 55-70, 10	0	0	1705	0	1029	1029	9	32	12	227	213	83
CTC 55-75, 5	0	0	3320	0	1440	1440	12	24	8	257	240	94
CTC 55-75, 10	0	0	2267	0	1227	1227	11	27	10	241	225	88
CTC 55-80, 5	0	0	3683	0	1525	1525	13	23	8	259	242	95
CTC 55-80, 10	0	0	2267	0	1227	1227	11	27	10	241	225	88
CTC 55-85, 5	0	0	3934	0	1579	1579	14	23	8	260	242	95
CTC 55-85, 10	0	0	2572	0	1315	1315	13	27	9	242	226	88

Appendix Table 7.6b. Outcomes for Computed Tomographic Colonography Strategies: CRC-SPIN (IRR = 1.19)

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Οι	Itcomes	per 100	0 unscreen	ed 40-yea	ar-olds f	ree from c	liagnose	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs		CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
CTC 45-70, 5	0	0	4436	0	1569	1569	9	45	12	271	241	99
CTC 45-70, 10	0	0	2622	0	1149	1149	7	55	18	210	185	77
CTC 45-75, 5	0	0	4881	0	1672	1672	10	42	11	283	251	103
CTC 45-75, 10	0	0	3164	0	1316	1316	9	50	14	234	205	86
CTC 45-80, 5	0	0	5227	0	1744	1744	11	40	9	288	256	105
CTC 45-80, 10	0	0	3164	0	1316	1316	9	50	14	234	205	86
CTC 45-85, 5	0	0	5464	0	1790	1790	12	40	9	290	257	106
CTC 45-85, 10	0	0	3455	0	1389	1389	11	50	13	238	208	87
CTC 50-70, 5	0	0	3627	0	1414	1414	9	46	13	257	227	94
CTC 50-70, 10	0	0	2453	0	1137	1137	8	52	15	220	192	80
CTC 50-75, 5	0	0	4075	0	1519	1519	10	43	11	268	238	98
CTC 50-75, 10	0	0	2453	0	1137	1137	8	52	15	220	192	80
CTC 50-80, 5	0	0	4422	0	1592	1592	11	42	10	274	242	100
CTC 50-80, 10	0	0	2878	0	1253	1253	10	50	13	232	202	85
CTC 50-85, 5	0	0	4660	0	1638	1638	12	41	10	276	243	101
CTC 50-85, 10	0	0	2878	0	1253	1253	10	50	13	232	202	85
CTC 55-70, 5	0	0	2857	0	1242	1242	9	48	14	232	204	85
CTC 55-70, 10	0	0	1701	0	939	939	7	57	19	181	159	66
CTC 55-75, 5	0	0	3309	0	1350	1350	10	45	12	244	215	89
CTC 55-75, 10	0	0	2250	0	1113	1113	9	52	15	207	180	76
CTC 55-80, 5	0	0	3660	0	1425	1425	11	43	11	250	220	91
CTC 55-80, 10	0	0	2250	0	1113	1113	9	52	15	207	180	76
CTC 55-85, 5	0	0	3899	0	1472	1472	12	43	10	252	221	92
CTC 55-85, 10	0	0	2543	0	1187	1187	10	51	14	211	182	77

Appendix Table 7.6c. Outcomes for Computed Tomographic Colonography Strategies: MISCAN (IRR = 1.19)

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from c	liagnos	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
COL at 45, follo	wed by											
FIT 55-70, 1	9554	0	0	1037	1274	2311	9	26	7	345	323	126
FIT 55-75, 1	11649	0	0	1037	1413	2451	10	22	5	357	333	130
FIT 55-80, 1	13309	0	0	1037	1521	2559	11	21	4	362	338	132
FIT 55-85, 1	14491	0	0	1037	1593	2631	13	20	4	364	339	133
COL at 50, follo	wed by											
FIT 60-70, 1	6319	0	0	1019	1109	2128	9	28	8	316	295	115
FIT 60-75, 1	8372	0	0	1019	1243	2262	10	25	6	327	304	119
FIT 60-80, 1	10021	0	0	1019	1348	2367	11	23	5	332	309	121
FIT 60-85, 1	11196	0	0	1019	1420	2439	13	23	5	334	310	122

Appendix Table 7.7a. Outcomes for Once-Only Colonoscopy, Followed by Annual FIT Screening Strategies: SimCRC (IRR = 1.19)

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	tcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from c	liagnose	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
COL at 45, follow	wed by											
FIT 55-70, 1	9192	0	0	1038	1481	2518	12	19	6	322	304	118
FIT 55-75, 1	11233	0	0	1038	1603	2641	13	17	5	329	309	120
FIT 55-80, 1	12888	0	0	1038	1698	2736	14	16	5	332	312	121
FIT 55-85, 1	14106	0	0	1038	1763	2801	15	15	4	334	313	122
COL at 50, follow	wed by											
FIT 60-70, 1	6143	0	0	1020	1279	2299	12	20	7	294	278	107
FIT 60-75, 1	8153	0	0	1020	1398	2418	13	19	6	301	283	110
FIT 60-80, 1	9805	0	0	1020	1491	2511	14	18	6	304	286	111
FIT 60-85, 1	11020	0	0	1020	1556	2576	15	17	5	305	287	111

Appendix Table 7.7b. Outcomes for Once-Only Colonoscopy, Followed by Annual FIT Screening Strategies: CRC-SPIN (IRR = 1.19)

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from c	liagnose	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*	Total COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
COL at 45, follo	wed by											
FIT 55-70, 1	8674	0	0	1038	1368	2406	9	46	13	272	242	99
FIT 55-75, 1	10765	0	0	1038	1480	2518	10	44	11	288	256	105
FIT 55-80, 1	12481	0	0	1038	1566	2603	11	42	9	297	263	108
FIT 55-85, 1	13768	0	0	1038	1626	2664	12	42	9	301	266	110
COL at 50, follo	wed by											
FIT 60-70, 1	5459	0	0	1020	1235	2255	10	46	13	259	231	95
FIT 60-75, 1	7462	0	0	1020	1337	2357	11	44	11	274	243	100
FIT 60-80, 1	9140	0	0	1020	1418	2438	11	42	10	282	250	103
FIT 60-85, 1	10404	0	0	1020	1475	2495	12	42	9	285	252	104

Appendix Table 7.7c. Outcomes for Once-Only Colonoscopy, Followed by Annual FIT Screening Strategies: MISCAN (IRR = 1.19)

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

Appendix Table 7.8a. Outcomes for 5 years of Annual FIT, Followed by 10-Yearly Colonoscopy Screening Strategies: SimCRC (IRR = 1.19)

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	liagnose	ed colored	ctal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*		Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	85	85	2	85	34	0	0	0
Annual FIT from	45 to 49,	followed	l by									
COL 50-70, 10	4541	0	0	2177	1281	3458	13	17	4	361	338	132
COL 50-80, 10	4541	0	0	2521	1329	3850	16	15	3	365	341	133
Annual FIT from s	50 to 54,	followed	l by									
COL 55-75, 10	4411	0	0	1945	1252	3197	15	20	5	331	307	121
COL 55-85, 10	4411	0	0	2174	1273	3447	18	19	5	331	308	121

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

Appendix Table 7.8b. Outcomes for 5 Years of Annual FIT, Followed by 10-Yearly Colonoscopy Screening Strategies: CRC-SPIN (IRR = 1.19)

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	liagnos	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*		Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	77	77	2	77	32	0	0	0
Annual FIT from	45 to 49,	followed	l by									
COL 50-70, 10	4492	0	0	2143	1418	3561	15	14	4	330	311	121
COL 50-80, 10	4492	0	0	2519	1447	3967	18	13	4	332	313	121
Annual FIT from	50 to 54,	followed	l by									
COL 55-75, 10	4352	0	0	1936	1346	3282	16	16	5	302	283	110
COL 55-85, 10	4352	0	0	2200	1359	3559	18	16	5	302	284	110

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

Appendix Table 7.8c. Outcomes for 5 Years of Annual FIT, Followed by 10-Yearly Colonoscopy Screening Strategies: MISCAN (IRR = 1.19)

	Ou	itcomes	per 100	0 unscreene	ed 40-yea	ar-olds f	ree from o	liagnos	ed colored	tal car	ncer	
Strategy	Stool tests	SIGs	CTCs	Screening COLs	Other COLs*		Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG
No screening	0	0	0	0	81	81	2	81	34	0	0	0
Annual FIT from	45 to 49,	followed	l by									
COL 50-70, 10	4555	0	0	2063	1454	3517	14	36	9	300	270	110
COL 50-80, 10	4555	0	0	2387	1483	3870	16	34	8	305	274	111
Annual FIT from \$	50 to 54,	followed	l by									
COL 55-75, 10	4419	0	0	1840	1385	3224	15	36	9	288	257	105
COL 55-85, 10	4419	0	0	2064	1396	3460	17	36	9	289	258	106

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; SIG – sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening

* Colonoscopies for diagnostic follow-up, surveillance, and symptom diagnosis

Appendix Table 8.1. Efficient and Near-Efficient Colonoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

The tables that follow show the efficiency ratios that correspond with the efficient frontiers in **Figures 12-18**. For efficient strategies, the efficiency ratio is the inverse of the slope of efficient frontier. For near-efficient strategies, the efficiency ratio is the inverse of the slope of the line connecting the near-efficient strategy and the efficient strategy with fewer life-years gained.

	Effic	iency ratio (Δ COL / Δ I	_YG)
Strategy	SimCRC	CRC-SPIN	MISCAN
COL 55-70, 15			
COL 55-70, 10	Dominated	17*	22*
COL 50-70, 15	6*	8*	18
COL 45-70, 15	6	7	85*
COL 50-80, 15	Dominated	Dominated	56*
COL 50-70, 10	Dominated	Dominated	28
COL 45-75, 15	39*	59*	38*
COL 45-70, 10	34	44	45
COL 50-80, 10	Dominated	Dominated	86*
COL 45-75, 10	64	112	52
COL 45-85, 10	394*	828*	227*
COL 50-70, 5	Dominated	Dominated	120*
COL 50-75, 5	Dominated	Dominated	367*
COL 45-70, 5	180*	179	84
COL 45-75, 5	178	344	116
COL 45-80, 5	428	736	169
COL 45-85, 5	1445	2190	926

Note: Strategies that were dominated in all 3 models are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Effic	iency ratio (Δ COL / Δ	LYG)
Strategy	SimCRC	CRC-SPIN	MISCAN
FIT 55-70, 3			
FIT 55-75, 3	Dominated	Dominated	5
FIT 50-70, 3	2	4	6*
FIT 55-70, 2	Dominated	Dominated	13*
FIT 55-80, 3	Dominated	Dominated	6*
FIT 45-70, 3	3	5	6*
FIT 50-75, 3	Dominated	Dominated	5
FIT 55-85, 3	Dominated	Dominated	7*
FIT 55-75, 2	Dominated	Dominated	14*
FIT 50-80, 3	Dominated	Dominated	6
FIT 50-70, 2	Dominated	Dominated	94*
FIT 45-75, 3	5	7*	7*
FIT 50-85, 3	Dominated	Dominated	10*
FIT 45-80, 3	7*	8*	6
FIT 45-70, 2	8*	7	Dominated
FIT 50-75, 2	Dominated	Dominated	10*
FIT 45-85, 3	10*	Dominated	9*
FIT 50-80, 2	Dominated	Dominated	8
FIT 45-75, 2	7	9	9*
FIT 50-85, 2	Dominated	Dominated	12*
FIT 45-80, 2	10	12	8
FIT 45-85, 2	19*	25*	12
FIT 50-75, 1	Dominated	Dominated	29*
FIT 45-70, 1	21*	14	Dominated
FIT 50-80, 1	Dominated	Dominated	18*
FIT 45-75, 1	16	16	15*
FIT 50-85, 1	Dominated	Dominated	18*
sDNA-FIT 45-70, 2	Dominated	52*	Dominated
FIT 45-80, 1	19	27	14
FIT 45-85, 1	39	43	19
sDNA-FIT 45-75, 2	91*	135*	Dominated
sDNA-FIT 45-80, 2	176*	75*	26*
sDNA-FIT 45-85, 2	175*	69*	375*
sDNA-FIT 45-70, 1	116*	62*	Dominated
sDNA-FIT 45-75, 1	103*	53	251*
sDNA-FIT 45-80, 1	81	62	104*
sDNA-FIT 45-85, 1	95	111	94

Appendix Table 8.2. Efficient and Near-Efficient FIT and sDNA-FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Effic	iency ratio (Δ COL / Δ I	LYG)
Strategy	SimCRC	CRC-SPIN	MISCAN
SIG 55-70, 10			
SIG 50-70, 10	Dominated	Dominated	8
SIG 45-70, 10	4	5	73*
SIG 55-70, 5	Dominated	Dominated	11*
SIG 50-80, 10	Dominated	Dominated	22*
SIG 45-75, 10	13*	18	18*
SIG 50-70, 5	Dominated	Dominated	14
SIG 45-85, 10	Dominated	68*	21*
SIG 50-75, 5	Dominated	Dominated	19*
SIG 45-70, 5	11	20	15
SIG 50-80, 5	Dominated	Dominated	23*
SIG 50-85, 5	Dominated	Dominated	26*
SIG 45-75, 5	20	27	19
SIG 45-80, 5	38	49	29
SIG 45-85, 5	89	98	78

Appendix Table 8.3. Efficient and Near-Efficient Sigmoidoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

Note: Strategies that were dominated in all 3 models are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; SIG – sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Efficie	ency ratio (Δ COL / Δ	LYG)
Strategy	SimCRC	CRC-SPIN	MISCAN
SIG+FIT 55-70, 10_2			
SIG+FIT 55-70, 10_1	Dominated	Dominated	14*
SIG+FIT 55-75, 10_2	Dominated	Dominated	13*
SIG+FIT 50-70, 10_2	6*	8*	9
SIG+FIT 55-80, 10_2	Dominated	Dominated	13*
SIG+FIT 50-75, 10_2	Dominated	Dominated	9
SIG+FIT 45-70, 10_2	5	7	24*
SIG+FIT 50-70, 10_1	Dominated	Dominated	24*
SIG+FIT 50-80, 10_2	Dominated	Dominated	20*
SIG+FIT 50-85, 10_2	Dominated	Dominated	21*
SIG+FIT 45-75, 10_2	15	22	15*
SIG+FIT 50-75, 10_1	Dominated	Dominated	18*
SIG+FIT 45-80, 10_2	22	25	15
SIG+FIT 45-70, 10_1	22*	88*	19*
SIG+FIT 50-80, 10_1	Dominated	Dominated	20*
SIG+FIT 45-85, 10_2	54*	78*	38*
SIG+FIT 50-85, 10_1	Dominated	Dominated	21*
SIG+FIT 45-75, 10_1	34	34	22*
SIG+FIT 45-80, 10_1	35	53	21
SIG+FIT 45-85, 10_1	81	64	46

Appendix Table 8.4. Efficient and Near-Efficient 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; SIG - sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 8.5. Efficient and Near-Efficient Computed Tomographic Colonography Screening Strategies, With Life-Years Gained as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

	Effic	iency ratio (Δ COL / Δ	LYG)
Strategy	SimCRC	CRC-SPIN	MISCAN
CTC 55-70, 10			
CTC 50-70, 10	Dominated	Dominated	5
CTC 45-70, 10	4	5	Dominated
CTC 55-70, 5	Dominated	Dominated	8*
CTC 50-80, 10	Dominated	Dominated	10*
CTC 55-75, 5	Dominated	Dominated	9*
CTC 45-75, 10	13*	15*	Dominated
CTC 50-70, 5	Dominated	Dominated	8
CTC 55-80, 5	Dominated	Dominated	10*
CTC 45-85, 10	Dominated	19*	Dominated
CTC 50-75, 5	Dominated	Dominated	9
CTC 45-70, 5	11	13	21*
CTC 50-80, 5	Dominated	Dominated	13*
CTC 50-85, 5	Dominated	Dominated	17*
CTC 45-75, 5	19	21	11
CTC 45-80, 5	38	37	13
CTC 45-85, 5	104	73	32

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; CTC - computed tomographic colonography; --

indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained). * Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Table 8.6. Efficient and Near-Efficient Once-Only Colonoscopy Followed by Annual FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

	Effic	iency ratio (Δ COL / Δ I	_YG)
Strategy	SimCRC	CRC-SPIN	MISCAN
COL at 50; FIT 60-70, 1			
COL at 50; FIT 60-75, 1	Dominated	Dominated	7
COL at 45; FIT 55-70, 1	6	8	12*
COL at 50; FIT 60-80, 1	Dominated	Dominated	10
COL at 50; FIT 60-85, 1	Dominated	Dominated	16*
COL at 45; FIT 55-75, 1	12	18	12*
COL at 45; FIT 55-80, 1	19	28	11
COL at 45; FIT 55-85, 1	41	46	16

Note: Strategies that were dominated in all 3 models are not shown. COL – colonoscopy; LYG – life-years gained compared with no screening; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 8.7. Efficient and Near-Efficient Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy With Life-Years Gained as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

	Efficiency ratio (Δ COL / Δ LYG)				
Strategy	SimCRC	CRC-SPIN	MISCAN		
FIT 50-54, 1; COL 55-75, 10					
FIT 45-49, 1; COL 50-70, 10	8	10	23		
FIT 45-49, 1; COL 50-80, 10	123	216	81		

Note: Strategies that were dominated in all 3 models are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Strategy		Efficienc	y ratio (Δ CO	L / Δ LYG)	
	Total population	White males	Black males	White females	Black females
COL 55-70, 15					
COL 50-70, 15	6*	7	8	5*	6*
COL 45-70, 15	6	7	8	5	5
COL 45-75, 15	39*	35*	33*	45*	40*
COL 45-70, 10	34	33	32	38	35
COL 45-75, 10	64	56	52	76	66
COL 45-85, 10	394*	336*	257*	453*	360*
COL 45-70, 5	180*	166*	156*	206	185*
COL 45-75, 5	178	161	151	208	183
COL 45-80, 5	428	363	294	541	425
COL 45-85, 5	1445	1239	880	1735	1323

Appendix Table 9.1a. Efficient and Near-Efficient Colonoscopy Screening Strategies for the Total Population and for Subgroups Defined by Sex and Race: SimCRC (IRR = 1.19)

Note: Strategies that were dominated in all groups are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Strategy		Efficienc	y ratio (Δ CO	L / Δ LYG)	
	Total population	White males	Black males	White females	Black females
COL 55-70, 15					
COL 55-70, 10	17*	19*	24*	15*	15*
COL 50-70, 15	8*	8*	9*	7*	8*
COL 45-70, 15	7	8	9	7	8
COL 45-75, 15	59*	70*	72*	55*	50*
COL 45-70, 10	44	49	49	42	41
COL 45-75, 10	112	143	142	100	93
COL 45-85, 10	828*	870*	395*	574*	416*
COL 45-70, 5	179	187	203	160	154
COL 45-75, 5	344	450	414	322	299
COL 45-80, 5	736	1030	843	680	605
COL 45-85, 5	2190	8876	4827	3557	1813

Appendix Table 9.1b. Efficient and Near-Efficient Colonoscopy Screening Strategies for the Total Population and for Subgroups Defined by Sex and Race: CRC-SPIN (IRR = 1.19)

Note: Strategies that were dominated in all groups are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

		Efficiency	ratio (Δ CC	DL / Δ LYG)	
Strategy	Total population	White males	Black males	White females	Black females
COL 55-70, 15					
COL 55-70, 10	22*	19*	24*	21*	24*
COL 50-70, 15	18	17	18	17	18
COL 55-85, 15	Dominated	Dominated	117*	Dominated	Dominated
COL 45-70, 15	85*	52*	45*	26*	280*
COL 50-80, 15	56*	55*	49*	64*	55*
COL 50-70, 10	28	26	26	31	30
COL 45-75, 15	38*	36*	34*	44*	40*
COL 45-70, 10	45	37	39	55	50
COL 50-80, 10	86*	84*	75*	100*	86*
COL 45-75, 10	52	48	46	57	51
COL 45-85, 10	227*	228*	187*	270*	219*
COL 50-70, 5	120*	125*	145*	122*	118*
COL 50-75, 5	367*	633*	1825*	322*	334*
COL 45-70, 5	84	74	74	95	92
COL 45-75, 5	116	110	103	129	115
COL 45-80, 5	169	163	145	210	175
COL 45-85, 5	926	934	724	1100	863

Appendix Table 9.1c. Efficient and Near-Efficient Colonoscopy Screening Strategies for the Total Population and for Subgroups Defined by Sex and Race: MISCAN (IRR = 1.19)

Note: Strategies that were dominated in all groups are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

		Efficienc	y ratio (Δ CO	L / Δ LYG)	
Strategy	Total population	White males	Black males	White females	Black females
FIT 55-70, 3					
FIT 50-70, 3	2	3	3	2	2
FIT 45-70, 3	3	4	4	3	3
FIT 45-75, 3	5	6	6	5	5
FIT 45-80, 3	7*	8*	7*	7	7*
FIT 45-70, 2	8*	8*	7*	18*	7*
FIT 45-85, 3	10*	10*	9*	13*	9*
FIT 45-75, 2	7	7	7	8	7
FIT 45-80, 2	10	10	10	11	10
FIT 45-85, 2	19*	19*	17*	20*	17*
FIT 45-70, 1	21*	23*	17*	25*	17*
FIT 45-75, 1	16	17	14	17	14
FIT 45-80, 1	19	18	17	20	18
FIT 45-85, 1	39	40	33	41	35

Appendix Table 9.2a. Efficient and Near-Efficient FIT Screening Strategies for the Total Population and for Subgroups Defined by Sex and Race: SimCRC (IRR = 1.19)

Note: Strategies that were dominated in all groups are not shown.

