Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents: An Evidence Review for the U.S. Preventive Services Task Force

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
5600 Fishers Lane
Rockville, MD 20857
www.ahrq.gov

Contract No. HHSA-290-2015-00007-I, Task Order No. 9

Prepared by:
RTI International–University of North Carolina at Chapel Hill Evidence-based Practice Center
Research Triangle Park, NC 27709

Investigators:
Daniel E. Jonas, MD, MPH
Emily Vander Schaff, MD, MPH
Sean Riley, MA, MSc
Bianca Allison, MD, MPH
Jennifer Cook Middleton, PhD
Claire Baker
Rania Ali, MPH
Christiane E. Voisin, MSLS
Erin LeBlanc, MD, MPH

AHRQ Publication No. 21-05288-EF-1
December 2021
This report is based on research conducted by the RTI International–University of North Carolina Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (HHSA-290-2015-00007-I, Task Order No. 9). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help healthcare decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of healthcare services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

The final report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report.

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Justin Mills, MD, MPH, AHRQ Medical Officer; Tracy Wolff, MD, MPH, Scientific Director, USPSTF Division, AHRQ; current and former members of the U.S. Preventive Services Task Force; Sharon Barrell, MA, editor; Loraine Monroe, publications specialist; and Carol Woodell, BSPH, EPC Program Manager.
Structured Abstract

Purpose: To review the evidence on benefits and harms of (1) screening children and adolescents for prediabetes and type 2 diabetes and (2) interventions for prediabetes or type 2 diabetes that was screen detected or recently diagnosed for populations and settings relevant to primary care in the United States.

Data Sources: PubMed/MEDLINE, the Cochrane Library, and trial registries through May 3, 2021; reference lists of retrieved articles; outside experts; and reviewers, with surveillance of the literature through October 31, 2021.

Study Selection: English-language controlled studies evaluating screening for prediabetes or type 2 diabetes or evaluating interventions for prediabetes or type 2 diabetes that was screen detected or recently diagnosed.

Data Extraction: One investigator extracted data and a second checked accuracy. Two reviewers independently rated quality for all included studies using predefined criteria.

Data Synthesis: This review included eight publications (856 participants). Of those, six were from the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. No eligible studies directly evaluated the benefits or harms of screening. One included randomized, controlled trial (RCT) (TODAY, n=699 adolescents who were obese) reported that two youths with recently diagnosed type 2 diabetes developed renal impairment (0 vs. 1 vs. 1, p=1.00) and 11 developed diabetic ketoacidosis (5 vs. 3 vs. 3, p=0.70), finding no significant difference between metformin, metformin plus rosiglitazone, and metformin plus lifestyle, respectively. One trial of 75 adolescents who were obese with prediabetes compared an intensive lifestyle intervention versus standard care and reported that no participants in either group developed diabetes, although followup was only 6 months. Regarding harms of interventions, two RCTs assessing different comparisons enrolled youths with recently diagnosed diabetes. Major hypoglycemic events were reported by less than 1 percent of participants. Minor hypoglycemic events were more common among youths treated with metformin plus rosiglitazone than among those treated with metformin or metformin plus lifestyle. In one study, gastrointestinal adverse events were more commonly reported by those taking metformin than by those taking placebo.

Limitations: The included trials generally focused on intermediate outcomes rather than health outcomes of interest. Duration of followup was too short to assess health outcomes in most studies. Evidence was limited by imprecision, unknown consistency (single study for most key questions), and risk of bias (with a single good-quality study).

Conclusions: No eligible studies directly evaluated the benefits or harms of screening for prediabetes and type 2 diabetes in children and adolescents. For youths with prediabetes or recently diagnosed (not screen-detected) diabetes, the only eligible trials reported few health outcomes and found no difference between groups, although evidence was limited by substantial imprecision and a duration of followup likely insufficient to assess health outcomes. Limited data showed that the combination of rosiglitazone plus metformin was associated with hypoglycemic events (compared with metformin alone or metformin plus lifestyle) and that
metformin was associated with gastrointestinal adverse events, consistent with studies conducted in adults.
Table of Contents

Chapter 1. Introduction .. 1
 Scope and Purpose .. 1
 Condition Definition ... 1
 Etiology and Natural History ... 1
 Risk Factors .. 2
 Prevalence and Burden ... 3
 Rationale for Screening and Screening Strategies .. 4
 Treatment Approaches ... 5
 Clinical Practice in the United States and Recommendations of Other Organizations 6

Chapter 2. Methods .. 7
 Key Questions and Analytic Framework ... 7
 Data Sources and Searches .. 7
 Study Selection .. 8
 Quality Assessment and Data Abstraction ... 8
 Data Synthesis and Analysis .. 8
 Expert Review and Public Comment .. 9
 USPSTF Involvement .. 9

Chapter 3. Results ... 10
 Literature Search .. 10
 Results by Key Question .. 10
 KQ 1. Is There Direct Evidence That Screening for Type 2 Diabetes and Prediabetes in Asymptomatic Children and Adolescents Improves Health Outcomes? .. 10
 KQ 2. What Are the Harms of Screening for Type 2 Diabetes and Prediabetes in Asymptomatic Children and Adolescents? ... 10
 KQ 3a. Do Interventions for Screen-Detected Type 2 Diabetes and Prediabetes Provide an Incremental Benefit in Health Outcomes When Delivered at the Time of Detection Compared With Initiating Interventions Later, After Clinical Diagnosis? .. 10
 KQ 3b. Do Interventions for Screen-Detected Type 2 Diabetes and Prediabetes Improve Health Outcomes Compared With No Intervention, Usual Care, or Interventions With Different Treatment Targets? .. 10
 KQ 3c. Do Interventions for Recently Diagnosed Type 2 Diabetes Improve Health Outcomes Compared With No Intervention, Usual Care, or Interventions With Different Treatment Targets? .. 10
 KQ 4. What Are the Harms of Interventions for Prediabetes, Screen-Detected Type 2 Diabetes, or Recently Diagnosed Type 2 Diabetes? ... 10
 KQ 5. Do Interventions for Prediabetes Delay or Prevent Progression to Type 2 Diabetes? 13
 KQ 6. After Interventions for Prediabetes Are Provided, What Is the Magnitude of Change in Health Outcomes That Results From the Reduction in Type 2 Diabetes Incidence? 14

Chapter 4. Discussion .. 15
 Summary of Evidence .. 15
 Evidence for Benefit and Harms of Screening .. 15
 Benefits of Interventions for Screen-Detected or Recently Diagnosed Diabetes .. 15
 Benefits of Interventions for Prediabetes .. 15
 Harms of Interventions for Prediabetes or Type 2 Diabetes ... 16
Limitations ... 16
Future Research Needs .. 16
Conclusion .. 17
References .. 18

Figures
Figure 1. Analytic Framework
Figure 2. Summary of Evidence Search and Selection

Tables
Table 1. Classification of Diabetes (Adapted From ADA Guidelines)
Table 2. Criteria for the Diagnosis of Type 2 Diabetes and Prediabetes (Adapted From ADA Guidelines)
Table 3. Characteristics of Included Randomized Trials of Children and Adolescents With Prediabetes or Type 2 Diabetes (KQs 3, 4, and 5)
Table 4. Results of Trials of Children and Adolescents With Prediabetes or Type 2 Diabetes Reporting Health Outcomes (KQ 3) or Progression From Prediabetes to Type 2 Diabetes (KQ 5)
Table 5. Results of Included Trials of Children and Adolescents With Type 2 Diabetes Reporting Harms/Adverse Events Due to Treatment (KQ 4)
Table 6. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents

List of Appendices
Appendix A. Additional Background and Contextual Questions
Appendix B. Additional Methods Information
Appendix C. Excluded Articles
Appendix D. Quality Assessments
Chapter 1. Introduction

Scope and Purpose

This evidence review will be used by the United States Preventive Services Task Force (USPSTF) to make a recommendation on screening asymptomatic children and adolescents for prediabetes and type 2 diabetes. The USPSTF does not have a previous recommendation on this topic for children and adolescents. The USPSTF recommends screening for prediabetes and type 2 diabetes in adults ages 35 to 70 years who are overweight or who have obesity (B recommendation). The USPSTF states that clinicians should offer or refer patients with prediabetes to effective preventive interventions. The USPSTF has I statements for screening for high blood pressure in children and adolescents and for screening for lipid disorders in children and adolescents. The USPSTF recommends that clinicians screen for obesity in children and adolescents age 6 years or older and offer or refer them to comprehensive, intensive behavioral interventions to promote improvements in weight status (B recommendation).

Condition Definition

Diabetes mellitus (DM) refers to a range of metabolic disorders characterized by hyperglycemia. Table 1 shows general categories and definitions of DM used by the American Diabetes Association (ADA). The ADA guidelines emphasize that type 1 and type 2 diabetes are heterogeneous diseases in which clinical presentation and disease progression may vary considerably. Both type 1 and type 2 diabetes may present in children or adults. The focus of this review is on screening for asymptomatic type 2 diabetes, which is characterized by insulin resistance and relative insulin deficiency.

Definitions of prediabetes and diabetes in children and adolescents are the same as in adults. Three tests can be used to identify prediabetes and type 2 diabetes: hemoglobin A1c, fasting plasma glucose, or an oral glucose tolerance test (OGTT) (Table 2). Prediabetes is the term used for individuals whose blood glucose levels are considered higher than normal but do not meet criteria for diabetes. Individuals diagnosed with prediabetes include those who meet criteria for impaired fasting glucose (IFG), meet criteria for impaired glucose tolerance (IGT), and have a glycated hemoglobin (A1c) from 5.7 to 6.4 percent.

Etiology and Natural History

Type 2 diabetes in youth is characterized by insulin resistance combined with relative insulin deficiency. At diagnosis or in the following years, some youth have lost approximately 80 percent of their pancreatic beta cell function, resulting in an inability to compensate for increased insulin resistance. This pancreatic dysfunction does not appear to be mediated by antibodies against the pancreatic islet cells (as occurs in type 1 diabetes). Although the progression through obesity, insulin resistance, glucose intolerance, and type 2 diabetes is not fully understood in youth, the timing of this progression appears to be shorter and less predictable compared with adults.
The major acute complications of type 2 diabetes in youth are diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS), which can both result in death if left untreated. Rates of DKA have been decreasing over time with the most recent estimates from 2008 to 2014 indicating that 6 percent to 11 percent of youths with type 2 diabetes had DKA at presentation. Higher prevalence of DKA has been associated with younger age at diagnosis, minority race/ethnicity, male gender, and lower family income and parental education. Although less frequent than DKA, the incidence of HHS in youth is increasing. A 2016 study found HHS in 2 percent of youth at diagnosis of diabetes. HHS also appears to be more frequent in non-Hispanic black youths and Hispanic youths than in non-Hispanic white youths.

Youth with type 2 diabetes have an increased prevalence of associated chronic comorbidities, including hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Development of type 2 diabetes during childhood or adolescence results in a longer duration of exposure to a dysfunctional metabolic milieu over the lifetime. This may result in an increased risk of chronic microvascular complications including retinopathy, nephropathy, and neuropathy compared with those who develop type 2 diabetes in adulthood. The impacts on macrovascular complications such as cardiovascular and renal disease and long-term mortality have not been well studied in youth. However, in a study of Pima Indian youth, those with onset of type 2 diabetes before 20 years of age had mortality rates at aged 20 to 54 years that were 2.1 times higher than among persons with diabetes onset at or after age 20 years and 3.1 times higher than nondiabetic persons.

Relatively few data are available to ascertain the natural history of prediabetes in youth. Placebo arms of randomized, controlled trials (RCTs) have found that anywhere from 22 percent to 52 percent of children and adolescents with prediabetes returned to normal glycemia or normal glucose tolerance without intervention over 6 months to 2 years (Contextual Question [CQ] 1 in Appendix A).

Risk Factors

Obesity and excess adipose tissue (especially when centrally distributed) are the most important risk factors for type 2 diabetes in youth. The SEARCH for Diabetes in Youth study (SEARCH) reported that between 2001 and 2004 nearly 80 percent of youth with type 2 diabetes were obese and that an additional 10 percent were overweight. Family history is a strong risk factor, with estimates that 50 to 75 percent of youth with type 2 diabetes have at least one parent with type 2 diabetes and nearly 90 percent may have a positive family history if grandparents are also included.

The vast majority of pediatric cases occur after age 10, with the peak age for presentation occurring at mid-puberty (approximately age 14 years). This timing is likely related to the physiologic, but transient, pubertal insulin resistance that can aggravate the preexisting metabolic challenges of obesity. Some studies indicate that adolescent girls are 1.3 to 1.7 times more likely than boys to be diagnosed with type 2 diabetes, although the reasons are not well understood. Research suggests that maternal obesity and gestational diabetes contribute to obesity and type 2 diabetes in youth. For example, in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) cohort, one third of youth with type 2 diabetes had...
been born after a pregnancy complicated by preexisting diabetes or gestational diabetes mellitus.17

A review summarizing differences in the frequencies of type 2 diabetes by race, ethnicity, socioeconomic position, area of residence, and environmental toxins noted that the causes of differences (e.g., between different racial and ethnic groups) are not well understood.28 Compared with the type 2 diabetes rate in non-Hispanic white youth, the rate in Native American, African American, and Hispanic youth has been shown to be 8, 5, and 4 times higher, respectively.26 The relative contributions of various factors to racial/ethnic differences are largely unknown.28 As with many other health disparities,29-31 structural factors that disproportionately affect nonwhite populations (e.g., toxic stress, structural and interpersonal racism, economic inequities) may contribute significantly to differences by race/ethnicity. Other potential contributing factors include metabolic characteristics, cultural/environmental influences, and quality of and access to healthcare.17

CQ 5 (Appendix A) summarizes risk assessment tools that are feasible for use in primary care settings, accurately predict the risk of prediabetes or type 2 diabetes for children and adolescents, and have been externally validated in U.S. populations. Briefly, two such tools were identified: one using an automated computer system based on ADA guidelines and one that adapted the Tool for Assessing Glucose ImpairmenT (TAG-IT) adult risk assessment tool for pediatrics.

Prevalence and Burden

The 2017–2018 National Health Interview Survey from the Centers for Disease Control and Prevention (CDC) estimated that 210,000 children and adolescents younger than age 20 years (or 2.5 per 1,000 U.S. youths) had been diagnosed with diabetes, of which approximately 23,000 had type 2 diabetes.32

Most prevalence and incidence data on type 2 diabetes in children come from a limited number of subjects from the SEARCH for Diabetes in Youth Study, a population-based study of children under age 20 years in several geographic regions (county-based from 4 states, insurance-based from 1 state, and from select Native American reservations from 2 additional states) that the CDC and National Institutes of Health have funded since 2000. It found that of 3.5 million children under age 20 years in 2009, 837 (or 0.24 per 1,000) had type 2 diabetes. Based on these data, an estimated 20,262 youth under age 20 years had type 2 diabetes in the United States at that time.33 This same dataset found that the prevalence of type 2 diabetes was highest in American Indian/American Native (0.63/1,000), black (0.56/1,000), and Hispanic (0.40/1,000) youth and lowest in Asian/Pacific Islander (0.19/1,000) and non-Hispanic white (0.09/1,000) youth.33 The generalizability of this demographics data is uncertain. It is limited by its small sample size (fewer than 900 people contributing to the data) and selection from particular geographic regions, insurance coverage, and/or specific reservations with low numbers in each.

Data indicate that the prevalence and incidence of type 2 diabetes are rising; in 2001, the overall prevalence of type 2 diabetes in children ages 10 to 19 years was 0.34 per 1,000 and in 2009 was 0.46 per 1,000.26 SEARCH found that 5,758 children and adolescents ages 10 to 19 years were diagnosed with type 2 diabetes from 2014 to 2015, and the overall incidence of type 2 diabetes in
10- to 19-year-olds has increased significantly from an incidence rate of 0.09 per 1,000 in 2002 to 0.14 per 1,000 in 2014 to 2015.34

Most of that increase in the incidence rate is in nonwhite and non-Asian children and adolescents. The incidence rate in non-Hispanic white children remained stable between 0.04 and 0.05 children per 1,000 between 2002 and 2015 and for Asian/Pacific Islander children between 0.11 and 0.12 per 1,000 between 2002 and 2015. During the same time period, the incidence rate in non-Hispanic black children increased from 0.20 to 0.38 per 1,000, in Hispanic children the rate increased from 0.13 to 0.21 per 1,000, and in American Indian children (from primarily one southwestern tribe) the rate increased from 0.23 to 0.33 per 1,000.34

Children who are obese and overweight are more likely to develop type 2 diabetes than peers who are underweight or who are at a healthy weight. This association between weight and diabetes is stronger in children than in adults.15 SEARCH data from 2001 to 2004 showed that about 80 percent of 400 children with type 2 diabetes were obese and 10 percent were overweight (compared with 17% of children without diabetes being obese).16

Type 2 diabetes is more common in older than younger children, often presenting at the onset of puberty.27 It is estimated that, based on 2009 SEARCH data, 74 percent of pediatric type 2 diabetes cases are in youths ages 15 to 19 years, 23 percent are in those ages 10 to 14 years, and only 2 percent are in those ages 5 to 9 years.33

In terms of burden of disease, diabetes (both type 1 and type 2) is the third most common chronic disease in childhood.35 In all age groups (not limited to children and adolescents), diabetes was estimated to be the seventh leading cause of overall death in the United States in 2015 based on the Underlying Cause of Death database.36 Approximately 3 percent of deaths (79,535 of 2,712,630 total deaths) were attributed to diabetes based on death certifications for U.S. residents. Cause of death was based on International Classification of Diseases, Tenth Revision codes, and estimates do not differentiate between type of diabetes. Morbidity from type 2 diabetes is due to both macrovascular disease (atherosclerosis) and microvascular disease (retinopathy, nephropathy, and neuropathy). Complications may begin in childhood or later in adulthood. Among those with type 2 diabetes diagnosed during childhood and adolescence, an estimated 19.9 percent, 9.1 percent, and 17.7 percent had complications of kidney disease, retinopathy, and peripheral neuropathy, respectively, during teenage years and young adulthood.37 Diabetes is the leading cause of kidney failure, lower-limb amputations other than those caused by injury, and new cases of blindness among adults of all age groups in the United States.38 Estimates based on results of the Global Burden of Disease Study indicate that diabetes was the third leading cause of years lived with disability in 2016, which is an approximate 30 percent increase from 1990 (when it ranked eighth).39 In terms of causes of disability-adjusted life-years in the United States, diabetes ranked fourth in 2016, an increase from the sixth leading cause in 1990 (an approximate 11% change).39

Rationale for Screening and Screening Strategies

Screening asymptomatic at-risk children and adolescents for prediabetes and type 2 diabetes may allow earlier detection, diagnosis, and interventions for both conditions, with the goal of improving health outcomes by preventing serious complications from type 2 diabetes. In children
and adolescents, earlier detection of prediabetes may lead to interventions to prevent or delay progression to type 2 diabetes. Early diagnosis of type 2 diabetes could potentially lead to earlier treatment to prevent diabetic complications. Early diagnosis also may enable clinicians to treat patients with diabetes more effectively without requiring insulin. Strategies for screening for prediabetes and type 2 diabetes generally involve targeted screening of children who are overweight or obese for the presence of one or more risk factors (e.g., type 2 diabetes in a first- or second-degree relative, member of a high-risk racial/ethnic group, maternal history of diabetes or gestational diabetes) followed by fasting glucose, hemoglobin A1c, or OGTT.

Treatment Approaches

For Reducing Progression From Prediabetes to Diabetes

Lifestyle interventions to achieve weight loss and increase physical activity are the first-line therapies for preventing progression of prediabetes to diabetes. ADA guidance underlines the value healthy nutrition plays in preventing diabetes, with particular emphasis on the avoidance of sugar-sweetened beverages and sugary snacks. The U.S. Food and Drug Administration (FDA) has not approved any medications to prevent progression of prediabetes to diabetes for any age group, nor has the Canadian Medicare System. Some studies in children and adolescents have shown that metformin can improve metabolic parameters such as body mass index (BMI), fasting glucose, and insulin resistance index.

Management of Diabetes in Children

Goals for HbA1c and fasting glucose levels are the same for children as for adults. Lifestyle interventions are included in first-line therapies for children and adolescents diagnosed with diabetes. Modifications to lifestyle choices, such as increased exercise and improved nutrition, are recommended by the ADA, CDC, and National Institute for Health and Care Excellence. It is recommended that these programs be accompanied by extensive education campaigns on promoting awareness and self-management skills, including establishing individualized regimes for self-monitoring of glycemic targets. Formal programs to improve diet and increase exercise are often paired with pharmacotherapy as first-line therapy.

