Evidence Synthesis Number 162

Screening to Prevent Osteoporotic Fractures: An Evidence Review for the U.S. Preventive Services Task Force

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. HHSA-290-2012-00015-I, Task Order No. 6

Prepared by:

RTI International–University of North Carolina Evidence-based Practice Center Research Triangle Park, NC

Investigators:

Meera Viswanathan, PhD Shivani Reddy, MD, MSc Nancy Berkman, PhD Katie Cullen, BA Jennifer Cook Middleton, PhD Wanda K. Nicholson, MD, MPH, MBA Leila C. Kahwati, MD, MPH

AHRQ Publication No. 15-05226-EF-1 October 2017

This report is based on research conducted by the RTI International–University of North Carolina Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2012-00015-I, Task Order No. 6). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

The final report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report.

Acknowledgments

The authors acknowledge the following individuals for their contributions to this project: Tina Fan, MD, MPH, AHRQ Medical Officer; Tracy Wolff, MD, MPH, AHRQ Associate Scientific Director; current and former members of the U.S. Preventive Services Task Force who contributed to topic deliberations; Evelyn Whitlock, MD, MPH, former Director, Kaiser Permanente Research Affiliates EPC; Jennifer S. Lin, MD, Director, Kaiser Permanente; Rosanne Leipzig, MD, PhD, Diana Pettiti, MD, MPH, Margaret Gourlay, MD, MPH, Carolyn Crandall, MD, MS, Mary Roary, PhD, and Bruce Ettinger, MD, who contributed to peer review of the report; Research Affiliates EPC and RTI International–University of North Carolina EPC staff Kathleen N. Lohr, PhD; Lynn Whitener, DrPH; Andrew Kraska, BA; Janice Handler, BA; Stephanie Scope, BS; Carol Woodell, BSPH; Rachel Weber, PhD; Linda J. Lux, MPA; and Loraine Monroe.

Structured Abstract

Purpose: To review evidence about screening to prevent osteoporotic fractures for the U.S. Preventive Services Task Force (USPSTF).

Data Sources: MEDLINE, the Cochrane Library, Embase, and trial registries from November 1, 2009, through October 1, 2016 and surveillance of the literature through September 26, 2017; bibliographies from retrieved articles.

Study Selection: Two investigators independently selected studies using a priori inclusion and exclusion criteria. We selected studies with a majority of adults age 40 years or older conducted in countries with a very high human development index. For screening studies, we required that studies include a majority of participants without prevalent low-trauma fractures. For treatment studies, we required that studies include a majority of participants with increased fracture risk. We selected studies of screening tests (fracture risk prediction instruments, bone measurement testing, or a combination of fracture risk prediction instruments and bone measurement testing) that were feasible for primary care settings and available in the United States. We selected studies of treatment approved by the U.S. Food and Drug Administration for synthesis of benefits and harms. We excluded studies of poor quality and of fracture risk prediction instruments without external validation.

Data Extraction: One investigator extracted data and a second checked accuracy. Two reviewers independently rated quality for included studies using predefined criteria.

Data Synthesis: We did not identify any fair or good quality studies that compared screening with no screening. We included 153 studies (in 161 articles) of fair or good quality; 96 (in 100 articles) assessed screening accuracy and 61 (in 65 articles) assessed benefits and harms of treatment. Using centrally measured dual-energy X-ray absorptiometry (DXA) as the reference standard for identifying osteoporosis, the pooled estimate of accuracy as measured by the area under the curve (AUC) for clinical risk assessment instruments for women ranges from 0.65 to 0.70 and for men from 0.75 to 0.80. AUCs for the accuracy of calcaneal quantitative ultrasound in identifying central DXA-measured osteoporosis for women is 0.77 (95% confidence interval [CI], 0.72 to 0.82, 7 studies) and for men is 0.80 (95% CI, 0.67 to 0.94, 3 studies). The AUCs of machine-based tests, including centrally measured DXA (areal bone mineral density and trabecular bone score) and calcaneal quantitative ultrasound, for predicting fractures ranged from 0.59 to 0.86 (21 studies). The AUCs for instruments predicting fractures, some of which incorporate machine-based tests, have similar accuracy (pooled AUC range for the Fracture Risk Assessment Tool: 0.62 to 0.79; 24studies). Available but limited evidence in studies including participants with a wide spectrum of baseline bone mineral density from normal to osteoporosis suggests no benefit from repeating a bone measurement test between 4 and 8 years after the initial screen. Evidence from placebo-controlled trials demonstrates the following benefits. For women, the risk of vertebral fractures can be reduced by bisphosphonates, parathyroid hormone, raloxifene, and denosumab by 36% to 68%. Relative risks (RRs) range from 0.32 [parathyroid hormone or denosumab] to 0.64 [raloxifene]). The risk of nonvertebral fractures can be reduced by 16% to 20% by bisphosphonates and denosumab (RR: 0.84 and 0.80, respectively). The risk

of hip fractures can be reduced by 40% by denosumab (RR: 0.60). Evidence from bisphosphonates does not demonstrate benefit for hip fractures. Evidence is very limited for men. The risk of morphometric vertebral fractures can be reduced by 67% by zoledronic acid [RR: 0.33]. No studies demonstrate reductions in risk of clinical vertebral fractures or hip fractures for men. Evidence on variations in effectiveness for subgroups is also limited; a single trial each for five drugs suggests no differences in effectiveness by age, baseline bone mineral density, prior fractures, or a combination of risk factors. Bisphosphonates are not consistently associated with discontinuations, serious adverse events, gastrointestinal events, or cardiovascular events. No included studies reported cases of osteonecrosis of the jaw or atypical femur fracture, although evidence from excluded studies (including active comparisons, case series, and secondary prevention populations) suggests an increased but rare risk of these outcomes. Raloxifene increases the risk of deep vein thrombosis (0.7% vs. 0.3%, RR, 2.14; 95% CI, 0.99 to 4.66; I^2 =0%, 3 studies, N=5,839) and hot flashes (11.2% vs. 7.6%, RR, 1.42; 95% CI, 1.22 to 1.66; I^2 =0%, 5 trials; N=6,249) when compared with placebo.

Limitations: The evidence is limited by lack of information on the direct question of the benefits and harms of screening for elevated osteoporotic fracture risk. The indirect evidence pathway rests on studies evaluating (1) the accuracy of screening approaches in identifying osteoporosis and predicting fractures and (2) the benefits of treatment among those with osteoporosis or at high risk for fractures. Other limitations of the evidence base relate to underlying heterogeneity in baseline risk, prior fractures, prior treatment, and duration of followup.

Conclusions: We did not find studies of either good or fair quality evaluating the direct benefits and harms of screening for osteoporotic fracture risk. The accuracy of clinical risk assessment tools for identifying osteoporosis or predicting fractures generally ranges from very poor (0.50) to good (0.90). Treatments reduce the risk of vertebral and nonvertebral fractures. Studies do not consistently demonstrate an increased risk of harms for drugs, although studies of raloxifene suggest a trend toward higher risk of deep vein thrombosis. Rare harms, such as osteonecrosis of the jaw and atypical femur fractures were not reported in this body of evidence but they may occur. The evidence is limited for subpopulations characterized by age, sex, baseline bone mineral density, and baseline fracture risk.

Table of Contents

Chapter 1. Introduction	9
Scope and Purpose	9
Condition Background	9
Condition Definition	9
Prevalence and Burden of Disease	. 10
Etiology and Natural History	. 10
Clinical Risk Factors	. 11
Rationale for Screening	. 11
Current Drug Therapies	. 12
Emerging Drug Therapies	. 12
Adjunctive Therapies	. 13
Current Clinical Practice	. 13
Previous Review and USPSTF Recommendations	. 14
Use and Accuracy of Fracture Risk Instruments for Identifying Patients for Further	
Evaluation	. 14
Clinical Considerations for the Update	. 15
Chapter 2. Methods	. 16
Key Questions and Analytic Framework	. 16
Key Questions	. 16
Contextual Questions	. 16
Search Strategies	. 17
Study Selection	. 17
Newly Identified Studies	. 17
Studies in the 2010 USPSTF Review	. 19
Data Abstraction and Quality Rating	. 19
Data Synthesis and Analysis	. 20
Expert Review and Public Comment	. 21
USPSTF Involvement	. 21
Chapter 3. Results	. 22
Literature Search	. 22
Key Question 1. Does Screening (Clinical Risk Assessment, Bone Density Measurement, or	or
Both) for Osteoporotic Fracture Risk Reduce Fractures and Fracture-Related Morbidity and	d
Mortality in Adults?	. 22
Key Question 2a. What Is the Accuracy and Reliability of Screening Approaches to Identif	fy
Adults Who Are at Increased Risk for Osteoporotic Fracture?	. 23
Key Question 2b. What Is the Evidence to Determine Screening Intervals for Osteoporosis	\$
and Low Bone Density?	. 33
Key Question 3. What Are the Harms of Screening for Osteoporotic Fracture Risk?	. 34
Key Question 4a. What Is the Effectiveness of Pharmacotherapy for the Reduction of	
Fractures and Related Morbidity and Mortality?	. 35
Key Question 4b. How Does the Effectiveness of Pharmacotherapy for the Reduction of	
Fractures and Related Morbidity and Mortality Vary by Subgroup?	. 40
Key Question 5. What Are the Harms Associated With Pharmacotherapy?	. 41

Chapter 4. Discussion	48
Summary of Review Findings	48
Accuracy and Reliability of Screening Approaches (Key Question 2a)	48
Evidence to Determine Screening Intervals for Osteoporosis and Low Bone Density (Key	
Question 2b)	49
Benefits of Pharmacotherapy (Key Question 4a)	49
Variation in Benefits of Pharmacotherapy in Subgroups (Key Question 4b)	50
Harms of Pharmacotherapy (Key Question 5)	50
Contextual Considerations	50
Effectiveness of Screening Strategies Using Different Ages to Start and Stop Screening	50
Effectiveness of Screening Strategies Using Different Screening Intervals	51
Limitations and Future Research	51
Limitations	51
Future Research	52
Ongoing and Unpublished Studies	53
Conclusions	53
References	55

Figures

Figure 1. Screening for Osteoporosis: Analytic Framework Figure 2. PRISMA Tree

Tables

Table 1. Recommendations About Screening and Treatment of Osteoporosis From Various Professional and Health Organizations

Table 2. FRAX-Generated 10-Year Fracture Risk Probabilities by Age, Race, and Sex for U.S. Populations of Average Height and Weight

 Table 3. Characteristics and Accuracy of Clinical Risk Assessment Tools in Identifying

 Osteoporosis

Table 4. Characteristics and Accuracy of Machine-Based Tests in Identifying Osteoporosis

 Table 5. Summary of Imaging Tests Predicting Fracture

Table 6. Characteristics and Accuracy of Fracture Risk Prediction Models in Predicting Fracture

Table 7. Reclassification of Risk With Osteoporosis Tools or Instruments

Table 8. Using Repeat BMD Testing to Predict Fracture Risk

Table 9. Summary of Evidence

Table 10. Accuracy of Clinical Risk Prediction Instruments With Evidence on Identifying Osteoporosis and Predicting Fractures

Appendixes

Appendix A. Search Strategies and Detailed Methods

Appendix B. Screening for Osteoporosis: Inclusion and Exclusion Criteria

Appendix C. Reasons for Exclusion

Appendix D. Risk of Bias Tables

Appendix E. Inclusion/Exclusion Status of Studies Included in 2010 Report

Appendix F. Evidence Tables

Appendix G. Ongoing Trials and Completed Not Published Trials

Chapter 1. Introduction

Scope and Purpose

The U.S. Preventive Services Task Force (USPSTF or Task Force) will use this report to update its 2011 recommendation on screening for osteoporosis.¹ This report evaluates the evidence on the accuracy, reliability, and harms of screening approaches, appropriate screening intervals, and the benefits and harms of pharmacotherapy.

This report focuses on populations without known comorbidities or medication use associated with secondary osteoporosis because the detection and management of secondary osteoporosis falls outside the purview of the Task Force. The report also excludes younger populations (<40 years of age) because increasing age is the single most important risk for osteoporosis and fragility fractures. Further, a diagnosis of osteoporosis among those under age 40 is extremely rare in the absence of an underlying medical comorbidity or use of medications associated with bone loss. The scope of this review includes screening strategies related to fracture risk assessment, with or without bone mineral density testing; other types of screening (e.g., functional assessment, safety evaluations, vision examinations, nutrition assessments) are not included. Because the focus of this review is on primary prevention of osteoporotic fractures, the management of osteoporosis in populations characterized primarily by prevalent fractures and comparative effectiveness of osteoporosis treatments are also outside the scope of this review.

Condition Background

Condition Definition

Osteoporosis is a skeletal disorder characterized by loss of bone mass, microarchitectural deterioration of bone tissue, and decline in bone quality leading to increased bone fragility and risk of fractures.²⁻⁴ Although bone mass (expressed by bone mineral density [BMD]) is only one factor contributing to fracture risk, and new tools measuring bone quality are under development, osteoporosis has been defined operationally on the basis of BMD assessments or the history of a fragility fracture.⁵

The World Health Organization (WHO) defines osteoporosis as a bone density at the hip or spine that is 2.5 standard deviations or lower (T-score \leq -2.5) than the mean bone density of a reference population of young healthy women, presumably at peak bone mass. This definition was established originally for postmenopausal women using BMD of the proximal femur, but guidelines from the International Society for Clinical Densitometry indicate that they can also be used for men 50 years or older.⁶ The WHO definition is currently used for lumbar spine, distal radius, and total hip.⁷ Of note, U.S. bone density machines report T-scores using a reference group matched on race and sex, whereas the WHO uses a reference group of young white women only using normative data from the National Health and Nutrition Examination Survey (NHANES) reference database.⁸ Low bone mass, sometimes referred to as osteopenia, is

operationally defined as a T-score between -1 and -2.5.

Osteoporotic fractures, also known as fragility, "low-energy," or "low-trauma" fractures, are those sustained from a fall from standing height or lower and that would not give rise to a fracture in most healthy individuals.⁹ Osteoporotic fractures occur as a result of bone fragility resulting from bone loss or structural changes.¹⁰ Major osteoporotic fractures include fractures of the hip, spine, wrist, or shoulder. Because osteoporosis itself is asymptomatic, preventing osteoporotic fractures is the main goal of any osteoporosis screening strategy.

Prevalence and Burden of Disease

In the United States, the prevalence rates of osteoporosis and low bone mass at the femoral neck or lumbar spine among the noninstitutionalized population 50 years of age or older (adjusted by age, sex, and race and ethnicity) was estimated to be 10.3 percent and 43.9 percent, respectively, based on the NHANES.¹¹ In 2010, these estimates equated to 10.2 million older adults with osteoporosis and 43.4 million with low bone mass.

In the group that is 50 years of age or older, the prevalence of osteoporosis is greater in women (15.4%) than men (4.3%). The prevalence also varies by race and ethnicity: 10.2 percent in non-Hispanic whites, 4.9 percent in non-Hispanic blacks, and 13.4 percent in Mexican Americans. Prevalence increases dramatically with age: 50 to 59 years, 5.1 percent; 60 to 69 years, 8.0 percent; 70 to 79 years, 16.4 percent; and 80 years or older, 26.2 percent.

Researchers applying the NHANES data to 2020 and 2030 Census population projections estimated that the population that is 50 years of age or older with osteoporosis or low bone mass is forecast to increase from an estimated 53 million in 2010 to 63.9 million in 2020 and 70.6 million in 2030.¹¹

In 2005, approximately 2 million osteoporotic fractures occurred in the United States.¹² Most fractures (71%) occur among women, and more than three-quarters of the total costs of incident fractures (more than \$16.9 billion) were among women. Hip fractures account for a large portion of the mortality and morbidity related to osteoporotic fractures. Estimates based on Medicare claims data from 1986 to 2005 suggest an annual rate of hip fractures of 957.3 per 100,000 in women and 414.4 per 100,000 in men.¹³ The excess mortality due to hip fracture in the first year after fracture ranges from 8% to 36%, more than twice that of age and sex matched controls.¹⁴ Men have greater excess mortality compared to women at all ages, for unclear reasons. The greatest risk of death occurs in the first 3 to 6 months after fracture and may be due to post-operative events associated with corrective hip surgery, comorbid medical conditions, or inadequate treatment of risk factors for fracture including osteoporosis.^{14, 15} The extent to which these factors contribute to excess mortality is unclear. Mortality from hip fracture decreases over time, but does not return to that of age- and sex-matched controls.¹⁵ All types of fractures are associated with higher rates of mortality.¹⁶⁻¹⁹

Etiology and Natural History

Osteoporosis may occur either without a known cause or secondary to another condition. Bone loss is associated with certain medical conditions: various endocrine conditions of the pituitary, thyroid, parathyroid, or reproductive organs; eating disorders; disorders of the gastrointestinal or biliary tract; renal disease; bone marrow disorders; and cancer.²⁰ Secondary osteoporosis can also result after organ transplantation. It can also arise from chronic use of medications with known deleterious effects on bone mass, such as glucocorticosteroids, immunosuppressants, antiepileptic medications, heparin, gonadotropin-releasing hormone agonists, and some long-acting progesterone agents used as contraceptives.

Although osteoporosis is related to an increased risk of fracture,³ most fractures occur in those with nonosteoporotic T-scores.²¹⁻²³ Similarly, fragility fractures can occur in persons with normal bone mass.²⁴ Older adults have much higher fracture rates than younger adults with the same bone density because of concurrent increasing risk from declining bone quality and an increasing tendency to fall.²⁵

Clinical Risk Factors

For both men and women, advancing age was found to be a more critical determinant of fracture than bone mass.²⁶ Additional risk factors include menopausal status in women,²⁷ previous osteoporotic fracture, long-term glucocorticoid therapy, low body weight (less than 58 kg [127 lbs.]), parental history of hip fracture, cigarette smoking, excess alcohol consumption, and use of anti-convulsants or benzodiazepines.^{28, 29}

A systematic review and meta-analysis identified risk factors associated with osteoporotic fractures in men.³⁰ The review found statistically significant associations between fractures and increasing age, low body mass index, excessive alcohol intake (daily intake or greater than 10 servings per week), current smoking, chronic corticosteroid use, history of prior fractures, history of falls within the past year, hypogonadism, history of cerebrovascular accident, and history of diabetes. A large multiethnic study, the National Osteoporosis Risk Assessment Cohort, compared fracture risk among races and ethnicities, and found that Black women and Asian American women had a lower risk of fracture when compared with white women, whereas Hispanic and Native American women had risks similar to white women.³¹ Genetic, anthropometric, lifestyle, comorbidities all contribute to fracture risk and the relative contribution of these factors to fracture risk is likely to differ between races and ethnicities.³¹

Rationale for Screening

The rationale for screening for osteoporosis is that treatment to increase bone mass and prevent further losses can prevent fractures and related morbidity. Screening for osteoporosis traditionally involves bone measurement testing (e.g., bone density). More recently, fracture risk assessment (with or without bone measurement testing) have been proposed as alternative strategies to identify individuals who may benefit from treatment. Numerous risk assessment instruments have been developed to either (1) identify low bone density or (2) predict the risk of

fracture.^{2, 3} These instruments vary in the number and weight assigned to risk factors, but the USPSTF 2010 systematic review found that instruments with fewer risk factors often had similar or higher areas under the curve than instruments with more risk factors.^{2, 3} Several instruments had not been developed using prospective cohorts or validated in men. The most studied risk assessment instrument is the Fracture Risk Assessment Tool (FRAX), which WHO developed in 2008. FRAX uses an algorithm for predicting the 10-year probability of hip fracture or major osteoporotic fractures (hip, spine, wrist, shoulder) using clinical risk factors and bone mineral density at the femoral neck when available. It was derived from nine cohorts in Europe, the United States, Japan, and Canada and has been applied to men.^{9, 32} Country-specific versions of FRAX are available that have been calibrated for use in each country using country-specific fracture incidence and mortality data. For the US non-Hispanic white population, the FRAX model was calibrated using national mortality data and fracture incidence rates from the population of Olmsted County, Minnesota between 1989 and 1991.³³ For non-white US populations, race-specific fracture incidence and mortality was used to calibrate the model. In response to declining fracture incidence, the US FRAX model was recalibrated in 2009. In countries or settings without access to bone density testing, the FRAX score (without BMD) can be used to make treatment decisions.

Bone density can be measured using various methods and at various bone sites. Dual-energy Xray absorptiometry (DXA) measures bone mass at either central (e.g., hip and lumbar spine) or peripheral bone sites; both central and peripheral DXA can identify patients with low bone mass at increased fracture risk.^{2, 34} Centrally measured DXA serves as the standard machine-based test for identifying osteoporosis because trials of treatment for osteoporosis to prevent fracture have been conducted with study populations assessed with centrally measured DXA.² Other machinebased tests include quantitative ultrasound (QUS), peripheral DXA, quantitative computerized tomography (QCT), and radiograph absorptiometry. Further, the lack of a single populationbased reference for determining T-scores, required because of technical differences among tests, has limited the ability to use noncentrally measured DXA tests for diagnostic and treatment decisions.

QUS is used at peripheral bone sites, such as the heel, and it avoids the risk of radiation inherent in DXA. However, QUS does not actually measure BMD, so it cannot be used in risk prediction instruments that use BMD. Peripheral DXA and QUS use portable devices and may be more accessible than central DXA measurement. QCT provides a volumetric measure of bone density, which may improve detection of osteoporosis compared to areal BMD by DXA.^{35, 36} However, reproducibility is poor in community settings, and few data are available on how T-scores generated from QCT predict fracture risk compared with those based on DXA.⁷ The most recent version of FRAX allows providers to enter bone mineral density from Mindways QCT (Mindways Software, Austin, Texas).³⁷ Finally, radiograph absorptiometry, which uses computerized processing of radiographs from peripheral sites such as hand or heel, and dental radiographs can also be used to assess low bone mass.³⁸

Current Drug Therapies

The U.S. Food and Drug Administration (FDA) has approved various medications from different drug classes to prevent osteoporosis (adults with T-scores between -1.0 and -2.5) and to treat

osteoporosis (adults with T-scores <-2.5 or history of fragility fractures regardless of bone mass). These drugs work either to inhibit osteoclastic bone resorption (antiresorptive agents) or to stimulate osteoblastic new bone formation (anabolic agents).³⁹ Drugs classified primarily as antiresorptive include bisphosphonates, estrogens, selective estrogen receptor modulators, calcitonin, and denosumab, a monoclonal antibody targeting the receptor activator of nuclear factor kappa-B ligand (RANKL) approved by the FDA in 2010. In addition, in 2013 the FDA approved the first combination estrogen-estrogen agonist/antagonist (Duavee®) to prevent osteoporosis in postmenopausal women. The only FDA-approved therapeutic agent with an anabolic mechanism of action is parathyroid hormone (PTH), specifically teriparatide, which is a human recombinant PTH fragment (1-34 N-terminal amino acid sequence).

Emerging Drug Therapies

A human recombinant PTH (full length 1 to 84 sequence) has been studied for use in osteoporosis. It is approved for use in Europe, but in the United States it is available only for patients with chronic hypoparathyroidism. In addition, alternative PTH fragments and delivery mechanisms, including intermittent, transdermal, oral, and inhalational, are under investigation.⁴⁰ Several other potential targets for increasing bone mass have been identified and several drug candidates are in phase III trials.⁴¹ These new drugs include romosozumab and blosozumab, which are sclerostin human monoclonal antibodies that enhance the wingless-int signaling pathway to prevent the inhibition of bone formation. The sponsors of odanacatib, a cathepsin-K inhibitor that is involved in bone resorption, stopped a Phase III trial after evidence of increased risk of stroke.⁴²

Adjunctive Therapies

Typical adjunctive treatments, in addition to medication for preventing or treating osteoporosis, include adequate dietary intake of calories (to avoid underweight), calcium, and vitamin D, with supplemental calcium or vitamin D (or both) if dietary intake is insufficient. Additionally, exercise of various types may reduce the risk of fracture, for example through small increases in bone density and beneficial changes in bone architecture; they may also decrease the risk of falls.⁴³

Current Clinical Practice

Screening and primary prevention of osteoporosis in asymptomatic adults without known risks for secondary osteoporosis is within the scope of practice for most primary care providers (e.g., internal medicine, family medicine). It may also be in scope for gynecologic practices that serve as primary care providers for women during perimenopause. Recommendations for screening developed by various organizations and specialty societies continue to differ. This is especially true with respect to who should be screened, how to screen (i.e., bone density testing vs. fracture risk assessment), when to start or stop screening, and the frequency of screening (see **Table 1**).

Although all currently approved medications for osteoporosis are labeled for use based on BMD or history of fragility fracture, a shift toward treatment based on absolute fracture risk has

received increasing consideration. A systematic review of osteoporotic fracture risk assessment guidelines using FRAX identified 120 such guidelines.⁴⁴ Of these, 38 did not provide a rationale for the use of fracture probabilities in setting intervention thresholds. The authors categorized the others as offering fixed-probability threshold (N=58, a group that includes the USPSTF 2011 recommendation), an age-dependent threshold (N=22), or a combination (N=2). Of the guidelines referencing fixed-probability thresholds, over half (N=39) reference an absolute fracture risk of 20 percent or greater for major osteoporotic fractures as the threshold for treatment in those with low bone mass. In the United States, this threshold, along with a threshold of 3 percent or greater absolute fracture risk for hip fractures, is based on a costeffectiveness analysis of treatment relying on 2005 cost data.⁴⁵ The 2011 USPSTF recommendation,¹ along with a small minority of other guidelines (Scottish Intercollegiate Guidelines Network,⁴⁶ the Michigan Quality Improvement Consortium,⁴⁷ the American Academy of Family Physicians,⁴⁸ and the Institute for Clinical Systems Improvement)⁴⁹ uses a fixed-probability FRAX threshold as a gateway to further assessment with bone density testing rather than treatment. Specifically, the 2011 USPSTF recommendation relied on the U.S. FRAX tool for identifying risk in women younger than 65 and establishes a threshold for bone density testing for women at an absolute fracture risk of 9.3 percent or greater, which is the 10-year probability of a major osteoporotic fracture for a 65-year old white woman of average body mass index of 25 kg/m² with no other risk factors.

In 2006, the National Committee for Quality Assurance introduced the Healthcare Effectiveness Data and Information Set measure assessing the percentage of women 65 to 85 years of age who report ever having received a bone density test to screen for osteoporosis. The rate of receipt of bone density tests rose in the ensuing decade.⁵⁰ In 2006, 64.4 percent of women 65 to 85 years of age in a Medicare health maintenance organization plan and 71.3 percent in a Medicare preferred provider organization reported ever having a bone density test. By 2014, these numbers had risen to 74.2 percent and 78.5 percent, respectively. At the same time, some studies have identified inappropriate use of bone mineral density screening. Overuse is defined as a diagnostic test or treatment that is commonly used but that offers limited benefits or carries risks that outweigh its benefits)⁵¹ For BMD tests, the Good Stewardship Working Group defines overuse as DXA screening in women under age 65 years or men under 70 years with no risk factors. Findings from the National Ambulatory Medical Care Survey indicated that overuse of DXA in primary care accounted for \$527 million in expenditures;⁵² a study in a large regional health care system suggested that about one-half of women under age 65 without risk factors received DXA screening over a 7-year period.⁵³ The Choosing Wisely® Campaign, which is endorsed by multiple medical societies, lists bone density testing as a test that should be considered carefully before ordering in women younger than 65 and in men younger than 70 with no risk factors.

Previous Review and USPSTF Recommendations

In 2011, the USPSTF recommended screening for osteoporosis in women age 65 or older and in younger women whose fracture risk is equal to or greater than that of a 65-year old white women who has no additional risk factors (B grade). The USPSTF also concluded that the evidence was insufficient to assess the balance of benefits and harms of screening for osteoporosis in men.

Use and Accuracy of Fracture Risk Instruments for Identifying Patients for Further Evaluation

Modeling studies raise concerns regarding the clinical value of the USPSTF-recommended fracture risk threshold for bone density testing in younger women. In 2011, the USPSTF recommended screening with DXA in women 55 to 64 years of age whose fracture risk is equal to or greater than that of a 65-year old white woman who has no additional risk factors, which is equivalent to a FRAX calculated risk of \geq 9.3 percent for major osteoporotic fracture. **Table 2** reflects fracture risk probabilities by age, race, and sex for men and women in the United States at mean height and weight, with no other risk factors.⁵⁴ Notably, FRAX calculates the risk of a fracture, not the risk of osteoporosis defined operationally by a T-score \leq -2.5.

The 2011 USPSTF recommendation used FRAX as a risk stratification tool for screening for osteoporosis for women younger than 65 to try to identify higher-risk women who may benefit from earlier screening (women older than 65 are to be routinely screened). The use of FRAX in younger women is then intended to lead to cascade of interventions that results in lower future risk of fractures. An implicit assumption of the recommendation is that FRAX is a reasonable risk stratification tool for osteoporosis. Studies published after the recommendation do not support the assumption that FRAX predicts osteoporosis as defined by T-score accurately. A retrospective application of the FRAX threshold of \geq 9.3 percent to a series of women 50 to 64.5 years of age undergoing DXA found sensitivity and specificity of 37 and 74 percent, respectively, for the detection of osteoporosis.⁵⁵ The study found that lowering the FRAX risk threshold to 5.5 percent would increase the sensitivity from 37 to 80 percent while reducing the specificity from 74 to 27 percent. Another study using a lower threshold of FRAX for DXA screening (6.5%) also had an improved sensitivity of nearly 90% for identifying osteoporosis but a poor specificity (37.1%).⁵⁶

Another study compared FRAX, Osteoporosis Self-Assessment Tool (OST), and the Simple Calculated Osteoporosis Risk Estimate (SCORE) among 5,165 Women's Health Initiative participants 50 to 64 years of age from 1994 to 2012. The study found that the FRAX threshold of \geq 9.3 percent was modestly better than chance, and inferior to OST and SCORE in identifying women with osteoporosis (femoral neck T-score \leq -2.5).⁵⁷ Using the same database, the authors also examined the sensitivity and specificity of FRAX, SCORE, and OST in predicting the incidence of major osteoporotic fracture. The findings of low sensitivity and specificity and thus very low area under the curve scores ranging from 0.52 to 0.56 suggested that none of these tools are suitable for predicting fractures in younger postmenopausal women.⁵⁸

We identified one study examining the accuracy of FRAX, including femoral hip BMD, in predicting osteoporosis.⁵⁹ Although this study is not eligible for the review of accuracy of instruments identifying osteoporosis because it includes BMD in the FRAX assessment, the authors noted that there was a general concordance between FRAX with BMD and BMD alone, indicating that the use of FRAX may be acceptable to identify patients for treatment even if BMD is not \leq -2.5.

A Canadian study examined the accuracy of FRAX with and without femoral hip BMD in predicting recurrent fracture⁶⁰ among 1,399 men and women, ages 59 to 69 years (median 67

years) enrolled at the time of the incident fracture. FRAX scores were calculated based on prefracture characteristics and after the incident fracture. A high-risk score was FRAX > 20 percent or hip $FRAX \ge 3$ percent. FRAX without BMD was calculated for all patients and calculated with BMD among 302 participants. Among patients with major fragility fractures, only 50 percent were estimated at high risk; 43 percent were estimated at moderate or low risk. Postfracture scores were not highly predictive of a recurrent fracture.

Clinical Considerations for the Update

Numerous comments received during workplan development for the current update noted the limitations of focusing on screening for osteoporosis with BMD alone. Commenters requested that the analytic framework include consideration of the full spectrum of risk beyond bone mineral density measurement, and focus on screening for osteoporotic fracture risk rather than osteoporosis. As a result, the analytic framework was expanded to address the full spectrum of risk related to osteoporotic fractures beyond low BMD. The current update also reviews continuing uncertainties regarding the overarching question of effectiveness and harms of screening and treatment, risk assessment thresholds, efficacy of screening and treatment for subgroups, and screening intervals.

Chapter 2. Methods

Key Questions and Analytic Framework

The investigators, U.S. Preventive Services Task Force (USPSTF) members, and Agency for Healthcare Research and Quality (AHRQ) Medical Officers developed the scope, key questions (KQs), and analytic framework (**Figure 1**) that guided the literature search and review. The KQs are as follows.

Key Questions

- 1. Does screening (clinical risk assessment, bone density measurement, or both) for osteoporotic fracture risk reduce fractures and fracture-related morbidity and mortality in adults?
- 2a. What is the accuracy and reliability of screening approaches to identify adults who are at increased risk for osteoporotic fracture?
- 2b. What is the evidence to determine screening intervals and how do these vary by baseline fracture risk?
- 3. What are the harms of screening for osteoporotic fracture risk?
- 4a. What is the effectiveness of pharmacotherapy for the reduction of fractures and related morbidity and mortality?
- 4b. How does the effectiveness of pharmacotherapy for the reduction of fractures and related morbidity and mortality vary by subgroup, specifically in postmenopausal women, premenopausal women, men, younger age groups (age <65 years), older age groups (age ≥65 years), baseline bone mineral density, and baseline fracture risk?
- 5. What are the harms associated with pharmacotherapy?

We include two contextual questions to help inform the report. We do not show these questions in the analytic framework because they were not analyzed using the same rigorous systematic review methodology as the studies that met the report's inclusion criteria. At the title and abstract and full-text article review stages, reviewers categorized studies not included to answer KQs that related to the specific contextual questions.

Contextual Questions

- 1. What is the evidence from modeling studies about different fracture risk thresholds for identifying patients for further evaluation or treatment?
- 2. What is the evidence from modeling studies about the effectiveness of screening strategies (screening, risk assessment, or bone measurement) that use (a) different ages at which to start and stop screening and (b) different screening intervals?

Contextual Question 1 is addressed in the introduction. Contextual Question 2 is addressed in the results section (for screening intervals, along with other included evidence on screening intervals) and in the discussion section (for starting and stopping ages).

Search Strategies

We searched MEDLINE® (via PubMed), the Cochrane Library, Embase, and the Cumulative Index to Nursing and Allied Health Literature for English-language articles published from November 1, 2009, through October 1, 2016, with active surveillance through September 25, 2017. We used Medical Subject Headings as search terms when available and keywords when appropriate, focusing on terms to describe relevant populations, screening tests, interventions, outcomes, and study designs. **Appendix A** describes the complete search strategies. We conducted targeted searches for unpublished literature by searching ClinicalTrials.gov, <u>Drugs@FDA.gov</u>, Cochrane Clinical Trials Registry, and the World Health Organization International Clinical Trials Registry Platform. To supplement electronic searches, we reviewed the reference lists of pertinent review articles and studies meeting our inclusion criteria and added all previously unidentified relevant articles. We included citations from the previous report and from other systematic reviews in our handsearch yield.

Study Selection

Newly Identified Studies

We selected studies on the basis of inclusion and exclusion criteria developed for each KQ for identifying populations, interventions, comparators, outcomes, timing, settings, and study designs (PICOTS) (**Appendix B**). **Appendix C** lists studies excluded at the full-stage review stage. We imported all citations identified through searches and other sources into EndNote X7.

Two investigators independently reviewed titles and abstracts. We dually and independently reviewed the full text of abstracts marked for potential inclusion by either reviewer. Two experienced team members then resolved disagreements.

Population

We included studies that focused on adults age 40 years or older. For screening questions (KQs 1–3), we required studies to have included a majority of participants without history of low trauma fractures, endocrine disorders likely to be related to metabolic bone disease, or chronic use of glucocorticoid medications. If information on the proportion of low trauma fractures was unavailable in the report, we sent an inquiry to the author. In cases of nonresponse, we planned to include these studies and noted lack of information on prevalent fracture rates. For treatment questions (KQs 4–5), we also required that a majority of included participants had an increased fracture risk (as defined by the study [typically bone mineral density (BMD) status).

Interventions

For screening questions (KQs 1–3), we searched for studies on risk assessment tools, bone measurement testing, or a combination of risk assessment and bone measurement testing. Eligible risk assessment tools included any paper-based or electronic instrument that compiled and compared various demographic or clinical characteristics for individuals to establish an

absolute or categorical risk estimate. Eligible bone measurement testing included dual-energy Xray absorptiometry (DXA, central or peripherally measured), quantitative ultrasound, dental tests, vertebral fracture assessment, and trabecular bone score (**Appendix B**). All tests and instruments needed to be feasible for primary care settings (i.e., could be ordered, administered, or interpreted by primary care providers) and be available in the United States; we excluded tests and instruments that were not commercially available. We required instruments to have been externally validated. For tests and instruments that included bone measurement testing (imaging and nonimaging machine-based tests), we required that the investigators measure bone mineral density in participants before the occurrence or identification of the fracture.

For treatment questions (KQs 4–5), we limited eligible interventions to pharmacotherapy approved by the U.S. Food and Drug Administration (FDA) for treating or preventing osteoporosis. These include (a) antiresorptive therapies, specifically bisphosphonates, estrogen agonists/antagonists, hormone therapy, and Receptor Activator of Nuclear Factor κ B ligand (RANKL) inhibitors and (b) anabolic therapies, specifically, parathyroid hormone. We did not summarize the evidence on calcitonin because it is no longer a first-line therapy for osteoporosis.

Comparators

For the overarching question on the benefits and harms of screening and health outcomes (KQ 1 and KQ 3), we included studies that compared screened with unscreened groups. For questions on screening accuracy and screening intervals (KQ 2), we included studies that evaluated fracture risk assessments or bone tests. For treatment benefits (KQ 4), we included studies comparing treatment with placebo. For treatment harms (KQ 5), we included studies comparing treatment with placebo or no treatment.

Outcomes

For KQ 1 and KQ 4, we included data on fractures, fracture-related morbidity, fracture-related mortality, or all-cause mortality. Fractures included major osteoporotic fractures defined as fractures of the hip, distal radius, proximal humerus, and vertebrae (clinically presenting). We also included and recorded separately morphometric (asymptomatic) vertebral fractures. For KQ 2, eligible outcomes included test characteristics (e.g., accuracy, reliability) for bone measurement tests and accuracy and reclassification for fracture risk assessment instruments. For KQ 3, we looked for evidence on outcomes such as unnecessary radiation, labeling, anxiety, false-positive results. We focused our systematic review on studies of risk assessment tools and bone measurement tests that predicted future fracture risk as an outcome, rather than identification of osteoporosis defined operationally by BMD. For KQ 5, eligible harms included serious adverse drug events, discontinuation attributed to adverse events, cardiovascular events, hot flashes, esophageal cancer, gastrointestinal events, osteonecrosis of the jaw, atypical fractures of the femur, and rashes.

Timing

Outcomes for KQ 1 studies had to be measured 6 months or more following screening. Although we had planned to limit the KQ 4 and KQ 5 studies outcomes to those measured 6 months or

more after the initiation of treatment, we also included harms (KQ 5) measured at shorter intervals for completeness of reporting. All timings were considered for KQ 2 and KQ 3 (although studies for fracture prediction, we required that assessments of outcomes occur after fracture risk assessment or machine-based tests).

Settings

We required the overarching screening question (KQ 1) to be in primary care settings or other settings similar to primary care. For all other questions, we also included studies in specialist settings. For all KQs, we limited our search to studies conducted in the United States or in countries with very high human development indexes.⁶¹

Study Designs

For screening questions (KQs 1–3), we included randomized controlled trials (RCTs), controlled clinical trials, and systematic reviews of trials. For questions on screening accuracy and screening intervals (KQs 2 and 3), we also included systematic reviews of observational studies and observational studies other than case series and case reports. For treatment questions (KQ 4 and KQ 5), we included systematic reviews, RCTs, and controlled trials published since any recent relevant review. For harms (KQ 5), we also included observational studies published since any recent relevant review.

Studies in the 2010 USPSTF Review

We applied, dually and independently, the inclusion and exclusion criteria described above to all studies included in the 2010 USPSTF review. (Note that the review was published in 2010,^{2, 3} and the recommendation statement in 2011^{1}). We resolved disagreements by discussion and consensus; if necessary, we sought adjudication of conflicts from other experienced team members.

We also conducted a check of the quality ratings of studies included in 2010 to ensure that studies met our current quality rating criteria. If the reviewer did not agree with this earlier assessment, we re-rated the quality of the study through dual review. Among included studies from the 2010 report, one reviewer checked for errors in previously generated abstraction tables and updated them as needed.

Data Abstraction and Quality Rating

We abstracted pertinent information from each newly included study; details included methods and patient PICOTS. A second investigator checked all data abstractions for completeness and accuracy. Two investigators independently evaluated the quality (internal validity) of each study, corresponding to USPSTF predefined methods criteria.⁶² The criteria by which the USPSTF requires individual study quality to be assessed differ by study design, but ultimately each study is to receive a rating corresponding to good, fair, or poor quality. We selected several tools for developing quality ratings, with specific tools corresponding to the design of the study that was

being evaluated.

For studies with treatment outcomes (KQs 1, 3, 4, and 5), we rated quality as good, fair, or poor based on a tool developed by the Cochrane Collaboration for assessing the risk of bias of RCTs.⁶³ When relevant, we also applied supplementary items developed by the RTI-University of North Carolina Evidence-based Practice Center for evaluating additional bias concerns relevant to cohort and case control study designs.⁶⁴

For screening studies (KQ 2) assessing diagnostic test accuracy, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool;⁶⁵ for diagnostic prediction model studies, we used a preliminary version of the in-development Prediction Model Study Risk of Bias Assessment Tool (PROBAST).⁶⁶ Based on these two tools, we evaluated each study as low, unclear, or high risk of bias. Low corresponds to good quality, high to poor quality, and unclear identifies studies for which we could not make a determination on the risk of bias.

The quality of existing systematic reviews that we integrated into this review were evaluated using ROBIS,^{65, 67} a tool designed to evaluate the risk of bias of systematic reviews. Using this tool, each systematic review was rated as low, unclear or some concerns, or high risk of bias. As with the PROBAST and QUADAS tools, low risk of bias corresponds to good quality, high to poor quality, and unclear represents uncertainty. **Appendix C** describes the quality rating criteria for each tool. We did not review the quality of individual studies contained within any good-quality systematic reviews that we included.

We resolved disagreements by discussion and consensus. We rated studies with fatal flaws as poor quality. For RCT and cohort studies included to answer KQ 1, 3, 4, or 5, "fatal flaws" that could result in poor-quality (i.e., high risk of bias) ratings included the following: groups assembled initially were not close to being comparable or were not maintained throughout the study; unreliable or invalid measurement instruments were used or not applied equally among groups (including not masking outcome assessment); and key confounders were given little or no attention. For RCTs, intention-to-treat analysis was lacking. For case-control studies pertaining to KQ 3 or 5, fatal flaws included major selection or verification (diagnostic workup) bias, a response rate less than 50 percent, or inattention to confounding variables. For KQ 2 screening studies, fatal flaws in at least one domain could lead to poor-quality ratings. Such flaws include cross-sectional design for risk prediction (i.e., predictors measured at same time as incident fracture in cases) and spectrum bias resulting from subgroups created through convenience groupings (such as quintiles) that do not represent a clinically rational categorization of participants.

Data Synthesis and Analysis

In Chapter 3 on results, we describe the yield from newly identified included studies and studies identified in the previous review that continue to meet current inclusion and quality criteria. We then present a synthesis of the last update and current findings.

When at least three similar studies were available, we conducted quantitative synthesis of AUCs

and event rates in studies with random-effects models using the inverse-variance weighted method (DerSimonian and Laird). For studies presenting multiple doses of medications, we selected the dose closest or equal to the FDA-approved dose, unless otherwise specified. We conducted sensitivity analyses using restricted maximum likelihood estimates to explore whether DerSimonian and Laird random-effects models underestimate variance for small meta-analyses.⁶⁸

For all quantitative syntheses, we calculated the chi-squared statistic and the I² statistic (the proportion of variation in study estimates due to heterogeneity) to assess statistical heterogeneity in effects between studies.^{69, 70} An I² from 0 to 40 percent might not be important, 30 percent to 60 percent may represent moderate heterogeneity, 50 percent to 90 percent may represent substantial heterogeneity, and 75 percent to 100 percent represents considerable heterogeneity.⁶³ The importance of the observed value of I² depends on the magnitude and direction of effects and on the strength of evidence for heterogeneity (e.g., p-value from the chi-squared test or a confidence interval for I²). However, as precision and the number of subjects increase, I² may become inflated toward 100 percent, and may not reflect clinically relevant heterogeneity.⁷¹ All quantitative analyses were conducted using OpenMetaAnalyst.⁷² We additionally conducted sensitivity analyses using Comprehensive Meta Analysis.⁷³

We interpret AUCs close to 0.50 as being no better than chance; AUCs of 1.0 represent perfect test accuracy.

The discussion chapter summarizes conclusions from the previous 2010 review, the 2011 USPSTF statement, and the implications of the new synthesis for previous conclusions. In addition, we assess the overall summary of the body of evidence for each KQ using methods developed by the USPSTF, based on the number, quality, and size of studies; consistency of results among studies (similar magnitude and direction of effect); and applicability of the results to the population of interest.

Expert Review and Public Comment

A draft report was reviewed by content experts, representatives of federal partners, USPSTF members, and AHRQ Medical Officers and was revised based on comments, as appropriate.

USPSTF Involvement

This review was funded by AHRQ. Staff of AHRQ and members of the USPSTF participated in developing the scope of the work and reviewed draft manuscripts, but the authors are solely responsible for the content.

Chapter 3. Results

Literature Search

We identified 5,203 unique records and assessed 838 full texts for eligibility (**Figure 2**). We excluded 677 studies for various reasons detailed in **Appendix C** and included 153 (in 161 articles) published studies of good or fair quality in our main analyses. In addition to the previous report^{2, 3}, no included studies were relevant for key question (KQ) 1, 93 studies (in 96 articles) were relevant for KQ 2a, 2 studies were relevant for KQ 2b, 0 studies were relevant for KQ 3, 22 studies (in 26 articles) were relevant for KQ 4, and 49 studies (in 51 articles) were relevant for KQ 5. Details of quality assessments of included studies and studies excluded based on poor quality are provided in **Appendix D**. **Appendix E** lists the inclusion and exclusion status of studies included in the previous review. **Appendix F** presents details for included studies in Evidence Tables. **Appendix G** describes ongoing trials, and **Appendix H** presents forest plots for meta-analyses.

Key Question 1. Does Screening (Clinical Risk Assessment, Bone Density Measurement, or Both) for Osteoporotic Fracture Risk Reduce Fractures and Fracture-Related Morbidity and Mortality in Adults?

As in the previous review,³ we found no good or fair quality randomized controlled trials (RCTs), controlled clinical trials, or systematic eligible for KQ 1. An unpublished study in process, the Screening for Osteoporosis in Older Women for the Prevention of Fracture [SCOOP] trial)^{74, 75} planned to enroll more than11,000 women ages 70 to 85 years and will use the Fracture Risk Assessment Tool (FRAX) tool and dual-energy X-ray absorptiometry (DXA) to assess the 10-year probability of fracture.⁷⁴

Of the studies that did not meet our quality or design criteria, results from one high risk-of-bias RCT of 4,800 women ages 45 to 54 years in Aberdeen, Scotland, indicated no difference in the rate of incident major osteoporotic fractures (MOF) in the subset with data available over the course of followup (calculated rate for screening 3.96% [47/1,184], followup = 9.1 years; calculated rate for control = 4.03% [50/1,241], followup = 8.8 years; calculated relative risk [RR], 1.00, 95% confidence interval [CI], 0.983 to 1.02).⁷⁶ We summed hip, wrist, vertebral, and humeral fractures to obtain major osteoporotic fractures and used percentages for the no-fracture category to infer the total numbers for the analysis because the study did not report the denominator directly. The study's attrition exceeded 40 percent.

Additionally, we identified one cohort study that did not meet our prespecified study design criteria for KQ 1.⁷⁷ This study, using a nonconcurrent control, evaluated the effectiveness of screening for osteoporosis on reducing hip fractures in 3,107 women and men age 65 years or older. The study collected data prospectively but identified the hypothesis after data collection. As part of a nested study on bone density within the Cardiovascular Health Study, participants in two of four counties were offered DXA screening while the remaining received usual care.