FIT – fecal immunochemical test fecal immunochemical test with a cutoff for positivity of 20 μ g of hemoglobin per g of feces; COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Strategy		Efficienc	y ratio (Δ COL	. / Δ LYG)	
	Total population	White males	Black males	White females	Black females
FIT 55-70, 3					
FIT 55-75, 3	Dominated	Dominated	8*	Dominated	6*
FIT 50-70, 3	4	4	4	4	4
FIT 55-70, 2	Dominated	Dominated	Dominated	28*	18*
FIT 50-75, 3	Dominated	Dominated	Dominated	6*	6*
FIT 45-70, 3	5	5	5	4	4
FIT 50-70, 2	Dominated	Dominated	Dominated	12*	12*
FIT 45-75, 3	7*	9*	9*	7*	6*
FIT 45-80, 3	8*	10*	10*	7*	7*
FIT 45-70, 2	7	7	7	6	6
FIT 45-75, 2	9	11	11	8	8
FIT 45-80, 2	12	19*	16*	13	14*
FIT 45-85, 2	25*	22*	19*	21*	15*
FIT 45-70, 1	14	14	13	14	12
FIT 45-75, 1	16	20	22	15	15
FIT 45-80, 1	27	32	28	23	21
FIT 45-85, 1	43	63	52	42	33

Appendix Table 9.2b. Efficient and Near-Efficient FIT Screening Strategies for the Total Population and for Subgroups Defined by Sex and Race: CRC-SPIN (IRR = 1.19)

Note: Strategies that were dominated in all groups are not shown.

FIT – fecal immunochemical test fecal immunochemical test with a cutoff for positivity of 20 μ g of hemoglobin per g of feces; COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Efficiency ratio (Δ COL / Δ LYG)								
Strategy	Total population	White males	Black males	White females	Black females				
FIT 55-70, 3									
FIT 55-75, 3	5	5	5	5	4				
FIT 50-70, 3	6*	10*	7*	6*	6*				
FIT 55-70, 2	13*	Dominated	11*	15*	12*				
FIT 55-80, 3	6*	6*	6*	6*	5*				
FIT 50-75, 3	5	5	5	5	5				
FIT 45-70, 3	6*	6*	6*	7*	7*				
FIT 55-85, 3	7*	Dominated	7*	7*	6*				
FIT 50-80, 3	6	6*	6	6	5				
FIT 55-75, 2	14*	Dominated	22*	14*	11*				
FIT 45-75, 3	7*	6	6*	9*	10*				
FIT 50-85, 3	10*	7*	10*	10*	9*				
FIT 50-70, 2	94*	9*	13*	10*	9*				
FIT 55-80, 2	Dominated	Dominated	310*	28*	22*				
FIT 45-80, 3	6	6	6	7	7				
FIT 50-75, 2	10*	12*	10*	11*	9*				
FIT 45-85, 3	9*	10*	9*	9*	8*				
FIT 45-70, 2	Dominated	30*	18*	Dominated	Dominated				
FIT 50-80, 2	8	9*	8*	8*	7				
FIT 50-85, 2	12*	9*	8*	9*	11*				
FIT 45-75, 2	9*	8*	8*	8*	10*				
FIT 45-80, 2	8	8	8	8	8				
FIT 45-85, 2	12	13	11	12	11				
FIT 50-75, 1	29*	33*	24*	36*	25*				
FIT 45-70, 1	Dominated	Dominated	21*	Dominated	Dominated				
FIT 50-80, 1	18*	20*	17*	19*	16*				
FIT 50-85, 1	18*	20*	17*	19*	16*				
FIT 45-75, 1	15*	14*	13*	16*	14*				
FIT 45-80, 1	14	14	13	15	13				
FIT 45-85, 1	19	20	17	20	17				

Appendix Table 9.2c. Efficient and Near-Efficient FIT Screening Strategies for the Total Population and for Subgroups Defined by Sex and Race: MISCAN (IRR = 1.19)

Note: Strategies that were dominated in all groups are not shown.

FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 10.1. Efficient and Near-Efficient Colonoscopy Screening Strategies (IRR = 1.19), by Model and Benefit Variable (LYG, QALYG)

		Efficiency ratio, by model and benefit variable								
	Sim	SimCRC		CRC-SPIN		MISCAN				
Strategy	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG				
COL 55-70, 15										
COL 55-70, 10	Dominated	Dominated	17*	18*	22*	19*				
COL 50-70, 15	6*	6*	8*	8*	18	17				
COL 45-70, 15	6	6	7	8	85*	46*				
COL 50-80, 15	Dominated	Dominated	Dominated	Dominated	56*	71*				
COL 50-70, 10	Dominated	Dominated	Dominated	Dominated	28	30				
COL 45-75, 15	39*	44*	59*	66*	38*	41*				
COL 45-70, 10	34	36	44	48	45	38				
COL 50-80, 10	Dominated	Dominated	Dominated	Dominated	86*	107*				
COL 45-75, 10	64	72	112	127	52	61				
COL 45-85, 10	394*	627*	828*	1470*	227*	352*				
COL 50-70, 5	Dominated	Dominated	Dominated	Dominated	120*	151*				
COL 50-75, 5	Dominated	Dominated	Dominated	Dominated	367*	Dominated				
COL 45-70, 5	180*	184	179	198	84	86				
COL 45-75, 5	178	198	344	447	116	137				
COL 45-80, 5	428	585	736	1388	169	211				
COL 45-85, 5	1445	7114	2190	Dominated	926	2285				

Note: Strategies that were dominated with both measures across all 3 models are not shown. Conclusions about efficiency and efficiency ratios were similar across the two measures of the benefit of screening.

COL – colonoscopy; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest LYG/QALYG).

	Efficiency ratio, by model and benefit variable								
	Sim	SimCRC		CRC-SPIN		CAN			
Strategy	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG			
FIT 55-70, 3									
FIT 55-75, 3	Dominated	Dominated	Dominated	Dominated	5	6*			
FIT 50-70, 3	2	2	4	4	6*	6*			
FIT 55-70, 2	Dominated	Dominated	Dominated	Dominated	13*	7*			
FIT 55-80, 3	Dominated	Dominated	Dominated	Dominated	6*	7*			
FIT 45-70, 3	3	4	5	5	6*	6*			
FIT 50-75, 3	Dominated	Dominated	Dominated	Dominated	5	5			
FIT 55-85, 3	Dominated	Dominated	Dominated	Dominated	7*	Dominated			
FIT 55-75, 2	Dominated	Dominated	Dominated	Dominated	14*	14*			
FIT 50-80, 3	Dominated	Dominated	Dominated	Dominated	6	8*			
FIT 50-70, 2	Dominated	Dominated	Dominated	Dominated	94*	8*			
FIT 45-75, 3	5	6	7*	8*	7*	7			
FIT 50-85, 3	Dominated	Dominated	Dominated	Dominated	10*	9*			
FIT 55-80, 2	Dominated	Dominated	Dominated	Dominated	Dominated	11*			
FIT 45-80, 3	7*	9*	8*	9*	6	8			
FIT 45-70, 2	8*	7	7	7	Dominated	16*			
FIT 50-75, 2	Dominated	Dominated	Dominated	Dominated	10*	8			
FIT 45-85, 3	10*	13*	Dominated	Dominated	9*	13*			
FIT 50-80, 2	Dominated	Dominated	Dominated	Dominated	8	9*			
FIT 45-75, 2	7	8	9	11	9*	8			
FIT 50-85, 2	Dominated	Dominated	Dominated	Dominated	12*	10*			
FIT 45-80, 2	10	13	12	15*	8	9			
FIT 45-85, 2	19*	26*	25*	20*	12	16*			
FIT 50-75, 1	Dominated	Dominated	Dominated	Dominated	29*	17*			
FIT 45-70, 1	21*	15*	14	13	Dominated	18*			
FIT 50-80, 1	Dominated	Dominated	Dominated	Dominated	18*	15*			
FIT 45-75, 1	16	14	16	19	15*	13*			
FIT 50-85, 1	Dominated	Dominated	Dominated	Dominated	18*	16*			
sDNA-FIT 45-70, 2	Dominated	Dominated	52*	55*	Dominated	Dominated			

Benefits and Harms of Colorectal Cancer Screening

FIT 45-80, 1	19	22	27	32	14	13
FIT 45-85, 1	39	53	43	55*	19	25
sDNA-FIT 45-75, 2	91*	78*	135*	112*	Dominated	Dominated
sDNA-FIT 45-80, 2	176*	203*	75*	68*	26*	23*
sDNA-FIT 45-85, 2	175*	123*	69*	71*	375*	237*
sDNA-FIT 45-70, 1	116*	291*	62*	57*	Dominated	Dominated
sDNA-FIT 45-75, 1	103*	72*	53	53	251*	110*
sDNA-FIT 45-80, 1	81	67	62	79	104*	78*
sDNA-FIT 45-85, 1	95	140	111	190	94	76

Note: Strategies that were dominated with both measures across all 3 models are not shown. Conclusions about efficiency and efficiency ratios were similar across the two measures of the benefit of screening.

COL - colonoscopy; LYG - life-years gained compared with no screening; QALYG - quality-adjusted life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest LYG/QALYG).

		Efficiency ratio, by model and benefit variable								
	Sim	SimCRC		SPIN	MIS	CAN				
Strategy	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG				
SIG 55-70, 10										
SIG 50-70, 10	Dominated	Dominated	Dominated	Dominated	8	9				
SIG 45-70, 10	4	4	5	6	73*	24*				
SIG 55-70, 5	Dominated	Dominated	Dominated	Dominated	11*	13*				
SIG 50-80, 10	Dominated	Dominated	Dominated	Dominated	22*	28*				
SIG 45-75, 10	13*	15*	18	20	18*	18*				
SIG 50-70, 5	Dominated	Dominated	Dominated	Dominated	14	15				
SIG 45-85, 10	Dominated	Dominated	68*	91*	21*	22*				
SIG 50-75, 5	Dominated	Dominated	Dominated	Dominated	19*	23*				
SIG 45-70, 5	11	12	20	21	15	15				
SIG 50-80, 5	Dominated	Dominated	Dominated	Dominated	23*	28*				
SIG 50-85, 5	Dominated	Dominated	Dominated	Dominated	26*	32*				
SIG 45-75, 5	20	23	27	31	19	23				
SIG 45-80, 5	38	46	49	60	29	38				
SIG 45-85, 5	89	141	98	141	78	134				

Note: Strategies that were dominated with both measures across all 3 models are not shown. Conclusions about efficiency and efficiency ratios were similar across the two measures of the benefit of screening.

COL – colonoscopy; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; SIG – sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest LYG/QALYG).

Appendix Table 10.4. Efficient and Near-Efficient 10-Yearly Sigmoidoscopy Plus Interval FIT Strategies (IRR = 1.19), by Model and Benefit Variable (LYG, QALYG)

	Efficiency ratio, by model and benefit variable								
	Sim	SimCRC		SPIN	MIS	SCAN			
Strategy	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG			
SIG+FIT 55-70, 10_2									
SIG+FIT 55-70, 10_1	Dominated	Dominated	Dominated	Dominated	14*	15*			
SIG+FIT 55-75, 10_2	Dominated	Dominated	Dominated	Dominated	13*	16*			
SIG+FIT 50-70, 10_2	6*	6*	8*	8*	9	10			
SIG+FIT 55-80, 10_2	Dominated	Dominated	Dominated	Dominated	13*	Dominated			
SIG+FIT 50-75, 10_2	Dominated	Dominated	Dominated	Dominated	9	12			
SIG+FIT 45-70, 10_2	5	5	7	7	24*	16*			
SIG+FIT 50-70, 10_1	Dominated	Dominated	Dominated	Dominated	24*	22*			
SIG+FIT 50-80, 10_2	Dominated	Dominated	Dominated	Dominated	20*	25*			
SIG+FIT 50-85, 10_2	Dominated	Dominated	Dominated	Dominated	21*	26*			
SIG+FIT 45-75, 10_2	15	17	22	24	15*	16			
SIG+FIT 50-75, 10_1	Dominated	Dominated	Dominated	Dominated	18*	19*			
SIG+FIT 45-80, 10_2	22	27	25	31	15	17			
SIG+FIT 45-70, 10_1	22*	23*	88*	49*	19*	18*			
SIG+FIT 50-80, 10_1	Dominated	Dominated	Dominated	Dominated	20*	22*			
SIG+FIT 45-85, 10_2	54*	75*	78*	106*	38*	54*			
SIG+FIT 50-85, 10_1	Dominated	Dominated	Dominated	Dominated	21*	24*			
SIG+FIT 45-75, 10_1	34	31	34	35	22*	22			
SIG+FIT 45-80, 10_1	35	42	53	69	21	24			
SIG+FIT 45-85, 10 1	81	116	64	89	46	65			

Note: Strategies that were dominated with both measures across all 3 models are not shown. Conclusions about efficiency and efficiency ratios were similar across the two measures of the benefit of screening.

COL - colonoscopy; LYG - life-years gained compared with no screening; QALYG - quality-adjusted life-years gained compared with no screening; SIG - sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest LYG/QALYG).

Appendix Table 10.5. Efficient and Near-Efficient Computed Tomographic Colonography Strategies (IRR = 1.19), by Model and Benefit Variable (LYG, QALYG)

		Efficiency ratio, by model and benefit variable								
	Sim	CRC	CRC	SPIN	MIS	CAN				
Strategy	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG				
CTC 55-70, 10										
CTC 55-75, 10	Dominated	Dominated	Dominated	Dominated	Dominated	8*				
CTC 50-70, 10	Dominated	Dominated	Dominated	Dominated	5	6				
CTC 45-70, 10	4	4	5	5	Dominated	Dominated				
CTC 55-70, 5	Dominated	Dominated	Dominated	Dominated	8*	8*				
CTC 50-80, 10	Dominated	Dominated	Dominated	Dominated	10*	12*				
CTC 55-75, 5	Dominated	Dominated	Dominated	Dominated	9*	9*				
CTC 45-75, 10	13*	15*	15*	16*	Dominated	Dominated				
CTC 50-70, 5	Dominated	Dominated	Dominated	Dominated	8	8				
CTC 55-80, 5	Dominated	Dominated	Dominated	Dominated	10*	Dominated				
CTC 45-85, 10	Dominated	Dominated	19*	21*	Dominated	Dominated				
CTC 50-75, 5	Dominated	Dominated	Dominated	Dominated	9	10				
CTC 45-70, 5	11	12	13	14	21*	14*				
CTC 50-80, 5	Dominated	Dominated	Dominated	Dominated	13*	16*				
CTC 50-85, 5	Dominated	Dominated	Dominated	Dominated	17*	21*				
CTC 45-75, 5	19	22	21	24	11	11				
CTC 45-80, 5	38	46	37	45	13	16				
CTC 45-85, 5	104	165	73	103	32	43				

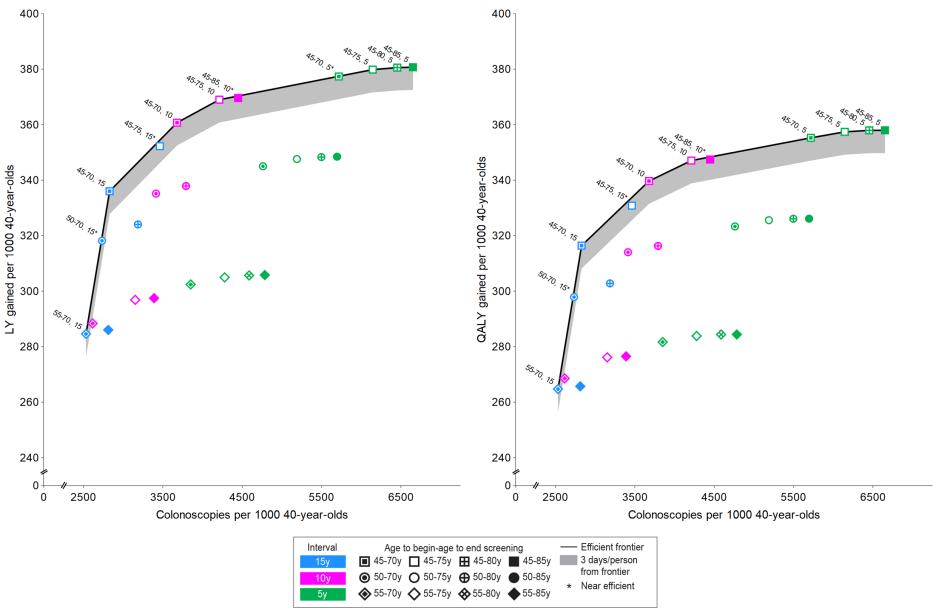
Note: Strategies that were dominated with both measures across all 3 models are not shown. Conclusions about efficiency and efficiency ratios were similar across the two measures of the benefit of screening.

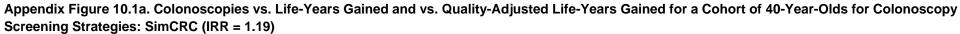
COL – colonoscopy; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; CTC – computed tomographic colonography; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest LYG/QALYG).