The FDA has approved three drugs for treatment of type 2 diabetes in children: metformin, insulin, and liraglutide. Metformin is the initial preferred pharmacological treatment for mild to moderate hyperglycemia (HbA1c<8.5%) without metabolic complications. The ADA recommends starting with both basal insulin and metformin if there is marked hyperglycemia (but no ketosis) and insulin alone for those with ketosis. Insulin can be tapered and metformin used as a single therapy if glycemic targets are met. The ADA recommends considering liraglutide therapy if glycemic targets are no longer met with metformin (with or without basal insulin) for children age 10 years or older if they have no past medical history or family history of medullary thyroid carcinoma or multiple endocrine neoplasia type 2. It also notes that the use of medications not approved by the FDA for youth with type 2 diabetes is not recommended outside of research trials. These non-FDA-approved medications include thiazolidinediones (rosiglitazone, pioglitazone), sulfonylureas (glyburide, glimepiride), dipeptidyl peptidase 4 inhibitors (saxagliptin, alogliptin, linagliptin), alpha glucosidase inhibitors (acarbose, miglitol), sodium-glucose cotransporter-2 (SGLT2) inhibitors (canagliflozin, dapagliflozin, empagliflozin),
glucagon-like peptide-1 (GLP1) receptor agonists other than liraglutide (exenatide, dulaglutide, semaglutide, lixisenatide), and meglitinides and have been assessed for type 2 diabetes treatment in children in a number of small pilot studies and case reports. Some professionals recommend anti-obesity drugs (orlistat) and bariatric surgery to treat some children and adolescents who are obese who also have diabetes.52,55

Other Treatments to Reduce Cardiovascular Disease Risk and Complications

Complications of diabetes include nephropathy, neuropathy, retinopathy, and cardiovascular disease. To detect the presence of comorbidities, the ADA recommends blood pressure measurement, a fasting lipid panel, assessment of random urine albumin-to-creatinine ratio, and a dilated eye examination at the time of the diabetes diagnosis.54 Treatments to decrease cardiovascular risk can include antihypertensive medications. Management to decrease microvascular complications includes routine eye exams for retinopathy, urinary albumin excretion for nephropathy, and foot exams for neuropathy. The ADA encourages the cessation or abstinence of smoking and substance use in children and young adults with type 2 diabetes because it may increase their risk of cardiovascular and blood glucose control problems.

Clinical Practice in the United States and Recommendations of Other Organizations

In recent years, several U.S. and international professional organizations have issued recommendations for screening asymptomatic at-risk children and adolescents for prediabetes and type 2 diabetes (Appendix A Table 1). In 2020, the ADA published a position statement on managing youth-onset type 2 diabetes.47 The ADA recommends risk-based screening for type 2 diabetes in children after onset of puberty or age 10 years who are overweight (BMI ≥85th percentile) or obese (BMI ≥95th percentile) and have one or more additional risk factors for diabetes. Such additional risk factors include maternal history of diabetes or gestational diabetes mellitus during the child’s gestation; family history of type 2 diabetes in first- or second-degree relative; being a member of a high-risk racial/ethnic group, including Native American, African American, Latino, Asian American, and Pacific Islander; or signs of insulin resistance or conditions associated with insulin resistance, including acanthosis nigricans, hypertension, dyslipidemia, polycystic ovary syndrome, or small-for-gestational-age birth weight.17 In terms of screening frequency, the ADA recommends screening to be repeated every 3 years if tests are normal or more frequently if BMI increases.47 The ADA recommends testing with fasting plasma glucose, 2-h plasma glucose (PG) after 75-g OGTT, or an A1c. Further, the ADA recommends that children and adolescents who are overweight or obese for whom the diagnosis of type 2 diabetes is being considered have a panel of pancreatic autoantibodies tested to exclude the possibility of autoimmune type 1 diabetes.
Chapter 2. Methods

Key Questions and Analytic Framework

The scope and key questions (KQs) were developed by the Evidence-based Practice Center (EPC) investigators, USPSTF members, and Agency for Healthcare Research and Quality (AHRQ) Medical Officers. The analytic framework and KQs that guided the review are shown in Figure 1. Six KQs were developed for this review:

1. Is there direct evidence that screening for type 2 diabetes and prediabetes in asymptomatic children and adolescents improves health outcomes?
2. What are the harms of screening for type 2 diabetes and prediabetes in asymptomatic children and adolescents?
3. a. Do interventions for screen-detected type 2 diabetes and prediabetes provide an incremental benefit in health outcomes when delivered at the time of detection compared with initiating interventions later, after clinical diagnosis?
 b. Do interventions for screen-detected type 2 diabetes and prediabetes improve health outcomes compared with no intervention, usual care, or interventions with different treatment targets?
 c. Do interventions for recently diagnosed type 2 diabetes improve health outcomes compared with no intervention, usual care, or interventions with different treatment targets?
4. What are the harms of interventions for prediabetes, screen-detected type 2 diabetes, or recently diagnosed type 2 diabetes?
5. Do interventions for prediabetes delay or prevent progression to type 2 diabetes?
6. After interventions for prediabetes are provided, what is the magnitude of change in health outcomes that results from the reduction in type 2 diabetes incidence?

In addition to addressing the KQs, this review also looked for evidence related to five CQs that focused on progression from prediabetes to diabetes, whether screening or interventions change intermediate outcomes, agreement among screening tests, and risk assessment tools. These CQs were not a part of this systematic review. They are intended to provide additional background information. Literature addressing the CQs is summarized in Appendix A.

Data Sources and Searches

PubMed/MEDLINE and the Cochrane Library were searched for English-language articles published through May 3, 2021. Medical Subject Headings were used as search terms when available and keywords when appropriate, focusing on terms to describe relevant populations, tests, interventions, outcomes, and study designs. Complete search terms and limits are listed in Appendix B. Targeted searches for unpublished literature were conducted by searching ClinicalTrials.gov. To supplement electronic searches, the reference lists of pertinent review articles and studies that met the inclusion criteria were reviewed. Studies suggested by peer reviewers or public comment respondents will also be reviewed and, if appropriate, will be incorporated into the final review. The same inclusion and exclusion criteria will be used to determine if the new citations should be incorporated into the review. Since May 3, 2021,
ongoing surveillance will be conducted through article alerts and targeted searches of journals to identify major studies published in the interim that may affect the conclusions or understanding of the evidence and the related USPSTF recommendation. The last surveillance was conducted on October 31, 2021 and no additional studies meeting eligibility criteria were identified. All literature search results were managed using EndNote™ version 9.2 (Thomson Reuters, New York, NY).

Study Selection

Inclusion and exclusion criteria for populations, interventions, comparators, outcomes, timing, settings, and study designs were developed with input from the USPSTF (Appendix B). English-language studies of asymptomatic, nonpregnant people younger than age 18 conducted in countries categorized as very high on the 2019 Human Development Index were included. For all KQs, controlled clinical trials were eligible. Controlled prospective cohort studies were also eligible for KQs on harms (KQs 2 and 4) and the change in health outcomes after reduction in type 2 diabetes incidence (KQ 6); case-control studies were eligible for KQs on harms (KQs 2 and 4). For KQs 1 and 2 (direct evidence of benefits and harms of screening), studies that compared screening with A1c, fasting glucose, or OGTT with no screening or alternative screening strategies were eligible. For KQs 3 through 6 (benefits and harms of interventions), studies were eligible that evaluated primary care–relevant behavioral counseling interventions or pharmacologic interventions for glycemic control for prediabetes or type 2 diabetes.

Titles and abstracts were independently reviewed by two investigators; those marked for potential inclusion by either reviewer were retrieved for evaluation of the full text. The full texts were then independently reviewed by two investigators to determine final inclusion or exclusion. Disagreements were resolved by discussion and consensus.

Quality Assessment and Data Abstraction

We assessed the quality of studies as good, fair, or poor, using predefined criteria developed by the USPSTF and adapted for this topic (Appendix B). Two independent investigators assigned quality ratings for each study. Disagreements were resolved by discussion. Only studies rated as having good or fair quality were included.

For each included study, one investigator extracted pertinent information about the methods, populations, interventions, comparators, outcomes, timing, settings, and study designs. All data extractions were checked by a second investigator for completeness and accuracy.

Data Synthesis and Analysis

Findings for each KQ were summarized in tabular and narrative format. The overall strength of the evidence for each KQ was assessed as high, moderate, low, or insufficient based on the overall quality of the studies, consistency of results between studies, precision of findings, risk of reporting bias, and limitations of the body of evidence, using methods developed for the USPSTF (and the EPC program). Additionally, the applicability of the findings to U.S. primary care populations and settings was assessed. Discrepancies were resolved through consensus discussion.
To determine whether meta-analyses were appropriate, the clinical and methodological heterogeneity of the studies was assessed according to established guidance. The populations, tests, treatments, comparators, outcomes, and study designs were assessed qualitatively, looking for similarities and differences. Because of the limited number of similar studies for each KQ, meta-analyses were not conducted.

Expert Review and Public Comment

A draft research plan for this topic was posted on the USPSTF website for public comment from July 30, 2020 to August 26, 2020. In response to comments, the USPSTF changed the title to include prediabetes, added socioeconomic status to the list of prespecified specific populations, clarified the eligibility of school-based health centers and community settings, and added more intermediate outcomes to the CQs. The final version of the research plan was posted on the USPSTF website on November 12, 2020. The draft evidence review will be reviewed by content experts, representatives of Federal partners, USPSTF members, and AHRQ Medical Officers and will be revised based on comments received, as appropriate. The draft evidence review will also be posted for public comment. Revisions will be made based on comments received, and any references suggested by expert or public reviewers will be evaluated for inclusion/exclusion.

USPSTF Involvement

This review was funded by AHRQ. AHRQ staff and members of the USPSTF participated in developing the scope of work and reviewed draft reports, but the authors are solely responsible for the content.
Chapter 3. Results

Literature Search

We identified 4,334 unique records and assessed 523 full-text articles for eligibility (Figure 2). We excluded 515 articles for various reasons, detailed in Appendix C, and included eight articles representing three studies. Details of quality assessments of included studies are in Appendix D Tables 1 and 2.

Results by Key Question

KQ 1. Is There Direct Evidence That Screening for Type 2 Diabetes and Prediabetes in Asymptomatic Children and Adolescents Improves Health Outcomes?

We found no eligible studies that addressed this question.

KQ 2. What Are the Harms of Screening for Type 2 Diabetes and Prediabetes in Asymptomatic Children and Adolescents?

We found no eligible studies that addressed this question.

KQ 3a. Do Interventions for Screen-Detected Type 2 Diabetes and Prediabetes Provide an Incremental Benefit in Health Outcomes When Delivered at the Time of Detection Compared With Initiating Interventions Later, After Clinical Diagnosis?

We found no eligible studies that addressed this question.

KQ 3b. Do Interventions for Screen-Detected Type 2 Diabetes and Prediabetes Improve Health Outcomes Compared With No Intervention, Usual Care, or Interventions With Different Treatment Targets?

We found no eligible studies that addressed this question.

KQ 3c. Do Interventions for Recently Diagnosed Type 2 Diabetes Improve Health Outcomes Compared With No Intervention, Usual Care, or Interventions With Different Treatment Targets?

In summary, one included RCT (699 participants) that focused on intermediate outcomes reported that two youths with type 2 diabetes developed renal impairment and 11 developed DKA, finding no significant difference between treatments (metformin, metformin rosiglitazone,
and metformin plus a lifestyle intervention). One smaller trial reported that one person in the placebo control group developed DKA. No eligible studies reported on other health outcomes.

Characteristics of Included Studies

We included two RCTs (described in 7 articles) (Table 3). One was rated as good quality and one was rated as fair quality. The one good-quality RCT (described in 6 articles) enrolled 699 participants and evaluated interventions for recently diagnosed type 2 diabetes. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study was a 15-site multicenter trial conducted in the United States. The trial randomized adolescents who were obese (BMI ≥85th percentile for age and sex) with recently diagnosed type 2 diabetes to metformin monotherapy, metformin plus rosiglitazone, or metformin plus a lifestyle intervention. Prior to randomization, all participants completed a run-in of 2 to 6 months that involved weaning from nonstudy diabetes medications, initiating metformin at a dose of up to 1,000 mg twice daily, attaining glycemic control with metformin alone (A1c<8.0%), providing standard diabetes education and ensuring the participants’ mastery of the material, and confirming adherence. The mean age of participants was 14; mean BMI was 35 kg/m²; mean baseline A1c values were 7.0 to 7.3 percent across the three study groups; 65 percent were female; 79 percent were nonwhite, 32.5 percent were non-Hispanic black, 39.7 percent were Hispanic, and 20.3 percent were non-Hispanic white. The duration of followup ranged from 2 to 6.5 years (mean 3.8 years). The lifestyle intervention focused on diet/nutrition, physical activity, and family support. The program included three phases of in-person contacts: once weekly for the first 6 to 8 months, twice-weekly for months 6 to 8 through months 12 to 16, and then once-monthly until the end of the study. The primary outcome of the trial was loss of glycemic control, defined as HbA1c level of at least 8 percent for 6 months or sustained metabolic decompensation requiring insulin (described in CQ 2), and the study focused largely on intermediate outcomes (e.g., glycemic control, BMI) rather than on health outcomes.

The second trial compared metformin and placebo in 82 treatment-naïve adolescents ages 10 to 16 years with previous or newly diagnosed type 2 diabetes. It was a 16-week double-blind placebo-controlled trial of 82 adolescents recruited from 44 sites in multiple countries, including the United States, Russia, Belarus, Ukraine, and Poland. Most participants were from the U.S. sites. The intervention group received up to 2,000 mg daily of metformin for 16 weeks. The mean age of participants was 13; mean BMI was 34 kg/m²; mean baseline A1c values were 8.3 to 9.0 percent across the study groups; 69 percent were female; and 63 percent were nonwhite. The primary outcome was change in fasting PG from baseline (described in CQ 2).

Renal Impairment

The TODAY study reported two cases of renal impairment (Table 4). One case was in the metformin plus rosiglitazone group, and one was in the metformin plus lifestyle intervention group (p=1.00). Renal impairment was defined as an estimated creatinine clearance of less than 70 ml per minute or a serum creatinine of more than 1.5 mg/dl.

Diabetic Ketoacidosis

The TODAY study reported that 11 participants developed DKA. There was no statistically
significant difference across treatment groups (5 [2.1%] vs. 3 [1.3%] vs. 3 [1.3%], p=0.70, for metformin monotherapy vs. metformin plus rosiglitazone vs. metformin plus lifestyle, respectively). The smaller trial reported that zero participants in the metformin group developed DKA and that one person in the control group developed DKA.

Other Health Outcomes

No eligible studies reported other health outcomes, including mortality, cardiovascular morbidity (including myocardial infarction, stroke, congestive heart failure), amputation, skin ulcers, visual impairment (including blindness), neuropathy, and quality of life.

KQ 4. What Are the Harms of Interventions for Prediabetes, Screen-Detected Type 2 Diabetes, or Recently Diagnosed Type 2 Diabetes?

Overall, two RCTs that enrolled youths with recently diagnosed type 2 diabetes were eligible. The two trials assessed different comparisons. Major hypoglycemic events were reported by less than 1 percent of participants. Minor hypoglycemic events were more common among youths treated with metformin plus rosiglitazone than among those treated with metformin or metformin plus lifestyle. In one study, gastrointestinal (GI) adverse events were more commonly reported by those taking metformin than by those taking placebo. GI adverse events, infections, and muscle aches and pains were less common among youths treated with metformin plus rosiglitazone than with metformin alone or metformin plus a lifestyle intervention. No eligible studies assessed harms for youths with screen-detected diabetes or prediabetes, and no eligible studies reported on harms of lifestyle interventions provided without pharmacotherapy.

Harms of Interventions for Recently Diagnosed Type 2 Diabetes

Two RCTs (described in 7 articles) reported on harms of interventions for recently diagnosed type 2 diabetes (Table 3). The TODAY trial is described above in KQ 3; it compared metformin monotherapy, metformin plus rosiglitazone, or metformin plus a lifestyle intervention. The second trial was also described in KQ 3; it reported on harms related to metformin (up to 2,000 mg daily) compared with placebo in treatment-naïve adolescents ages 10 to 16 years with previous or newly diagnosed type 2 diabetes. The duration of followup ranged from 16 weeks to a mean of 3.8 years (TODAY). Both studies reported on withdrawals, hypoglycemic events requiring medical attention, gastrointestinal adverse events, and lactic acidosis (Table 5). The TODAY study reported on other adverse events, including rash, infection, sprain or fracture, muscle ache or pain, anemia, and edema. The TODAY study reported zero deaths during the trial.

Hypoglycemic Events

Serious hypoglycemic events requiring medical attention were reported in both trials and were rare (Table 5). The TODAY study reported that four youths had severe hypoglycemia (1 [0.4%] vs. 1 [0.4%] vs. 2 [0.8%] for metformin monotherapy vs. metformin plus rosiglitazone vs. metformin plus lifestyle, respectively, p=1.00). It also reported that more youths had repeated mild hypoglycemia in the group that received metformin plus rosiglitazone (10 [4.3%] vs. 19 [8.2%] vs. 8 [3.4%] for metformin monotherapy vs. metformin plus rosiglitazone vs. metformin
plus lifestyle, respectively, p=0.05). The 16-week trial63 comparing metformin monotherapy with placebo reported zero hypoglycemic events requiring medical attention in either study group.

Gastrointestinal Adverse Events

GI adverse events were common in both studies. The TODAY study reported lower rates of GI symptoms in the metformin plus rosiglitazone group than in the metformin monotherapy or metformin plus lifestyle intervention groups (129 [55.6\%] vs. 100 [42.9\%] vs. 136 [58.1\%], for metformin monotherapy vs. metformin plus rosiglitazone vs. metformin plus lifestyle, respectively, p=0.002). The 16-week trial63 reported that more youths treated with metformin than with placebo had abdominal pain (25\% vs. 12\%, p not reported) and nausea or vomiting (17\% vs. 10\%, p not reported).

Other Adverse Events

Both studies reported other adverse events; types of events reported (and definitions) varied and most found no difference between groups or reported that no adverse events were attributed to study interventions (Table 5). The TODAY study found higher rates of infection (p=0.005) and muscle ache or pain (p=0.05) in the metformin monotherapy and metformin plus lifestyle intervention groups than in the metformin plus rosiglitazone group. The TODAY study reported on rash, sprain or fracture, anemia, and edema, but found no statistically significant difference between groups. The TODAY study reported that one participant in the metformin plus rosiglitazone group developed heart failure and one participant in the metformin monotherapy group developed lactic acidosis. The 16-week trial63 reported that few participants had serious adverse events, all deemed unrelated to the study drug.

KQ 5. Do Interventions for Prediabetes Delay or Prevent Progression to Type 2 Diabetes?

In summary, the one included study reported no evidence that lifestyle interventions were associated with a reduction in the incidence of diabetes, although followup was only 6 months and the study had zero participants progress to type 2 diabetes in either group. No eligible studies that evaluated pharmacologic interventions were identified.

Study Characteristics

We included one fair-quality RCT (75 participants) that compared the Bright Bodies Healthy Lifestyle Program with standard care for adolescents who were obese (BMI$>$95th percentile) ages 10 to 16 years with prediabetes (Table 3).64 The trial was conducted in the United States in a pediatric obesity clinic starting in September 2009. Regarding prediabetes ascertainment, the trial focused on IGT for participant eligibility, defined as an elevated 2-h OGTT (after a glucose load of 1.75 g/kg, maximum 75 g) result between 130 and 199 mg/dL (using a range that was slightly wider than the current prediabetes criteria of 140 to 199 mg/dL). The mean age of participants was 12, mean BMI was 33 kg/m2, mean baseline A1c was 5.6 to 5.7 across the groups, 64 percent were female, and 31 percent were nonwhite. The duration of followup was 6 months. The lifestyle program focused on both diet/nutrition and physical activity. The high-contact program included twice-weekly 50-minute exercise classes, a once-weekly weigh-in, and
a one-time 40-minute nutrition/behavior modification class (all administered in group settings). Participants were encouraged to exercise 3 additional days per week and record the duration and type of exercise. The study used raffle tickets for gift cards to motivate participants; tickets could be earned if weight stayed the same or decreased and, in some cases, for returning their weekly exercise log. The trial was rated as fair quality mainly because of the overall attrition (of 23%) and having some participants withdrawn because of starting metformin (Appendix D).

The primary outcome of the trial was the 6-month change in PG 2 hours after OGTT (intermediate outcomes are described in CQs 2 and 3). The trial reported that zero participants developed diabetes during the trial (Table 4).

KQ 6. After Interventions for Prediabetes Are Provided, What Is the Magnitude of Change in Health Outcomes That Results From the Reduction in Type 2 Diabetes Incidence?

We found no eligible studies that addressed this question.
Chapter 4. Discussion

Summary of Evidence

Table 6 provides a summary of the main findings in this evidence review organized by KQ along with a description of consistency, precision, quality, limitations, strength of evidence, and applicability. Overall, limited data were eligible for this review, and the strength of evidence was graded as insufficient or low for all KQs.

Evidence for Benefit and Harms of Screening

This review found no eligible studies that directly addressed the overarching question (i.e., no studies evaluated screening for prediabetes or type 2 diabetes among asymptomatic youths compared with no screening or alternative screening strategies). Therefore, the strength of evidence was graded as insufficient for KQs 1 and 2.

Benefits of Interventions for Screen-Detected or Recently Diagnosed Diabetes

For screen-detected diabetes, this review found no eligible studies. For recently diagnosed diabetes, two eligible trials were identified. Evidence from one RCT (TODAY) designed to evaluate intermediate outcomes reported very few health outcomes, finding no difference between groups for renal impairment in adolescents who were obese treated with metformin only versus metformin plus rosiglitazone versus metformin plus a lifestyle intervention, and finding no difference for DKA. The other trial reported that 1 adolescent with diabetes in the placebo group developed DKA compared with zero in the metformin group. The strength of evidence was graded as insufficient because of unknown consistency, substantial imprecision, and a duration of followup likely insufficient to assess health outcomes.