Participants with osteoporosis, hip fracture, or bisphosphonate use at baseline were excluded. The authors used propensity scores to adjust for baseline differences between the screened and usual care groups; notably, arms differed on several characteristics at baseline. Participants were followed for a mean duration of 4.9 years (range 3 days to 6 years). The study reported an adjusted hazard of hip fracture of 0.64 (2.32% [33/1,422] vs. 4.09% [69/1,685]; 95% CI, 0.41 to 0.99) for the screened group compared with the usual care group. Subgroup analyses suggest similar benefits of screening for women and men. Among age groups, the largest difference was reported for participants age 85 years or older, with an adjusted hazard of hip fracture 78 percent lower in screened versus usual participants (95% CI, 21 to 94; adjusted hazard ratio [HR] 0.22; 95% CI, 0.06 to 0.79; 3/100 vs. 18/115), although formal statistical testing of the interaction between age group and screening group was not significant.

Key Question 2a: What Is the Accuracy and Reliability of Screening Approaches to Identify Adults Who Are at Increased Risk for Osteoporotic Fracture?

This section is organized as follows: evidence on the accuracy of (1) clinical risk assessment tools for identifying osteoporosis, (2) bone measurement tests screening for identifying low bone mass and osteoporosis, (3) bone measurement tests predicting fracture, and (4) fracture risk prediction instruments predicting fracture. Each section includes an overview of the evidence, followed by findings. We then discuss calibration of fracture risk prediction instruments and other measures of test performance, specifically, reclassification.

Accuracy of Clinical Risk Assessment Tools for Identifying Osteoporosis: Overview of the Evidence

Thirty-five studies (comprising 37 publications)^{56, 57, 78-112} provide information on the accuracy of 16 clinical risk assessment instruments in identifying osteoporosis (bone mineral density [BMD] T-score \leq -2.5) (summary in **Table 3**; details in **Appendix F Tables 1-5**). We restricted inclusion to validated instruments. Studies were conducted in the United States (13 studies), Canada (4 studies), the United Kingdom (2 studies), Australia (2 studies), Republic of Korea (3 studies), Italy (3 studies), Belgium (3 studies), Spain (2 studies), Hong Kong (2 studies), Denmark (1 study), the Netherlands (1 study), Singapore (1 study), Portugal (1 study), and one study conducted data in the United States and Hong Kong. Thirty-three reported area under the curve (AUC) and 32 reported sensitivity or specificity. A smaller subset reported on positive (19 studies) or negative (17 studies) predictive values. The evidence base is characterized by heterogeneity in included risk factors (ranging from 2 to 17), clinical (17 in clinics, 17 in community settings, 1 in both) and geographic settings, measurement of osteoporosis (studies measured osteoporosis at spine, total hip, femoral neck, other sites [thoracic vertebra, lumbar vertebra, arms, ribs, or legs], or combinations of sites), thresholds used to calculate sensitivity and specificity, reference ranges, and baseline osteoporosis rates (4.4%¹¹⁰ to 47.4%⁸⁹). Four instruments (Mscore,¹¹² Male Osteoporosis Risk Estimation Score (MORES),^{86, 110, 113} Male Osteoporosis Screening Tool (MOST),⁹⁸ and Osteoporosis Screening Test [OST]) reported results in men-only samples, with OST reported separately in predominantly Asian (Osteoporosis Screening Tool for Asians [OSTA])^{97, 106} and other populations (OST).^{78, 98, 99, 108, 111, 112} Two studies reported results for men and women for FRAX⁵⁶ and OSTA.⁵⁶ All other studies reported

results in women-only samples. Although the range of mean ages in included studies varied from 50.5^{109} to 78.2,⁵⁶ among those reporting a mean age (32 studies), the mean in most studies (22 studies, 69%) ranged between 60 and 70 years.

Accuracy of Clinical Risk Assessment Instruments in Identifying Osteoporosis: Findings

As in the previous update, we found a wide range of AUCs (**Table 3**). When possible, we pooled AUCs for instruments reporting results from three or more populations. With the exception of one meta-analysis, all demonstrated high I^2 (>83%), suggesting that the variability between studies can be explained by heterogeneity rather than chance. Pooled estimates of AUCs ranged from 0.651 (Osteoporosis Risk Assessment Instrument [ORAI]; 10 studies; 16,680 participants) to 0.698 (Simple Calculated Osteoporosis Risk Estimation [SCORE]; 8 studies; 15,262) in women (AUCs from individual studies have a wider range from 0.32⁸⁹ to 0.873¹⁰⁷). AUCs appear to be higher in studies; 5,687 participants) and for MORES is 0.797 (3; 4,828). Instruments with more risk factors do not report higher AUCs than instruments with fewer risk factors.

Appendix F Tables 1-7 provides additional details on sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). As noted above, fewer studies reported these statistics than AUCs. Reported thresholds varied considerably within instruments; we present ranges for the most commonly reported threshold. Even with a common threshold, results varied widely; as an example, for the ORAI instrument, sensitivity ranged from 50% to 100%, specificity from 10% to 75%, PPV from 20% to 98%, and NPV from 25% to 94%. These wide ranges reflect the underlying heterogeneity described above.

Accuracy of Bone Measurement Tests Used to Identify Low Bone Mass and Osteoporosis: Overview of the Evidence

Eleven studies provide information on the accuracy of bone measurement tests for screening for low bone mass or osteoporosis (summary in **Table 4**; details in **Appendix F Table 6**). Of these, five are new inclusions^{95-97, 102, 114} and six^{88, 94, 98, 111, 115, 116} were previously described in the 2010 review.³ The previous review also relied on a systematic review that found a pooled AUC of 0.76 (95% CI, 0.72 to 0.79) overall, and specifically for postmenopausal women, 0.75 (95% CI, 0.66 to 0.82).^{117, 118}

Seven of 11 studies included fewer than 250 patients.^{88, 94, 102, 111, 114-116} Three studies, including the largest (N=6,572)⁹⁸ focused on men in the United States,¹¹¹ Hong Kong,⁹⁷ or both countries.⁹⁸ Studies of women were set in Belgium,^{114, 116} Hong Kong,⁹⁶ Spain,⁹⁵Canada,¹⁰² and the United Kingdom.^{88, 94, 115} Studies varied widely in the degree of restrictiveness of participant inclusion and exclusion. Two studies reported no exclusion criteria.^{88, 102} In contrast, two studies set in Hong Kong reported an extensive list of inclusion and exclusion criteria.^{96, 97} All were of low or unclear risk of bias.

Studies evaluated quantitative ultrasound (QUS),^{88, 94, 96-98, 102, 111, 114, 115} peripheral DXA,^{94, 95} digital X-ray absorptiometry (DXR),¹¹⁴ and radiographic absorptiometry.¹¹⁴ No studies on

vertebral fracture assessment or dental tests met our inclusion criteria.

Accuracy of Bone Measurement Tests Used to Identify Low Bone Mass and Osteoporosis: Findings

Studies in women focusing on comparisons of calcaneal QUS against a centrally measured DXA BMD T-score cutoff of -2.5 or less reported AUCs varying from 0.69 (N=202, Belgium) to 0.90 (N=174, Canada). For women, seven studies of 1,969 women yielded a pooled estimate of 0.77 for the AUC (95% CI, 0.72 to 0.81, I^2 =82.1%) (**Appendix H Figure 7**). We were unable to replicate reported confidence intervals in three studies,^{88, 102, 115} and used our estimate, based on reported populations and AUCs. Sensitivity analysis without these three studies yielded similar results (AUC, 0.74; 95% CI, 0.70 to 0.78; I^2 :65%; 4 studies, N=1352). Studies in women also reported on the use of peripheral DXA, with AUC ranging from 0.67 to 0.80;^{94, 95} DXR with an AUC of 0.84 (95% CI, 0.79 to 0.89);¹¹⁴ and radiographic absorptiometry with an AUC of 0.80 (95% CI, 0.74 to 0.85).

All studies in men focused on comparisons of calcaneal QUS to a centrally-measured DXA BMD T-score cutoff of -2.5 or less.^{97, 98, 111} AUC estimates ranged from 0.70 (N=4,658 Caucasian men in the United States) to 0.93 (N=128 African American men). For all men in the three studies (N=5,142), the pooled AUC estimate was 0.80 (95% CI, 0.67 to 0.94; I^2 , 98%) (**Appendix H Figure 8**).

Accuracy of Bone Measurement Tests Used to Predict Fracture: Overview of the Evidence

The 2010 review,³ based on evidence from 11 studies, found that DXA and QUS had similar AUC estimates for the prediction of fracture outcomes among samples of both women and men. Among postmenopausal women, for all types of fractures combined, AUC estimates, based on DXA, ranged from 0.59 to 0.66, and estimates based on QUS were approximately 0.66.

In our updated review, we included 23 studies of low or unclear risk of bias (reported in 24 articles), two of which were included in the 2010 review,^{119, 120} evaluating the performance of various bone measurement tests for predicting fractures (summary in **Table 5**; details in **Appendix F Table** 7).¹¹⁹⁻¹⁴² We do not discuss two studies further because they did not have usable data for our analysis of fracture outcomes; Henry et al. did not report AUC estimates,¹³¹ and Ensrud et al. did not present risk estimates separately for BMD alone.¹³⁸ We rated one other study as high risk of bias and did not include it in our update.¹⁴³ We did not include eight other studies from the 2010 review because they did not meet our inclusion criteria for one or more reasons, such as measuring bone density after the occurrence or identification of fracture or not reporting an AUC estimate.

Of the 21 studies we report on, two were conducted in the United States,^{120, 142} one in Scotland,¹¹⁹ four in Japan,^{121, 127, 137, 140} three in Canada,^{122, 123, 133, 139} two in Hong Kong,^{124, 136} two in Australia,^{125, 126, 129} one in Finland,¹²⁸ two in France,^{130, 132} one in Denmark,¹³⁴ one in Sweden,¹⁴¹ one in New Zealand,⁸⁷ and one in Spain.¹³⁵

The Canadian Manitoba study of men and women age 50 years or older was the largest study (N=39,603).¹³³

One study only reported data on men and women combined.¹³⁹ All others included separate reporting on women and men; 14 reported on postmenopausal women and four reported on men. These studies generally had few exclusion restrictions.

All studies reported on centrally measured DXA. Four studies also reported on calcaneal QUS tests, and one study also reported on dual X-ray and laser (DXL). No studies on vertebral fracture assessment or dental tests met our inclusion criteria. The various bone measurement tests evaluate bone density using different technologies; this results in different measures of bone "strength" that are not comparable across technologies. For example, QUS yields measures of broadband attenuation (BUA), speed of sound (SOS), or a quantitative ultrasound index (QUI). Studies also differ by the number and location of the incident fracture site being predicted (any osteoporotic fracture, vertebral, or hip), and the reference sites (spine, hip, or femoral neck) used to determine DXA-measured BMD. The length of followup for fracture surveillance following bone measurement testing ranged from approximately 4 years to up to 15 years.

Accuracy of Bone Measurement Tests Used to Predict Fracture: Findings

Because of differences across studies in the combination of the type of imaging test, sex of the participants, and location of an incident facture being predicted, few studies reported on the same combination of parameters (**Table 5**). In general, we did not find differences in AUC by type of bone test or sex.

Regarding type of bone test, AUC estimates for fracture prediction based on centrally measured DXA BMD, trabecular bone score, or a combination of both were as follows: any osteoporotic fracture (0.63 to 0.74), vertebral or spine fracture (0.61 to 0.75), and hip (0.64 to 0.85). The AUC estimate of hip fracture based on DXL was 0.61.¹⁴¹ The range of AUC estimates for fracture prediction based on QUS parameters (BUA, SOS, or QUI) were similar: any osteoporotic fracture (0.64 to 0.72) and, measured in men in one study, hip (0.84). Two studies^{120, 125} measured a combination of DXA and QUS (BUA parameter) and found that this approach did not appreciably increase AUC: any osteoporotic fracture (0.69 to 0.73), vertebral (0.72 in women) and (0.75 in men) in one study, ¹²⁵ and hip (0.78 to 0.85).

Regarding sex of the study participants, AUC estimates for fracture predictions based on DXA BMD in postmenopausal women ranged from 0.64 to 0.82. For QUS, AUC estimates ranged from 0.66 to 0.72. AUC estimates based on combinations of DXA and QUS reported in one study ranged from 0.72 to 0.81, differing by the location of the fracture.¹²⁵ Four studies evaluating the performance of bone measurement tests for predicting fractures in men examined the same bone measurement screening tests used for women.^{120, 124, 125, 134} AUC estimates based on DXA BMD in men ranged from 0.64 to 0.85, and for QUS, ranged from 0.64 to 0.84.^{120, 124} AUC estimates based on CMA and QUS, reported in two studies, ranged from 0.69 to 0.85.^{120, 125}

Regarding fracture site, for both men and women, AUC point estimates of 0.80 or better were associated only with predictions of future hip fracture. These results were found in eight of 12 studies that evaluated this outcome. These include studies of women based on results of DXA of the total hip (0.81 to 0.82),^{122, 123} middle phalanges of the second, third, and fourth fingers on the nondominant hand (0.83),¹³⁴ and the femoral neck (0.85 and 0.82).^{136, 137} Similar results among

women were based on a combination of DXA of the femoral neck and QUS (0.81).¹²⁵ One study of men found similar results, based on DXA of the femoral neck (0.85), QUS (0.84) and a combination of the two (0.85)¹²⁰ but these findings were not replicated in one study based on DXA of the middle phalanges (0.64).¹³⁴ AUC point estimates in two studies combined hip fracture results for men and women, based on DXA of the femoral neck (0.80¹³³ and 0.76¹³⁹). AUC accuracy in predicting hip fracture were lower in one study of women (0.77) than in two other studies, possibly the authors adjusted the results for age, falls, and fracture history,¹²⁵ whereas the other two studies reported unadjusted outcomes. The reasons that the prediction for women in yet another study was lower (0.64) are unknown.¹²⁹

Accuracy of Fracture Risk Prediction Instruments: Overview

We identified five systematic reviews^{117, 144-147} addressing the accuracy of tools to predict fracture in adults. Our synthesis is based on the good-quality Marques et al. systematic review¹⁴⁴ supplemented by 13 eligible observational studies with low risk of bias or unclear bias not included in the Marques et al. review (summary in **Table 6**; details in **Appendix F Table 8**)^{58, 103, 142, 148-157} The Marques et al. review used a search through late 2014, and selected studies for inclusion based on similar criteria to our review and consistent with the previous evidence review in support of this USPSTF recommendation.³

Marques et al. included 45 articles that assessed 13 different risk prediction instruments; of these, 10 had been evaluated by only one or two studies. The three risk prediction tools evaluated by three or more studies and for which a quantitative synthesis was performed included FRAX (k=26), the Garvan Fracture Risk Calculator (FRC) (k=6), and the QFracture prediction tool (k=4).

Marques et al. identified other fracture risk prediction instruments, but studies on these instruments reported no measures of discrimination (e.g., AUC, sensitivity, specificity) for populations external to the development cohort. This includes the Cummings Risk Score, ¹⁵⁸ Fracture and Mortality Index, ^{159, 160} a simple clinical score, ¹⁶¹ and simplified system for fracture risk assessment. ¹⁶² Of the studies that we identified as eligible that had not been included in the Marques et al. review, four studies were published after the Marques et al. search dates, ^{58, 142, 149, 154} and nine were studies we identified as eligible but were either not identified or not included by Marques et al. ^{103, 148, 150-153, 155-157} These additional studies reported on FRAX, Garvan FRC, and QFracture in addition to five risk instruments not reported in Marques et al. The evidence tables for studies we identified are in **Appendix F**; these tables do not contain the studies that were included in the Marques et al. review.

In updating the Marques et al. meta-analysis, we identified one study¹⁶³ included in the original pooled AUC estimate that was not from an external validation population, and one study¹⁶⁴ that used a cross-sectional design, which has a high risk of bias for risk prediction. We have excluded these two studies from this update. The previous review³ included several studies not included in this update. Two studies evaluating risk prediction instruments used cross-sectional designs. This includes a study¹⁶⁵ assessing age, body size, and estrogen use, ORAI, and body weight as risk prediction instruments, and a study¹⁶⁶ assessing FRAX and Garvan FRC. Three studies^{126, 167, 168} of clinical risk scoring algorithms, the Dubbo Osteoporosis Epidemiology Score, the Established

Populations for the Epidemiologic Study of the Elderly, and the Fracture Index did not report outcomes for an external validation population. One study¹⁶⁹ evaluated a risk prediction model focused exclusively on risk prediction in nursing home residents using the Minimum Data Set.

Accuracy of Fracture Risk Prediction Instruments: Discrimination Findings

In **Table 6**, we characterize and report the accuracy of fracture risk prediction at 10 years for 12 instruments as measured by the AUC measure of discrimination. These findings are stratified by sex, site of fracture, and whether BMD was used in the risk prediction. Where possible, we pool AUCs. The rest of this section details findings by risk prediction instrument.

FRAX

FRAX was developed and validated in 11 different cohorts (230,486 participants including men and women) and uses age, sex, weight, height, prior fracture, parental history of fracture, and five other clinical risk factors.³² It can be used with or without femoral neck BMD to predict the 10-year risk of hip and MOF. FRAX is calibrated for use in different countries based on country-specific data. Studies included were conducted in the following countries: Australia, Canada, Denmark, Finland, France, Hong Kong, Japan, Netherlands, New Zealand, Spain, the United States, and in a multinational European and U.S. cohort.

The discriminative ability of FRAX for predicting future fracture varied by sex, site of fracture prediction, and whether BMD was used in the risk prediction. In men, pooled estimates of AUC from 3 to 44 studies and 13,970 to 15,842 participants ranged from 0.62 to 0.76 (depending on the model) (**Appendix H Figures 3-6**). Within that range, pooled estimates were higher for prediction models that included BMD and for the models predicting hip fracture. Pooled estimates for women based on between 10 and 17 studies with between 62,054 and 190,795 participants ranged somewhat higher (0.67 to 0.79) but they shared a similar pattern (**Appendix H Figures 6-10**). Pooled estimates for the prediction of MOF based on three studies (66,777 participants), including men and women, but that did not report findings by sex, were similar (AUC without BMD, 0.67 [95% CI, 0.66 to 0.67; I², 47.1%]; AUC with BMD, 0.69 [95% CI, 0.69 to 070, I², 70.3%]) (**Appendix H Figures 11 and 12**). Two studies reported AUC for hip fracture with and without BMD from combined cohorts of men and women; estimates from these two studies^{133, 139} were similar to estimates from the women-only cohorts.

The original FRAX validation study³² also reported AUCs; however, the AUCs reflected the risk of fracture at age 70, not a 10-year fracture risk, and did not report on MOF. Thus, we did not include these AUCs in our pooled estimates. In this validation study, the range of AUCs in the validation cohorts for prediction of hip fracture at age 70 (both sexes combined) was 0.70 to 0.81 with BMD and 0.57 to 0.77 without BMD. For nonhip osteoporotic fractures, the range was 0.55 to 0.77 with BMD and 0.54 to 0.81 without BMD.

Garvan Fracture Risk Calculator

The Garvan FRC, originally developed in cohorts of Australian men and women,¹⁶³ uses age, sex, weight, prior nontraumatic fracture after age 50, and a fall within the past year as risk to

predict risk of hip or MOF at either 5 or 10 years. BMD at the hip is an optional input to the risk prediction. We focus on estimates for 10-year fracture risk prediction, for comparison with other instruments that predict 10-year risk. Studies included were conducted in Australia, Canada, Netherlands, New Zealand, and Norway.

The discriminative ability of the Garvan FRC varied by sex, site of fracture prediction, and whether BMD was used in the risk prediction. Two studies reported AUC estimates in men.^{154, 170} The AUC for hip fracture without BMD was 0.65 (95% CI, not reported [NR]; 1,285 men).¹⁵⁴ With BMD, the AUC for hip fracture was 0.74 (95% CI, NR; 1,285 men) in one study¹⁵⁴ and 0.85 (95% CI, NR; 1,606 men) in the other study.¹⁷⁰ Estimates of AUC for nonvertebral fractures were 0.61 and 0.57 with and without BMD, respectively (95% CI, NR for either).¹⁵⁴ Only one of the two studies reported AUC for MOF; the estimate was 0.70 (95% CI, NR; 1,606 men).¹⁷⁰

In women, we calculated pooled AUC estimates for models with BMD of 0.68 (95% CI, 0.64 to 0.71; I^2 =848%; three studies, 6,534 women) for MOF (**Appendix H Figure 13**) and 0.73 (95% CI, 0.66 to 0.79; I^2 =97.3%; four studies, 7,809 women) for hip fracture (**Appendix H Figure 14**). One study¹⁴⁹ reported an AUC of 0.69 (95% CI, NR; 506 women); a different study¹⁵⁴ reported an AUC of 0.62 (95% CI, NR; 1,637 women) for nonvertebral fracture, both for prediction without BMD. Estimates of AUC for models without BMD ranged from 0.58 to 0.68 depending on site of fracture based on estimates from three studies.^{149, 151, 154}

Qfracture

QFracture predicts fracture risk in men and women over a 1- to 10-year period using age, sex, weight, height, parental fracture, previous fall, and between 11 and 13 clinical risk factors depending on sex.¹⁷¹ A 2012 update to the instrument added previous fall, ethnicity, and 10 additional clinical risk factors.¹⁵⁵ BMD is not used to predict risk with QFracture. Studies included were conducted in France and the U.K. The AUC for MOF ranged from 0.69 to 0.74 in men and from 0.79 to 0.82 in women.¹⁴⁴ For hip fracture, AUC estimates were 0.86 to 0.89 in men and was 0.89 in women.¹⁴⁴

Other Fracture Risk Assessment Instruments

The remaining eight fracture risk assessments include the Women's Health Initiative algorithm,¹⁷² OST,¹⁷³ SCORE,¹⁷⁴ Fracture and Immobilization Score,¹⁴⁰ Fracture Risk Score,¹³¹ FRC,¹⁷⁵ ORAI,¹⁷⁶ and Osteoporosis Index of Risk (OSIRIS).¹⁷⁷ Of these, all but the Fracture Risk Calculator¹⁷⁵ were developed using only cohorts of women, and the prediction time range from 3 to 10 years. The only assessments evaluated in U.S. populations are the Women's Health Initiative algorithm, OST, SCORE, and the Fracture Risk Calculator. Several of these instruments (OST, SCORE, ORAI, OSIRIS) were initially developed for the prediction of low bone mass or osteoporosis and later applied to the prediction of incident fracture. The Fracture Risk Calculator, OST, and the Women's Health Initiative algorithm were evaluated in two external validation populations; the rest of the instruments have been evaluated only in one external validation population. Across all these instruments, AUC estimates for MOF in women ranged from 0.53 to 0.73^{58, 103, 151, 153} and from 0.80 to 0.85 for hip fracture.^{172, 178, 179}

Last, the Canadian Association of Radiologist and Osteoporosis Canada uses age, sex, prior fragility fracture, use of glucocorticoid steroids, and BMD to predict the 10-year risk of MOF in men and women age 50 or older.¹⁸⁰ This instrument computes a 10-year absolute fracture risk and then categorizes risk as high (>20%), moderate (between 10% and 20%), and low (<10%). An external validation study using 10,039 participants reported a sensitivity of 0.54 (95% CI, 0.52 to 0.56) for predicting fracture among women in the high-risk category and a sensitivity of 0.31 (95% CI, 0.24 to 0.38) for men.¹⁵⁶ The reported specificities were 0.75 (95% CI, 0.74 to 0.75) and 0.86 (0.85 to 0.87) for women and men, respectively.

Calibration of Fracture Risk Prediction Instruments

We identified 14 studies of low or unclear risk of bias reporting eligible calibration outcomes in countries with an incidence of hip fracture similar to that found in the United States (i.e., in the moderate range).^{103, 128, 129, 133, 135, 137, 139, 140, 150, 170, 181-185} Eleven reported calibration outcomes for FRAX (various versions);^{128, 129, 133, 135, 137, 139, 150, 181-185} four reported outcomes for other risk models.^{103, 129, 140, 170} We identified no published studies that met our eligibility criteria that provided results of calibration for the U.S. version of FRAX or of other risk assessment instruments in U.S. populations. Ten calibration studies conducted outside of the United States in countries with hip fracture incidence dissimilar to the US were not included in the evidence synthesis.^{103, 148, 150, 152, 154-156, 181, 183, 184}

Other Measures of Test Performance: Reclassification of Risk Overview

Several studies compared overall proportions of individuals classified at risk for various fracture risk prediction instruments without presenting reclassification data.^{138, 156, 162, 186, 187} Others present reclassification rates^{148, 188, 189} or net reclassification improvement (NRI).^{121, 125, 152, 154, 170, 190, 191} We describe results for studies presenting only reclassification rates in greater detail in the text below. We present details regarding NRI in text below and in **Table 7**. In instances in which studies report NRI as a percentage, we follow guidance on net reclassification to present these results as unitless measures rather than as a percentage of the cohort reclassified. Guidance suggests that these results cannot be interpreted as percentages because of the implicit weighting by event rates when summing two fracture numbers with two different denominators to arrive at the NRI.¹⁹²

Other Measures of Test Performance: Findings

FRAX

Five studies evaluate reclassification for FRAX.^{152, 170, 188, 189, 193} One study examined reclassification in the context of FRAX with and without BMD in a sample of 36,730 women and 2,873 men age 50 years or older from the Manitoba Bone Density Program database (Canada).¹⁹³ The study reported no differences in AUCs for men or women for any outcomes other than major osteoporotic fractures. It reported the addition of BMD to FRAX, against an intervention threshold of a 10-year risk \geq 20 percent of a MOF, resulting in a reclassification of 8.5 percent of the cohort. Of these individuals, 2.8 percent moved to the higher risk category (\geq 20% risk of MOF) and 5.7 percent moved to the lower risk category (<20%). For those in the

intermediate category of risk (10% to 19% risk of MOF), adding BMD to FRAX produced a reclassification of 7.5 percent to the low-risk category (<10% risk of MOF) and 2.7 percent to high risk (\geq 20% risk of MOF). Of those categorized as low risk, adding BMD to FRAX led to a reclassification of 6.2 percent to moderate risk and 0.1 percent to high risk.¹⁴⁸ A large study of 94,489 women age 50 years or older with BMD measured during 1997–2003 in Kaiser Permanente Northern California also found no differences in AUC with or without BMD.¹⁸⁷ An exploration of reclassification when adding BMD to fracture risk assessment used an 81 percent sensitivity threshold (identified as the optimal level from the receiver operating characteristic curve, corresponding to a 10-year risk for hip fracture of 1.2% in the model without BMD). This reclassification resulted in an NRI of 0.055.

Three studies reporting on the same cohort of participants in Manitoba, focused on issues specific to the measure of BMD in FRAX, specifically the inclusion of information on lumbar spine BMD in addition to femoral neck BMD. Two were developed and validated using a split-sample cohort.^{188, 189} One study developed a hybrid system for FRAX that incorporated femoral neck BMD to assess nonvertebral fracture risk and lumbar spine BMD for clinical vertebral fracture risk.¹⁸⁹ The study found that in 37,032 women, against an intervention threshold of >20 percent risk of a major MOF, the use of the hybrid model resulted in a reclassification of 7.6 percent of the cohort. Of these individuals, 0.1 percent moved to the higher risk category (>20% risk of MOF) and 7.5 percent moved to the lower risk category (<20%). For those in the moderate category of risk (10% to 20% risk of MOF), the hybrid model resulted in a reclassification of 0.5 percent of the cohort to the low-risk category (<10% risk of MOF) and 7.5 percent of the cohort to the low-risk category (<10% risk of MOF) and 7.5 percent of the cohort to the low-risk category (<10% risk of MOF) and 7.5 percent of the cohort to the low-risk category (<10% risk of MOF) and 7.5 percent to high risk. Of those categorized as low risk, the hybrid model produced a reclassification of 6.1 percent of the cohort to moderate risk.¹⁸⁹

The difficulties in applying this hybrid model in clinical practice led to further testing of ways to incorporate lumbar spine measurement. A second study evaluated reclassification after adding information on an offset (the difference between lumbar spine and femoral neck T-scores) to FRAX.¹⁸⁸ In a sample of 18,215 women in the validation cohort, adding the lumbar spine offset against an intervention threshold of \geq 20 percent risk of a MOF, resulted in a reclassification of 13.1 percent of the cohort. Of these individuals, 3.8 percent moved to the higher risk category (\geq 20% risk of MOF) and 9.3 percent moved to the lower risk category (<20% risk of MOF). For those in the moderate category of risk (10% to 19% risk of MOF), adding the lumbar spine offset to FRAX resulted in a reclassification of 8.8 percent to the low-risk category (<10% risk of MOF) and 3.8 percent to high risk) (\geq 20% risk of MOF). Of those categorized as low risk, the addition of lumbar spine offset to FRAX led to a reclassification of 4.9 percent to moderate risk (10% to 19% risk of MOF).

A third study compared FRAX with T-scores from the femoral neck, lumbar spine, minimum site (femoral neck or lumbar spine), weighted mean, and an offset (the difference between the lumbar spine and femoral neck T-scores) in 20,477 men and women.¹⁵² It found that the use of lumbar spine or minimum site resulted in both reclassification and miscalibration, while the use of weighted mean or offset did not. Specifically, the authors report that the change in accuracy was negative for lumbar spine (-4.4%) and minimum site (-11.8%), and unchanged for weighted mean (0.1%) and offset (0.3%) (details on calculation of change of accuracy not reported).

Fracture Risk Calculator

One study evaluated adding BMD to the FRC in men 65 years and older using the Osteoporotic Fractures in Men Study database of 5,893 men in the United States who participated in the baseline visit (March 2000–April 2002).¹⁹⁰ Against the National Osteoporosis Foundation's (NOF) intervention threshold (10-year 3% risk of a hip fracture), the addition of BMD resulted in an NRI of 0.085. Using the NOF intervention threshold of a 20 percent 10-year risk of MOF, the addition of BMD resulted in a NRI of 0.04. In 17 of 20 examined quintiles of expected fracture probabilities to observed fractures (with BMD, without BMD, hip fracture, MOF), the ratio (of expected to observed fractures) was within 20 percent of the ideal 1.0 ratio.

Garvan FRC (Dubbo Nomogram in Earlier Studies)

Two studies, both drawing from the Dubbo Osteoporosis Epidemiology Study (Australia), evaluated the performance of fracture risk prediction models that included calcaneal QUS (measured through BUA) with the Garvan FRC,^{125, 191} which includes femoral neck BMD, age, history of falls, and prior fracture. One study included 899 participants between ages 62 and 89 years (445 men and 454 women) who had both QUS and DXA BMD measurements.¹²⁵ Participants been followed for a median of 13 years. The second study restricted analysis to nonosteoporotic participants (BMD T-score >-2.5).¹⁹¹ The sample comprised 312 women and 390 men ages 62 to 90 years, followed for a median of 12 years. Both studies reported that the addition of BUA to the femoral neck BMD model improved AUC for women for hip fractures and any fractures,^{125, 191} and for vertebral fractures in nonosteoporotic women only.¹⁹¹ Both studies found that adding BUA to the model did not improve AUCs. In the larger sample of all women, adding BUA to the model resulted in an NRI of 0.073 for any fracture, 0.111 for hip fracture, and 0.052 for vertebral fracture.¹²⁵ In nonosteoporotic women, adding BUA to the model resulted in an NRI of 0.164 for any fractures and 0.338 for hip fracture.¹⁹¹ The importance of these differences is difficult to evaluate in the context of small sample sizes and lack of information on the potential for miscalibration.

One study of 4,152 women and 1,606 men, ages 55 to 95 years at baseline in the Canadian Multicentre Osteoporosis Study compared the performance of the instrument with (1) the World Health Organization (WHO) criteria of a T-score of \leq -2.5 indicating high risk and (2) Canadian guidelines (defining low risk = 0–10%, moderate = 10–20%, and high >20%, and derived from age, minimum T-score [lumbar spine, total hip, femoral neck, trochanter], glucocorticoid use and history of fracture after age 40).¹⁷⁰ Comparisons with the WHO criteria suggested no differences with an NRI of 0.067 (95% CI, –0.06 to 0.194) among men and 0.015 in women (95% CI, -0.026 to 0.056). Comparisons with the Canadian guidelines suggested improvements in prediction for men (NRI=0.192 [95% CI, 0.063 to 0.322) and worsening for women (NRI = -0.055 [95% CI, -0.055 to -0.015).¹⁷⁰ The study did not present AUCs for these comparisons.

One study examined the performance of the Garvan tool with and without BMD in predicting nonvertebral osteoporotic and hip fractures. The study included 1,637 women and 1,355 men older than age 60 years from Tromsø (Norway).¹⁵⁴ The study recorded all incident fragility fractures between 2001 and 2009. AUCs for the model with BMD were higher than the models without BMD but with body weight for men and women. Models that included body weight

rather than BMD resulted in an NRI of -0.106 in women and -0.172 in men for nonvertebral osteoporotic fractures. For hip fractures, models that included weight rather than BMD resulted in an NRI of -0.133 for women and -0.175 for men.

Trabecular Bone Score

One study evaluated reclassification arising from adding trabecular bone score to spine BMD in a sample of 665 Japanese women age 50 years or older who completed the baseline study and at least one followup survey over 10 years.¹²¹ The study reported no significant differences in AUC, but reported an NRI of 0.235 (95% CI, 0.15 to 0.54); no risk categories were specified for the NRI. This finding can potentially be explained by chance (given the small sample size) or miscalibration.

Key Question 2b. What Is the Evidence to Determine Screening Intervals for Osteoporosis and Low Bone Density?

Overview

Although the previous USPSTF recommendation suggested that a minimum of 2 years may be needed to measure a change in BMD reliably, it also noted continued clinical uncertainty about the optimal interval for rescreening to improve fracture prediction.¹ Two good-quality studies address screening intervals for osteoporosis and low bone density; of these, one¹⁹⁴ was reported in the 2010 review.³ These longitudinal cohort studies examined the effect of repeat BMD testing on prediction of fracture risk (**Table 8**).^{194, 195}

We also identified three studies for Contextual Question 2 that used data from large cohort studies to estimate the optimal screening interval to identify osteoporosis or fracture.¹⁹⁶⁻¹⁹⁸

Findings

The Study of Osteoporotic Fractures (N=4,124), in which women (mean age at baseline: 72: mean T-score: -1.37; 95% CI, -1.40 to -1.34) who had a repeat BMD an average of 8 years after baseline DXA measurement, found no significantly different AUCs for either hip, nonspine, or spine fractures for women with information on change in BMD or combined baseline BMD and change in BMD compared with women with information on baseline BMD alone.¹⁹⁴ The study followed participants for a mean of 5 years after the second DXA measurement. The Framingham Osteoporosis study cohort included male participants (41%) with a similar mean age (74.8) and 74.7 percent of the sample having T-score >-2.5, but a shorter screening interval (3.7 years vs. 8 years), and followed patients for a median of 9.6 years after repeat BMD study (N=802).^{194, 195} The authors of the Framingham Osteoporosis study reported similar results to the Study of Osteoporotic Fractures: AUCs for fractures among men with information on change in BMD or combined baseline and change in BMD did not differ from men with information on baseline BMD alone.¹⁹⁵ The study reported a net gain in the percentage of participants with a hip fracture reclassified as high risk (defined by FRAX, NRI, 3.9% [95% CI, -2.2% to 9.9%]) with a second BMD, and a net loss for those without a hip fracture reclassified as low risk with repeat BMD (NRI, -2.2% [95% CI, -4.5% to 0.1%). The study reported a higher rate of reclassification

for major osteoporotic fractures (NRI, 9.7% [95% CI, 3.4 to 15.7] vs. -4.6% [95% CI, -6.7 to - 2.6]) than for hip fractures.

Additional contextual evidence comes from a small number of publications that have attempted to identify appropriate screening intervals based on the time in which 10 percent of patients transition to osteoporosis. A publication using healthy postmenopausal women age 65 years or older from the Study of Osteoporotic Fractures evaluated the time for 10 percent of women to develop osteoporosis across the various BMD categories; it found that baseline T-score is the most important determinant of BMD testing intervals, with results suggesting that the times for 10 percent of women to develop osteoporosis are as follows: 16.8 years (95% CI, 11.5 to 24.6) for women with normal BMD (T-score, -1.00 or higher), 17.3 years (95% CI, 13.9 to 21.5) for women with mild osteopenia (T-score, -1.01 to -1.49), 4.7 years (95% CI, 4.2 to 5.2) for women with moderate osteopenia (T-score, -1.50 to -1.99), and 1.1 years (95% CI, 1.0 to 1.3) for women with advanced osteopenia (T-score, -2.00 to -2.49).¹⁹⁶ Within a given T-score range, the estimated time for 10 percent of women to transition from osteopenia to osteoporosis was longer for women with younger age and for those taking estrogen at baseline. For women with moderate osteopenia at baseline, the estimated BMD testing interval was 5.6 years (95% CI, 4.9 to 6.4) for women age 67 years compared with 3.2 years (95% CI, 2.6 to 3.9) for women age 85 years. Also for women with moderate osteopenia, the estimated BMD testing interval for past or never-users of estrogen was shorter, 4.3 years (95% CI, 3.9 to 4.8), than for women with current estrogen use, 6.9 years (95% CI, 5.7 to 8.4). Using an absolute risk-based prognostic model with a sample of nonosteoporotic women and men over the age of 60 from the Dubbo Osteoporosis Epidemiology study, the study found that current age and BMD T-score could be used to estimate the optimal time to repeat BMD testing for both men and women.¹⁹⁷ For example, the time for women 60 years of age with a normal BMD to reach a 10 percent risk of sustaining a fracture or developing osteoporosis was 8.9 years (90% CI 6.7 to 10.6); it was 2.7 years (90% CI, 2.3 to 3.1) for women 80 years of age.

A third study provides contextual evidence for identifying the time to transition to fracture (rather than osteoporosis) in younger postmenopausal women ages 50 to 64 years. In a study of women from the Women's Health Initiative with a baseline BMD, investigators estimated the time for 1 percent of women to sustain a hip or clinical vertebral fracture and for 3 percent of women to sustain a major osteoporotic fracture.¹⁹⁸ Women were followed for up to 11 years after the initial BMD. Similar to findings of studies estimating time to transition to osteoporosis, the study found that age and baseline T-score were associated with the estimated time for 1 percent of women to transition to fracture. For women without osteoporosis at baseline (t > -2.50), the estimated times for 1 percent of women to transition to hip or clinical vertebral fracture were 12.8 years (95% CI, 8 to 20.4) for ages 50 to 54 years, 11.7 years (95% CI, 6.9 to 20) for ages 55 to 59 years, and 7.6 years (95% CI, 4.8 to 12.1) for ages 60 to 64 years. For all women with osteoporosis at baseline (t \leq -2.50), the time interval for 1 percent of women ages 50 to 64 years to transition to hip or clinical vertebral fracture were similar findings for major osteoporotic fracture.

Key Question 3. What Are the Harms of Screening for Osteoporotic Fracture Risk?

We found no eligible studies that addressed this question.

Key Question 4a. What Is the Effectiveness of Pharmacotherapy for the Reduction of Fractures and Related Morbidity and Mortality?

We present summary results in text below. **Appendix F** includes detailed evidence for alendronate (**Appendix F Table 9**), zoledronic acid (**Appendix F Table 10**), risedronate (**Appendix F Table 11**), etidronate (**Appendix F Table 12**), raloxifene (**Appendix F Table 13**), denosumab (**Appendix F Table 14**), and parathyroid hormone (**Appendix F Table 15**). **Appendix H** includes forest plots for meta-analyses.

Bisphosphonates: Overview of the Evidence

Alendronate

Seven fair- to good-quality studies examined fracture outcomes in patients receiving alendronate versus placebo. All studies were conducted in postmenopausal women receiving daily or weekly alendronate. The duration of the studies ranged from 1 to 3 years.¹⁹⁹⁻²⁰⁵ Three studies reported fractures at baseline,^{199, 202, 205} three studies reported no fractures at baseline,^{199, 200, 203} and one study did not specify.²⁰¹ Two studies reported on the Fracture Intervention Trial (FIT).^{200, 205} The FIT had two arms, one with vertebral fractures at baseline, which was excluded for wrong population,²⁰⁶ and no fractures at baseline.²⁰⁰ One study looked at a subset of women with low bone mass from both arms of the FIT.²⁰⁵

We excluded several studies that were included in previous reviews, most commonly for wrong study population (i.e., specialty versus primary care population) or wrong outcome (change in BMD rather than fractures),²⁰⁷⁻²¹⁵ and one study for high risk of bias.²¹⁶

Zoledronic Acid

Two trials of zoledronic acid (N=1,550) met our eligibility criteria.^{217, 218} Two studies in the previous review, both from the Horizon Pivotal Fracture Trial, were not included because more than 50 percent of the study population had a fracture at baseline.^{219, 220} In addition, we excluded one study from a recent comparative effectiveness review²²¹ because it drew from a nonprimary care population.²²²

One study of fair quality was a phase 2 study in postmenopausal women ages 45 to 80 years with low bone density (T-score <-2) and no prior vertebral fractures. It was conducted in 24 centers across 10 countries with 1 year of followup.²¹⁷ A second and more recent study (good-quality) was also a multicenter trial conducted in Europe, South America, Africa, and Australia. This study examined men ages 50 to 85 years with T-score <1.5 or prevalent fractures with 2 years of followup.²¹⁸ Both studies evaluated zoledronic acid against placebo infusion.^{217, 218} In the phase 2

trial, cumulative doses of 4 mg yearly were included in the analysis of benefits;²¹⁷ in the more recent study, zoledronic acid 5 mg was administered intravenously at baseline and 1 year.²¹⁸

Risedronate

Four trials evaluating risedronate met eligibility criteria.²²³⁻²²⁶ All were conducted in postmenopausal women with low bone mass or osteoporosis, and we rated them as fair quality. Three of these studies were included in the main analysis²²³⁻²²⁵ of the previous review; one study was included in its sensitivity analysis because the proportion of prevalent vertebral fracture exceeded 20 percent.²²⁶ We did not include one study from the previous review²²⁷ in this update because the study population had mean T-score of -0.7 and was otherwise not at an increased risk for fracture. Approximately one-third of study subjects in two studies^{223, 226} had prevalent or prior vertebral fracture at baseline. One study²²⁴ excluded subjects with prior fractures and one study²²⁵ did not report the proportion of study subjects with prior or prevalent fracture. All studies evaluated a dose of 5 mg per day for 2 years compared with placebo; followup for fracture outcome ascertainment was 2 to 3 years after baseline. Two trials were conducted in multiple centers in several European countries,^{225, 226} one trial²²³ was conducted at multiple centers in North America, Europe, Australia and New Zealand, and one trial²²⁴ was conducted at two centers (one in the United States and one in Denmark).

One trial²²³ was powered to detect an effect on hip fracture outcomes. The other three trials were powered to detect an effect on BMD. For these trials, therefore, fracture outcomes reported in these trials were reported as safety events as opposed to efficacy end points.²²⁴⁻²²⁶

Etidronate

Two fair-quality trials of etidronate (n=206) met eligibility criteria.^{75, 228, 229} We excluded one trial of etidronate for wrong population that had been included in the 2010 review.²³⁰ Both included trials were conducted in postmenopausal women with no prior fractures²²⁸ or with unknown prior fracture history.²²⁹ One study enrolled women who were 6 to 60 months postmenopausal²²⁹ and one enrolled women 1 to 10 years postmenopausal.²²⁸ The mean baseline T-scores for the studies ranged between -1.3 and -1.1. The mean age of participants was <55 years in both trials. Both trials evaluated cyclical etidronate 400 mg for 2 years with change in BMD as the primary outcome. Both included studies were set in Europe.^{228, 229}

Ibandronate

We identified no studies or trials that assessed the benefits of ibandronate for preventing fractures.

Bisphosphonates: Findings

Vertebral Fracture

This analysis includes 11 trials (10 from the previous report and one from the new evidence).^{199,} ^{200, 203, 204, 217, 218, 224-226, 228, 229} All studies reported on the reduction in radiographic vertebral

fractures, except for one study reporting clinical vertebral fractures ²²⁵ and one study that did not specific fracture type.²⁰⁴ Among women, bisphosphonates reduced vertebral fractures compared with placebo (2.1% vs. 3.8%; RR, 0.57 [95% CI, 0.41 to 0.78]; I², 0%; 5 trials, N=5,433) (**Appendix H Figure 15**).^{199, 200, 224, 226, 229} Five trials recorded zero vertebral fractures and did not contribute to the pooled estimate in the primary analysis.^{203, 204, 217, 225, 228}

Results based on alternative methods for pooling were nearly identical with and without zero event trials.

As noted in the 2010 review, the largest trial, FIT, a 4-year trial of alendronate, contributed 82 percent of the total number of patients (N=4,432 of 5,433) and vertebral fractures (171) in the analysis (1.9% vs. 3.5%; RR, 0.55 [95% CI, 0.38 to 0.80]).²⁰⁰ Drugs other than alendronate had small samples and few fractures.

One new trial reported on the effectiveness of zoledronic acid in 1,199 men with mean femoral neck T-scores of -2.23 (intervention) and -2.24 (control). Men were eligible to participate if they had a bone mineral density T score of -1.5 or less (based on the device-specific reference values for men). The authors found a reduced risk of morphometric vertebral fractures in the treatment arm (1.5% vs. 4.6%; RR, 0.33 [95% CI, 0.16 to 0.70]).²¹⁸

Nonvertebral Fracture

Ten trials reported on nonvertebral fractures.^{200, 201, 204, 217, 218, 223-226, 229} Of these, one reported no fracture outcomes with either alendronate or placebo.²⁰⁴ Studies were generally not powered to examine this outcome and did not always clarify the definition or source of the fracture. Also, they often reported these fracture results along with other adverse events.

Among women, a pooled analysis of trials reporting total nonvertebral fractures a reduced risk of fractures in the treatment arm (8.9% vs. 10.6%; RR, 0.84 [95% CI, 0.76 to 0.92]; I², 0; eight trials, N=16,438) (**Appendix H Figure 16**).^{200, 201, 217, 224-226, 229} One trial recorded zero nonvertebral fractures and did not contribute to the primary analysis.²⁰⁴

One new trial reported on the effectiveness of zoledronic acid in 1,199 men, with mean femoral neck T-score values of -2.23 (intervention) and -2.24 (control). The authors found a reduced risk of nonvertebral fractures in the treatment arm but the effect was not statistically significant (0.9% vs. 1.3%; RR, 0.65 [95% CI, 0.21 to 1.97]).²¹⁸

Hip Fractures

Four studies reported on hip fractures.^{200, 201, 223, 224} All had been identified in the 2010 review. We excluded one study because we were unable to find the reported data.²²⁵ One trial recorded no hip fractures and did not contribute to the primary analysis.²²⁴

Among women, the pooled analysis suggested a lower risk but wide confidence intervals (0.7% vs. 0.96%; RR, 0.70 [95% CI, 0.44 to 1.11]; I^2 , 0%; 3 trials, N=8,988; **Appendix H Figure 17**). The two large trials dominating this meta-analysis, FIT²⁰⁰ and the study by McClung et al.²²³ also
found no statistically significant effects. Results based on alternative methods for pooling were nearly identical with and without zero event trials; the confidence interval for the Peto odds ratio approaches but does not cross the line of no difference.

Results based on alternative methods for pooling were nearly identical with and without zero event trials.

No studies reported on hip fractures in men.

Raloxifene: Overview of the Evidence

One large good-quality RCT, included in the 2010 review,³ the Multiple Outcomes of Raloxifene (MORE) trial, reported in two articles, measured fracture outcomes among postmenopausal women at increased risk for fracture who were receiving raloxifene, a selective estrogen receptor modulator.^{231, 232} A second large good-quality RCT, the Raloxifene Use for the Heart (RUTH) study, also reported in the 2010 review,³ does not meet our inclusion criterion of participants being at increased risk for fracture.^{3, 233, 234} We identified no new studies measuring fracture outcomes.

Raloxifene: Findings

The MORE trial (N=7,705) measured outcomes in women with BMD T-scores \leq -2.5, with or without previous vertebral fractures (37% with previous fractures).^{231, 232} Although the approved Food and Drug Administration (FDA) raloxifene dosage is 60 mg/day, some study results report a combined treatment group (60 mg/day or 120 mg/day). After 4 years, raloxifene (60 mg/day) reduced radiographic vertebral fracture (7.5% vs. 12.5%; RR, 0.64 [95% CI, 0.53 to 0.76]) compared with placebo. Treatment with raloxifene (combined dosage amount group) did not yield differences in nonvertebral or hip fracture.