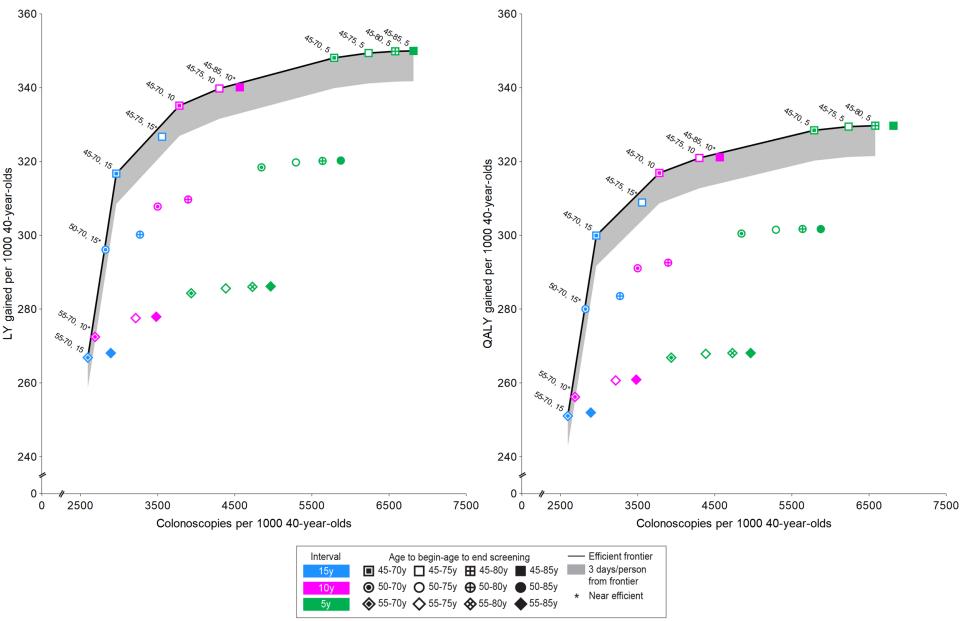
Appendix Table 10.6. Efficient and Near-Efficient Once-Only Colonoscopy Followed by Annual FIT Strategies (IRR = 1.19), by Model and Benefit Variable (LYG, QALYG)

	Efficiency ratio, by model and benefit variable								
	Sim	CRC	CRC	-SPIN	MISCAN				
Strategy	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG			
COL at 50; FIT 60-70, 1									
COL at 50; FIT 60-75, 1	Dominated	Dominated	Dominated	Dominated	7	8			
COL at 45; FIT 55-70, 1	6	6	8	8	12*	13*			
COL at 50; FIT 60-80, 1	Dominated	Dominated	Dominated	Dominated	10	13*			
COL at 50; FIT 60-85, 1	Dominated	Dominated	Dominated	Dominated	16*	15*			
COL at 45; FIT 55-75, 1	12	14	18	21	12*	12*			
COL at 45; FIT 55-80, 1	19	23	28	34	11	12			
COL at 45; FIT 55-85, 1	41	55	46	62	16	21			

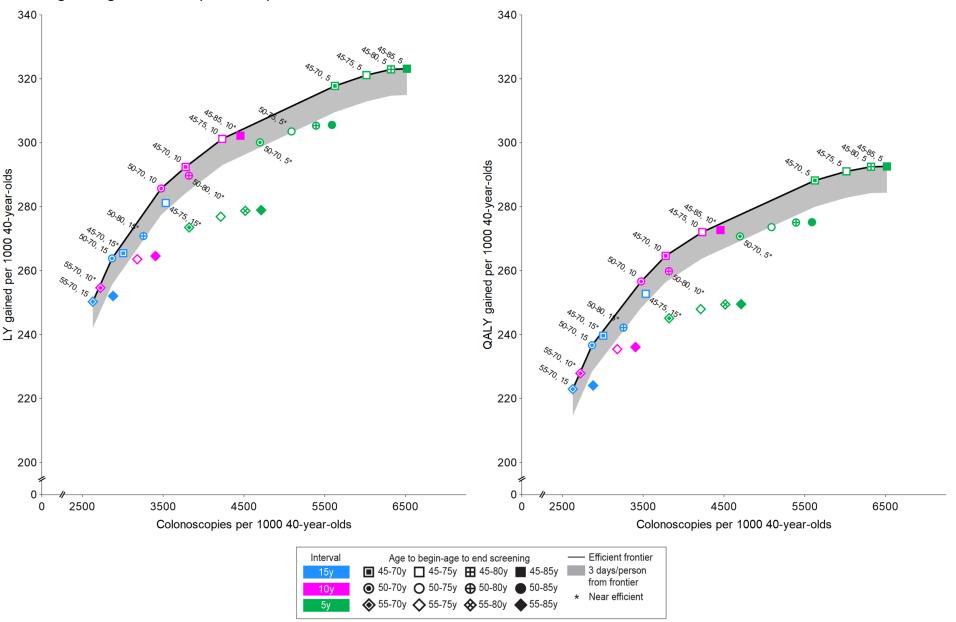
Note: Strategies that were dominated with both measures across all 3 models are not shown. Conclusions about efficiency and efficiency ratios were similar across the two measures of the benefit of screening.

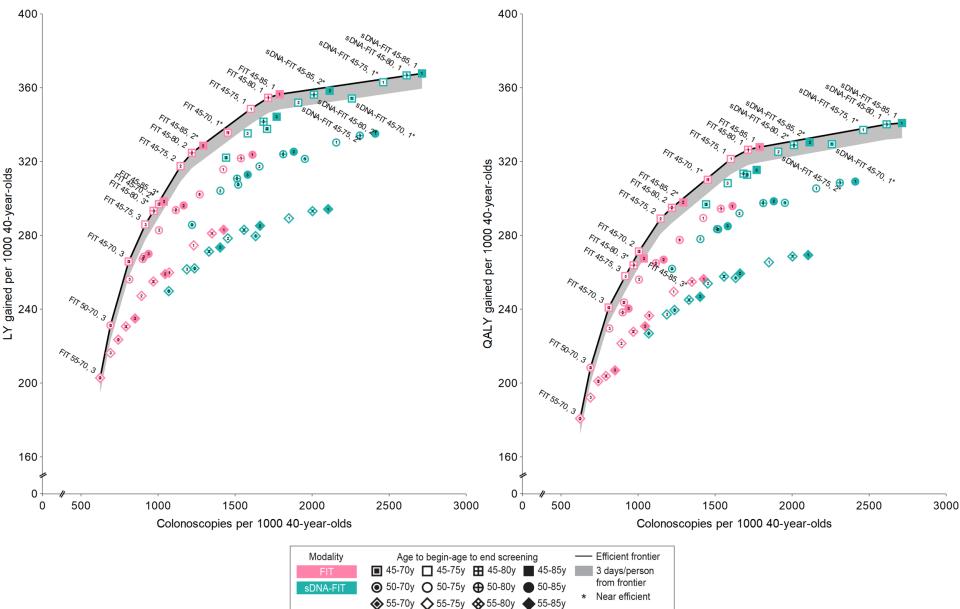

COL - colonoscopy; LYG - life-years gained compared with no screening; QALYG - quality-adjusted life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest LYG/QALYG).

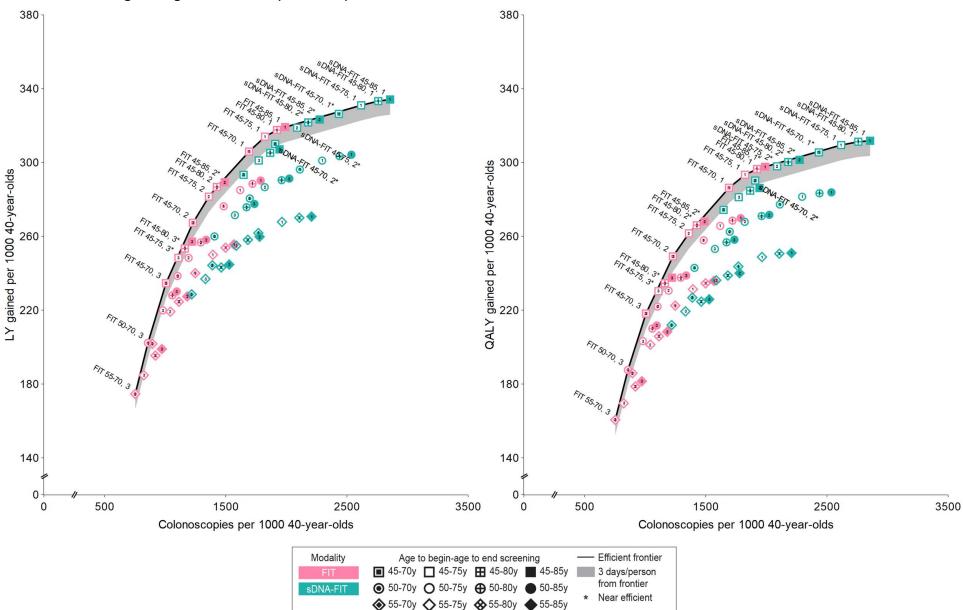

Appendix Table 10.7. Efficient and Near-Efficient Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy (IRR = 1.19), by Model and Benefit Variable (LYG, QALYG)

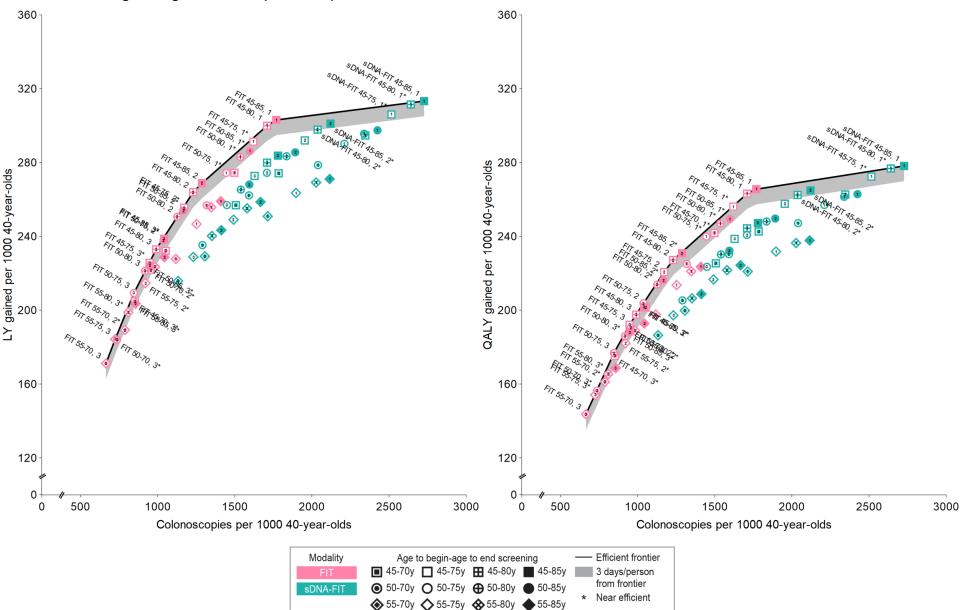

	Efficiency ratio, by model and benefit variable							
_	SimCRC		CRC-SPIN		MISCAN			
Strategy	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG	Δ COL / Δ LYG	Δ COL / Δ QALYG		
FIT 50-54, 1; COL 55-75, 10								
FIT 45-49, 1; COL 50-70, 10	8	8	10	10	23	23		
FIT 45-49, 1; COL 50-80, 10	123	147	216	279	81	100		

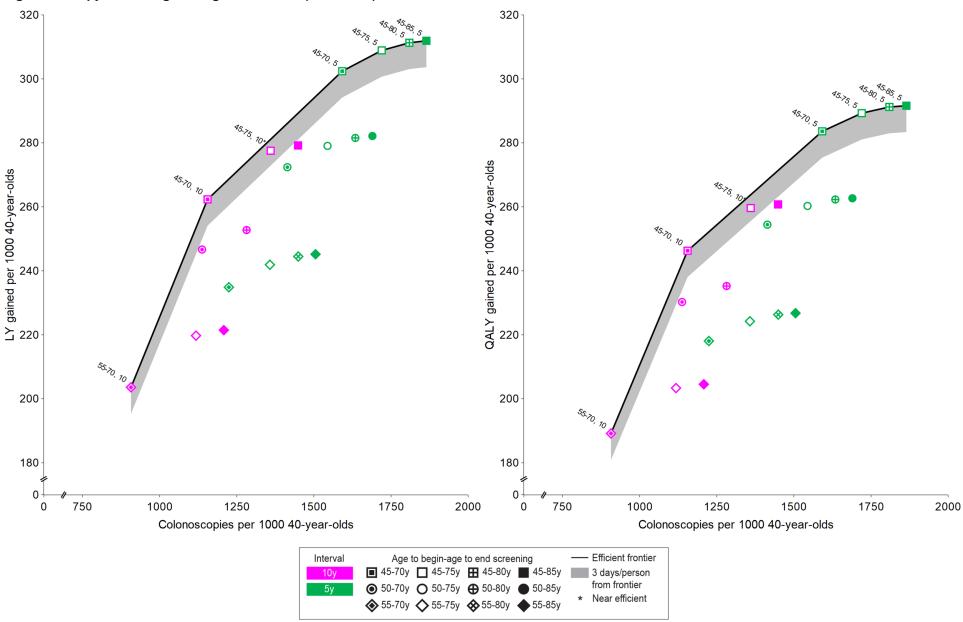
Note: Strategies that were dominated with both measures across all 3 models are not shown. Conclusions about efficiency and efficiency ratios were similar across the two measures of the benefit of screening.

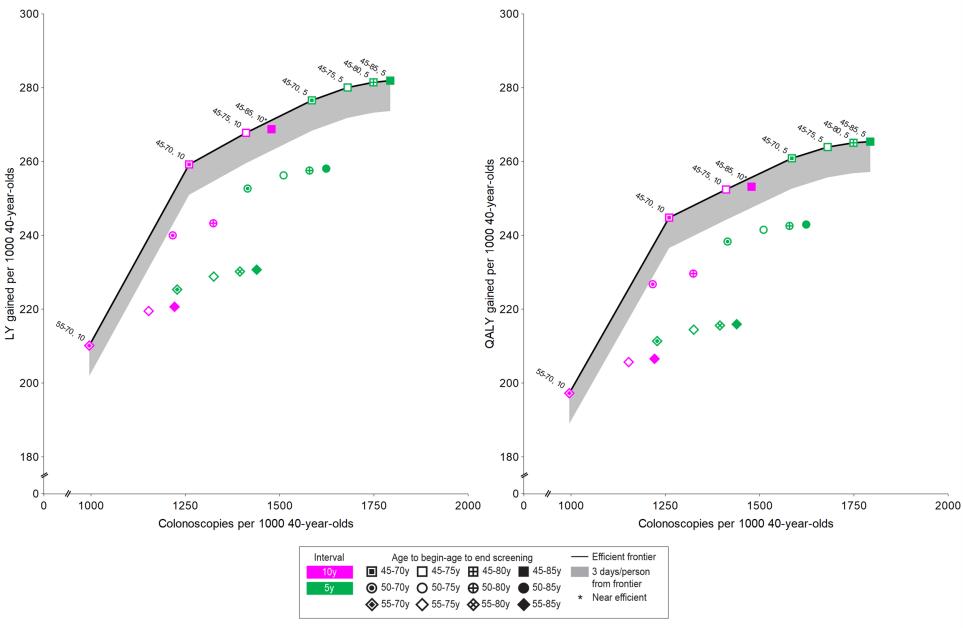

COL - colonoscopy; LYG - life-years gained compared with no screening; QALYG - quality-adjusted life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest LYG/QALYG).

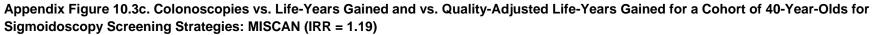


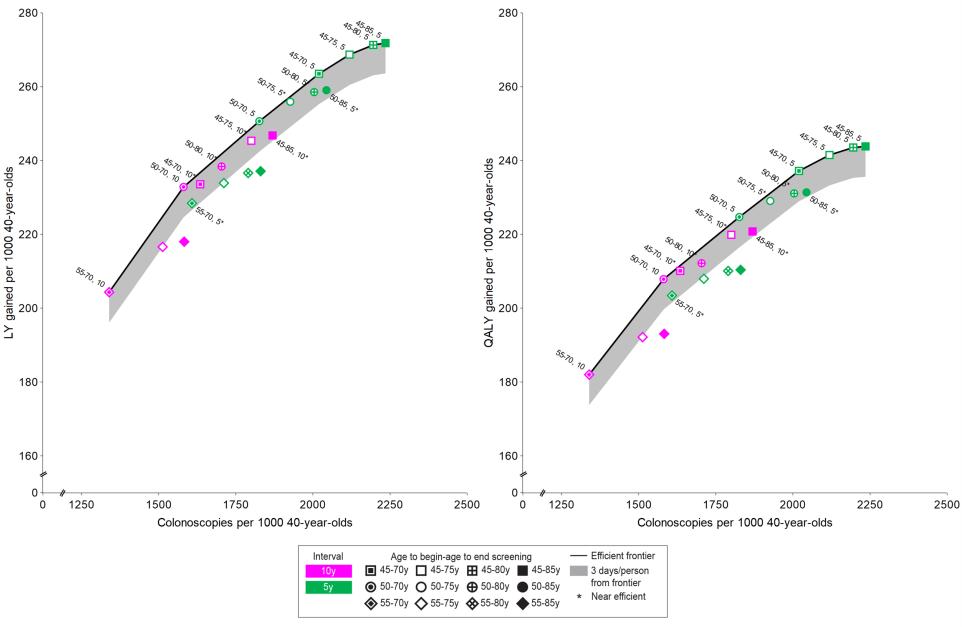

Appendix Figure 10.1b. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Colonoscopy Screening Strategies: CRC-SPIN (IRR = 1.19)

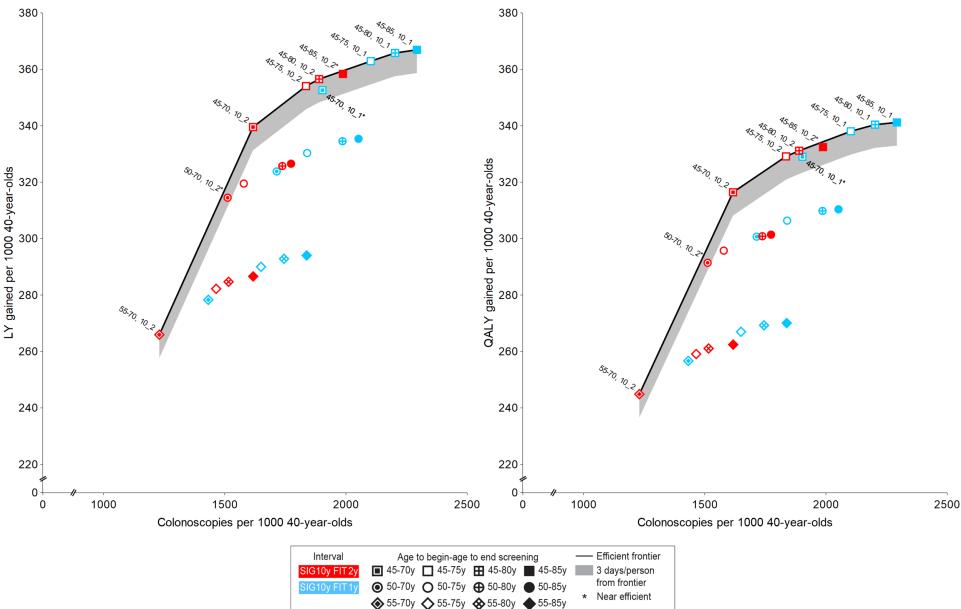

Appendix Figure 10.1c. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Colonoscopy Screening Strategies: MISCAN (IRR = 1.19)