CQs 2 and 3 (Appendix A) address whether interventions for children and adolescents with screen-detected or recently diagnosed type 2 diabetes or prediabetes change intermediate outcomes. In summary, CQ 2 found that, among those recently diagnosed with type 2 diabetes, lifestyle and pharmacological interventions (metformin, rosiglitazone, liraglutide) improved glycemia, but data were limited or lacking about the impact of pharmacological interventions on other intermediate outcomes (microalbuminuria, subclinical retinopathy, subclinical neuropathy). CQ 3 found that, for those with diabetes, metformin alone and metformin plus a lifestyle intervention were associated with decreases in BMI and weight when compared with metformin plus rosiglitazone in TODAY,18, 53, 65, 66 but another study reported that metformin was not associated with significant changes when compared with control.63

Benefits of Interventions for Prediabetes

This review found one eligible trial that assessed whether lifestyle interventions for prediabetes can help prevent progression to type 2 diabetes. However, the strength of evidence was graded as insufficient because followup was only 6 months, results were imprecise (with zero events in either group), consistency is unknown (single study), and the study had high attrition. Among
adults who were obese and overweight, recent meta-analyses for the USPSTF found high strength of evidence that lifestyle interventions were associated with reduction in the incidence of diabetes in trials with followup ranging from less than 1 year to 30 years (pooled relative risk, 0.78 [95% confidence interval {CI}, 0.69 to 0.88], 23 trials, 12,915 participants). 67

CQs 2 and 3 (Appendix A) address whether interventions for children and adolescents with screen-detected or recently diagnosed type 2 diabetes or prediabetes change intermediate outcomes. In summary, CQ 2 found that, among those with prediabetes, lifestyle interventions improved 2-h glucose (after OGTT), but not fasting glucose or A1c in one trial, and data on rosiglitazone were inconclusive because of early trial discontinuation. CQ 3 found that lifestyle interventions for children and adolescents with prediabetes improved weight and BMI compared with controls in one study 64 and that prediabetes identification was associated with decreases in BMI in adolescents who were obese and overweight. 68

Harms of Interventions for Prediabetes or Type 2 Diabetes

Low strength of evidence from the two included trials indicates that minor hypoglycemic events were more common among youths treated with metformin plus rosiglitazone than among those treated with metformin or metformin plus lifestyle; GI adverse effects were commonly associated with metformin; and GI adverse events, infections, and muscle aches and pains were more common among youths treated with metformin and metformin plus a lifestyle intervention than with metformin plus rosiglitazone. The strength of evidence was downgraded to low because of imprecision, unknown consistency (studies assessed different comparisons), and one study was rated as medium risk of bias.

Limitations

This review has limitations. The limitations of the included studies are discussed above in Results and Discussion. Here we focus on limitations of this review. We excluded non-English-language articles. This review was limited to asymptomatic children and focused on the overarching question of screening for prediabetes or type 2 diabetes. This review did not evaluate diagnostic testing of symptomatic children or those with signs of insulin resistance, diagnostic testing of children with conditions associated with insulin resistance, or screening for type 1 diabetes. This review excluded studies limited to or predominantly comprising adults or pregnant women and children and adolescents with symptomatic diabetes (e.g., weight loss, polyuria, blurred vision, headache). For studies of recently diagnosed diabetes, this review excluded studies of children and adolescents who had diabetes for more than 1 year or with more advanced diabetes, aiming to identify the studies with good applicability to a screen-detected population.

Future Research Needs

Screening trials of sufficient duration and sample size that focus on health outcomes are needed, as are eligible studies evaluating interventions for prediabetes and screen-detected type 2 diabetes among children and adolescents.
Conclusion

No eligible studies directly evaluated the benefits or harms of screening for prediabetes and type 2 diabetes in children and adolescents. For youths with prediabetes or recently diagnosed (not screen-detected) diabetes, the only eligible trials reported few health outcomes and found no difference between groups, although evidence was limited by substantial imprecision and a duration of followup likely insufficient to assess health outcomes. Limited data showed that the combination of rosiglitazone plus metformin was associated with hypoglycemic events (compared with metformin alone or metformin plus lifestyle) and that metformin was associated with gastrointestinal adverse events, consistent with studies conducted in adults.
References

15. Awa WL, Fach E, Krakow D, et al. Type 2 diabetes from pediatric to geriatric age: analysis of gender and obesity among 120,183 patients from the German/Austrian DPV
Screening for Diabetes in Children and Adolescents

60. Levitt Katz L, Gidding SS, Bacha F, et al. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with

Figure 1. Analytic Framework

* Eligible interventions include pharmacotherapy and primary care–relevant counseling focused on healthy diet and nutrition, physical activity, or both.
Figure 2. Summary of Evidence Search and Selection

Note: The sum of the number of studies per KQ exceeds the total number of studies because some studies were applicable to multiple KQs.

Abbreviations: KQ=Key question.
<table>
<thead>
<tr>
<th>Category</th>
<th>Definition/Etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 diabetes</td>
<td>Diabetes due to autoimmune β-cell destruction, usually leading to absolute insulin deficiency</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>Diabetes due to a progressive loss of β-cell insulin secretion frequently on the background of insulin resistance</td>
</tr>
<tr>
<td>Gestational diabetes mellitus</td>
<td>Diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes before gestation</td>
</tr>
<tr>
<td>Diabetes due to other causes</td>
<td>Includes specific types of diabetes attributable to the following: monogenic diabetes syndromes (e.g., maturity-onset diabetes of the young), diseases of the exocrine pancreas (e.g., pancreatitis), and drug- or chemical-induced diabetes (e.g., glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation)</td>
</tr>
</tbody>
</table>

Abbreviations: ADA=American Diabetes Association; HIV/AIDS=human immunodeficiency virus/acquired immunodeficiency syndrome.
Table 2. Criteria for the Diagnosis of Type 2 Diabetes and Prediabetes (Adapted From ADA Guidelines)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>A1c*</th>
<th>Fasting† Plasma Glucose</th>
<th>OGTT‡§</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 diabetes</td>
<td>≥6.5% (48.0 mmol/mol) ‡</td>
<td>≥126 mg/dL (7.0 mmol/L)</td>
<td>≥200 mg/dL (11.1 mmol/L)</td>
<td>Random PG ≥200 mg/dL (11.1 mmol/L) in a patient with classic symptoms of hyperglycemia or hyperglycemia crisis</td>
</tr>
<tr>
<td>Prediabetes†</td>
<td>5.7 to 6.4% (39–47.9 mmol/mol)</td>
<td>IFG: 100 to 125 mg/dL (5.6–6.9 mmol/L)</td>
<td>IGT: 140 to 199 mg/dL (7.8–11.0 mmol/L)</td>
<td>NA</td>
</tr>
</tbody>
</table>

* The ADA guidelines note this test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.
† Fasting is defined as no caloric intake for at least 8 hours.
‡ Refers to values measured 2 hours post-load on the 75-g OGTT. Per the ADA recommendations, the test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75-gram anhydrous glucose dissolved in water.
§ The ADA guidelines note this test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.
† ADA guidelines note that for all three tests the risk is continuous, extending below the lower limit of the range and becoming disproportionately greater at higher ends of the range.

Abbreviations: A1c=glycated hemoglobin; ADA=American Diabetes Association; DCCT=Diabetes Control and Complications Trial; IFG=impaired fasting glucose; IGT=impaired glucose tolerance; NA=not applicable; NGSP=National Glycohemoglobin Standardization Program; OGTT=oral glucose tolerance test.
Table 3. Characteristics of Included Randomized Trials of Children and Adolescents With Prediabetes or Type 2 Diabetes (KQs 3, 4, and 5)

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Participants</th>
<th>Groups, No.</th>
<th>Duration of Followup</th>
<th>Duration of diabetes, Mean (Range or SD), months</th>
<th>Age, Mean (Range or SD), y</th>
<th>No. (%) F</th>
<th>No. (%) Nonwhite</th>
<th>HbA1C Mean (SD)</th>
<th>BMI, Mean (SD) (kg/m²)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones, 2002*†</td>
<td>Children (10–16 y) with previous or new diagnosis of type 2 diabetes, BMI>50th percentile for age; 44 sites in multiple countries*</td>
<td>G1: Metformin (titrated up to maximum 2,000 mg/day†), 42 G2: Placebo, 40</td>
<td>16 weeks</td>
<td>NR</td>
<td>G1: 13.9 (1.8) G2: 13.6 (1.8)</td>
<td>G1: 30 (71.4) G2: 27 (67.5)</td>
<td>G1: 25 (59.5) G2: 27 (67.5)</td>
<td>G1: 8.3 (1.3) G2: 9.0 (1.4)</td>
<td>G1: 34.2 (10.6) G2: 33.9 (12.7)</td>
<td>Fair</td>
</tr>
<tr>
<td>Savoye, 2014*‡‡</td>
<td>Adolescents who were obese (10–16 y) with BMI>95th percentile and prediabetes (elevated OGTT, 2-h 130–199 mg/dL) from the Yale Pediatric Obesity Clinic</td>
<td>G1: Bright Bodies Healthy Lifestyle Program,§ 38 G2: standard care, 37</td>
<td>6 months</td>
<td>NA</td>
<td>G1: 12.7 (1.9) G2: 13.2 (1.8)</td>
<td>G1: 26 (68.4) G2: 23 (62.2) G3: 22 (64.2)</td>
<td>G1: 11 (29.0) G2: 12 (32.4)</td>
<td>G1: 5.7 (0.4) G2: 5.6 (0.4) G3: 5.3 (0.4)</td>
<td>G1: 32.1 (5.2) G2: 34.6 (6.8)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

* Subjects were from the United States (25 sites [n=62]), Russia (6 sites [n=13]), Ukraine (1 site [n=4]), Belarus (1 site [n=2]), and Poland (1 site [n=1]).
† Mean final dose of metformin was 1,798 mg/day.
‡ The run-in involved weaning from nonstudy diabetes medications, initiating metformin at a dose of up to 1,000 mg twice daily, attaining glycemic control with metformin alone (A1c<8.0%), providing standard diabetes education and ensuring the participants’ mastery of the material, and confirming adherence.
§ The program consisted of two 50-minute exercise sessions per week, one weekly weigh-in, and a 40-minute nutrition/behavior modification class. Participants were encouraged to exercise 3 additional days per week and record the duration and type of exercise. The study used raffle tickets for gift cards to motivate participants; tickets could be earned if weight stayed the same or decreased and, in some cases, for returning their weekly exercise log.

Abbreviations: BMI=body mass index; G=group; HbA1C=glycated hemoglobin; KQ=key question; NA=not applicable; NR=not reported; OGTT=oral glucose tolerance test; SD=standard deviation; TODAY=Treatment Options for Type 2 Diabetes in Adolescents and Youth.
Table 4. Results of Trials of Children and Adolescents With Prediabetes or Type 2 Diabetes Reporting Health Outcomes (KQ 3) or Progression From Prediabetes to Type 2 Diabetes (KQ 5)

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>G1 (N)</th>
<th>G2 (N)</th>
<th>Progression to Diabetes</th>
<th>Mortality G1 vs. G2; HR (95% CI)</th>
<th>CVD Events G1 vs. G2; HR (95% CI)</th>
<th>Diabetic Ketoacidosis</th>
<th>Chronic Kidney Disease G1 N (%) G2 N (%) HR (95% CI)</th>
<th>Amputations G1 N (%) G2 N (%) HR (95% CI)</th>
<th>Skin Ulcers G1 N (%) G2 N (%) HR (95% CI)</th>
<th>Visual Impairment G1 N (%) G2 N (%) HR (95% CI)</th>
<th>Neuropathy G1 N (%) G2 N (%) HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones, 2002</td>
<td>G1: 42 G2: 40</td>
<td>NR</td>
<td>NR</td>
<td>G1: 0 G2: 1 (2.5%)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>TODAY Study Group, 2007, 2010, 2012, 2013, 2015, 2016</td>
<td>G1: 232 G2: 233 G3: 234</td>
<td>NA</td>
<td>G1: 0 G2: 0 G3: 0</td>
<td>G1: 5 (2.1) G2: 3 (1.3) G3: 3 (1.3) p=0.70</td>
<td>Renal impairment: G1: 0 G2: 1 (0.4) G3: 1 (0.4) p=1.00</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Savoye, 2014</td>
<td>G1: 38 G2: 37</td>
<td>G1: 0 G2: 0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Abbreviations: CI=confidence interval; CVD=cardiovascular disease; G=group; HR=hazard ratio; N=number; NA=not applicable; NR=not reported; TODAY=Treatment Options for Type 2 Diabetes in Adolescents and Youth; vs.=versus.
<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>CV Adverse Events</th>
<th>Hypoglycemic Events</th>
<th>Hypoglycemic events requiring medical attention</th>
<th>All-Cause Withdrawals</th>
<th>Gastrointestinal Adverse Events</th>
<th>Lactic Acidosis</th>
<th>Other Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>G1 N (%)</td>
<td>G2 N (%)</td>
<td>G1: 0</td>
<td>G2: 0</td>
<td>G1 N (%)</td>
<td>G2 N (%)</td>
<td>G1 N (%)</td>
</tr>
<tr>
<td>G1 N (%)</td>
<td>G2 N (%)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, 2002</td>
<td>NR</td>
<td></td>
<td>Hypoglycemic events requiring medical attention:</td>
<td></td>
<td>Abdominal pain:</td>
<td>G1: NR (25)</td>
<td>Other adverse events, as reported by the authors (all deemed unrelated to the study drug)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G1: 1 (0.4)</td>
<td>G2: 1 (0.4)</td>
<td>G1: 0</td>
<td>G2: 0</td>
<td>G1: 2 (4.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G3: 2 (0.8)</td>
<td></td>
<td></td>
<td></td>
<td>(one person became seropositive for hepatitis B and one had severe abdominal pain and diarrhea due to a viral infection)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p=1.00</td>
<td></td>
<td></td>
<td></td>
<td>G2: 2 (5.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(one had hyperglycemia and one experience problems associated with diabetes and increased liver function enzymes); a third participant had diabetic ketoacidosis but that is covered in Table 4</td>
</tr>
<tr>
<td>TODAY Study Group,</td>
<td>Heart failure</td>
<td>Severe hypoglycemia:</td>
<td>G1: 10 (4.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013, 2015, 2016</td>
<td>outcome</td>
<td>G1: 1 (0.4)</td>
<td>G2: 1 (0.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1: 0</td>
<td>G3: 2 (0.8)</td>
<td>p=1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G2: 0</td>
<td>G3: 8 (3.4)</td>
<td>p=0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G3: 0</td>
<td>Repeated mild hypoglycemia</td>
<td>Before Primary Outcome (out of all 699 participants)</td>
<td>G1: 15 (6.4)</td>
<td>G2: 0</td>
<td>G3: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 16 (6.9)</td>
<td>G2: 16 (6.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: 6 (2.6)</td>
<td>p=0.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>After Primary Outcome (out of 319 participants)</td>
<td>G1: 4 (3.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 3 (3.3)</td>
<td>p=0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: 1 (0.9)</td>
<td>p=0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1: 129 (55.6)</td>
<td>G2: 100 (42.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: 136 (58.1)</td>
<td>p=0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GI symptoms</td>
<td>G1: 1 (0.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full sample:</td>
<td>G2: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3: 0</td>
<td>p=0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rash</td>
<td>G1: 108 (46.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 101 (43.3)</td>
<td>G3: 95 (40.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infection</td>
<td>G1: 149 (64.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 120 (51.5)</td>
<td>G3: 151 (64.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprain or fracture</td>
<td>G1: 66 (28.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 53 (22.7)</td>
<td>G3: 64 (27.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muscle ache or pain</td>
<td>G1: 68 (29.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 53 (22.7)</td>
<td>G3: 77 (32.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anemia</td>
<td>G1: 71 (30.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G2: 58 (24.8)</td>
<td>G3: 52 (22.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=0.11</td>
<td>p=0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Results of Included Trials of Children and Adolescents With Type 2 Diabetes Reporting Harms/Adverse Events Due to Treatment (KQ 4)

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Trial Name</th>
<th>Country</th>
<th>CV Adverse Events</th>
<th>Hypoglycemic Events</th>
<th>All-Cause Withdrawals</th>
<th>Gastrointestinal Adverse Events</th>
<th>Lactic Acidosis</th>
<th>Other Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HR (95% CI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Edema</td>
<td>G1: 17 (7.3)</td>
<td>G2: 17 (7.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G3: 17 (7.3)</td>
<td>p=1.00</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI=confidence interval; CV=cardiovascular; G=group; HR=hazard ratio; KQ=key question; N=number; NR=not reported; TODAY=Treatment Options for Type 2 Diabetes in Adolescents and Youth.
Table 6. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents

<table>
<thead>
<tr>
<th>Key Question and Topic</th>
<th>No. of Studies (k), No. of Participants (n)</th>
<th>Summary of Findings</th>
<th>Consistency and Precision</th>
<th>Study Quality</th>
<th>Limitations (Including Reporting Bias)</th>
<th>Overall Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 1. Benefits of screening</td>
<td>0, 0</td>
<td>No eligible studies</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td>KQ 2. Harms of screening</td>
<td>0, 0</td>
<td>No eligible studies</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td>KQ 3. Benefits of interventions for screen-detected or recently diagnosed type 2 diabetes and prediabetes</td>
<td>2 RCTs (7 publications), 781 participants</td>
<td>The TODAY study (n=699) reported no significant difference between groups for renal impairment in youths treated with metformin only vs. metformin plus rosiglitazone vs. metformin plus a lifestyle intervention (0 vs. 1 vs. 1, p=1.00) and no difference for DKA (5 vs. 3 vs. 3, p=0.70, respectively). One smaller trial (n=82) reported that 1 adolescent with diabetes in the placebo group developed DKA compared with zero in the metformin group. No eligible studies reported other health outcomes.</td>
<td>Consistency unknown (no 2 studies assessed the same comparisons); imprecise</td>
<td>Good: 1</td>
<td>Mean followup 3.8 years in TODAY (range 2–6.5 years) likely insufficient to assess health outcomes; followup of 16 weeks in the smaller trial; reporting bias not detected</td>
<td>Insufficient</td>
<td>The TODAY trial enrolled adolescents who were obese (age 10–17 y) with previous or newly diagnosed type 2 diabetes; predominantly nonwhite participants from U.S.; during run-in and prior to randomization, participants had to achieve glycemic control (HbA1c<8%), achieve mastery of diabetes education material, and confirm adherence.</td>
</tr>
</tbody>
</table>

Screening for Diabetes in Children and Adolescents
Table 6. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents

<table>
<thead>
<tr>
<th>Key Question and Topic</th>
<th>No. of Studies (k), No. of Participants (n)</th>
<th>Summary of Findings</th>
<th>Consistency and Precision</th>
<th>Study Quality</th>
<th>Limitations (Including Reporting Bias)</th>
<th>Overall Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 4. Harms of interventions for type 2 diabetes</td>
<td>2 RCTs (7 publications), 781 participants</td>
<td>Hypoglycemic events: More youths treated with metformin plus rosiglitazone had repeated mild hypoglycemia than those treated with metformin or metformin plus lifestyle (8.2% vs. 4.3% vs. 3.4%), p=0.05. Gastrointestinal adverse events: Higher rates with metformin alone and metformin plus lifestyle intervention than with metformin plus rosiglitazone (55.6% vs. 58.1% vs. 42.9%, p=0.002). Higher rates of abdominal pain (25% vs. 12%, P NR) and nausea or vomiting (17% vs. 10%, P NR) for youths treated with metformin for 16 weeks than with placebo. Infection: Lower rates with metformin plus rosiglitazone than with metformin alone or metformin plus a lifestyle intervention (p=0.005). Muscle aches or pains: Lower rates with metformin plus rosiglitazone than with metformin alone or metformin plus a lifestyle intervention (p=0.05). Heart failure: One participant treated with metformin plus rosiglitazone developed heart failure.</td>
<td>Consistency unknown (no 2 studies used similar measures at similar timepoints for the same comparison); imprecise</td>
<td>Good; 1 Fair: 1</td>
<td>Included studies assessed different comparisons; reporting bias not detected</td>
<td>Low</td>
<td>Youths who were obese ages 10–17 years with previous or newly diagnosed type 2 diabetes; predominantly nonwhite participants from the U.S.</td>
</tr>
<tr>
<td>KQ 4. Harms of interventions for prediabetes</td>
<td>0, 0</td>
<td>No eligible studies</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td>KQ 5. Interventions for prediabetes to delay or prevent progression to type 2 diabetes</td>
<td>1 RCT, 75 participants</td>
<td>No participants in the high-contact healthy lifestyle intervention group or the control group developed diabetes over 6 months.</td>
<td>Consistency unknown (single study); imprecise</td>
<td>Fair</td>
<td>Followup duration of 6 months; high attrition; some participants were withdrawn for being started on metformin (n=5); reporting bias not detected</td>
<td>Insufficient</td>
<td>Children ages 10–16 years with BMI above the 95th percentile and prediabetes (elevated OGTT, 2-h 130–199 mg/dL) seen in a pediatric obesity clinic; high-contact lifestyle intervention with both diet/nutrition and physical activity/exercise components.</td>
</tr>
</tbody>
</table>
Table 6. Summary of Evidence on Screening for Prediabetes and Type 2 Diabetes in Children and Adolescents

<table>
<thead>
<tr>
<th>Key Question and Topic</th>
<th>No. of Studies (k), No. of Participants (n)</th>
<th>Summary of Findings</th>
<th>Consistency and Precision</th>
<th>Study Quality</th>
<th>Limitations (Including Reporting Bias)</th>
<th>Overall Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 6. Change in health outcomes that results from reduction in diabetes after interventions for prediabetes</td>
<td>0, 0</td>
<td>No eligible studies</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: BMI=body mass index; KQ=key question; NA=not applicable; NR=not reported; OGTT=oral glucose tolerance test; RCT=randomized, controlled trial; TODAY=Treatment Options for Type 2 Diabetes in Adolescents and Youth.
Appendix A. Additional Background and Contextual Questions (CQs)

Contextual Questions (CQs)

CQ 1. a. What percentage of children and adolescents with prediabetes progress to type 2 diabetes, remain prediabetic or return to normal glycemia or glucose tolerance (without intervention), and over what time frame?
 b. What percentage of children and adolescents with type 2 diabetes return to normal glycemia or glucose tolerance or to the prediabetes range (without intervention), and over what time frame?
 c. How does this differ by baseline hemoglobin (Hb) glycated hemoglobin (A1c) level, fasting glucose level, or glucose tolerance?