The RUTH trial (N=10,101) was designed primarily to evaluate coronary heart disease (CHD) and breast cancer outcomes among postmenopausal women with CHD or multiple risk factors for CHD and is therefore excluded from this review.^{233, 234} Baseline BMD T-scores were not an inclusion criteria and are not reported. We note, however, that as was found in the MORE trial, raloxifene (60 mg/day) reduced clinical vertebral fractures (HR, 0.65 [95% CI, 0.47 to 0.89]) compared with placebo, but did not reduce nonvertebral or hip fractures.

Estrogen

The 2010 review discussed the results of the Women's Health Initiative (WHI). Because the women enrolled in this trial had not been identified to be at high risk for osteoporosis (other than that all were postmenopausal), the trial did not meet inclusion criteria for this update. A recently completed review on the benefits and harms of estrogen therapy, with and without progestin, in primary care populations provides important contextual information.²³⁵ It incorporated information from WHI and other similar trials. Women using only estrogen had lower risks for total osteoporotic fractures (HR, 0.72; 95% CI, 0.64 to 0.80) when compared with women taking placebo. Women on estrogen plus progestin therapy also had lower risks for fractures (RR, 0.80;

95% CI, 0.68 to 0.94) with women on placebo. Additionally, we found one safety trial that included an estrogen only arm in comparison with a placebo arm (N=193). It reported a lower but not statistically significant difference in clinical fractures over 2 years (7% vs. 8%; RR, 0.87 [95% CI, 0.29 to 2.66]).²¹⁶

Denosumab: Overview of the Evidence

Three fair-quality trials of denosumab (N=8,565) met eligibility criteria.²³⁶⁻²³⁸ All were conducted in postmenopausal women with low bone mass or osteoporosis. All constituted phase 2 or phase 3 studies for the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. One of these trials excluded women with any fractures since age 25.²³⁷ A second reported a 24 percent rate of prevalent fractures²³⁸ and the third excluded women with more than one vertebral fracture or any osteoporotic fracture in the past 2 years but did not report the rate of prevalent fractures.²³⁶ All evaluated subcutaneous denosumab against placebo for a minimum of 24 months; doses in the later studies were established as 60 mg every 6 months.^{184, 237, 238} One study was set in the United States,²³⁶ the second in the United States and Canada,²³⁷ and the third was a multicenter study that included sites in Europe, North America, Latin America, Australia, and New Zealand.²³⁸

Denosumab: Findings

Two studies were not powered to look at fractures as benefits and found no statistically significant differences in fractures (clinical or osteoporotic fracture).^{236, 237} The third study was powered to evaluate vertebral, nonvertebral, and hip fractures (N=7,868).²³⁸ This large study demonstrated a statistically significant difference in incident vertebral fractures (2.3% vs. 7.2%; RR, 0.32 [95% CI, 0.26 to 0.41]), nonvertebral fractures (6.1% vs. 7.5%; RR, 0.80 [95% CI, 0.67 to 0.95]), hip fractures (0.7% vs. 1.1%; RR, 0.60 [95% CI, 0.37 to 0.97]). The study also reported a reduction in new clinical vertebral fractures and multiple new vertebral fractures.

Parathyroid Hormone: Overview of the Evidence

Two fair-quality studies^{36, 239} which were also included in the prior systematic review by Nelson et al. examined vertebral and nonvertebral fracture outcomes in patients receiving parathyroid hormone (an anabolic agent) versus placebo. One of these trials, the Treatment of Osteoporosis with Parathyroid Hormone (TOP) Study³⁶ was conducted in postmenopausal women receiving daily PTH injections for 18 months versus placebo. Nineteen percent had a prior vertebral fracture. A second study²³⁹ was conducted among 437 men with a mean age of 59 years who were randomized to either placebo or one of two treatments arms of teriparatide (20 μ g [the FDA-approved dose] or 40 μ g daily) for an average of 11 months (treatment ranged from less than two months to 15 months). Prevalent fracture rates were not reported, nor was the reference range for the T-score (mean femoral neck T-score:-2.7). One new RCT²⁴⁰ among 40 postmenopausal women treated with teriparatide or placebo has been published since the systematic review by the 2010 review,³ but did not meet our inclusion criteria because of a high risk of bias.

Parathyroid Hormone Findings

Vertebral Fractures in Women

The TOP Study³⁶ (N=2,532) evaluated effects of parathyroid hormone compared with placebo on risk of fractures in postmenopausal women with BMD T-score \leq -3.0 and no prevalent vertebral fractures or a T-score <-2.5 and one to four prevalent fractures (19% had prior vertebral fracture). Among women without a baseline fracture, parathyroid hormone produced a significant (0.7% vs. 2.1%; RR, 0.32 [95% CI, 0.14 to 0.75]) reduction in new radiographic vertebral fractures with parathyroid hormone.

Nonvertebral Fractures in Women

In an analysis of all participants with and without baseline fractures (N=2,532), there was no difference in risk of new nonvertebral fracture between the treatment and placebo arms (5.6% vs. 5.8%; RR, 0.97 [95% CI, 0.71 to 1.33]).

Vertebral Fractures in Men

No studies met our inclusion criteria to assess the effects of parathyroid hormone on vertebral fractures in men.

Nonvertebral Fractures in Men

In a fair-quality randomized, placebo-controlled trial (N= 437), Orwoll and colleagues²³⁹ evaluated the effects of teriparatide at a dose of 20 μ g (the FDA-approved dose, N=151 men) or 40 μ g (N=139 men) and placebo (N=147) on risk of fractures in men with osteoporosis (mean baseline BMD femoral neck T-scores, -2.7). Reported findings show a reduction in nonvertebral fractures in both treatment groups compared with placebo, but the number of fractures was small and results did not reach statistical significance. Additionally, outcome assessments were limited by early termination of the study (mean duration of treatment was 11 months) because of a finding of osteosarcomas in routine animal toxicology studies.

Key Question 4b. How Does the Effectiveness of Pharmacotherapy for the Reduction of Fractures and Related Morbidity and Mortality Vary by Subgroup?

Bisphosphonates

We found no relevant results in included studies for subgroup analysis for zoledronic acid, etidronate, and ibandronate.

Alendronate

One study reported on a subset of osteopenic women (femoral neck T-score between -1.6 and -2.5) from both arms of the FIT.²⁰⁵ This subset of women had a relative risk of vertebral

fracture of 0.59 (95% CI, 0.41 to 0.83, calculated; 2.7% vs. 4.6% rate of vertebral fractures for treatment vs. placebo); this figure is similar to findings from the parent FIT studies included in this update.²⁰⁰

Risedronate

One trial²²³ conducted among women age 70 or older, after a mean of 2.3 years follow up, reported an incidence of hip fracture of 3.9 percent in the placebo group and 2.8 percent in the treatment group (RR, 0.7; 95% CI, 0.6 to 0.9). In a post-hoc subgroup analysis of women ages 70 to 79 years without vertebral fracture at baseline, the incidence of hip fracture was 1.6 percent and 1.0 percent in the placebo and treatment groups, respectively (RR, 0.6; 95% CI, 0.3 to 1.2). Low numbers of fracture events could potentially explain the poor precision of estimates in women age 70 to 79 years.

Raloxifene

Subgroups of women, with and without a baseline vertebral fracture, did not different significantly in vertebral fracture outcomes, as reported in one article from the MORE study.²⁴¹

Estrogen

Although we found no eligible evidence on estrogen, a recently updated review on hormone replacement therapy in primary care populations, unselected for osteoporosis or fracture risk, offers contextual information.²³⁵ The systematic review reported that some subgroup analyses indicated that time since menopause and age might modify the cardiovascular effects of hormone therapy. Younger women taking only estrogen had lower risks for myocardial infarction than older women relative to women using placebo. Younger women on estrogen only also had a reduced risk for all-cause mortality, whereas older women had an increased risk. Women who initiated estrogen plus progestin therapy closer to menopause did not have the elevated risk for myocardial infarction that women experienced who had started this therapy more than 20 years after menopause.

Denosumab

One trial of 7,808 osteoporotic women between the ages of 60 and 90 years reported variations in benefits by age, baseline BMD, and the combination of age and baseline BMD.^{242, 243} The overall findings for the trial demonstrated effectiveness in reducing vertebral, nonvertebral, and hip fractures.²³⁸ Subgroup analysis for age demonstrated no statistically significant differences by age, when comparing women less than age 75 with women age 75 years or older (2.0% vs. 6.5%; RR, 0.30 [95% CI, 0.22 to 0.41] vs. 0.36 [3.1% vs. 8.6%; 95% CI, 0.25 to 0.53]; p for test of interaction = 0.48).²⁴² Similarly, the trial demonstrated no statistically significant differences by baseline femoral neck T-score, when comparing those with T-scores at or lower than -2.5 with those with T-scores higher than -2.5 (3.1% vs. 9.9%; RR, 0.31 [95% CI, 0.22 to 0.44] vs. 1.9% vs. 5.6%; 0.34 [95% CI, 0.24 to 0.47]; p for test of interaction = 0.64).²⁴² The trial reported no statistically significant differences when comparing combined risk.²⁴³

Parathyroid Hormone

The two eligible trials did not report subgroup analysis by subgroups. However, one trial reported results in women without a baseline fracture and in women with a prior fracture.³⁶ Women on parathyroid hormone who had a prior fracture had a lower risk of new fractures (4.2% vs. 8.9%; RR, 0.47; [95% CI, 0.22 to 0.98]) than women on placebo, as did women without a prior fracture.

Key Question 5: What Are the Harms Associated With Pharmacotherapy?

We present summary results in text below. **Appendix F** includes detailed evidence for alendronate (**Appendix F Table 16**), zoledronic acid (**Appendix F Table 17**), risedronate (**Appendix F Table 18**), etidronate (**Appendix F Table 19**), ibandronate (**Appendix F Table 20**), raloxifene (**Appendix F Table 21**), denosumab (**Appendix F Table 22**), and parathyroid hormone (**Appendix F Table 23**). **Appendix H** includes forest plots for meta-analyses.

Bisphosphonates: Overview of the Evidence

The 2010 review relied largely on systematic reviews to present evidence on harms.³ To ensure that we captured all relevant evidence, we relied on our searches, handsearches from included systematic reviews, particularly from a recent systematic review on the efficacy and effectiveness of drugs for osteoporosis.²²¹

Alendronate

Sixteen fair- and good-quality studies reported on harms: 14 studies in postmenopausal women^{199-204, 244-251} and 2 studies in combined populations of women and men.^{252, 253} We excluded several studies that were included in previous reviews for wrong study population,^{215, 254-259} wrong intervention,²⁶⁰ wrong comparator,²⁶¹⁻²⁶³ wrong outcome,²⁶⁴ wrong setting,^{265, 266} and wrong study design,²⁶⁷ an older review that has been subsequently updated,²⁶⁸ and high risk of bias.^{216, 263, 269-271} Nine studies reported on discontinuations because of adverse effects.^{199-202, 204, 244, 250-252} Five studies reported serious adverse effects.^{202, 248, 250-252} Death was reported as a harm in two studies.^{200, 248} Several gastrointestinal (GI) events were reported, including abdominal pain, reflux, ulcers, and esophagitis. The most commonly reported across studies was any upper GI adverse events.^{200, 202, 204, 248-253} Three studies reported cardiovascular outcomes, including chest pain,²⁴⁴ myocardial infarction,²⁴⁷ and atrial fibrillation.²⁴⁶

Zoledronic Acid

Four fair- or good-quality studies reported on harms: three studies in postmenopausal women^{217, 272, 273} and one in men.²¹⁸ We excluded several studies that were included in previous reviews for wrong study population,^{219, 220, 222, 274-278} wrong study design,²⁷⁹ wrong comparator,²⁸⁰ and an older review that has been subsequently updated.²⁶⁸

Only one study reported on discontinuation of zoledronic acid due to adverse events,²¹⁷ while

three studies reported serious adverse events.^{217, 218, 273} Three studies reported on osteonecrosis of the jaw^{218, 272, 273} and two on atrial fibrillation.^{272, 273} Three studies examined myalgia and arthralgia.^{218, 272, 273}

Risedronate

Six trials met eligibility criteria for harms. These include four trials previously described.²²³⁻²²⁶ Two additional trials were also conducted among postmenopausal women, and we rated them as fair quality.^{202, 281} One trial, conducted at multiple sites in Europe and Brazil, assessed 5 mg of risedronate for 3 months compared with placebo.²⁰² Nearly half of the study population had prior fractures. The other trial assessed 5 mg of risedronate for 36 weeks, and was conducted in Japan.²⁸¹ Women with prevalent fracture were not excluded from this study and the mean number of prevalent fractures at baseline was 0.3 (standard deviation [SD], 0.8) in the placebo group and 0.2 (SD, 0.5) in the risedronate group.

Etidronate

Two fair-quality studies reported on harms (N=206).^{228, 229} Both reported on the rates of discontinuation and GI adverse events.²²⁸⁻²³⁰ One trial reported on serious adverse events and infection as an adverse event.²²⁸

Ibandronate

Seven fair-quality studies of ibandronate reported on harms (N=2,115).²⁸²⁻²⁸⁸ All were conducted in postmenopausal women with no prior fractures^{283, 284, 287, 288} or with unknown prior fracture history.^{283, 285, 286} These studies differed in the menopausal categories of women enrolled: at least 1 year postmenopausal (two studies),^{282, 283} at least 3 years postmenopausal (one study),²⁸⁵ at least 5 years postmenopausal (two studies),^{286, 288} at least 10 years postmenopausal (one study),²⁸⁴ and 1 to 10 years postmenopausal (one study).²⁸⁷ The mean baseline T-scores for the seven studies ranged from -3.2 to 1.03. The mean age of participants ranged between ages 54 and 67 years. Included trials evaluated varying dosages and time periods. One trial evaluated 50 to 150 mg monthly for 3 months,²⁸⁵ one evaluated 0.25 mg to 2.0 mg every 3 months over a 1-year period,²⁸⁸ and one evaluated daily dosages of 0.25 to 50 mg over a 1-year period. Four publications reported on studies that evaluated ibandronate over a 2-year period, including two trials that evaluated daily dosages of 5 to 20 mg,²⁸⁷ and one that evaluated monthly dosages of 150 mg.²⁸² Six of the included trials were set in Europe^{282, 284-288} and one in the United States and Canada.²⁸³ Four trials²⁸²⁻²⁸⁵ reported on the discontinuation of participants by treatment group and two studies reported only the number of discontinuations overall.^{287, 288} Four trials²⁸²⁻²⁸⁵ reported on serious adverse events by treatment group and two studies reported only serious adverse events overall.^{287, 288} Six studies evaluated the risk of GI adverse events.^{287, 284} two reported on deaths.^{285, 286}

Bisphosphonates: Findings

Discontinuations Due to Adverse Events

The 2010 review reported no differences in risk of discontinuation between study arms for any bisphosphonate drug. Our updated analysis of 20 trials and 17,369 participants found that the pooled risk was not significantly different for any individual drug or overall (RR, 0.99; 95% CI, 0.91 to 1.07; I^2 , 0%; **Appendix H Figure 18**). Alternate methods of pooling that account for the contribution of a single trial²⁰² to two arms yielded very similar results (11.5% vs. 11.8%; RR, 0.98; 95% CI, 0.89 to 1.08; I^2 , 0%).

Serious Adverse Events

The 2010 review did not summarize the evidence on overall serious adverse events. Our pooled estimate of effect of 17 trials and 11,745 participants showed no statistically significant differences for any individual drug or overall (RR, 0.98; 95% CI, 0.92 to 1.04; I², 0%; **Appendix H Figure 19**). Alternate methods of pooling that account for the contribution of a single trial²⁰² to two arms yielded identical results (21.0% vs. 23.4%; RR, 0.97; 95% CI, 0.89 to 1.07; I², 0%).

Gastrointestinal Adverse Events

The 2010 review reported a higher risk of mild upper GI events for etidronate and pamidronate than placebo but not for other drugs. The review noted a higher risk of esophageal ulceration for etidronate when including individuals without osteoporosis in the control group, but not otherwise; it also reported no differences in esophageal ulcerations for any other drug. Finally, it noted that the FDA has called for further research on the risk of esophageal adenocarcinoma.

Our updated analysis found that studies vary widely in the definition and reporting of GI adverse events. Some studies specify upper GI events overall, with no additional detail, whereas other studies provide details on individual complaints such as dyspepsia and abdominal pain. We pooled 13 trials with 20,485 participants that reported upper GI events and found no differences for any individual drug or overall (RR, 1.01; 95% CI, 0.98 to 1.05; I², 0%; **Appendix H Figure 20**). Alternate methods of pooling that account for the contribution of a single trial²⁰² to two arms yielded very similar results (35.3% vs. 35.6%; RR, 1.01; 95% CI, 0.98 to 1.05; I², 0%), as did an analysis that included a wider variety of outcomes in addition to upper GI events (all GI adverse events, abdominal pain, severe GI events, and esophagitis (RR, 1.02; 95% CI, 0.98 to 1.05; I², 0%). We found no differences by study arms in individual study reports of ulcers^{200, 202, 249, 252, 253} and no reports of esophageal adenocarcinoma.

Cardiovascular Events

The 2010 review noted no clear evidence of an association between bisphosphonate use and atrial fibrillation. Our review found one study of alendronate reporting a higher but not statistically significant risk of atrial fibrillation in women (2.5% vs. 2.2%; RR, 1.14 [95% CI, 0.83 to 1.56]),²⁴⁶ and one study of zoledronic acid in men with a similarly nonsignificant but elevated relative risk of atrial fibrillation (1.2% vs. 0.8%; RR, 1.45; 95% CI, 0.46 to 4.56).²¹⁸

Two studies of women reported no cases of atrial fibrillation.^{272, 273} A case control study using a Danish registry studied the association of bisphosphonates and atrial fibrillation and reported a relative risk of 0.75 (95% CI, 0.49 to 1.16; 3.2% vs. 2.9%) for new users.²⁴⁵ Two ineligible systematic reviews^{289, 290} sought additional data from two sets of investigators not included in their published results.^{236, 291} Estimates of effect for both studies spanned the null (RR, 1.11, 95% CI, 0.69 to 1.90 for data from Karam et al. and RR, 0.99, 95% CI, 0.45 to 2.16 for unpublished data from Leiwecki et al.).

Osteonecrosis of the Jaw

The 2010 review noted that the FDA published a case series listing osteonecrosis of the jaw, but that most cases occurred in cancer patients. The 2010 review noted that the FIT found one case each in the active and placebo arms. In our update, three studies (one in men and two in women) reported that they found no cases of osteonecrosis of the jaw.^{218, 272, 273} We also identified several additional studies of osteonecrosis of the jaw that did not meet our inclusion criteria; the study populations had a high proportion of subjects with prevalent vertebral fractures or secondary causes of osteoporosis.^{276, 279, 280, 292-296}

A systematic review, which also did not meet our inclusion criteria because it included populations outside the purview of this report, reported a higher incidence of osteonecrosis of the jaw with intravenous bisphosphonates and with greater duration (these findings are not restricted to primary prevention populations only).²⁹⁷ The review noted, however, that the incidence of osteonecrosis of the jaw ranged between 1.04 and 69 per 100,000 patient-years for oral bisphosphonate and between 0 and 90 per 100,000 patient-years for intravenous bisphosphonates. The authors note that the incidence is marginally higher than the estimated incidence in the general population of <0.001 percent. In comparison, the authors note that the incidence in the oncology patient population ranges from 0 to 12,222 per 100,000 patient-years.

Atypical Fractures of the Femur

The FDA added a warning label to bisphosphonates regarding the potential risk of atypical femur fractures; the communication also noted the rarity of the condition (fewer than 1% of all hip and femur fractures), the lack of evidence establishing causality, and the fact that atypical femur fractures have been reported primarily in patients taking bisphosphonates. No included studies in our review reported atypical femur fracture outcomes. Although we identified several additional studies reporting on atypical femur fractures, they did not meet inclusion criteria (wrong population,^{298, 299} wrong comparator,^{300, 301} wrong intervention,³⁰² wrong design).²⁶¹

Two excluded systematic reviews, published in 2013³⁰⁰ and 2015³⁰¹ respectively, included a partially overlapping set of studies. Both reported an increased risk of atypical femur fractures, with odds ranging from 1.70 (95% CI, 1.22 to 2.37)³⁰⁰ to 1.99 (95% CIs, 1.28 to 3.10).³⁰¹ Both reviews reported very high heterogeneity (I² exceeding 80 percent), but only one review explored heterogeneity in greater detail.³⁰⁰ Specifically, Gedmintas et al. explored subgroup analyses by outcome definition and found a continued high risk with more restrictive and validated measurement of outcomes, but with varying precision and heterogeneity. These results suggest an increased risk for atypical femur fractures, but the extent and applicability of this risk to a

primary prevention population is unclear.

Raloxifene: Overview of the Evidence

As was true for benefits of raloxifene, harms reported in the 2010 review were based on results from two studies, the MORE and RUTH trials.³ We include findings from six studies, with only the MORE study reported in multiple articles.^{231, 232, 241, 244, 303-310} As noted previously, we do not include the RUTH trial as evidence because it did not meet our inclusion criterion that participants be at increased risk for fracture.

Raloxifene: Findings

Pooled estimates of women followed from 1 to 4 years found no increased risk of discontinuation of treatment because of adverse events (12.6% vs. 11.2%; RR, 1.12; 95% CI, 0.98 to 1.28; I², 0%, 6 trials, N=6,438; **Appendix H Figure 21**). The pooled analysis suggests a trend toward increased risk for deep vein thromboses (0.7% vs. 0.3%; RR, 2.14; 95% CI, 0.99 to 4.66; I², 0%, 3 trials, N= 5,839; **Appendix H Figure 22**). However, among the summarized studies, the large MORE trial found an increased risk after 4 years (0.8% vs. 0.3%; RR, 2.52; 95% CI, 1.11 to 5.71), whereas the other two included studies were much smaller and followed women for only 2 years.^{304, 305} In contrast, the 2010 review found a statistically significant increase in thromboembolic events (RR, 1.60; 95% CI, 1.15 to 2.23). Similar to the 2010 review, we found no association between raloxifene and CHD, stroke, or endometrial cancer, an increased risk for hot flashes, (11.2% vs. 7.6%; RR, 1.42; 95% CI, 1.22 to 1.66; I², 0%, 5 trials; N=6,249; **Appendix H Figure 23**) and no statistically significant increased risk of leg cramps (8.0% vs. 4.8%; RR, 1.41; 95% CI, 1.41; 0.92 to 2.14; I², 67%, 3 trials; N=6,000; **Appendix H Figure 24**).

Estrogen

The 2010 review discussed the results of the WHI. As noted, the WHI did not meet inclusion criteria for our update. A recently completed review on the benefits and harms of estrogen therapy, with and without progestin, in primary care populations provides important contextual information.²³⁵ Compared with women on placebo, women on estrogen, over a 5-year followup, experienced a higher rate of gallbladder events, stroke, and venous thromboembolism. The risk for urinary incontinence was increased during a followup of 1 year. Compared with women on placebo, women on estrogen plus progestin were found to have a higher risk of invasive breast cancer, CHD, probable dementia, gallbladder events, stroke, and venous thromboembolism. The risk for urinary incontinence was increased during a followup of 1 year. Additionally, one safety trial compared an estrogen only arm with a placebo arm (N=193) and found no statistically significant differences in discontinuations attributable to adverse events (10% vs. 10%; RR, 0.98 [95% CI, 0.37 to 2.58]), serious adverse events (12% vs. 10%; RR, 1.19 [95% CI, 0.46 to 305]), or upper gastrointestinal events over 2 years (30% vs. 22%; RR, 1.37 [95% CI, 0.77 to 2.44]).²¹⁶

Denosumab: Overview of the Evidence

Three studies reported on harms.^{236-238, 311} All were conducted in postmenopausal women with

low bone mass or osteoporosis and were phase 2 or phase 3 studies for the FREEDOM trial.

Denosumab: Findings

Pooled estimates of effect from three trials with 8,451 participants suggest no differences in the rates of discontinuation due to adverse events (3.1% vs. 2.1%; RR, 1.16 [95% CI, 0.88 to 1.54]; I², 0%; **Appendix H Figure 25**) or serious adverse events (23.7% vs. 24.0%; RR, 1.23; 95% CI, 0.78 to 1.93; I², 34.5%; **Appendix H Figure 26**). Although treatment arms had higher rates of serious infections than control arms, confidence intervals for the pooled estimate were wide (4.0% vs. 3.3%; RR, 1.89; [95% CI, 0.61 to 5.91]; I², 40.09%; **Appendix H Figure 27**). A Peto odds ratio estimate, to account for zero events in one trial, also resulted in an estimate of effect with wide confidence intervals (Peto odds: 2.12; 95% CI, 0.72 to 6.14). A detailed analysis of serious infections identified these differences as arising from a higher rate of cellulitis and erysipelas in the denosumab arm (RR, 14.96 [95% CI, 1.98 to 113.21]).³¹¹ Two trials evaluated the risk of rash or eczema. Both reported a higher rate in the treatment arm (RR for eczema, 1.81 [95% CI, 1.34 to 2.44; 3.0% vs. 1.7%]²³⁸ and rash, 2.82 [95% CI, 1.04 to 7.64; 8.5% vs. 3.0%]²³⁷). The studies reported wide confidence intervals spanning the null for GI events^{236, 237} and cardiac or cardiovascular events.^{236, 238} Although the large FREEDOM trial reported fewer deaths in the treatment arm, the difference in rates did not reach statistical significance (1.8% vs. 2.3%; RR, 0.78 [95% CI, 0.57 to 1.06]).²³⁸

Parathyroid Hormone: Overview of the Evidence

Two fair-quality studies^{239, 8402} reported adverse events in women and men receiving parathyroid hormone compared to placebo. The TOP Study³⁶ was conducted in postmenopausal women receiving daily PTH injections for 18 months versus placebo. Another RCT^{239} was conducted among 437 men who were randomized to either placebo or one of two dosages of teriparatide (20 µg or 40 µg daily) for an average of 11 months (treatment ranged from less than two months to 15 months).

Parathyroid Hormone: Findings

Harms in Women

The TOP Study³⁶ reported adverse events and discontinuation of study participants in the treatment and placebo groups. Among 2,532 postmenopausal women, the treatment group had higher rates of discontinuation due to adverse events when compared with the placebo group (30.2% vs. 24.6%; RR, 1.22 (1.08 to 1.40). Other reported adverse events, which were related largely to nausea and headache, were higher in the treatment group (22.6% vs. 9.1%; RR, 2.47 [95% CI, 2.02 to 3.03]).

Harms in Men

In a RCT among 437 men,²³⁹ both the 20-microgram and 40-microgram treatment groups had a higher proportion of withdrawals than the placebo group (9.2% vs. 12.9% vs. 4.8%). The risk of withdrawals was statistically significant higher in the 40-microgram treatment group than the

placebo group (RR, 2.72 [95% CI, 1.17 to 6.3]), although the number of withdrawals was small among all three groups. Cancers were reported in two groups (3/147 in the placebo group and 3/151 in the 20-microgram treatment group), but none was reported as osteosarcomas. Evidence on harms associated with PTH is limited due to sparse data from two RCTs and incomplete descriptions of the criteria for an adverse event and therefore, inconsistent reporting of adverse events.

Chapter 4. Discussion

This chapter begins with a summary of review findings for each key question (KQ); **Table 9** provides additional details. Our synthesis also addressed two contextual questions on the (1) different fracture risk thresholds for identifying patients for further evaluation or treatment and (2) the effectiveness of screening strategies using different ages to start and stop screening and screening intervals (see Methods for detailed contextual questions). The introduction chapter includes information on contextual question 1; we address contextual question 2 after the summary of findings for the various KQs in this chapter. Following those sections, we present limitations of the evidence and our update review, and then end with conclusions.

Summary of Review Findings

No studies met design or quality criteria for the overarching question on the benefits of screening on fractures and fracture-related morbidity and mortality (KQ 1). Preliminary 5-year results from the Screening for Osteoporosis in Older Women for the Prevention of Fracture (SCOOP) trial, from a conference abstract, suggest a reduced risk of hip fractures (2.6% v 3.5% hazard ratio [HR]=0.73, p=0.003) with routine screening for osteoporosis when compared with no routine screening, but it reported no differences between study arms for overall fracture incidence (12.9% vs. 13.6%, HR=0.93, p=0.199), mortality (8.8% vs. 8.4% HR=1.05, p=0.433) or quality of life (p=0.154). No additional details are available, so the certainty of these findings is unclear.⁷⁵

We found no studies on harms of screening (KQ 3). The evidence on the benefits and harms of screening for osteoporotic fractures is therefore based on the accuracy of screening approaches (KQ 2) and the benefits and harms of treatment (KQs 4 and 5)

Accuracy and Reliability of Screening Approaches (Key Question 2a)

Our findings are consistent with the 2010 review on this topic:³ Nelson et al. concluded that the accuracy of screening approaches is moderate. We did not observe differences by sex; predictions of hip fractures were more accurate than prediction of fractures at other sites or composite fracture outcomes (i.e., major osteoporotic fractures).

Using centrally measured dual-energy X-ray absorptiometry (DXA) as the reference standard for identifying osteoporosis, the pooled estimate of accuracy as measured by the area under the curve (AUC) for clinical risk assessment instruments for women ranges from 0.65 to 0.70 and for men from 0.75 to 0.80. Studies of machine-based tests for screening to identify osteoporosis generally compared calcaneal quantitative ultrasound to central dual energy X-ray absorptiometry (DXA); pooled areas under the curve (AUCs) ranged from 0.77 for women to 0.80 for men.

Studies of machine-based tests to predict fractures used a variety of machine-based tests (areal bone mineral density [BMD] with central DXA, trabecular bone score, and quantitative

ultrasound [QUS]) and did not show differences by sex or type of test. For these tests, predictions of hip fractures had higher range of accuracy (AUC of 0.80 to 0.85) in eight of twelve studies than predictions of fractures at other sites (AUC, 0.54 to 0.77).

The evidence base for fracture risk prediction instruments is dominated by studies of Fracture Risk Assessment Tool (FRAX) but also includes studies of other prediction instruments. Instruments differ by the number of risks included but they commonly include age, sex (if developed for use with both sexes), weight or body mass index (BMI), and a variety of medical conditions or historical events (e.g., prior fracture or fall). Some of the evaluated instruments can incorporate BMD results into the risk prediction, most commonly BMD of the femoral neck. Pooled analysis of FRAX AUCs in men ranged from a low of 0.62 for predicting major osteoporotic fractures without the inclusion of BMD to a high of 0.76 for predicting hip fractures with BMD included. Pooled AUCs in women for FRAX similarly range from a low of 0.67 for predicting major osteoporotic fractures without the inclusion of BMD to a high of 0.79 for predicting hip fractures with BMD. Garvan, QFracture, and Fracture Risk Calculator were the only other instruments validated for use in men. We identified no published studies that met our eligibility criteria that assessed calibration of the U.S. version of FRAX or calibration of other risk assessment instruments in U.S. populations. Overall, the accuracy of clinical risk assessment tools for identifying osteoporosis or predicting fractures generally ranges from very poor (0.50) to good (0.90). Table 10 recapitulates results for the instruments for which we found evidence on the accuracy of identifying osteoporosis as well as the accuracy of predicting fractures. FRAX predicts fractures over a 10-year time horizon, though not all studies reported 10 complete years of participant followup for reporting accuracy. The other instrument (SCORE, ORAI, OSIRIS, OST) were not developed as fracture risk prediction instruments; the length of followup reported by studies who evaluated these instruments as risk prediction instruments ranged from 3 to 10 years.

Evidence to Determine Screening Intervals for Osteoporosis and Low Bone Density (Key Question 2b)

The 2010 review noted the paucity of evidence on this topic,³ with a single study indicating no advantage to repeated measures (8 years apart).¹⁹⁴ A second study, identified by our update, does not alter this conclusion: it also suggests similar accuracy in predicting fractures with repeat BMD (3.7 years apart) when compared with baseline BMD.¹⁹⁵ Both studies included participants with a wide spectrum of baseline BMD from normal to osteoporosis. However, three studies that developed prognostic models suggested that the optimal screening interval varies by baseline BMD.¹⁹⁶⁻¹⁹⁸ Age and hormone replacement therapy use also influence optimal screening intervals.^{196, 197}

Benefits of Pharmacotherapy (Key Question 4a)

Our findings about medications align with those of the 2010 review. For women, the risk of vertebral fractures can be reduced by bisphosphonates, parathyroid hormone, raloxifene, and denosumab. The risk of nonvertebral fractures can be reduced by bisphosphonates and denosumab. The risk of hip fractures can be reduced by denosumab (relative risk [RR]: 0.60);

evidence from bisphosphonates does not demonstrate benefit for hip fractures. Evidence is very limited for men. The risk of morphometric vertebral fractures can be reduced by zoledronic acid (RR: 0.33).²¹⁸ No studies demonstrate reductions in risk of clinical vertebral fractures or hip fractures for men. The study of parathyroid hormone in men also demonstrated a trend toward benefit in nonvertebral fractures, consistent with the finding in women, but was not statistically significant, possibly because it was stopped early.²³⁹ We found no studies reporting on fracture-related morbidity or mortality.

Variation in Benefits of Pharmacotherapy in Subgroups (Key Question 4b)

One trial each offered further analyses on subgroups for alendronate, risedronate, raloxifene, denosumab, and parathyroid hormone. We found no evidence from included studies on differences in effectiveness by age, baseline BMD, prior fractures, or a combination of risk factors.

Harms of Pharmacotherapy (Key Question 5)

Although several trials reported on harms, they varied substantially in definitions. We found no consistent evidence of harms with bisphosphonates (discontinuation due to adverse events, serious adverse events, gastrointestinal events, and cardiovascular events). We found no bisphosphonate trials with reported cases of osteonecrosis of the jaw or atypical femur fractures, although evidence from excluded studies of populations, designs, and comparators outside the purview of this review suggests a rare but increased risk with bisphosphonates. Raloxifene produced a higher risk of deep vein thrombosis (0.7% vs. 0.3%; pooled RR, 2.14; 95% confidence interval [CI], 0.99 to 4.66; I²=0%, 3 trials, N=5,839) and hot flashes (11.2% vs. 7.6%; pooled RR, 1.42; 95% CI, 1.22 to 1.66; I²=0%, 5 trials; N=6,249), but not discontinuations or leg cramps. One trial of parathyroid hormone reported a higher risk of discontinuation due to adverse events (29.7% vs. 24.6%; RR, 1.22; 95% CI, 1.08 to 1.40) for women; the trial in men did not report a higher risk of discontinuation. We found no statistically significantly increased of discontinuations, serious adverse events, or serious infections with denosumab. The evidence on harms in men was very limited—but consistent, when available—with harms for women.

Contextual Considerations

We addressed Contextual Question 1 in the introduction chapter, in the section on the use and accuracy of fracture risk instruments for identifying patients for further evaluation. Below we discuss Contextual Question 2 on the effectiveness of screening strategies using different ages to start and start screening and screening intervals.

Effectiveness of Screening Strategies Using Different Ages to Start and Stop Screening

Initiation of Screening: Women

Although the USPSTF and other guidelines recommend screening in average-risk women age 65 years or older, debate continues as to whether to recommend a standard age for mass screening. Studies suggest that mass screening and treatment of postmenopausal women under 60 years of age is likely to be very inefficient.^{3, 312} One study concluded that women with a negative screening between the ages of 50 and 64 years are unlikely to benefit from frequent screenings because the population is less likely to experience a fracture before age 65.¹⁹⁸ No studies have examined the long-term benefits of early treatment initiation.³¹² A modeling study examining the initiation of screening women at ages 55, 60, 65, 70, 75, and 80 years found that all screening strategies (e.g., DXA, prescreen with QUS before DXA; prescreened with Simple Calculated Osteoporosis Risk Estimation [SCORE] before DXA) were more effective than no screening in increasing quality-adjusted life-years (QALY).³¹³ No screening was more expensive and less effective than multiple screening strategies starting at age 65 or older. However, no single strategy emerged clearly as best at willingness-to-pay thresholds of \$50,000 per QALY or \$100,000 per QALY, suggesting that differences between strategies are likely to be small.

Initiation of Screening: Men

No standard osteoporosis screening schedules for average-risk men exist,¹⁹⁶ leading to continued uncertainty about starting and stopping ages. A study³¹³ that examined the effectiveness of the DXA, Osteoporosis Self-Assessment Tool (OST), Fracture Risk Assessment, and no screening found that all screening strategies, regardless of test used, screening initiation age (e.g., 50, 60, 70, or 80 years), or repeat screening interval (5 years or 10 years) were more effective than no screening in increasing QALYs. A study of community-dwelling 70-year old white men with no history of fractures found that selective DXA using an OST prescreen was most cost-effective relative to universal DXA screening at the lowest OST cutoff score of -2. Selective DXA using the OST was also more effective and less costly than no DXA screening among men age 84 or older.³¹⁴

Discontinuation of Screening

Currently, no evidence examines the age to stop BMD testing and no guidelines recommend cessation of screening at a specific age for women or men.³¹² Cost-effectiveness studies suggest benefits from continuing to screen women in older age groups.^{315, 316} Using a Markov model with women ages 70 to 80 years, one study showed greater cost-effectiveness when screening all women compared with screening women with at least one risk factor.³¹⁵ Another modeling study found that universal DXA is more cost-effective with increasing age because the prevalence of low BMD (femoral neck T-score of <2.5 or less) increases substantially with age, as does associated fracture risk.³¹⁶

Effectiveness of Screening Strategies Using Different Screening Intervals

The effectiveness of using different screening intervals to identify osteoporosis was discussed under the results for KQ 2b.

Limitations and Future Research

Limitations

The evidence base is limited by lack of studies addressing the direct question of the benefits and harms of screening for osteoporotic fractures. In the absence of direct evidence, strong links along the indirect evidence pathway are necessary. A major constraint in ensuring these strong links is that the operational definitions of osteoporosis (i.e., BMD T-scores) and the resulting thresholds for screening and treatment that are established based on these definitions capture only one aspect of osteoporotic fracture risk. Although osteoporotic fractures can arise from loss of bone mass, microarchitectural deterioration of bone tissue and decline in bone quality also contribute to fracture risk and are not captured by BMD measurement.²⁹ Furthermore, the task of screening for and subsequently treating low bone density is only one aspect of fracture prevention: preventing falls is another critical component.^{24, 29, 317} As a consequence, screening approaches that rely on BMD measurement wholly or in part may not be the most accurate approaches for predicting risk of osteoporotic fractures.

Clinical risk assessment instruments that can potentially capture a wider array of factors beyond BMD measurement also have serious constraints on utility for treatment decisions. No trials thus far have established efficacy of treatment based on identifying risk using clinical risk assessment tools: individuals enrolled in treatment trials are typically enrolled on the basis of their BMD level, not on fracture risk.

In the absence of strong evidence linking screening approaches to fracture risk, uncertainties persist in understanding who requires screening and how often. In particular, evidence on effectiveness of screening and treatment by age, baseline BMD, and baseline fracture risk continues to be lacking. Long-term studies on harms continue to be lacking. Evidence is limited on the value of repeat BMD screening. These gaps are particularly evident for younger postmenopausal women, in whom multiple clinical risk assessment tools perform no better than chance in identifying osteoporosis and predicting fractures and who are unlikely to benefit from frequent rescreening before age 65. Another important limitation of this evidence base is that it focuses on one of many approaches to averting osteoporotic fractures. A comprehensive approach may rely on screening, counseling, medication, physical therapy, and other interventions to prevent falls and improve physical function in older adults.

Other limitations of the evidence base pertain to the underlying heterogeneity of included studies. Screening studies differ in the strictness of their inclusion criteria, particularly with regard to baseline fractures, baseline BMD, and prior treatment. They also differ in the length of followup and in their applicability to U.S. primary care populations. Studies of 10-year fracture

risk did not always observe participants for 10 years. Further, most instruments were not calibrated for U.S. populations. The majority of both treatment and screening studies focused on women, and reported very limited results on the outcomes of screening and treatment in men. Some treatment studies included mixed populations of subjects with and without a history of prior osteoporotic fracture.

Future Research

Identifying the optimal screening strategy to reduce osteoporotic fractures requires accounting for variations in patient baseline characteristics, multiple potential pathways into screening, and the multiple cascade of interventions that follow screening. Randomized controlled trials cannot fully address all these components, but decision analyses may offer some clarity. Decision analyses may also help frame a comprehensive approach to integrating multiple strategies relevant to preventing osteoporotic fractures beyond screening for osteoporotic risk, such as counseling and interventions for falls prevention and improvement in physical function.

Innovations in the measurement of bone quality that are followed by studies of implementation in and translation to primary care settings will help improve accuracy of screening approaches. Measurements of bone density other than central DXA require better evidence of accuracy and applicability in the context of treatments that target patients with centrally measured BMD. Evidence is lacking on the harms of screening, even for routine and widely available screening approaches.

Treatment trials focusing on or including men will help to fill gaps in our understanding of the benefits and harms of treatment in men. Notably, no randomized controlled trial of osteoporosis treatment in men has demonstrated reduction of hip fracture or clinical vertebral fractures. Evidence on an array of harms is not consistently available for long-term outcomes or for all medications.

Reanalyses of existing trials or new studies employing prospective observational data or fracture registries can help fill gaps on how treatment benefits and harms might vary by differences in baseline risk, including age and BMD status.

The evidence on optimal screening intervals is also scant. The present recommendation to repeat DXA screening at 2 years is based on the amount of time to observe a reliable change in BMD, although further research is necessary to determine the optimal interval of repeat screening associated with reduced fracture risk.

Ongoing and Unpublished Studies

An ongoing, pragmatic trial in the United Kingdom (U.K.) is randomizing more than 11,000 women ages 70 to 85 years to screening or usual care. Women in the screening arm will have a 10-year fracture risk calculated using FRAX based on information obtained through questionnaires. The investigators propose to compare the probability of a hip fracture with age-based BMD testing and osteoporosis treatment thresholds established from existing U.K. cost-

effectiveness data. No further action will be taken for women below these thresholds in the treatment arm; women with fracture risks above these thresholds will be offered BMD testing, followed by recalculation of their fracture risk and treatment as needed. Women will be followed for 5 years. The study is powered to detect an 18 percent reduction in fractures.⁷⁴

Additionally, a search of trial registries yielded information about several completed and ongoing trials that have yet to publish results, but these trials can be expected to expand the evidence base on treatments (**Appendix G**). These include parathyroid hormone (3 trials, women, United States, N>90 [N not reported for 1 trial]), risedronate (2 trials, women, South Korea and United States, N=1,150), raloxifene (2 trials, women, multisite and United States respectively, N not reported), zoledronic acid (1 trial, women, United States, N=1000) and denosumab (1 trial, men and women, United States, N=212)

Conclusions

We did not find studies of either good or fair quality evaluating the direct benefits and harms of screening for osteoporotic fracture risk. The accuracy of screening ranges from very poor to good. Treatments reduce the risk of vertebral and nonvertebral fractures in women, and studies do not consistently demonstrate an increased risk of harms for drugs. Studies of raloxifene suggest a trend toward higher risk of deep vein thrombosis. Rare harms, such as osteonecrosis of the jaw and atypical femur fractures were not reported in this body of evidence but they may occur. The evidence is limited or not available for other regimens and outcomes among the populations included in this review.

References

- 1. U.S. Preventive Services Task Force. Screening for osteoporosis: U.S. preventive services task force recommendation statement. Ann Intern Med. 2011 Mar 1;154(5):356-64. doi: 10.7326/0003-4819-154-5-201103010-00307. PMID: 21242341.
- Nelson HD; Haney EM; Dana T; Bougatsos C; Chou R. Screening for osteoporosis: an update for the U.S. Preventive Services Task Force. Ann Intern Med. 2010 Jul 20;153(2):99-111. doi: 10.7326/0003-4819-153-2-201007200-00262. PMID: 20621892.
- 3. Nelson HD; Haney EM; Chou R; Dana T; Fu R; Bougatsos C. Screening for Osteoporosis. Systematic Review to Update the 2002 U.S. Preventive Services Task Force Recommendation Evidence Synthesis No. 77. Report No.: 10-05145-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; July 2010.
- American Congress of Obstetricians and Gynecologists. ACOG Practice Bulletin N. 129. Osteoporosis. Obstet Gynecol. 2012 Sep;120(3):718-34. doi: 10.1097/AOG.0b013e31826dc446. PMID: 22914492.
- Cosman F; de Beur SJ; LeBoff MS; Lewiecki EM; Tanner B; Randall S; Lindsay R; National Osteoporosis Foundation. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014 Oct;25(10):2359-81. doi: 10.1007/s00198-014-2794-2. PMID: 25182228.
- Kanis JA; Melton LJ, 3rd; Christiansen C; Johnston CC; Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994 Aug;9(8):1137-41. doi: 10.1002/jbmr.5650090802. PMID: 7976495.
- Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012 Apr;263(1):3-17. doi: 10.1148/radiol.12110462; 10.1148/radiol.2633201203. PMID: 22438439.
- 8. World Health Organization. WHO Scientific Group on the Assessment of Osteoporosis at Primary Health Care Level. Summary Meeting Report. Geneva, Switzerland: World Health Organization; 2004. <u>http://www.who.int/chp/topics/Osteoporosis.pdf</u>. Accessed on 24 Aug, 2016.
- 9. Kanis JA; World Health Organization Scientific Group. Assessment of Osteoporosis at the Primary Health Care Level. Technical Report. Sheffield, United Kingdom: World Health Organization Collaborating Centre for Metabolic Bone Diseases; 2008.
- 10. Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci. 2013 Oct;68(10):1236-42. doi: 10.1093/gerona/glt092. PMID: 23833201.
- Wright NC; Looker AC; Saag KG; Curtis JR; Delzell ES; Randall S; Dawson-Hughes B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014 Nov;29(11):2520-6. doi: 10.1002/jbmr.2269. PMID: 24771492.
- 12. Burge R; Dawson-Hughes B; Solomon DH; Wong JB; King A; Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007 Mar;22(3):465-75. doi: 10.1359/jbmr.061113. PMID: 17144789.
- Brauer CA; Coca-Perraillon M; Cutler DM; Rosen AB. Incidence and mortality of hip fractures in the United States. JAMA. 2009 Oct 14;302(14):1573-9. doi: 10.1001/jama.2009.1462. PMID: 19826027.

- 14. Abrahamsen B; van Staa T; Ariely R; Olson M; Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009 Oct;20(10):1633-50. doi: 10.1007/s00198-009-0920-3 [doi]. PMID: 19421703.
- Haentjens P; Magaziner J; Colon-Emeric CS; Vanderschueren D; Milisen K; Velkeniers B; Boonen S. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med. 2010 Mar 16;152(6):380-90. doi: 10.7326/0003-4819-152-6-201003160-00008. PMID: 20231569.
- 16. Cauley JA; Thompson DE; Ensrud KC; Scott JC; Black D. Risk of mortality following clinical fractures. Osteoporos Int. 2000;11(7):556-61. doi: 10.1007/s001980070075. PMID: 11069188.
- 17. Center JR; Nguyen TV; Schneider D; Sambrook PN; Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999 Mar 13;353(9156):878-82. doi: 10.1016/s0140-6736(98)09075-8. PMID: 10093980.
- 18. Leibson CL; Tosteson AN; Gabriel SE; Ransom JE; Melton LJ. Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc. 2002 Oct;50(10):1644-50. PMID: 12366617.
- Bliuc D; Nguyen ND; Milch VE; Nguyen TV; Eisman JA; Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009 Feb 4;301(5):513-21. doi: 10.1001/jama.2009.50. PMID: 19190316.
- 20. Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc. 2002 May;77(5):453-68. doi: 10.4065/77.5.453. PMID: 12004995.
- 21. Cranney A; Jamal SA; Tsang JF; Josse RG; Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007 Sep 11;177(6):575-80. doi: 10.1503/cmaj.070234. PMID: 17846439.
- 22. Pasco JA; Seeman E; Henry MJ; Merriman EN; Nicholson GC; Kotowicz MA. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int. 2006;17(9):1404-9. doi: 10.1007/s00198-006-0135-9. PMID: 16699736.
- 23. Schuit SC; van der Klift M; Weel AE; de Laet CE; Burger H; Seeman E; Hofman A; Uitterlinden AG; van Leeuwen JP; Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004 Jan;34(1):195-202. doi: S8756328203003776 [pii]. PMID: 14751578.
- Stone KL; Seeley DG; Lui LY; Cauley JA; Ensrud K; Browner WS; Nevitt MC; Cummings SR; Osteoporotic Fractures Research Group. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003 Nov;18(11):1947-54. doi: 10.1359/jbmr.2003.18.11.1947. PMID: 14606506.
- 25. Heaney RP. Bone mass, bone loss, and osteoporosis prophylaxis. Ann Intern Med. 1998 Feb 15;128(4):313-4. PMID: 9471936.
- 26. Kanis JA; Johnell O; Oden A; Dawson A; De Laet C; Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001 Dec;12(12):989-95. doi: 10.1007/s001980170006 [doi]. PMID: 11846333.
- 27. Richelson LS; Wahner HW; Melton LJ, 3rd; Riggs BL. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med. 1984 Nov 15;311(20):1273-5. doi: 10.1056/NEJM198411153112002. PMID: 6493283.