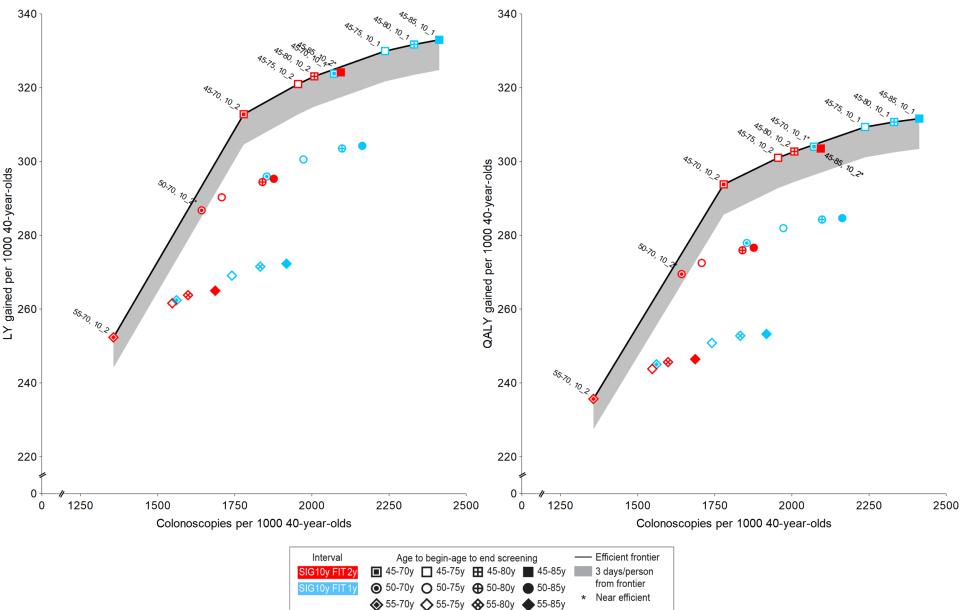

Appendix Figure 10.2a. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for FIT and sDNA-FIT Screening Strategies: SimCRC (IRR = 1.19)

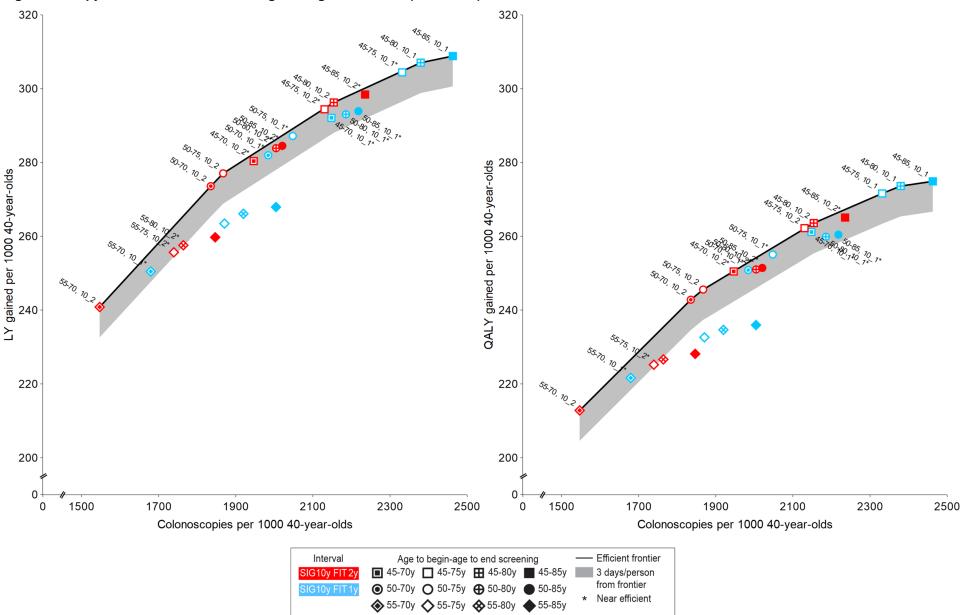

Appendix Figure 10.2b. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for FIT and sDNA-FIT Screening Strategies: CRC-SPIN (IRR = 1.19)

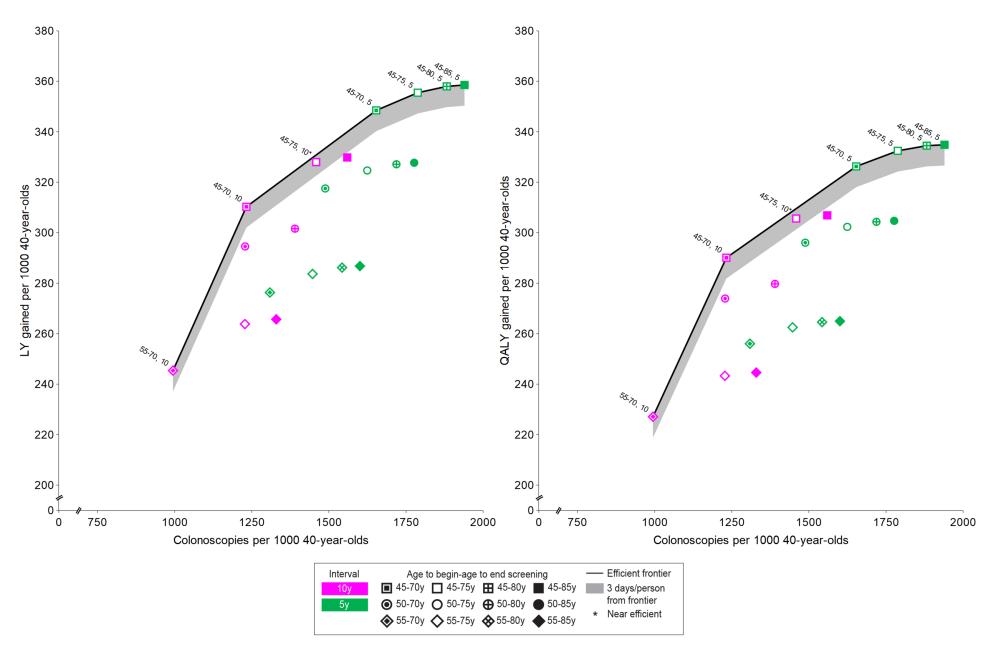

Appendix Figure 10.2c. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for FIT and sDNA-FIT Screening Strategies: MISCAN (IRR = 1.19)

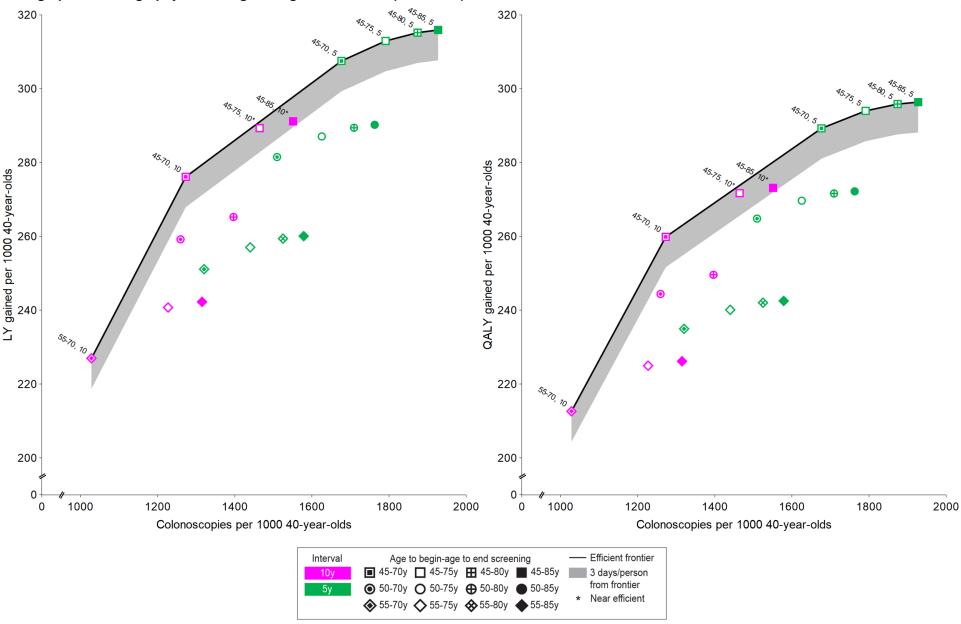


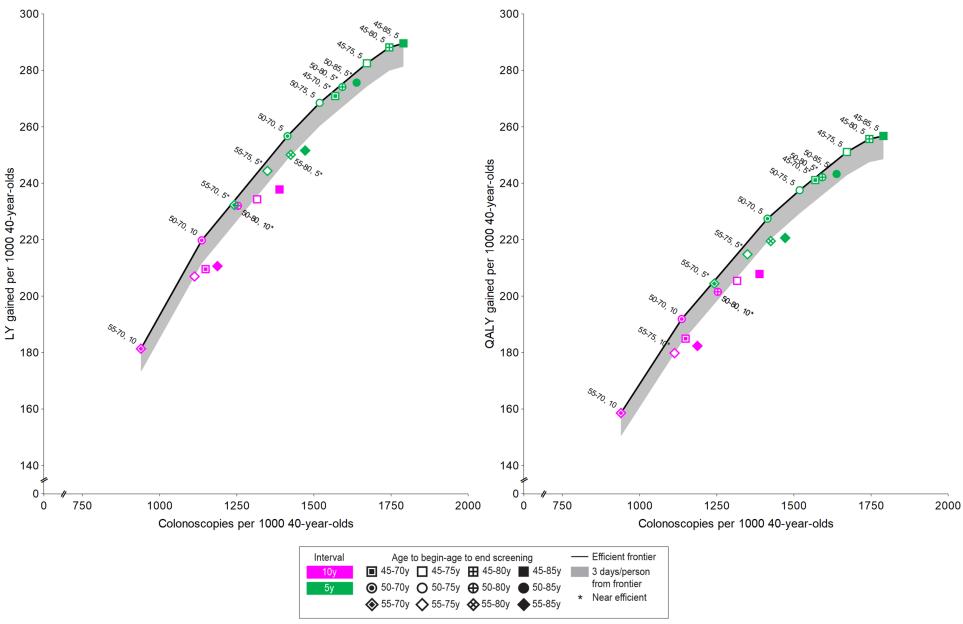

Appendix Figure 10.3a. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Sigmoidoscopy Screening Strategies: SimCRC (IRR = 1.19)

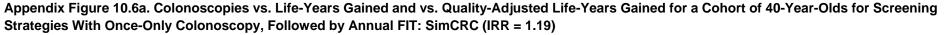

Appendix Figure 10.3b. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Sigmoidoscopy Screening Strategies: CRC-SPIN (IRR = 1.19)

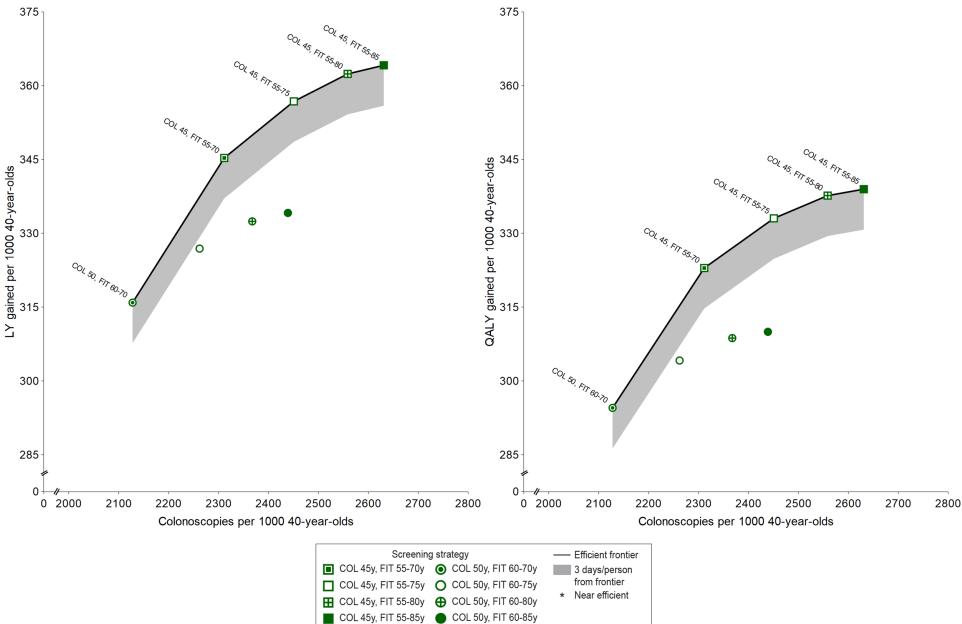


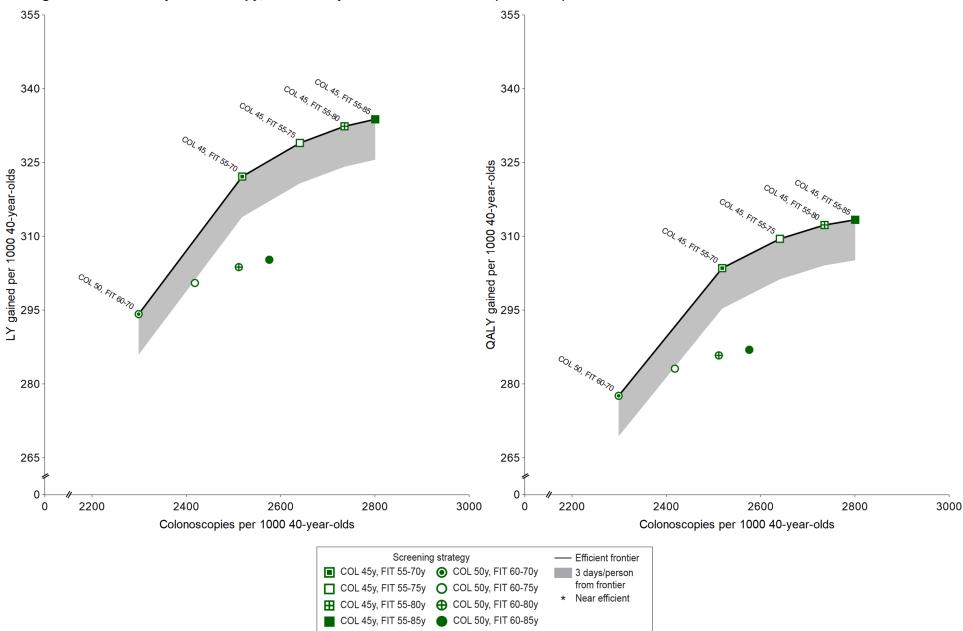

Appendix Figure 10.4a. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies: SimCRC (IRR = 1.19)

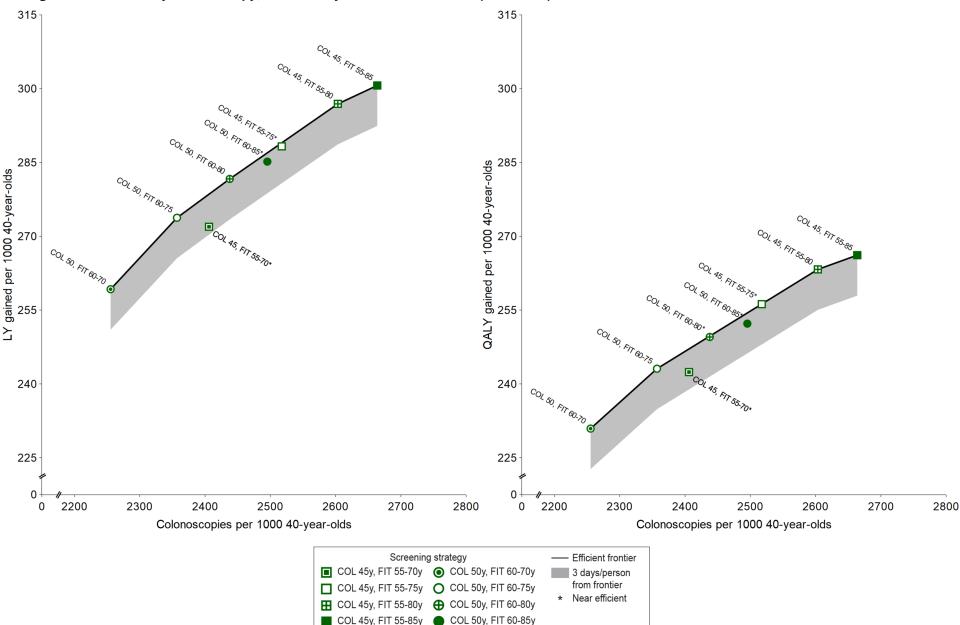

Appendix Figure 10.4b. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies: CRC-SPIN (IRR = 1.19)

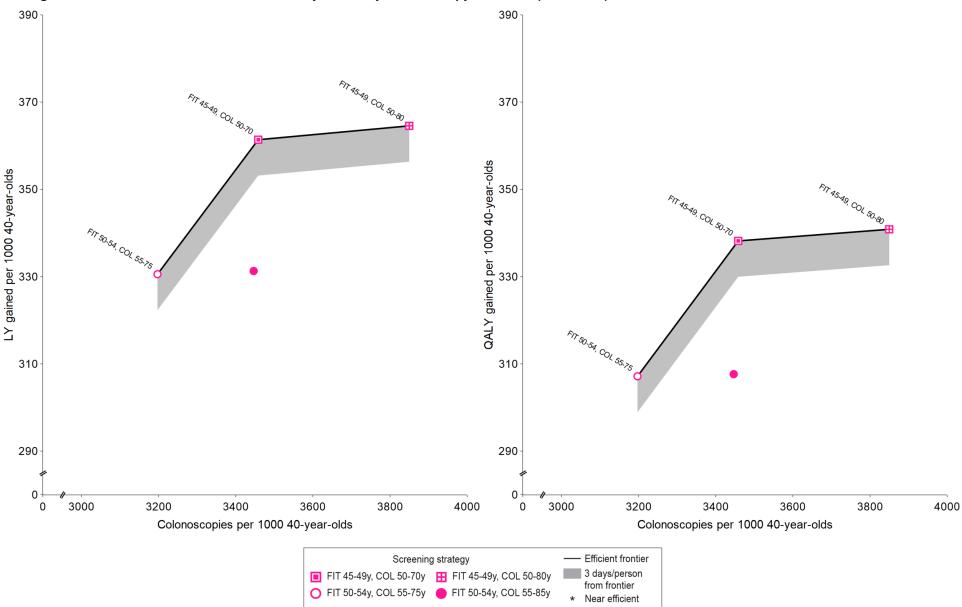

Appendix Figure 10.4c. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies: MISCAN (IRR = 1.19)

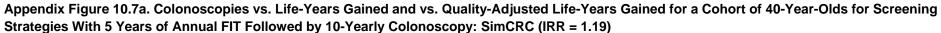

Appendix Figure 10.5a. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies: SimCRC (IRR = 1.19)