Overall, current available studies are limited but suggest that many children and adolescents with prediabetes (22% to 52%) return to normal glycemia or glucose tolerance without intervention over 6 months to 2 years.

A limited number of randomized, controlled trials (RCTs) of prediabetes had control groups that received no intervention, allowing an opportunity to follow those subjects over the course of the study to assess natural history. These studies suggested that a large portion of children and adolescents with prediabetes will remain with prediabetes or revert to normoglycemia over a 2-year period; this pattern appears similar regardless of the method of measuring glycemia or glucose tolerance. The largest of these was the HEALTHY study. This study randomized 21 schools to the control arm, collected baseline metabolic health data on 6th graders, and then collected the same data again 2 years later. Of those with prediabetes at baseline (n=128, HgA1C 5.7-6.4), the 2-year followup assessments revealed that 51 (39.8%) had a normal HgA1c, 76 (59.4%) persisted with prediabetes, and 1 (0.8%) progressed to diabetes. By comparison, of those with A1c <5.7 at baseline (n=3,852), 3,761 (97.6%) remained <5.7 at the 2-year followup, 88 (2.3%) progressed to prediabetes, and 3 (0.1%) progressed to diabetes. Of those with an elevated fasting plasma glucose (FPG) at baseline (100-125 mg/dL, n=635), 330 (52%) regressed to <100 mg/dL at followup, 298 (46.9%) remained between 100-125 mg/dL and 7 (1.1%) progressed to FPG greater than or equal to 126 mg/dL. By comparison, of those with baseline FPG <100 mg/dL (n=3,345), 2,774 (82.9%) remained <100 mg/dL at followup, 567 (17%) progressed to 100-125 mg/dL, and 4 (0.1%) progressed to FPG ≥ 126 mg/dL at followup.\(^\text{72}\) The placebo arm of a small trial of adolescents ages 10 to 16 years who were obese found that the 22 percent (6 of 21) who had oral glucose tolerance test (OGTT) 2-hour blood glucose greater than or equal to 130 at baseline converted to less than 130 at the 6-month followup without intervention.\(^\text{64}\)

No identified prospective cohort studies have followed children with prediabetes or diabetes over time to determine what proportion return to normoglycemia without intervention. Two cohort studies followed youth with prediabetes for 2 years and found that 8 percent to 24 percent progressed to type 2 diabetes, while 45 to 65 percent reverted to normal glucose tolerance, but both studies involved some lifestyle intervention for participants.\(^\text{7,73}\) One of the cohort studies was conducted in an obesity clinic and followed children with prediabetes over 2 years. It provided dietary counseling and evaluation every 5 to 6 months, but it did not have a group who received no intervention. Of 162 adolescents with prediabetes at baseline, 102 (65%) reverted to normal glucose tolerance at 2 years, 44 (27%) had persistent prediabetes, and 13 (8%) progressed to type 2 diabetes.\(^\text{73}\) A similar smaller cohort study in the same obesity clinic followed a subset
of children and adolescents with prediabetes over 18 to 24 months, providing biannual nutrition and physical activity counseling. It found that of 33 children and adolescents with prediabetes at baseline, 15 (45.5%) reverted to normal glucose tolerance at followup, 10 (30.3%) maintained prediabetes, and 8 (24.2%) progressed to type 2 diabetes.

CQ 2. a. Does screening for prediabetes or type 2 diabetes change the intermediate outcomes of HbA1c level, FPG level, 2-hour glucose tolerance test results, subclinical retinopathy, microalbuminuria, or subclinical neuropathy for children and adolescents?

This review identified no studies for CQ 2a.

b. Do interventions for children and adolescents with screen-detected or recently diagnosed type 2 diabetes or prediabetes change the intermediate outcomes of HbA1c level, FPG level, 2-hour glucose tolerance test results, subclinical retinopathy, microalbuminuria, or subclinical neuropathy?

Summary
Among those recently diagnosed with type 2 diabetes, metformin improved glycemia, including A1c and FPG levels, compared with placebo in one trial; rosiglitazone combined with metformin improved glycemic control, as measured by A1c <8 percent and/or need for rescue insulin, compared with metformin alone or metformin and lifestyle in one trial, but only while rosiglitazone was being used (i.e., there was no long-term protective effect from prior use); liraglutide combined with metformin resulted in improved glycemia, as measured by A1c and FPG, compared with metformin and placebo in one trial. Among those with prediabetes, lifestyle improved 2-h glucose, but not fasting glucose or A1c, compared with usual care in one trial; data on rosiglitazone were inconclusive because of early trial discontinuation. There was no evidence that metformin combined with rosiglitazone or combined with lifestyle affected microalbuminuria compared with metformin alone in one trial. We found no trials (absence of evidence) demonstrating that interventions for children and adolescents with recently diagnosed type 2 diabetes or prediabetes change subclinical retinopathy or subclinical neuropathy.

Impact of Interventions on Glycemia in Children/Adolescents with Recently Diagnosed Type 2 Diabetes
Three studies (4 articles) examined the glycemic impact of treating recently diagnosed type 2 diabetes. A double-blind RCT (also included in KQ 4) conducted across 44 sites in the United States, Russia, Ukraine, Belarus, and Poland examined whether screening for type 2 diabetes changed the intermediate outcomes of A1c and FPG. In that trial, Jones et al examined the impact of metformin (titrated up to 2,000 mg/day as tolerated [mean final dose of metformin=1,798 mg]) against placebo in 82 children ages 10 to 16 years who were previously or newly diagnosed with type 2 diabetes. Some participants may have had a previous diagnosis of type 2 diabetes and taken oral glucose lowering medication previously (but at least 28 days before trial start). The independent Data and Safety Monitoring Board recommended an end to the double-blind period (all participants were switched to open-label metformin) based on 8-week data showing that 70.0 percent of the placebo subjects had required rescue medication for exceeding the predetermined glycemic threshold compared with 15.8 percent of metformin subjects. At the end of double-blind treatment, the adjusted mean FPG had significantly decreased in the metformin group but increased in the placebo group (-2.4 mmol/l [-42.9 mg/dl])
Appendix A. Additional Background and Contextual Questions (CQs)

vs. +1.2 mmol/l [+21.4 mg/dl]; p<0.001). The mean adjusted HbA1c level at the end of the double-blind period was also significantly lower in the metformin group compared with the placebo group (7.5 vs. 8.6%, respectively; p<0.001). The proportion of subjects who met at least one of the American Diabetes Association (ADA) glycemic treatment target levels (FPG <7.0 mmol/l [<126 mg/dl] or HbA1c <7.0%) by their last double-blind treatment visit was 84 percent for the metformin group compared with 22 percent for the placebo group.

In the TODAY trial (described in KQs 3 and 4), 699 adolescents who were obese ages 10 to 17 years and with recent onset type 2 diabetes (mean duration of diagnosed type 2 diabetes=7.8 months) were randomized to metformin, metformin plus rosiglitazone, or metformin plus lifestyle program. The primary outcome was loss of glycemic control, defined as a glycated hemoglobin level of at least 8 percent for 6 months or sustained metabolic decompensation requiring insulin. The authors reported that 51.7 percent (95% CI, 45.3 to 58.2), 38.6 percent (95% CI, 32.4 to 44.9), and 46.6 percent (95% CI, 40.2 to 53.0) of participants experienced loss of glycemic control in the metformin, metformin plus rosiglitazone, and metformin plus lifestyle interventions, respectively. Metformin plus rosiglitazone was associated with a 25.3 percent decrease in the occurrence of the loss of glycemic control compared with metformin alone (p=0.006); the glycemic impact of metformin plus lifestyle intervention did not differ significantly from that of metformin alone or metformin plus rosiglitazone. In TODAY2, a followup study of 572 TODAY participants, rosiglitazone was permanently discontinued in those who had been assigned to that arm. All participants continued receiving metformin monotherapy at the same dose they were taking at the end of TODAY, and add-on insulin therapy was continued or started in participants who had metabolic decompensation during followup. After 36 months, the rate of glycemic failure did not differ among participants who were previously randomized to any of the three TODAY treatment arms (metformin, metformin plus rosiglitazone, or metformin plus lifestyle program). By the end of the 96 months’ total observation period (including TODAY and TODAY2), 173 participants (25.6% of the original cohort) remained free of glycemic failure. There were no statistically significant differences by sex or race/ethnicity.

The third study was a double-blind multicenter (25 countries) RCT examining the glycemic impact of metformin plus liraglutide (up to 1.8 mg per day) vs metformin plus placebo in 134 participants aged 10 to 17 years with type 2 diabetes (mean duration 1.9 years). All participants were encouraged to follow a diet and exercise regimen. The authors reported that 23 percent and 15 percent of liraglutide-metformin and metformin only participants, respectively, were also taking basal insulin at baseline; their insulin dosage was reduced by 20 percent at the time of randomization but could be increased back up to the baseline dose (but no higher) after completion of the dose-escalation period. The primary end point was the change from baseline in the A1c level, and secondary end points included change in FPG level. Mean A1c levels at week 26 were reduced from baseline by 0.64 percentage points in the liraglutide group, whereas the levels increased by 0.42 percentage points in the placebo group (estimated treatment difference, -1.06 percentage points [95% CI, -1.65 to -0.46]; p<0.001). Moreover, 63.7 percent of the patients in the liraglutide group, as compared with 36.5 percent in the placebo group, attained A1c levels of less than 7.0 percent (p<0.001). Liraglutide was also superior to placebo in reducing FPG levels by 26 weeks (-1.08 mmol/L vs. 0.80 mmol/L).
Appendix A. Additional Background and Contextual Questions (CQs)

Impact of Interventions on Other Intermediate Outcomes in Children/Adolescents with Recently Diagnosed Type 2 Diabetes

The TODAY trial examined the development of microalbuminuria (albumin:creatinine ratio of 30 or more, with albumin measured in milligrams per deciliter and creatinine in grams per deciliter). The prevalence of microalbuminuria increased from 6.3 to 16.6 percent by the end of the study, but the incidence of new cases of microalbuminuria did not differ across treatment arms.

No studies examined subclinical retinopathy or subclinical nephropathy and reported results that were eligible for this report. The TODAY study reported on the prevalence of retinopathy among study participants using retinal images that were taken during the last year of the study, but it did not report data separated by the three study groups nor did it collect baseline data to enable reporting of changes in or incidence of retinopathy.

Impact of Interventions on Glycemia in Children/Adolescents with Prediabetes

Lifestyle: An RCT (described in KQ 5) compared a lifestyle program (Bright Bodies [BB]) with standard clinical care (CC) among 75 racially/ethnically diverse adolescents who were obese (ages 10-16 years) with prediabetes as defined by an elevated OGTT 2-h blood glucose (130-199 mg/dL; using a range that was slightly wider than the current prediabetes criteria of 140 to 199 mg/dL). The BB intervention was family based, tailored for inner-city minority children and their families, and consisted of two 50-min exercise sessions per week, one weekly weigh-in, and a 40-min nutrition/behavior modification class. Participants were encouraged to exercise 3 additional days per week and given guidance on making healthy food choices including low-fat foods of moderate portions. The primary outcomes were change in 2-h blood glucose level and percentage conversion from elevated to nonelevated 2-h blood glucose level (<130 mg/dL) at the 6-month followup. The BB group experienced a greater decrease in 2-h glucose compared with CC (27.2 vs. 10.1 mg/dL; difference=17.1 [95% CI -29.0 to -5.1]; p=0.005). In addition, more participants in the BB experienced conversion to normal 2-h glucose (<130 mg/dL) compared with CC (p=0.003). Fasting glucose and A1c did not differ between groups at 6 months.

Rosiglitazone. In a pilot randomized, double-blind, placebo-controlled study, 21 adolescents who were obese (between ages 13 and 18 years) with impaired glucose tolerance (diagnosed via OGTT) received either rosiglitazone (8 mg daily) or placebo over 4 months. Nutritional and exercise recommendations were given to both groups. The study was stopped early because recruitment became difficult due to concerns that had emerged from the literature regarding cardiac complications associated with rosiglitazone. Fifty-eight percent (n=7) in the rosiglitazone group vs. 44 percent (n=4) in the placebo group converted from impaired glucose tolerance (IGT) to normal glucose tolerance (p=0.53). Fasting glucose and A1c were collected during the study but not reported.

CQ 3. a. Do interventions for (or does knowledge of) prediabetes change body mass index (BMI), weight, or healthy behaviors?

In summary, three studies were identified that addressed whether interventions for prediabetes or if knowledge of prediabetes was associated with changes in BMI and weight. No studies were identified that examined changes in healthy behaviors. Included studies compared lifestyle...
Appendix A. Additional Background and Contextual Questions (CQs)

with standard care64 and rosiglitazone with placebo,78 and assessed the association of prediabetes identification with BMI.68 All three studies reported on BMI,64, 68, 78 and two studies reported on weight.64, 78 Two of the included studies were RCTs, and one was a cohort study. All three studies were conducted in the United States and included racially diverse samples. Overall, studies reported that lifestyle interventions for children and adolescents with prediabetes improved the intermediate outcomes of weight and BMI compared with controls, rosiglitazone did not reduce weight or BMI compared with placebo, and prediabetes identification was associated with decreases in BMI in adolescents who were obese and overweight.

Two RCTs of prediabetes interventions reported on changes in BMI and weight.64, 78 One study (described in KQ 5) recruited adolescents from an obesity clinic (n=75) and compared the lifestyle invention BB with standard care.64 Participating adolescents (ages 10-16 years) were required to have an elevated OGTT 2-h glucose (130-199 mg/dl), a BMI greater than 95th percentile, and a Tanner stage of greater than 2. The final sample included mostly nonwhite (66\%) females (70\%). At 6 months, participation in BB was associated with a significant decrease in weight (3.1 kg [95\% CI, -5.3 to -0.9]) and BMI (-1.05 kg/m2 [95\% CI, -1.78 to -0.32]; z-score, -0.09 [95\% CI, -0.14 to -0.04]) compared with standard care. The second included trial (n=23) compared rosiglitazone with placebo and recruited participants from the same obesity clinic as in the BB study.78 Participants were between the ages of 13 and 18 years, had IGT or impaired fasting glucose (IFG-IGT), and were in Tanner stage II-IV with a BMI z-score greater than 2 for age and sex. In the sample of mostly nonwhite (76\%) females (57\%), the study reported no significant differences in BMI (0.07 vs. -0.016, p=0.757) or weight changes (1.81 vs. 0.61, p=0.541) when comparing rosiglitazone with placebo at posttreatment.

A U.S.-based retrospective cohort study (n=4,184) using data from the Children’s Hospital of Philadelphia examined the association between prediabetes identification and BMI.68 In a sample of children (ages 10 to 18 years) who were overweight or obese (BMI z-score ≥1.04), the study compared differences in BMI z-score before and after available HbA1c tests. Median followup was 9.7 years. Youth were categorized as “screened” if at least 1 HbA1c result was available. Prediabetes was defined as 5.7 percent to 6.4 percent, 39 to 46 mmol/mol, and normal was defined as less than 5.7 percent, less than 39 mmol/mol. Using an adjusted model (adjusting for BMI z-score at HbA1c, age at HbA1c, sex, race, ethnicity, and insurance type), the study reported that children who had an HbA1c in the prediabetes range had a greater decrease in BMI z-score slope than children with a normal HbA1c (pre/post difference of -0.050/\text{year} [prediabetes] vs. -0.027 [normal], difference in difference: -0.023/\text{year} [95\% CI, -0.042 to -0.004]). Children who had an HbA1c in the prediabetes range also had a greater decrease in BMI z-score slope than age-matched “unscreened” children who were obese (difference in difference: -0.031/\text{year} [95\% CI, -0.042 to -0.021]) adjusting for BMI z-score at HbA1c (or matched age), age, sex, race, ethnicity, and insurance type. Limitations of the study include a lack of any information about whether or how prediabetes diagnosis was conveyed to patients, whether patients were provided counseling or interventions, whether patients changed behaviors as a result of HbA1c testing or prediabetes diagnosis, and reasons for testing (e.g., testing may be more likely for children who were obese who were initiating interventions for their obesity).
CQ 3. b. Do interventions for (or does knowledge of) type 2 diabetes change BMI, weight, or healthy behaviors?

Two RCTs were identified that examined the association between diabetes interventions and changes in BMI, weight, and healthy behaviors.18, 53, 63, 65, 66, 79 No studies were identified that examined if knowledge of diabetes was associated with BMI, weight, or healthy behaviors. The two identified trials examined metformin,18, 53, 63, 65, 66, 79 metformin plus rosiglitazone,18, 53, 65, 66, 79 and lifestyle intervention.18, 53, 65, 66, 79 One trial (TODAY) was conducted in the United States,18, 53, 65, 66, 79 and one trial included sites within multiple countries.63 Both trials included racially diverse samples. Overall, studies reported that interventions including metformin (e.g., metformin alone, metformin plus lifestyle intervention) were associated with decreases in BMI and weight when compared with active comparisons (e.g., metformin plus rosiglitazone); one study reported that metformin was not associated with significant changes compared with control. Studies comparing metformin with metformin plus lifestyle reported significant differences in BMI change and average weight change at shorter followups (e.g., 6 months). Differences between metformin and metformin plus lifestyle were not found for meaningful reductions in weight or when average weight change was examined at longer followups (e.g., 24 months). Studies also reported that interventions that included rosiglitazone (e.g., metformin plus rosiglitazone) were associated with increases in BMI when compared with other active comparators (e.g., metformin alone, metformin plus lifestyle). The findings of the two included trials were mixed. In addition, the TODAY study reported that the combination of metformin plus lifestyle was associated with improved health behaviors compared with metformin plus rosiglitazone for males at 6 months, although data were missing for many participants. Significant differences in health behaviors were not found between other intervention groups (e.g., metformin alone vs. metformin plus lifestyle, metformin alone vs. metformin plus rosiglitazone) among males, and no significant differences were found between groups among females.

One trial63 conducted in multiple countries included children between the ages 8-16 years with a previous or new diabetes diagnosis. In the sample of mostly nonwhite (63%) females (70%), no significant differences were reported in the mean changes for BMI or weight when comparing metformin with placebo (-0.5 kg/m2 vs. -0.4 kg/m2 and -1.5 kg vs. -0.9 kg, respectively) at 16 weeks posttreatment.63

The second identified trial was the TODAY study (described in KQ 3).18, 53, 65, 66, 79 At 6 months, the combination of metformin plus lifestyle was associated with significant decreases in BMI compared with metformin alone (-0.21 vs. 0.35, \(p=0.0201\)) or in comparison with metformin plus rosiglitazone (-0.21 vs. 0.70, \(p=0.0002\)). At 24 months, significant differences in BMI were reported between metformin plus rosiglitazone compared with metformin alone (2.93 vs. 1.57; \(p<0.0001\)) and when comparing metformin plus rosiglitazone with metformin plus lifestyle (2.93 vs. 1.52, \(p<0.001\)).

For average change in percentage overweight (defined as BMI minus BMI at the 50th percentile for age and sex, divided by BMI at the 50th percentile), the TODAY study reported that both metformin alone (-1.42 percentage points) and metformin plus lifestyle (-3.64 percentage points) were associated with significant decreases. The study also reported that metformin plus rosiglitazone was associated with a significant increase in percentage overweight (0.81
Appendix A. Additional Background and Contextual Questions (CQs)

percentage points). The overall comparison and the comparison across all three groups were significant for this outcome at 6 months (p<0.001). At 24 months, differences between metformin plus rosiglitazone compared with metformin alone (0.89 percentage points vs. -4.42 percentage points), and metformin plus rosiglitazone compared with metformin plus lifestyle (0.89 percentage points vs. -5.02 percentage points) remained statistically significant (p<0.001). The differences between metformin and metformin and lifestyle were no longer significant at 24 months.18, 53, 65, 66, 79

The TODAY study also reported on the proportion of children with a meaningful reduction (≥7 percentage points) in percentage overweight posttreatment. A higher proportion of children in the metformin plus lifestyle group had a meaningful reduction in overweight participants compared with metformin plus rosiglitazone (31.2% vs. 16.7%, p<0.001) at 6 months. The study did not report any significant differences when comparing metformin plus lifestyle versus metformin alone (31.2% vs. 24.3%, p=NS).18, 53, 65, 66, 79

In addition, the TODAY study reported on the association between interventions and health behaviors.79 However, the results for these outcomes may have a high risk of bias because of missing data (with data missing for 36% to 41% of participants, depending on the time point). At 6 months, males in the metformin plus lifestyle group were more likely to improve their eating habits and sedentary lifestyles compared with males in the metformin plus rosiglitazone group (50% vs. 26%, p=0.01). No significant differences were found between metformin plus lifestyle and metformin plus rosiglitazone at 24 months. Also, no significant differences were found between metformin plus lifestyle and metformin alone or between metformin alone and metformin plus rosiglitazone at 6 or 24 months. No significant differences in health behaviors were reported for females at 6 or 24 months across the three intervention groups.79

CQ 4. What is the frequency of agreement among screening tests (HbA1c level, FPG level, and 2-hour glucose tolerance test) for prediabetes and type 2 diabetes?