- 28. Kleerekoper M. UpToDate. Screening for osteoporosis. The Netherlands: Wolters Kluwer; 2016. <u>http://www.uptodate.com/contents/screening-for-osteoporosis?topicKey=ENDO%2F2046&...2016</u>.
- Cummings SR; Nevitt MC; Browner WS; Stone K; Fox KM; Ensrud KE; Cauley J; Black D; Vogt TM. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995 Mar 23;332(12):767-73. doi: 10.1056/nejm199503233321202. PMID: 7862179.
- 30. Drake MT; Murad MH; Mauck KF; Lane MA; Undavalli C; Elraiyah T; Stuart LM; Prasad C; Shahrour A; Mullan RJ; Hazem A; Erwin PJ; Montori VM. Clinical review. Risk factors for low bone mass-related fractures in men: a systematic review and metaanalysis. J Clin Endocrinol Metab. 2012 Jun;97(6):1861-70. doi: 10.1210/jc.2011-3058. PMID: 22466344.
- Leslie WD. Clinical review: Ethnic differences in bone mass--clinical implications. J Clin Endocrinol Metab. 2012 Dec;97(12):4329-40. doi: 10.1210/jc.2012-2863. PMID: 23055542.
- 32. Kanis JA; Oden A; Johnell O; Johansson H; De Laet C; Brown J; Burckhardt P; Cooper C; Christiansen C; Cummings S; Eisman JA; Fujiwara S; Gluer C; Goltzman D; Hans D; Krieg MA; La Croix A; McCloskey E; Mellstrom D; Melton LJ, 3rd; Pols H; Reeve J; Sanders K; Schott AM; Silman A; Torgerson D; van Staa T; Watts NB; Yoshimura N. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007 Aug;18(8):1033-46. doi: 10.1007/s00198-007-0343-y. PMID: 17323110.
- Kanis JA; Johansson H; Oden A; Dawson-Hughes B; Melton LJ, 3rd; McCloskey EV. The effects of a FRAX revision for the USA. Osteoporos Int. 2010 Jan;21(1):35-40. doi: 10.1007/s00198-009-1033-8 [doi]. PMID: 19705047.
- 34. Raisz LG. Clinical practice. Screening for osteoporosis. N Engl J Med. 2005 Jul 14;353(2):164-71. doi: 10.1056/NEJMcp042092. PMID: 16014886.
- 35. Bergot C; Laval-Jeantet AM; Hutchinson K; Dautraix I; Caulin F; Genant HK. A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int. 2001 Feb;68(2):74-82. PMID: 11310350.
- 36. Greenspan SL; Bone HG; Ettinger MP; Hanley DA; Lindsay R; Zanchetta JR; Blosch CM; Mathisen AL; Morris SA; Marriott TB. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med. 2007 Mar 6;146(5):326-39. PMID: 17339618.
- 37. Kanis JA. Welcome to FRAX[®]. UK: World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK n.d. https://www.shef.ac.uk/FRAX/. Accessed on 10 Aug, 2016.
- 38. Yates AJ; Ross PD; Lydick E; Epstein RS. Radiographic absorptiometry in the diagnosis of osteoporosis. Am J Med. 1995 Feb 27;98(2A):41S-7S. PMID: 7709934.
- 39. McDermott MT. Osteoporosis: an endocrinologist's perspective. Visible Human Journal of Endoscopy. 2010;9.
- 40. Augustine M; Horwitz MJ. Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis. Curr Osteoporos Rep. 2013 Dec;11(4):400-6. doi: 10.1007/s11914-013-0171-2. PMID: 24078470.

- 41. Feurer E; Chapurlat R. Emerging drugs for osteoporosis. Expert Opin Emerg Drugs. 2014 Sep;19(3):385-95. doi: 10.1517/14728214.2014.936377. PMID: 24995794.
- 42. Walsh N. Stroke Risk Dooms Once-Promising Bone Drug. New York, NY: MedPage Today, LLC; 2016. <u>http://www.medpagetoday.com/meetingcoverage/asbmr/60324</u>. Accessed on October 31, 2016.
- 43. Gregg EW; Cauley JA; Seeley DG; Ensrud KE; Bauer DC. Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1998 Jul 15;129(2):81-8. PMID: 9669990.
- 44. Kanis JA; Harvey NC; Cooper C; Johansson H; Oden A; McCloskey EV. A systematic review of intervention thresholds based on FRAX : A report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos. 2016 Dec;11(1):25. doi: 10.1007/s11657-016-0278-z. PMID: 27465509.
- 45. Tosteson AN; Melton LJ, 3rd; Dawson-Hughes B; Baim S; Favus MJ; Khosla S; Lindsay RL; National Osteoporosis Foundation Guide Committee. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int. 2008 Apr;19(4):437-47. doi: 10.1007/s00198-007-0550-6. PMID: 18292976.
- 46. Scottish Intercollegiate Guidelines Network. Management of osteoporosis and the prevention of fragility fractures. (SIGN publication no. 142). Edinburgh: Scottish Intercollegiate Guidelines Network (SIGN); 2015. <u>http://www.sign.ac.uk</u>. Accessed on 24 Aug, 2016.
- 47. North American Menopause Society (NAMS). Management of osteoporosis in postmenopausal women: 2010 position statement of The North American Menopause Society. Menopause. 2010;17:25-54.
- 48. Jeremiah MP; Unwin BK; Greenawald MH; Casiano VE. Diagnosis and management of osteoporosis. Am Fam Physician. 2015 Aug 15;92(4):261-8. PMID: 26280231.
- 49. Florence R; Allen S; Benedict L; Compo R; Jensen A; Kalogeropoulou D; Kearns A; Larson S; Mallen E; O'Day K; Peltier A; Webb B. Health Care Guideline. Diagnosis and treatment of osteoporosis. Bloomington, MN: Institute for Clinical Systems Improvement (ICSI);

2013. <u>https://www.icsi.org/guidelines_more/catalog_guidelines_and_more/catalog_guidelines/catalog_musculoskeletal_guidelines/osteoporosis/</u>. Accessed on 24 Aug, 2016.

- National Committee for Quality Assurance. 2015 State of Health Care Quality Table of Contents. Washington, DC: National Committee for Quality Assurance;
 2015. <u>http://www.ncqa.org/report-cards/health-plans/state-of-health-care-quality/2015-table-of-contents/osteoporosis</u>. Accessed on 10 Aug, 2016.
- 51. Good Stewardship Working Group. The "top 5" lists in primary care: meeting the responsibility of professionalism. Arch Intern Med. 2011 Aug 08;171(15):1385-90. doi: 10.1001/archinternmed.2011.231. PMID: 21606090.
- Kale MS; Bishop TF; Federman AD; Keyhani S. "Top 5" lists top \$5 billion. Arch Intern Med. 2011 Nov 14;171(20):1856-8. doi: 10.1001/archinternmed.2011.501. PMID: 21965814.
- 53. Amarnath AL; Franks P; Robbins JA; Xing G; Fenton JJ. Underuse and Overuse of Osteoporosis Screening in a Regional Health System: a Retrospective Cohort Study. J Gen Intern Med. 2015 Dec;30(12):1733-40. doi: 10.1007/s11606-015-3349-8. PMID: 25986135.

- 54. Fryar CD; Gu Q; Ogden CL. Anthropometric Reference Data for Children and Adults: United States 2007-2010 Vital and Health Statistics. Series 11, Number 252. Washington, DC: U.S. Department of Health and Human Services; October 2012. <u>http://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf</u>
- 55. Bansal S; Pecina JL; Merry SP; Kennel KA; Maxson J; Quigg S; Thacher TD. US Preventative Services Task Force FRAX threshold has a low sensitivity to detect osteoporosis in women ages 50-64 years. Osteoporos Int. 2015 Apr;26(4):1429-33. doi: 10.1007/s00198-015-3026-0. PMID: 25614141.
- 56. Pang WY; Inderjeeth CA. FRAX without bone mineral density versus osteoporosis selfassessment screening tool as predictors of osteoporosis in primary screening of individuals aged 70 and older. J Am Geriatr Soc. 2014 Mar;62(3):442-6. doi: 10.1111/jgs.12696 [doi]. PMID: 24617899.
- 57. Crandall CJ; Larson J; Gourlay ML; Donaldson MG; LaCroix A; Cauley JA; Wactawski-Wende J; Gass ML; Robbins JA; Watts NB; Ensrud KE. Osteoporosis screening in postmenopausal women 50 to 64 years old: comparison of US Preventive Services Task Force strategy and two traditional strategies in the Women's Health Initiative. J Bone Miner Res. 2014 Jul;29(7):1661-6. doi: 10.1002/jbmr.2174 [doi]. PMID: 24431262.
- 58. Crandall CJ; Larson JC; Watts NB; Gourlay ML; Donaldson MG; LaCroix A; Cauley JA; Wactawski-Wende J; Gass ML; Robbins JA; Ensrud KE. Comparison of fracture risk prediction by the US preventive services task force strategy and two alternative strategies in women 50-64 years old in the women's health initiative. J Clin Endocrinol Metab. 2014;99(12):4514-22.
- 59. Leslie WD; Majumdar SR; Lix LM; Johansson H; Oden A; McCloskey E; Kanis JA. High fracture probability with FRAX usually indicates densitometric osteoporosis: implications for clinical practice. Osteoporos Int. 2012 Jan;23(1):391-7. doi: 10.1007/s00198-011-1592-3 [doi]. PMID: 21365460.
- 60. Roux S; Cabana F; Carrier N; Beaulieu M; April PM; Beaulieu MC; Boire G. The World Health Organization Fracture Risk Assessment Tool (FRAX) underestimates incident and recurrent fractures in consecutive patients with fragility fractures. J Clin Endocrinol Metab. 2014 Jul;99(7):2400-8. doi: 10.1210/jc.2013-4507 [doi]. PMID: 24780062.
- 61. United Nations Development Programme. Human Development Report 2015: Work for Human Development. Table 1: Human Development Index and its components n.d. <u>http://hdr.undp.org/en/composite/HDI</u> Accessed on 24 Aug, 2016.
- 62. U.S. Preventive Services Task Force. Policies and Procedure Manual. Rockville, MD: U.S. Preventive Services Task Force;
 2015. <u>http://www.uspreventiveservicestaskforce.org/Page/Name/methods-and-processes</u>. Accessed on 24 Aug, 2016.
- 63. Higgins JP; Green S. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; 2011. <u>www.handbook.cochrane.org</u>. Accessed on 24 Aug, 2016.
- 64. Viswanathan M; Berkman ND. Development of the RTI item bank on risk of bias and precision of observational studies. J Clin Epidemiol. 2012 Feb;65(2):163-78. doi: 10.1016/j.jclinepi.2011.05.008. PMID: 21959223.
- 65. Whiting PF; Rutjes AW; Westwood ME; Mallett S; Deeks JJ; Reitsma JB; Leeflang MM; Sterne JA; Bossuyt PM; Group Q-. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011 Oct 18;155(8):529-36. doi: 10.7326/0003-4819-155-8-201110180-00009. PMID: 22007046.

- 66. Wolf R. PROBAST. Kleijnen Systematic Reviews Ltd; 2014. <u>www.systematic-reviews.com/probast</u>. Accessed on 7 January, 2015.
- 67. International Society for Clinical Densitometry. 2015 ISCD Official Positions -- Adult. Middletown, CT: International Society for Clinical Densitometry, Inc; 2015. <u>http://www.iscd.org/official-positions/2015-iscd-official-positions-adult/</u> Accessed on 10 Aug, 2016.
- 68. Cornell JE; Mulrow CD; Localio R; Stack CB; Meibohm AR; Guallar E; Goodman SN. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med. 2014 Feb 18;160(4):267-70. doi: 10.7326/M13-2886. PMID: 24727843.
- 69. Higgins JP; Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002 Jun 15;21(11):1539-58. doi: 10.1002/sim.1186. PMID: 12111919.
- 70. Higgins JP; Thompson SG; Deeks JJ; Altman DG. Measuring inconsistency in metaanalyses. BMJ. 2003 Sep 6;327(7414):557-60. doi: 10.1136/bmj.327.7414.557. PMID: 12958120.
- 71. Rucker G; Schwarzer G; Carpenter JR; Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol. 2008;8:79. doi: 10.1186/1471-2288-8-79. PMID: 19036172.
- 72. Wallace BC; Dahabreh IJ; Trikalinos TA; Lau J; Trow P; Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. Journal of Statistical Software. 2012 Jun;49(5):1-15. PMID: WOS:000305990500001.
- 73. Comprehensive Meta Analysis. Version 3.3.070. Englewood, NJ; 2014.
- 74. Shepstone L; Fordham R; Lenaghan E; Harvey I; Cooper C; Gittoes N; Heawood A; Peters T; O'Neill T; Torgerson D; Holland R; Howe A; Marshall T; Kanis J; McCloskey E. A pragmatic randomised controlled trial of the effectiveness and cost-effectiveness of screening older women for the prevention of fractures: rationale, design and methods for the SCOOP study. Osteoporos Int. 2012 Oct;23(10):2507-15. doi: 10.1007/s00198-011-1876-7 [doi]. PMID: 22314936.
- 75. Shepstone L; Lenaghan E; Clarke S; Fordham R; Gittoes N; Harvey I; Holland R; Howe A; Marshall T; McCloskey E; Peters T; Kanis JA; O'Neill TW; Torgerson D; Cooper C. A randomized controlled trial of screening in the community to reduce fractures in older women in the UK (the scoop study). Osteoporos Int; 2016. p. S42-s3.
- 76. Barr RJ; Stewart A; Torgerson DJ; Reid DM. Population screening for osteoporosis risk: a randomised control trial of medication use and fracture risk. Osteoporos Int. 2010 Apr;21(4):561-8. doi: 10.1007/s00198-009-1007-x [doi]. PMID: 19565176.
- 77. Kern LM; Powe NR; Levine MA; Fitzpatrick AL; Harris TB; Robbins J; Fried LP. Association between screening for osteoporosis and the incidence of hip fracture. Ann Intern Med. 2005 Feb 1;142(3):173-81. PMID: 15684205.
- Adler RA; Tran MT; Petkov VI. Performance of the Osteoporosis Self-assessment Screening Tool for osteoporosis in American men. Mayo Clin Proc. 2003 Jun;78(6):723-7. doi: 10.4065/78.6.723. PMID: 12934782.
- Ben Sedrine W; Devogelaer JP; Kaufman JM; Goemaere S; Depresseux G; Zegels B;
 Deroisy R; Reginster JY. Evaluation of the simple calculated osteoporosis risk estimation (SCORE) in a sample of white women from Belgium. Bone. 2001 Oct;29(4):374-80.
 PMID: 11595621.
- 80. Gourlay ML; Miller WC; Richy F; Garrett JM; Hanson LC; Reginster JY. Performance of osteoporosis risk assessment tools in postmenopausal women aged 45-64 years.

Osteoporos Int. 2005 Aug;16(8):921-7. doi: 10.1007/s00198-004-1775-2 [doi]. PMID: 16028108.

- Richy F; Gourlay M; Ross PD; Sen SS; Radican L; De Ceulaer F; Ben Sedrine W; Ethgen O; Bruyere O; Reginster JY. Validation and comparative evaluation of the osteoporosis self-assessment tool (OST) in a Caucasian population from Belgium. QJM. 2004 Jan;97(1):39-46. PMID: 14702510.
- 82. Brenneman SK; Lacroix AZ; Buist DS; Chen YT; Abbott TA, 3rd. Evaluation of decision rules to identify postmenopausal women for intervention related to osteoporosis. Dis Manag. 2003 Fall;6(3):159-68. doi: 10.1089/109350703322425509. PMID: 14570384.
- 83. Cadarette SM; Jaglal SB; Murray TM; McIsaac WJ; Joseph L; Brown JP. Evaluation of decision rules for referring women for bone densitometry by dual-energy x-ray absorptiometry. JAMA. 2001 Jul 4;286(1):57-63. doi: joc01835 [pii]. PMID: 11434827.
- 84. Cadarette SM; McIsaac WJ; Hawker GA; Jaakkimainen L; Culbert A; Zarifa G; Ola E; Jaglal SB. The validity of decision rules for selecting women with primary osteoporosis for bone mineral density testing. Osteoporos Int. 2004 May;15(5):361-6. doi: 10.1007/s00198-003-1552-7. PMID: 14730421.
- 85. Cass AR; Shepherd AJ; Carlson CA. Osteoporosis risk assessment and ethnicity: validation and comparison of 2 clinical risk stratification instruments. J Gen Intern Med. 2006 Jun;21(6):630-5. doi: 10.1111/j.1525-1497.2006.00459.x. PMID: 16808748.
- 86. Cass AR; Shepherd AJ. Validation of the Male Osteoporosis Risk Estimation Score (MORES) in a primary care setting. J Am Board Fam Med. 2013 Jul-Aug;26(4):436-44. doi: 10.3122/jabfm.2013.04.120182. PMID: 23833159.
- 87. Chan SP; Teo CC; Ng SA; Goh N; Tan C; Deurenberg-Yap M. Validation of various osteoporosis risk indices in elderly Chinese females in Singapore. Osteoporos Int. 2006;17(8):1182-8. doi: 10.1007/s00198-005-0051-4 [doi]. PMID: 16699739.
- Cook RB; Collins D; Tucker J; Zioupos P. Comparison of questionnaire and quantitative ultrasound techniques as screening tools for DXA. Osteoporos Int. 2005 Dec;16(12):1565-75. doi: 10.1007/s00198-005-1864-x [doi]. PMID: 15883661.
- 89. D'Amelio P; Tamone C; Pluviano F; Di Stefano M; Isaia G. Effects of lifestyle and risk factors on bone mineral density in a cohort of Italian women: suggestion for a new decision rule. Calcif Tissue Int. 2005 Aug;77(2):72-8. doi: 10.1007/s00223-004-0253-3. PMID: 16059776.
- 90. D'Amelio P; Spertino E; Martino F; Isaia GC. Prevalence of postmenopausal osteoporosis in Italy and validation of decision rules for referring women for bone densitometry. Calcif Tissue Int. 2013;92(5):437-43.
- 91. Geusens P; Hochberg MC; van der Voort DJ; Pols H; van der Klift M; Siris E; Melton ME; Turpin J; Byrnes C; Ross P. Performance of risk indices for identifying low bone density in postmenopausal women. Mayo Clin Proc. 2002 Jul;77(7):629-37. PMID: 12108600.
- 92. Gnudi S; Sitta E. Clinical risk factor evaluation to defer postmenopausal women from bone mineral density measurement: an Italian study. J Clin Densitom. 2005 Summer;8(2):199-205. PMID: 15908708.
- 93. Gourlay ML; Powers JM; Lui LY; Ensrud KE. Clinical performance of osteoporosis risk assessment tools in women aged 67 years and older. Osteoporos Int. 2008 Aug;19(8):1175-83. doi: 10.1007/s00198-007-0555-1. PMID: 18219434.

- 94. Harrison EJ; Adams JE. Application of a triage approach to peripheral bone densitometry reduces the requirement for central DXA but is not cost effective. Calcif Tissue Int. 2006 Oct;79(4):199-206. doi: 10.1007/s00223-005-0302-6. PMID: 16969598.
- 95. Jimenez-Nunez FG; Manrique-Arija S; Urena-Garnica I; Romero-Barco CM; Panero-Lamothe B; Descalzo MA; Carmona L; Rodriguez-Perez M; Fernandez-Nebro A. Reducing the need for central dual-energy X-ray absorptiometry in postmenopausal women: efficacy of a clinical algorithm including peripheral densitometry. Calcif Tissue Int. 2013 Jul;93(1):62-8. doi: 10.1007/s00223-013-9728-4 [doi]. PMID: 23608922.
- 96. Kung AW; Ho AY; Sedrine WB; Reginster JY; Ross PD. Comparison of a simple clinical risk index and quantitative bone ultrasound for identifying women at increased risk of osteoporosis. Osteoporos Int. 2003 Sep;14(9):716-21. doi: 10.1007/s00198-003-1428-x [doi]. PMID: 12897978.
- 97. Kung AW; Ho AY; Ross PD; Reginster JY. Development of a clinical assessment tool in identifying Asian men with low bone mineral density and comparison of its usefulness to quantitative bone ultrasound. Osteoporos Int. 2005 Jul;16(7):849-55. doi: 10.1007/s00198-004-1778-z [doi]. PMID: 15611839.
- 98. Lynn HS; Woo J; Leung PC; Barrett-Connor EL; Nevitt MC; Cauley JA; Adler RA; Orwoll ES. An evaluation of osteoporosis screening tools for the osteoporotic fractures in men (MrOS) study. Osteoporos Int. 2008 Jul;19(7):1087-92. doi: 10.1007/s00198-007-0553-3. PMID: 18239959.
- 99. Machado P; Coutinho M; da Silva JA. Selecting men for bone densitometry: performance of osteoporosis risk assessment tools in Portuguese men. Osteoporos Int. 2010 Jun;21(6):977-83. doi: 10.1007/s00198-009-1036-5 [doi]. PMID: 19727909.
- 100. Martinez-Aguila D; Gomez-Vaquero C; Rozadilla A; Romera M; Narvaez J; Nolla JM. Decision rules for selecting women for bone mineral density testing: application in postmenopausal women referred to a bone densitometry unit. J Rheumatol. 2007 Jun;34(6):1307-12. doi: 0315162X-34-1307 [pii]. PMID: 17552058.
- 101. Mauck KF; Cuddihy MT; Atkinson EJ; Melton LJ, 3rd. Use of clinical prediction rules in detecting osteoporosis in a population-based sample of postmenopausal women. Arch Intern Med. 2005 Mar 14;165(5):530-6. doi: 10.1001/archinte.165.5.530. PMID: 15767529.
- 102. McLeod KM; Johnson S; Rasali D; Verma A. Discriminatory performance of the calcaneal quantitative ultrasound and osteoporosis self-assessment tool to select older women for dual-energy x-ray absorptiometry. J Clin Densitom. 2015 Apr-Jun;18(2):157-64. doi: 10.1016/j.jocd.2015.02.006. PMID: 25937306.
- 103. Morin S; Tsang JF; Leslie WD. Weight and body mass index predict bone mineral density and fractures in women aged 40 to 59 years. Osteoporos Int. 2009 Mar;20(3):363-70. doi: 10.1007/s00198-008-0688-x [doi]. PMID: 18633665.
- 104. Nguyen TV; Center JR; Pocock NA; Eisman JA. Limited utility of clinical indices for the prediction of symptomatic fracture risk in postmenopausal women. Osteoporos Int. 2004 Jan;15(1):49-55. doi: 10.1007/s00198-003-1511-3. PMID: 14593453.
- 105. Oh SM; Nam BH; Rhee Y; Moon SH; Kim DY; Kang DR; Kim HC. Development and validation of osteoporosis risk-assessment model for Korean postmenopausal women. J Bone Miner Metab. 2013 Jul;31(4):423-32. doi: 10.1007/s00774-013-0426-0 [doi]. PMID: 23420298.

- 106. Oh SM; Song BM; Nam BH; Rhee Y; Moon SH; Kim DY; Kang DR; Kim HC. Development and Validation of Osteoporosis Risk-Assessment Model for Korean Men. Yonsei Med J. 2016 Jan;57(1):187-96. doi: 201601187 [pii]
- 10.3349/ymj.2016.57.1.187 [doi]. PMID: 26632400.
- 107. Park HM; Sedrine WB; Reginster JY; Ross PD. Korean experience with the OSTA risk index for osteoporosis: a validation study. J Clin Densitom. 2003 Fall;6(3):247-50. doi: JCD:6:3:247 [pii]. PMID: 14514994.
- 108. Richards JS; Lazzari AA; Teves Qualler DA; Desale S; Howard R; Kerr GS. Validation of the osteoporosis self-assessment tool in US male veterans. J Clin Densitom. 2014;17(1):32-7.
- 109. Rud B; Jensen JE; Mosekilde L; Nielsen SP; Hilden J; Abrahamsen B. Performance of four clinical screening tools to select peri- and early postmenopausal women for dual Xray absorptiometry. Osteoporos Int. 2005 Jul;16(7):764-72. doi: 10.1007/s00198-004-1748-5. PMID: 15986263.
- 110. Shepherd AJ; Cass AR; Carlson CA; Ray L. Development and internal validation of the male osteoporosis risk estimation score. Ann Fam Med. 2007 Nov-Dec;5(6):540-6. doi: 10.1370/afm.753. PMID: 18025492.
- Sinnott B; Kukreja S; Barengolts E. Utility of screening tools for the prediction of low bone mass in African American men. Osteoporos Int. 2006;17(5):684-92. doi: 10.1007/s00198-005-0034-5. PMID: 16523248.
- 112. Zimering MB; Shin JJ; Shah J; Wininger E; Engelhart C. Validation of a novel risk estimation tool for predicting low bone density in Caucasian and African American men veterans. J Clin Densitom. 2007 Jul-Sep;10(3):289-97. doi: 10.1016/j.jocd.2007.03.001. PMID: 17459748.
- 113. Shepherd AJ; Cass AR; Ray L. Determining risk of vertebral osteoporosis in men: validation of the male osteoporosis risk estimation score. J Am Board Fam Med. 2010 Mar-Apr;23(2):186-94. doi: 10.3122/jabfm.2010.02.090027. PMID: 20207929.
- 114. Boonen S; Nijs J; Borghs H; Peeters H; Vanderschueren D; Luyten FP. Identifying postmenopausal women with osteoporosis by calcaneal ultrasound, metacarpal digital Xray radiogrammetry and phalangeal radiographic absorptiometry: a comparative study. Osteoporos Int. 2005 Jan;16(1):93-100. doi: 10.1007/s00198-004-1660-z [doi]. PMID: 15197540.
- 115. Minnock E; Cook R; Collins D; Tucker J; Zioupos P. Using risk factors and quantitative ultrasound to identify postmenopausal caucasian women at risk of osteoporosis. J Clin Densitom. 2008 Oct-Dec;11(4):485-93. doi: 10.1016/j.jocd.2008.04.002. PMID: 18539491.
- 116. Richy F; Deceulaer F; Ethgen O; Bruyere O; Reginster JY. Development and validation of the ORACLE score to predict risk of osteoporosis. Mayo Clin Proc. 2004 Nov;79(11):1402-8. doi: 10.4065/79.11.1402. PMID: 15544019.
- 117. Nayak S; Edwards DL; Saleh AA; Greenspan SL. Performance of risk assessment instruments for predicting osteoporotic fracture risk: a systematic review. Osteoporos Int. 2014 Jan;25(1):23-49. doi: 10.1007/s00198-013-2504-5. PMID: 24105431.
- 118. Nayak S; Olkin I; Liu H; Grabe M; Gould MK; Allen IE; Owens DK; Bravata DM. Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med. 2006 Jun 6;144(11):832-41. PMID: 16754925.

- Stewart A; Kumar V; Reid DM. Long-term fracture prediction by DXA and QUS: a 10year prospective study. J Bone Miner Res. 2006 Mar;21(3):413-8. doi: 10.1359/jbmr.051205. PMID: 16491289.
- 120. Bauer DC; Ewing SK; Cauley JA; Ensrud KE; Cummings SR; Orwoll ES. Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int. 2007 Jun;18(6):771-7. doi: 10.1007/s00198-006-0317-5 [doi]. PMID: 17273893.
- 121. Iki M; Tamaki J; Kadowaki E; Sato Y; Dongmei N; Winzenrieth R; Kagamimori S; Kagawa Y; Yoneshima H. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res. 2014 Feb;29(2):399-407. doi: 10.1002/jbmr.2048 [doi]. PMID: 23873699.
- 122. Hans D; Goertzen AL; Krieg MA; Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011 Nov;26(11):2762-9. doi: 10.1002/jbmr.499 [doi]. PMID: 21887701.
- 123. Leslie WD; Aubry-Rozier B; Lamy O; Hans D. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013 Feb;98(2):602-9. doi: 10.1210/jc.2012-3118. PMID: 23341489.
- 124. Kwok T; Khoo CC; Leung J; Kwok A; Qin L; Woo J; Leung PC. Predictive values of calcaneal quantitative ultrasound and dual energy X ray absorptiometry for non-vertebral fracture in older men: results from the MrOS study (Hong Kong). Osteoporos Int. 2012 Mar;23(3):1001-6. doi: 10.1007/s00198-011-1634-x [doi]. PMID: 21528361.
- 125. Chan MY; Nguyen ND; Center JR; Eisman JA; Nguyen TV. Absolute fracture-risk prediction by a combination of calcaneal quantitative ultrasound and bone mineral density. Calcif Tissue Int. 2012 Feb;90(2):128-36. doi: 10.1007/s00223-011-9556-3 [doi]. PMID: 22179560.
- 126. Nguyen TV; Center JR; Eisman JA. Bone mineral density-independent association of quantitative ultrasound measurements and fracture risk in women. Osteoporos Int. 2004 Dec;15(12):942-7. doi: 10.1007/s00198-004-1717-z [doi]. PMID: 15309384.
- 127. Tanaka S; Kuroda T; Saito M; Shiraki M. Urinary pentosidine improves risk classification using fracture risk assessment tools for postmenopausal women. J Bone Miner Res. 2011 Nov;26(11):2778-84. doi: 10.1002/jbmr.467 [doi]. PMID: 21773990.
- 128. Sund R; Honkanen R; Johansson H; Oden A; McCloskey E; Kanis J; Kroger H. Evaluation of the FRAX model for hip fracture predictions in the population-based Kuopio Osteoporosis Risk Factor and Prevention Study (OSTPRE). Calcif Tissue Int. 2014 Jul;95(1):39-45. doi: 10.1007/s00223-014-9860-9 [doi]. PMID: 24792689.
- 129. Bolland MJ; Siu AT; Mason BH; Horne AM; Ames RW; Grey AB; Gamble GD; Reid IR. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res. 2011 Feb;26(2):420-7. doi: 10.1002/jbmr.215. PMID: 20721930.
- 130. Sornay-Rendu E; Munoz F; Delmas PD; Chapurlat RD. The FRAX tool in French women: How well does it describe the real incidence of fracture in the OFELY cohort? J Bone Miner Res. 2010 Oct;25(10):2101-7. doi: 10.1002/jbmr.106. PMID: 20499352.
- Henry MJ; Pasco JA; Sanders KM; Nicholson GC; Kotowicz MA. Fracture Risk (FRISK) Score: Geelong Osteoporosis Study. Radiology. 2006 Oct;241(1):190-6. doi: 10.1148/radiol.2411051290. PMID: 16928979.
- 132. Tremollieres FA; Pouilles JM; Drewniak N; Laparra J; Ribot CA; Dargent-Molina P. Fracture risk prediction using BMD and clinical risk factors in early postmenopausal

women: sensitivity of the WHO FRAX tool. J Bone Miner Res. 2010 May;25(5):1002-9. doi: 10.1002/jbmr.12. PMID: 20200927.

- Leslie WD; Lix LM; Johansson H; Oden A; McCloskey E; Kanis JA. Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J Bone Miner Res. 2010 Nov;25(11):2350-8. doi: 10.1002/jbmr.123 [doi]. PMID: 20499367.
- 134. Friis-Holmberg T; Rubin KH; Brixen K; Tolstrup JS; Bech M. Fracture risk prediction using phalangeal bone mineral density or FRAX((R))?-A Danish cohort study on men and women. J Clin Densitom. 2014 Jan-Mar;17(1):7-15. doi: 10.1016/j.jocd.2013.03.014. PMID: 23623379.
- 135. Tebe Cordomi C; Del Rio LM; Di Gregorio S; Casas L; Estrada MD; Kotzeva A; Espallargues M. Validation of the FRAX predictive model for major osteoporotic fracture in a historical cohort of Spanish women. J Clin Densitom. 2013 Apr-Jun;16(2):231-7. doi: 10.1016/j.jocd.2012.05.007. PMID: 22748778.
- 136. Cheung EY; Bow CH; Cheung CL; Soong C; Yeung S; Loong C; Kung A. Discriminative value of FRAX for fracture prediction in a cohort of Chinese postmenopausal women. Osteoporos Int. 2012 Mar;23(3):871-8. doi: 10.1007/s00198-011-1647-5 [doi]. PMID: 21562875.
- 137. Tamaki J; Iki M; Kadowaki E; Sato Y; Kajita E; Kagamimori S; Kagawa Y; Yoneshima H. Fracture risk prediction using FRAX(R): a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2011 Dec;22(12):3037-45. doi: 10.1007/s00198-011-1537-x [doi]. PMID: 21279504.
- 138. Ensrud KE; Lui LY; Taylor BC; Schousboe JT; Donaldson MG; Fink HA; Cauley JA; Hillier TA; Browner WS; Cummings SR. A comparison of prediction models for fractures in older women: is more better? Arch Intern Med. 2009 Dec 14;169(22):2087-94. doi: 10.1001/archinternmed.2009.404. PMID: 20008691.
- 139. Fraser LA; Langsetmo L; Berger C; Ioannidis G; Goltzman D; Adachi JD; Papaioannou A; Josse R; Kovacs CS; Olszynski WP; Towheed T; Hanley DA; Kaiser SM; Prior J; Jamal S; Kreiger N; Brown JP; Johansson H; Oden A; McCloskey E; Kanis JA; Leslie WD. Fracture prediction and calibration of a Canadian FRAX(R) tool: a population-based report from CaMos. Osteoporos Int. 2011 Mar;22(3):829-37. doi: 10.1007/s00198-010-1465-1 [doi]. PMID: 21161508.
- 140. Tanaka S; Yoshimura N; Kuroda T; Hosoi T; Saito M; Shiraki M. The Fracture and Immobilization Score (FRISC) for risk assessment of osteoporotic fracture and immobilization in postmenopausal women--A joint analysis of the Nagano, Miyama, and Taiji Cohorts. Bone. 2010 Dec;47(6):1064-70. doi: 10.1016/j.bone.2010.08.019. PMID: 20832514.
- 141. Lundin H; Torabi F; Saaf M; Strender LE; Nyren S; Johansson SE; Salminen H. Laser-Supported Dual Energy X-Ray Absorptiometry (DXL) Compared to Conventional Absorptiometry (DXA) and to FRAX as Tools for Fracture Risk Assessments. PLoS One. 2015;10(9):e0137535. doi: 10.1371/journal.pone.0137535 [doi]
- PONE-D-15-23375 [pii]. PMID: 26413715.
- 142. Kalvesten J; Lui LY; Brismar T; Cummings S. Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX. Bone; 2016. p. 30-5.

- 143. Miller PD; Siris ES; Barrett-Connor E; Faulkner KG; Wehren LE; Abbott TA; Chen YT; Berger ML; Santora AC; Sherwood LM. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res. 2002 Dec;17(12):2222-30. doi: 10.1359/jbmr.2002.17.12.2222 [doi]. PMID: 12469916.
- 144. Marques A; Ferreira RJ; Santos E; Loza E; Carmona L; da Silva JA. The accuracy of osteoporotic fracture risk prediction tools: a systematic review and meta-analysis. Ann Rheum Dis. 2015 Nov;74(11):1958-67. doi: 10.1136/annrheumdis-2015-207907. PMID: 26248637.
- 145. Rubin KH; Friis-Holmberg T; Hermann AP; Abrahamsen B; Brixen K. Risk assessment tools to identify women with increased risk of osteoporotic fracture: complexity or simplicity? A systematic review. J Bone Miner Res. 2013 Aug;28(8):1701-17. doi: 10.1002/jbmr.1956. PMID: 23592255.
- 146. Steurer J; Haller C; Hauselmann H; Brunner F; Bachmann LM. Clinical value of prognostic instruments to identify patients with an increased risk for osteoporotic fractures: systematic review. PLoS One. 2011;6(5):e19994. doi: 10.1371/journal.pone.0019994. PMID: 21625596.
- 147. Crandall CJ. Risk Assessment Tools for Osteoporosis Screening in Postmenopausal Women: A Systematic Review. Curr Osteoporos Rep. 2015 Oct;13(5):287-301. doi: 10.1007/s11914-015-0282-z. PMID: 26233285.
- 148. Leslie WD; Morin S; Lix LM; Johansson H; Oden A; McCloskey E; Kanis JA. Fracture risk assessment without bone density measurement in routine clinical practice. Osteoporos Int. 2012 Jan;23(1):75-85. doi: 10.1007/s00198-011-1747-2 [doi]. PMID: 21850546.
- 149. van Geel TA; Eisman JA; Geusens PP; van den Bergh JP; Center JR; Dinant GJ. The utility of absolute risk prediction using FRAX(R) and Garvan Fracture Risk Calculator in daily practice. Maturitas. 2014 Feb;77(2):174-9. doi: 10.1016/j.maturitas.2013.10.021. PMID: 24287178.
- 150. Azagra R; Roca G; Encabo G; Aguye A; Zwart M; Guell S; Puchol N; Gene E; Casado E; Sancho P; Sola S; Toran P; Iglesias M; Gisbert MC; Lopez-Exposito F; Pujol-Salud J; Fernandez-Hermida Y; Puente A; Rosas M; Bou V; Anton JJ; Lansdberg G; Martin-Sanchez JC; Diez-Perez A; Prieto-Alhambra D. FRAX(R) tool, the WHO algorithm to predict osteoporotic fractures: the first analysis of its discriminative and predictive ability in the Spanish FRIDEX cohort. BMC Musculoskelet Disord. 2012;13:204. doi: 10.1186/1471-2474-13-204. PMID: 23088223.
- Henry MJ; Pasco JA; Merriman EN; Zhang Y; Sanders KM; Kotowicz MA; Nicholson GC. Fracture risk score and absolute risk of fracture. Radiology. 2011 May;259(2):495-501. doi: 10.1148/radiol.10101406. PMID: 21292868.
- 152. Leslie WD; Lix LM; Johansson H; Oden A; McCloskey E; Kanis JA. A comparative study of using non-hip bone density inputs with FRAX(R). Osteoporos Int. 2012 Mar;23(3):853-60. doi: 10.1007/s00198-011-1814-8 [doi]. PMID: 22008881.
- 153. Rubin KH; Abrahamsen B; Friis-Holmberg T; Hjelmborg JV; Bech M; Hermann AP; Barkmann R; Gluer CC; Brixen K. Comparison of different screening tools (FRAX(R), OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study. Bone. 2013 Sep;56(1):16-22. doi: 10.1016/j.bone.2013.05.002. PMID: 23669650.

- 154. Ahmed LA; Nguyen ND; Bjornerem A; Joakimsen RM; Jorgensen L; Stormer J; Bliuc D; Center JR; Eisman JA; Nguyen TV; Emaus N. External validation of the Garvan nomograms for predicting absolute fracture risk: the Tromso study. PLoS One. 2014;9(9):e107695. doi: 10.1371/journal.pone.0107695. PMID: 25255221.
- 155. Hippisley-Cox J; Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ. 2012;344:e3427. PMID: 22619194.
- Leslie WD; Lix LM. Simplified 10-year absolute fracture risk assessment: a comparison of men and women. J Clin Densitom. 2010 Apr-Jun;13(2):141-6. doi: 10.1016/j.jocd.2010.02.002. PMID: 20435264.
- 157. Iki M; Fujita Y; Tamaki J; Kouda K; Yura A; Sato Y; Moon JS; Winzenrieth R; Okamoto N; Kurumatani N. Trabecular bone score may improve FRAX(R) prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study. Osteoporos Int. 2015 Jun;26(6):1841-8. doi: 10.1007/s00198-015-3092-3 [doi]

10.1007/s00198-015-3092-3 [pii]. PMID: 25752623.

- 158. Ahmed LA; Schirmer H; Fonnebo V; Joakimsen RM; Berntsen GK. Validation of the Cummings' risk score; how well does it identify women with high risk of hip fracture: the Tromso Study. Eur J Epidemiol. 2006;21(11):815-22. doi: 10.1007/s10654-006-9072-3. PMID: 17119878.
- 159. Albertsson D; Mellstrom D; Petersson C; Thulesius H; Eggertsen R. Hip and fragility fracture prediction by 4-item clinical risk score and mobile heel BMD: a women cohort study. BMC Musculoskelet Disord. 2010;11:55. doi: 10.1186/1471-2474-11-55. PMID: 20334634.
- 160. Albertsson DM; Mellstrom D; Petersson C; Eggertsen R. Validation of a 4-item score predicting hip fracture and mortality risk among elderly women. Ann Fam Med. 2007 Jan-Feb;5(1):48-56. doi: 10.1370/afm.602. PMID: 17261864.
- 161. van Staa TP; Geusens P; Kanis JA; Leufkens HG; Gehlbach S; Cooper C. A simple clinical score for estimating the long-term risk of fracture in post-menopausal women. QJM. 2006 Oct;99(10):673-82. doi: 10.1093/qjmed/hcl094. PMID: 16998210.
- Leslie WD; Tsang JF; Lix LM. Simplified system for absolute fracture risk assessment: clinical validation in Canadian women. J Bone Miner Res. 2009 Feb;24(2):353-60. doi: 10.1359/jbmr.081012 [doi]. PMID: 19514851.
- 163. Nguyen ND; Frost SA; Center JR; Eisman JA; Nguyen TV. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008 Oct;19(10):1431-44. doi: 10.1007/s00198-008-0588-0. PMID: 18324342.
- 164. Cummins NM; Poku EK; Towler MR; O'Driscoll OM; Ralston SH. clinical risk factors for osteoporosis in Ireland and the UK: a comparison of FRAX and QFractureScores. Calcif Tissue Int. 2011 Aug;89(2):172-7. doi: 10.1007/s00223-011-9504-2 [doi]. PMID: 21647704.
- 165. Wei GS; Jackson JL. Postmenopausal bone density referral decision rules: correlation with clinical fractures. Mil Med. 2004 Dec;169(12):1000-4. PMID: 15646195.
- 166. Sandhu SK; Nguyen ND; Center JR; Pocock NA; Eisman JA; Nguyen TV. Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporos Int. 2010 May;21(5):863-71. doi: 10.1007/s00198-009-1026-7. PMID: 19633880.

- Colon-Emeric CS; Pieper CF; Artz MB. Can historical and functional risk factors be used to predict fractures in community-dwelling older adults? development and validation of a clinical tool. Osteoporos Int. 2002 Dec;13(12):955-61. doi: 10.1007/s001980200133
 [doi]. PMID: 12459938.
- 168. Black DM; Steinbuch M; Palermo L; Dargent-Molina P; Lindsay R; Hoseyni MS; Johnell O. An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int. 2001;12(7):519-28. doi: 10.1007/s001980170072 [doi]. PMID: 11527048.
- 169. Girman CJ; Chandler JM; Zimmerman SI; Martin AR; Hawkes W; Hebel JR; Sloane PD; Magaziner J. Prediction of fracture in nursing home residents. J Am Geriatr Soc. 2002 Aug;50(8):1341-7. PMID: 12164989.
- 170. Langsetmo L; Nguyen TV; Nguyen ND; Kovacs CS; Prior JC; Center JR; Morin S; Josse RG; Adachi JD; Hanley DA; Eisman JA. Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture. CMAJ. 2011 Feb 8;183(2):E107-14. doi: 10.1503/cmaj.100458. PMID: 21173069.
- Hippisley-Cox J; Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ. 2009;339:b4229. PMID: 19926696.
- 172. Robbins J; Aragaki AK; Kooperberg C; Watts N; Wactawski-Wende J; Jackson RD; LeBoff MS; Lewis CE; Chen Z; Stefanick ML; Cauley J. Factors associated with 5-year risk of hip fracture in postmenopausal women. JAMA. 2007 Nov 28;298(20):2389-98. doi: 10.1001/jama.298.20.2389. PMID: 18042916.
- 173. Koh LKH; Ben Sedrine W; Torralba TP; Kung A; Fujiwara S; Chan SP; Huang QR; Rajatanavin R; Tsai KS; Park HM; Reginster JY; OSTA Research Group. A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos Int. 2001;12(8):699-705. doi: DOI 10.1007/s001980170070. PMID: WOS:000171206900011.
- 174. Lydick E; Cook K; Turpin J; Melton M; Stine R; Byrnes C. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care. 1998 Jan;4(1):37-48. PMID: 10179905.
- 175. Ettinger B; Hillier TA; Pressman A; Che M; Hanley DA. Simple computer model for calculating and reporting 5-year osteoporotic fracture risk in postmenopausal women. J Womens Health (Larchmt). 2005 Mar;14(2):159-71. doi: 10.1089/jwh.2005.14.159 [doi]. PMID: 15775734.
- 176. Cadarette SM; Jaglal SB; Kreiger N; McIsaac WJ; Darlington GA; Tu JV. Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. CMAJ. 2000 May 2;162(9):1289-94. PMID: 10813010.
- 177. Sedrine WB; Chevallier T; Zegels B; Kvasz A; Micheletti MC; Gelas B; Reginster JY. Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry. Gynecol Endocrinol. 2002 Jun;16(3):245-50. doi: 10.1080/gye.16.3.245.250. PMID: 12192897.
- Lo JC; Pressman AR; Chandra M; Ettinger B. Fracture risk tool validation in an integrated healthcare delivery system. Am J Manag Care. 2011 Mar;17(3):188-94. doi: 48148 [pii]. PMID: 21504255.
- 179. Hundrup YA; Jacobsen RK; Andreasen AH; Davidsen M; Obel EB; Abrahamsen B. Validation of a 5-year risk score of hip fracture in postmenopausal women. The Danish

Nurse Cohort Study. Osteoporos Int. 2010 Dec;21(12):2135-42. doi: 10.1007/s00198-010-1176-7 [doi]. PMID: 20157806.

- 180. Siminoski K; Leslie WD; Frame H; Hodsman A; Josse RG; Khan A; Lentle BC; Levesque J; Lyons DJ; Tarulli G; Brown JP. Recommendations for bone mineral density reporting in Canada: a shift to absolute fracture risk assessment. J Clin Densitom. 2007 Apr-Jun;10(2):120-3. doi: 10.1016/j.jocd.2007.01.001. PMID: 17485028.
- 181. Azagra R; Roca G; Encabo G; Prieto D; Aguye A; Zwart M; Guell S; Puchol N; Gene E; Casado E; Sancho P; Sola S; Toran P; Iglesias M; Sabate V; Lopez-Exposito F; Ortiz S; Fernandez Y; Diez-Perez A. Prediction of absolute risk of fragility fracture at 10 years in a Spanish population: validation of the WHO FRAX tool in Spain. BMC Musculoskelet Disord. 2011;12:30. doi: 10.1186/1471-2474-12-30. PMID: 21272372.
- 182. Azagra R; Roca G; Martin-Sanchez JC; Casado E; Encabo G; Zwart M; Aguye A; Diez-Perez A. [FRAX(R) thresholds to identify people with high or low risk of osteoporotic fracture in Spanish female population]. Med Clin (Barc). 2015 Jan 6;144(1):1-8. doi: 10.1016/j.medcli.2013.11.014. PMID: 24461732.
- 183. Leslie WD; Brennan SL; Lix LM; Johansson H; Oden A; McCloskey E; Kanis JA. Direct comparison of eight national FRAX(registered trademark) tools for fracture prediction and treatment qualification in Canadian women. Arch Osteoporos. 2013;8(1-2).
- 184. Gonzalez-Macias J; Marin F; Vila J; Diez-Perez A. Probability of fractures predicted by FRAX(R) and observed incidence in the Spanish ECOSAP Study cohort. Bone. 2012 Jan;50(1):373-7. doi: 10.1016/j.bone.2011.11.006. PMID: 22129640.
- 185. Premaor M; Parker RA; Cummings S; Ensrud K; Cauley JA; Lui LY; Hillier T; Compston J. Predictive value of FRAX for fracture in obese older women. J Bone Miner Res. 2013 Jan;28(1):188-95. doi: 10.1002/jbmr.1729 [doi]. PMID: 22890977.
- 186. Borens O; Kloen P; Richmond J; Warren RF; Helfet DL. Complex open trauma of the shoulder: a case report. Am J Orthop (Belle Mead NJ). 2004 Mar;33(3):149-52. PMID: 15074463.
- 187. Pressman AR; Lo JC; Chandra M; Ettinger B. Methods for assessing fracture risk prediction models: experience with FRAX in a large integrated health care delivery system. J Clin Densitom. 2011 Oct-Dec;14(4):407-15. doi: 10.1016/j.jocd.2011.06.006. PMID: 21958955.
- 188. Leslie WD; Lix LM; Johansson H; Oden A; McCloskey E; Kanis JA. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos Int. 2011 Mar;22(3):839-47. doi: 10.1007/s00198-010-1461-5 [doi]. PMID: 20959961.
- 189. Leslie WD; Lix LM. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system. J Bone Miner Res. 2011 Mar;26(3):460-7. doi: 10.1002/jbmr.248 [doi]. PMID: 20839285.
- 190. Ettinger B; Liu H; Blackwell T; Hoffman AR; Ensrud KE; Orwoll ES. Validation of FRC, a fracture risk assessment tool, in a cohort of older men: the Osteoporotic Fractures in Men (MrOS) Study. J Clin Densitom. 2012 Jul-Sep;15(3):334-42. doi: 10.1016/j.jocd.2012.01.011. PMID: 22445858.
- 191. Chan MY; Nguyen ND; Center JR; Eisman JA; Nguyen TV. Quantitative ultrasound and fracture risk prediction in non-osteoporotic men and women as defined by WHO criteria. Osteoporos Int. 2013 Mar;24(3):1015-22. doi: 10.1007/s00198-012-2001-2 [doi]. PMID: 22878531.