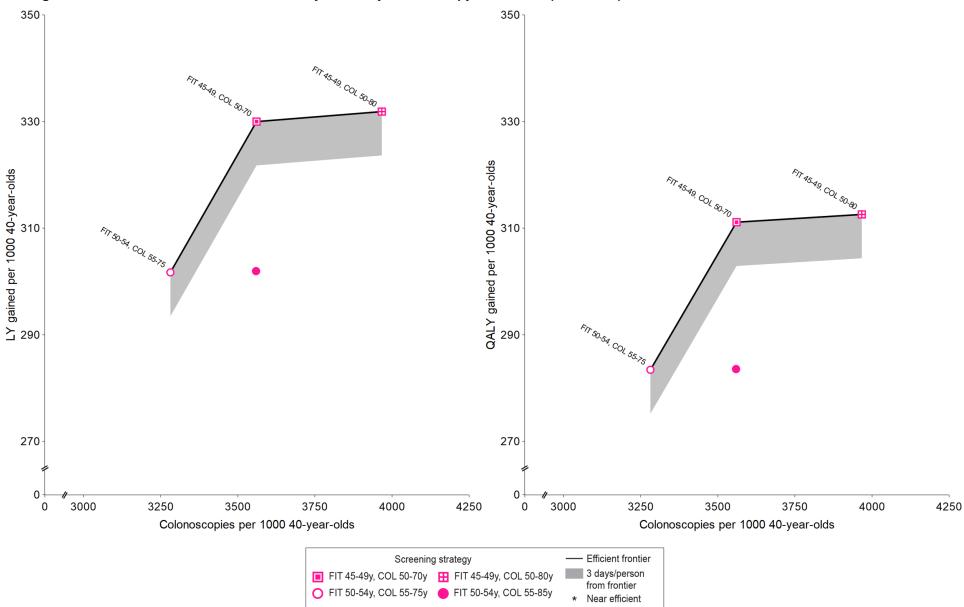


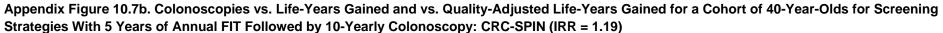

Appendix Figure 10.5b. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies: CRC-SPIN (IRR = 1.19)

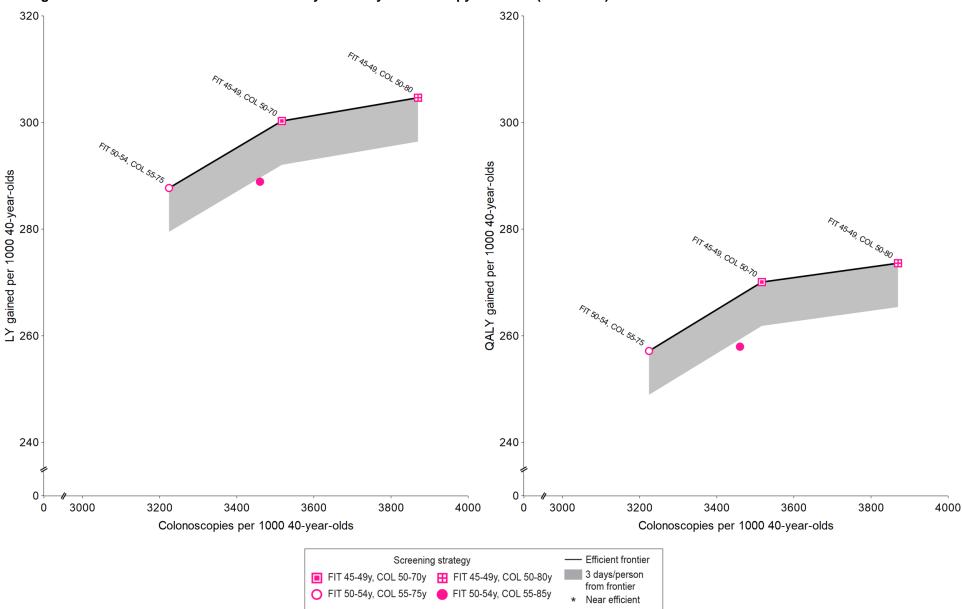

Appendix Figure 10.5c. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Computed Tomographic Colonography Screening Strategies: MISCAN (IRR = 1.19)

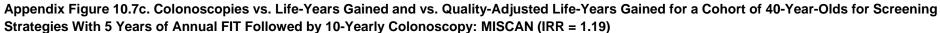





Appendix Figure 10.6b. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With Once-Only Colonoscopy, Followed by Annual FIT: CRC-SPIN (IRR = 1.19)




Appendix Figure 10.6c. Colonoscopies vs. Life-Years Gained and vs. Quality-Adjusted Life-Years Gained for a Cohort of 40-Year-Olds for Screening Strategies With Once-Only Colonoscopy, Followed by Annual FIT: MISCAN (IRR = 1.19)



Appendix Table 11.1. Efficient Frontier Status for Colonoscopy Screening Strategies, According to Whether Life-Years Gained or the Number of Colorectal Cancer Deaths Averted Are Used for the Benefit of Screening (IRR = 1.19)

	Effi	cient frontier	status, by	y model and I	penefit va	riable
	Sin	SimCRC		-SPIN	MISCAN	
Strategy	LYG	CRC deaths averted	LYG	CRC deaths averted	LYG	CRC deaths averted
COL 55-70, 15	Е	Е	Е	Е	Е	Е
COL 55-70, 10		NE	NE	NE	NE	NE
COL 50-70, 15	NE	Е	NE	Е	Е	NE
COL 55-85, 15		NE				NE
COL 45-70, 15	E		Е	NE	NE	
COL 55-75, 10		NE				Е
COL 50-80, 15		NE		NE	NE	NE
COL 55-85, 10						NE
COL 50-70, 10		NE		NE	Е	NE
COL 45-75, 15	NE	Е	NE	Е	NE	NE
COL 45-70, 10	Е	NE	Е	NE	Е	
COL 50-80, 10		NE		NE	NE	Е
COL 45-75, 10	Е	Е	Е	Е	Е	NE
COL 55-75, 5						NE
COL 45-85, 10	NE	Е	NE	Е	NE	NE
COL 55-80, 5						NE
COL 50-70, 5					NE	NE
COL 55-85, 5						NE
COL 50-75, 5					NE	NE
COL 50-80, 5						E
COL 50-85, 5						NE
COL 45-70, 5	NE	NE	Е	NE	Е	NE
COL 45-75, 5	E	NE	Е	E	Е	NE
COL 45-80, 5	Е	E	Е	Е	Е	Е
COL 45-85, 5	E	E	Е	E	Е	Е

Note: Strategies that were dominated with both measures across all models are not shown.

COL – colonoscopy; E – strategy is efficient; NE – strategy is near efficient; -- indicates strategy is dominated and does not meet the criteria for near efficiency.

Appendix Table 11.2. Efficient Frontier Status for FIT and sDNA-FIT Screening Strategies, According to Whether Life-Years Gained or the Number of Colorectal Cancer Deaths Averted Are Used for the Benefit of Screening (IRR = 1.19)

		icient frontier		y model and l C-SPIN		riable SCAN
Strategy	LYG	CRC deaths averted	LYG	CRC deaths averted	LYG	CRC deaths averted
FIT 55-70, 3	E	E	E	E	E	E
FIT 55-75, 3		E		E	E	E
FIT 50-70, 3	Е		Е	NE	NE	
FIT 55-70, 2				NE	NE	
FIT 55-80, 3		Е		E	NE	Е
FIT 45-70, 3	Е		Е		NE	
FIT 50-75, 3		NE		NE	E	
FIT 55-85, 3		NE		NE	NE	Е
FIT 55-75, 2				NE	NE	
FIT 50-80, 3		Е		E	E	NE
FIT 50-70, 2				NE	NE	
FIT 45-75, 3	Е	NE	NE	NE	NE	
FIT 50-85, 3		E		NE	NE	NE
FIT 55-80, 2		NE		E		NE
FIT 45-80, 3	NE	NE	NE	NE	Е	
FIT 45-70, 2	NE		E	NE		
FIT 50-75, 2				NE	NE	
FIT 45-85, 3	NE	Е		E	NE	
FIT 55-85, 2		NE		NE		Е
FIT 55-70, 1				NE		
FIT 50-80, 2		NE		NE	Е	NE
FIT 45-75, 2	Е		Е	NE	NE	
FIT 50-85, 2		NE		NE	NE	Е
FIT 45-80, 2	Е	NE	Е	E	E	
FIT 55-75, 1				NE		
FIT 45-85, 2	NE	Е	NE	E	Е	NE
FIT 55-80, 1						NE
FIT 50-75, 1				NE	NE	
FIT 55-85, 1						Е
FIT 45-70, 1	NE		Е	NE		
FIT 50-80, 1		NE		NE	NE	NE
FIT 45-75, 1	E		E	NE	NE	
FIT 50-85, 1	–	 NE		NE	NE	 E
sDNA-FIT 45-80, 3				NE		
sDNA-FIT 45-70, 2		 NE	NE	 NE		 NE
FIT 45-80, 1	E	NE	E	NE	E	NE
sDNA-FIT 45-85, 3				NE		

FIT 45-85, 1	Е	Е	Е	Е	Е	E
sDNA-FIT 50-85, 2						NE
sDNA-FIT 45-75, 2	NE		NE	NE		
sDNA-FIT 45-80, 2	NE	NE	NE	NE	NE	
sDNA-FIT 45-85, 2	NE	NE	NE	NE	NE	NE
sDNA-FIT 45-70, 1	NE		NE			
sDNA-FIT 50-80, 1						NE
sDNA-FIT 50-85, 1						NE
sDNA-FIT 45-75, 1	NE		Е	NE	NE	
sDNA-FIT 45-80, 1	Е	NE	Е	NE	NE	NE
sDNA-FIT 45-85, 1	E	E	Е	E	E	E

Note: Strategies that were dominated with both measures across all models are not shown.

FIT – fecal immunochemical test with a cutoff for positivity of 20 μ g of hemoglobin per g of feces; sDNA-FIT – multi-target stool DNA test (stool DNA test with a fecal immunochemical test); E – strategy is efficient; NE – strategy is near efficient; -- indicates strategy is dominated and does not meet the criteria for near efficiency.

Appendix Table 11.4. Efficient Frontier Status for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies, According to Whether Life-Years Gained or the Number of Colorectal Cancer Deaths Averted Are Used for the Benefit of Screening (IRR = 1.19)

-	Efficient frontier status, by model and benefit variable							
	SimCRC		CRC-SPIN		MISCAN			
Strategy	LYG	CRC deaths averted	LYG	CRC deaths averted	LYG	CRC deaths averted		
SIG 55-70, 10	E	Е	Е	Е	Е	Е		
SIG 55-75, 10		NE		Е		Е		
SIG 50-70, 10		Е		Е	Е	NE		
SIG 45-70, 10	E	NE	Е	NE	NE			
SIG 55-85, 10		NE		NE		NE		
SIG 55-70, 5		NE		NE	NE	NE		
SIG 50-80, 10		NE		NE	NE	NE		
SIG 55-75, 5		NE		NE		NE		
SIG 45-75, 10	NE	Е	Е	Е	NE	NE		
SIG 50-70, 5		NE		NE	Е	NE		
SIG 45-85, 10		NE	NE	Е	NE	NE		
SIG 55-80, 5		NE				Е		
SIG 55-85, 5						NE		
SIG 50-75, 5		NE		NE	NE	NE		
SIG 45-70, 5	E	NE	Е	NE	Е			
SIG 50-80, 5		NE		NE	NE	Е		
SIG 50-85, 5		NE		NE	NE	Е		
SIG 45-75, 5	E	E	Е	NE	Е	NE		
SIG 45-80, 5	E	E	Е	E	Е	NE		
SIG 45-85, 5	E	E	Е	E	Е	Е		

Note: Strategies that were dominated with both measures across all models are not shown.

SIG – sigmoidoscopy; E – strategy is efficient; NE – strategy is near efficient; -- indicates strategy is dominated and does not meet the criteria for near efficiency.

Appendix Table 11.4. Efficient Frontier Status for 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies, According to Whether Life-Years Gained or the Number of Colorectal Cancer Deaths Averted Are Used for the Benefit of Screening (IRR = 1.19)

	Efficient frontier status, by model and benefit variable SimCRC CRC-SPIN MISCAN					
Strategy	LYG	CRC deaths averted	LYG	CRC deaths averted	LYG	CRC deaths averted
SIG+FIT 55-70, 10_2	Е	Е	Е	Е	Е	Е
SIG+FIT 55-70, 10_1				NE	NE	NE
SIG+FIT 55-75, 10_2		Е		Е	NE	NE
SIG+FIT 50-70, 10_2	NE	NE	NE	NE	Е	
SIG+FIT 55-80, 10_2		NE		NE	NE	Е
SIG+FIT 50-75, 10_2		Е		Е	Е	NE
SIG+FIT 45-70, 10_2	Е		Е	NE	NE	
SIG+FIT 55-85, 10_2		NE		NE		Е
SIG+FIT 55-75, 10_1				NE		NE
SIG+FIT 50-70, 10_1				NE	NE	
SIG+FIT 50-80, 10_2		E		NE	NE	NE
SIG+FIT 55-80, 10_1				NE		NE
SIG+FIT 50-85, 10_2		NE		NE	NE	Е
SIG+FIT 45-75, 10_2	Е	NE	Е	NE	NE	NE
SIG+FIT 55-85, 10_1						NE
SIG+FIT 50-75, 10_1				NE	NE	NE
SIG+FIT 45-80, 10_2	Е	Е	Е	E	Е	NE
SIG+FIT 45-70, 10_1	NE		NE	NE	NE	
SIG+FIT 50-80, 10_1				NE	NE	NE
SIG+FIT 45-85, 10_2	NE	Е	NE	Е	NE	NE
SIG+FIT 50-85, 10_1		NE		NE	NE	Е
SIG+FIT 45-75, 10_1	Е	NE	Е	NE	NE	NE
SIG+FIT 45-80, 10_1	Е	NE	Е	NE	Е	NE
SIG+FIT 45-85, 10_1	E	E	Е	E	Е	Е

Note: Strategies that were dominated with both measures across all models are not shown.

SIG – sigmoidoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 μ g of hemoglobin per g of feces; E – strategy is efficient; NE – strategy is near efficient; -- indicates strategy is dominated and does not meet the criteria for near efficiency.

Appendix Table 11.5. Efficient Frontier Status for Computed Tomographic Colonography Screening Strategies, According to Whether Life-Years Gained or the Number of Colorectal Cancer Deaths Averted Are Used for the Benefit of Screening (IRR = 1.19)

	Efficient frontier status, by model and benefit variable SimCRC CRC-SPIN MISCAN						
Strategy	LYG	CRC deaths averted	LYG	CRC deaths averted	LYG	CRC deaths averted	
CTC 55-70, 10	Е	Е	Е	Е	Е	Е	
CTC 55-75, 10		NE		Е		Е	
CTC 50-70, 10		Е		NE	Е		
CTC 45-70, 10	E		Е	NE			
CTC 55-70, 5				NE	NE	NE	
CTC 55-85, 10				NE		Е	
CTC 50-80, 10		NE		NE	NE	NE	
CTC 55-75, 5				NE	NE	NE	
CTC 45-75, 10	NE	Е	NE	Е			
CTC 50-70, 5		NE		NE	Е		
CTC 55-80, 5				NE	NE	Е	
CTC 45-85, 10		NE	NE	Е			
CTC 55-85, 5				NE		Е	
CTC 50-75, 5		NE		NE	Е		
CTC 45-70, 5	E	NE	Е	NE	NE		
CTC 50-80, 5		NE		NE	NE	NE	
CTC 50-85, 5		NE		NE	NE	Е	
CTC 45-75, 5	E	NE	Е	NE	Е		
CTC 45-80, 5	E	Е	Е	Е	Е	NE	
CTC 45-85, 5	Е	Е	Е	Е	Е	Е	

Note: Strategies that were dominated with both measures across all models are not shown.

CTC – computed tomographic colonography; E – strategy is efficient; NE – strategy is near efficient; -- indicates strategy is dominated and does not meet the criteria for near efficiency.

Appendix Table 11.6. Efficient Frontier Status for Once-Only Colonoscopy Followed by Annual FIT Screening Strategies, According to Whether Life-Years Gained or the Number of Colorectal Cancer Deaths Averted Are Used for the Benefit of Screening (IRR = 1.19)

	Efficient frontier status, by model and benefit variab					riable
	Sim	nCRC	CRC	SPIN	MISCAN	
Strategy	LYG	CRC deaths averted	LYG	CRC deaths averted	LYG	CRC deaths averted
COL at 50; FIT 60-70, 1	Е	Е	Е	Е	Е	Е
COL at 50; FIT 60-75, 1		Е		Е	Е	Е
COL at 45; FIT 55-70, 1	Е		Е	NE	NE	
COL at 50; FIT 60-80, 1		Е		Е	Е	Е
COL at 50; FIT 60-85, 1		Е		NE	NE	E
COL at 45; FIT 55-75, 1	Е	NE	Е	NE	NE	
COL at 45, FIT 55-80, 1	Е	NE	Е	Е	Е	NE
COL at 45, FIT 55-85, 1	Е	Е	Е	Е	Е	Е

COL – colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; E – strategy is efficient; NE – strategy is near efficient; -- indicates strategy is dominated and does not meet the criteria for near efficiency.

Appendix Table 11.7. Efficient Frontier Status for Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy, According to Whether Life-Years Gained or the Number of Colorectal Cancer Deaths Averted Are Used for the Benefit of Screening (IRR = 1.19)

		icient frontier nCRC	r status, by model and CRC-SPIN		benefit variable MISCAN	
Strategy	LYG	CRC deaths averted	LYG	CRC deaths averted	LYG	CRC deaths averted
FIT 50-54, 1; COL 55-75, 10	Е	Е	Е	Е	Е	Е
FIT 50-54, 1; COL 55-85, 10		NE				Е
FIT 45-49, 1; COL 50-70, 10	Е	Е	Е	Е	Е	NE
FIT 45-49, 1 COL 50- 80, 10	Е	Е	Е	Е	Е	Е

Note: Strategies that were dominated with both measures across all models are not shown.

COL – colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; E – strategy is efficient; NE – strategy is near efficient; -- indicates strategy is dominated and does not meet the criteria for near efficiency.

Appendix Table 11.8. Efficient and Near-Efficient Colonoscopy Screening Strategies With Colorectal Cancer Deaths Averted as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

	Efficiency ra	tio (Δ COL / Δ CRC de	aths averted)
Strategy	SimCRC	CRC-SPIN	MISCAN
COL 55-70, 15			
COL 55-70, 10	N/A*	423*	N/A*
COL 50-70, 15	258	227	N/A*
COL 55-85, 15	659*	Dominated	529*
COL 45-70, 15	Dominated	2115*	Dominated
COL 55-75, 10	725*	Dominated	429
COL 50-80, 15	346*	545*	515*
COL 55-85, 10	Dominated	Dominated	844*
COL 50-70, 10	380*	579*	712*
COL 45-75, 15	320	423	13793*
COL 45-70, 10	480*	2029*	Dominated
COL 50-80, 10	2418*	693*	526
COL 45-75, 10	625	801	2712*
COL 55-75, 5	Dominated	Dominated	1099*
COL 45-85, 10	1277	2341	1539*
COL 55-80, 5	Dominated	Dominated	7788*
COL 50-70, 5	Dominated	Dominated	6254*
COL 55-85, 5	Dominated	Dominated	5972*
COL 50-75, 5	Dominated	Dominated	1838*
COL 50-80, 5	Dominated	Dominated	1489
COL 50-85, 5	Dominated	Dominated	3178*
COL 45-70, 5	31880*	4594*	2374*
COL 45-75, 5	3172*	3258	2431*
COL 45-80, 5	2817	3392	1495
COL 45-85, 5	4268	8623	3351

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; CRC - colorectal cancer; N/A - not applicable; the efficiency ratio cannot be calculated because there is no efficient strategy with fewer colorectal cancer deaths averted; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and averting the fewest colorectal cancer deaths).