We focused on studies from very high HDI countries with at least 100 participants that reported relevant outcomes and used (at least some) data collected within the past 10 years. Studies were required to report frequency of agreement between at least two of the relevant tests and to use current criteria for diagnosis of prediabetes or type 2 diabetes (based on the ADA guidelines); we excluded studies that used older criteria. We included eight articles (Appendix A Table 2). Of those eight, one compared A1c and OGTT,80 two compared A1c and FPG,72, 81 and five compared the results of all three tests (A1c, FPG, and OGTT).82-86 Sample sizes ranged from 117 to 3,980. Five of the studies were conducted in the United States. The studies typically enrolled youths who were obese and overweight. Many of the studies reported relatively large differences in the proportion of youths diagnosed with prediabetes or diabetes when using different tests.72, 80, 81, 84, 86 For example, a study of 902 predominantly black youths conducted in the United States reported that prediabetes prevalence was 54.3 percent based on A1c compared with only 5.6 percent when using OGTT, and a study of 149 predominately Hispanic youths reported a diabetes or prediabetes (combined) prevalence of 48 percent based on A1c compared with 12 percent based on FPG and 16 percent based on OGTT.80, 86

These findings are consistent with evidence in adults. Further, elevations in A1c, FPG, and OGTT results may represent somewhat different metabolic states. The 2021 evidence review for
Appendix A. Additional Background and Contextual Questions (CQs)

the USPSTF on screening for prediabetes and diabetes in adults summarized a systematic review on the prevalence of prediabetes that would be identified by various screening tests.87 The review identified five studies (with a total of 17,108 adults) that showed generally low agreement between HbA1c, fasting plasma glucose, and 2-hour glucose tolerance test.87 For example, using ADA criteria, the prevalence of prediabetes by any test was 54 percent.87 Of those, 25 percent had isolated IFG, 6 percent isolated IGT, 22 percent isolated HbA1c criteria, 7 percent IFG and IGT, 27 percent IFG and HbA1c criteria, 4 percent IGT and HbA1c criteria, and 9 percent had all three.87

CQ 5. Are there risk assessment tools that are feasible for use in primary care settings, accurately predict the risk of prediabetes or type 2 diabetes for children and adolescents, and have been externally validated in U.S. populations?

We found two risk assessment tools for predicting risk of type 2 diabetes or prediabetes that have been validated in U.S. children or adolescents. Hannon and colleagues conducted a cluster-randomized clinical trial (published in 2017) to study the feasibility and effectiveness of a computerized clinical decision support system called Child Health Improvement Through Computer Automation (CHICA).88-93 The risk assessment tool compiled relevant inputs from the parent section of a previsit questionnaire (family history, race/ethnicity), the clinic staff prescreening form (patient height and weight), and a physician worksheet (signs and symptoms of insulin resistance or conditions associated with insulin resistance). CHICA analyzes these inputs and identifies those at "high risk for type 2 diabetes" using the ADA guidelines from 2000 (i.e., if they had BMI \(\geq 85^{th}\) percentile and two or more of the following risk factors: a family history of type 2 diabetes in a first- or second-degree relative, black race, Hispanic ethnicity, maternal history of diabetes or gestational diabetes, and signs of or conditions associated with insulin resistance) (the article did not provide additional details about what signs or conditions were considered as associated with insulin resistance). If high risk, it recommended screening for type 2 diabetes using FPG and HbA1c where prediabetes was defined as FPG 95 to 125 mg/dL and HbA1c 5.7 to 6.5 percent, and diabetes as FPG greater than125 mg/dL and HbA1c greater than 6.5 percent. Children age 10 years or older (n=1,369) attending four primary care clinics in Indiana were included. The primary outcome was the percentage of youths identified with documented risk factors for type 2 diabetes. The authors found that the screening rate was significantly higher after using the tool, but the authors noted that using the tool did not lead to more patients being diagnosed with prediabetes or type 2 diabetes (although the study was not designed or powered for that outcome). The authors found that when using FPG, 33.3 percent of control patients screened and 22.2 percent of intervention patients had FPG in the prediabetes range, and none were in the diabetes range. When using HbA1c, 31.2 percent of control patients and 20.6 percent of intervention patients had levels in the prediabetes range, and only one patient in the intervention group was diagnosed with diabetes.

DuBose and colleagues developed an adapted version of the adult risk assessment tool called Tool for Assessing Glucose ImpairmenT (TAG-IT) for an adolescent population (published in 2012) and named it Tool for Assessing Glucose ImpairmenT among Adolescents (TAG-IT-A).94, 95 They used data from a national U.S. sample from the Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey (NHANES) from 1999 to 2008. To develop TAG-IT-A, the authors followed the development process of TAG-IT. They used multiple regression to calculate the association of individual patient factors (age, race, sex, BMI,
resting heart rate, hypertension diagnosis [measured resting blood pressure or physician diagnosis]) and fasting blood glucose and FPG greater than or equal to 100 mg/dL, defined as IFG. They then used regression to calculate the association of the group of significant factors with FPG level and calculated weighted scores for each factor to create a TAG-IT-A scoring system. The scoring system involves each predictive factor being given a score, modeled after the Charlson Comorbidity Index. Odds ratios (ORs) from 1.0 to 1.19 were assigned 0 points, ORs from 1.2 to 1.49 were assigned 1 point, ORs from 1.5 to 2.49 were assigned 2 points, etc. The score from each factor is added together to create a final score, and as scores increased from 3 or higher, the authors reported that sensitivity of TAG-IT-A improved. The authors found that there was a positive and significant relationship between FPG and age (ages 12-14 years), sex (male), BMI (obese), and resting heart rate (≥70 beats per minute), which are the four components that create the TAG-IT-A score. TAG-IT-A score was predictive of IFG with an area under the receiver operating curve (AUC)=0.61 (confidence interval not reported), indicating inadequate discrimination. Although the AUC was lower than it was found for the original TAG-IT tool, it was thought that TAG-IT-A may not be as predictive in adolescents because other variables that are not captured may be important, such as aerobic fitness, pubertal development, and physical activity levels.

We identified one additional tool that has not been studied in the United States but was studied in a European pediatric population. Gray and colleagues conducted an accuracy evaluation (published in 2019) of a previously developed risk prediction tool called PRESTARt, comparing it with a reference standard of clinician assessment of whether the participant was high or low risk of developing type 2 diabetes in their lifetime. Aside from stating that two clinicians independently judged each participant, with a third adjudicating if needed, no additional details are provided about how lifetime risk status was established. The authors recruited 636 adolescents age 12 to 14 years from five European countries (Germany, Greece, Portugal, Spain, and the United Kingdom). They found that participants were high risk if they were overweight/obese and had at least one other risk factor from among the following: high waist circumference, family history of diabetes, parental obesity, not breast fed, high sugar intake, high screen time, low physical activity, and low fruit and vegetable intake. The AUC when comparing PRESTARt and clinician assessment was 0.74 (95% CI, 0.71 to 0.78).
Appendix A Table 1. Screening Recommendations of Other Groups

<table>
<thead>
<tr>
<th>Organization, Year</th>
<th>Screening Recommendation</th>
<th>Risk Factors Considered</th>
<th>Frequency of Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Diabetes Association, 2020</td>
<td>Screen children after onset of puberty or age 10 years who are overweight or obese and have one or more additional risk factors with FPG or 2-h PG after 75-g OGTT, or an A1c</td>
<td>Puberty; age (after 10 years); overweight (BMI ≥85th percentile) or obese (BMI ≥95th percentile); additional risk factors include maternal history of diabetes or GDM during the child’s gestation, family history of type 2 diabetes in first- or second-degree relative, race/ethnicity (Native American, African American, Latino, Asian American, Pacific Islander), or signs of insulin resistance or conditions associated with insulin resistance (acanthosis nigricans, hypertension, dyslipidemia, polycystic ovary syndrome, or small-for-gestational-age birth weight)</td>
<td>Repeat screening every 3 years or more frequently if BMI is increasing</td>
</tr>
<tr>
<td>Diabetes Canada, 2018</td>
<td>Screen nonpubertal children with at least three risk factors and pubertal children with at least two risk factors with a combination of A1c and a FPG test or a random PG test</td>
<td>Obesity (BMI >95th percentile for age and gender), member of a high-risk ethnic group (e.g., aboriginal, African, Asian, Hispanic, or South Asian descent), family history of type 2 diabetes or exposure to hyperglycemia in utero and symptoms of insulin resistance (including acanthosis nigricans, hypertension, dyslipidemia, NAFLD)</td>
<td>Repeat screening every 2 years in nonpubertal children with ≥3 risk factors and in pubertal children ≥2 risk factors, in children with IFG or impaired glucose tolerance, in children with use of atypical antipsychotic medications, and in children with PCOS</td>
</tr>
<tr>
<td>International Society for Pediatric and Adolescent Diabetes, 2014</td>
<td>Screen children and adolescents using American Diabetes Association criteria including using a FPG test, a 2-h postchallenge glucose test, or a hemoglobin A1c</td>
<td>NR</td>
<td>Does not specify, but supporting the American Diabetes Association criteria implies every 3 years or more frequent if BMI is increasing</td>
</tr>
<tr>
<td>National Institute for Health and Care Excellence (NICE), 2015</td>
<td>Does not have a true screening recommendation, but they state to “think about the possibility of type 2 diabetes in children and young people with suspected diabetes”</td>
<td>Family history of type 2 diabetes, obese at presentation, are of black or Asian family origin, have no insulin requirement or an insulin requirement of less than 0.5 units/kg body weight/day after the partial remission phase, and demonstrate evidence of insulin resistance</td>
<td>NR</td>
</tr>
<tr>
<td>Pediatric Endocrine Society (PES) Drugs and Therapeutics Committee, 2012</td>
<td>Screen children who are asymptomatic or minimally symptomatic and at risk with HbA1c test</td>
<td>HbA1c is unreliable in those with sickle-cell carrier status</td>
<td>NR</td>
</tr>
</tbody>
</table>

Abbreviations: BMI=body mass index; FPG=fasting plasma glucose; GDM=gestational diabetes mellitus; IFG=impaired fasting glucose; HbA1c=glycated hemoglobin; NAFLD=non-alcoholic fatty liver disease; NICE=National Institute for Health and Care Excellence; NR=not reported; OGTT=oral glucose tolerance test; PCOS=polycystic ovary syndrome; PES=Pediatric Endocrine Society; PG=2-h plasma glucose.
Appendix A Table 2. Studies That Compared Agreement Among Screening Tests, by Comparison

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Comparison</th>
<th>N</th>
<th>Age, Mean (range)</th>
<th>Country</th>
<th>Race and Ethnicity</th>
<th>Main Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitt et al., 2016<sup>46</sup></td>
<td>A1c and OGGT</td>
<td>902</td>
<td>11.6 (2 to 18 years)</td>
<td>U.S.</td>
<td>70% black</td>
<td>Diabetes prevalence: based on A1c was 2.9% (n=26) vs. 1.7% (n=15) based on OGTT. Prediabetes prevalence: based on A1c was 54.3% (n=491) vs. 5.6% (n=51) based on OGTT.</td>
</tr>
<tr>
<td>Buse et al., 2013<sup>32</sup> HEALTHY</td>
<td>A1c and FPG</td>
<td>3,980</td>
<td>11 (10 to 14 years)</td>
<td>U.S.</td>
<td>91.5% white</td>
<td>3.2% had A1c 5.7%-6.4%; 16.0% had IFG. Of those with A1c 5.7% to 6.4% (128 participants), 63.3% had normal fasting glucose (<100) and 36.7% had IFG. Of those with normal A1c (<5.7%) (3,852 participants), 84.7% had normal fasting glucose and 15.3% had IFG.</td>
</tr>
<tr>
<td>Tester et al., 2013<sup>41</sup></td>
<td>A1c and FPG</td>
<td>1,356</td>
<td>11 (2 to 19 years)</td>
<td>U.S.</td>
<td>14% black</td>
<td>Prediabetes prevalence was 20.7% based on A1c vs. 7.8% based on IFG.</td>
</tr>
<tr>
<td>Kim et al., 2019<sup>43</sup></td>
<td>A1c, FPG, and OGGT</td>
<td>190</td>
<td>12.6 (NR)</td>
<td>South Korea</td>
<td>NR</td>
<td>Diabetes prevalence: based on A1c was 22.1% (n=42) vs. 21.1% (n=40) based on OGTT. Prediabetes prevalence: based on A1c was 21.6% (n=41) vs. 17.4% (n=33) based on OGTT. Diagnostic sensitivity (for diabetes) was lower for FPG (63.8%) than for A1c (89.4%) or OGTT (85.1%).</td>
</tr>
<tr>
<td>Yoon et al., 2018<sup>43</sup></td>
<td>A1c, FPG, and OGGT</td>
<td>236</td>
<td>10.4 (NR)</td>
<td>South Korea</td>
<td>NR</td>
<td>Diabetes prevalence: 17% (n=39) based on OGTT. Prediabetes prevalence: 22% (n=52) based on OGTT. Using ADA cutoffs, A1c had sensitivity of 87.2% and specificity of 98.5% for detecting diabetes and FPG had 66.7% and 99.0%, respectively (compared with OGTT reference standard)</td>
</tr>
<tr>
<td>Chan et al., 2016<sup>44</sup></td>
<td>A1c, FPG, and OGGT</td>
<td>117</td>
<td>14.1 (10 to 18 years)</td>
<td>U.S.</td>
<td>22% white</td>
<td>About half of the participants met criteria for prediabetes or diabetes based on either OGTT (40.2%) or HbA1c (51.3%), but only 9% met FPG criteria for prediabetes or diabetes.</td>
</tr>
<tr>
<td>Galhardo and Shield, 2015<sup>49</sup></td>
<td>A1c, FPG, and OGGT</td>
<td>266</td>
<td>12.3 (8.9 to 17.6 years)</td>
<td>Portugal</td>
<td>90% white</td>
<td>Diabetes prevalence: 1 (0.4%) based on A1c vs 0 (0%) based on OGTT. Prediabetes prevalence: 32 (12%) based on A1c vs. 13 (4.9%) based on OGTT. A1c had AUC 0.59 (95% CI 0.40 to 0.78) and FPG had AUC 0.76 (95% CI 0.66 to 0.87) using OGTT as the reference standard.</td>
</tr>
<tr>
<td>Brar et al., 2014<sup>46</sup></td>
<td>A1c, FPG, and OGGT</td>
<td>149</td>
<td>13.0 to 13.8 (NR)</td>
<td>U.S.</td>
<td>71% Hispanic</td>
<td>Prediabetes or type 2 diabetes prevalence: 71 (48%) based on A1c vs 18 (12%) based on FPG vs. 24 (16%) based on OGTT.</td>
</tr>
</tbody>
</table>

Abbreviations: ADA=American Diabetes Association; AUC=area under the curve; CI=confidence interval; FPG=fasting plasma glucose; IFG=impaired fasting glucose; NR=not reported; OGTT=oral glucose tolerance test.
PubMed Screening, 8/3/2020

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Diabetes Mellitus, Type 2"[Mesh] OR "Glucose Tolerance"[Mesh] OR</td>
<td></td>
<td>213,359</td>
</tr>
<tr>
<td></td>
<td>"glucose tolerance"[All Fields] OR "impaired glucose tolerance"[All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fields] OR dysglycemia[tiab] OR IGT OR "impaired fasting glucose" OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IFG OR "Glucose Intolerance"[MeSH] OR "glucose intolerance"[All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fields] OR "Prediabetic State"[MeSH] OR "prediabetic state"[All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fields] OR prediabet* OR "pre diabetes"[All Fields] OR "diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mellitus type 2"[All Fields] OR "type 2 diabetes mellitus"[All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fields]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>"Blood Glucose"[Mesh] OR "blood glucose"[tiab] OR "Glucose</td>
<td></td>
<td>253,967</td>
</tr>
<tr>
<td></td>
<td>Tolerance Test"[Mesh] OR OGTT[tiab] OR "glucose tolerance test"[ti]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR "Glycated Hemoglobin A"[Mesh] OR "hemoglobin A1c" OR HbA1c OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"fasting plasma glucose"[tiab] OR "oral glucose tolerance"[tiab]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>#1 AND #2</td>
<td></td>
<td>97,474</td>
</tr>
<tr>
<td>4</td>
<td>"Mass Screening"[Mesh] OR screen'[tiab]</td>
<td></td>
<td>796,716</td>
</tr>
<tr>
<td>5</td>
<td>#3 AND #4</td>
<td></td>
<td>6,429</td>
</tr>
<tr>
<td>6</td>
<td>#5 NOT (gestation* OR Pregnancy[Mesh])</td>
<td>English</td>
<td>4,708</td>
</tr>
<tr>
<td>7</td>
<td>#5 NOT (gestation* OR Pregnancy[Mesh])</td>
<td>English, Child:</td>
<td>4,331</td>
</tr>
<tr>
<td></td>
<td>birth-18 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>#5 NOT (gestation* OR Pregnancy[Mesh])</td>
<td>English, Child:</td>
<td>698</td>
</tr>
<tr>
<td></td>
<td>birth-18 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>toddler*[tiab]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>#7 AND #9</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>11</td>
<td>#8 OR #10</td>
<td></td>
<td>759</td>
</tr>
<tr>
<td>12</td>
<td>(#11 AND humans[mesh:noexp]) OR (#11 NOT animals[mesh:noexp])</td>
<td></td>
<td>758</td>
</tr>
<tr>
<td>13</td>
<td>("review"[Publication Type] AND "systematic"[tiab]) OR "systematic</td>
<td></td>
<td>323,325</td>
</tr>
<tr>
<td></td>
<td>review"[All Fields] OR ("review literature as topic"[MeSH] AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"systematic"[tiab]) OR "meta-analysis"[Publication Type] OR "meta-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>analysis as topic"[MeSH Terms] OR "meta-analysis"[All Fields] OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"meta synthesis"[ti] OR "systematic literature review"[ti] OR "this</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systematic review"[tw] OR "cochrane database syst rev"[ta]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>#12 AND #13</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>"controlled clinical trial"[publication type] OR "Randomized</td>
<td></td>
<td>3,141,667</td>
</tr>
<tr>
<td></td>
<td>Controlled Trial"[Publication Type] OR "Single-Blind Method"[MeSH]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR "Double-Blind Method"[MeSH] OR "Random Allocation"[MeSH] OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(controlled[tiab] AND trial[tiab]) OR groups [tiab] OR placebo [tiab]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR randomised [tiab] OR randomized [tiab] OR randomly [tiab] OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trial [tiab]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>#12 AND #15</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>17</td>
<td>#12 AND "Case-Control Studies"[MeSH]</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>18</td>
<td>"Cohort Studies"[Mesh] OR "Epidemiologic Studies"[Mesh] OR "Follow-</td>
<td></td>
<td>2,550,540</td>
</tr>
<tr>
<td></td>
<td>up Studies"[Mesh] OR "prospective cohort" OR "prospective studies"[</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>study[All Fields] OR studies[All Fields])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>#12 AND #18</td>
<td></td>
<td>284</td>
</tr>
<tr>
<td>20</td>
<td>"Evaluation Study"[pt] OR "Comparative Study"[pt]</td>
<td></td>
<td>2,062,504</td>
</tr>
<tr>
<td>21</td>
<td>#12 AND #20</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>#17 OR #19 OR #21</td>
<td></td>
<td>324</td>
</tr>
</tbody>
</table>
PubMed Interventions, 8/3/2020

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>#1 AND #2</td>
<td></td>
<td>23,456</td>
</tr>
</tbody>
</table>
Appendix B1. Original Literature Search Strategies

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>#1 AND #4</td>
<td></td>
<td>19,500</td>
</tr>
<tr>
<td>6</td>
<td>#3 OR #5</td>
<td></td>
<td>41,039</td>
</tr>
<tr>
<td>7</td>
<td>(#6 AND Humans[Mesh:NOEXP]) OR (#6 NOT Animals[Mesh:NOEXP])</td>
<td>English</td>
<td>38,332</td>
</tr>
<tr>
<td>8</td>
<td>(#6 AND Humans[Mesh:NOEXP]) OR (#6 NOT Animals[Mesh:NOEXP])</td>
<td></td>
<td>34,717</td>
</tr>
<tr>
<td>9</td>
<td>(#6 AND Humans[Mesh:NOEXP]) OR (#6 NOT Animals[Mesh:NOEXP])</td>
<td>English, Child: birth-18 years</td>
<td>2,985</td>
</tr>
<tr>
<td>11</td>
<td>#8 AND #10</td>
<td></td>
<td>1,507</td>
</tr>
<tr>
<td>12</td>
<td>#9 OR #11</td>
<td></td>
<td>3,429</td>
</tr>
<tr>
<td>14</td>
<td>#12 NOT #13</td>
<td></td>
<td>2,846</td>
</tr>
</tbody>
</table>
Appendix B. Original Literature Search Strategies