- 192. Leening MJ; Vedder MM; Witteman JC; Pencina MJ; Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician's guide. Ann Intern Med. 2014 Jan 21;160(2):122-31. doi: 10.7326/M13-1522. PMID: 24592497.
- 193. Chen CK; Chang HT; Chou HP; Lee MH; Chen YC; Huang YC; Chen TJ; Chang HL; Shih CC. Alendronate and risk of lower limb ischemic vascular events: a populationbased cohort study. Osteoporos Int. 2014 Feb;25(2):673-80. doi: 10.1007/s00198-013-2478-3 [doi]. PMID: 23943167.
- 194. Hillier TA; Stone KL; Bauer DC; Rizzo JH; Pedula KL; Cauley JA; Ensrud KE; Hochberg MC; Cummings SR. Evaluating the value of repeat bone mineral density measurement and prediction of fractures in older women: the study of osteoporotic fractures. Arch Intern Med. 2007 Jan 22;167(2):155-60. doi: 10.1001/archinte.167.2.155. PMID: 17242316.
- 195. Berry SD; Samelson EJ; Pencina MJ; McLean RR; Cupples LA; Broe KE; Kiel DP. Repeat bone mineral density screening and prediction of hip and major osteoporotic fracture. JAMA. 2013 Sep 25;310(12):1256-62. doi: 10.1001/jama.2013.277817. PMID: 24065012.
- 196. Gourlay ML; Fine JP; Preisser JS; May RC; Li C; Lui LY; Ransohoff DF; Cauley JA; Ensrud KE. Bone-density testing interval and transition to osteoporosis in older women. N Engl J Med. 2012 Jan 19;366(3):225-33. doi: 10.1056/NEJMoa1107142 [doi]. PMID: 22256806.
- 197. Frost SA; Nguyen ND; Center JR; Eisman JA; Nguyen TV. Timing of repeat BMD measurements: development of an absolute risk-based prognostic model. J Bone Miner Res. 2009 Nov;24(11):1800-7. doi: 10.1359/jbmr.090514. PMID: 19419321.
- 198. Gourlay ML; Overman RA; Fine JP; Ensrud KE; Crandall CJ; Gass ML; Robbins J; Johnson KC; LeBlanc ES; Womack CR; Schousboe JT; LaCroix AZ. Baseline age and time to major fracture in younger postmenopausal women. Menopause. 2015 Jun;22(6):589-97. doi: 10.1097/GME.000000000000356 [doi]. PMID: 25349960.
- 199. Liberman UA; Weiss SR; Broll J; Minne HW; Quan H; Bell NH; Rodriguez-Portales J; Downs RW, Jr.; Dequeker J; Favus M. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med. 1995 Nov 30;333(22):1437-43. doi: 10.1056/nejm199511303332201. PMID: 7477143.
- 200. Cummings SR; Black DM; Thompson DE; Applegate WB; Barrett-Connor E; Musliner TA; Palermo L; Prineas R; Rubin SM; Scott JC; Vogt T; Wallace R; Yates AJ; LaCroix AZ. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998 Dec 23-30;280(24):2077-82. PMID: 9875874.
- 201. Pols HA; Felsenberg D; Hanley DA; Stepan J; Munoz-Torres M; Wilkin TJ; Qin-sheng G; Galich AM; Vandormael K; Yates AJ; Stych B. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int. 1999;9(5):461-8. PMID: 10550467.
- 202. Hosking D; Adami S; Felsenberg D; Andia JC; Valimaki M; Benhamou L; Reginster JY; Yacik C; Rybak-Feglin A; Petruschke RA; Zaru L; Santora AC. Comparison of change in bone resorption and bone mineral density with once-weekly alendronate and daily

risedronate: a randomised, placebo-controlled study. Curr Med Res Opin. 2003;19(5):383-94. doi: 10.1185/030079903125002009. PMID: 13678475.

- 203. Chesnut CH, 3rd; McClung MR; Ensrud KE; Bell NH; Genant HK; Harris ST; Singer FR; Stock JL; Yood RA; Delmas PD; et al. Alendronate treatment of the postmenopausal osteoporotic woman: effect of multiple dosages on bone mass and bone remodeling. Am J Med. 1995 Aug;99(2):144-52. PMID: 7625419.
- 204. Ascott-Evans BH; Guanabens N; Kivinen S; Stuckey BG; Magaril CH; Vandormael K; Stych B; Melton ME. Alendronate prevents loss of bone density associated with discontinuation of hormone replacement therapy: a randomized controlled trial. Arch Intern Med. 2003 Apr 14;163(7):789-94. doi: 10.1001/archinte.163.7.789. PMID: 12695269.
- 205. Quandt SA; Thompson DE; Schneider DL; Nevitt MC; Black DM. Effect of alendronate on vertebral fracture risk in women with bone mineral density T scores of-1.6 to -2.5 at the femoral neck: the Fracture Intervention Trial. Mayo Clin Proc. 2005 Mar;80(3):343-9. PMID: 15757015.
- 206. Black DM; Cummings SR; Karpf DB; Cauley JA; Thompson DE; Nevitt MC; Bauer DC; Genant HK; Haskell WL; Marcus R; Ott SM; Torner JC; Quandt SA; Reiss TF; Ensrud KE. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996 Dec 7;348(9041):1535-41. PMID: 8950879.
- 207. Dursun N; Dursun E; Yalcin S. Comparison of alendronate, calcitonin and calcium treatments in postmenopausal osteoporosis. Int J Clin Pract. 2001 Oct;55(8):505-9. PMID: 11695068.
- 208. Cummings SR. Prevention of hip fractures in older women: a population-based perspective. Osteoporos Int. 1998;8 Suppl 1:S8-12. PMID: 9682790.
- 209. McClung MR; Lewiecki EM; Cohen SB; Bolognese MA; Woodson GC; Moffett AH; Peacock M; Miller PD; Lederman SN; Chesnut CH; Lain D; Kivitz AJ; Holloway DL; Zhang C; Peterson MC; Bekker PJ. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006 Feb 23;354(8):821-31. doi: 10.1056/NEJMoa044459. PMID: 16495394.
- 210. Zein CO; Jorgensen RA; Clarke B; Wenger DE; Keach JC; Angulo P; Lindor KD. Alendronate improves bone mineral density in primary biliary cirrhosis: a randomized placebo-controlled trial. Hepatology. 2005 Oct;42(4):762-71. doi: 10.1002/hep.20866. PMID: 16175618.
- 211. de Nijs RN; Jacobs JW; Lems WF; Laan RF; Algra A; Huisman AM; Buskens E; de Laet CE; Oostveen AC; Geusens PP; Bruyn GA; Dijkmans BA; Bijlsma JW. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med. 2006 Aug 17;355(7):675-84. doi: 10.1056/NEJMoa053569. PMID: 16914703.
- 212. Ringe JD; Farahmand P; Schacht E; Rozehnal A. Superiority of a combined treatment of Alendronate and Alfacalcidol compared to the combination of Alendronate and plain vitamin D or Alfacalcidol alone in established postmenopausal or male osteoporosis (AAC-Trial). Rheumatol Int. 2007 Mar;27(5):425-34. doi: 10.1007/s00296-006-0288-z. PMID: 17216477.
- 213. Sato Y; Iwamoto J; Kanoko T; Satoh K. Alendronate and vitamin D2 for prevention of hip fracture in Parkinson's disease: a randomized controlled trial. Mov Disord. 2006 Jul;21(7):924-9. doi: 10.1002/mds.20825. PMID: 16538619.

- 214. Papaioannou A; Kennedy CC; Freitag A; Ioannidis G; O'Neill J; Webber C; Pui M; Berthiaume Y; Rabin HR; Paterson N; Jeanneret A; Matouk E; Villeneuve J; Nixon M; Adachi JD. Alendronate once weekly for the prevention and treatment of bone loss in Canadian adult cystic fibrosis patients (CFOS trial). Chest. 2008 Oct;134(4):794-800. doi: 10.1378/chest.08-0608. PMID: 18641106.
- 215. Hosking D; Chilvers CE; Christiansen C; Ravn P; Wasnich R; Ross P; McClung M; Balske A; Thompson D; Daley M; Yates AJ. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. Early Postmenopausal Intervention Cohort Study Group. N Engl J Med. 1998 Feb 19;338(8):485-92. doi: 10.1056/nejm199802193380801. PMID: 9443925.
- 216. Bone HG; Greenspan SL; McKeever C; Bell N; Davidson M; Downs RW; Emkey R; Meunier PJ; Miller SS; Mulloy AL; Recker RR; Weiss SR; Heyden N; Musliner T; Suryawanshi S; Yates AJ; Lombardi A. Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocrinol Metab. 2000 Feb;85(2):720-6. doi: 10.1210/jcem.85.2.6393. PMID: 10690882.
- 217. Reid IR; Brown JP; Burckhardt P; Horowitz Z; Richardson P; Trechsel U; Widmer A; Devogelaer JP; Kaufman JM; Jaeger P; Body JJ; Brandi ML; Broell J; Di Micco R; Genazzani AR; Felsenberg D; Happ J; Hooper MJ; Ittner J; Leb G; Mallmin H; Murray T; Ortolani S; Rubinacci A; Saaf M; Samsioe G; Verbruggen L; Meunier PJ. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med. 2002 Feb 28;346(9):653-61. doi: 10.1056/NEJMoa011807. PMID: 11870242.
- 218. Boonen S; Reginster JY; Kaufman JM; Lippuner K; Zanchetta J; Langdahl B; Rizzoli R; Lipschitz S; Dimai HP; Witvrouw R; Eriksen E; Brixen K; Russo L; Claessens F; Papanastasiou P; Antunez O; Su G; Bucci-Rechtweg C; Hruska J; Incera E; Vanderschueren D; Orwoll E. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012 Nov;367(18):1714-23. doi: 10.1056/NEJMoa1204061. PMID: 23113482.
- 219. Black DM; Delmas PD; Eastell R; Reid IR; Boonen S; Cauley JA; Cosman F; Lakatos P; Leung PC; Man Z; Mautalen C; Mesenbrink P; Hu H; Caminis J; Tong K; Rosario-Jansen T; Krasnow J; Hue TF; Sellmeyer D; Eriksen EF; Cummings SR. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007 May 3;356(18):1809-22. doi: 10.1056/NEJMoa067312. PMID: 17476007.
- 220. Lyles KW; Colon-Emeric CS; Magaziner JS; Adachi JD; Pieper CF; Mautalen C; Hyldstrup L; Recknor C; Nordsletten L; Moore KA; Lavecchia C; Zhang J; Mesenbrink P; Hodgson PK; Abrams K; Orloff JJ; Horowitz Z; Eriksen EF; Boonen S. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007 Nov 1;357(18):1799-809. doi: 10.1056/NEJMoa074941. PMID: 17878149.
- 221. Crandall CJ; Newberry SJ; Diamant A; Lim Y; Gellad WF; Suttorp MJ; Motala A; Ewing B; Roth B; Shanman R; Timmer M; Shekelle P. Treatment To Prevent Fractures in Men and Women With Low Bone Density or Osteoporosis: Update of a 2007 Report Comparative Effectiveness Review No. 53. (Prepared by Southern California Evidence-based Practice Center under Contract No. HHSA-290-2007-10062-I.). AHRQ Publication No. 12-EHC023-EF. Rockville, MD: Agency for Healthcare Research and Quality; March 2012.
- 222. Chapman I; Greville H; Ebeling PR; King SJ; Kotsimbos T; Nugent P; Player R; Topliss DJ; Warner J; Wilson JW. Intravenous zoledronate improves bone density in adults with cystic fibrosis (CF). Clin Endocrinol (Oxf). 2009 Jun;70(6):838-46. doi: 10.1111/j.1365-2265.2008.03434.x. PMID: 18823395.
- 223. McClung MR; Geusens P; Miller PD; Zippel H; Bensen WG; Roux C; Adami S; Fogelman I; Diamond T; Eastell R; Meunier PJ; Reginster JY. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001 Feb 1;344(5):333-40. doi: 10.1056/nejm200102013440503. PMID: 11172164.
- 224. Mortensen L; Charles P; Bekker PJ; Digennaro J; Johnston CC, Jr. Risedronate increases bone mass in an early postmenopausal population: two years of treatment plus one year of follow-up. J Clin Endocrinol Metab. 1998 Feb;83(2):396-402. doi: 10.1210/jcem.83.2.4586. PMID: 9467547.
- 225. Valimaki MJ; Farrerons-Minguella J; Halse J; Kroger H; Maroni M; Mulder H; Munoz-Torres M; Saaf M; Snorre Ofjord E. Effects of risedronate 5 mg/d on bone mineral density and bone turnover markers in late-postmenopausal women with osteopenia: a multinational, 24-month, randomized, double-blind, placebo-controlled, parallel-group, phase III trial. Clin Ther. 2007 Sep;29(9):1937-49. doi: 10.1016/j.clinthera.2007.09.017. PMID: 18035193.
- 226. Fogelman I; Ribot C; Smith R; Ethgen D; Sod E; Reginster JY. Risedronate reverses bone loss in postmenopausal women with low bone mass: results from a multinational, double-blind, placebo-controlled trial. BMD-MN Study Group. J Clin Endocrinol Metab. 2000 May;85(5):1895-900. doi: 10.1210/jcem.85.5.6603. PMID: 10843171.
- 227. Hooper MJ; Ebeling PR; Roberts AP; Graham JJ; Nicholson GC; D'Emden M; Ernst TF; Wenderoth D. Risedronate prevents bone loss in early postmenopausal women: a prospective randomized, placebo-controlled trial. Climacteric. 2005 Sep;8(3):251-62. doi: 10.1080/13697130500118126. PMID: 16390757.
- 228. Herd RJ; Balena R; Blake GM; Ryan PJ; Fogelman I. The prevention of early postmenopausal bone loss by cyclical etidronate therapy: a 2-year, double-blind, placebo-controlled study. Am J Med. 1997 Aug;103(2):92-9. PMID: 9274891.
- 229. Meunier PJ; Confavreux E; Tupinon I; Hardouin C; Delmas PD; Balena R. Prevention of early postmenopausal bone loss with cyclical etidronate therapy (a double-blind, placebocontrolled study and 1-year follow-up). J Clin Endocrinol Metab. 1997 Sep;82(9):2784-91. doi: 10.1210/jcem.82.9.4073. PMID: 9284696.
- 230. Pouilles JM; Tremollieres F; Roux C; Sebert JL; Alexandre C; Goldberg D; Treves R; Khalifa P; Duntze P; Horlait S; Delmas P; Kuntz D. Effects of cyclical etidronate therapy on bone loss in early postmenopausal women who are not undergoing hormonal replacement therapy. Osteoporos Int. 1997;7(3):213-8. PMID: 9205633.
- 231. Ettinger B; Black DM; Mitlak BH; Knickerbocker RK; Nickelsen T; Genant HK; Christiansen C; Delmas PD; Zanchetta JR; Stakkestad J; Gluer CC; Krueger K; Cohen FJ; Eckert S; Ensrud KE; Avioli LV; Lips P; Cummings SR. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999 Aug 18;282(7):637-45. PMID: 10517716.
- 232. Delmas PD; Ensrud KE; Adachi JD; Harper KD; Sarkar S; Gennari C; Reginster JY; Pols HA; Recker RR; Harris ST; Wu W; Genant HK; Black DM; Eastell R. Efficacy of

raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab. 2002 Aug;87(8):3609-17. doi: 10.1210/jcem.87.8.8750. PMID: 12161484.

- 233. Barrett-Connor E; Mosca L; Collins P; Geiger MJ; Grady D; Kornitzer M; McNabb MA; Wenger NK. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med. 2006 Jul 13;355(2):125-37. doi: 10.1056/NEJMoa062462. PMID: 16837676.
- 234. Ensrud KE; Stock JL; Barrett-Connor E; Grady D; Mosca L; Khaw KT; Zhao Q; Agnusdei D; Cauley JA. Effects of raloxifene on fracture risk in postmenopausal women: the Raloxifene Use for the Heart Trial. J Bone Miner Res. 2008 Jan;23(1):112-20. doi: 10.1359/jbmr.070904. PMID: 17892376.
- 235. Gartlehner G; Patel S; Viswanathan M; Feltner C; Palmieri Weber R; Lee R; Mullican K; Boland E; Lux L; Lohr K. Menopausal Hormone Therapy for the Primary Prevention of Chronic Conditions (Prepared by the RTI International-University of North Carolina Evidence-based Practice Center under Contract No. HHSA-290-2012-00015-I.) Evidence Report. No. xxx. Rockville, MD: Agency for Healthcare Research and Quality; in press. http://www.ahrq.gov/clinic/epcix.htm.
- 236. Lewiecki EM; Miller PD; McClung MR; Cohen SB; Bolognese MA; Liu Y; Wang A; Siddhanti S; Fitzpatrick LA. Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res. 2007 Dec;22(12):1832-41. doi: 10.1359/jbmr.070809 [doi]. PMID: 17708711.
- 237. Bone HG; Bolognese MA; Yuen CK; Kendler DL; Wang H; Liu Y; San Martin J. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab. 2008 Jun;93(6):2149-57. doi: 10.1210/jc.2007-2814. PMID: 18381571.
- 238. Cummings SR; San Martin J; McClung MR; Siris ES; Eastell R; Reid IR; Delmas P; Zoog HB; Austin M; Wang A; Kutilek S; Adami S; Zanchetta J; Libanati C; Siddhanti S; Christiansen C. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009 Aug 20;361(8):756-65. doi: 10.1056/NEJMoa0809493. PMID: 19671655.
- 239. Orwoll ES; Scheele WH; Paul S; Adami S; Syversen U; Diez-Perez A; Kaufman JM; Clancy AD; Gaich GA. The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003 Jan;18(1):9-17. doi: 10.1359/jbmr.2003.18.1.9. PMID: 12510800.
- 240. Lasco A; Catalano A; Morabito N; Gaudio A; Basile G; Trifiletti A; Atteritano M. Adrenal effects of teriparatide in the treatment of severe postmenopausal osteoporosis. Osteoporos Int. 2011 Jan;22(1):299-303. doi: 10.1007/s00198-010-1222-5 [doi]. PMID: 20309523.
- 241. Sontag A; Wan X; Krege JH. Benefits and risks of raloxifene by vertebral fracture status. Curr Med Res Opin. 2010 Jan;26(1):71-6. doi: 10.1185/03007990903427082 [doi]. PMID: 19908937.
- 242. McClung MR; Boonen S; Torring O; Roux C; Rizzoli R; Bone HG; Benhamou CL; Lems WF; Minisola S; Halse J; Hoeck HC; Eastell R; Wang A; Siddhanti S; Cummings SR. Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res. 2012 Jan;27(1):211-8. doi: 10.1002/jbmr.536 [doi]. PMID: 21976367.

- 243. Boonen S; Adachi JD; Man Z; Cummings SR; Lippuner K; Torring O; Gallagher JC; Farrerons J; Wang A; Franchimont N; San Martin J; Grauer A; McClung M. Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab. 2011 Jun;96(6):1727-36. doi: 10.1210/jc.2010-2784. PMID: 21411557.
- 244. Johnell O; Scheele WH; Lu Y; Reginster JY; Need AG; Seeman E. Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002 Mar;87(3):985-92. doi: 10.1210/jcem.87.3.8325. PMID: 11889149.
- 245. Sorensen HT; Christensen S; Mehnert F; Pedersen L; Chapurlat RD; Cummings SR; Baron JA. Use of bisphosphonates among women and risk of atrial fibrillation and flutter: population based case-control study. BMJ. 2008 Apr 12;336(7648):813-6. doi: 10.1136/bmj.39507.551644.BE. PMID: 18334527.
- 246. Cummings SR; Schwartz AV; Black DM. Alendronate and atrial fibrillation. N Engl J Med. 2007 May 3;356(18):1895-6. doi: 10.1056/NEJMc076132. PMID: 17476024.
- 247. Greenspan SL; Resnick NM; Parker RA. Combination therapy with hormone replacement and alendronate for prevention of bone loss in elderly women: a randomized controlled trial. JAMA. 2003 May 21;289(19):2525-33. doi: 10.1001/jama.289.19.2525. PMID: 12759324.
- 248. Adachi JD; Faraawi RY; O'Mahony MF; Nayar A; Massaad R; Evans JK; Yacik C. Upper gastrointestinal tolerability of alendronate sodium monohydrate 10 mg once daily in postmenopausal women: a 12-week, randomized, double-blind, placebo-controlled, exploratory study. Clin Ther. 2009 Aug;31(8):1747-53. doi: 10.1016/j.clinthera.2009.08.016. PMID: 19808133.
- 249. Bauer DC; Black D; Ensrud K; Thompson D; Hochberg M; Nevitt M; Musliner T; Freedholm D. Upper gastrointestinal tract safety profile of alendronate: the fracture intervention trial. Arch Intern Med. 2000 Feb 28;160(4):517-25. PMID: 10695692.
- 250. Cryer B; Binkley N; Simonelli C; Lewiecki EM; Lanza F; Chen E; Petruschke RA; Mullen C; de Papp AE. A randomized, placebo-controlled, 6-month study of onceweekly alendronate oral solution for postmenopausal osteoporosis. Am J Geriatr Pharmacother. 2005 Sep;3(3):127-36. PMID: 16257815.
- 251. Tucci JR; Tonino RP; Emkey RD; Peverly CA; Kher U; Santora AC, 2nd. Effect of three years of oral alendronate treatment in postmenopausal women with osteoporosis. Am J Med. 1996 Nov;101(5):488-501. PMID: 8948272.
- 252. Greenspan S; Field-Munves E; Tonino R; Smith M; Petruschke R; Wang L; Yates J; de Papp AE; Palmisano J. Tolerability of once-weekly alendronate in patients with osteoporosis: a randomized, double-blind, placebo-controlled study. Mayo Clin Proc. 2002 Oct;77(10):1044-52. doi: 10.4065/77.10.1044. PMID: 12374248.
- 253. Eisman JA; Rizzoli R; Roman-Ivorra J; Lipschitz S; Verbruggen N; Gaines KA; Melton ME. Upper gastrointestinal and overall tolerability of alendronate once weekly in patients with osteoporosis: results of a randomized, double-blind, placebo-controlled study. Curr Med Res Opin. 2004 May;20(5):699-705. doi: 10.1185/030079904125003548. PMID: 15140336.
- 254. Heckbert SR; Li G; Cummings SR; Smith NL; Psaty BM. Use of alendronate and risk of incident atrial fibrillation in women. Arch Intern Med. 2008 Apr 28;168(8):826-31. doi: 10.1001/archinte.168.8.826. PMID: 18443257.

- 255. Office of Drug Safety. ODS Postmarketing Safety Review. Rockville, MD: U.S. Food and Drug Administration; 2004. <u>www.fda.gov/ohrms/dockets/ac/05/briefing/2005-4095B2_03_04-FDA-TAB3.pdf</u>. Accessed on September 13, 2016.
- 256. Palomba S; Orio F, Jr.; Colao A; di Carlo C; Sena T; Lombardi G; Zullo F; Mastrantonio P. Effect of estrogen replacement plus low-dose alendronate treatment on bone density in surgically postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002 Apr;87(4):1502-8. doi: 10.1210/jcem.87.4.8323. PMID: 11932272.
- 257. Chow CC; Chan WB; Li JK; Chan NN; Chan MH; Ko GT; Lo KW; Cockram CS. Oral alendronate increases bone mineral density in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab. 2003 Feb;88(2):581-7. doi: 10.1210/jc.2002-020890. PMID: 12574184.
- 258. Saag KG; Emkey R; Schnitzer TJ; Brown JP; Hawkins F; Goemaere S; Thamsborg G; Liberman UA; Delmas PD; Malice MP; Czachur M; Daifotis AG. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med. 1998 Jul 30;339(5):292-9. doi: 10.1056/nejm199807303390502. PMID: 9682041.
- 259. Adachi JD; Saag KG; Delmas PD; Liberman UA; Emkey RD; Seeman E; Lane NE; Kaufman JM; Poubelle PE; Hawkins F; Correa-Rotter R; Menkes CJ; Rodriguez-Portales JA; Schnitzer TJ; Block JA; Wing J; McIlwain HH; Westhovens R; Brown J; Melo-Gomes JA; Gruber BL; Yanover MJ; Leite MO; Siminoski KG; Nevitt MC; Sharp JT; Malice MP; Dumortier T; Czachur M; Carofano W; Daifotis A. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 2001 Jan;44(1):202-11. doi: 10.1002/1529-0131(200101)44:1<202::aid-anr27>3.0.co;2-w. PMID: 11212161.
- 260. Sambrook PN; Rodriguez JP; Wasnich RD; Luckey MM; Kaur A; Meng L; Lombardi A. Alendronate in the prevention of osteoporosis: 7-year follow-up. Osteoporos Int. 2004 Jun;15(6):483-8. doi: 10.1007/s00198-003-1571-4. PMID: 15205720.
- 261. Lenart BA; Lorich DG; Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008 Mar 20;358(12):1304-6. doi: 10.1056/NEJMc0707493. PMID: 18354114.
- 262. Odvina CV; Zerwekh JE; Rao DS; Maalouf N; Gottschalk FA; Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005 Mar;90(3):1294-301. doi: 10.1210/jc.2004-0952. PMID: 15598694.
- 263. Ensrud KE; Barrett-Connor EL; Schwartz A; Santora AC; Bauer DC; Suryawanshi S; Feldstein A; Haskell WL; Hochberg MC; Torner JC; Lombardi A; Black DM. Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J Bone Miner Res. 2004 Aug;19(8):1259-69. doi: 10.1359/jbmr.040326. PMID: 15231012.
- 264. Uusi-Rasi K; Kannus P; Cheng S; Sievanen H; Pasanen M; Heinonen A; Nenonen A; Halleen J; Fuerst T; Genant H; Vuori I. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003 Jul;33(1):132-43. PMID: 12919708.
- 265. Chailurkit LO; Jongjaroenprasert W; Rungbunnapun S; Ongphiphadhanakul B; Sae-tung S; Rajatanavin R. Effect of alendronate on bone mineral density and bone turnover in

Thai postmenopausal osteoporosis. J Bone Miner Metab. 2003;21(6):421-7. doi: 10.1007/s00774-003-0438-2. PMID: 14586800.

- 266. Barrett-Connor E; Swern AS; Hustad CM; Bone HG; Liberman UA; Papapoulos S; Wang H; de Papp A; Santora AC. Alendronate and atrial fibrillation: a meta-analysis of randomized placebo-controlled clinical trials. Osteoporos Int. 2012 Jan;23(1):233-45. doi: 10.1007/s00198-011-1546-9. PMID: 21369791.
- 267. Goh SK; Yang KY; Koh JS; Wong MK; Chua SY; Chua DT; Howe TS. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br. 2007 Mar;89(3):349-53. doi: 10.1302/0301-620x.89b3.18146. PMID: 17356148.
- 268. MacLean C; Newberry S; Maglione M; McMahon M; Ranganath V; Suttorp M; Mojica W; Timmer M; Alexander A; McNamara M; Desai SB; Zhou A; Chen S; Carter J; Tringale C; Valentine D; Johnsen B; Grossman J. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med. 2008 Feb 5;148(3):197-213. PMID: 18087050.
- 269. Rossini M; Gatti D; Girardello S; Braga V; James G; Adami S. Effects of two intermittent alendronate regimens in the prevention or treatment of postmenopausal osteoporosis. Bone. 2000 Jul;27(1):119-22. PMID: 10865218.
- 270. Murphy MG; Weiss S; McClung M; Schnitzer T; Cerchio K; Connor J; Krupa D; Gertz BJ. Effect of alendronate and MK-677 (a growth hormone secretagogue), individually and in combination, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab. 2001 Mar;86(3):1116-25. doi: 10.1210/jcem.86.3.7294. PMID: 11238495.
- 271. Abrahamsen B; Eiken P; Eastell R. Cumulative alendronate dose and the long-term absolute risk of subtrochanteric and diaphyseal femur fractures: a register-based national cohort analysis. J Clin Endocrinol Metab. 2010 Dec;95(12):5258-65. doi: 10.1210/jc.2010-1571. PMID: 20843943.
- 272. Grey A; Bolland M; Wattie D; Horne A; Gamble G; Reid IR. Prolonged antiresorptive activity of zoledronate: a randomized, controlled trial. J Bone Miner Res. 2010 Oct;25(10):2251-5. doi: 10.1002/jbmr.103. PMID: 20499349.
- 273. McClung M; Miller P; Recknor C; Mesenbrink P; Bucci-Rechtweg C; Benhamou CL. Zoledronic acid for the prevention of bone loss in postmenopausal women with low bone mass: a randomized controlled trial. Obstet Gynecol. 2009 Nov;114(5):999-1007. doi: 10.1097/AOG.0b013e3181bdce0a. PMID: 20168099.
- 274. Hwang JS; Chin LS; Chen JF; Yang TS; Chen PQ; Tsai KS; Leung PC. The effects of intravenous zoledronic acid in Chinese women with postmenopausal osteoporosis. J Bone Miner Metab. 2011 May;29(3):328-33. doi: 10.1007/s00774-010-0223-y. PMID: 20922438.
- 275. Black DM; Kelly MP; Genant HK; Palermo L; Eastell R; Bucci-Rechtweg C; Cauley J; Leung PC; Boonen S; Santora A; de Papp A; Bauer DC. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med. 2010 May 13;362(19):1761-71. doi: 10.1056/NEJMoa1001086. PMID: 20335571.
- 276. Grbic JT; Black DM; Lyles KW; Reid DM; Orwoll E; McClung M; Bucci-Rechtweg C; Su G. The incidence of osteonecrosis of the jaw in patients receiving 5 milligrams of zoledronic acid: data from the health outcomes and reduced incidence with zoledronic acid once yearly clinical trials program. J Am Dent Assoc. 2010 Nov;141(11):1365-70. PMID: 21037195.

- 277. Colon-Emeric C; Nordsletten L; Olson S; Major N; Boonen S; Haentjens P; Mesenbrink P; Magaziner J; Adachi J; Lyles KW; Hyldstrup L; Bucci-Rechtweg C; Recknor C. Association between timing of zoledronic acid infusion and hip fracture healing. Osteoporos Int. 2011 Aug;22(8):2329-36. doi: 10.1007/s00198-010-1473-1. PMID: 21153021.
- 278. Crawford BA; Kam C; Pavlovic J; Byth K; Handelsman DJ; Angus PW; McCaughan GW. Zoledronic acid prevents bone loss after liver transplantation: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2006 Feb 21;144(4):239-48. PMID: 16490909.
- 279. Grbic JT; Landesberg R; Lin SQ; Mesenbrink P; Reid IR; Leung PC; Casas N; Recknor CP; Hua Y; Delmas PD; Eriksen EF. Incidence of osteonecrosis of the jaw in women with postmenopausal osteoporosis in the health outcomes and reduced incidence with zoledronic acid once yearly pivotal fracture trial. J Am Dent Assoc. 2008 Jan;139(1):32-40. PMID: 18167382.
- 280. Khan AA; Sandor GK; Dore E; Morrison AD; Alsahli M; Amin F; Peters E; Hanley DA; Chaudry SR; Lentle B; Dempster DW; Glorieux FH; Neville AJ; Talwar RM; Clokie CM; Mardini MA; Paul T; Khosla S; Josse RG; Sutherland S; Lam DK; Carmichael RP; Blanas N; Kendler D; Petak S; Ste-Marie LG; Brown J; Evans AW; Rios L; Compston JE. Bisphosphonate associated osteonecrosis of the jaw. J Rheumatol. 2009 Mar;36(3):478-90. doi: 10.3899/jrheum.080759. PMID: 19286860.
- 281. Shiraki M; Fukunaga M; Kushida K; Kishimoto H; Taketani Y; Minaguchi H; Inoue T; Morita R; Morii H; Yamamoto K; Ohashi Y; Orimo H. A double-blind dose-ranging study of risedronate in Japanese patients with osteoporosis (a study by the Risedronate Late Phase II Research Group). Osteoporos Int. 2003 May;14(3):225-34. doi: 10.1007/s00198-002-1369-9. PMID: 12730746.
- 282. Chapurlat RD; Laroche M; Thomas T; Rouanet S; Delmas PD; de Vernejoul MC. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial. Osteoporos Int. 2013 Jan;24(1):311-20. doi: 10.1007/s00198-012-1947-4 [doi]. PMID: 22402673.
- 283. McClung MR; Wasnich RD; Recker R; Cauley JA; Chesnut CH, 3rd; Ensrud KE; Burdeska A; Mills T. Oral daily ibandronate prevents bone loss in early postmenopausal women without osteoporosis. J Bone Miner Res. 2004 Jan;19(1):11-8. doi: 10.1359/jbmr.0301202. PMID: 14753731.
- 284. Ravn P; Clemmesen B; Riis BJ; Christiansen C. The effect on bone mass and bone markers of different doses of ibandronate: a new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: a 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone. 1996 Nov;19(5):527-33. PMID: 8922653.
- 285. Reginster JY; Wilson KM; Dumont E; Bonvoisin B; Barrett J. Monthly oral ibandronate is well tolerated and efficacious in postmenopausal women: results from the monthly oral pilot study. J Clin Endocrinol Metab. 2005 Sep;90(9):5018-24. doi: 10.1210/jc.2004-1750. PMID: 15972582.
- 286. Riis BJ; Ise J; von Stein T; Bagger Y; Christiansen C. Ibandronate: a comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Miner Res. 2001 Oct;16(10):1871-8. doi: 10.1359/jbmr.2001.16.10.1871. PMID: 11585352.

- 287. Tanko LB; Felsenberg D; Czerwinski E; Burdeska A; Jonkanski I; Hughes C; Christiansen C. Oral weekly ibandronate prevents bone loss in postmenopausal women. J Intern Med. 2003 Aug;254(2):159-67. PMID: 12859697.
- 288. Thiebaud D; Burckhardt P; Kriegbaum H; Huss H; Mulder H; Juttmann JR; Schoter KH. Three monthly intravenous injections of ibandronate in the treatment of postmenopausal osteoporosis. Am J Med. 1997 Oct;103(4):298-307. PMID: 9382122.
- 289. Sharma A; Einstein AJ; Vallakati A; Arbab-Zadeh A; Walker MD; Mukherjee D; Homel P; Borer JS; Lichstein E. Risk of atrial fibrillation with use of oral and intravenous bisphosphonates. Am J Cardiol. 2014 Jun 1;113(11):1815-21. doi: 10.1016/j.amjcard.2014.03.008. PMID: 24837258.
- 290. Sharma A; Chatterjee S; Arbab-Zadeh A; Goyal S; Lichstein E; Ghosh J; Aikat S. Risk of serious atrial fibrillation and stroke with use of bisphosphonates: evidence from a metaanalysis. Chest. 2013 Oct;144(4):1311-22. doi: 10.1378/chest.13-0675. PMID: 23722644.
- 291. Karam R; Camm J; McClung M. Yearly zoledronic acid in postmenopausal osteoporosis. N Engl J Med. 2007 Aug 16;357(7):712-3; author reply 4-5. PMID: 17703529.
- 292. Barasch A; Cunha-Cruz J; Curro FA; Hujoel P; Sung AH; Vena D; Voinea-Griffin AE. Risk factors for osteonecrosis of the jaws: A case-control study from the CONDOR dental PBRN. J Dent Res. 2011;90(4):439-44.
- 293. Pazianas M; Miller P; Blumentals WA; Bernal M; Kothawala P. A review of the literature on osteonecrosis of the jaw in patients with osteoporosis treated with oral bisphosphonates: prevalence, risk factors, and clinical characteristics. Clin Ther. 2007 Aug;29(8):1548-58. doi: 10.1016/j.clinthera.2007.08.008. PMID: 17919538.
- 294. Lo JC; O'Ryan FS; Gordon NP; Yang J; Hui RL; Martin D; Hutchinson M; Lathon PV; Sanchez G; Silver P; Chandra M; McCloskey CA; Staffa JA; Willy M; Selby JV; Go AS. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010 Feb;68(2):243-53. doi: 10.1016/j.joms.2009.03.050. PMID: 19772941.
- 295. Cartsos VM; Zhu S; Zavras AI. Bisphosphonate use and the risk of adverse jaw outcomes: a medical claims study of 714,217 people. J Am Dent Assoc. 2008 Jan;139(1):23-30. PMID: 18167381.
- 296. Pazianas M; Blumentals WA; Miller PD. Lack of association between oral bisphosphonates and osteonecrosis using jaw surgery as a surrogate marker. Osteoporos Int. 2008 Jun;19(6):773-9. doi: 10.1007/s00198-007-0547-1. PMID: 17999023.
- 297. Khan AA; Morrison A; Hanley DA; Felsenberg D; McCauley LK; O'Ryan F; Reid IR; Ruggiero SL; Taguchi A; Tetradis S; Watts NB; Brandi ML; Peters E; Guise T; Eastell R; Cheung AM; Morin SN; Masri B; Cooper C; Morgan SL; Obermayer-Pietsch B; Langdahl BL; Al Dabagh R; Davison KS; Kendler DL; Sandor GK; Josse RG; Bhandari M; El Rabbany M; Pierroz DD; Sulimani R; Saunders DP; Brown JP; Compston J. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015 Jan;30(1):3-23. doi: 10.1002/jbmr.2405. PMID: 25414052.
- 298. Yarnall AJ; Duncan GW; Khoo TK; Burn DJ. Falling short: underestimation of fracture risk in atypical parkinsonian syndromes. Parkinsonism Relat Disord. 2012 Jun;18(5):692-3. doi: 10.1016/j.parkreldis.2012.01.004. PMID: 22265139.

- 299. Chen F; Wang Z; Bhattacharyya T. Absence of femoral cortical thickening in long-term bisphosphonate users: implications for atypical femur fractures. Bone. 2014 May;62:64-6. doi: 10.1016/j.bone.2014.01.011. PMID: 24468718.
- 300. Gedmintas L; Solomon DH; Kim SC. Bisphosphonates and risk of subtrochanteric, femoral shaft, and atypical femur fracture: a systematic review and meta-analysis. J Bone Miner Res. 2013 Aug;28(8):1729-37. doi: 10.1002/jbmr.1893. PMID: 23408697.
- 301. Lee S; Yin RV; Hirpara H; Lee NC; Lee A; Llanos S; Phung OJ. Increased risk for atypical fractures associated with bisphosphonate use. Fam Pract. 2015 Jun;32(3):276-81. doi: 10.1093/fampra/cmu088. PMID: 25846215.
- 302. Miyakoshi N; Aizawa T; Sasaki S; Ando S; Maekawa S; Aonuma H; Tsuchie H; Sasaki H; Kasukawa Y; Shimada Y. Healing of bisphosphonate-associated atypical femoral fractures in patients with osteoporosis: a comparison between treatment with and without teriparatide. J Bone Miner Metab. 2015 Sep;33(5):553-9. doi: 10.1007/s00774-014-0617-3 [doi]. PMID: 25227287.
- 303. McClung MR; Siris E; Cummings S; Bolognese M; Ettinger M; Moffett A; Emkey R; Day W; Somayaji V; Lee A. Prevention of bone loss in postmenopausal women treated with lasofoxifene compared with raloxifene. Menopause. 2006 May-Jun;13(3):377-86. doi: 10.1097/01.gme.0000188736.69617.4f. PMID: 16735934.
- 304. Meunier PJ; Vignot E; Garnero P; Confavreux E; Paris E; Liu-Leage S; Sarkar S; Liu T; Wong M; Draper MW. Treatment of postmenopausal women with osteoporosis or low bone density with raloxifene. Raloxifene Study Group. Osteoporos Int. 1999;10(4):330-6. PMID: 10692984.
- 305. Miller PD; Chines AA; Christiansen C; Hoeck HC; Kendler DL; Lewiecki EM; Woodson G; Levine AB; Constantine G; Delmas PD. Effects of bazedoxifene on BMD and bone turnover in postmenopausal women: 2-yr results of a randomized, double-blind, placebo-, and active-controlled study. J Bone Miner Res. 2008 Apr;23(4):525-35. doi: 10.1359/jbmr.071206. PMID: 18072873.
- 306. Morii H; Ohashi Y; Taketani Y; Fukunaga M; Nakamura T; Itabashi A; Sarkar S; Harper K. Effect of raloxifene on bone mineral density and biochemical markers of bone turnover in Japanese postmenopausal women with osteoporosis: results from a randomized placebo-controlled trial. Osteoporos Int. 2003 Oct;14(10):793-800. doi: 10.1007/s00198-003-1424-1. PMID: 12955333.
- 307. Barrett-Connor E; Cauley JA; Kulkarni PM; Sashegyi A; Cox DA; Geiger MJ. Riskbenefit profile for raloxifene: 4-year data From the Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. J Bone Miner Res. 2004 Aug;19(8):1270-5. doi: 10.1359/JBMR.040406 [doi]. PMID: 15231013.
- 308. Barrett-Connor E; Grady D; Sashegyi A; Anderson PW; Cox DA; Hoszowski K; Rautaharju P; Harper KD. Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. JAMA. 2002 Feb 20;287(7):847-57. doi: joc11015 [pii]. PMID: 11851576.
- 309. Keech CA; Sashegyi A; Barrett-Connor E. Year-by-year analysis of cardiovascular events in the Multiple Outcomes of Raloxifene Evaluation (MORE) trial. Curr Med Res Opin. 2005 Jan;21(1):135-40. PMID: 15881485.
- 310. Cauley JA; Norton L; Lippman ME; Eckert S; Krueger KA; Purdie DW; Farrerons J; Karasik A; Mellstrom D; Ng KW; Stepan JJ; Powles TJ; Morrow M; Costa A; Silfen SL;

Walls EL; Schmitt H; Muchmore DB; Jordan VC; Ste-Marie LG. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat. 2001 Jan;65(2):125-34. PMID: 11261828.

- 311. Watts NB; Roux C; Modlin JF; Brown JP; Daniels A; Jackson S; Smith S; Zack DJ; Zhou L; Grauer A; Ferrari S. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos Int. 2012 Jan;23(1):327-37. doi: 10.1007/s00198-011-1755-2 [doi]. PMID: 21892677.
- 312. Gourlay ML; Overman RA; Ensrud KE. Bone Density Screening and Re-screening in Postmenopausal Women and Older Men. Curr Osteoporos Rep. 2015 Dec;13(6):390-8. doi: 10.1007/s11914-015-0289-5. PMID: 26408154.
- 313. Nayak S; Roberts MS; Greenspan SL. Cost-effectiveness of different screening strategies for osteoporosis in postmenopausal women. Ann Intern Med. 2011 Dec 6;155(11):751-61. doi: 10.7326/0003-4819-155-11-201112060-00007. PMID: 22147714.
- 314. Ito K; Hollenberg JP; Charlson ME. Using the osteoporosis self-assessment tool for referring older men for bone densitometry: a decision analysis. J Am Geriatr Soc. 2009 Feb;57(2):218-24. doi: 10.1111/j.1532-5415.2008.02110.x. PMID: 19207137.
- 315. Schott AM; Ganne C; Hans D; Monnier G; Gauchoux R; Krieg MA; Delmas PD; Meunier PJ; Colin C. Which screening strategy using BMD measurements would be most cost effective for hip fracture prevention in elderly women? A decision analysis based on a Markov model. Osteoporos Int. 2007 Feb;18(2):143-51. doi: 10.1007/s00198-006-0227-6. PMID: 17039393.
- 316. Schousboe JT; Ensrud KE; Nyman JA; Melton LJ, 3rd; Kane RL. Universal bone densitometry screening combined with alendronate therapy for those diagnosed with osteoporosis is highly cost-effective for elderly women. J Am Geriatr Soc. 2005 Oct;53(10):1697-704. doi: 10.1111/j.1532-5415.2005.53504.x. PMID: 16181168.
- 317. Jarvinen TL; Sievanen H; Khan KM; Heinonen A; Kannus P. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ. 2008 Jan 19;336(7636):124-6. doi: 10.1136/bmj.39428.470752.AD. PMID: 18202065.
- 318. Camacho PM; Petak SM; Binkley N; Clarke BL; Harris ST; Hurley DL; Kleerekoper M; Lewiecki EM; Miller PD; Narula HS; Pessah-Pollack R; Tangpricha V; Wimalawansa SJ; Watts NB. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2016 Executive Summary. Endocr Pract. 2016 Sep;22(9):1111-8. doi: 10.4158/Ep161435.Esgl. PMID: WOS:000384279900011.
- 319. American Association of Family Physicians. Clinical Preventive Service Recommendation. Osteoporisis. Leawood, KS: American Academy of Family Physicians; 2011. <u>http://www.aafp.org/patient-care/clinical-</u> recommendations/all/osteoporosis.html. Accessed on April 14, 2015.
- 320. American College of Obstetricians and Gynecologists. Osteoporosis American College of Obstetricians and Gynecologists (ACOG). ACOG Practice Bulletin; No. 129. Washington, DC: Sep 17 2012.
- 321. Lim LS; Hoeksema LJ; Sherin K; ACPM Prevention Practice Committee. Screening for osteoporosis in the adult U.S. population: ACPM position statement on preventive practice. Am J Prev Med. 2009 Apr;36(4):366-75. doi: 10.1016/j.amepre.2009.01.013. PMID: 19285200.

- 322. American College of Radiology. ACR Appropriateness Criteria. Osteoporosis and Bone Mineral Density. Washington, DC: American College of Radiology; 1998. <u>https://acsearch.acr.org/docs/69358/Narrative/</u> Accessed on 9 Aug, 2016.
- 323. Watts NB; Adler RA; Bilezikian JP; Drake MT; Eastell R; Orwoll ES; Finkelstein JS; Endocrine S. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012 Jun;97(6):1802-22. doi: 10.1210/jc.2011-3045. PMID: 22675062.
- 324. National Clinical Guideline Centre (UK). Osteoporosis: fragility fracture risk: osteoporosis: assessing the risk of fragility fracture. London: Royal College of Physicians (UK); 2012.
- 325. North American Menopause Society. Management of osteoporosis in postmenopausal women: 2010 position statement of The North American Menopause Society. Menopause. 2010 Jan-Feb;17(1):25-54; quiz 5-6.
- 326. Papaioannou A; Morin S; Cheung AM; Atkinson S; Brown JP; Feldman S; Hanley DA; Hodsman A; Jamal SA; Kaiser SM; Kvern B; Siminoski K; Leslie WD; Scientific Advisory Council of Osteoporosis, Canada. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010 Nov 23;182(17):1864-73. doi: 10.1503/cmaj.100771. PMID: 20940232.
- 327. United Kingdom National Screening Committee. Summary and consultation responses for screening for Osteoporosis in postmenopausal women. Public Health England; 2013. <u>http://www.screening.nhs.uk/osteoporosis</u>. Accessed on 15 April 2015.
- 328. 4BoneHealth. World Health Organization WHO Criteria for Diagnosis of Osteoporosis. NBHA, A Member of National Bone Health Alliance. <u>http://www.4bonehealth.org/education/world-health-organization-criteria-diagnosis-osteoporosis/</u>. Accessed on April 12, 2015.
- 329. Ettinger B; Ensrud KE; Blackwell T; Curtis JR; Lapidus JA; Orwoll ES. Performance of FRAX in a cohort of community-dwelling, ambulatory older men: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int. 2013 Apr;24(4):1185-93. doi: 10.1007/s00198-012-2215-3 [doi]. PMID: 23179575.
- 330. Donaldson MG; Palermo L; Schousboe JT; Ensrud KE; Hochberg MC; Cummings SR. FRAX and risk of vertebral fractures: the fracture intervention trial. J Bone Miner Res. 2009 Nov;24(11):1793-9. doi: 10.1359/jbmr.090511 [doi]. PMID: 19419318.
- 331. Sambrook PN; Flahive J; Hooven FH; Boonen S; Chapurlat R; Lindsay R; Nguyen TV; Diez-Perez A; Pfeilschifter J; Greenspan SL; Hosmer D; Netelenbos JC; Adachi JD; Watts NB; Cooper C; Roux C; Rossini M; Siris ES; Silverman S; Saag KG; Compston JE; LaCroix A; Gehlbach S. Predicting fractures in an international cohort using risk factor algorithms without BMD. J Bone Miner Res. 2011 Nov;26(11):2770-7. doi: 10.1002/jbmr.503. PMID: 21887705.
- 332. Collins GS; Mallett S; Altman DG. Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFractureScores. BMJ. 2011;342:d3651. doi: 10.1136/bmj.d3651. PMID: 21697214.
- 333. Melton LJ, 3rd; Atkinson EJ; Khosla S; Oberg AL; Riggs BL. Evaluation of a prediction model for long-term fracture risk. J Bone Miner Res. 2005 Apr;20(4):551-6. doi: 10.1359/JBMR.041206 [doi]. PMID: 15765172.