	Efficiency ratio (Δ COL / Δ CRC deaths averted)				
Strategy	SimCRC	CRC-SPIN	MISCAN		
FIT 55-70, 3					
FIT 55-75, 3	37	54	35		
FIT 50-70, 3	Dominated	425*	Dominated		
FIT 55-70, 2	Dominated	69*	Dominated		
FIT 55-80, 3	42	58	36		
FIT 50-75, 3	52*	89*	Dominated		
FIT 55-85, 3	59*	75*	46		
FIT 55-75, 2	Dominated	73*	Dominated		
FIT 50-80, 3	57	73	826*		
FIT 50-70, 2	Dominated	104*	Dominated		
FIT 45-75, 3	84*	216*	Dominated		
FIT 50-85, 3	59	85*	123*		
FIT 55-80, 2	166*	82	122*		
FIT 45-80, 3	167*	133*	Dominated		
FIT 45-70, 2	Dominated	272*	Dominated		
FIT 50-75, 2	Dominated	159*	Dominated		
FIT 45-85, 3	75	99	Dominated		
FIT 55-85, 2	151*	102*	86		
FIT 55-70, 1	Dominated	210*	Dominated		
FIT 50-80, 2	178*	110*	271*		
FIT 45-75, 2	Dominated	116*	Dominated		
FIT 50-85, 2	123*	115*	119		
FIT 45-80, 2	115*	103	Dominated		
FIT 55-75, 1	Dominated	186*	Dominated		
FIT 45-85, 2	104	113	210*		
FIT 55-80, 1	Dominated	Dominated	257*		
FIT 50-75, 1	Dominated	1296*	Dominated		
FIT 55-85, 1	Dominated	Dominated	171		
FIT 45-70, 1	Dominated	934*	Dominated		
FIT 50-80, 1	531*	317*	344*		
FIT 45-75, 1	Dominated	249*	Dominated		
FIT 50-85, 1	339*	282*	174		
sDNA-FIT 45-80, 3	Dominated	369*	Dominated		
FIT 45-80, 1	241*	217*	308*		
sDNA-FIT 45-85, 3	Dominated	317*	Dominated		
FIT 45-85, 1	223	216	294		
sDNA-FIT 50-85, 2	Dominated	Dominated	466*		
sDNA-FIT 45-75, 2	Dominated	335*	Dominated		
sDNA-FIT 45-80, 2	390*	305*	Dominated		
sDNA-FIT 45-85, 2	2427*	1019*	1049*		

Appendix Table 11.10. Efficient and Near-Efficient Sigmoidoscopy Strategies With Colorectal Cancer Deaths Averted as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

sDNA-FIT 50-80, 1	Dominated	Dominated	2068*
sDNA-FIT 50-85, 1	Dominated	Dominated	3337*
sDNA-FIT 45-75, 1	Dominated	1276*	Dominated
sDNA-FIT 45-80, 1	1384*	851*	2699*
sDNA-FIT 45-85, 1	1066	783	1295

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; CRC - colorectal cancer; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and averting the fewest colorectal cancer deaths).

	Efficiency ra	tio (Δ COL / Δ CRC de	aths averted)
Strategy	SimCRC	CRC-SPIN	MISCAN
SIG 55-70, 10			
SIG 55-75, 10	77*	103	89
SIG 50-70, 10	70	122	419*
SIG 45-70, 10	89*	301*	Dominated
SIG 55-85, 10	93*	226*	184*
SIG 55-70, 5	313*	460*	207*
SIG 50-80, 10	110*	154*	151*
SIG 55-75, 5	146*	448*	149*
SIG 45-75, 10	106	125	245*
SIG 50-70, 5	1415*	220*	221*
SIG 45-85, 10	185*	252	229*
SIG 55-80, 5	151*	Dominated	148
SIG 55-85, 5	Dominated	Dominated	301*
SIG 50-75, 5	153*	194*	350*
SIG 45-70, 5	171*	2946*	Dominated
SIG 50-80, 5	156*	726*	235
SIG 50-85, 5	170*	1530*	294
SIG 45-75, 5	144	323*	395*
SIG 45-80, 5	171	294	500*
SIG 45-85, 5	297	396	440

Appendix Table 11.10. Efficient and Near-Efficient Sigmoidoscopy Strategies With Colorectal Cancer Deaths Averted as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

Note: Strategies that were dominated in all 3 models are not shown.

COL – colonoscopy; CRC – colorectal cancer; SIG – sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and averting the fewest colorectal cancer deaths).

	Efficiency rati	o (Δ COL / Δ CRC de	eaths averted)	
Strategy	SimCRC	CRC-SPIN	MISCAN	
SIG+FIT 55-70, 10_2				
SIG+FIT 55-70, 10_1	Dominated	189*	162*	
SIG+FIT 55-75, 10_2	91	135	89*	
SIG+FIT 50-70, 10_2	101*	159*	Dominated	
SIG+FIT 55-80, 10_2	112*	158*	88	
SIG+FIT 50-75, 10_2	94	148	1234*	
SIG+FIT 45-70, 10_2	Dominated	337*	Dominated	
SIG+FIT 55-85, 10_2	161*	207*	162	
SIG+FIT 55-75, 10_1	Dominated	279*	438*	
SIG+FIT 50-70, 10_1	Dominated	458*	Dominated	
SIG+FIT 50-80, 10_2	131	179*	195*	
SIG+FIT 55-80, 10_1	Dominated	156027*	405*	
SIG+FIT 50-85, 10_2	179*	186*	183	
SIG+FIT 45-75, 10_2	170*	169*	475*	
SIG+FIT 55-85, 10_1	Dominated	Dominated	258*	
SIG+FIT 50-75, 10_1	Dominated	271*	634*	
SIG+FIT 45-80, 10_2	147	168	342*	
SIG+FIT 45-70, 10_1	Dominated	286*	Dominated	
SIG+FIT 50-80, 10_1	Dominated	262*	369*	
SIG+FIT 45-85, 10_2	211	290	476*	
SIG+FIT 50-85, 10_1	336*	275*	312	
SIG+FIT 45-75, 10_1	950*	1456*	1256*	
SIG+FIT 45-80, 10_1	658*	504*	3232*	
SIG+FIT 45-85, 10_1	488	455	522	

Appendix Table 11.11. Efficient and Near-Efficient 10-Yearly Sigmoidoscopy Plus Interval FIT Strategies With Colorectal Cancer Deaths Averted as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; CRC - colorectal cancer; SIG - sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and averting the fewest colorectal cancer deaths).

Appendix Table 11.12. Efficient and Near-Efficient Computed Tomographic Colonography Strategies With Colorectal Cancer Deaths Averted as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

	Efficiency ra	tio (Δ COL / Δ CRC de	aths averted)
Strategy	SimCRC	CRC-SPIN	MISCAN
CTC 55-70, 10			
CTC 55-75, 10	74*	90	45
CTC 50-70, 10	64	209*	Dominated
CTC 45-70, 10	Dominated	113*	Dominated
CTC 55-70, 5	Dominated	240*	587*
CTC 55-85, 10	Dominated	188*	77
CTC 50-80, 10	107*	127*	78*
CTC 55-75, 5	Dominated	161*	83*
CTC 45-75, 10	105	114	Dominated
CTC 50-70, 5	151*	156*	Dominated
CTC 55-80, 5	Dominated	167*	78
CTC 45-85, 10	186*	182	Dominated
CTC 55-85, 5	Dominated	178*	116
CTC 50-75, 5	207*	549*	Dominated
CTC 45-70, 5	276*	483*	Dominated
CTC 50-80, 5	193*	266*	212*
CTC 50-85, 5	207*	267*	171
CTC 45-75, 5	169*	210*	Dominated
CTC 45-80, 5	169	202	1355*
CTC 45-85, 5	324	281	325

Note: Strategies that were dominated in all 3 models are not shown.

COL – colonoscopy; CRC – colorectal cancer; CTC – computed tomographic colonography; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and averting the fewest colorectal cancer deaths).

Appendix Table 11.13. Efficient and Near-Efficient Once-Only Colonoscopy Followed by Annual FIT Strategies With Colorectal Cancer Deaths Averted as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

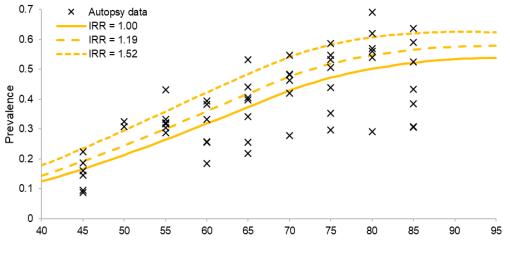
Strategy	Efficiency ratio (Δ COL / Δ CRC deaths averted)			
	SimCRC	CRC-SPIN	MISCAN	
COL at 50; FIT 60-70, 1				
COL at 50; FIT 60-75, 1	81	130	56	
COL at 45; FIT 55-70, 1	Dominated	1678*	Dominated	
COL at 50; FIT 60-80, 1	103	168	63	
COL at 50; FIT 60-85, 1	165	215*	79	
COL at 45; FIT 55-75, 1	5049*	273*	Dominated	
COL at 45; FIT 55-80, 1	191*	208	327*	
COL at 45; FIT 55-85, 1	180	235	305	

Note: Strategies that were dominated in all 3 models are not shown.

COL – colonoscopy; CRC – colorectal cancer; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and averting the fewest colorectal cancer deaths).

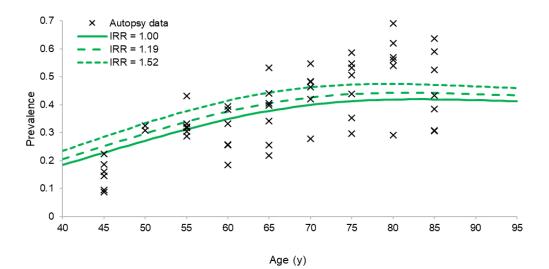
Appendix Table 11.14. Efficient and Near-Efficient Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy With Colorectal Cancer Deaths Averted as the Measure of the Benefit of Screening, by Model (IRR = 1.19)

	Efficiency ratio (Δ COL / Δ CRC deaths averted)			
Strategy	SimCRC	CRC-SPIN	MISCAN	
FIT 50-54, 1; COL 55-75, 10				
FIT 50-54, 1; COL 55-85, 10	1161*	Dominated	779	
FIT 45-49, 1; COL 50-70, 10	358	306	N/A*	
FIT 45-49, 1; COL 50-80, 10	562	981	799	

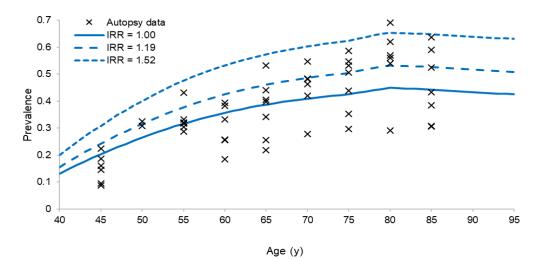

Note: Strategies that were dominated in all 3 models are not shown.

COL - colonoscopy; CRC - colorectal cancer; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; N/A - not applicable; the efficiency ratio cannot be calculated because there is no efficient strategy with fewer colorectal cancer deaths averted; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and averting the fewest colorectal cancer deaths).

Appendix Figure 12.1 Prevalence of Adenomas by Age From Autospy Studies and as Predicted by SimCRC, by Risk Scenario

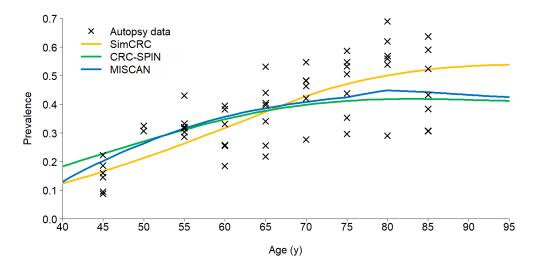

Models were calibrated to 3 scenarios for colorectal cancer risk: IRR of 1.19 (base-case analysis), IRR of 1 (sensitivity analysis using original models calibrated to SEER data from 1975-1979), and IRR 1.52 (sensitivity analysis with higher increase in population risk). Increased colorectal cancer risk was simulated via increased risk of adenoma onset.

Adenoma prevalence for these scenarios is shown in **Appendix Figure 12.1** for SimCRC, **Appendix Figure 12.2** for CRC-SPIN, and **Appendix Figure 12.3** for MISCAN.

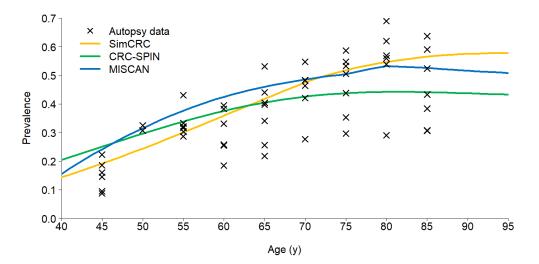


Age (y)

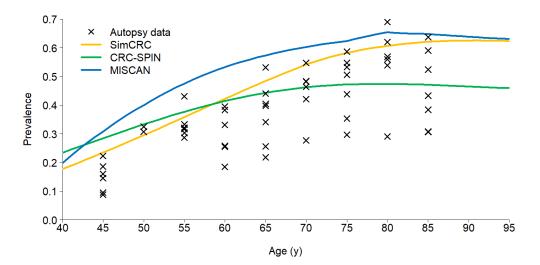
Appendix Figure 12.2 Prevalence of Adenomas by Age From Autospy Studies and as Predicted by CRC-SPIN, by Risk Scenario



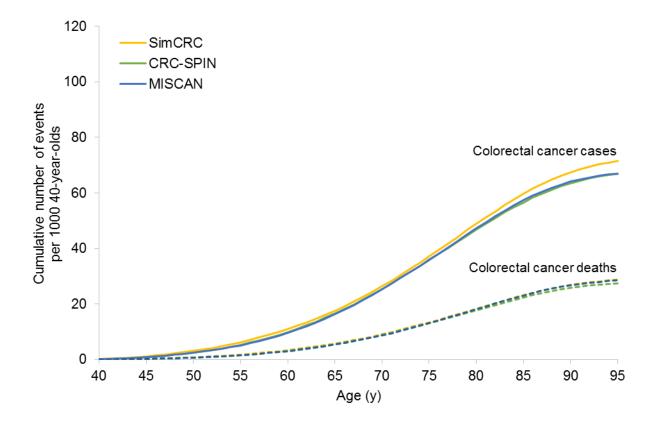
Appendix Figure 12.3 Prevalence of Adenomas by Age From Autospy Studies and as Predicted by MISCAN, by Risk Scenario



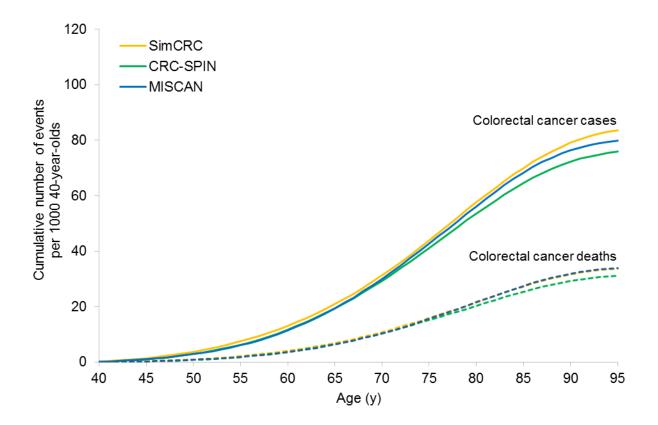
Appendix Figure 12.4 Prevalence of Adenomas by Age From Autospy Studies and as Predicted by Models Calibrated to an IRR of 1, by Model


We also compare prevalence across models for a given risk scenario. For the original models (IRR of 1), the comparison is in **Figure 2** but is repeated here for convenience (**Appendix Figure 12.4**); comparisons across models for IRR of 1.19 and 1.52 are in **Appendix Figures 12.5 and 12.6** below.

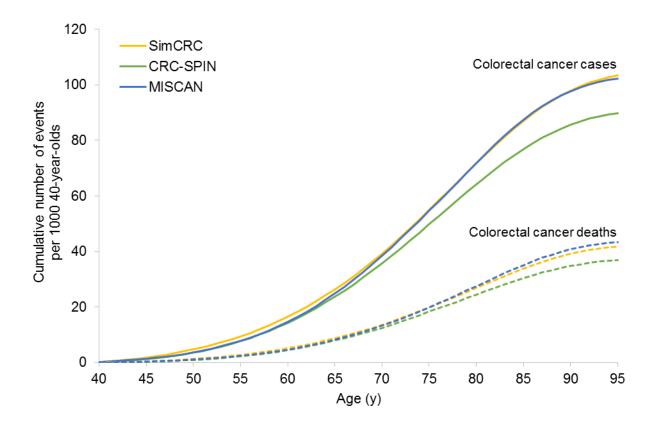
Appendix Figure 12.5 Prevalence of Adenomas by Age From Autospy Studies and as Predicted by Models Calibrated to an IRR of 1.19, by Model



Appendix Figure 12.6 Prevalence of Adenomas by Age From Autospy Studies and as Predicted by Models Calibrated to an IRR of 1.52, by Model



Appendix Figure 12.7 Cumulative Number of Colorectal Cancer Cases and of Colorectal Cancer Deaths per 1000 Persons From Age 40 to Age 95 in the Absence of Screening, by Model Assuming IRR = 1


Finally, we also show how the cumulative probability of being diagnosed with colorectal cancer and of dying from colorectal cancer from age 40 to age 95 in the absence of screening compares across models by risk scenario. For the original models (IRR of 1), the comparison is in **Figure 11** but is repeated here for convenience (**Appendix Figure 12.7**); comparisons across models for IRR of 1.19 and 1.52 are in **Appendix Figures 12.8 and 12.9** below.

Appendix Figure 12.8 Cumulative Number of Colorectal Cancer Cases and of Colorectal Cancer Deaths per 1000 Persons From Age 40 to Age 95 in the Absence of Screening, by Model Assuming IRR = 1.19

Appendix Figure 12.9 Cumulative Number of Colorectal Cancer Cases and of Colorectal Cancer Deaths per 1000 Persons From Age 40 to Age 95 in the Absence of Screening, by Model Assuming IRR = 1.52

Appendix Table 12.1a. Efficient and Near-Efficient Colonoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for SimCRC

Appendix Tables 12.1-12.7 show efficient and near efficient strategies screening strategies with LYG as the measure of the benefit of screening, by IRR for each class of screening modality and model.