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>#14 NOT (gestation* OR Pregnancy[Mesh])</td>
<td></td>
<td>2,500</td>
</tr>
<tr>
<td>17</td>
<td>#15 AND #16</td>
<td></td>
<td>999</td>
</tr>
<tr>
<td>18</td>
<td>("review"[Publication Type] AND "systematic"[tiab]) OR "systematic review"[All Fields] OR ("review literature as topic"[MeSH] AND "systematic"[tiab]) OR "meta-analysis"[Publication Type] OR "meta-analysis as topic"[MeSH Terms] OR "meta-analysis"[All Fields] OR "meta synthesis"[ti] OR "systematic literature review"[ti] OR "this systematic review"[tw] OR "cochrane database syst rev"[ta]</td>
<td></td>
<td>323,325</td>
</tr>
<tr>
<td>19</td>
<td>#15 AND #18</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>#15 AND "Case-Control Studies"[MeSH]</td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>22</td>
<td>#15 AND ("Evaluation Study"[pt] OR "Comparative Study"[pt])</td>
<td></td>
<td>252</td>
</tr>
</tbody>
</table>

Cochrane Library Screening, 8/3/2020

<table>
<thead>
<tr>
<th>ID</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>[mh "Diabetes Mellitus, Type 2"] OR [mh "Glucose Tolerance"] OR "glucose tolerance" OR "impaired glucose tolerance" OR dysglycemia:ti,ab OR IGT OR "impaired fasting glucose" OR IFG OR [mh "Glucose Intolerance"] OR "glucose intolerance" OR [mh "Prediabetic State"] OR "prediabetic state" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus"</td>
<td>34233</td>
</tr>
<tr>
<td>#2</td>
<td>[mh "Blood Glucose"] OR "blood glucose":ti,ab OR [mh "Glucose Tolerance Test"] OR OGGTT:ti,ab OR "glucose tolerance test":ti OR [mh "Glycated Hemoglobin A"] OR "hemoglobin A1c" OR HbA1c OR "fasting plasma glucose":ti,ab OR "oral glucose tolerance":ti,ab</td>
<td>45778</td>
</tr>
<tr>
<td>#3</td>
<td>#1 AND #2</td>
<td>19244</td>
</tr>
<tr>
<td>#4</td>
<td>[mh "Mass Screening"] OR screen*:ti,ab</td>
<td>67390</td>
</tr>
<tr>
<td>#5</td>
<td>#3 AND #4</td>
<td>1702</td>
</tr>
<tr>
<td>#6</td>
<td>#5 NOT (gestation* OR [mh Pregnancy])</td>
<td>1521</td>
</tr>
<tr>
<td>#7</td>
<td>adolescen*:ti,ab,kw OR boys:ti,ab,kw OR child*:ti,ab,kw OR children:ti,ab,kw OR girls:ti,ab,kw OR pediatric:ti,ab,kw OR paediatric*:ti,ab,kw OR teen:ti,ab,kw OR teens:ti,ab,kw OR teenage:ti,ab,kw OR teenaged:ti,ab,kw,kw OR teenager*:ti,ab,kw OR toddler*:ti,ab,kw</td>
<td>248461</td>
</tr>
<tr>
<td>#8</td>
<td>#6 AND #7</td>
<td>197</td>
</tr>
</tbody>
</table>
Appendix B1. Original Literature Search Strategies

Cochrane Library Interventions, 8/3/2020

<table>
<thead>
<tr>
<th>ID</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>[mh "Diabetes Mellitus, Type 2"] OR [mh "Glucose Tolerance"] OR "glucose tolerance" OR "impaired glucose tolerance" OR "impaired fasting glucose" OR IFG OR [mh "Glucose Intolerance"] OR "glucose intolerance" OR [mh "Prediabetic State"] OR "prediabetic state" OR prediabetes OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus"</td>
<td>34233</td>
</tr>
<tr>
<td>#3</td>
<td>#1 AND #2</td>
<td>9227</td>
</tr>
<tr>
<td>#4</td>
<td>advice:ti,ab OR [mh "Behavior Therapy"] OR "behavior therapy":ti,ab OR (behavior*:ti,ab AND therap*:ti,ab) OR (behavior*:ti,ab AND chang*:ti,ab) OR (behavior*:ti,ab AND modification*:ti,ab) OR [mh "Caloric Restriction"] OR ((child*:ti,ab AND parent*:ti,ab) AND therap*:ti,ab) OR [mh Counseling] OR counsel*:ti,ab OR "cognitive behavior":ti,ab OR "cognitive behavioral":ti,ab OR "cognitive therapy":ti,ab OR "cognitive therapy":ti,ab OR CBT:ti OR "Diabetes Prevention Program":ti,ab OR "Diabetes Prevention Programme":ti,ab OR DPP:ti,ab OR ["Diabetes Prevention":ti,ab AND (program*:ti,ab OR stud*:ti,ab OR trial*:ti,ab)) OR diet:ti,ab OR [mh "Diet, Carbohydrate-Restricted"] OR [mh "Diet, Fat-Restricted"] OR [mh "Diet, Mediterranean"] OR [mh "Diet, Reducing"] OR [mh "Diet Therapy"] OR dietary:ti,ab OR [mh "Directive Counselling"] OR [mh Exercise] OR exercise:ti,ab OR [mh "Exercise Therapy"] OR "family intervention":ti,ab OR "family therapy":ti,ab OR [mh "Feedback, Psychological"] OR [mh "group therap*",ti,ab OR [mh "Health Behavior"] OR "health behavior":ti,ab OR "health behaviors":ti,ab OR "health behavioral":ti,ab OR "health behaviours":ti,ab OR "health behaviour":ti,ab OR [mh "Health Education"] OR [mh "Health Education as Topic"] OR [mh "health education":ti,ab OR [mh "Health Promotion"] OR [mh "health promotion":ti,ab OR [mh "life style":ti,ab OR [mh "Lifestyle Intervention"] OR [mh "Motivational Interviewing"] OR "motivational interviewing":ti,ab OR "non pharmacologic intervention":ti,ab OR [mh "Patient Education as Topic"] OR [mh "patient education":ti,ab OR [mh "physical activity":ti,ab OR [mh "psychological feedback":ti,ab OR [mh "Risk Reduction Behavior"] OR "Risk Reduction Behavior":ti,ab OR [mh "Weight Loss"] OR [mh "Weight Reduction Programs"]</td>
<td>181889</td>
</tr>
<tr>
<td>#5</td>
<td>#1 AND #4</td>
<td>8940</td>
</tr>
<tr>
<td>#6</td>
<td>#3 OR #5</td>
<td>16313</td>
</tr>
<tr>
<td>#7</td>
<td>#6 NOT ([mh animals] NOT [mh humans])</td>
<td>16313</td>
</tr>
<tr>
<td>#8</td>
<td>adolescent*:ti,ab,kw OR boys:ti,ab,kw OR child*:ti,ab,kw OR children:ti,ab,kw OR girls:ti,ab,kw OR pediatric*:ti,ab,kw OR paediatric*:ti,ab,kw OR teen:ti,ab,kw OR teens:ti,ab,kw OR teenage:ti,ab,kw OR teenaged:ti,ab,kw OR teenager*:ti,ab,kw OR toddler*:ti,ab,kw</td>
<td>248461</td>
</tr>
<tr>
<td>#9</td>
<td>#7 AND #8</td>
<td>1360</td>
</tr>
<tr>
<td>#10</td>
<td>#9 NOT (gestation* OR [mh Pregnancy])</td>
<td>1162</td>
</tr>
</tbody>
</table>
PubMed Interventions Addendum #1, 8/4/2020

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>#1 AND #2</td>
<td></td>
<td>37,820</td>
</tr>
<tr>
<td>4</td>
<td>(#3 AND Humans[Mesh:NOEXP]) OR (#3 NOT Animals[Mesh:NOEXP])</td>
<td></td>
<td>33,767</td>
</tr>
<tr>
<td>5</td>
<td>(#3 AND Humans[Mesh:NOEXP]) OR (#3 NOT Animals[Mesh:NOEXP])</td>
<td></td>
<td>31,056</td>
</tr>
<tr>
<td>6</td>
<td>(#3 AND Humans[Mesh:NOEXP]) OR (#3 NOT Animals[Mesh:NOEXP])</td>
<td></td>
<td>3,077</td>
</tr>
<tr>
<td>8</td>
<td>#5 AND #7</td>
<td></td>
<td>1,778</td>
</tr>
<tr>
<td>9</td>
<td>#6 OR #8</td>
<td></td>
<td>3,617</td>
</tr>
</tbody>
</table>
Appendix B1. Original Literature Search Strategies

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>#9 NOT #10</td>
<td></td>
<td>2,978</td>
</tr>
<tr>
<td>12</td>
<td>#11 NOT (gestation* OR Pregnancy[Mesh])</td>
<td></td>
<td>2,547</td>
</tr>
<tr>
<td>13</td>
<td>("review"[Publication Type] AND "systematic"[tiab]) OR "systematic review"[All Fields] OR ("review literature as topic"[MeSH] AND "systematic"[tiab]) OR "meta-analysis"[Publication Type] OR "meta-analysis as topic"[MeSH Terms] OR "meta-analysis"[All Fields] OR "meta synthesis"[ti] OR "systematic literature review"[ti] OR "this systematic review"[tw] OR "cochrane database syst rev"[ta]</td>
<td></td>
<td>323,538</td>
</tr>
<tr>
<td>14</td>
<td>#12 AND #13</td>
<td></td>
<td>918</td>
</tr>
<tr>
<td>16</td>
<td>#12 AND #15</td>
<td></td>
<td>918</td>
</tr>
<tr>
<td>17</td>
<td>#12 AND "Case-Control Studies"[MeSH]</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>19</td>
<td>#12 AND ("Evaluation Study"[pt] OR "Comparative Study"[pt])</td>
<td></td>
<td>224</td>
</tr>
</tbody>
</table>

Cochrane Library Interventions Addendum #1, 8/4/2020

<table>
<thead>
<tr>
<th>ID</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>[mh "Diabetes Mellitus, Type 2"] OR [mh "Glucose Tolerance"] OR "glucose tolerance" OR "impaired glucose tolerance" OR dysglycemia:ti,ab OR IGT OR "impaired fasting glucose" OR IFG OR [mh "Glucose Intolerance"] OR "glucose intolerance" OR [mh "Prediabetic State"] OR "prediabetic state" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus"</td>
<td>34233</td>
</tr>
<tr>
<td>#2</td>
<td>advice:ti,ab OR [mh "Behavior Therapy"] OR "behavior therapy":ti,ab OR (behavior*:ti,ab AND chang*:ti,ab) OR (behavior*:ti,ab AND modification*:ti,ab) OR [mh "Caloric Restriction"] OR ((child*:ti,ab AND parent*:ti,ab) AND therap*:ti,ab) OR [mh Counseling] OR counsel*:ti,ab OR "cognitive behavioral":ti,ab OR "cognitive behavioral":ti,ab OR "cognitive ther*":ti,ab OR CBT:ti OR "Diabetes Prevention Program":ti,ab OR "Diabetes Prevention Programme":ti,ab OR DPP:ti,ab OR ("Diabetes Prevention":ti,ab AND (program*:ti,ab OR stud*:ti,ab OR trial*:ti,ab)) OR diet:ti,ab OR [mh "Diet, Carbohydrate-Restricted"] OR [mh "Diet, Fat-Restricted"] OR [mh "Diet, Mediterranean"] OR [mh "Diet, Reducing"] OR [mh "Diet Therapy"] OR dietary:ti OR [mh "Directive Counseling"] OR [mh Exercise] OR exercise:ti OR [mh "Exercise Therapy"] OR "family intervention":ti,ab OR "family therap*":ti,ab OR [mh "Feedback, Psychological"] OR [mh "group therap*":ti,ab OR [mh "Health Behavior"] OR "health behavior":ti,ab OR "health behaviors":ti,ab OR "health behavioral":ti,ab OR "health behaviours":ti,ab OR "health behaviour":ti,ab OR [mh "Health Education"] OR [mh "Health Education as Topic"] OR [mh "health education":ti,ab OR [mh "Health Promotion"] OR "health promotion":ti,ab OR [mh "Life Style"] OR lifestyle:ti,ab OR "life style":ti,ab OR [mh "Lifestyle Intervention"] OR [mh "Motivational Interviewing"] OR "motivational interviewing":ti,ab OR "non pharmacologic intervention":ti,ab OR "nonpharmacologic intervention":ti,ab OR "parent*":ti,ab OR [mh "Patient Education as Topic"] OR "patient education":ti,ab OR [mh "physical activity":ti,ab OR "physically active":ti,ab OR "psychological feedback":ti,ab OR [mh "Risk Reduction Behavior"] OR "Risk Reduction Behavior":ti,ab OR [mh "Weight Loss"] OR [mh "Weight Reduction Programs"]</td>
<td>181924</td>
</tr>
<tr>
<td>#3</td>
<td>#1 AND #2</td>
<td>8941</td>
</tr>
<tr>
<td>#4</td>
<td>#3 NOT (mh animals) NOT [mh humans]</td>
<td>8941</td>
</tr>
<tr>
<td>#5</td>
<td>adolescen*:ti,ab,kw OR boys*:ti,ab,kw OR child*:ti,ab,kw OR children*:ti,ab,kw OR girls*:ti,ab,kw OR pediatric:ti,ab,kw OR paediatric*:ti,ab,kw OR teen*:ti,ab,kw OR teens*:ti,ab,kw OR teenager*:ti,ab,kw OR teenaged*:ti,ab,kw OR teenager*:ti,ab,kw OR toddler*:ti,ab,kw</td>
<td>248464</td>
</tr>
<tr>
<td>#6</td>
<td>#4 AND #5</td>
<td>844</td>
</tr>
</tbody>
</table>
Appendix B1. Original Literature Search Strategies

PubMed Interventions Addendum #2, 8/19/2020

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>("diabetes mellitus type 2"[All Fields] OR dysglycemia[tiab] OR "glucose tolerance"[All Fields] OR "glucose intolerance"[All Fields] OR IGT OR "impaired fasting glucose" OR IFG OR "impaired glucose tolerance"[All Fields] OR "prediabetic state"[All Fields] OR prediabet* OR "pre diabetes"[All Fields] OR "type 2 diabetes mellitus"[All Fields]) NOT (Medline[sb])</td>
<td></td>
<td>17,008</td>
</tr>
<tr>
<td>3</td>
<td>#1 OR #2</td>
<td></td>
<td>160,548</td>
</tr>
<tr>
<td>5</td>
<td>#3 NOT ("Diabetes Mellitus, Type 1"[Mesh] OR "diabetes mellitus type 1" OR "type 1 diabetes")</td>
<td></td>
<td>143,845</td>
</tr>
<tr>
<td>6</td>
<td>(hypoglycemic agents[mh] OR "Hypoglycemic Agents" [Pharmacological Action]) OR ("hypoglycemic agent"[tiab] NOT Medline[sb])</td>
<td></td>
<td>259,681</td>
</tr>
<tr>
<td>7</td>
<td>#5 AND #6</td>
<td></td>
<td>41,304</td>
</tr>
<tr>
<td>9</td>
<td>#5 AND #8</td>
<td></td>
<td>28,029</td>
</tr>
<tr>
<td>10</td>
<td>#7 OR #9</td>
<td></td>
<td>47,259</td>
</tr>
<tr>
<td>11</td>
<td>(#10 AND Humans[Mesh:NOEXP]) OR (#10 NOT Animals[Mesh:NOEXP])</td>
<td>English</td>
<td>42,806</td>
</tr>
<tr>
<td>12</td>
<td>(#10 AND Humans[Mesh:NOEXP]) OR (#10 NOT Animals[Mesh:NOEXP])</td>
<td>English, Child: birth-18 years</td>
<td>1,942</td>
</tr>
<tr>
<td>13</td>
<td>(#10 AND Humans[Mesh:NOEXP]) OR (#10 NOT Animals[Mesh:NOEXP])</td>
<td>English, Child: birth-18 years</td>
<td>1,942</td>
</tr>
<tr>
<td>15</td>
<td>#12 AND #14</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>16</td>
<td>#13 OR #15</td>
<td></td>
<td>2,247</td>
</tr>
<tr>
<td>18</td>
<td>#16 NOT #17</td>
<td></td>
<td>1,767</td>
</tr>
<tr>
<td>19</td>
<td>#15 NOT (gestation* OR Pregnancy[Mesh])</td>
<td></td>
<td>265</td>
</tr>
</tbody>
</table>
Appendix B1. Original Literature Search Strategies

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>#19 AND #20</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>22</td>
<td>("review"[Publication Type] AND "systematic"[tiab]) OR "systematic review"[All Fields] OR ("review literature as topic"[MeSH] AND "systematic"[tiab]) OR "meta-analysis"[Publication Type] OR "meta-analysis as topic"[MeSH Terms] OR "meta-analysis"[All Fields] OR "meta synthesis"[ti] OR "systematic literature review"[ti] OR "this systematic review"[kw] OR "cochrane database syst rev"[ta]</td>
<td></td>
<td>325,513</td>
</tr>
<tr>
<td>23</td>
<td>#19 AND #22</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>#19 AND "Case-Control Studies"[MeSH]</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>#19 AND ("Evaluation Study"[pt] OR "Comparative Study"[pt])</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Cochrane Library Interventions Addendum #2, 8/20/2020

<table>
<thead>
<tr>
<th>ID</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>[mh "Diabetes Mellitus, Type 2"] OR [mh "Glucose Tolerance"] OR "glucose tolerance" OR "impaired glucose tolerance" OR dysglycemia:ti,ab,igt OR "impaired fasting glucose" OR IFG OR [mh "Glucose Intolerance"] OR "glucose intolerance" OR [mh "Prediabetic State"] OR "prediabetic state" OR "prediabetes" OR "type 2 diabetes mellitus"</td>
<td>34234</td>
</tr>
<tr>
<td>#2</td>
<td>#1 NOT ([mh "Diabetes Mellitus, Type 1"] OR "diabetes mellitus type 1":ti,ab,kw OR "type 1 diabetes":ti,ab,kw)</td>
<td>33099</td>
</tr>
<tr>
<td>#3</td>
<td>[mh "hypoglycemic agents"] OR "hypoglycemic agent"*:ti,ab,kw</td>
<td>8175</td>
</tr>
<tr>
<td>#4</td>
<td>#2 AND #3</td>
<td>5220</td>
</tr>
<tr>
<td>#5</td>
<td>[mh "Insulin"] OR [mh "Insulin, Long-Acting"] OR [mh "Insulin, Isophane"] OR [mh "Insulin Glargine"] OR insulin:ti,ab,kw</td>
<td>58978</td>
</tr>
<tr>
<td>#6</td>
<td>#2 AND #5</td>
<td>18697</td>
</tr>
<tr>
<td>#7</td>
<td>#4 OR #6</td>
<td>20183</td>
</tr>
<tr>
<td>#8</td>
<td>adolescent*:ti,ab,kw OR boys:ti,ab,kw OR child*:ti,ab,kw OR children:ti,ab,kw OR girls:ti,ab,kw OR pediatric:ti,ab,kw OR paediatric*:ti,ab,kw OR teen:ti,ab,kw OR teens:ti,ab,kw OR teenage:ti,ab,kw OR teenaged:ti,ab,kw OR toddler*:ti,ab,kw</td>
<td>248470</td>
</tr>
<tr>
<td>#9</td>
<td>#7 AND #8</td>
<td>1492</td>
</tr>
<tr>
<td>#10</td>
<td>#9 NOT (gestation* OR [mh Pregnancy])</td>
<td>1322</td>
</tr>
</tbody>
</table>