- 334. Kung AW; Yeung SS; Chu LW. The efficacy and tolerability of alendronate in postmenopausal osteoporotic Chinese women: a randomized placebo-controlled study. Calcif Tissue Int. 2000 Oct;67(4):286-90. PMID: 11000341.
- 335. McCloskey EV; Johansson H; Oden A; Austin M; Siris E; Wang A; Lewiecki EM; Lorenc R; Libanati C; Kanis JA. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res. 2012 Jul;27(7):1480-6. doi: 10.1002/jbmr.1606 [doi]. PMID: 22431426.
- 336. Nakamura T; Matsumoto T; Sugimoto T; Shiraki M. Dose-response study of denosumab on bone mineral density and bone turnover markers in Japanese postmenopausal women with osteoporosis. Osteoporos Int; 2012. p. 1131-40.
- 337. Rhee CW; Lee J; Oh S; Choi NK; Park BJ. Use of bisphosphonate and risk of atrial fibrillation in older women with osteoporosis. Osteoporos Int. 2012 Jan;23(1):247-54. doi: 10.1007/s00198-011-1608-z [doi]. PMID: 21431993.
- 338. Samelson EJ; Miller PD; Christiansen C; Daizadeh NS; Grazette L; Anthony MS; Egbuna O; Wang A; Siddhanti SR; Cheung AM; Franchimont N; Kiel DP. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res. 2014;29(2):450-7.
- 339. Simon JA; Recknor C; Moffett AH, Jr.; Adachi JD; Franek E; Lewiecki EM; McClung MR; Mautalen CA; Ragi-Eis S; Nicholson GC; Muschitz C; Nuti R; Torring O; Wang A; Libanati C. Impact of denosumab on the peripheral skeleton of postmenopausal women with osteoporosis: bone density, mass, and strength of the radius, and wrist fracture. Menopause. 2013 Feb;20(2):130-7. doi: 10.1097/gme.0b013e318267f909 [doi]. PMID: 23010883.
- 340. van Staa T; Abenhaim L; Cooper C. Upper gastrointestinal adverse events and cyclical etidronate. Am J Med. 1997 Dec;103(6):462-7. PMID: 9428828.
- 341. Vestergaard P; Schwartz K; Pinholt EM; Rejnmark L; Mosekilde L. Gastric and esophagus events before and during treatment of osteoporosis. Calcif Tissue Int. 2010 Feb;86(2):110-5. doi: 10.1007/s00223-009-9323-x [doi]. PMID: 19957165.
- 342. Vestergaard P; Schwartz K; Pinholt EM; Rejnmark L; Mosekilde L. Stroke in relation to use of raloxifene and other drugs against osteoporosis. Osteoporos Int. 2011 Apr;22(4):1037-45. doi: 10.1007/s00198-010-1276-4 [doi]. PMID: 20449570.
- 343. Vestergaard P. Acute myocardial infarction and atherosclerosis of the coronary arteries in patients treated with drugs against osteoporosis: calcium in the vessels and not the bones? Calcif Tissue Int. 2012 Jan;90(1):22-9. doi: 10.1007/s00223-011-9549-2 [doi]. PMID: 22120197.
- 344. Vestergaard P; Schwartz F; Rejnmark L; Mosekilde L. Risk of femoral shaft and subtrochanteric fractures among users of bisphosphonates and raloxifene. Osteoporos Int. 2011 Mar;22(3):993-1001. doi: 10.1007/s00198-010-1512-y [doi]. PMID: 21165600.
- 345. Vestergaard P; Schwartz K; Rejnmark L; Mosekilde L; Pinholt EM. Oral bisphosphonate use increases the risk for inflammatory jaw disease: a cohort study. J Oral Maxillofac Surg. 2012 Apr;70(4):821-9. doi: 10.1016/j.joms.2011.02.093. PMID: 21764202.
- 346. !!! INVALID CITATION !!! 244.
- 347. Alexandersen P; de Terlizzi F; Tanko LB; Bagger YZ; Christiansen C. Comparison of quantitative ultrasound of the phalanges with conventional bone densitometry in healthy

postmenopausal women. Osteoporos Int. 2005 Sep;16(9):1071-8. doi: 10.1007/s00198-004-1810-3. PMID: 15719153.

- 348. Anderson GL; Judd HL; Kaunitz AM; Barad DH; Beresford SA; Pettinger M; Liu J; McNeeley SG; Lopez AM. Effects of estrogen plus progestin on gynecologic cancers and associated diagnostic procedures: the Women's Health Initiative randomized trial. JAMA. 2003 Oct 1;290(13):1739-48. doi: 10.1001/jama.290.13.1739. PMID: 14519708.
- 349. Anderson GL; Limacher M; Assaf AR; Bassford T; Beresford SA; Black H; Bonds D; Brunner R; Brzyski R; Caan B; Chlebowski R; Curb D; Gass M; Hays J; Heiss G; Hendrix S; Howard BV; Hsia J; Hubbell A; Jackson R; Johnson KC; Judd H; Kotchen JM; Kuller L; LaCroix AZ; Lane D; Langer RD; Lasser N; Lewis CE; Manson J; Margolis K; Ockene J; O'Sullivan MJ; Phillips L; Prentice RL; Ritenbaugh C; Robbins J; Rossouw JE; Sarto G; Stefanick ML; Van Horn L; Wactawski-Wende J; Wallace R; Wassertheil-Smoller S. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA. 2004 Apr 14;291(14):1701-12. doi: 10.1001/jama.291.14.1701. PMID: 15082697.
- 350. Bauer DC; Gluer CC; Cauley JA; Vogt TM; Ensrud KE; Genant HK; Black DM. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med. 1997 Mar 24;157(6):629-34. PMID: 9080917.
- 351. Cadarette SM; Katz JN; Brookhart MA; Sturmer T; Stedman MR; Solomon DH. Relative effectiveness of osteoporosis drugs for preventing nonvertebral fracture. Ann Intern Med. 2008 May 6;148(9):637-46. PMID: 18458276.
- 352. Varenna M; Sinigaglia L; Adami S; Giannini S; Isaia G; Maggi S; Filipponi P; Di Munno O; Maugeri D; de Feo D; Crepaldi G. Association of quantitative heel ultrasound with history of osteoporotic fractures in elderly men: the ESOPO study. Osteoporos Int. 2005 Dec;16(12):1749-54. doi: 10.1007/s00198-005-1914-4. PMID: 15976988.
- 353. Chesnut CH, 3rd; Silverman S; Andriano K; Genant H; Gimona A; Harris S; Kiel D; LeBoff M; Maricic M; Miller P; Moniz C; Peacock M; Richardson P; Watts N; Baylink D. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000 Sep;109(4):267-76. PMID: 10996576.
- 354. Chesnut CH, 3rd; Skag A; Christiansen C; Recker R; Stakkestad JA; Hoiseth A; Felsenberg D; Huss H; Gilbride J; Schimmer RC; Delmas PD. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004 Aug;19(8):1241-9. doi: 10.1359/jbmr.040325. PMID: 15231010.
- 355. Chlebowski RT; Hendrix SL; Langer RD; Stefanick ML; Gass M; Lane D; Rodabough RJ; Gilligan MA; Cyr MG; Thomson CA; Khandekar J; Petrovitch H; McTiernan A. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA. 2003 Jun 25;289(24):3243-53. doi: 10.1001/jama.289.24.3243. PMID: 12824205.
- 356. Crabtree NJ; Kroger H; Martin A; Pols HA; Lorenc R; Nijs J; Stepan JJ; Falch JA; Miazgowski T; Grazio S; Raptou P; Adams J; Collings A; Khaw KT; Rushton N; Lunt M; Dixon AK; Reeve J. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Osteoporos Int. 2002 Jan;13(1):48-54. PMID: 11883408.

- 357. Cranney A; Tugwell P; Zytaruk N; Robinson V; Weaver B; Shea B; Wells G; Adachi J; Waldegger L; Guyatt G. Meta-analyses of therapies for postmenopausal osteoporosis. VI. Meta-analysis of calcitonin for the treatment of postmenopausal osteoporosis. Endocr Rev. 2002 Aug;23(4):540-51. doi: 10.1210/er.2001-6002. PMID: 12202469.
- 358. Cryer B; Bauer DC. Oral bisphosphonates and upper gastrointestinal tract problems: what is the evidence? Mayo Clin Proc. 2002 Oct;77(10):1031-43. doi: 10.4065/77.10.1031. PMID: 12374247.
- 359. Cummings SR; Cawthon PM; Ensrud KE; Cauley JA; Fink HA; Orwoll ES. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res. 2006 Oct;21(10):1550-6. doi: 10.1359/jbmr.060708 [doi]. PMID: 16995809.
- 360. Curb JD; Prentice RL; Bray PF; Langer RD; Van Horn L; Barnabei VM; Bloch MJ; Cyr MG; Gass M; Lepine L; Rodabough RJ; Sidney S; Uwaifo GI; Rosendaal FR. Venous thrombosis and conjugated equine estrogen in women without a uterus. Arch Intern Med. 2006 Apr 10;166(7):772-80. doi: 10.1001/archinte.166.7.772. PMID: 16606815.
- 361. Cushman M; Kuller LH; Prentice R; Rodabough RJ; Psaty BM; Stafford RS; Sidney S; Rosendaal FR. Estrogen plus progestin and risk of venous thrombosis. JAMA. 2004 Oct 6;292(13):1573-80. doi: 10.1001/jama.292.13.1573. PMID: 15467059.
- 362. Dargent-Molina P; Piault S; Breart G. A comparison of different screening strategies to identify elderly women at high risk of hip fracture: results from the EPIDOS prospective study. Osteoporos Int. 2003 Dec;14(12):969-77. doi: 10.1007/s00198-003-1506-0. PMID: 14520511.
- 363. Diez-Perez A; Gonzalez-Macias J; Marin F; Abizanda M; Alvarez R; Gimeno A; Pegenaute E; Vila J. Prediction of absolute risk of non-spinal fractures using clinical risk factors and heel quantitative ultrasound. Osteoporos Int. 2007 May;18(5):629-39. doi: 10.1007/s00198-006-0297-5 [doi]. PMID: 17235664.
- 364. Frediani B; Acciai C; Falsetti P; Baldi F; Filippou G; Siagkri C; Spreafico A; Galeazzi M; Marcolongo R. Calcaneus ultrasonometry and dual-energy X-ray absorptiometry for the evaluation of vertebral fracture risk. Calcif Tissue Int. 2006 Oct;79(4):223-9. doi: 10.1007/s00223-005-0098-4. PMID: 16969597.
- 365. Gennari C; Chierichetti SM; Bigazzi S; et al. Comparative effects on bone mineral content of calcium plus salmon calcitonin given in two different regimens in postmenopausal osteoporosis. Curr Ther Res. 1985;38:455-62.
- 366. Gluer CC; Barkmann R. Quantitative ultrasound: use in the detection of fractures and in the assessment of bone composition. Curr Osteoporos Rep. 2003 Dec;1(3):98-104. PMID: 16036071.
- 367. Gonnelli S; Cepollaro C; Gennari L; Montagnani A; Caffarelli C; Merlotti D; Rossi S; Cadirni A; Nuti R. Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men. Osteoporos Int. 2005 Aug;16(8):963-8. doi: 10.1007/s00198-004-1771-6. PMID: 15599495.
- 368. Greenfield DM; Walters SJ; Coleman RE; Hancock BW; Eastell R; Davies HA; Snowden JA; Derogatis L; Shalet SM; Ross RJ. Prevalence and consequences of androgen deficiency in young male cancer survivors in a controlled cross-sectional study. J Clin Endocrinol Metab. 2007 Sep;92(9):3476-82. doi: 10.1210/jc.2006-2744. PMID: 17579201.

- 369. Greenspan DL; Bone H; Marriott TB; et al. Preventing the first vertebral fracture in postmenopausal women with low bone mass using PTH (I-84): results from the TOP study. J Bone Miner Res. 2005;20(Suppl 1):S56.
- 370. Hans D; Dargent-Molina P; Schott AM; Sebert JL; Cormier C; Kotzki PO; Delmas PD; Pouilles JM; Breart G; Meunier PJ. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet. 1996 Aug 24;348(9026):511-4. PMID: 8757153.
- 371. Hans D; Durosier C; Kanis JA; Johansson H; Schott-Pethelaz AM; Krieg MA. Assessment of the 10-year probability of osteoporotic hip fracture combining clinical risk factors and heel bone ultrasound: the EPISEM prospective cohort of 12,958 elderly women. J Bone Miner Res. 2008 Jul;23(7):1045-51. doi: 10.1359/jbmr.080229. PMID: 18302507.
- 372. Harris ST; Blumentals WA; Miller PD. Ibandronate and the risk of non-vertebral and clinical fractures in women with postmenopausal osteoporosis: results of a meta-analysis of phase III studies. Curr Med Res Opin. 2008 Jan;24(1):237-45. doi: 10.1185/030079908x253717. PMID: 18047776.
- 373. Hizmetli S; Elden H; Kaptanoglu E; Nacitarhan V; Kocagil S. The effect of different doses of calcitonin on bone mineral density and fracture risk in postmenopausal osteoporosis. Int J Clin Pract. 1998 Oct;52(7):453-5. PMID: 10622084.
- 374. Hsia J; Criqui MH; Herrington DM; Manson JE; Wu L; Heckbert SR; Allison M; McDermott MM; Robinson J; Masaki K. Conjugated equine estrogens and peripheral arterial disease risk: the Women's Health Initiative. Am Heart J. 2006 Jul;152(1):170-6. doi: 10.1016/j.ahj.2005.09.005. PMID: 16824852.
- 375. Kaufman JM; Orwoll E; Goemaere S; San Martin J; Hossain A; Dalsky GP; Lindsay R; Mitlak BH. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005 May;16(5):510-6. doi: 10.1007/s00198-004-1713-3. PMID: 15322742.
- 376. Khaw KT; Reeve J; Luben R; Bingham S; Welch A; Wareham N; Oakes S; Day N. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet. 2004 Jan 17;363(9404):197-202. doi: 10.1016/s0140-6736(03)15325-1. PMID: 14738792.
- 377. Kurland ES; Cosman F; McMahon DJ; Rosen CJ; Lindsay R; Bilezikian JP. Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab. 2000 Sep;85(9):3069-76. doi: 10.1210/jcem.85.9.6818. PMID: 10999788.
- 378. Lacroix AZ; Buist DS; Brenneman SK; Abbott TA, 3rd. Evaluation of three populationbased strategies for fracture prevention: results of the osteoporosis population-based risk assessment (OPRA) trial. Med Care. 2005 Mar;43(3):293-302. PMID: 15725986.
- 379. Manson JE; Hsia J; Johnson KC; Rossouw JE; Assaf AR; Lasser NL; Trevisan M; Black HR; Heckbert SR; Detrano R; Strickland OL; Wong ND; Crouse JR; Stein E; Cushman M. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003 Aug 7;349(6):523-34. doi: 10.1056/NEJMoa030808. PMID: 12904517.
- 380. Masoni A; Morosano M; Pezzotto SM; Tomat F; Bentancur F; Bocanera R; Tozzini R; Puche RC. Construction of two instruments for the presumptive detection of postmenopausal women with low spinal bone mass by means of clinical risk factors.

Maturitas. 2005 Jul 16;51(3):314-24. doi: 10.1016/j.maturitas.2004.08.015. PMID: 15978976.

- 381. Mulleman D; Legroux-Gerot I; Duquesnoy B; Marchandise X; Delcambre B; Cortet B. Quantitative ultrasound of bone in male osteoporosis. Osteoporos Int. 2002 May;13(5):388-93. doi: 10.1007/s001980200044. PMID: 12086349.
- 382. Neer RM; Arnaud CD; Zanchetta JR; Prince R; Gaich GA; Reginster JY; Hodsman AB; Eriksen EF; Ish-Shalom S; Genant HK; Wang O; Mitlak BH. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001 May 10;344(19):1434-41. doi: 10.1056/nejm200105103441904. PMID: 11346808.
- 383. Nelson HD; Fu R; Humphrey L; Smith MEB; Griffin JC; Nygren P. Comparative Effectiveness of Medications To Reduce Risk of Primary Breast Cancer in Women AHRQ Comparative Effectiveness Reviews. Rockville, MD: Agency for Healthcare Research and Quality; 2009. PMID: 20704040.
- 384. Nelson HD; Fu R; Griffin JC; Nygren P; Smith ME; Humphrey L. Systematic review: comparative effectiveness of medications to reduce risk for primary breast cancer. Ann Intern Med. 2009 Nov 17;151(10):703-15, w-226-35. doi: 10.7326/0003-4819-151-10-200911170-00147. PMID: 19920271.
- 385. Overgaard K; Hansen MA; Jensen SB; Christiansen C. Effect of salcatonin given intranasally on bone mass and fracture rates in established osteoporosis: a dose-response study. BMJ. 1992 Sep 5;305(6853):556-61. PMID: 1393035.
- 386. Richards JS; Amdur RL; Kerr GS. Osteoporosis risk factor assessment increases the appropriate use of dual energy X-ray absorptiometry in men and reduces ethnic disparity. J Clin Rheumatol. 2008 Feb;14(1):1-5. doi: 10.1097/RHU.0b013e31816356be. PMID: 18431089.
- 387. Rico H; Revilla M; Hernandez ER; Villa LF; Alvarez de Buergo M. Total and regional bone mineral content and fracture rate in postmenopausal osteoporosis treated with salmon calcitonin: a prospective study. Calcif Tissue Int. 1995 Mar;56(3):181-5. PMID: 7750020.
- 388. Rossouw JE; Anderson GL; Prentice RL; LaCroix AZ; Kooperberg C; Stefanick ML; Jackson RD; Beresford SA; Howard BV; Johnson KC; Kotchen JM; Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002 Jul 17;288(3):321-33. PMID: 12117397.
- 389. Rossouw JE; Prentice RL; Manson JE; Wu L; Barad D; Barnabei VM; Ko M; LaCroix AZ; Margolis KL; Stefanick ML. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA. 2007 Apr 4;297(13):1465-77. doi: 10.1001/jama.297.13.1465. PMID: 17405972.
- 390. Rud B; Hilden J; Hyldstrup L; Hrobjartsson A. Performance of the Osteoporosis Self-Assessment Tool in ruling out low bone mineral density in postmenopausal women: a systematic review. Osteoporos Int. 2007 Sep;18(9):1177-87. doi: 10.1007/s00198-006-0319-3 [doi]. PMID: 17361324.
- 391. Russell AS; Morrison RT. An assessment of the new "SCORE" index as a predictor of osteoporosis in women. Scand J Rheumatol. 2001;30(1):35-9. PMID: 11252690.
- 392. Salaffi F; Silveri F; Stancati A; Grassi W. Development and validation of the osteoporosis prescreening risk assessment (OPERA) tool to facilitate identification of

women likely to have low bone density. Clin Rheumatol. 2005 Jun;24(3):203-11. doi: 10.1007/s10067-004-1014-4. PMID: 15549501.

- 393. Sawka AM; Papaioannou A; Adachi JD; Gafni A; Hanley DA; Thabane L. Does alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women. BMC Musculoskelet Disord. 2005;6:39. doi: 10.1186/1471-2474-6-39. PMID: 16008835.
- 394. Stefanick ML; Anderson GL; Margolis KL; Hendrix SL; Rodabough RJ; Paskett ED; Lane DS; Hubbell FA; Assaf AR; Sarto GE; Schenken RS; Yasmeen S; Lessin L; Chlebowski RT. Effects of conjugated equine estrogens on breast cancer and mammography screening in postmenopausal women with hysterectomy. JAMA. 2006 Apr 12;295(14):1647-57. doi: 10.1001/jama.295.14.1647. PMID: 16609086.
- 395. Tracz MJ; Sideras K; Bolona ER; Haddad RM; Kennedy CC; Uraga MV; Caples SM; Erwin PJ; Montori VM. Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials. J Clin Endocrinol Metab. 2006 Jun;91(6):2011-6. doi: 10.1210/jc.2006-0036. PMID: 16720668.
- 396. Van der Klift M; De Laet CE; McCloskey EV; Hofman A; Pols HA. The incidence of vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res. 2002 Jun;17(6):1051-6. doi: 10.1359/jbmr.2002.17.6.1051. PMID: 12054160.
- 397. Vestergaard P; Jorgensen NR; Mosekilde L; Schwarz P. Effects of parathyroid hormone alone or in combination with antiresorptive therapy on bone mineral density and fracture risk--a meta-analysis. Osteoporos Int. 2007 Jan;18(1):45-57. doi: 10.1007/s00198-006-0204-0. PMID: 16951908.
- 398. Wallace LS; Ballard JE; Holiday D; Turner LW; Keenum AJ; Pearman CM. Evaluation of decision rules for identifying low bone density in postmenopausal African-American women. J Natl Med Assoc. 2004 Mar;96(3):290-6. PMID: 15040510.
- 399. Wassertheil-Smoller S; Hendrix SL; Limacher M; Heiss G; Kooperberg C; Baird A; Kotchen T; Curb JD; Black H; Rossouw JE; Aragaki A; Safford M; Stein E; Laowattana S; Mysiw WJ. Effect of estrogen plus progestin on stroke in postmenopausal women: the Women's Health Initiative: a randomized trial. JAMA. 2003 May 28;289(20):2673-84. doi: 10.1001/jama.289.20.2673. PMID: 12771114.
- Wells GA; Cranney A; Peterson J; Boucher M; Shea B; Robinson V; Coyle D; Tugwell P. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev. 2008(1):Cd001155. doi: 10.1002/14651858.CD001155.pub2. PMID: 18253985.
- Wells GA; Cranney A; Peterson J; Boucher M; Shea B; Robinson V; Coyle D; Tugwell P. Etidronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev. 2008(1):Cd003376. doi: 10.1002/14651858.CD003376.pub3. PMID: 18254018.
- Wells G; Cranney A; Peterson J; Boucher M; Shea B; Robinson V; Coyle D; Tugwell P. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev. 2008(1):Cd004523. doi: 10.1002/14651858.CD004523.pub3. PMID: 18254053.

Not included in individual study counts at the bottom level of the diagram.^a

Not unique citations: studies reporting on both benefits and harms were included in the analysis for both KQ 4 and KQ 5ª

FDA= Food and Drug Administration; HDI= human development index; KQ= key question

Table 1. Recommendations about screening and treatment of osteoporosis from variousprofessional and health organizations

Organization,		
Year	Population	Recommendations
AACE, 2016 ³¹⁸	Postmenopausal women	 Screening Evaluate all postmenopausal women age 50 years or older for osteoporosis risk Include a detailed history, physical exam, and clinical fracture risk assessment with FRAX in the initial evaluation for osteoporosis Consider BMD testing based on clinical fracture risk profile When BMD is measured, use DXA measurement (spine and hip) Osteoporosis should be diagnosed based on presence of fragility fractures in the absence of other metabolic bone disorders or a T-score ≤-2.5 in the lumbar spine, femoral neck, total hip, and/or 33% (one-third) radius even in the absence of a prevalent fracture Osteoporosis may also be diagnosed in patients with osteopenia and increased fracture risk using FRAX country-specific threshold
		 Evaluation Evaluate for causes of secondary osteoporosis and prevalent vertebral fractures, consider using bone turnover markers
		 Treatment for patients with: Osteopenia or low bone mass and a history of fragility fracture of the hip or spine T-score ≤-2.5 in the spine, femoral neck, total hip, or 33% radius T-score between -1.0 and -2.5 if the FRAX 10-year probability for major osteoporotic fracture is ≥20% or the 10-year probability for hip fracture is ≥3% in the United States or above the country-specific threshold in other countries or regions
AAFP 2011 ³¹⁹	Postmenopausal	Same recommendations as the 2011 USPSTE recommendations
,	women	(recommended screening for osteoporosis in women age 65 years or older
	Men	and in younger women whose nacture risk is equal to or greater than that of a 65-year-old white woman who has no additional risk factors, insufficient evidence to assess the balance of benefits and harms of screening in men)
ACOG, 2012	Women	Recommend BMD testing by DXA:
(reaffirmed in 2014) ³²⁰		 For all women age 65 years or older For younger women if they are postmenopausal and have other risk factors for fracture and/or a 10-year FRAX risk of fracture ≥9.3% At intervals not more frequent than every 2 years Recommend FDA-approved therapies for women with BMD diagnosis of osteoporosis or women with osteopenia and 10-year FRAX probability of major osteoporosis risk ≥20% or hip fracture risk ≥3%
ACPM, 2009 ³²¹	Women age 65 years or older	 Recommend BMD testing with DXA for all women age 65 years or older and men age 70 years or older, and not more frequently than every 2 years
	Men age 70 years or older	 Younger postmenopausal women and men ages 50 to 69 years should undergo screening if they have at least 1 major or 2 minor risk factors for osteoporosis Osteoporosis risk assessment tools that estimate absolute fracture risk can be useful supplements to BMD testing, improving the sensitivity and specificity of either approach (BMD or risk assessment) alone; risk assessment can also be used if BMD testing is not readily available or feasible

Table 1. Recommendations about screening and treatment of osteoporosis from variousprofessional and health organizations

Organization,		
Year	Population	Recommendations
ACR, 2016 ³²²	Asymptomatic BMD	Rate appropriateness and relative radiation levels of various tests for
	screening or persons	identifying low bone density and fracture risk
	with established or	
	clinically suspected	
	low BMD, patients	
	with a 1-score <-1.0	
	with additional risk	
	nactors,	
	womon with rick	
	factors and men	
	ages 20 to 50 years	
	with risk factors	
Endocrine	Higher-risk men	Recommend BMD testing by central DXA in:
Society, 2012 ³²³	J J	Men age 70 years or older
		• Men ages 50 to 69 years with risk factors (e.g., low body weight, prior
		fracture as an adult, smoking)
ISCD, 2015 ⁶⁷	Men and	Indications for BMD testing:
	postmenopausal	Women age 65 years or older
	women	 Postmenopausal women younger than age 65 years with risk factors for
		low bone mass
		 Women during the menopausal transition with clinical risk factors for
		fracture, such as low body weight, prior fracture, or high-risk medication
		use
		Men age 70 years or older
		Men younger than age 70 years with clinical risk factors for low bone
		mass
		Adults with a fragility fracture
		Adults with a disease of condition associated with low bone mass of bone loss
		 Adults taking medications associated with low hone mass or hone loss
		 Addits taking medications associated with low bone mass of bone loss Anyone being considered for pharmacologic therapy for osteoporosis
		Anyone being treated for osteoporosis to monitor treatment effect
		Anyone not receiving therapy in whom evidence of bone loss would lead
		to treatment
		 Women discontinuing estrogen should be considered for testing
		according to the indications listed above
NOF, 2014 ⁵	Men age 50 years or	Recommend BMD testing with DXA for:
	older and	 Women age 65 years or older and men age 70 years or older
	postmenopausal	 Postmenopausal women and men ages 50 to 69 years based on risk
	women	factor profile
		Postmenopausal women and men age 50 years or older who have had
		an adult-age fracture
		Recommend pharmacologic treatment in those with a 1-score <-2.5, in
		between 10 and 25 and a 10 year EPAX probability of major
		osteonorosis-related fracture >20% or hin fracture probability >3%
NICE 2012 ³²⁴	Persons presenting	Consider assessment of fracture risk:
	in any health care	In all women age 65 years or older and all men age 75 years or older
	setting	 In women vounger than age 65 years and men vounger than age 75
		years in the presence of risk factors, such as:
		 Previous fragility fracture
		 Current use or frequent recent use of oral or systemic glucocorticoids
		 ○ History of falls
		 Family history of hip fracture
		 Other causes of secondary osteoporosis Lew DMI (140.5 kg/m²)
		o LOW BIVII (<18.5 Kg/M)
		 Alcohol intake of >14 units per week for women and >21 units per
	i i i i i i i i i i i i i i i i i i i	

Table 1. Recommendations about screening and treatment of osteoporosis from variousprofessional and health organizations

Organization,	Denulation	Decommon deficine
Year	Population	Recommendations
		Do not routinely assess fracture risk in persons younger than age 50 years unless they have major risk factors (e.g., current or frequent recent use of oral or systemic glucocorticoids, untreated premature menopause, or previous fragility fracture) because they are unlikely to be at high risk.
		Consider measuring BMD with DXA in persons whose absolute fracture risk (via FRAX or QFracture) is in the region of an intervention threshold for a proposed treatment, and recalculate FRAX with BMD value
North American Menopause Society, 2010 ³²⁵	Postmenopausal women	 Measure height and weight annually and assess chronic back pain, kyphosis, and clinical risk factors Recommend BMD testing with DXA in postmenopausal women with medical causes of bone loss and all women age 65 years or older Recommend BMD testing with DXA for postmenopausal women age 50 years or older with risk factors of previous fracture, thinness, history of hip fracture in parent, current smoking, rheumatoid arthritis, or excessive alcohol intake Vertebral fracture must be confirmed by lateral spine radiographs or vertebral fracture assessment visualization of fracture at the time of BMD testing Recommendations of calcium intake of 1,200 mg/day for adults age 50 years or older, and vitamin D3 of 800 to 1,000 IU/day Recommend pharmacologic treatment in postmenopausal women who have had an osteoporotic vertebral or hip fracture; postmenopausal women who have bMD values consistent with osteoporosis (i.e., T-score ≤-2.5) at the lumbar spine, femoral neck, or total hip region; and postmenopausal women who have a T-score from -1.0 to -2.5 and a 10-year risk, based on the FRAX calculator, of at least 20% for major osteoporotic fracture (spine, hip, shoulder, and wrist) or at least 3% for hip fracture Recommend repeating BMD testing 1 to 2 years after treatment For untreated postmenopausal women, repeat DXA testing is not useful until 2 to 5 years have passed Recommend SERM raloxifene for postmenopausal women with low bone mass or younger postmenopausal women with osteoporosis
		 Recommend teriparatide (PTH 1-34) for postmenopausal women with osteoporosis at high risk of fracture with therapy indicated for no more than 24 months
Scientific Advisory Council of Osteoporosis Canada, 2010 ³²⁶	Men and women older than age 50 years	 Measure height annually and assess for vertebral fracture Assess history of falls Perform biochemical testing in select patients to rule out secondary causes of osteoporosis Perform lateral thoracic and lumbar spine radiography or DXA if clinical evidence suggests fracture Use the 2010 version of the Canadian Association of Radiologists and Osteoporosis Canada tool or Canadian version of FRAX to assess absolute risk of fracture; offer treatment to persons with a 10-year risk >20% for major osteoporotic fractures
UKNSC, 2013 ³²⁷	Postmenopausal women	Systematic population screening not recommended because no RCT has assessed the clinical and cost-effectiveness of any current approach to screening for osteoporosis
WHO, 2008 ³²⁸	Men and women ages 40 to 90 years	 DXA and an assessment tool for case-finding high-risk individuals (FRAX) should be used to evaluate fracture risks for men and women. Recommend treatment with FDA-approved medication to lower risk in 3 high-risk groups: History of fracture of the hip or spine BMD in the osteoporosis range (T-score ≤-2.5) BMD in the low bone mass or osteopenia range with a higher risk of

Table 1. Recommendations about screening and treatment of osteoporosis from various professional and health organizations

Organization, Year	Population	Recommendations
		fracture defined by FRAX score for: ○ Major osteoporotic fracture 10-year probability ≥20% or ○ Hip fracture 10-year probability ≥3%

Abbreviations: AACE = American Association of Clinical Endocrinologists; AAFP = American Association of Family Physicians; ACOG = American College of Obstetricians and Gynecologists; ACPM = American College of Preventive Medicine; ACR = American College of Radiology; BMD = bone mineral density; BMI = body mass index; DXA = dual-energy X-ray absorptiometry; FDA = U.S. Food and Drug Administration; FRAX = Fracture Risk Assessment Tool; ISCD = International Society of Clinical Densitometry; IU/day = international unit per day; NICE = National Institute for Health and Care Excellence; NOF = National Osteoporosis Foundation; PTH = parathyroid hormone; QFracture = third tool: Promising Developments in Osteoporosis Treatment; RCT = randomized controlled trial; SERM = selective estrogen-receptor modulator; T-score = number of units (standard deviations) that bone density is above or below the average; UKNSC = United Kingdom National Screening Committee; USPSTF = United States Preventive Services Task Force; WHO = World Health Organization.

	Age	50	Age 5	55	Age	60	Age	e 65	Age	70	Age	75	Age 8	0 or older
	MOF	Hip	MOF	Hip	MOF	Hip	MOF	Hip	MOF	Hip	MOF	Hip	MOF	Hip
Caucasian Woman	Height 1	63.8 c	m, weight 7	'6.1 kg		Height 160.3 cm, weight 73.9 kg								
Without BMD	3.4	0.2	5.2	0.3	6.9	0.5	8.4	1	10	2	13	3.8	18	6.3
With BMD T-score 0.0	3.4	0.1	5	0.1	6	0.1	6.5	0.2	6.9	0.3	7.3	0.6	8.6	1
With BMD T-score -1.75	4.8	0.5	7.1	0.7	8.6	0.9	9.6	1.2	10	1.8	12	2.7	14	3.8
With BMD T-score -3.25	9.6	3.9	13	4.3	16	5.1	18	6	21	7.7	24	10	27	12
Black Woman	Height 1	63.5 c	m, weight 8	8.3 kg				Height 1	60.6 cm,	weight	80.7 kg			
Without BMD	1.3	0.1	2.1	0.1	2.9	0.2	3.5	0.4	4.3	0.8	5.5	1.5	7.6	2.5
With BMD T-score 0.0	1.5	0	2.1	0	2.6	0.1	2.8	0.1	3	0.1	3.2	0.3	3.8	0.4
With BMD T-score -1.75	2.1	0.2	3	0.3	3.8	0.4	4.2	0.5	4.6	0.7	5.2	1.1	6.5	1.6
With BMD T-score -3.25	4.2	1.6	5.7	1.8	7.1	2.2	8.2	2.6	9.4	3.3	11	4.3	13	5.2
Caucasian Man	Height 1	78.3 c	m, weight 9	2.9 kg	Height 174.6 cm, weight 89.0 kg									
Without BMD	2.6	0.1	3.7	0.2	4.5	0.3	4.9	0.6	5.6	1.1	6.5	2.1	8.4	3.5
With BMD T-score 0.0	2.8	0.1	3.9	0.1	4.4	0.2	4.5	0.3	4.6	0.5	4.8	0.9	5.5	1.3
With BMD T-score -1.75	4.6	0.8	6.2	1	7.2	1.3	7.6	1.6	8	2.1	8.4	2.9	9.4	3.7
With BMD T-score -3.25	10	5.5	13	6.1	14	6.3	15	6.7	16	7.4	16	8.5	17	9.1
Black Man	Height 1	76.7 c	m, weight 9	2.1 kg				Height 1	74.4 cm,	weight	87.8 kg			
Without BMD	1.1	0	1.5	0.14	1.9	0.1	2.1	0.3	2.3	0.5	2.8	0.9	3.7	1.5
With BMD T-score 0.0	1.2	0	1.6	0.1	1.9	0.1	1.9	0.1	1.9	0.2	2	0.4	2.4	0.6
With BMD T-score -1.75	2.4	0.4	2.6	0.4	3	0.5	3.1	0.7	3.3	0.9	3.5	1.2	4.1	1.6
With BMD T-score -3.25	4.5	2.4	5.5	2.6	6.1	2.6	6.3	2.7	6.5	3	6.9	3.5	7.6	3.9

Table 2. FRAX-generated 10-year fracture risk probabilities by age, race, sex for U.S. populations of average height and weight

Abbreviations: BMD = bone mineral density; FRAX = Fracture Risk Assessment Tool; MOF = major osteoporotic fracture; U.S. = United States.

Instrument	Mean Age	Sex	Race/Ethnicity	Clinical and Geographic Setting	Components	Pooled AUC (95% Cl) or Range; ^a No. of Studies; No. of Participants	Threshold, ^b Range of Sensitivity; No. of Studies; Participants	Threshold, ^b Range of Specificity; No. of Studies; No. of Participants	Threshold, ^b Range of PPV; No. of Participants; No. of Participants	Threshold, ^b Range of NPV; No. of Participants; No. of Participants
ABONE ^{83, 87}	66 to 68.4	All women	White and Chinese	General population; Canada Singapore	Age, body size, no estrogen use for at least 6 months	Ranges from 0.70 to 0.72 (femoral neck); 2; 2,500	Varies by study, no common cutoff	Varies by study, no common cutoff	NR	NR
AMMEB ⁹⁰	65	All women	NR	General practices; Italy	Age, BMI, age at menarche, postmenopausal period	Any site: 0.63 (NR); 1; 995	NR	NR	NR	NR
DOEScore ¹⁰⁴	70.5	All women	98.6% Caucasian; 1.4% Aboriginal (overall cohort, NR for included sample)	Population- based cohort; Dubbo, Australia	Age, body weight, and history of fracture	Any site: 0.75 (0.691-0.809); 1; 410	>10: 82% (NR); 1; 410	>10: 52% (NR); 1; 410	NR	>10: 55% (NR); 1; 410
FRAX without BMD ⁵⁷	57.7	All women	72% white, 17% black, 8% Hispanic	General practice; US	Age, race, rheumatoid arthritis, history of prior fracture, medication use, smoking, alcohol intake, and parental history of hip fracture	Femoral neck: 0.60 (0.56- 0.63); 1; 2,857	MOF ≥9.3% 33.3 (26.3- 40.4); 1; 2,857	MOF ≥9.3% 86.4 (85.1- 87.7); 1; 2,857	MOF ≥9.3% 13.7 (10.4- 17.0); 1; 2,857	NR
FRAX without BMD ⁵⁶	78.2	45.1% women	NR	General practice; Australia	Age, race, rheumatoid arthritis, history of prior fracture, medication use, smoking, alcohol intake, and parental history of hip fracture	Any site: 0.68 (0.63-0.74); 1; 626	MOF ≥6.5% 89.6 (NR); 1; 626	MOF ≥6.5% 35 (NR); 1; 626	MOF ≥6.5% 16.8 (NR); 1; 626	MOF ≥6.5% 96.2 (NR); 1; 626
Gnudi et al, 2005 ⁹²	64.3	All women	100% white	Women requiring a DXA scan at "a center"; Italy	Age at menarche, weight, years since menopause, previous fracture, weight, fracture in subject's mother, arm help to get up from sitting	Any site: 0.744 (0.699-0.789); 1; 478	Predicted probability of low BMD at 0.132 ^c : 95.5%; 1; 478	Predicted probability of low BMD at 0.132 ^c : 27.7%; 1; 478	Predicted probability of low BMD at 0.132 ^c ; 0.156: 91.2%; 1; 478	Predicted probability of low BMD at 0.132 ^c : 3.9%; 1; 478

							Threshold, [▶]	Threshold, [▷]	Threshold, ^D	Threshold, [▷]
						Pooled AUC	Range of	Range of	Range of	Range of NPV;
						(95% CI) or	Sensitivity;	Specificity;	PPV; No. of	No. of
				Clinical and		Range; ^a No. of	No. of	No. of Studies;	Participants;	Participants;
	Mean			Geographic		Studies; No. of	Studies;	No. of	No. of	No. of
Instrument	Age	Sex	Race/Ethnicity	Setting	Components	Participants	Participants	Participants	Participants	Participants
Mscore ¹¹²	60.9 to	All men	Caucasian and	Clinic-based	2 models:	Femoral neck:	Age-weight	Age-weight	NR	NR
	68.4		African		Age and weight	Age-weight	model:	model:		
			American		or	model:	<9	<9		
			subgroups		Age, weight,	Caucasian 0.81	Caucasian	Caucasian 58%;		
					gastrectomy, COPD,	(0.69-0.92); 1,	100%; 1,	1; 197		
					≥2 prior fractures	197	197	African		
						African	African	American [®] 73%;		
						American [®] 0.99	American	1; 134		
						(0.98-1.01); 1;	93%; 1; 134			
						134		5 variable		
							5 variable	model:		
						5-variable	model:	Caucasian 49%;		
						model:	Caucasian	1; 197		
						Caucasian 0.84	88%; 1; 197	NR African		
						(0.74-0.95); 1;	NR African	American		
						197	American			
						NR for African				
MODE 086,110,	CO 40	All us a us		1 aliaia	Ann weight history	American	>0.	20.		NC at ENI
MORES 113	63 to	All men	NR		Age, weight, history	Pooled AUC	20:	20:	20 at FN:	20 at FIN:
	70.2			sample, z		(lotal hip of hip	00% - 90%	01%-70%, 3,	11%, 1, 340	99%, 1, 340
				population-		combined with	3, 4,828	4,828		
				pased		other				
				samples						
						0.797 (0.714-				
MOST ⁹⁸	65 and	Allmon	71% Courseion	Cohort of	OLIL body woight	0.079), 3, 4,020	ND	ND	ND	ND
10031	oldor	All men	20% Chinoso	community		Any cite: 0 700				
	oluei		29% Chinese	dwolling		Ally Sile. 0.799				
				ambulatory		(0.775-0.023), 1.4658				
				mon: US and		1, 4,000				
				Hong Kong		Hong Kong				
				riong Kong		Any site: 0.831				
						(0 804-0 858)·				
						(0.00 + 0.000), 1 · 1 014				
	older		29% Chinese	dwelling, ambulatory men; US and Hong Kong		(0.775-0.823), 1; 4,658 Hong Kong Any site: 0.831 (0.804-0.858); 1; 1,914				

Instrument	Mean Age	Sex	Race/Ethnicity	Clinical and Geographic Setting	Components	Pooled AUC (95% Cl) or Range; ^a No. of Studies; No. of Participants	Threshold, ^b Range of Sensitivity; No. of Studies; Participants	Threshold, ^b Range of Specificity; No. of Studies; No. of Participants	Threshold, ^b Range of PPV; No. of Participants; No. of Participants	Threshold, ^b Range of NPV; No. of Participants; No. of Participants
NOF guidelines ^{83,89,} ^{30,101}	57.3 to 69.2	All women	Predominantly white	Majority of studies in general population or general practice; US Canada Italy	Age, weight, personal history of fracture with minimal trauma prior to age 40 years, family history of fracture, current cigarette smoking	Lowest T-score: 0.60; 2; 1,520	≥1: 96%-100%	≥1: 10%-18%; 2; 2,567	≥1: 37%; 2; 202	≥1: 100%; 2; 202
ORAI ^{80,81,83-85,} 87-91,93-95,100,101, 104,109	50.5 to 70.5	All women	White participants in majority of studies	Half of the studies conducted in general practice or population settings; US, Australia, Belgium, Canada, Denmark, England, Italy, Singapore, Spain	Age, weight in pounds, current estrogen use	Pooled AUC for any site: 0.651 (0.596-0.705); 10; 16,680	≥9: 50%-100%; 10; 11,173	≥9: 10%-75%; 9; 10,763	≥9: 20%-98%; 6; 7,524	≥9: 25%-94%; 5; 7,114
OSIRIS ^{81,88,90,} 94,95,100,109	54.1 to 61.5	All women	Predominantly Causasian	All clinic- based, all in Europe	Age, weight, HRT use, history of low- trauma fracture	Pooled AUC (any site): 0.680 (0.639-0.721) 5; 5,649	<1: 58%-64%; 2; 2,701	<1: 68%-69%; 2; 2,701	<1: 80%-88%; 2; 2,701	<1: 30%-50%; 2; 2,701
OST ^{78,98,99,108,} 111,112	64 to 68	All men	Predominantly Caucasian	4 clinic- based, 2 community- based; 5 in US and 1 in Portugal	Age and weight	Pooled AUC (any site): 0.747 (0.674-0.821); 5; 5,687; without outlier, ⁸⁷ pooled AUC: 0.706 (0.691-0.720); 9: 24.213	<2: 62%-89%; 5; 5,366	<2: 36%-74%; 5; 5,366	<2: 10%-38%; 5; 5,366	<2: 40%-97%; 5; 5,366

Instrument	Mean Age	Sex	Race/Ethnicity	Clinical and Geographic Setting	Components	Pooled AUC (95% Cl) or Range; ^a No. of Studies; No. of Participants	Threshold, ^b Range of Sensitivity; No. of Studies; Participants	Threshold, ^b Range of Specificity; No. of Studies; No. of Participants	Threshold, ^b Range of PPV; No. of Participants; No. of Participants	Threshold, ^b Range of NPV; No. of Participants; No. of Participants
OST ^{57,81,84,88,89,} 91,93-95,100,102,103, 109	51 to 62	All women	Predominantly Caucasian	11 clinic- based and 1 community based; 2 in US, 3 in Canada, 7 in Northern/ Western Europe	Age and weight	Pooled AUC (any site): 0.667 (0.626-0.708); 10; 24,739	<2: 46.8%- 95.3%; 8; 51,158	<2: 39.6%-81.1%; 8; 51,158	<2: 2%-41%; 4; 9,573	<2: 86%-100%; 3; 6,716
OST ⁵⁶	78	45.1% men	Predominantly Caucasian	Clinic-based, Australia	Age and weight	Any site: 0.76 (0.71-0.82); 1; 626	≤0: 90.9%	≤0: 39.9%	≤0: 17.5%	≤0: 96.9%
OSTA ^{97, 105}	63.4 to 54	All men	Asian	Community- based, Hong Kong and South Korea	Age and weight	Any site: AUC ranges from 0.627 to 0.720; 2; 1,466	Varies by study, no common cutoff	Varies by study, no common cutoff	Varies by study, no common cutoff	Varies by study, no common cutoff
OSTA ^{87,90} Kung et al, 2003 ^{96,104,105,} ¹⁰⁷	59.1 to 70.5	All women	Caucasian and Asian	2 clinic- and 4 community- based studies; Australia, Singapore, Italy, Hong Kong, South Korea	Age and weight	Ranges from 0.617 to 0.75 (any site); 2; 1,768	≤-1: 41%-97%; 5; 3,414	≤-1: 24%-67%; 5; 3,414	≤-1: 24%-49%; 3; 2,557	≤-1: 87%-98%; 2; 2,147
SCORE ^{57,80-83,} 85,87,88,91,94,95, 101,109	57.7 to 69.2	All women	Predominantly white	4 clinic- based, 7 community- based; 4 US; 2 UK; Spain; Singapore; Belgium; Denmark; Canada	Age, weight, and estrogen replacement therapy, SCORE instrument includes race/ethnicity, history of rheumatoid arthritis, and history of nontraumatic fractures after age 45	Pooled AUC (any site): 0.698 (0.685-0.711); 8; 15,262	≥6: 54%-100%; 6; 7,455	≥6: 18%-72%; 6; 7,455	≥6: 89%-100%; 3; 4,440	≥6: 19%-41%; 3; 4,440

							Threshold. ^b	Threshold. ^b	Threshold. ^b	Threshold. ^b
						Pooled AUC	Range of	Range of	Range of	Range of NPV
						(95% CI) or	Sensitivity.	Specificity:	PPV: No of	No of
				Clinical and		Range ^{,a} No. of	No of	No of Studies:	Particinants:	Particinants:
	Mean			Geographic		Studies: No. of	Studios	No of	No of	No of
Instrument		Sov	Race/Ethnicity	Setting	Components	Particinants	Particinants	Particinants	Particinants	Particinants
	60.2		02.5% white		Prior fracture after	Any cito: 0.54	>5.		ND	ND
30F	09.5	All	93.5 % White	Group Hoalth		Ally Sile. 0.34	20. 22.6 (26.6	≤0. 76.0 (62.5		
		women		Gloup Health	aye 50, ayes $00-04$	(SE, 0.03), 1,	32.0 (20.0-	70.0 (03.3-		
				participarit,		410	30.0), 1, 410	00.0), 1, 410		
				05	age 200 with 2-score					
					<-0.43 , ≥ 3 HSK IdCIOIS					
					(ISI-degree relative					
					with hip fracture,					
					than at age 25,					
					dementia, using					
					corticosterolas,					
					seizure medication, or					
					benzodiazepines, had					
					a fracture at age ≥ 50 ,					
					not taking HRI, on					
					feet <4 h/day, heart					
					rate >80 beats/min,					
					was taller than 5'7 at					
					age 25, age ≥80;					
					subtract 1 point each					
					for race (African					
					American); walk for					
					exercise; can rise					
					from chair without					
00.04					arms					
SOFSURF ^{88,91,}	59.7 to	All	Mostly white	Population-	Age, weight,	NR in 2	Varies by	Varies by study,	Varies by	Varies by study,
104	70.5	women		based cohort;	smoking, and history	studies;91,104	study, no	no common	study, no	no common
				Dubbo,	of postmenopausal	Any site: 0.717	common	cutoff	common	cutoff
				Australia	fracture	(0.777-0.670);	cutoff		cutoff	
				Scanning		1; 208°°				
				clinics; UK						

^a Presented for any site when available (femoral neck, lumbar spine, total hip); if not available, presented for femoral neck.