Strategy	Effic	Efficiency ratio (Δ COL / Δ LYG)				
	IRR = 1.0	IRR = 1.19	IRR = 1.52			
COL 55-70, 15						
COL 50-70, 15	7*	6*	5*			
COL 45-70, 15	6	6	5			
COL 45-75, 15	44*	39*	33*			
COL 45-70, 10	39	34	29			
COL 45-75, 10	73	64	54			
COL 45-85, 10	427*	394*	337*			
COL 45-70, 5	213*	180*	140			
COL 45-75, 5	208	178	141			
COL 45-80, 5	496	428	376			
COL 45-85, 5	1614	1445	1181			

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Effic	Efficiency ratio (Δ COL / Δ LYG)				
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52			
COL 55-70, 15			-			
COL 55-70, 10	17*	17*	15*			
COL 50-70, 15	9*	8*	7*			
COL 45-70, 15	8	7	7			
COL 45-75, 15	68*	59*	54*			
COL 45-70, 10	50	44	40			
COL 45-75, 10	120	112	103			
COL 45-85, 10	588*	828*	646*			
COL 45-70, 5	211	179	147			
COL 45-75, 5	367	344	306			
COL 45-80, 5	860	736	768			
COL 45-85, 5	2637	2190	2558			

Appendix Table 12.1b. Efficient and Near-Efficient Colonoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for CRC-SPIN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Strategy	Efficiency ratio (Δ COL / Δ LYG)			
	IRR = 1.0	IRR = 1.19	IRR = 1.52	
COL 55-70, 15				
COL 55-70, 10	28*	22*	17*	
COL 50-70, 15	19	18	15	
COL 45-70, 15	126*	85*	77*	
COL 50-80, 15	73*	56*	40*	
COL 50-70, 10	35	28	20	
COL 45-75, 15	48*	38*	30*	
COL 45-70, 10	58	45	34	
COL 50-80, 10	113*	86*	61*	
COL 45-75, 10	65	52	36	
COL 45-85, 10	314*	227*	160*	
COL 50-70, 5	142*	120*	89*	
COL 50-75, 5	373*	367*	Dominated	
COL 45-70, 5	106	84	61	
COL 45-75, 5	155	116	79	
COL 45-80, 5	234	169	119	
COL 45-85, 5	1245	926	585	

Appendix Table 12.1c. Efficient and Near-Efficient Colonoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for MISCAN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Efficiency ratio (Δ COL / Δ LYG)		
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52
FIT 55-70, 3			
FIT 50-70, 3	3	2	2
FIT 45-70, 3	4	3	3
FIT 50-75, 3	5*	Dominated	Dominated
FIT 45-75, 3	6	5	5
FIT 45-80, 3	8	7*	7*
FIT 45-70, 2	15*	8*	7*
FIT 45-85, 3	14*	10*	9*
FIT 45-75, 2	8	7	6
FIT 45-80, 2	11	10	9
FIT 45-85, 2	20*	19*	18*
FIT 45-70, 1	25*	21*	18*
FIT 45-75, 1	18	16	14
FIT 45-80, 1	20	19	17
FIT 45-85, 1	44	39	36
sDNA-FIT 45-75, 2	104*	91*	64*
sDNA-FIT 45-80, 2	199*	176*	285*
sDNA-FIT 45-85, 2	190*	175*	106*
sDNA-FIT 45-70, 1	134*	116*	Dominated
sDNA-FIT 45-75, 1	117*	103*	75*
sDNA-FIT 45-80, 1	91	81	63
sDNA-FIT 45-85, 1	108	95	87

Appendix Table 12.2a. Efficient and Near-Efficient FIT and sDNA-FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for SimCRC

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Strategy	Efficiency ratio (Δ COL / Δ LYG)		
	IRR = 1.0	IRR = 1.19	IRR = 1.52
FIT 55-70, 3			
FIT 55-75, 3	7*	Dominated	Dominated
FIT 50-70, 3	4	4	4
FIT 55-70, 2	5*	Dominated	Dominated
FIT 50-75, 3	8*	Dominated	Dominated
FIT 45-70, 3	5	5	4
FIT 50-70, 2	16*	Dominated	Dominated
FIT 45-75, 3	8*	7*	7*
FIT 45-80, 3	9*	8*	8*
FIT 45-70, 2	7	7	6
FIT 45-75, 2	10	9	9
FIT 45-80, 2	16*	12	13*
FIT 45-85, 2	20*	25*	15*
FIT 45-70, 1	15	14	12
FIT 45-75, 1	17	16	15
sDNA-FIT 45-70, 2	69*	52*	53*
FIT 45-80, 1	30	27	24
FIT 45-85, 1	54	43	52*
sDNA-FIT 45-75, 2	83*	135*	253*
sDNA-FIT 45-80, 2	151*	75*	69*
sDNA-FIT 45-85, 2	107*	69*	67*
sDNA-FIT 45-70, 1	87*	62*	51*
sDNA-FIT 45-75, 1	64	53	44
sDNA-FIT 45-80, 1	69	62	60
sDNA-FIT 45-85, 1	131	111	101

Appendix Table 12.2b. Efficient and Near-Efficient FIT and sDNA-FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for CRC-SPIN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Efficiency ratio (Δ COL / Δ LYG)			
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52	
FIT 55-70, 3				
FIT 55-75, 3	5	5	4	
FIT 50-70, 3	42*	6*	5*	
FIT 55-70, 2	13*	13*	Dominated	
FIT 55-80, 3	6*	6*	5*	
FIT 50-75, 3	5	5	4	
FIT 45-70, 3	7*	6*	5*	
FIT 55-85, 3	8*	7*	Dominated	
FIT 50-80, 3	7	6	5*	
FIT 55-75, 2	16*	14*	Dominated	
FIT 50-85, 3	11*	10*	6*	
FIT 45-75, 3	7*	7*	5	
FIT 50-70, 2	211*	94*	7*	
FIT 55-80, 2	40*	Dominated	Dominated	
FIT 45-80, 3	7	6	5	
FIT 50-75, 2	11*	10*	10*	
FIT 45-85, 3	10*	9*	8*	
FIT 45-70, 2	14*	Dominated	Dominated	
FIT 50-80, 2	9*	8	7*	
FIT 50-85, 2	10*	12*	8*	
FIT 45-75, 2	9*	9*	7*	
FIT 45-80, 2	9	8	7	
FIT 45-85, 2	14	12	10	
FIT 50-75, 1	33*	29*	Dominated	
FIT 45-70, 1	38*	Dominated	Dominated	
FIT 50-80, 1	20*	18*	16*	
FIT 50-85, 1	21*	18*	16*	
FIT 45-75, 1	16*	15*	13*	
FIT 45-80, 1	15	14	12	
FIT 45-85, 1	23	19	15	
sDNA-FIT 45-80, 2	31*	26*	Dominated	
sDNA-FIT 45-85, 2	2580*	375*	350*	
sDNA-FIT 45-75, 1	460*	251*	191*	
sDNA-FIT 45-80, 1	141*	104*	85*	
sDNA-FIT 45-85, 1	125	94	76	

Appendix Table 12.2c. Efficient and near-efficient FIT and sDNA-FIT screening strategies with lifeyears gained as the measure of the benefit of screening, by IRR for MISCAN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; sDNA-FIT - multi-target stool DNA test (stool DNA test with a fecal immunochemical test); -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Strategy	Efficiency ratio (Δ COL / Δ LYG)		
	IRR = 1.0	IRR = 1.19	IRR = 1.52
SIG 55-70, 10			
SIG 45-70, 10	5	4	4
SIG 45-75, 10	15*	13*	12*
SIG 45-85, 10	19*	Dominated	Dominated
SIG 45-70, 5	12	11	10
SIG 45-75, 5	22	20	17
SIG 45-80, 5	41	38	34
SIG 45-85, 5	98	89	78

Appendix Table 12.3a. Efficient and Near-Efficient Sigmoidoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for SimCRC

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; SIG – sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Strategy	Efficiency ratio (Δ COL / Δ LYG)		
	IRR = 1.0	IRR = 1.19	IRR = 1.52
SIG 55-70, 10			
SIG 45-70, 10	6	5	5
SIG 45-75, 10	18	18	17*
SIG 45-85, 10	74*	68*	21*
SIG 45-70, 5	23	20	16
SIG 45-75, 5	29	27	24
SIG 45-80, 5	51	49	45
SIG 45-85, 5	113	98	77

Appendix Table 12.3b. Efficient and Near-Efficient Sigmoidoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for CRC-SPIN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; SIG - sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained). * Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Strategy	Efficiency ratio (Δ COL / Δ LYG)		
	IRR = 1.0	IRR = 1.19	IRR = 1.52
SIG 55-70, 10			
SIG 55-75, 10	16*	Dominated	Dominated
SIG 50-70, 10	9	8	7
SIG 55-70, 5	13*	11*	9*
SIG 45-70, 10	263*	73*	37*
SIG 50-80, 10	26*	22*	19*
SIG 55-75, 5	193*	Dominated	Dominated
SIG 45-75, 10	21*	18*	15*
SIG 50-70, 5	16	14	11
SIG 45-85, 10	25*	21*	Dominated
SIG 50-75, 5	23*	19*	16*
SIG 50-80, 5	27*	23*	19*
SIG 45-70, 5	17	15	12
SIG 50-85, 5	32*	26*	21*
SIG 45-75, 5	22	19	16
SIG 45-80, 5	36	29	24
SIG 45-85, 5	101	78	64

Appendix Table 12.3c. Efficient and Near-Efficient Sigmoidoscopy Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for MISCAN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; SIG – sigmoidoscopy; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Efficiency ratio (Δ COL / Δ LYG)		
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52
SIG+FIT 55-70, 10_2			
SIG+FIT 50-70, 10_2	6*	6*	5*
SIG+FIT 45-70, 10_2	6	5	5
SIG+FIT 45-75, 10_2	16	15	14
SIG+FIT 45-80, 10_2	24	22	20
SIG+FIT 45-70, 10_1	25*	22*	19*
SIG+FIT 45-85, 10_2	58*	54*	48*
SIG+FIT 45-75, 10_1	39*	34	27
SIG+FIT 45-80, 10_1	39	35	32
SIG+FIT 45-85, 10_1	87	81	70

Appendix Table 12.4a. Efficient and Near-Efficient 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for SimCRC

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; SIG - sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Efficiency ratio (Δ COL / Δ LYG)		
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52
SIG+FIT 55-70, 10_2			
SIG+FIT 50-70, 10_2	9*	8*	7*
SIG+FIT 45-70, 10_2	8	7	6
SIG+FIT 45-75, 10_2	22	22	19
SIG+FIT 45-80, 10_2	25	25	31*
SIG+FIT 45-70, 10_1	71*	88*	31*
SIG+FIT 45-85, 10_2	63*	78*	40*
SIG+FIT 45-75, 10_1	36	34	29
SIG+FIT 45-80, 10_1	47	53	42
SIG+FIT 45-85, 10_1	93	64	68

Appendix Table 12.4b. Efficient and Near-Efficient 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for CRC-SPIN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; SIG – sigmoidoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 12.4c. Efficient and Near-Efficient 10-Yearly Sigmoidoscopy Plus Interval FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for MISCAN

	Efficiency ratio (Δ COL / Δ LYG)		
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52
SIG+FIT 55-70, 10_2			
SIG+FIT 55-70, 10_1	17*	14*	11*
SIG+FIT 55-75, 10_2	15*	13*	Dominated
SIG+FIT 55-80, 10_2	15*	13*	Dominated
SIG+FIT 50-70, 10_2	10	9	7*
SIG+FIT 50-75, 10_2	11	9	7
SIG+FIT 45-70, 10_2	27*	24*	18*
SIG+FIT 50-70, 10_1	29*	24*	20*
SIG+FIT 50-80, 10_2	24*	20*	17*
SIG+FIT 50-85, 10_2	25*	21*	17*
SIG+FIT 50-75, 10_1	22*	18*	15*
SIG+FIT 45-75, 10_2	17*	15*	13*
SIG+FIT 45-80, 10_2	17	15	12
SIG+FIT 45-70, 10_1	22*	19*	14*
SIG+FIT 50-80, 10_1	24*	20*	16*
SIG+FIT 45-85, 10_2	45*	38*	31*
SIG+FIT 50-85, 10_1	26*	21*	17*
SIG+FIT 45-75, 10_1	26*	22*	16*
SIG+FIT 45-80, 10_1	25	21	16
SIG+FIT 45-85, 10_1	57	46	36

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; SIG - sigmoidoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 12.5a. Efficient and Near-Efficient Computed Tomographic Colonography Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for SimCRC

Strategy	Efficiency ratio (Δ COL / Δ LYG)		
	IRR = 1.0	IRR = 1.19	IRR = 1.52
CTC 55-70, 10			
CTC 45-70, 10	4	4	3
CTC 45-75, 10	14*	13*	12*
CTC 45-85, 10	18*	Dominated	Dominated
CTC 45-70, 5	12	11	10
CTC 45-75, 5	21	19	18
CTC 45-80, 5	42	38	35
CTC 45-85, 5	102	104	85

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; CTC – computed tomographic colonography; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 12.5b. Efficient and Near-Efficient Computed Tomographic Colonography Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for CRC-SPIN

Strategy	Efficiency ratio (Δ COL / Δ LYG)		
	IRR = 1.0	IRR = 1.19	IRR = 1.52
CTC 55-70, 10			
CTC 45-70, 10	5	5	4
CTC 45-75, 10	15*	15*	13*
CTC 45-85, 10	19*	19*	17*
CTC 45-70, 5	14	13	12
CTC 45-75, 5	22	21	19
CTC 45-80, 5	39	37	32
CTC 45-85, 5	79	73	63

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; CTC – computed tomographic colonography; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 12.5c. Efficient and Near-Efficient Computed Tomographic Colonography Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for MISCAN

Strategy	Efficiency ratio (Δ COL / Δ LYG)			
	IRR = 1.0	IRR = 1.19	IRR = 1.52	
CTC 55-70, 10				
CTC 55-75, 10	8*	Dominated	Dominated	
CTC 50-70, 10	6	5	5	
CTC 55-70, 5	9*	8*	7*	
CTC 50-80, 10	11*	10*	8*	
CTC 45-75, 10	14*	Dominated	Dominated	
CTC 55-75, 5	10*	9*	7*	
CTC 50-70, 5	9	8	6	
CTC 55-80, 5	11*	10*	Dominated	
CTC 50-75, 5	10	9	7	
CTC 45-70, 5	17*	21*	12*	
CTC 50-80, 5	16*	13*	11*	
CTC 50-85, 5	20*	17*	14*	
CTC 45-75, 5	12	11	8	
CTC 45-80, 5	16	13	11	
CTC 45-85, 5	37	32	25	

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; CTC - computed tomographic colonography; --

indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained). * Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Table 12.6a. Efficient and Near-Efficient Once-Only Colonoscopy Followed by Annual
FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by
IRR for SimCRC

	Efficiency ratio (Δ COL / Δ LYG)			
	IRR = 1.0	IRR = 1.19	IRR = 1.52	
COL at 50; FIT 60-70, 1				
COL at 50; FIT 60-75, 1	13*	Dominated	Dominated	
COL at 45; FIT 55-70, 1	7	6	5	
COL at 45; FIT 55-75, 1	13	12	11	
COL at 45; FIT 55-80, 1	21	19	18	
COL at 45; FIT 55-85, 1	43	41	36	

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

Appendix Table 12.6b. Efficient and Near-Efficient Once-Only Colonoscopy Followed by Annual
FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by
IRR for CRC-SPIN

	Efficiency ratio (Δ COL / Δ LYG)			
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52	
COL at 50; FIT 60-70, 1				
COL at 50; FIT 60-75, 1	20*	Dominated	Dominated	
COL at 45; FIT 55-70, 1	9	8	7	
COL at 45; FIT 55-75, 1	19	18	17	
COL at 45; FIT 55-80, 1	29	28	25	
COL at 45; FIT 55-85, 1	52	46	45	

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

	Efficiency ratio (Δ COL / Δ LYG)					
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52			
COL at 50; FIT 60-70, 1						
COL at 50; FIT 60-75, 1	8	7	6			
COL at 45; FIT 55-70, 1	15*	12*	Dominated			
COL at 50; FIT 60-80, 1	12	10	8			
COL at 50; FIT 60-85, 1	20*	16*	13*			
COL at 45; FIT 55-75, 1	16*	12*	11*			
COL at 45; FIT 55-80, 1	13	11	9			
COL at 45; FIT 55-85, 1	20	16	13			

Appendix Table 12.6c. Efficient and Near-Efficient Once-Only Colonoscopy Followed by Annual FIT Screening Strategies With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for MISCAN

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and \leq 3 days of life gained per person of the efficient frontier).

Appendix Table 12.7a. Efficient and Near-Efficient Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for SimCRC

	Efficiency ratio (Δ COL / Δ LYG)					
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52			
FIT 50-54, 1; COL 55-75, 10						
FIT 45-49, 1; COL 50-70, 10	10	8	7			
FIT 45-49, 1; COL 50-80, 10	142	123	107			

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Table 12.7b. Efficient and Near-Efficient Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for CRC-SPIN

	Efficiency ratio (Δ COL / Δ LYG)					
Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52			
FIT 50-54, 1; COL 55-75, 10						
FIT 45-49, 1; COL 50-70, 10	11	10	9			
FIT 45-49, 1; COL 50-80, 10	238	216	179			

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces. * Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Table 12.7c. Efficient and Near-Efficient Screening Strategies With 5 Years of Annual FIT Followed by 10-Yearly Colonoscopy With Life-Years Gained as the Measure of the Benefit of Screening, by IRR for MISCAN

	Efficiency ratio (Δ COL / Δ LYG)						
 Strategy	IRR = 1.0	IRR = 1.19	IRR = 1.52				
FIT 50-54, 1; COL 55-75, 10							
FIT 45-49, 1; COL 50-70, 10	26	23	20				
FIT 50-54, 1; COL 55-85, 10	Dominated	Dominated	137*				
FIT 45-49, 1; COL 50-80, 10	107	81	56				

Note: Strategies that were dominated in all 3 risk scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

	Efficiency ratio (Δ COL / Δ LYG), by values of COL sensitivity					
Strategy	Base-case analysis	Sensitivity analysis [†]				
COL 55-70, 15						
COL 50-70, 15	6*	6*				
COL 45-70, 15	6	6				
COL 45-75, 15	39*	38*				
COL 45-70, 10	34	32				
COL 45-75, 10	64	62				
COL 45-85, 10	394*	357*				
COL 45-70, 5	180*	141				
COL 45-75, 5	178	161				
COL 45-80, 5	428	398				
COL 45-85, 5	1445	1324				

Appendix Table 13.1a. Efficient and Near-Efficient Colonoscopy Screening Strategies, by Values for Colonoscopy Sensitivity for SimCRC

Note: Strategies that were dominated in both scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

	Efficiency ratio (Δ COL / Δ LYG), by values of COL sensitivity						
Strategy	Base-case analysis	Sensitivity analysis [†]					
COL 55-70, 15							
COL 55-70, 10	17*	16*					
COL 50-70, 15	8*	8*					
COL 45-70, 15	7	7					
COL 45-75, 15	59*	60*					
COL 45-70, 10	44	44					
COL 45-75, 10	112	108					
COL 45-85, 10	828*	813*					
COL 45-70, 5	179	161					
COL 45-75, 5	344	349					
COL 45-80, 5	736	663					
COL 45-85, 5	2190	3491					

Appendix Table 13.1b. Efficient and Near-Efficient Colonoscopy Screening Strategies, by Values for Colonoscopy Sensitivity for CRC-SPIN

Note: Strategies that were dominated in both scenarios are not shown.