PubMed Interventions Addendum #3, 5/3/2021

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Diabetes Mellitus, Type 2"[Mesh] OR "Glucose Intolerance"[MeSH] OR "Prediabetic State"[MeSH]</td>
<td></td>
<td>150,744</td>
</tr>
<tr>
<td>2</td>
<td>("diabetes mellitus type 2"[All Fields] OR dysglycemia[tiab] OR "glucose tolerance"[All Fields] OR "glucose intolerance"[All Fields] OR IGT OR "impaired fasting glucose" OR IFG OR "impaired glucose tolerance"[All Fields] OR "prediabetic state"[All Fields] OR prediabet OR "pre diabetes"[All Fields] OR "type 2 diabetes mellitus"[All Fields]) NOT (Medline[ab])</td>
<td></td>
<td>18,860</td>
</tr>
<tr>
<td>3</td>
<td>#1 OR #2</td>
<td></td>
<td>169,604</td>
</tr>
<tr>
<td>Search Number</td>
<td>Query</td>
<td>Filters</td>
<td>Results</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>4</td>
<td>#3 NOT ("Diabetes Mellitus, Type 1" [Mesh] OR "diabetes mellitus type 1" OR "type 1 diabetes")</td>
<td></td>
<td>152,347</td>
</tr>
<tr>
<td>5</td>
<td>(hypoglycemic agents[mh] OR "Hypoglycemic Agents" [Pharmacological Action]) OR ("hypoglycemic agent"[tiab] NOT Medline[sb])</td>
<td></td>
<td>266,210</td>
</tr>
<tr>
<td>6</td>
<td>#4 AND #5</td>
<td></td>
<td>43,303</td>
</tr>
<tr>
<td>8</td>
<td>#4 AND #7</td>
<td></td>
<td>29,218</td>
</tr>
<tr>
<td>9</td>
<td>#6 OR #8</td>
<td></td>
<td>49,756</td>
</tr>
<tr>
<td>10</td>
<td>(#9 AND Humans[Mesh:NOEXP]) OR (#9 NOT Animals[Mesh:NOEXP])</td>
<td></td>
<td>45,102</td>
</tr>
<tr>
<td>11</td>
<td>(#9 AND Humans[Mesh:NOEXP]) OR (#9 NOT Animals[Mesh:NOEXP])</td>
<td>English</td>
<td>41,438</td>
</tr>
<tr>
<td>12</td>
<td>(#9 AND Humans[Mesh:NOEXP]) OR (#9 NOT Animals[Mesh:NOEXP])</td>
<td>English, Child: birth-18 years</td>
<td>2,019</td>
</tr>
<tr>
<td>14</td>
<td>#12 NOT #13</td>
<td></td>
<td>2,019</td>
</tr>
<tr>
<td>16</td>
<td>#14 NOT #15</td>
<td></td>
<td>1,608</td>
</tr>
<tr>
<td>17</td>
<td>#16 NOT (gestation* OR Pregnancy[Mesh])</td>
<td></td>
<td>1,461</td>
</tr>
<tr>
<td>19</td>
<td>#17 AND #18</td>
<td></td>
<td>712</td>
</tr>
<tr>
<td>20</td>
<td>("review"[Publication Type] AND "systematic"[tiab]) OR "systematic review"[All Fields] OR ("review literature as topic"[MeSH] AND "systematic"[tiab]) OR "meta-analysis"[Publication Type] OR "meta-analysis as topic"[MeSH Terms] OR "meta-analysis"[All Fields] OR "meta synthesis"[ti] OR "systematic literature review"[ti] OR "this systematic review"[tw] OR "cochrane database syst rev"[ta]</td>
<td></td>
<td>362,198</td>
</tr>
<tr>
<td>21</td>
<td>#17 AND #20</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>22</td>
<td>#17 AND "Case-Control Studies"[MeSH]</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>24</td>
<td>#17 AND ("Evaluation Study"[pt] OR "Comparative Study"[pt])</td>
<td></td>
<td>198</td>
</tr>
</tbody>
</table>
Appendix B. Original Literature Search Strategies

PubMed Screening, 5/3/2021

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>#1 AND #2</td>
<td></td>
<td>101,723</td>
</tr>
<tr>
<td>4</td>
<td>#3 NOT (“Diabetes Mellitus, Type 1”[Mesh] OR “diabetes mellitus type 1” OR “type 1 diabetes”)</td>
<td></td>
<td>94,239</td>
</tr>
<tr>
<td>5</td>
<td>#4 AND (“Mass Screening”[Mesh] OR screen*[tiab])</td>
<td></td>
<td>6,345</td>
</tr>
<tr>
<td>6</td>
<td>#5 NOT (gestation* OR Pregnancy[Mesh])</td>
<td></td>
<td>4,617</td>
</tr>
<tr>
<td>7</td>
<td>#5 NOT (gestation* OR Pregnancy[Mesh])</td>
<td>English</td>
<td>4,272</td>
</tr>
<tr>
<td>8</td>
<td>#5 NOT (gestation* OR Pregnancy[Mesh])</td>
<td>English, Child: birth-18 years</td>
<td>605</td>
</tr>
<tr>
<td>10</td>
<td>#7 AND #9</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>11</td>
<td>#8 OR #10</td>
<td></td>
<td>665</td>
</tr>
<tr>
<td>12</td>
<td>(#11 AND Humans[mesh:noexp]) OR (#11 NOT Animals[mesh:noexp])</td>
<td></td>
<td>664</td>
</tr>
<tr>
<td>13</td>
<td>(#11 AND Humans[mesh:noexp]) OR (#11 NOT Animals[mesh:noexp])</td>
<td>from 2019/8/3 - 3000/12/12</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>#13 AND #14</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>#13 AND #16</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>#13 AND “Case-Control Studies”[MeSH]</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>#13 AND #19</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>“Evaluation Study”[pt] OR “Comparative Study”[pt]</td>
<td></td>
<td>2,087,906</td>
</tr>
<tr>
<td>22</td>
<td>#13 AND #21</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
PubMed Interventions, 5/3/2021

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Diabetes Mellitus, Type 2"[Mesh] OR "Glucose Intolerance"[MeSH] OR "Prediabetic State"[MeSH]</td>
<td></td>
<td>150,744</td>
</tr>
<tr>
<td>2</td>
<td>("diabetes mellitus type 2"[All Fields] OR dysglycemia[tiab] OR "glucose tolerance"[All Fields] OR "glucose intolerance"[All Fields] OR IGT OR "impaired fasting glucose" OR IFG OR "impaired glucose tolerance"[All Fields] OR "prediabetic state"[All Fields] OR prediabet* OR "pre diabetes"[All Fields] OR "type 2 diabetes mellitus"[All Fields]) NOT (Medline[sb])</td>
<td></td>
<td>18,860</td>
</tr>
<tr>
<td>3</td>
<td>#1 OR #2</td>
<td></td>
<td>169,604</td>
</tr>
<tr>
<td>4</td>
<td>#3 NOT ("Diabetes Mellitus, Type 1"[Mesh] OR "diabetes mellitus type 1" OR "type 1 diabetes")</td>
<td></td>
<td>152,347</td>
</tr>
<tr>
<td>5</td>
<td>(hypoglycemic agents[mh] OR "Hypoglycemic Agents" [Pharmacological Action]) OR ("hypoglycemic agent"[tiab] NOT Medline[sb])</td>
<td></td>
<td>266,210</td>
</tr>
<tr>
<td>6</td>
<td>#4 AND #5</td>
<td></td>
<td>43,303</td>
</tr>
<tr>
<td>8</td>
<td>#4 AND #7</td>
<td></td>
<td>29,218</td>
</tr>
<tr>
<td>10</td>
<td>#4 AND #9</td>
<td></td>
<td>20,543</td>
</tr>
</tbody>
</table>
Appendix B1. Original Literature Search Strategies

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>#4 AND #11</td>
<td></td>
<td>30,288</td>
</tr>
<tr>
<td>13</td>
<td>#6 OR #8 OR #10 OR #12</td>
<td></td>
<td>72,197</td>
</tr>
<tr>
<td>14</td>
<td>(#13 AND Humans[Mesh:NOEXP]) OR (#13 NOT Animals[Mesh:NOEXP])</td>
<td></td>
<td>66,506</td>
</tr>
<tr>
<td>15</td>
<td>(#13 AND Humans[Mesh:NOEXP]) OR (#13 NOT Animals[Mesh:NOEXP])</td>
<td>English</td>
<td>61,430</td>
</tr>
<tr>
<td>16</td>
<td>(#13 AND Humans[Mesh:NOEXP]) OR (#13 NOT Animals[Mesh:NOEXP])</td>
<td>Child: birth-18 years</td>
<td>3,828</td>
</tr>
<tr>
<td>18</td>
<td>#14 AND #17</td>
<td></td>
<td>436</td>
</tr>
<tr>
<td>19</td>
<td>#16 OR #18</td>
<td></td>
<td>4,264</td>
</tr>
<tr>
<td>21</td>
<td>#19 NOT #20</td>
<td></td>
<td>3,636</td>
</tr>
<tr>
<td>22</td>
<td>#21 NOT (gestation* OR Pregnancy[Mesh])</td>
<td></td>
<td>3,009</td>
</tr>
<tr>
<td>23</td>
<td>#21 NOT (gestation* OR Pregnancy[Mesh])</td>
<td>from 2019/8/3 - 3000/12/12</td>
<td>316</td>
</tr>
</tbody>
</table>
Appendix B1. Original Literature Search Strategies

<table>
<thead>
<tr>
<th>Search Number</th>
<th>Query</th>
<th>Filters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>#23 AND #24</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>26</td>
<td>("review"[Publication Type] AND "systematic"[tiab]) OR "systematic review"[All Fields] OR ("review literature as topic"[MeSH] AND "systematic"[tiab]) OR "meta-analysis"[Publication Type] OR "meta-analysis as topic"[MeSH Terms] OR "meta-analysis"[All Fields] OR "meta synthesis"[ti] OR "systematic literature review"[ti] OR "this systematic review"[tw] OR "cochrane database syst rev"[ta]</td>
<td></td>
<td>362,198</td>
</tr>
<tr>
<td>27</td>
<td>#23 AND #26</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>28</td>
<td>#23 AND "Case-Control Studies"[MeSH]</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td>#23 AND ("Evaluation Study"[pt] OR "Comparative Study"[pt])</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Cochrane Library Screening, 5/3/2021

<table>
<thead>
<tr>
<th>ID</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>[mh "Diabetes Mellitus, Type 2"] OR "glucose tolerance" OR "impaired glucose tolerance" OR dysglycemia:ti,ab OR IGT OR "impaired fasting glucose" OR IFG OR [mh "Glucose Intolerance"] OR "glucose intolerance" OR [mh "Prediabetic State"] OR "prediabetic state" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus"</td>
<td>36248</td>
</tr>
<tr>
<td>#2</td>
<td>[mh "Blood Glucose"] OR "blood glucose":ti,ab OR [mh "Glucose Tolerance Test"] OR OGTT:ti,ab OR "glucose tolerance test":ti OR [mh "Glycated Hemoglobin A"] OR "hemoglobin A1c" OR HbA1c OR "fasting plasma glucose":ti,ab OR "oral glucose tolerance":ti,ab</td>
<td>48756</td>
</tr>
<tr>
<td>#3</td>
<td>#1 AND #2</td>
<td>20381</td>
</tr>
<tr>
<td>#4</td>
<td>[mh "Mass Screening"] OR screen*:ti,ab</td>
<td>73937</td>
</tr>
<tr>
<td>#5</td>
<td>#3 AND #4</td>
<td>1840</td>
</tr>
<tr>
<td>#6</td>
<td>#5 NOT (gestation* OR [mh Pregnancy])</td>
<td>1645</td>
</tr>
<tr>
<td>#7</td>
<td>adole*:ti,ab,kw OR boys:ti,ab,kw OR child*:ti,ab,kw OR children:ti,ab,kw OR girls:ti,ab,kw OR infant*:ti,ab,kw OR pediatric:ti,ab,kw OR paediatric*:ti,ab,kw OR teen*:ti,ab,kw OR teens:ti,ab,kw OR teenage:ti,ab,kw OR teenager*:ti,ab,kw OR toddler*:ti,ab,kw</td>
<td>289615</td>
</tr>
<tr>
<td>#8</td>
<td>#6 AND #7</td>
<td>213</td>
</tr>
<tr>
<td>#9</td>
<td>#8 with Cochrane Library publication date Between Aug 2019 and Dec 2021</td>
<td>41</td>
</tr>
<tr>
<td>#10</td>
<td>#9 NOT (([mh "Diabetes Mellitus, Type 1"] OR "diabetes mellitus type 1":ti,ab,kw OR "type 1 diabetes":ti,ab,kw)</td>
<td>38</td>
</tr>
</tbody>
</table>
Cochrane Library Interventions, 5/3/2021

<table>
<thead>
<tr>
<th>ID</th>
<th>Search</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>[mh "Diabetes Mellitus, Type 2"] OR "glucose tolerance" OR "impaired glucose tolerance" OR dysglycemia:ti,ab,OR IGT OR "impaired fasting glucose" OR IFG OR [mh "Glucose Intolerance"] OR "glucose intolerance" OR [mh "Prediabetic State"] OR "prediabetic state" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus"</td>
<td>36248</td>
</tr>
<tr>
<td>#2</td>
<td>#1 NOT ([mh "Diabetes Mellitus, Type 1"] OR "diabetes mellitus type 1":ti,ab,kw OR "type 1 diabetes":ti,ab,kw)</td>
<td>35092</td>
</tr>
<tr>
<td>#4</td>
<td>#2 AND #3</td>
<td>9584</td>
</tr>
<tr>
<td>#5</td>
<td>#2 AND ([mh "hypoglycemic agents"] OR "hypoglycemic agent"):ti,ab,kw)</td>
<td>5438</td>
</tr>
<tr>
<td>#6</td>
<td>#2 AND ([mh Insulin] OR [mh "Insulin, Long-Acting"] OR [mh "Insulin, Isophane"] OR [mh "Insulin Glargin"] OR insulin:ti,ab,kw)</td>
<td>19860</td>
</tr>
<tr>
<td>#7</td>
<td>#4 OR #5 OR #6</td>
<td>23813</td>
</tr>
<tr>
<td>#8</td>
<td>advice:ti,ab OR [mh "Behavior Therapy"] OR "behavior therapy":ti,ab OR (behavior*:ti,ab AND chang*:ti,ab) OR (behavior*:ti,ab AND modification*:ti,ab) OR [mh "Caloric Restriction"] OR (child*:ti,ab AND parent*:ti,ab) AND therap*:ti,ab OR [mh Counseling] OR counsel*:ti,ab OR "cognitive behavior":ti,ab OR "cognitive behavioral":ti,ab OR [mh "Cognitive Behavior"] OR [mh "Cognitive Intervention"] OR [mh "CBT"] OR [mh "Diabetes Prevention Program"] OR [mh "Diabetes Prevention Programme"] OR [mh "DPP"] OR [mh "Diabetes Prevention (program:ti,ab OR stud*:ti,ab OR trial*:ti,ab)" OR diet*:ti,ab] OR [mh "Diet, Carbohydrate-Restricted"] OR [mh "Diet, Fat-Restricted"] OR [mh "Diet, Mediterranean"] OR [mh "Diet, Reducing"] OR [mh "Diet Therapy"] OR [mh "Exercise"] OR [mh "Exercise Program"] OR [mh "Exercise Therapy"] OR [mh "Family Intervention"] OR [mh "Family Therapy"] OR [mh "Feedback, Psychological"] OR [mh "group therap*":ti,ab OR [mh "Health Behavior"] OR [mh "Health Behavior"] OR [mh "Health Behaviors"] OR [mh "Health Behaviours"] OR [mh "Health Education"] OR [mh "Health Promotion"] OR [mh "Life Style"] OR [mh "lifestyle":ti,ab OR [mh "Motivational Interviewing"] OR [mh "motivational interviewing":ti,ab OR [mh "non pharmacologic intervention"] OR [mh "nonpharmacologic intervention"] OR [mh "parental intervention"] OR [mh "Patient Education as Topic"] OR [mh "Patient Education"] OR [mh "physical activity":ti,ab OR [mh "psychological feedback"] OR [mh "Risk Reduction Behavior"] OR [mh "Weight Loss"] OR [mh "Weight Reduction Programs"]</td>
<td>195053</td>
</tr>
<tr>
<td>#9</td>
<td>#1 AND #8</td>
<td>9525</td>
</tr>
<tr>
<td>#10</td>
<td>#7 OR #9</td>
<td>27598</td>
</tr>
<tr>
<td>#11</td>
<td>#10 NOT (gestation* OR [mh Pregnancy])</td>
<td>26684</td>
</tr>
<tr>
<td>#12</td>
<td>#11 NOT ([mh "animals"] NOT [mh "humans"] OR [mh "adults"] OR [mh "adolescents"] OR [mh "adolescents"] OR [mh "adolescents"]</td>
<td>26684</td>
</tr>
<tr>
<td>#13</td>
<td>adolescents:ti,ab,kw OR boys:ti,ab,kw OR child*:ti,ab,kw OR children:ti,ab,kw OR girls:ti,ab,kw OR infant*:ti,ab,kw OR pediatric:ti,ab,kw OR paediatric*:ti,ab,kw OR teen:ti,ab,kw OR teens:ti,ab,kw OR teenager:ti,ab,kw OR teenager*:ti,ab,kw OR toddler*:ti,ab,kw</td>
<td>289615</td>
</tr>
<tr>
<td>#14</td>
<td>#12 AND #13</td>
<td>1771</td>
</tr>
<tr>
<td>#15</td>
<td>#14 with Cochrane Library publication date from Aug 2019 to Dec 2021</td>
<td>267 (3 are reviews)</td>
</tr>
<tr>
<td>#16</td>
<td>#15 with Publication Year from 2019 to 2021, in Trials</td>
<td>182</td>
</tr>
</tbody>
</table>
Appendix B. Original Literature Search Strategies

ClinicalTrials.gov, 5/3/2021

Screening (40 results)

Condition box: ("Diabetes Mellitus, Type 2" OR "Glucose Tolerance" OR "impaired glucose tolerance" OR IGT OR "impaired fasting glucose" OR IFG OR "Glucose Intolerance" OR "Prediabetic State" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus") AND

Other terms box: ("blood glucose" OR OGTT OR "glucose tolerance test" OR "Glycated Hemoglobin A" OR "hemoglobin A1c" OR HbA1c OR "fasting plasma glucose" OR "HbA(1c)" OR HbA1 OR HbA1c OR "HbA 1c" OR "glycosylated hemoglobin" OR "glycated hemoglobin" OR "oral glucose tolerance") AND (screen* OR screening)

Used child limits Age Group Child (birth-17)

Expert search: ("blood glucose" OR OGTT OR "glucose tolerance test" OR "Glycated Hemoglobin A" OR "hemoglobin A1c" OR HbA1c OR "fasting plasma glucose" OR "HbA(1c)" OR HbA1 OR HbA1c OR "HbA 1c" OR "glycosylated hemoglobin" OR "glycated hemoglobin" OR "oral glucose tolerance") AND (screen* OR screening) AND AREA[ConditionSearch] ("Diabetes Mellitus, Type 2" OR "Glucose Tolerance" OR "impaired glucose tolerance" OR IGT OR "impaired fasting glucose" OR IFG OR "Glucose Intolerance" OR "Prediabetic State" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus") AND AREA[StdAge] EXPAND[Term] COVER[FullMatch] "Child"

Interventions (integrates terms for hypoglycemic agents and insulin)
A. Pharmacologic Interventions (322 results)

Condition box: ("Diabetes Mellitus, Type 2" OR "Glucose Tolerance" OR "impaired glucose tolerance" OR IGT OR "impaired fasting glucose" OR IFG OR "glucose Intolerance" OR "Prediabetic State" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus") AND

Intervention/treatment box: (Actos OR Albiglutide OR Amaryl OR Biguanides OR Bydureon OR Byetta OR DiaBeta OR "Dipeptidyl-Peptidase IV Inhibitors" OR "Dipeptidyl peptidase IV inhibitor" OR dulaglutide OR Exenatide OR Fortamet OR Gliclazide OR glimepiride OR Glipizide OR "GLP-1 receptor agonist" OR "GLP-1 receptor agonists" OR "Glucagon-like peptide-1 receptor agonist" OR "Glucagon-like peptide-1 receptor agonists" OR Glucophage OR Glucotrol OR Glumetza OR Glyburide OR "Glynase PresTab" hypoglycemic agent* OR "hypoglycemic agents" OR insulin OR Linagliptin OR Liraglutide OR Liixisenatide OR Lyxumia OR Meglitinides OR Metformin OR Micronase OR Ozempic OR Pioglitazone OR Prandin OR Repaglinide OR Rosiglitazone OR Saxagliptin OR semaglutide OR Sitagliptin OR "Sulfonylurea
Appendix B1. Original Literature Search Strategies

Compounds" OR Starlix OR Sulfonylureas OR Tanzeum OR Thiazolidinediones OR Tolazamide OR Tolbutamide OR Trulicity OR TZDs OR Victoza OR vildagliptin)

Used child limits Age Group Child (birth-17)

In Expert Search box: AREA[ConditionSearch] ("Diabetes Mellitus, Type 2" OR "Glucose Tolerance" OR "impaired glucose tolerance" OR IGT OR "impaired fasting glucose" OR IFG OR "glucose Intolerance" OR "Prediabetic State" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus") AND AREA[InterventionSearch] (Actos OR Albiglutide OR Amaryl OR Biguanides OR Bydureon OR Byetta OR DiaBeta OR "Dipeptidyl-Peptidase IV Inhibitors" OR "Dipeptidyl peptidase IV inhibitor" OR dulaglutide OR Exenatide OR Fortamet OR Gliclazide OR glimepiride OR Glipizide OR "GLP-1 receptor agonist" OR "GLP-1 receptor agonists" OR "Glucagon-like peptide-1 receptor agonist" OR "Glucagon-like peptide-1 receptor agonists" OR Glucophage OR Glucotrol OR Glumetza OR Glyburide OR "Glycemic PresTab" hypoglycemic agent* OR "hypoglycemic agents" OR insulin OR Linagliptin OR Liraglutide OR lixisenatide OR Lyxumia OR Metformin OR Micronase OR Ozempic OR Pioglitazone OR Prandin OR Repaglinide OR Rosiglitazone OR Saxagliptin OR semaglutide OR Sitagliptin OR "Sulfonylurea Compounds" OR Starlix OR Sulfonylureas OR Tanzeum OR Thiazolidinediones OR Tolazamide OR Tolbutamide OR Trulicity OR TZDs OR Victoza OR vildagliptin) AND AREA[StdAge] EXPAND[Term] COVER[FullMatch] "Child"

B. Non-pharmacologic interventions (186 results)

Condition box: ("Diabetes Mellitus, Type 2" OR “Glucose Tolerance” OR “impaired glucose tolerance” OR IGT OR “impaired fasting glucose” OR IFG OR “glucose Intolerance” OR “Prediabetic State” OR prediabet* OR “pre diabetes” OR “diabetes mellitus type 2” OR “type 2 diabetes mellitus”)