^b Sensitivity, specificity, NPV, and PPV presented for the most commonly reported threshold across studies.

^c Study presents multiple predicted probabilities of low BMD; the study notes that the threshold offered the highest number of DXA-deferred cases and the lowest number of low-BMD missed cases.

^d Studies present results for three different sites of BMD measurement: total hip,¹¹⁰ total hip or femoral neck,⁸⁶ or thoracic vertebra, lumbar vertebra, arms, ribs, pelvis, or legs.¹¹³

^e The African American sample includes data from 95 new subjects and 39 subjects from development cohort and is therefore not a pure validation cohort.

Table 3. Characteristics and accuracy of clinical risk assessment tools in identifying osteoporosis

Abbreviations: ABONE = assessing age, body size, and estrogen use; AMMEB = Age, Years after Menopause, Age at Menarche, Body Mass Index; AUC= area under the curve; BMD= bone mineral density; BMI = body mass index; CI = confidence interval; COPD = Chronic Obstructive Pulmonary Disease; DOEScore = Dubbo Osteoporosis Epidemiology Score; DXA= Dual-energy X-ray absorptiometry; FN= Femoral neck; FRAX = Fracture Risk Assessment tool; HRT = hormone replacement therapy; MOF= Melton Osteoporotic Fracture study; MORE = Multiple Outcomes of Raloxifene Trial; MOST = Male Osteoporosis Screening Tool; NOF = National Osteoporosis Foundation; NR = not reported; OPRA= osteoporosis population-based risk assessment ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OST = osteoporosis self-assessment tool; OSTA = Osteoporosis Self-assessment Tool for Asians; QUI = ultrasound index; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; SE = standard error; SOF = Study of Osteoporotic Fractures; SOFSURF = Study of Osteoporotic Fractures Simple Useful Risk Factors ;UK= United Kingdom; US = United States; USA= United States of America

Table 4. Characteristics and accuracy of machine-based tests in identifying osteoporosis

Imaging			Age Range	Gold Standard	Site of Gold	Number of	Number of	
Test	Site of Test	Sex	(Years)	Test	Standard	Studies	Participants	Summary of Accuracy
QUS	Calcaneus	Women	Mean age ranges from 59–63	DXA ≤-2.5	Lumbar spine, femoral, or total hip	7 ^{88, 94, 96, 102,} 114-116	1,969	AUC ranges from 0.69 to 0.898, pooled estimate: 0.77 (95% CI, 0.72-0.81)
QUS	Calcaneus	Men	Mean age ranges from 61–63	DXA ≤-2.5	Lumbar spine, femoral, or total hip	3 ^{97, 98, 111}	5,142	AUC varies from 0.696 to 0.930, pooled estimate: 0.80 (95% CI, 0.67-0.94)
Peripheral DXA	Calcaneus	Women	61 (SD range, 4–8)	DXA	Lumbar spine, femoral, or total hip	2 ^{94, 95}	1,212	AUC ranges from 0.67 to 0.803 (variance NR)
DXR	Nondominant metacarpals	Women	61 (range, 50–75)	DXA	Lumbar spine or total hip	1 ¹¹⁴	221	AUC: 0.84 (95% CI, 0.79- 0.89)
RA	Nondominant phalanges	Women	61 (range, 50–75)	DXA	Lumbar spine or total hip	1 ¹¹⁴	221	AUC: 0.80 (95% CI, 0.74- 0.85)

Abbreviations: AUC = area under the curve; CI = confidence interval; DXA = dual energy X-ray absorptiometry; DXR = digital X-ray radiogrammetry; NR = not reported; QUS = quantitative ultrasound; RA = radiographic absorptiometry; SD = standard deviation; SE = standard error.

Table 5. Summary of imaging tests predicting fracture

				Age Range at			
Imaging Test	I ype of Incident	Site of Test	Sex	(Years)	Number of Studies	Number of Participants	Summary of Accuracy (AUC)
	Any osteoporotic or	Lumbar spine	Women	44-95	3 ^{119, 122, 123, 126}	33 839	Unadjusted: 0.64-0.77
aBMD	nonspine		W OINION	1100	°	00,000	Adjusted: 0.66 ^a
			Men	65 to ≥75	1 ¹²⁴	1,921	Adjusted: 0.71 ^b
		Total hip	Women	46-95	2 ^{122, 123, 132}	29,963	Unadjusted: 0.66-0.68
			Men	65 to ≥75	1 ¹²⁴	1,921	Adjusted: 0.72 ^b
		Femoral neck	Women	40-95	10 ^{119, 122, 123, 125, 126,}	41,294	Unadjusted: 0.59-0.76
					129, 130, 135-137, 140		Unadjusted by baseline T-score
							range:
							-1: 0.54
							≤-1 to >-2.5: 0.57
							$\leq -2.5: 0.63$
			N 4	00.1- >75	o120, 124, 125	7.070	Adjusted: 64 -0.71
			Men	60 to ≥75	3	7,972	Adjusted: 0.71 ^c -0.72 ^b
			Combined	≥50	2 ^{133, 139}	46,300	Unadjusted: 0.66-0.68
		Middle phalanges	Women	40-90	2 ^{134,142}	12,830	Unadjusted: 0.71
					404		Adjusted: 0.68 ^a
			Men	40-90	1 ¹³⁴	5,206	Unadjusted: 0.64
	Vertebral, spine	Thoracolumbar vertebra, spine	Women	50-95	3121-123, 127	30,837	Unadjusted: 0.61-0.69
		Total hip	Women	50-95	2 ^{122, 123, 125}	29,861	Unadjusted: 0.71
							Adjusted: 0.77 ^c
		Femoral neck	Women	50-95	2 ^{122, 123, 125}	29,861	Unadjusted: 0.71
					175		Adjusted: 0.70 ^c
			Men	≥60	1 ¹²⁵	445	Adjusted: 0.75 [°]
	Hip	Thoracolumbar vertebra, spine	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.65
		Total hip	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.81
		_	Men	≥60	1 ¹²⁵	445	Adjusted: 0.77 ^c
		Femoral neck	Women	40-95	7 ^{122, 123, 125, 128, 129, 136,}	38,322	Unadjusted: 0.64-0.86
					137		Adjusted: 0.75 ^d
			Men	≥65	1 ¹²⁰	5,606	Unadjusted: 0.85
			Combined	≥50	2 ^{133, 139}	46,300	Unadjusted: 0.76-0.80
		Middle phalanges	Women	40-90	2 ¹³⁴	12,830	Unadjusted: 0.83
			Men	40-90	1 ¹³⁴	5,206	Unadjusted: 0.64
DXA TBS	Any osteoporotic	Spine	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.63
	Vertebral, spine	Thoracolumbar vertebra, spine	Women	53-61; 50-95	2 ¹²¹⁻¹²³	30,072	Unadjusted: 0.66-0.68
	Hip	Spine	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.68

Table 5. Summary of imaging tests predicting fracture

				Age Range at			
	Type of Incident	0.1	•	Baseline		Number of	
Imaging lest	Fracture	Site of Test	Sex	(Years)	Number of Studies	Participants	Summary of Accuracy (AUC)
DXA aBMD &	Any osteoporotic	Spine	Women	50-95	1 122, 123	29,407	Unadjusted: 0.66
TBS		DXA BMD total hip +	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.69
		DXA BMD femoral neck	Women	50-95	1 ^{122, 123}	29 407	Unadiusted: 0.69
		+ TBS spine	Womon		•	20,107	
	Vertebral, spine	Thoracolumbar vertebra,	Women	53-61; 50-95	2 ¹²¹⁻¹²³	30,072	Unadjusted: 0.70-0.71
		spine					Adjusted: 0.72 ^d -0.73 ^e
		DXA BMD total hip +	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.73
		TBS spine					-
		DXA BMD femoral neck + TBS spine	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.73
	Hip	Spine	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.69
		DXA BMD total hip +	Women	50-95	1 ^{122, 123}	29,407	Unadjusted: 0.82
		TBS spine				,	,
		DXA BMD femoral neck	Women	50-95	1 ^{122, 123}	29.407	Unadiusted: 0.81
		+ TBS spine				,	,
QUS (BUA)	Any osteoporotic	Heel	Women	44-56	1 ¹¹⁹	775	Adjusted: 0.72 ^a
			Men	65 to ≥75; ≥65	2 ^{120, 124}	1,921 + 5,606	Unadjusted: 0.68
							Adjusted: 0.65 ^b
	Hip	Heel	Men	≥65	1 ¹²⁰	5,606	Unadjusted: 0.84
QUS (SOS)	Any osteoporotic	Heel	Men	65 to ≥75	1 ¹²⁴	1,921	Adjusted: 0.64 ^b
QUS (QUI)	Any osteoporotic or	Heel	Men	65 to ≥75	1 ¹²⁴	1,921	Adjusted: 0.66 ^b
	nonspine						,
QUS (BUA) &	Any osteoporotic or	QUS: Heel	Women	≥60	1 ¹²⁵	454	Adjusted: 0.73 ^c
DXA BMD	nonspine	DXA: Femoral neck					
		QUS: Heel	Men	≥65; ≥60	2 ^{120, 125}	5,606	Unadjusted: 0.69
		DXA: Femoral neck		,			Adjusted: 0.71 [°]
	Vertebral	QUS: Heel	Women	≥60	1 ¹²⁵	454	Adjusted: 0.72 ^c
		DXA: Femoral neck	Men	≥60	1 ¹²⁵	445	Adjusted: 0.75 ^c
	Hip	QUS: Heel	Women	≥60	1 ¹²⁵	454	Adjusted: 0.81 ^c
		DXA: Femoral neck	Men	≥65; ≥60	2 ^{120, 125}	5,606 + 445	Unadjusted: 0.85
							Adjusted: 0.78 ^c

^aAdjusted for age, height, weight, menopausal status, neck BMD (QUS only).

^bAdjusted for age and fracture history.

^cAdjusted for age, falls, and fracture history.

^dAdjusted for age.

^eAdusted for age and prevalent vertebral deformity.

Abbreviations: aBMD = areal bone mineral density; AUC = area under the curve; BUA = broadband ultrasound attenuation; DXA = dual-energy X-ray absorptiometry; DXL = dual X-ray and laser; QUI = quantitative ultrasound index (combines BUA and SOS); QUS = quantitative ultrasound measured at the calcaneus in all studies; SOS = speed of sound; TBS = trabecular bone score.

Risk		Bone		Age	Prediction			Countries
Tool	Risks	l ests Included	Sex	(Years)	(Years)	AUC Without BMD ^b	AUC With BMD ^b	Covered by Included Studies
FRAX ^{32c}	Age, sex, weight, height, previous fracture, parental hip fracture, current smoking, glucocorticoid steroid use, rheumatoid arthritis, secondary osteoporosis, alcohol use	Hip BMD ^d opt ional	Men and women	(Teals) 40 to 90	10 ^c	More Miniou BMD MOF: 0.62 (95% Cl, 0.61 to 0.64; \hat{r}^2 =40.5%; 3 studies; 13,970 men) ^{134,} 148, 329 Hip: 0.73 (95% Cl, 0.68 to 0.77; \hat{r}^2 =96.7%; 3 studies; 13,970 men) ^{134,} 148, 329 Women MOF: 0.67 (95% Cl, 0.65 to 0.68; \hat{r}^2 =99.2%; 17 studies; 158,897 women) ^{56,129,130,132,134,136-138,142,148,151,153,184,330,331} Hip: 0.76 (95% Cl, 0.72 to 0.81; \hat{r}^2 =99.8%; 12 studies; 190,795 women) ^{128,129,134,136-138,142,148,150,184,187,331} Both Sexes MOF: 0.67 (95% Cl, 0.72 to 0.81; \hat{r}^2 =47.1%; 3 studies; 66,777) ^{133,139,152} Hip: 0.77 (95% Cl, 0.73 to 0.79; 6,697 participants) ¹³⁹ 0.79 (95% Cl, 0.78 to 0.82; 39,603 participants) ¹³³	Men MOF: 0.67 (95% CI, 0.66 to 0.68; f^2 =0%; 4 studies; 15,842 men) ^{134, 148, 157, 329} Hip: 0.76 (95% CI, 0.72 to 0.80; f^2 =96.7%; 3 studies; 13,970 men) ^{134, 148, 329} MOF: 0.70 (95% CI, 0.68 to 0.71; f^2 =92.1%; 12 studies; 62,054 women) ^{129, 130, 134-138, 148-151, 330} Hip: 0.79 (95% CI, 0.76 to 0.81; f^2 =99.1%; 10 studies; 161,984 women) ^{128, 129, 134, 136-138, 148-150, 187} Both Sexes MOF: 0.69 (95% CI, 0.69 to 0.70; f^2 =70.3%; 3 studies; 66,777) ^{133, 139, 152} Hip: 0.80 (95% CI, 0.77 to 0.83; 6,697 participants) ¹³⁹ 0.83 (95% CI, 0.82 to 0.85; 39,603 participants) ¹³³	Men Canada, Denmark, U.S., Japan <u>Women</u> Australia, Canada, Denmark (2), Finland, France (2), Hong Kong, Japan, multinational European and U.S. cohort, Netherlands, New Zealand, Spain (3), U.S. (4) <u>Both Sexes</u> Canada (3)
Garvan nomogram/ FRC ¹⁶³	Age, sex, weight, previous nontraumatic fracture since age 50, fall within past 12 months	Hip BMD ^e optional ^f	Men and Women	60 to 96	10 ^g	<u>Men</u> Hip: 0.65 (95% CI, NR; 1,285 men) ¹⁵⁴ Nonvertebral: 0.61 (95% CI, NR; 1,355 men) ¹⁵⁴ <u>Women</u> MOF: 0.66 (95% CI, 0.61 to 0.72; 600 women) ¹⁵¹ Any OF: 0.65 (95% CI, NR; 506 women) ¹⁴⁹ Hip: 0.68 (95% CI, NR; 1,369 women) ¹⁵⁴ Nonvertebral: 0.58 (95% CI, NR; 1,637 women) ¹⁵⁴	$\frac{Men}{MOF^{h}: 0.70 (95\% CI, NR; 1,606 men)^{170}}$ Hip ^h : 0.79 (95% CI, NR; 1,346 men)^{154} 0.85 (95% CI, NR; 1,606 men)^{170} Nonvertebral: 0.67 (95% CI, NR; 1,346 men)^{154} <u>Women</u> MOF ^h : 0.68 (95% CI, 0.64 to 0.71; f^2 =84.8%; 3 studies; ^{129, 151, 170} 6,534 women) Any OF: 0.69 (95% CI, NR; 506 women)^{149} Hip ^h : 0.73 (95% CI, 0.66 to 0.79; f^2 =97.3%; 4 studies; ^{129, 149, 154, 170} 7,809 women) Nonvertebral: 0.62 (95% CI, NR; 1,646 women) ¹⁵⁴	<u>Men</u> Canada, Norway <u>Women</u> Australia, Canada, Netherlands, New Zealand, Norway

Risk		Bone		Age	Prediction		Countries
Prediction	Risks	Tests	Cov	Range	Time		Covered by
OFractura		Nono	Sex Mon and	(rears)	(rears)	AUC WITHOUT BIND	Mon and Waman
171	Aye, sex, weight height	none	women	30 10 65	1 10 10		France IIK
	smoking		women			MOF ^{I.}	Men and Women
	parental					0.69 (95% CL 0.68 to 0.69: 633.764	U.K.
	fracture or					men) ¹⁷¹	
	osteoporosis ⁱ .					0.74 (95% CI, NR; 1,108,219 men) ³³²	
	previous fall,					Hip:	
	glucocorticoid					0.86 (95% CI, 0.85 to 0.86; 633,764	
	steroid use,					men) ^{144, 171}	
	rheumatoid					0.86 (95% CI, NR; 1,108,219 men) ³³²	
	arthritis, alcohol					<u>Women</u>	
	use, hormone						
	replacement					0.79 (95% CI, 0.79 to 0.79; 642,153	
	therapy,					women)	
	asuina, endrocrine					0.02 (95% CI, NK, 1, 150, 417)	
	disease					Hip	
	cardiovascular					0.89 (95% CL 0.89 to 0.89: 642.153	
	disease,					women) ¹⁷¹	
	menopausal					0.89 (95% CI, NR; 1,136,417	
	symptoms ⁱ ,					women) ^{144, 332}	
	malapsorptive						
	gastrointestinal					2012 version of instrument:	
	disease', liver					<u>Men</u>	
	disease, type 2					MOF': 0.71 (95% CI, 0.70 to 0.72;	
	diabetes,					778,810 men) ¹⁰⁰	
	tricyclic					HIP: $0.88 (95\% \text{ CI}, 0.87 \text{ to } 0.88;$	
	antidepressant					170,010, men) Women	
	antidepressant					MOF ¹ : 0 79 (95% CL 0 79 to 0 79	
	use ^j) ethnicity ^j					804563 women) ¹⁵⁵	
	previous					Hip: 0.89 (95% CI, 0.89 to 0.90:	
	fracture ^j ,					804,563 women) ¹⁵⁵	
	dementia ^j ,					· ·	
	kidney disease ^j ,						
	epilepsy ⁱ ,						
	Parkinson's						
	disease [,] , living						
	in a nursing						
	nome, COPD',						
	cancer, lupus,						
	use ^j type 1						
	anticonvulsant use ⁱ , type 1						

Risk Prediction	Risks	Bone Tests		Age Range	Prediction Time			Countries Covered by
Tool	Included	Included	Sex	(Years)	(Years)	AUC Without BMD ^b	AUC With BMD ^b	Included Studies
	diabetes ^J							
WHI'' ²	Age, weight, height, self- reported health, prior fracture after age 55, race/ethnicity, physical activity, smoking, parental hip fracture after age 40, diabetes medications, glucocorticoid steroid use	Hip BMD opti onal	Women	50 to 79	5	Hip: 0.80 (95% CI, 0.77 to 0.82; 10,750 women) ¹⁷² 0.82 (95% CI, NR; 13,353 women) ¹⁷⁹	Hip: 0.80 (95% CI, 0.75 to 0.85; 10,750 women) ¹⁷²	Denmark, U.S.
OST ¹⁷³	Age, weight (score calculated as 0.2 x [weight in kg-age])	None	Women	45 to 88	NA ⁿ	MOF (3-year risk): 0.56 (95% CI, 0.52 to 0.60; 8,254 women) ¹⁰³ 0.71 (95% CI, 0.68 to 0.75; 3,614 women) ¹⁵³ MOF (10-year risk): 0.52 (95% CI, 0.52 to 0.53; 62,492 women) ⁵⁸		Canada, Denmark, U.S.
SCORE ¹⁷⁴	Age, weight, race, rheumatoid arthritis, prior nontraumatic fracture, prior estrogen use	None	Women	45 and older	NA ⁿ	MOF (10-year risk): 0.53 (95% CI, 0.53 to 0.54; 62,492 women) ⁵⁸ MOF (3-year risk): 0.70 (95% CI, 0.66 to 0.74; 3,614 women) ¹⁵³		Denmark, U.S.
FRISC ¹⁴⁰	Age, weight, menopausal status, secondary osteoporosis, prior fracture, back pain, dementia	Lumbar BMD	Women	40 to 79	1, 3, 5, or 10	NA	MOF: 0.73 (95% CI, NR; 400 women) ¹⁴⁰ Long bone and vertebral fracture ^o : 0.69 (95% CI, 0.64 to 0.73; 765 women) ¹²⁷	Japan (2)
FRISK ¹³¹	Age, weight, height, prior fracture, prior falls	Lumbar and hip BMD, optional	Women	60 and older	5 or 10	MOF: 0.62 (95% CI, 0.56 to 0.67; 600 women) ^{131, 151}	MOF: 0.66 (95% CI, 0.60 to 0.71; 600 women) ¹⁵¹	Australia

Risk Prediction Tool	Risks Included	Bone Tests Included	Sex	Age Range (Years)	Prediction Time (Years)	AUC Without BMD ^b	AUC With BMD ^b	Countries Covered by Included Studies
FRC ^{175p}	Age, sex, BMI, prior fracture, parental fracture, smoking, alcohol use, glucocorticoid steroid use, rheumatoid arthritis, secondary osteoporosis, race/ethnicity	BMD ^q optional	Men and women ^p	45 to 75	10 ^p	MOF: 0.66 (95% CI, NR; 893 men) ¹⁹⁰ Hip: 0.71 (95% CI, NR; 893 men) ¹⁹⁰ 0.83 (95% CI, 0.82 to 0.84; 94,489 women) ¹⁷⁸	MOF: 0.70 (95% CI, NR; 893 men) ¹⁹⁰ Hip: 0.79 (95% CI, NR; 893 men) ¹⁹⁰ 0.85 (95% CI, 0.84 to 0.86; 94,489 women) ¹⁷⁸	U.S. (2)
ORAI ¹⁷⁶	Age, weight, current estrogen use	No	Women	45 or older	NA ⁿ	MOF (3-year risk): 0.71 (95% CI, 0.68 to 0.75; 3,614 women) ¹⁵³ Any OF (3-year risk): 0.69 (95% CI, 0.66 to 0.72; 3,614 women) ¹⁵³		Denmark
OSIRIS ¹⁷⁷	Age, weight, current hormone therapy use, prior fracture	No	Women	60 to 80	NA ⁿ	MOF (3-year risk): 0.70 (95% CI, 0.66 to 0.74; 3,614 women) ¹⁵³ Any OF (3-year risk): 0.68 (95% CI, 0.65 to 0.72; 3,614 women) ¹⁵³		Denmark

^a Studies summarized in this table include instruments predicting fracture risk over a specified time horizon (e.g., 5 or 10 years). Additional studies predicting fracture by a certain age are summarized in the narrative.

^b Updated pooled estimates are provided where possible; otherwise, range of AUC estimates from relevant studies is provided.

^c FRAX has been updated several times since its initial release. Studies included in this review do not consistently report which version was used; thus, findings reflect various versions of FRAX released from the initial version through the current version. Further, although FRAX predicts 10 year fracture risk, the range of actual followup used by studies reporting accuracy of fracture risk prediction varied from 2 years to 10 years.

^d Based on DXA at the femoral neck with T-scores based on NHANES reference values for women 20-29 years of age.

^e Based on DXA, site unspecified, reference values for T-scores unspecified.

^f Either BMD or body weight is used in the nomogram.

^g This instrument can be used for either 5- or 10-year fracture risk prediction.

^h One of the studies included¹²⁹ uses a broader definition of major osteoporotic fractures and one study¹⁷⁰ reports discrimination using Harrell's C statistic.

ⁱ Risk factors only used in prediction of fracture for women.

^j Risk factor not included in the original QFracture, but is present in the 2012 update to QFracture.

^k Original instrument was validated for up to years of age; 2012 updated version included up to 100 years of age.

¹Two studies^{155, 171} did not include fractures of the proximal humerus in their definition of major osteoporotic fracture.

^m Based on DXA of the proximal femur, reference values for T-scores unspecified.

ⁿ These instruments were initially developed to predict osteoporosis, not incident fracture. S studies have evaluated their use for fracture prediction with length of followup over 3 years or over 10 years as indicated.

^o Only five risk factors from the original FRISC model were used for this estimate: age, weight, prior fracture, lumbar BMD, back pain.

^p Originally developed on a cohort of only women for 5-year risk prediction, with a smaller set of clinical risk factors. Subsequent validation studies included added risk factors, included 10-year risk predictions, and applied the model to a cohort of only men.
Table 6. Characteristics and accuracy of fracture risk prediction models in predicting fracture^a

^q Based on DXA of the total hip and hip subregions, T-scores based on NHANES reference values for men.

Abbreviations: AUC = area under the curve; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; COPD = chronic obstructive pulmonary disease;DXA = dual-energy X-ray absorptiometry; FRAX = Fracture Risk Assessment Tool; FRC = Fracture Risk Calculator; FRISC = Fracture and Immobilization Score; FRISK = Fracture Risk Score; lbs = pounds; MOF = major osteoporotic fracture defined as fractures of the proximal femur, distal radius, proximal humerus, and clinical vertebral fractures;NA = not applicable; NHANES = National Health and Nutrition Examination Survey; NR = not reported; OF = osteoporotic fracture; ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OST = osteoporosis self-assessment tool; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; WHI = Women's Health Initiative.

						Clinical Threshold	
Tool or	Author, Year					or Tool Used for	
Instrument	t of Publication	Population	N	Followup Period	Fracture Rate	Reclassification	Results
FRAX with BM	D Pressman et al, 2011 ¹⁸⁷	Participants age >50 years with BMD in Kaiser Permanente Northern California, US	94,489 women	Mean: 6.6 years	Hip fracture: 1.7% (1,579/94,489)	Youden's index (81% sensitivity threshold [identified as the optimal level from the NRI curve for the model without BMD, corresponding to a 10-year probability of 1.2% risk of hip fracture])	NRI: 0.055
FRAX with lum spine BMD inp	bar Leslie et al, uts 2012 ¹⁵²	All adults age ≥50 years with valid DXA measurements from the lumbar spine and femoral neck in Manitoba, Canada	20,477 men and women	Mean: 8 years	Osteoporotic fracture: 9% (1,845/20,477)	FRAX with femoral neck BMD	NRI for FRAX with weighted mean (lumbar spine or femoral neck): 0.02 NRI for FRAX with offset spine-hip (T-score difference): 0.02 FRAX with minimum site (lumbar spine or femoral neck): 0.028 NRI for FRAX with lumbar spine T-score: 0.01
FRC with BMD	Ettinger et al, 2012 ¹⁹⁰	Participants age ≥65 years in the Osteoporotic Fractures in Men Study database, US	5,893 men	Mean: 8.4 years	Incident hip fracture: 2.6% (156/5,873) Incident major osteoporotic fracture: 5.7% (335/5,873)	NOF 10-year 3% probability of a hip fracture NOF 10-year 20% probability of a major osteoporotic fracture	NRI: 0.085 NRI: 0.04
Dubbo nomogr with calcaneal QUS	am Chan et al, 2012 ¹²⁵	Participants ages 62 to 89 years from the Dubbo	454 women	Median: 13 years	33.9% (154/454)	Dubbo nomogram with femoral neck BMD	NRI for hip fractures: 0.111 NRI for vertebral fractures: 0.052 NRI for any fractures: 0.073
		Osteoporosis Epidemiology Study, Australia	445 men	Median: 13 years	16.9% (75/445)	Dubbo nomogram with femoral neck BMD	NRI for hip fractures: -0.055 NRI for vertebral fractures: 0.038 NRI for any fractures: No improvement

						Clinical Threshold	
Tool or	Author, Year	Denvilation		Fallen David	Energian Data	or Tool Used for	Describe
Instrument	of Publication	Population	N	Followup Period	Fracture Rate	Reclassification	Results
Dubbo nomogram	Chan et al,	Participants	312 women	Median: 12 years	26% (80/312)	Dubbo nomogram	NRI for hip fractures: 0.338
	2013	ages 62 to 90				with temoral neck	
005						DIVID	NPI for any fractures: 0.164
		at femoral neck	200 mon	Modian: 12 years	14% (52/200)	Dubbo pomogram	NRI IOI ally fractures: 0.002
		from the Dubbo	530 men	Median. 12 years	1478 (33/390)	with femoral neck	NRI for vertebral fractures:
		Osteoporosis				BMD	
		Epidemiology				Billb	NRI for any fractures: 0.035
		Study, Australia					, , , , , , , , , , , , , , , , , , , ,
Dubbo nomogram	Langsetmo et	Participants	4,152 women	Mean: 8.6 years	14.04%	WHO criteria of a	NRI: 0.015 in women (95%
	al, 2011 ¹⁷⁰	ages 55 to 95			(583/4,152)	T-score of ≤-2.5 for	CI, -0.026 to 0.056)
		years at baseline				high risk	
		in the Canadian				Canadian guidelines:	NRI: -0.055 (95% CI, -0.095
		Multicentre				IOW ISK: 0%-10%	to -0.015)
		Osteoporosis				moderate: 10%-20%	
		Sludy	1 606 men	Mean: 8.3 years	7 2% (116/1 606)	MHO criteria of a	NRI: 0.067 (95% CL -0.06
			1,000 men	Mean. 0.5 years	7.270 (110/1,000)	T-score of ≤ 2.5 for	to 0 194)
						high risk	
						Canadian guidelines:	NRI: 0.192 (95% CI, 0.063
						low risk: 0%–10%	to 0.322)
						moderate: 10%-20%	
						high: >20%	
Garvan nomogram	Ahmed et al,	Participants age	1,637 women	Mean: 6.9 years	Nonvertebral	Garvan nomogram	NRI for nonvertebral
with body weight	2014	≥60 years from			osteoporotic	with BMD	osteoporotic fractures: -
		Tromsø, Norway			fractures: 21.7%		0.106 (SE, 0.04)
					(356/1,637)		NRI for hip fractures: -0.172
					Fip fractures.		(SE, 0.052)
			1 355 men	Mean: 7.1 years	Nonvertebral	Garvan nomogram	NRI for ponvertebral
			1,000 11011	Would The yourd	osteoporotic	with BMD	osteoporotic fractures:
					fractures: 8.6%		-0.133 (SE. 0.072)
					(117/1,355)		NRI for hip fractures: -0.175
					Hip fracture: 3.5%		(SE, 0.10)
					(47/1,355)		
Lumbar spine	lki et al,	Japanese	665	Median: 10 years	13.8% (92/665)	Appears to be	NRI: 0.235 (95% CI, 0.15 to
trabecular bone	2014'2'	women age ≥50				continuous (no risk	0.54)
score		years				categories specified)	

Abbreviations: BMD = bone mineral density; CI = confidence interval; DXA = dual energy X-ray absorptiometry; FRAX = Fracture Risk Assessment tool; FRC = Fracture Risk Calculator; N = number; NOF = National Osteoporosis Foundation; NRI = net reclassification improvement; QUS = quantitative ultrasound; SE = standard error; USA = United States of America; WHO = World Health Organization.

	Study	Inclusion/	Mean Length of Followup.			Bone		AUC for	AUC for BMD	AUC for BMD
Study	Cohort*,	Exclusion	Years	N	Participant Characteristics	Measurement	Fracture	Baseline BMD	% Change	Baseline and %
Berry, 2013 ¹⁹⁵	Framingham Osteoporosis	Included participants with	3.7 (2.4 to 6.0)	802	Mean age: 74.8 (SD, 4.5)	DXA, BMD	Hip fracture ^a	0.71 (0.65 to 0.78)	0.68 (0.62 to 0.75)	0.72 (0.66 to 0.79)
	Study, US	at least 2 BMD measurements. Excluded those with fracture prior to second test.			Percent women: 61		MOF fracture ^a	0.74 (0.69 to 0.79)	0.71 (0.66 to 0.76)	0.74 (0.69 to 0.79)
Hillier, 2007 ¹⁹⁴	Study of Osteoporotic	Included participants with	8.0 (6.3 to 9.8)	4,124	Mean age: 74 (SD, 4)	DXA, BMD	Hip fracture ^b	0.73 (NR)	0.68 (NR)	0.74 (NR)
	Fractures, US	at least 2 BMD measurements.			Percent women:		Nonspine fracture ^b	0.65 (NR)	0.61 (NR)	0.65 (NR)
		Excluded those with fracture prior to second test.			100		Spine fracture ^b	0.67 (NR)	0.62 (NR)	0.68 (NR)

^a Adjusted for age, sex, BMI, weight loss, and history of fracture measured at the time of the second BMD.

^b Adjusted for age and weight change.

Abbreviations: AUC = area under the curve; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; DXA = dual energy X-ray absorptiometry; MOF = major osteoporotic fracture defined as fractures of the proximal femur, distal radius, proximal humerus, and clinical vertebral fractures; N = number; NR = not reported; SD = standard deviation; USA = United States of America.

Key Question	Population, Intervention	No. of Studies; No. of Observations	Summary of Findings by Outcome	Consistency/ Precision	Reporting Bias	Overall Quality of Studies	Body of Evidence Limitations	EPC Assessment of Strength of Evidence for Outcome	Applicability
KQ 2a	Women ^a	25; 37,154	AUC ranges from 0.32 to 0.87 for all included instruments (pooled AUC ranges from 0.65 to 0.70)	Inconsistent/ imprecise	No evidence of reporting bias	Fair	Heterogeneity in included studies	Low	Unclear whether findings apply to subgroups defined by age or race
KQ 2a	Men	10; 11,108	AUC ranges from 0.62 to 0.89 for all included instruments (pooled AUC ranges from 0.75 to 0.80)	Inconsistent/ imprecise	No evidence of reporting bias	Fair	Heterogeneity in included studies	Low	Unclear whether findings apply to subgroups defined by age
KQ 2a	Women	7; 1,969	BMD tests for identifying osteoporosis: AUC ranges from 0.67 to 0.94 for all included machine-based tests ^b (pooled AUC for calcaneal QUS: 0.77 [95% Cl. 0.72 to 0.81])	Inconsistent/ precise	No evidence of reporting bias	Fair	Heterogeneity in included studies	Moderate	Unclear whether findings apply to subgroups defined by age or race
KQ 2a	Men	3; 5,142	BMD tests for identifying osteoporosis for calcaneal QUS: 0.80 (95% CI, 0.67 to 0.94)	Inconsistent/ imprecise	No evidence of reporting bias	Fair	Ultrasound imaging only; heterogeneity in size, estimate of effect, and applicability of included studies	Low	Unclear whether findings apply to subgroups defined by age
KQ 2a	Women	Varies by type of imaging test and site of test	 Centrally measured DXA BMD, TBS, or both predicting fractures, 14 studies, N=46,036: AUC ranges from 0.59 to 0.86 Other machine-based tests or combination of tests, 2 studies, N=1229: QUS alone predicting fractures: AUC ranges from 0.66 to 0.72; QUS + DXA BMD predicting fractures: AUC ranges from 0.72 to 0.81 	Inconsistent/ Precise	No evidence of reporting bias	Fair	Inconsistent control for baseline variables	Moderate	Unclear whether findings apply to nonwhite subgroups

Key Question	Population,	No. of Studies; No. of Observations	Summary of Findings by Outcome	Consistency/ Precision	Reporting Bias	Overall Quality of Studies	Body of Evidence Limitations	EPC Assessment of Strength of Evidence for Outcome	Applicability
KQ 2a	Men	3; 7,972	 Centrally measured DXA BMD or TBS predicting fractures: AUC ranges from 0.68 to 0.85 QUS alone predicting fractures: AUC ranges from 0.64 to 0.84; QUS + DXA BMD predicting fractures: AUC ranges from 0.69 to 0.85 	Inconsistent/ precise	No evidence of reporting bias	Fair to good	Inconsistent control for baseline variables	Moderate	Unclear whether findings apply to nonwhite, non-East Asian subgroups
KQ 2a	Women and men combined	2; 46,300	Centrally measured DXA BMD predicting fractures: AUC ranges from 0.66 to 0.80	Inconsistent/ precise	No evidence of reporting bias	Fair to good	None identified	Moderate	Findings limited to Canadian samples, unlear whether results are applicable to other populations
KQ 2a	Women	Varies by instrument	 AUC for fracture risk prediction instruments ranges from 0.53 to 0.89 and varies by instrument, type of fracture, and whether BMD is used. Within this range, prediction of hip fracture and predictions that use BMD report higher AUC. Pooled AUC for FRAX prediction of hip fracture without BMD: 0.76 (95% CI, 0.72 to 0.82;	Inconsistent/ precise	No evidence of reporting bias	Fair	Some studies did not follow subjects for the entire duration of the prediction interval (i.e., 10 years). Heterogenous study populations, that may have included subjects with osteoporosis, with prior fracture, or receiving treatment.	Moderate	Other than FRAX, most instruments have not been calibrated for use in U.S. populations. Unclear whether findings apply to nonwhite subgroups.

								EPC	
								Assessment of	
		No. of Studies;				Overall	Body of	Strength of	
Key	Population,	No. of	Summary of Findings by	Consistency/	Reporting	Quality of	Evidence	Evidence for	
Question	Intervention	Observations	Outcome	Precision	Bias	Studies	Limitations	Outcome	Applicability
			prediction of MOF without BMD: 0.67 (95% Cl, 0.65 to 0.68; l^2 =99.2%; 17 studies; 158,897 women) and with BMD: 0.70 (95% Cl, 0.68 to 0.71; l^2 =92.1%; 12 studies; 62,054 women)						
KQ 2a	Men	Varies by instrument	 AUC for fracture risk prediction instruments ranges from 0.62 to 0.88 and varies by instrument, type of fracture, and whether BMD is used. Within this range, prediction of hip fracture and predictions that use BMD report higher AUC Pooled AUC for FRAX prediction of hip fracture without BMD: 0.73 (95% CI, 0.68 to 0.77; <i>l</i>²=96.7%; 3 studies; 13,970 men) and with BMD: 0.76 (95% CI, 0.72 to 0.80; <i>l</i>²=96.7%; 3 studies; 13,970 men) Pooled AUC for FRAX prediction of MOF without BMD: 0.62 (95% CI, 0.61 to 0.64; <i>l</i>²=40.5%; 3 studies; 13,970 men) and with BMD: 0.67 (95% CI, 0.66 to 0.68; <i>l</i>²=0%; 4 studies; 15,842 men) 	Inconsistent/ precise	No evidence of reporting bias	Fair	Some studies did not follow subjects for the entire duration of the prediction interval (i.e., 10 years). Heterogenous study populations, that may have included subjects with osteoporosis, with prior fracture, or receiving treatment.	Moderate	Other than FRAX, most instruments have not been calibrated for use in U.S. populations. Unclear whether findings apply to nonwhite subgroups.

								EPC	
								Assessment of	
Kov	Bonulation	No. of Studies;	Summary of Findings by	Consistency	Poporting	Overall Quality of	Body of	Strength of	
Question	Intervention	Observations	Outcome	Precision	Bias	Studies	Limitations	Outcome	Applicability
KQ 2b	Women and	2; 4,926	Similar accuracy of	Consistent/	No	Fair	Limited	Insufficient	Unclear
	men (1 study		predicting fracture with	precise	evidence		number of		whether all
	each)		repeat BMD when		of		studies,		findings apply
			compared with baseline		reporting		followup period		to subgroups
			BMD alone		bias		inadequate for		by age, sex, or
							women, small		race
							inconsistent		
							screening		
							intervals		
KQ 4a	Women and	Varies by	Bisphosphonates for	Consistent/	No	Fair	Evidence	Moderate for	Unclear
	men	outcome	women:	precise for	evidence		dominated by	benefit for	whether all
			• RR for vertebral fracture:	vertebral and	of		1 big study for	bisphosphonate	findings apply
			0.57 (95% CI, 0.41 to	nonvertebral	reporting		each drug	for vertebral and	to subgroups
			0.78); 5 trials; N=5,433;	fractures,	bias			nonvertebral	by age, sex, or
			2.1% vs. 3.8%	consistent and				fractures, low	race
			RR for nonvertebral					for hip fractures	
			0 76 to 0 02): 0 trials:	outcomes					
			N-16 438: 8 9% vs						
			10.6%						
			• RR for hip fracture: 0.70						
			(95% CI, 0.44 to 1.11); 3						
			trials; N=8,988; 0.7% vs.						
			0.96%						
			Zoledronic acid for men:						
			 RR for morphometric 						
			vertebral fracure: 0.33						
			(95% CI, 0.16 to 0.70); 1						
			trial; $N=1,199; 1.5\%$ VS.						
			PR for nonvortabral						
			fracture: 0.65 (95% Cl						
			0.21 to 1.97). 1 trial						
			N=1,199; 0.9% vs. 1.3%						

Key Question	Population, Intervention	No. of Studies; No. of Observations	Summary of Findings by Outcome	Consistency/ Precision	Reporting Bias	Overall Quality of Studies	Body of Evidence Limitations	EPC Assessment of Strength of Evidence for Outcome	Applicability
KQ 4a	Women	1; 7,705	 Raloxifene: RR for vertebral fracture: 0.64 (95% CI, 0.53 to 0.76); 7.5% vs. 12.5% RR for nonvertebral fracture: 0.93 (95% CI, 0.81 to 1.06)^c; 12.1% vs. 12.9% 	Consistency unknown (single trial)/precise for vertebral fracture, imprecise for nonvertebral fracture	No evidence of reporting bias	Good	Single large trial	Moderate for benefit for for vertebral fracture, low for nonvertebral fracture	Unclear whether findings apply to other subgroups defined by age, sex, or race
	Women	1; 7,808	 Denosumab: RR for vertebral fracture: 0.32 (95% CI, 0.26 to 0.41); 2.3% vs. 7.2% RR for nonvertebral fracture: 0.80 (95% CI, 0.67 to 0.95); 6.1% vs. 7.5% RR for hip fracture: 0.60 (95% CI, 0.37 to 0.97); 0.7% vs. 1.1% 	Consistency unknown (single trial)/precise	No evidence of reporting bias	Fair	Single large trial	Low for benefit for vertebral, nonvertebral, and hip fractures	Unclear whether findings apply to subgroups by age, sex, or race
	Women and men	2; 2,830	 Parathyroid hormone: Women (1 trial, N=2,532): RR for vertebral fracture: 0.32 (95% Cl, 0.14 to 0.75); 0.7% vs. 2.1% RR for nonvertebral fracture: 0.97 (95% Cl, 0.71 to 1.33); 5.6% vs. 5.8% Men (1 trial, N=298): RR for nonvertebral fracture: 0.65 (95% Cl, 0.11 to 3.83); 1.3% vs. 2.0% 	Consistency unknown (single trial/precise for women for vertebral fracture Consistency unknown (single trial)/imprecise for men for vertebral fracture	No evidence of reporting bias	Fair	Single trial each for men and women; small trial in men	Low for benefit for vertebral fracture for women, insufficient for men for vertebral fracture	Unclear whether findings apply to subgroups by age, sex, or race

Key Question	Population, Intervention	No. of Studies; No. of Observations	Summary of Findings by Outcome	Consistency/ Precision	Reporting Bias	Overall Quality of Studies	Body of Evidence Limitations	EPC Assessment of Strength of Evidence for Outcome	Applicability
KQ 4b	Women	4; N varies by drug	 Similar results by subgroup for: Alendronate for baseline BMD (1 trial; N=3,737) Risedronate for age (1 trial; N=2,648) Raloxifene (prior fractures; 1 trial; N=5,114) Denosumab for age, baseline BMD, and a combination of risk factors (1 trial; N=7,868) Parathyroid hormone for prior fractures (1 trial; N=1,246). 	Consistency unknown (single trial)/precise	No evidence of reporting bias	Fair	Single trial for each drug	Low for no differences	No information on variations by menopausal status
KQ 5	Women and men	Varies by outcome	 Bisphosphonates^d: RR for discontinuation: RR, 0.99 (95% CI, 0.91 to 1.07); 20 trials; N=17,369^e; 11.5% vs. 11.8% RR for serious adverse events: RR, 0.98 (95% CI, 0.92 to 1.04); 17 trials; N=11,745^e; 21.0% vs. 23.4% RR for upper GI events: 1.01 (95% CI, 0.98 to 1.05); 13 trials; N=20,485^e; 35.3% vs. 35.6% No statistically significant differences for cardiovascular outcomes No reports of osteonecrosis of the jaw No reports of atypical femur fracture 	Consistent/ precise for discontinuation, serious adverse events, and upper GI events; inconsistent and imprecise for cardiovascular outcomes, osteonecrosis, and atypical femur fractures	No evidence of reporting bias	Fair	Evidence dominated by 1 big study for each drug	Moderate for no harms of bisphosphonate for discontinuation, serious adverse events, and upper GI events; insufficient for cardiovascular events, osteonecrosis, and atypical femur fractures	Unclear whether findings for all drugs apply to subgroups defined by age, sex, or race

Key Question	Population, Intervention	No. of Studies; No. of Observations	Summary of Findings by Outcome 3 trials that combined results for men and women or included men only had results consistent with trials	Consistency/ Precision	Reporting Bias	Overall Quality of Studies	Body of Evidence Limitations	EPC Assessment of Strength of Evidence for Outcome	Applicability
			of women only for discontinuation, serious adverse events, and upper GI events						
KQ 5	Women	Varies by outcome	 Raloxifene: RR for discontinuation: RR, 1.12 (95% CI, 0.98 to 1.28); 6 trials; N=6,438; 12.6% vs. 11.2% RR for DVT: 2.14 (95% CI, 0.99 to 4.66); 3 trials; N= 5,839; 0.7% vs. 0.3% RR for hot flashes: 1.42 (95% CI, 1.22 to 1.66); 5 trials; N=6,249: 11.2% vs. 7.6% RR for leg cramps: 1.41 (95% CI, 0.92 to 2.14); 3 trials; N=6,000; 8.0% vs. 4.8% 	Inconsistent/ precise for DVT, leg cramps, and hot flashes; consistent/ imprecise for discontinuation	No evidence of reporting bias	Good	Single large trial dominating results	Low for harm of DVT and hot flashes; low for no harm of discontinuation and leg cramps	Unclear whether findings apply to other subgroups defined by age, sex, or race
	Women	3; 8,451	 Denosumab: RR for discontinuation: 1.16 (95% CI, 0.88 to 1.54); 3.1% vs. 2.1% RR for serious adverse events: 1.23 (95% CI, 0.78 to 1.93); 23.7% vs. 24.0% RR for serious infections: 1.89 (95% CI, 0.61 to 5.91); 4.0% vs. 3.3% 	Inconsistent/ imprecise for discontinuation, consistent/ imprecise for serious adverse events and serious infections	No evidence of reporting bias	Fair	Single large trial dominating results	Insufficient for discontinuation; low for no harm of serious adverse events and serious infections	Unclear whether findings apply to subgroups by age, sex, or race

								EPC	
								Assessment of	
		No. of Studies;				Overall	Body of	Strength of	
Кеу	Population,	No. of	Summary of Findings by	Consistency/	Reporting	Quality of	Evidence	Evidence for	
Question	Intervention	Observations	Outcome	Precision	Bias	Studies	Limitations	Outcome	Applicability
KQ 5	Women and	2; 2,830	Parathyroid hormone:	Consistency	No	Fair	Single trial	Low for harm	Unclear
	men		Women (1 trial; N=2,532):	unknown (single	evidence		each for men	for women for	whether
			 RR for discontinuation: 	trial/precise	of		and women;	discontination;	findings apply
			1.22 (95% CI, 1.08 to		reporting		small trial in	Insufficient for	to subgroups
			1.40); 29.7% vs. 24.6%	Consistency	bias		men	men for	by age or race
			Men (1 trial; N=298 for 20	unknown (single				discontinuation	
			µg [FDA-approved dose]	trial)/ imprecise				and serious	
			vs. placebo):	for men				adverse events	
			 RR for discontinuation: 						
			1.94 (95% CI, 0.81 to						
			4.69); 9.2% vs. 4.8%						
			 RR for cancer: 0.97 						
			(95% CI, 0.2 to 4.74); 2.0						
			vs. 2.0%						

^aOne study (not included in strength of evidence ratings; N=282) evaluated the accuracy of FRAX and OST in a mixed population with 45.1% women. AUCs ranged from 0.68 to 0.76 and is consistent with findings in men and women separately.