COL - colonoscopy; LYG - life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤3 days of life gained per person of the efficient frontier).
† Refer to Table 7 for values used in the sensitivity analysis.

	Efficiency ratio (Δ COL / Δ LY	G), by values of COL sensitivity		
Strategy	Base-case analysis	Sensitivity analysis [†]		
COL 55-70, 15				
COL 55-70, 10	22*	21*		
COL 50-70, 15	18	19		
COL 45-70, 15	85*	169*		
COL 50-80, 15	56*	54*		
COL 50-70, 10	28	27		
COL 45-75, 15	38*	39*		
COL 45-70, 10	45	51*		
COL 50-80, 10	86*	83*		
COL 45-75, 10	52	50		
COL 45-85, 10	227*	216*		
COL 50-70, 5	120*	681*		
COL 50-75, 5	367*	205*		
COL 45-70, 5	84	79		
COL 45-75, 5	116	111		
COL 45-80, 5	169	166		
COL 45-85, 5	926	822		

Appendix Table 13.1c. Efficient and Near-Efficient Colonoscopy Screening Strategies, by Values for Colonoscopy Sensitivity for MISCAN

Note: Strategies that were dominated in both scenarios are not shown.

COL – colonoscopy; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

	Efficiency ratio (Δ COL / Δ LYG), by values of COL sensitivity						
Strategy	Base-case analysis	Sensitivity analysis ⁺					
FIT 55-70, 3							
FIT 50-70, 3	2	2					
FIT 45-70, 3	3	3					
FIT 45-75, 3	5	5					
FIT 45-80, 3	7*	7					
FIT 45-70, 2	8*	12*					
FIT 45-85, 3	10*	13*					
FIT 45-75, 2	7	7					
FIT 45-80, 2	10	10					
FIT 45-85, 2	19*	19*					
FIT 45-70, 1	21*	24*					
FIT 45-75, 1	16	17					
FIT 45-80, 1	19	18					
FIT 45-85, 1	39	38					

Appendix Table 13.2a. Efficient and Near-Efficient FIT Screening Strategies, by Values for Colonoscopy Sensitivity for SimCRC

Note: Strategies that were dominated in both scenarios are not shown.

COL - colonoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; LYG - life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Table 13.2b. Efficient and Near-Efficient FIT Screening Strategies, by Values for Colonoscopy Sensitivity for CRC-SPIN

	Efficiency ratio (Δ COL / Δ LYG), by values of COL sensitivity						
Strategy	Base-case analysis	Sensitivity analysis ⁺					
FIT 55-70, 3							
FIT 55-75, 3	Dominated	7*					
FIT 50-70, 3	4	4					
FIT 45-70, 3	5	5					
FIT 45-75, 3	7*	8*					
FIT 45-80, 3	8*	8*					
FIT 45-70, 2	7	7					
FIT 45-75, 2	9	10					
FIT 45-80, 2	12	13					
FIT 45-85, 2	25*	23*					
FIT 45-70, 1	14	14					
FIT 45-75, 1	16	16					
FIT 45-80, 1	27	25					
FIT 45-85, 1	43	45					

Note: Strategies that were dominated in both scenarios are not shown.

COL - colonoscopy; FIT - fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; LYG - life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

	Efficiency ratio (Δ COL / Δ LYG), by values of COL sensitivity						
Strategy	Base-case analysis	Sensitivity analysis ⁺					
FIT 55-70, 3							
FIT 55-75, 3	5	5					
FIT 50-70, 3	6*	6*					
FIT 55-70, 2	13*	14*					
FIT 55-80, 3	6*	6*					
FIT 50-75, 3	5	5					
FIT 45-70, 3	6*	6*					
FIT 55-85, 3	7*	7*					
FIT 50-80, 3	6	6					
FIT 55-75, 2	14*	14*					
FIT 45-75, 3	7*	7*					
FIT 50-85, 3	10*	10*					
FIT 50-70, 2	94*	9*					
FIT 45-80, 3	6	6					
FIT 50-75, 2	10*	10*					
FIT 45-85, 3	9*	9*					
FIT 50-80, 2	8	8					
FIT 50-85, 2	12*	12*					
FIT 45-75, 2	9*	10*					
FIT 45-80, 2	8	8					
FIT 45-85, 2	12	12					
FIT 50-75, 1	29*	32*					
FIT 50-80, 1	18*	18*					
FIT 50-85, 1	18*	18*					
FIT 45-75, 1	15*	15*					
FIT 45-80, 1	14	14					
FIT 45-85, 1	19	19					

Appendix Table 13.2c. Efficient and Near-Efficient FIT Screening Strategies, by Values for Colonoscopy Sensitivity for MISCAN

Note: Strategies that were dominated in both scenarios are not shown.

COL - colonoscopy; FIT – fecal immunochemical test with a cutoff for positivity of 20 µg of hemoglobin per g of feces; LYG – life-years gained compared with no screening; -- indicates the default strategy (i.e., the strategy requiring the fewest colonoscopies and providing the fewest life-years gained).

* Near efficient (i.e., dominated and ≤ 3 days of life gained per person of the efficient frontier).

Appendix Table 14.1. Summary of Differences Between Base-Case Analyses for the 2020 Decision Analysis for the USPSTF and for the 2018 Decision Analyses for the ACS^{27,28}

Characteristics	2020 USPSTF analysis	2018 ACS analysis I ²⁷	2018 ACS analysis II ²⁸
Simulation models	MISCAN, SimCRC and CRC-SPIN	MISCAN	MISCAN and SimCRC
Cohort of interest	ort of interest All 40-year-old adults at All 40- average risk of CRC avera		Race- and sex-specific 40-year-old adults at average risk of CRC
US life table (for other- cause mortality rates)	2017	2013	2013
CRC incidence	Models calibrated to incidence rate ratio from SEER for 20-44-year-olds in 2012- 2016 vs. 1975-1979 (IRR = 1.19)	Models calibrated to results from age-period-cohort modeling (IRR = 1.59)	 Models calibrated to race- and sex- specific incidence in SEER 1975-1979 (SimCRC) and SEER 1990-1994 (MISCAN) Race- and sex-specific results from age-period-cohort modeling
CRC localization	Models calibrated to localization in SEER 1975-1979	Models calibrated to localization in SEER 1975 birth cohort	 Models calibrated to same sources as CRC risk Models calibrated to localization in SEER 1975 birth cohort
Evaluated screening modalities	Single, hybrid and once-only test strategies	Single test strategies only	Single test strategies only
Age to begin screening (y)	45, 50, 55	40, 45, 50	45, 50, 55
Age to end screening (y)	70, 75, 80, 85	75, 80, 85	75, 80, 85
Selection of model- recommendable strategies (Yes/No)	No	Yes	Yes

The potential changes in outcomes with delayed screening initiation and with extended intervals (representing delays in repeat screening) are presented in **Tables 20 and 21**, relative to strategies with screening beginning at age 50. Appendix Tables 15.1 and 15.2 show the changes for the same strategies, but with screening beginning at age 45.

	Outcome	s and chang	ge in outcome	es per 1000 u	nscreened 40-y	year-olds fre	e from diagnos	sed colorect	al cancer	DLG
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	
Colonoscopy (COL) SimCRC										
COL 45-75, 10	0	0	0	4212	16	14	3	369	347	135
Delay start by 5y	0	0	0	-798	-2	+4	+2	-34	-33	-12
Delay start by 10y	0	0	0	-1060	0	+8	+3	-72	-71	-26
CRC-SPIN										
COL 45-75, 10	0	0	0	4300	17	12	4	340	321	124
Delay start by 5y	0	0	0	-800	-2	+3	+1	-32	-30	-12
Delay start by 10y	0	0	0	-1085	-1	+7	+3	-62	-60	-23
MISCAN										
COL 45-75, 10	0	0	0	4232	15	34	8	301	272	110
Delay start by 5y	0	0	0	-756	-2	+2	+1	-16	-15	-6
Delay start by 10y	0	0	0	-1051	0	+3	+1	-38	-37	-14
Sigmoidoscopy (SIG) SimCRC										
SIG 45-75, 5	0	4846	0	1720	10	25	8	309	289	113
Delay start by 5y	0	-788	0	-176	0	+3	+1	-30	-29	-11
Delay start by 10y	0	-1543	0	-362	0	+8	+3	-67	-65	-24
CRC-SPIN										
SIG 45-75, 5	0	4935	0	1680	12	24	9	280	264	102
Delay start by 5y	0	-801	0	-170	0	+2	+1	-24	-22	-9
Delay start by 10y	0	-1571	0	-355	-1	+6	+2	-51	-49	-19
MISCAN										
SIG 45-75, 5	0	4389	0	2119	12	39	11	269	241	98
Delay start by 5y	0	-743	0	-192	0	+1	0	-13	-12	-5

Benefits and Harms of Colorectal Cancer Screening

Delay start by 10y	0	-1429	0	-407	0	+3	+1	-35	-34	-13
Sigmoidoscopy with interva	l fecal immuno	chemical tes	ting (SIG+FIT)						
SimCRC										
SIG+FIT 45-75, 10_1	16648	2568	0	2102	11	18	4	363	338	133
Delay start by 5y	-3112	-469	0	-263	-1	+4	+1	-33	-32	-12
Delay start by 10y	-5997	-738	0	-453	0	+8	+3	-73	-71	-27
CRC-SPIN										
SIG+FIT 45-75, 10_1	16322	2525	0	2237	14	15	5	330	309	120
Delay start by 5y	-3018	-458	0	-265	0	+3	+1	-29	-27	-11
Delay start by 10y	-5846	-716	0	-496	-1	+7	+3	-61	-59	-22
MISCAN										
SIG+FIT 45-75, 10_1	15466	2393	0	2331	13	37	9	304	272	111
Delay start by 5y	-3109	-493	0	-284	-1	+2	+1	-17	-17	-6
Delay start by 10y	-5841	-662	0	-461	0	+3	+1	-41	-39	-15
Computed tomographic cold	onography (CT(C)								
SimCRC	0 1 7 (,								
CTC 45-75, 5	0	0	4804	1788	11	18	5	355	332	130
Delay start by 5y	0	0	-798	-164	0	+3	+1	-31	-30	-11
Delay start by 10y	0	0	-1559	-341	0	+8	+3	-72	-70	-26
CRC-SPIN										
CTC 45-75, 5	0	0	4893	1791	13	18	6	313	294	114
Delay start by 5y	0	0	-805	-165	0	+2	+1	-26	-24	-9
Delay start by 10y	0	0	-1573	-351	-1	+6	+2	-56	-54	-20
MISCAN										
CTC 45-75, 5	0	0	4881	1672	10	42	11	283	251	103
Delay start by 5y	0	0	-806	-153	0	+1	+0	-14	-14	-5
Delay start by 10y	0	0	-1572	-322	0	+3	+1	-38	-36	-14
Fecal immunochemical testi	ng (FIT)									
SimCRC										
FIT 45-75, 1	19680	0	0	1602	10	26	6	348	321	127

Benefits and Harms of Colorectal Cancer Screening

Delay start by 5y	-3520	0	0	-179	0	+4	+1	-33	-32	-12
Delay start by 10y	-6889	0	0	-370	0	+9	+3	-74	-72	-27
CRC-SPIN										
FIT 45-75, 1	18950	0	0	1824	13	20	6	314	293	115
Delay start by 5y	-3387	0	0	-205	0	+3	+1	-29	-28	-11
Delay start by 10y	-6608	0	0	-430	-1	+8	+3	-64	-62	-23
MISCAN										
FIT 45-75, 1	19607	0	0	1620	10	46	10	291	256	106
Delay start by 5y	-3510	0	0	-175	0	+1	+1	-17	-16	-6
Delay start by 10y	-6849	0	0	-367	0	+4	+2	-45	-43	-16
Multi-target stool DNA test	(sDNA-FIT), 1-ye	ear interval								
SimCRC										
sDNA-FIT 45-75, 1	13888	0	0	2462	12	19	4	363	337	133
Delay start by 5y	-2425	0	0	-305	0	+4	+1	-33	-32	-12
Delay start by 10y	-4717	0	0	-613	0	+9	+3	-74	-72	-27
CRC-SPIN										
sDNA-FIT 45-75, 1	13494	0	0	2617	14	15	5	331	309	121
Delay start by 5y	-2361	0	0	-322	0	+3	+1	-30	-28	-11
Delay start by 10y	-4583	0	0	-653	-1	+7	+3	-63	-61	-23
MISCAN										
sDNA-FIT 45-75, 1	13698	0	0	2515	12	38	9	306	272	112
Delay start by 5y	-2383	0	0	-305	0	+1	+1	-16	-15	-6
Delay start by 10y	-4608	0	0	-618	0	+4	+2	-43	-41	-16
Multi-target stool DNA test ((sDNA-FIT), 3-ye	ar interval								
SimCRC										
sDNA-FIT 45-75, 3	7274	0	0	1582	9	30	7	335	308	122
Delay start by 5y	-1201	0	0	-177	0	+4	+1	-31	-30	-11
Delay start by 10y	-2545	0	0	-395	-1	+9	+4	-74	-71	-27
CRC-SPIN										
sDNA-FIT 45-75, 3	7105	0	0	1772	12	23	7	301	281	110

Delay start by 5y	-1166	0	0	-196	0	+3	+1	-30	-28	-11
Delay start by 10y	-2471	0	0	-440	-1	+9	+3	-64	-62	-23
MISCAN										
sDNA-FIT 45-75, 3	7204	0	0	1629	10	49	12	273	239	100
Delay start by 5y	-1199	0	0	-179	0	+1	+1	-16	-15	-6
Delay start by 10y	-2520	0	0	-397	-1	+4	+2	-44	-41	-16

CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* These strategies were selected for illustration purposes. Inclusion in this table should not be interpreted as endorsement of these strategies.

† Includes deaths from complications of screening.

	Outcomes and change in outcomes per 1000 unscreened 40-year-olds free from diagnosed colorectal cancer										
Strategy by model	Stool tests	SIGs	CTCs	COLs	Compli- cations	CRC cases	CRC deaths [†]	LYG	QALYG	DLG	
Colonoscopy (COL)											
SimCRC											
COL 45-75, 10	0	0	0	4212	16	14	3	369	347	135	
Increase interval to 15y	0	0	0	-749	-1	+4	+1	-17	-16	-6	
Once-only	0	0	0	-2526	-10	+32	+13	-123	-114	-45	
CRC-SPIN											
COL 45-75, 10	0	0	0	4300	17	12	4	340	321	124	
Increase interval to 15y	0	0	0	-743	-1	+2	+1	-13	-12	-5	
Once-only	0	0	0	-2418	-8	+22	+9	-84	-79	-31	
MISCAN											
COL 45-75, 10	0	0	0	4232	15	34	8	301	272	110	
Increase interval to 15y	0	0	0	-699	-1	+3	+1	-20	-19	-7	
Once-only	0	0	0	-2372	-9	+24	+13	-134	-119	-49	
Sigmoidoscopy (SIG)											
SimCRC											
SIG 45-75, 5	0	4846	0	1720	10	25	8	309	289	113	
Increase interval to 10y	0	-1672	0	-360	-1	+7	+2	-31	-30	-11	
Once-only	0	-3858	0	-1220	-7	+39	+17	-171	-158	-62	
CRC-SPIN											
SIG 45-75, 5	0	4935	0	1680	12	24	9	280	264	102	
Increase interval to 10y	0	-1765	0	-269	0	+2	+1	-12	-12	-4	
Once-only	0	-3946	0	-1029	-6	+27	+12	-115	-107	-42	
MISCAN											
SIG 45-75, 5	0	4389	0	2119	12	39	11	269	241	98	
Increase interval to 10y	0	-1443	0	-318	0	+4	+2	-23	-22	-9	
Once-only	0	-3400	0	-1350	-7	+27	+15	-162	-144	-59	

Sigmoidoscopy with interval fecal immunochemical testing (SIG+FIT)

SimCRC

Benefits and Harms of Colorectal Cancer Screening

SIG+FIT 45-75, 10_1	16648	2568	0	2102	11	18	4	363	338	133
Increase FIT interval to 2y	-6712	+189	0	-267	-1	+3	+1	-9	-9	-3
CRC-SPIN										
SIG+FIT 45-75, 10_1	16322	2525	0	2237	14	15	5	330	309	120
Increase FIT interval to 2y	-6509	+192	0	-282	-1	+2	+1	-9	-8	-3
MISCAN										
SIG+FIT 45-75, 10_1	15466	2393	0	2331	13	37	9	304	272	111
Increase FIT interval to 2y	-6348	+200	0	-201	0	+2	+1	-10	-9	-4
Computed tomographic colono	graphy (CTC	;)								
SimCRC										
CTC 45-75, 5	0	0	4804	1788	11	18	5	355	332	130
Increase interval to 10y	0	0	-1664	-329	-1	+6	+2	-27	-27	-10
CRC-SPIN										
CTC 45-75, 5	0	0	4893	1791	13	18	6	313	294	114
Increase interval to 10y	0	0	-1714	-327	-1	+4	+2	-24	-22	-9
MISCAN										
CTC 45-75, 5	0	0	4881	1672	10	42	11	283	251	103
Increase interval to 10y	0	0	-1717	-356	-1	+8	+3	-48	-46	-18
Fecal immunochemical testing	(FIT)									
SimCRC										
FIT 45-75, 1	19680	0	0	1602	10	26	6	348	321	127
Increase interval to 2y	-7949	0	0	-455	-2	+11	+3	-31	-32	-11
Increase interval to 3y	-11205	0	0	-685	-3	+19	+5	-63	-63	-23
CRC-SPIN										
FIT 45-75, 1	18950	0	0	1824	13	20	6	314	293	115
Increase interval to 2y	-7530	0	0	-463	-2	+8	+3	-33	-32	-12
Increase interval to 3y	-10650	0	0	-714	-3	+15	+5	-66	-63	-24
MISCAN										
FIT 45-75, 1	19607	0	0	1620	10	46	10	291	256	106

Increase interval to 2y	-7935	0	0	-448	-2	+9	+3	-36	-36	-13
Increase interval to 3y	-11170	0	0	-672	-3	+14	+5	-66	-64	-24
Multi-target stool DNA test (sl	DNA-FIT)									
SimCRC										
sDNA-FIT 45-75, 1	13888	0	0	2462	12	19	4	363	337	133
Increase interval to 2y	-4345	0	0	-552	-1	+6	+1	-11	-12	-4
Increase interval to 3y	-6614	0	0	-880	-2	+11	+3	-28	-29	-10
CRC-SPIN										
sDNA-FIT 45-75, 1	13494	0	0	2617	14	15	5	331	309	121
Increase interval to 2y	-4196	0	0	-528	-1	+4	+1	-12	-12	-4
Increase interval to 3y	-6389	0	0	-845	-2	+8	+2	-30	-28	-11
MISCAN										
sDNA-FIT 45-75, 1	13698	0	0	2515	12	38	9	306	272	112
Increase interval to 2y	-4263	0	0	-561	-1	+5	+1	-14	-15	-5
Increase interval to 3y	-6494	0	0	-887	-2	+10	+3	-33	-34	-12

COL – colonoscopy; SIG – flexible sigmoidoscopy; CTC – computed tomographic colonography; CRC – colorectal cancer; LYG – life-years gained compared with no screening; QALYG – quality-adjusted life-years gained compared with no screening; DLG – days of life gained per person, compared with no screening.

* These strategies were selected for illustration purposes. Inclusion in this table should not be interpreted as endorsement of these strategies.

† Includes deaths from complications of screening.