AND

Non-Pharmacological Interventions in Treatment/Interventions box: (advice OR “Behavior Therapy” OR (behavior* AND therap*) OR (behavior* AND chang*) OR (behavior* AND modification*) OR “Caloric Restriction” OR ((child* AND parent*) and therap*) OR counsel* OR “cognitive behavior” OR “cognitive behavioral” OR “cognitive therap*” OR CBT OR “Diabetes Prevention Program” OR “Diabetes Prevention Programme” OR DPP OR (“Diabetes Prevention” AND (program* OR stud* OR trial*)) OR diet OR dietary OR Exercise OR “family intervention*” OR “family therap*” OR “Feedback, Psychological” OR “group therap*” OR “Health Behavior” OR “health behaviors” OR “health behaviour” OR “health behaviours” OR “health behaviour” OR “health behavioural” OR “Health Education” OR “Health Education as Topic” OR “health education” OR “Health Promotion” OR “health promotion” OR “Life Style” OR lifestyle OR “life style” OR “Lifestyle Intervention” OR “Motivational Interviewing” OR “motivational interviewing” OR “non pharmacologic intervention” OR “nonpharmacologic intervention” OR “parent* intervention*” OR “patient education” OR “physical activity” OR “physically active” OR “psychological feedback” OR “Risk Reduction Behavior” OR “Risk Reduction Behavior” OR “Weight Loss” OR “Weight Reduction Programs”)

Screening for Diabetes in Children and Adolescents 63 RTI-UNC EPC
Appendix B1. Original Literature Search Strategies

Used child limits Age Group Child (birth-17)

In Expert Search box: AREA[ConditionSearch] ("Diabetes Mellitus, Type 2" OR "Glucose Tolerance" OR "impaired glucose tolerance" OR IGT OR "impaired fasting glucose" OR IFG OR "glucose Intolerance" OR "Prediabetic State" OR prediabet* OR "pre diabetes" OR "diabetes mellitus type 2" OR "type 2 diabetes mellitus") AND AREA[InterventionSearch] (advice OR "Behavior Therapy" OR (behavior* AND therap*) OR (behavior* AND chang*) OR (behavior* AND modification*) OR "Caloric Restriction" OR ((child* AND parent*) and therap*) OR counsel* OR "cognitive behavior" OR "cognitive behavioral" OR "cognitive therap*" OR CBT OR "Diabetes Prevention Program" OR "Diabetes Prevention Programme" OR DPP OR ("Diabetes Prevention" AND (program* OR stud* OR trial*)) OR diet OR dietary OR Exercise OR "family intervention*" OR "family therap*" OR "Feedback, Psychological" OR "group therap*" OR "Health Behavior" OR "health behaviours" OR "health behavioral" OR "health behaviours" OR "health behaviour" OR “health behavioural” OR "Health Education" OR "Health Education as Topic" OR "health education" OR "Health Promotion" OR "health promotion" OR "Life Style" OR lifestyle OR "life style" OR "Lifestyle Intervention" OR "Motivational Interviewing" OR "motivational interviewing" OR "non pharmacologic intervention" OR "nonpharmacologic intervention" OR "parent* intervention*" OR "patient education" OR "physical activity" OR "physically active" OR "psychological feedback" OR "Risk Reduction Behavior" OR "Risk Reduction Behavior" OR "Weight Loss" OR "Weight Reduction Programs") AND AREA[StdAge] EXPAND[Term] COVER[FullMatch] "Child"
Appendix B2. Eligibility Criteria

<table>
<thead>
<tr>
<th>Populations</th>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>All KQs: Studies of people younger than age 18; studies of participants without obvious symptoms of diabetes (e.g., for KQ 1, studies of unselected populations that may include some participants with unrecognized symptoms of diabetes such as fatigue); nonpregnant women with a history of gestational diabetes (if they are >1 year postpartum); studies that substantially overlap this age range (e.g., ages 14–65 years) will be included if results for younger participants are reported separately. At least 50 percent of the study population must meet the review eligibility criteria or results must be reported separately for the population eligible for the review.</td>
<td>KQs 3, 4: Asymptomatic, nonpregnant children and adolescents with screen-detected prediabetes or type 2 diabetes (3a and 3b) or with recently diagnosed type 2 diabetes (3c); studies of people with Maturity Onset Diabetes of the Young (MODY) are also eligible.</td>
<td>KQs 1–6: Studies limited to or predominately comprising adults or pregnant women; persons with symptomatic prediabetes or type 2 diabetes (e.g., weight loss, polyuria, blurred vision, headache); persons with a recent hospitalization; persons taking antipsychotics or glucocorticoids; persons with known cardiovascular disease or severe chronic kidney disease; persons living in an institution; other persons with medical conditions limiting their applicability to primary care–based populations (e.g., those with acute illness)</td>
</tr>
<tr>
<td>KQs 3, 4: Asymptomatic, nonpregnant children and adolescents with screen-detected prediabetes or type 2 diabetes; nonpregnant children and adolescents with recently diagnosed type 2 diabetes; studies of people with MODY are also eligible.</td>
<td>Specific populations: Studies that examine whether effectiveness of screening or intervention differs based on age, sex, race/ethnicity, BMI, sexual maturity rating, age of menarche, and socioeconomic status will be examined.</td>
<td>KQ 3c: Studies limited to or predominately comprising persons who have had diabetes for more than 1 year or with more advanced diabetes (e.g., persons already taking insulin or other medications; persons with proliferative retinopathy, nephropathy)</td>
</tr>
<tr>
<td>KQs 5–6: Asymptomatic, nonpregnant children and adolescents with screen-detected prediabetes</td>
<td>All other tests, such as genetic testing for the risk of prediabetes or diabetes or testing for autoantibodies, which may be used for further evaluation after a diabetes diagnosis (e.g., to assess for type 1 or type 2 diabetes)</td>
<td></td>
</tr>
</tbody>
</table>

Screening

KQs 1, 2: Screening (targeted or universal) for prediabetes or diabetes; tests include hemoglobin A1c, FPG, and the OGTT

Interventions

KQs 3–6: Primary care–relevant behavioral counseling or pharmacotherapy interventions for glycemic control. Behavioral counseling interventions can be provided alone or as part of a larger multicomponent intervention on diet and nutrition, physical activity, sedentary behavior, or a combination thereof, including but not limited to assessment with feedback, advice, collaborative goal setting, assistance, exercise prescriptions (referral to exercise facility or program), or arrangement of further contacts. Interventions may be delivered via face-to-face contact, telephone, print materials, or technology (e.g., computer based, text messages, remote video feed) and can be delivered by a number of potential interventionists, including but not limited to clinicians, nurses, exercise specialists, dietitians, nutritionists, and behavioral health specialists.

Dietary counseling may involve:

- Counseling interventions aimed at depression
- Prenatal or postnatal dietary counseling
- Counseling interventions with components that are not feasible for implementation in healthcare settings (e.g., occupational/worksite-, church-, or school-based interventions conducted within existing social networks)
- Social marketing (e.g., media campaigns)
- Policy (e.g., local or state public/health policy)
- Stress management interventions (e.g., meditation, yoga, tai chi)
- Use of incentives (e.g., paying persons to lose weight)
- Supervised exercise with the goal of assessing effects of exercise
Appendix B2. Eligibility Criteria

<table>
<thead>
<tr>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increased consumption of fruits, vegetables, whole grains, fat-free or low-fat dairy, and/or lean proteins</td>
<td>• Dietary counseling solely focused on increasing intake of specific vitamins, micronutrients, herbal supplements, spices (e.g., ginger, cinnamon), or antioxidants through dietary change or supplementation, or counseling on alcohol</td>
</tr>
<tr>
<td>• Limited consumption of sodium, saturated fat, trans fat, and/or sugar-sweetened food and beverages</td>
<td>• Surgery</td>
</tr>
</tbody>
</table>

Physical activity counseling may involve:

• Aerobic activities that involve repeated use of large muscles, such as walking, cycling, and swimming
• Resistance training designed to improve physical strength
• Reduction of sedentary behaviors
• Optional or access to guided physical activity or exercise classes

Limited guided physical activity (i.e., 1 to 2 sessions) or provision of food samples is allowed if intention is to teach or demonstrate healthy lifestyle principles

Comparisons

- **KQs 1, 2:** No screening or alternative screening strategies
- **KQ 3a:** Comparison based on timing; sooner vs. later intervention (i.e., starting intervention upon detection by screening vs. starting later based on clinical diagnosis); clinical diagnosis refers to any approach based on development of symptoms (e.g., polyuria, polydipsia, paresthesia, vision changes) or monitoring of biomarkers (e.g., increase in hemoglobin A1c above a certain threshold)
- **KQs 3b, 3c:** No intervention, placebo, usual care (can include minimal intervention), different treatment targets (e.g., glucose or blood pressure targets), wait-list, or attention control (for lifestyle interventions)
- **KQ 4:** All comparisons eligible for KQ 3
- **KQs 5–6:** Sooner vs. later intervention, no intervention, placebo, usual care, wait-list, or attention control (for lifestyle interventions)

Outcomes

- **KQs 1, 3, 6:** Mortality, cardiovascular morbidity (including myocardial infarction, stroke, congestive heart failure), chronic kidney disease, amputation, skin ulcers, visual impairment (including blindness), periodontitis (including tooth loss), moderate to severe neuropathy, and quality of life
- **KQ 2:** Labeling, anxiety, harms from false-positive results, burden, inconvenience, depression, and unnecessary testing and treatment
- **KQ 4:** Serious side effects from treatment, including gastrointestinal side effects, mortality, myocardial infarction, stroke, cancer, and hypoglycemic events requiring medical attention; burden and inconvenience
- **KQ 5:** Development of type 2 diabetes

Study Designs

- **All KQs:** Controlled clinical trials
- **KQs 2, 4:** Controlled prospective cohort studies and case-control studies are also eligible

Comparative effectiveness (head-to-head) trials of medications or behavioral counseling without another eligible control group

- **KQs 1, 3, 5, 6:** Studies with less than 6 months of followup

Modeling studies, systematic reviews, case series, case reports, uncontrolled observational studies, retrospective cohort
Appendix B2. Eligibility Criteria

<table>
<thead>
<tr>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 6: Controlled prospective cohort studies are also eligible</td>
<td>studies, editorials, and all other study designs not mentioned</td>
</tr>
<tr>
<td>Settings</td>
<td>Studies conducted in or recruited from primary care settings or settings otherwise applicable to primary care, including school-based health centers and other community settings that provide primary care or are referable from primary care (i.e., screening/interventions that could feasibly be implemented in or referred from primary care)</td>
</tr>
<tr>
<td>Countries</td>
<td>Studies conducted in countries categorized as "Very High" on the Human Development Index in the 2019 Human Development Report (as defined by the United Nations Development Programme)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Study Quality</td>
<td>Good or Fair</td>
</tr>
</tbody>
</table>

* Prediabetes includes individuals who meet criteria for IFG, IGT, and those with an A1c from 5.7 to 6.4 percent.

* Systematic reviews were excluded from the evidence review. However, separate searches were conducted to identify relevant systematic reviews, and the citations of all studies included in those systematic reviews were reviewed to ensure that the database searches have captured all relevant primary studies.

Abbreviations: A1c=glycated hemoglobin; BMI=body mass index; FPG=fasting plasma glucose; IFG=impaired fasting glucose; IGT=impaired glucose tolerance; KQ=key question; MODY=Maturity Onset Diabetes of the Young; OGTT=oral glucose tolerance test; USPSTF=U.S. Preventive Services Task Force.
Appendix B3. U.S. Preventive Services Task Force Quality Rating Criteria

Randomized, Controlled Trials and Cohort Studies

Criteria

- Initial assembly of comparable groups
- Randomized, controlled trials (RCTs)—adequate randomization, including concealment and whether potential confounders were distributed equally among groups; cohort studies—consideration of potential confounders with either restriction or measurement for adjustment in the analysis; consideration of inception cohorts
- Maintenance of comparable groups (includes attrition, crossovers, adherence, and contamination)
- Important differential loss to followup or overall high loss to followup
- Measurements that are equal, reliable, and valid (includes masking of outcome assessment)
- Clear definition of interventions
- Important outcomes considered
- Analysis: Adjustment for potential confounders for cohort studies or intention-to-treat analysis for RCTs; for cluster RCTs, correction for correlation coefficient

Definition of Ratings Based on Above Criteria

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (followup ≥80%); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; important outcomes are considered; and appropriate attention is given to confounders in analysis. In addition, intention-to-treat analysis is used for RCTs.

Fair: Studies will be graded “fair” if any or all of the following problems occur without the important limitations noted in the “poor” category below: Generally comparable groups are assembled initially, but some question remains on whether some (although not major) differences occurred in followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for. Intention-to-treat analysis is lacking for RCTs.

Poor: Studies will be graded “poor” if any of the following major limitations exist: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. Intention-to-treat analysis is lacking for RCTs.

Diagnostic Accuracy Studies

Criteria:
- Screening test relevant, available for primary care, and adequately described
- Credible reference standard, performed regardless of test results
- Reference standard interpreted independently of screening test
- Indeterminate results handled in a reasonable manner
- Spectrum of patients included in study
- Sample size
- Reliable screening test

Definition of Ratings Based on Above Criteria:

Good: Evaluates relevant available screening test; uses a credible reference standard; interprets reference standard independently of screening test; assesses reliability of test; has few or handles indeterminate results in a reasonable manner; includes large number (greater than 100) of broad-spectrum patients with and without disease.

Fair: Evaluates relevant available screening test; uses reasonable although not best standard; interprets reference standard independent of screening test; has moderate sample size (50 to 100 subjects) and a “medium” spectrum of patients.

Poor: Has a fatal flaw, such as uses inappropriate reference standard; improperly administers screening test; biased ascertainment of reference standard; has very small sample size or very narrow selected spectrum of patients.

Appendix C. Excluded Articles

X1: Non-English
X2: Ineligible Population
X3: Ineligible Screening
X4: Ineligible Treatment
X5: Ineligible Comparison
X6: Ineligible Outcome
X7: Ineligible Setting
X8: Ineligible Study Design
X9: Ineligible Country
X10: Abstract Only

12. Effects of treatment of impaired glucose tolerance or recently diagnosed type 2 diabetes with metformin alone or in
Appendix C. Excluded Articles

25. Arky RA, Abramson EA. Insulin response to glucose in the presence of

Appendix C. Excluded Articles

Appendix C. Excluded Articles

60. doi: 10.2337/diab.16.3.156. PMID: 6019594. Exclusion Code: X8.
Appendix C. Excluded Articles

Appendix C. Excluded Articles

104. de Moraes MM, Mediano MFF, de Souza RAG, et al. Discouraging soft drink consumption reduces blood glucose and cholesterol of Brazilian elementary students: Secondary analysis of a randomized controlled trial. *Prev
Appendix C. Excluded Articles

Appendix C. Excluded Articles

Appendix C. Excluded Articles

143. Fonseca V, Staels B, Morgan JD, 2nd, et al. Efficacy and safety of sitagliptin
Appendix C. Excluded Articles

331. Nelson P, Poon T, Guan X, et al. The incretin mimetic exenatide as a monotherapy in patients with type 2...
Appendix C. Excluded Articles

10.1007/s00125-010-1693-0. PMID: 20204321. Exclusion Code: X8.

Appendix C. Excluded Articles

Appendix C. Excluded Articles

370. Raman A, Ritchie LD, Lustig RH, et al. Insulin resistance is improved in overweight African American boys but not in girls following a one-year multidisciplinary community

382. Rissanen A, Howard CP, Botha J, et al. Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates

Appendix C. Excluded Articles

Appendix D Table 1. Quality Assessment of Randomized, Controlled Clinical Trials (All KQs)

<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Was randomization adequate?</th>
<th>Was allocation concealment adequate?</th>
<th>Were groups similar at baseline?</th>
<th>What was the reported adherence to the intervention?</th>
<th>Did the study have cross-overs or contamination raising concern for bias?</th>
<th>What was the overall attrition? Enter values for both loss to f/u (missing data) and non-completers</th>
<th>What was the differential attrition?</th>
<th>Did the study have high differential attrition (>10% but think about how it might bias) or overall high attrition (depends on duration and outcome; generally 20%) raising concern for bias?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelsey, 2016</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Adherence to the medication regimen before the primary outcome was reached or the study was completed ranged from 84% at month 8 to 57% at month 60 but did not differ significantly across treatments. The rate of attendance at lifestyle program visits during the first 24 months was 75.2%; 53.6% of participants met the preplanned target of attending 75% or more of visits over these 2 years.</td>
<td>No</td>
<td>Combining withdrawing consent and data censored: 6.4% (15/232) vs. 8.6% (20/233) vs. 6.4% (15/234)</td>
<td>2.2%</td>
<td>No</td>
</tr>
<tr>
<td>Zeitler, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TODAY Study Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TODAY Study Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levitt Katz, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitler, 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for type 2 Diabetes in Adolescents and Youth (TODAY) Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, 2002</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No, placebo had higher FPG and higher A1c and TG. Metformin group had higher C-peptide.</td>
<td>7.5% of placebo (3/40) and 45.2% (19/42) completed metformin</td>
<td>Yes</td>
<td>At 16 weeks: 10/82=12.2% overall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Adherence to the medication regimen before the primary outcome was reached or the study was completed**
- **Rate of attendance at lifestyle program visits during the first 24 months was 75.2%; 53.6% of participants met the preplanned target of attending 75% or more of visits over these 2 years.**
- **Between-group difference of 4.3%**
<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Trial Name</th>
<th>Was randomization adequate?</th>
<th>Was allocation concealment adequate?</th>
<th>Were groups similar at baseline?</th>
<th>What was the reported adherence to the intervention?</th>
<th>Did the study have cross-overs or contamination raising concern for bias?</th>
<th>What was the overall attrition? Enter values for both loss to f/u (missing data) and non-completers</th>
<th>What was the differential attrition?</th>
<th>Did the study have high differential attrition (>10% but think about how it might bias) or overall high attrition (depends on duration and outcome; generally 20%) raising concern for bias?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savoye, 2014</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2/38 in the intervention group never attended the intervention visits, and 5 others did not finish the study intervention.</td>
<td>No</td>
<td>23% (6-month followup assessments were missing for 17/75 participants)</td>
<td>8.6% (18.4% [7/38] vs. 27.0% [10/37])</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Appendix D Table 1. Quality Assessment of Randomized, Controlled Clinical Trials (All KQs)

<table>
<thead>
<tr>
<th>First Author, Year Trial Name</th>
<th>Were outcome measurements equal, valid and reliable?</th>
<th>Were patients masked?</th>
<th>Were providers masked?</th>
<th>Were outcome assessors masked?</th>
<th>Was the duration of followup adequate to assess the outcome?</th>
<th>What was the method used to handle missing data?</th>
<th>Did the study use an ITT analysis? (i.e., analyze people in the groups they were randomized to)</th>
<th>Quality Rating (for benefits)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelsey, 2016<sup>62</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Censored; all randomized participants were included in the time-to-event analysis.</td>
<td>Yes (all participants included in time-to-event analysis)</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Zeitler, 2012<sup>51</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TODAY Study Group<sup>58</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TODAY Study Group<sup>59</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levitt Katz, 2015<sup>60</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitler, 2007<sup>51</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Options for type 2 Diabetes in Adolescents and Youth (TODAY) Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, 2002<sup>63</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>NR</td>
<td>No</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>Savoye, 2014<sup>64</sup></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Unclear</td>
<td>Multiple imputation</td>
<td>Yes</td>
<td>Fair</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: FPG=fasting plasma glucose; ITT=intention to treat; KQ=key question; NR=not reported; TG=triglycerides; TODAY=Treatment Options for Type 2 Diabetes in Adolescents and Youth.
Appendix D Table 2. Quality Assessment of Randomized, Controlled Clinical Trials: Additional Questions for Studies Reporting Harms (KQ 2 and KQ 4 Only)

<table>
<thead>
<tr>
<th>First Author, Year Trial Name</th>
<th>Were harms prespecified and defined?</th>
<th>Were ascertainment techniques for harms adequately described?</th>
<th>Were ascertainment techniques for harms equal, valid, and reliable?</th>
<th>Was duration of followup adequate for harms assessment?</th>
<th>Quality Rating (for harms)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelsey, 2016[2]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Zeitler, 2012[3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TODAY Study Group[3][8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TODAY Study Group[9]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levitt Katz, 2015[40]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitler, 2007[61]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Options for type 2 Diabetes in Adolescents and Youth (TODAY) Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, 2002[63]</td>
<td>Unclear</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Fair</td>
<td>Unsure how measured harms data.</td>
</tr>
</tbody>
</table>

For RCTs and cohorts, definition of ratings based on above criteria:

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (followup ≥80%); reliable and valid measurement instruments are used and applied equally to all groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention to confounders in analysis. In addition, intention-to-treat analysis is used for RCTs.

Fair: Studies are graded “fair” if any or all of the following problems occur, without the fatal flaws noted in the “poor” category below: Generally comparable groups are assembled initially, but some question remains whether some (although not major) differences occurred with followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for. Intention-to-treat analysis is used for RCTs.

Poor: Studies are graded “poor” if any of the following fatal flaws exist: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. Intention-to-treat analysis is lacking for RCTs.

Abbreviations: RCT=randomized, controlled trial; TODAY=Treatment Options for Type 2 Diabetes in Adolescents and Youth.