^bIncluded studies evaluated calcaneal quantitative ultrasound, peripheral dual energy X-ray absorptiometry, digital X-ray radiogrammetry, and radiographic absorptiometry

^cData available only for combined group of participants receiving dosages of 60 mg/day or 120 mg/day. Recommended dosage is 60 mg/day.

^dPooled estimates include men, women, and combined estimates (one study did not provide adverse events by sex).²⁵²

^eSum of N in trials in meta-analysis, after accounting for the duplication in patients in the placebo arm for a 3-arm study.²⁰²

Abbreviations: AUC = area under the curve; BMD = bone mineral density; CI = confidence interval; DVT = deep vein thrombosis; DXA = dual-energy X-ray absorptiometry; EPC = Evidnce-based Practice Center; FDA = Food and Drug Administration; FRAX = Fracture Risk Assessment Tool; GI = gastrointestinal; KQ = key question; MOF = major osteoporotic fractures; N = number; QUS = quantitative ultrasound; RR = relative risk; TBS = trabecular bone score; U.S. = United States.

Table 10. Accuracy of clinical risk prediction instruments with evidence on identifying osteoporosis and predicting fractures

			Accuracy in Identifying	
Instrument	Risk Factors	Sex	No. of Participants	Accuracy in Predicting Fractures*
FRAX without BMD	Age, sex, weight, height, previous fracture, parental hip fracture, current smoking, glucocorticoid steroid use, rheumatoid arthritis, secondary osteoporosis, alcohol use	Men and women	All women (femoral neck): 0.60 (95% Cl, 0.56 to 0.63); 1; 2,857 Both sexes [†] (any site): 0.68 (95% Cl, 0.63 to 0.74); 1; 626	Men MOF: 0.62 (95% CI, 0.61 to 0.64); 3; 13,970 Hip: 0.73 (95% CI, 0.68 to 0.77); 3; 13,970 Women MOF: 0.67 (95% CI, 0.65 to 0.68); 17; 158,897 Hip: 0.76 (95% CI, 0.65 to 0.68); 17; 158,897 Hip: 0.76 (95% CI, 0.65 to 0.68); 17; 158,897 Hip: 0.76 (95% CI, 0.66 to 0.67); 12; 190,795 Both Sexes MOF: 0.67 (95% CI, 0.66 to 0.67); 3; 66,777 Hip: 0.77 (95% CI, 0.73 to 0.79); 1; 6,697 0.79 (95% CI, 0.78 to 0.82); 1: 39 603
SCORE	Age, weight, race, rheumatoid arthritis, prior nontraumatic fracture, prior estrogen use	Women	Pooled AUC (any site): 0.70 (95% CI, 0.69 to 0.71); 8; 15,262	MOF (10-year risk): 0.53 (95% CI, 0.53 to 0.54); 1; 62,492 MOF (3-year risk): 0.70 (95% CI, 0.66 to 0.74); 1; 3,614
ORAI	Age, weight, current estrogen use	Women	Pooled AUC (any site): 0.65 (95% CI, 0.60 to 0.71); 10; 16,680	MOF (3-year risk): 0.71 (95% CI, 0.68 to 0.75); 1; 3,614 Any OF (3-year risk): 0.69 (95% CI, 0.66 to 0.72); 1; 3,614
OSIRIS	Age, weight, current hormone therapy use, prior fracture	Women	Pooled AUC (any site): 0.68 (95% CI, 0.64 to 0.72) 5; 5,649	MOF (3-year risk): 0.70 (95% CI, 0.66 to 0.74); 1; 3,614 Any OF (3-year risk): 0.68 (95% CI, 0.65 to 0.72); 1; 3,614
OST	Age, weight	Women	Pooled AUC (any site): 0.67 (95% CI, 0.63 to 0.71); 10 (with outlier); 24,739; without outlier, ⁸⁷ pooled AUC: 0.71 (95% CI, 0.69 to 0.72); 9; 24,213	MOF (3-year risk): 0.56 (95% CI, 0.52 to 0.60); 8,254 women 0.71 (95% CI, 0.68 to 0.75); 3,614 women MOF (10-year risk): 0.52 (95% CI, 0.52 to 0.53); 62,492 women

[†]Study population was 45.5% women

Abbreviations: AUC = area under the curve; BMD = bone mineral density; CI = confidence interval; FRAX = Fracture Risk Assessment Tool; MOF = major osteoporotic fracture defined as fractures of the proximal femur, distal radius, proximal humerus, and clinical vertebral fracturesOF = osteoporotic fracture; ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OST = osteoporosis self-assessment tool; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool.

Osteoporosis Search April 16, 2015

PUBMED

	Search String	Results
<u>#1</u>	Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]	<u>197432</u>
<u>#5</u>	Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone	19932
	Density"[Mesh] Filters: Publication date from 2009/11/01; Humans; English; Adult: 19+	
	years	
<u>#7</u>	Search "Mass Screening"[Mesh] OR "Risk Assessment"[Mesh]	<u>281086</u>
<u>#8</u>	Search (#5 AND #7)	<u>1279</u>
<u>#9</u>	Search (#5 AND #7) Filters: Systematic Reviews	<u>85</u>
<u>#11</u>	Search (("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial"	<u>2263475</u>
	[Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR	
	"Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])	
<u>#12</u>	Search (#8 AND #11)	<u>818</u>
<u>#13</u>	Search (#9 OR #12)	<u>859</u>
<u>#14</u>	Search ("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR "Calcaneus"[Mesh])	<u>74931</u>
<u>#18</u>	Search ("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR	<u>8672</u>
	"Calcaneus"[Mesh])Filters: Publication date from 2009/11/01; Humans; English; Adult: 19+	
<u>#20</u>	Search (("Ultrasonography"[Mesh]) OR "Tomography, X-Ray Computed"[Mesh]) OR (<u>573915</u>
	"Densitometry"[Mesh] OR "Absorptiometry, Photon"[Mesh])	0740
#21	Search (#18 AND #20)	2718
#22	Search (#18 AND #20) Filters: Systematic Reviews	33
#23	Search (#21 AND #11)	1336
#24	Search (#22 OR #23)	1354
#25	Search (("Osteoporosis"[Mesh] OR "Bone Density"[Mesh]))	70305
#29	Search (("Osteoporosis"[Mesh] OR "Bone Density"[Mesh])) Filters: Publication date from	8207
1104	2009/11/01; Humans; English; Adult: 19+ years	5400
#31	Search ((((("Dipnosphonates" [Mesh]) OR "Alendronate" [Mesh]) OR "fisedronic	5166
	acid [Supplementary Concept]) OR Elicionic Acid [Mesh]) OR Ibandronic	
	"zolodronic acid"[Supplementary Concept]/OK partitutoriate [Supplementary Concept]/OK	
	"Calcium Carbonate"[Mesh] OR "Estrogen Recentor Modulators"[Mesh] OR "Selective	
	Estrogen Receptor Modulators"[Mesh]	
#32	Search (("Calcitonin"[Mesh]) OR (("Hormone Replacement Therapy"[Mesh] OR "Estrogen	206284
<u></u>	Replacement Therapy"[Mesh]) OR "Estradiol Congeners"[Mesh])) OR (((("Parathyroid	<u></u>
	Hormone"[Mesh]) OR "Tamoxifen"[Mesh]) OR "Teriparatide"[Mesh] OR	
	"Raloxifene"[Mesh]) OR "Testosterone"[Mesh]) OR "RANK ligand inhibitor" OR	
	"estropipate" [Supplementary Concept] OR "bazedoxifene" [Supplementary Concept]	
#33	Search (#31 OR #32)	207691
#34	Search (#29 AND #33)	977
#35	Search (#34 and #11)	<u>534</u>
#36	Search (#29 AND #33) Filters: Systematic Reviews	27
#41	Search #35 OR #36	<u>552</u>
#42	Search (#41 OR #24 OR #13)	<u>2439</u>

Cochrane

Osteoporosis AND (screening OR treatment) = 40

Embase

Osteoporosis AND (screening OR treatment) = 233

ClinicalTrials.gov

Osteoporosis AND (screening OR treatment) = 285

Drugs@FDA.gov

Osteoporosis AND (screening OR treatment)

HSRProj

"osteoporosis" = 19

Cochrane Clinical Trials Registry

Osteoporosis AND (screening OR treatment) = 1068

WHO ICTRP

Osteoporosis AND (screening OR treatment) = 23

Official "Risk Assessment" add in for earlier work (October 16, 2015)

Search String	Results
#1 Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]	202036
<u>#2</u> Search "Mass Screening"[Mesh] OR screen	<u>237370</u>
<u>#3</u> Search "Risk Assessment"[Mesh]	<u>190623</u>
#4 Search (#3 NOT #2)	<u>183589</u>
<u>#5</u> Search (#1 AND #4)	<u>3743</u>
<u>#6</u> Search (#1 AND #4) Filters: Humans	<u>3719</u>
<u>#7</u> Search (#1 AND #4) Filters: Humans; English	<u>3416</u>
#8 Search (#1 AND #4) Filters: Humans; English; Adult: 19+ years	<u>2450</u>
#9 Search (#1 AND #4) Filters: Publication date from 2001/01/01 to 2009/12/31; Humans; English; Adult:	1207
19+ years	

Osteoporosis Update Search October 16, 2015 PUBMED

Full Results for all Screening or Risk Assessment (Not narrowed by study type)

	Search String	Results
#1	Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]	202036
#8	Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]Filters: Humans	176314
#9	Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]Filters: Humans; English	131410
#10	Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]Filters: Humans; English; Adult: 19+ years	83026
#11	Search "Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]Filters: Publication date from 2009/11/01; Humans; English; Adult: 19+ years	22192
#13	Search "Mass Screening"[Mesh] OR "Risk Assessment"[Mesh]	289991
#14	Search (#11 AND #13)	1388

Updates for April Search

Search String	Results
#15 Search (("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR "Calcaneus"[Mesh]))	<u>76720</u>
#18 Search (("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR	<u>35637</u>
"Calcaneus"[Mesh]))Filters: Humans; English; Adult: 19+ years	
#19 Search ("2015"[Date - Entrez] : "3000"[Date - Entrez]) Filters: Humans; English; Adult: 19+	<u>32504</u>
years	
<u>#21</u> Search (("Ultrasonography"[Mesh]) OR "Tomography, X-Ray Computed"[Mesh]) OR (<u>590335</u>
"Densitometry"[Mesh] OR "Absorptiometry, Photon"[Mesh])	
<u>#22</u> Search (#18 AND #19 AND #21)	<u>58</u>
<u>#23</u> Search (#18 AND #19 AND #21) Filters: Systematic Reviews	<u>0</u>
<u>#25</u> Search (("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial"	<u>2344296</u>
[Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR	
"Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])	
<u>#26</u> Search (#18 AND #19 AND #25)	<u>111</u>
<u>#28</u> Search ((("Osteoporosis"[Mesh] OR "Bone Density"[Mesh])))	<u>71994</u>
<u>#31</u> Search ((("Osteoporosis"[Mesh] OR "Bone Density"[Mesh]))) Filters: Humans; English;	<u>33693</u>
Adult: 19+ years	
<u>#32</u> Search (#31 AND #19) Filters: Humans; English; Adult: 19+ years	<u>190</u>
<u>#34</u> Search (((((("Diphosphonates"[Mesh]) OR "Alendronate"[Mesh] OR "risedronic	<u>210994</u>
acid"[Supplementary Concept]) OR "Etidronic Acid"[Mesh]) OR "ibandronic	
acid"[Supplementary Concept]) OR "pamidronate"[Supplementary Concept]) OR	
"zoledronic acid"[Supplementary Concept] OR Bone Density Conservation Agents[mesh]	
"Calcium Carbonate"[Mesh] OR "Estrogen Receptor Modulators"[Mesh] OR "Selective	
Estrogen Receptor Modulators"[Mesh])) OR ((("Calcitonin"[Mesh]) OR (("Hormone	
Replacement Therapy" [Mesh] OR "Estrogen Replacement Therapy" [Mesh]) OR "Estradio	
Congeners "[Mesh])) OR (((("Paratnyroid Hormone"[Mesh]) OR "Tamoxifen"[Mesh]) OR	
inhibiter" OD "extreminete" [Supplementary Concent] OD "hezadavitene" [Supplementary	
Concept] OR "denocument" [Supplementary Concept] OR bazedoxilene [Supplementary	
#25 Soorob (#22 AND #24)	22
#30 Search (#32 AND #34) #26 Search (#25 AND #25)	15
<u>#30</u> Search (#33 AND #23) #27 Search (#22 AND #24) Eiltere: Systematic Paviews	0
Hor Systematic Reviews	U

PubMed = **117** = **98 NEW**

Cochrane

Osteoporosis AND (screening OR treatment) = 0 NEW

Embase

Osteoporosis AND (screening OR treatment) = 65= 44 NEW

ClinicalTrials.gov

Osteoporosis AND (screening OR treatment) = 3 = 0 NEW (Citations provided separately – not part of database)

Drugs@FDA.gov

Will do targeted searches for "harms" as indicated

HSRProj

"osteoporosis" = 1 = 0

Cochrane Clinical Trials Registry

Osteoporosis AND (screening OR treatment) = 48 = 44 New

WHO ICTRP

Osteoporosis AND (screening OR treatment) = 0 Total Unduplicated Database = 186

TBS add on (December 21, 2015)

Search String	Results
#102 Search "trabecular bone score "	113
#105 Search ("Mass Screening"[Mesh] OR "Risk Assessment"[Mesh])	293426
#106 Search (#102 AND #105)	17
#107 Search (#102 AND #105) Filters: Systematic Reviews	0
#108 Search (#102 AND #105) Schema: all Filters: Systematic Reviews	0
#109 Search (("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])	2376092
#110 Search (#102 AND #109)	32
#114 Search (#102 AND #109) Filters: Publication date from 2009/11/01; Humans; English; Adult: 19+ years	28

7 new

Supplemental Denosumab Search (July 29, 2016)

	Search String	Results
#1	Search denosumab	1631
#4	Search "Osteoporosis"[Mesh] OR "Bone Density"[Mesh]	74955
#5	Search (#1 AND #4)	566
#6	Search (("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])	2474527
#7	Search (#5 AND #6)	116
#8	Search (#5 AND #6) Filters: Humans	116
#9	Search (#5 AND #6) Filters: Humans; English	114
#10	Search (#5 AND #6) Filters: Humans; English; Adult: 19+ years	98

Supplemental Pharmaceutical Search and Deduplication (8/1/2016)

Search String	Results
<u>#1</u> Search "Fractures, Bone"[Mesh]	<u>157410</u>
#2 Search (("Osteoporosis"[Mesh] OR "Bone Density"[Mesh]))	<u>74997</u>
<u>#3</u> Search (#1 NOT #2)	<u>140422</u>
#7 Search (#1 NOT #2) Filters: Publication date from 2009/11/01; Huma 19+ years	ans; English; Adult: <u>15369</u>
#10 Search (("Calcitonin"[Mesh]) OR (("Hormone Replacement Therapy" Replacement Therapy"[Mesh]) OR "Estradiol Congeners"[Mesh])) OF Hormone"[Mesh]) OR "Tamoxifen"[Mesh]) OR "Teriparatide"[Mesh] O "Raloxifene"[Mesh]) OR "Testosterone"[Mesh]) OR "RANK ligand inh "estropipate" [Supplementary Concept] OR "bazedoxifene" [Supplementary Concept]	[Mesh] OR "Estrogen <u>218717</u> R (((("Parathyroid OR hibitor" OR hentary Concept] OR
#11 Search ((((("Diphosphonates"[Mesh]) OR "Alendronate"[Mesh] OR "r acid"[Supplementary Concept]) OR "Etidronic Acid"[Mesh]) OR "iban acid"[Supplementary Concept]) OR "pamidronate"[Supplementary Co "zoledronic acid"[Supplementary Concept] OR Bone Density Conser "Calcium Carbonate"[Mesh] OR "Estrogen Receptor Modulators"[Me Estrogen Receptor Modulators"[Mesh]	isedronic <u>5443</u> dronic oncept]) OR vation Agents[mesh] sh] OR "Selective
<u>#12</u> Search (#10 OR #11)	<u>220200</u>
<u>#13</u> Search (#7 AND #12)	<u>119</u>
<u>#14</u> Search (#7 AND #12) Filters: Systematic Reviews	<u>7</u>
<u>#15</u> Search (("Controlled Clinical Trial" [Publication Type] OR "Randomiz [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohor "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh]	ed Controlled Trial" <u>2477337</u> 't Studies"[Mesh]) OR)
<u>#18</u> Search (#13 AND #15)	<u>45</u>
<u>#19</u> Search (#14 OR #18)	<u>47</u>

Update to Full Search (10/1/2016)

	Search ("Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone	
<u>#1</u>	Density"[Mesh])	<u>216915</u>
<u>#5</u>	Search ("Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone	<u>519</u>
	Density"[Mesh]) Filters: Publication date from 2016/01/01; Humans; English; Adult:	
	19+ years	
<u>#6</u>	Search ("Mass Screening"[Mesh] OR "Risk Assessment"[Mesh])	<u>308814</u>
<u>#7</u>	Search (#5 AND #6)	<u>31</u>
<u>#8</u>	Search (#5 AND #6) Filters: Systematic Reviews	2
<u>#9</u>	Search (("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled	<u>2505387</u>
	Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort	
	Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and	
		0.1
#10	Search (#7 AND #9)	24
<u>#11</u>		24
<u>#13</u>	Search ("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR "Calcaneus"[Mesh])	80677
<u>#16</u>	Search ("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR	<u>37386</u>
	"Calcaneus"[Mesh])Filters: Humans; English; Adult: 19+ years	
<u>#17</u>	Search ("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR	<u>202</u>
	"Calcaneus"[Mesh])Filters: Publication date from 2016/01/01; Humans; English; Adult:	
		000540
<u>#19</u>	Search ((("Ultrasonography"[Mesh]) OR "Tomography, X-Ray Computed"[Mesh]) OR (622542
	"Densitometry" [Mesn] OR "Absorptiometry, Photon" [Mesn]))	00
#20	Search (#17 AND #19)	80
<u>#21</u>	Search (#17 AND #19) Filters: Systematic Reviews	<u>U</u>
#22	Search (#20 AND #9)	44
#24	Search (("Osteoporosis" [Mesn] OR "Bone Density" [Mesn]))	75586
#28	Search (("Usteoporosis" [Mesn] UR "Bone Density" [Mesn])) Filters: Publication date	<u>198</u>
	from 2016/01/01; Humans; English; Adult: 19+ years	5.470
<u>#30</u>	Search ((((("Diphosphonates" [Mesh]) OR "Alendronate" [Mesh]) OR "risedronic	<u>5478</u>
	acid [Supplementary Concept]) OR Etidronic Acid [Mesn]) OR Ibandronic	
	"zaladrania acid"[Supplementary Concept]) OR participate [Supplementary Concept]) OR	
	201eutonic aciu [Supplementaly Concept] OR Bone Density Conservation Agents[mesh] "Calcium Carbonate"[Mesh] OR "Estrogen Recenter Modulators"[Mesh]	
	OR "Selective Estrogen Recentor Modulators"[Mesh]	
#31	Search (/("Calcitonin"[Mesh]) OR (/"Hormone Replacement Therapy"[Mesh] OR	219684
<u>#01</u>	"Estrogen Replacement Therapy"[Mesh]) OR "Estrogen Congeners"[Mesh])) OR	210004
	(((("Parathyroid Hormone"[Mesh]) OR "Tamoxifen"[Mesh]) OR "Teriparatide"[Mesh]	
	OR "Raloxifene"[Mesh]) OR "Testosterone"[Mesh]) OR "RANK ligand inhibitor" OR	
	"estropipate" [Supplementary Concept] OR "bazedoxifene" [Supplementary Concept]	
	OR "denosumab" [Supplementary Concept])	
#32	Search (#30 OR #31)	221184
#33	Search (#28 AND #32)	19
#34	Search (#28 AND #32) Filters: Systematic Reviews	0
#36	Search (#33 AND #9)	12
#38	Search (#11 OR #22 OR #36)	<u>71</u>

Total New Unduplicated Database Additions = 76

TBS Add On (10/1/2016)

<u>#1</u>	Search "trabecular bone score "	<u>160</u>
<u>#2</u>	Search ("Mass Screening"[Mesh] OR "Risk Assessment"[Mesh])	<u>308814</u>
<u>#3</u>	Search ("trabecular bone score ") AND (("Mass Screening"[Mesh] OR "Risk Assessment"[Mesh]))	<u>22</u>
<u>#4</u>	Search ("trabecular bone score ") AND (("Mass Screening"[Mesh] OR "Risk Assessment"[Mesh])) Filters: Systematic Reviews	<u>0</u>
<u>#5</u>	Search ("trabecular bone score ") AND (("Mass Screening"[Mesh] OR "Risk Assessment"[Mesh])) Schema: all Filters: Systematic Reviews	<u>0</u>
<u>#6</u>	Search (("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])	<u>2505387</u>
<u>#7</u>	Search ("trabecular bone score ") AND ((("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh]))	<u>43</u>
<u>#8</u>	Search ("trabecular bone score ") AND ((("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])) Filters: Humans	<u>43</u>
<u>#9</u>	Search ("trabecular bone score ") AND ((("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])) Filters: Humans; Adult: 19+ years	<u>41</u>
<u>#10</u>	Search ("trabecular bone score ") AND ((("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])) Filters: Humans; English; Adult: 19+ years	<u>40</u>
<u>#11</u>	Search ("trabecular bone score ") AND ((("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case-Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh])) Filters: Publication date from 2015/01/01; Humans; English; Adult: 19+ years	<u>14</u>

Total New Unduplicated Database Additions = 12

	Exclusion	Reason for		
Include or Exclude Question	Code	Exclusion	Inclusion Criteria	Exclusion Criteria
1. Was the article published in English?	X1	Not published in English	Study must be published in English	Study not published in English
2. Does the title/abstract represent original research?	X2	Not original research	Published or unpublished original research	Nonsystematic review article, letter, or editorial; articles in which results are reported elsewhere; articles with no original data
3. KQs 1–3: Does the study report on general primary care men and women age ≥40 years without history of low-trauma fractures; or endocrine disorders likely to be related to metabolic bone disease, such as premature ovarian failure, hypogonadism, untreated hyperthyroidism, hyperparathyroidism, adrenal insufficiency, or Cushing's syndrome; or chronic use of glucocorticoid medications (>5 mg/d oral prednisone [or equivalent] for 3 months or longer)? KQs 4, 5: Does the review report on adults age ≥40 years with increased fracture risk?	Х3	Wrong population	KQs 1–3: General primary care men and women age ≥40 years without history of low-trauma fractures; or endocrine disorders likely to be related to metabolic bone disease, such as premature ovarian failure, hypogonadism, untreated hyperthyroidism, hyperparathyroidism, adrenal insufficiency, or Cushing's syndrome; or chronic use of glucocorticoid medications (>5 mg/d oral prednisone [or equivalent] for 3 months or longer)	 KQs 1–5: Majority of study population has underlying medical condition likely to be related to metabolic bone disease or is already receiving treatment for osteoporosis or has experienced a low-trauma facture Nonhuman populations Majority of study population comprises adults age <40 years KQs 4, 5: Adults with no increased fracture risk
4. Does the study use a study design of interest?	X4	Wrong study design	 KQs 1–3: Randomized, controlled trials Controlled clinical trials Systematic reviews of trials KQs 2, 3: Observational studies other than case series and case reports KQ 4: Systematic reviews and randomized controlled trials, controlled trials published since any recent, relevant review KQ 5: Systematic reviews and randomized controlled trials, controlled trials, and observational studies published since any recent. 	KQ 1: Nonrandomized, controlled trials; noncontrolled clinical trials, or nonsystematic reviews of trials KQs 2, 3: Case series, case reports KQs 4, 5: Nonsystematic reviews, case series, case reports <i>KQ 4: Case control studies</i> ^a

Appendix B. Inclusion and Exclusion Criteria

	Exclusion	Reason for		
Include or Exclude Question	Code	Exclusion	Inclusion Criteria	Exclusion Criteria
5. Does the study include countries with a human developmental index (HDI) similar to the United States?	X5	Wrong geographical setting	KQs 1, 4, 5: U.S. adult population or comparable populations (i.e., those categorized as "Very High" on the Human Development Index, as defined by the United Nations Development Programme) ^b	KQs 1, 4, 5: Settings not comparable or applicable to U.S. adult population KQs 2, 3: Include all geographic settings at this time
6. Is the study conducted in a clinical setting of interest?	X6	Wrong clinical setting	KQS 2, 3: Include all geographic settings KQ 1: Primary care or primary care–like settings KQs 2–5: Primary care or primary care–like settings, specialists	KQ 1: Inpatient, medical specialty (e.g., endocrinology), or nursing home settings KQs 2–5: Inpatient or nursing home settings
7. Does the study include an intervention of interest?	X7	Wrong or no intervention	KQs 1–3: Externally validated and publicly available risk assessment instruments for low bone mass, osteoporosis, or fracture risk (interventions available in the United States) <i>Risk assessment tools are any paper-based or electronic</i> <i>approach/instrument that compiles/consolidates various</i> <i>demographic or clinical characteristics of an individual</i> <i>and compares an individual's characteristics against a</i> <i>threshold or guideline to make a subsequent decision for</i> <i>testing or treatment. Examples include age, body weight</i> <i>criterion, Brown's clinical risk assessment, clinical</i> <i>guidelines, case identification algorithm, Elderly Falls</i> <i>Screening Test, Fracture Absolute Risk Assessment,</i> <i>Garvan Fracture Risk Calculator, Male Osteoporosis</i> <i>Risk Estimation Score (MORES), NOF guidelines,</i> <i>Nomograms, Osteoporosis Self-Assessment Tool,</i> <i>Osteoporosis Self assessment Tool for Asians (OSTA),</i> <i>modified OSTA, ORAI, OSIRIS, QFracture algorithm,</i> <i>Simple Calculated Osteoporosis Risk Estimate</i> <i>(SCORE).</i> ^a <i>Eligible bone measurement testing includes</i> <i>DXA (central or peripherally measured) and quantitative</i> <i>ultrasound, also includes dental bone tests and</i> <i>trabecular bone score</i> ^a <i>KQs 4, 5: Pharmacotherapy for the treatment or</i> <i>prevention of osteoporosis (including bisphosphonates,</i> <i>estrogen agonists/antagonists, hormone therapy,</i> <i>parathyroid hormone, and RANK Ligand Inhibitors)</i> <i>Note: Bazedoxifine alone is not FDA approved, calcitonin</i> <i>is no longer used as first-line therapy</i> ^a	 KQs 1–3: Not externally validated or publicly available risk assessment or bone measurement testing <i>specifically for</i> <i>osteoporosis or fracture risk</i>^a Test not widely for routine clinical use in the United States KQs 2, 3: Non-FDA approved tests for screening; biomarkers of bone metabolism, quantitative CT, MRI, hip structural analysis, structural engineering models, finite element analysis KQs 4, 5: Interventions other than those described in the inclusion criteria

Appendix B. Inclusion and Exclusion Criteria

	Exclusion	Reason for		
Include or Exclude Question	Code	Exclusion	Inclusion Criteria	Exclusion Criteria
8. Does the study include a comparator of interest?	X8	Exclusion Wrong or no comparator	Inclusion CriteriaKQ 1 (control interventions): No screening groupKQs 2, 3 (control interventions): Other riskassessment/testing approach, threshold, or interval;DXA screening at hip or lumbar spine reporting T-scoresbased on NHANES III U.S. white female referenceranges ^a KQ 4 (control interventions): PlaceboKQ 5 (control interventions): Placebo or no treatment	KQ 1 (control interventions): Lack of a no-screening group (active comparator) KQ 2 (control interventions): Not an active comparator, no comparator, DXA screening at peripheral sites, other noncentral DXA imaging tests (e.g., quantitative ultrasound), T-scores based on non-NHANES or local reference ranges ^a KQ 3: None
				KQs 4, 5 (control interventions): Active comparator
9. Does the study include an outcome of interest?	X9	Wrong or no outcome	 Fractures, fracture-related morbidity, fracture-related mortality, or all-cause mortality. <i>Fractures include "major osteoporotic fractures," which include fractures of the hip, wrist (including distal radius), humerus, and spine/vertebra (clinically presenting). Morphometric spine/vertebral fractures will also be included but recorded separately if possible.^a</i> KQ 2: Screening test characteristics (e.g., Youden's index, sensitivity, specificity, AUROC or AUC, positive and negative predictive value, diagnostic odds ratio, likelihood ratio)^a and reliability (test-retest measures such as Kappa)^a of risk assessment (for fractures),^a bone mass measurement (for fractures)^a Fracture risk prediction characteristics (overall model performance [Brier score, R-squared], extended measures of discrimination [concordance c-statistic, discrimination slope], calibration [calibration-in-the-large, calibration table, reclassification and reclassification improvement, integrated discrimination improvement]), and clinical usefulness (net benefit, decision curve analysis)^a Risk assessment instruments for identifying BMD 	 Exclude if: KQ 1 and KQ 4: Nonvalidated fractures (<i>i.e., self-reported</i>)^a, fracture-related morbidity, or fracture-related mortality Bone measurement testing (T-scores, z-scores) KQ 2: Outcomes other than screening test or risk prediction characteristics^a KQs 3, 5: No health outcomes excluded for harms^a

Appendix B. Inclusion and Exclusion Criteria

	Exclusion	Reason for		
Include or Exclude Question	Code	Exclusion	Inclusion Criteria	Exclusion Criteria
			≤-2.5 KQ 3: Harms (e.g., unnecessary radiation, labeling, anxiety, false-positive results) KQ 5: Harms (e.g., cardiovascular events, hot flashes, esophageal cancer, gastrointestinal events,	
			rashes)	

^a Italicized text represents additional clarification to operationalize inclusion and exclusion criteria.

^b Very high human development index countries include Norway, Australia, Switzerland, Denmark, Netherlands, Germany, Ireland, United States, Canada, New Zealand, Singapore, Hong Kong, China (SAR), Liechtenstein, Sweden, United Kingdom, Iceland, Korea (Republic of), Israel, Luxembourg, Japan, Belgium, France, Austria, Finland, Slovenia, Spain, Italy, Czech Republic, Greece, Estonia, Brunei Darussalam, Cyprus, Qatar, Andorra, Slovakia, Poland, Lithuania, Malta, Saudi Arabia, Argentina, United Arab Emirates, Chile, Portugal, Hungary, Bahrain, Latvia, Croatia, Kuwait, Montenegro (http://hdr.undp.org/en/content/table-1-human-development-index-and-its-components).

- X1: Not published in English
- X2: not original research
- X3: wrong population
- X4: wrong study design
- X5: wrong geographic setting
- X6: wrong clinical setting
- X7: wrong or no intervention
- X8: wrong or no comparator
- X9: wrong or no outcome
- X10: article retracted
- X11: bone measurement after outcome
- X12: exclude not commercially available
- X13: Not FDA approved
- X14: not in externally validated cohort
- X15: not in very high HDI country
- X16: study superseded by new evidence
- X17: only used for hand search
- X18: full text article not accessible
- X19: insufficient information for abstraction
- X20: poor quality
- Menostar: a low-dose estrogen patch for osteoporosis. Obstet Gynecol. 2005 Feb;105(2):432-3. doi: 105/2/432 [pii]. PMID: 15684177.Exclusion Code: X2.
- Bone health may get higher visibility with new approach to fracture risk assessment that considers multiple factors. Dis Manag Advis. 2007 Sep;13(9):104-5, 97. PMID: 17907656.Exclusion Code: X2.
- Discontinuing denosumab treatment does not increase fracture risk. Bonekey Rep. 2013;2:269. doi: 10.1038/bonekey.2013.3. PMID: 24422041.Exclusion Code: X9.
- 4. Abou-Raya S, Abou-Raya A, Khadrawi T. A randomized controlled trial of early initiation of osteoporosis assessment and management in the acute setting of the fracture clinic. Ann Rheum Dis; 2013.Exclusion Code: X9.
- 5. Abrahamsen B, Vestergaard P, Rud B, et al. Ten-year absolute risk of

osteoporotic fractures according to BMD T score at menopause: the Danish Osteoporosis Prevention Study. J Bone Miner Res. 2006 May;21(5):796-800. doi: 10.1359/jbmr.020604. PMID: 16734396.Exclusion Code: X7.

- Adachi JD, Saag KG, Delmas PD, et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 2001 Jan;44(1):202-11. doi: 10.1002/1529-0131(200101)44:1<202::aid-anr27>3.0.co;2-w. PMID: 11212161.Exclusion Code: X3.
- 7. Adami S, Libanati C, Boonen S, et al. Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg

Am. 2012 Dec 5;94(23):2113-9. doi: 1378033 [pii]; 10.2106/JBJS.K.00774 [doi]. PMID: 23097066.Exclusion Code: X9.

- Adomaityte J, Farooq M, Qayyum R. Effect of raloxifene therapy on venous thromboembolism in postmenopausal women. A metaanalysis. Thromb Haemost. 2008 Feb;99(2):338-42. doi: 08020338 [pii]. PMID: 18278183.Exclusion Code: X3.
- 9. Agrawal S, Krueger DC, Engelke JA, et al. Between-meal risedronate does not alter bone turnover in nursing home residents. J Am Geriatr Soc. 2006 May;54(5):790-5. doi: 10.1111/j.1532-5415.2006.00696.x. PMID: 16696745.Exclusion Code: X3.
- Ahmed LA, Schirmer H, Fonnebo V, et al. Validation of the Cummings' risk score; how well does it identify women with high risk of hip fracture: the Tromso Study. Eur J Epidemiol. 2006;21(11):815-22. doi: 10.1007/s10654-006-9072-3. PMID: 17119878.Exclusion Code: X9.
- Albaba M, Cha SS, Takahashi PY. The Elders Risk Assessment Index, an electronic administrative database-derived frailty index, can identify risk of hip fracture in a cohort of community-dwelling adults. Mayo Clin Proc. 2012 Jul;87(7):652-8. doi: S0025-6196(12)00482-X [pii]; 10.1016/j.mayocp.2012.01.020 [doi]. PMID: 22766085.Exclusion Code: X14.
- 12. Albanese CV, De Terlizzi F, Passariello R. Quantitative ultrasound of the phalanges and DXA of the lumbar spine and proximal femur in evaluating the risk of osteoporotic vertebral fracture in

postmenopausal women. Radiol Med. 2011 Feb;116(1):92-101. doi: 10.1007/s11547-010-0577-1 [doi]. PMID: 20927655.Exclusion Code: X11.

- 13. Albertsson DM, Mellstrom D, Petersson C, et al. Validation of a 4item score predicting hip fracture and mortality risk among elderly women. Ann Fam Med. 2007 Jan-Feb;5(1):48-56. doi: 10.1370/afm.602. PMID: 17261864.Exclusion Code: X14.
- Allin S, Munce S, Schott AM, et al. Quality of fracture risk assessment in post-fracture care in Ontario, Canada. Osteoporos Int. 2013 Mar;24(3):899-905. doi: 10.1007/s00198-012-2111-x [doi]. PMID: 22930241.Exclusion Code: X3.
- 15. Alman AC, Johnson LR, Calverley DC, et al. Diagnostic capabilities of fractal dimension and mandibular cortical width to identify men and women with decreased bone mineral density. Osteoporos Int. 2012 May;23(5):1631-6. doi: 10.1007/s00198-011-1678-y [doi]. PMID: 21633828.Exclusion Code: X12.
- 16. Anastasilakis AD, Polyzos SA, Makras P, et al. Circulating semaphorin-4D and plexin-B1 levels in postmenopausal women with low bone mass: the 3-month effect of zoledronic acid, denosumab or teriparatide treatment. Expert Opin Ther Targets. 2015 Mar;19(3):299-306. doi: 10.1517/14728222.2014.983078 [doi]. PMID: 25395071.Exclusion Code: X9.
- Anastasilakis AD, Toulis KA, Goulis DG, et al. Efficacy and safety of denosumab in postmenopausal

women with osteopenia or osteoporosis: a systematic review and a meta-analysis. Horm Metab Res. 2009 Oct;41(10):721-9. doi: 10.1055/s-0029-1224109. PMID: 19536731.Exclusion Code: X3.

- 18. Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA. 2004 Apr 14;291(14):1701-12. doi: 10.1001/jama.291.14.1701. PMID: 15082697.Exclusion Code: X3.
- 19. Ando H, Otoda T, Ookami H, et al. Dosing time-dependent effect of raloxifene on plasma plasminogen activator inhibitor-1 concentrations in post-menopausal women with osteoporosis. Clin Exp Pharmacol Physiol. 2013 Mar;40(3):227-32. doi: 10.1111/1440-1681.12055 [doi]. PMID: 23323567.Exclusion Code: X9.
- 20. Ang CL, Singh G, Goh AS, et al. Densitometry trends in postmenopausal Asian women undergoing bisphosphonate treatment. Singapore Med J. 2011 Sep:52(9):677-80. PMID: 21947146.Exclusion Code: X9.
- 21. Anpalahan M, Morrison SG, Gibson SJ. Hip fracture risk factors and the discriminability of hip fracture risk vary by age: a case-control study. Geriatr Gerontol Int. 2014 Apr;14(2):413-9. doi: 10.1111/ggi.12117 [doi]. PMID: 23879545.Exclusion Code: X14.
- 22. Arabi A, Salamoun M, Ballout H, et al. Densitometer type and impact on risk assessment for osteoporosis. J Clin Densitom. 2005 Fall;8(3):261-6. doi: JCD:8:3:261 [pii]. PMID: 16055954.Exclusion Code: X7.

- 23. Archer DF, Pinkerton JV, Utian WH, et al. Bazedoxifene, a selective estrogen receptor modulator: effects on the endometrium, ovaries, and breast from a randomized controlled trial in osteoporotic postmenopausal women. Menopause. 2009 Nov-Dec;16(6):1109-15. doi: 10.1097/gme.0b013e3181a818db [doi]. PMID: 19543129.Exclusion Code: X7.
- 24. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, doubleblind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010 Feb;25(2):404-14. doi: 10.1359/jbmr.090731 [doi]. PMID: 19594305.Exclusion Code: X9.
- 25. Aubry-Rozier B, Stoll D, Krieg MA, et al. What was your fracture risk evaluated by FRAX(R) the day before your osteoporotic fracture? Clin Rheumatol. 2013 Feb;32(2):219-23. doi: 10.1007/s10067-012-2106-1 [doi]. PMID: 23114631.Exclusion Code: X9.
- 26. Austin M, Yang YC, Vittinghoff E, et al. Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures. J Bone Miner Res. 2012 Mar;27(3):687-93. doi: 10.1002/jbmr.1472 [doi]. PMID: 22095631.Exclusion Code: X9.
- 27. Bachmann G, Crosby U, Feldman RA, et al. Effects of bazedoxifene in nonflushing postmenopausal women: a randomized phase 2 trial. Menopause. 2011 May;18(5):508-14. doi:

10.1097/gme.0b013e3181fa358b

[doi]. PMID: 21289525.Exclusion Code: X9.

- 28. Badurski JE, Kanis JA, Johansson H, et al. The application of FRAX(R) to determine intervention thresholds in osteoporosis treatment in Poland. Pol Arch Med Wewn. 2011 May;121(5):148-55. PMID: 21610662.Exclusion Code: X9.
- 29. Bai H, Jing D, Guo A, et al. Randomized controlled trial of zoledronic acid for treatment of osteoporosis in women. J Int Med Res. 2013 Jun;41(3):697-704. doi: 10.1177/0300060513480917. PMID: 23669294.Exclusion Code: X5.
- Bala Y, Zebaze R, Ghasem-Zadeh A, et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res. 2014 Jun;29(6):1356-62. doi: 10.1002/jbmr.2167 [doi]. PMID: 24519558.Exclusion Code: X7.
- Baniak N, Grzybowski S, Olszynski WP. Dual-energy x-ray absorptiometry scan autoanalysis vs manual analysis. J Clin Densitom. 2014 Jan-Mar;17(1):97-103. doi: S1094-6950(13)00163-7 [pii]; 10.1016/j.jocd.2013.09.001 [doi]. PMID: 24176429.Exclusion Code: X9.
- 32. Barasch A, Cunha-Cruz J, Curro FA, et al. Risk factors for osteonecrosis of the jaws: A case-control study from the CONDOR dental PBRN. J Dent Res. 2011;90(4):439-44.Exclusion Code: X3.
- Baro F, Cano A, Sanchez Borrego R, et al. Frequency of FRAX risk factors in osteopenic postmenopausal women with and without history of fragility fracture. Menopause. 2012 Nov;19(11):1193-9. doi: 10.1097/gme.0b013e31825d65c5

[doi]. PMID: 22948137.Exclusion Code: X9.

- Barrera G, Bunout D, Gattas V, et al. A high body mass index protects against femoral neck osteoporosis in healthy elderly subjects. Nutrition. 2004 Sep;20(9):769-71. doi: 10.1016/j.nut.2004.05.014 [doi] . PMID: 15325685.Exclusion Code: X7.
- 35. Barrett-Connor E, Cox DA, Song J, et al. Raloxifene and risk for stroke based on the framingham stroke risk score. Am J Med. 2009 Aug;122(8):754-61. doi: S0002-9343(09)00333-7 [pii]; 10.1016/j.amjmed.2009.01.033 [doi]. PMID: 19540454.Exclusion Code: X4.
- Barrett-Connor E, Mosca L, Collins P, et al. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med. 2006 Jul 13;355(2):125-37. doi: 10.1056/NEJMoa062462. PMID: 16837676.Exclusion Code: X3.
- 37. Barrett-Connor E, Swern AS, Hustad CM, et al. Alendronate and atrial fibrillation: a meta-analysis of randomized placebo-controlled clinical trials. Osteoporos Int. 2012 Jan;23(1):233-45. doi: 10.1007/s00198-011-1546-9. PMID: 21369791.Exclusion Code: X6.
- 38. Barrett-Connor E, Wehren LE, Siris ES, et al. Recency and duration of postmenopausal hormone therapy: effects on bone mineral density and fracture risk in the National Osteoporosis Risk Assessment (NORA) study. Menopause. 2003 Sep-Oct;10(5):412-9. doi: 10.1097/01.GME.0000086467.82759 .DA [doi]. PMID: 14501602.Exclusion Code: X4.

- 39. Bauer DC, Schwartz A, Palermo L, et al. Fracture prediction after discontinuation of 4 to 5 years of alendronate therapy: the FLEX study. JAMA Intern Med. 2014 Jul;174(7):1126-34. doi: 1867177 [pii]; 10.1001/jamainternmed.2014.1232 [doi]. PMID: 24798675.Exclusion
- Code: X3.
 40. Baum T, Muller D, Dobritz M, et al. BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur J Radiol. 2011 Nov;80(2):e140-5. doi: S0720-048X(10)00410-9 [pii]; 10.1016/j.ejrad.2010.08.034 [doi]. PMID: 20851544.Exclusion Code: X7.
- 41. Bazzocchi A, Ponti F, Diano D, et al. Trabecular bone score in healthy ageing. Br J Radiol. 2015 Aug;88(1052):20140865. doi: 10.1259/bjr.20140865 [doi]. PMID: 26148778.Exclusion Code: X9.
- 42. Beck TJ, Lewiecki EM, Miller PD, et al. Effects of denosumab on the geometry of the proximal femur in postmenopausal women in comparison with alendronate. J Clin Densitom. 2008 Jul-Sep;11(3):351-9. doi: S1094-6950(08)00038-3 [pii]; 10.1016/j.jocd.2008.04.001 [doi]. PMID: 18495508.Exclusion Code: X9.
- 43. Berry SD, Kiel DP, Donaldson MG, et al. Application of the National Osteoporosis Foundation Guidelines to postmenopausal women and men: the Framingham Osteoporosis Study. Osteoporos Int. 2010 Jan;21(1):53-60. doi: 10.1007/s00198-009-1127-3 [doi]. PMID: 19937426.Exclusion Code: X9.

- 44. Binkley N, Bolognese M, Sidorowicz-Bialynicka A, et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial. J Bone Miner Res. 2012 Aug;27(8):1821-9. doi: 10.1002/jbmr.1602 [doi]. PMID: 22437792.Exclusion Code: X7.
- 45. Black DM, Bilezikian JP, Greenspan SL, et al. Improved adherence with PTH(1-84) in an extension trial for 24 months results in enhanced BMD gains in the treatment of postmenopausal women with osteoporosis. Osteoporos Int. 2013 Apr;24(4):1503-11. doi: 10.1007/s00198-012-2098-3 [doi]. PMID: 22930240.Exclusion Code: X8.
- 46. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996 Dec 7;348(9041):1535-41. PMID: 8950879.Exclusion Code: X3.
- 47. Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007 May 3;356(18):1809-22. doi: 10.1056/NEJMoa067312. PMID: 17476007.Exclusion Code: X3.
- 48. Black DM, Kelly MP, Genant HK, et al. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med. 2010 May 13;362(19):1761-71. doi: 10.1056/NEJMoa1001086. PMID: 20335571.Exclusion Code: X3.
- 49. Black DM, Reid IR, Cauley JA, et al. The effect of 6 versus 9 years of zoledronic acid treatment in

osteoporosis: A randomized second extension to the HORIZON-pivotal fracture trial (PFT). J Bone Miner Res; 2015. p. 934-44.Exclusion Code: X8.

- 50. Black DM, Steinbuch M, Palermo L, et al. An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int. 2001;12(7):519-28. doi: 10.1007/s001980170072 [doi]. PMID: 11527048.Exclusion Code: X14.
- 51. Blackburn TD, Howard DB, Leib ES. Utility of spine bone mineral density in fracture prediction within FRAX. J Clin Densitom. 2013 Jan-Mar;16(1):81-6. doi: S1094-6950(12)00125-4 [pii]; 10.1016/j.jocd.2012.08.002 [doi]. PMID: 23010380.Exclusion Code: X9.
- 52. Blumsohn A, Marin F, Nickelsen T, et al. Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide. Osteoporos Int. 2011 Jun;22(6):1935-46. doi: 10.1007/s00198-010-1379-y [doi]. PMID: 20938767.Exclusion Code: X8.
- 53. Bodade PR, Mody RN. Panoramic radiography for screening postmenopausal osteoporosis in India: a pilot study. Oral Health Dent Manag. 2013 Jun;12(2):65-72. PMID: 23756421.Exclusion Code: X9.
- 54. Boehm HF, Lutz J, Korner M, et al. Using Radon transform of standard radiographs of the hip to differentiate between post-menopausal women with and without fracture of the proximal femur. Osteoporos Int.

2009 Feb;20(2):323-33. doi: 10.1007/s00198-008-0663-6 [doi]. PMID: 18560746.Exclusion Code: X12.

- 55. Boehm HF, Vogel T, Panteleon A, et al. Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images. Osteoporos Int. 2007 Jun;18(6):779-87. doi: 10.1007/s00198-006-0302-z [doi]. PMID: 17235663.Exclusion Code: X12.
- 56. Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011 Apr;96(4):972-80. doi: jc.2010-1502 [pii]; 10.1210/jc.2010-1502 [doi]. PMID: 21289258.Exclusion Code: X4.
- 57. Bone HG, Chapurlat R, Brandi ML, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab. 2013 Nov;98(11):4483-92. doi: jc.2013-1597 [pii]; 10.1210/jc.2013-1597 [doi]. PMID: 23979955.Exclusion Code: X8.
- 58. Bonnick SL, Beck TJ, Cosman F, et al. DXA-based hip structural analysis of once-weekly bisphosphonate-treated postmenopausal women with low bone mass. Osteoporos Int. 2009 Jun;20(6):911-21. doi: 10.1007/s00198-008-0762-4 [doi]. PMID: 18830555.Exclusion Code: X7.

- 59. Bonnyman AM, Webber CE, Stratford PW, et al. Intrarater reliability of dual-energy X-ray absorptiometry-based measures of vertebral height in postmenopausal women. J Clin Densitom. 2012 Oct-Dec;15(4):405-12. doi: S1094-6950(12)00035-2 [pii]; 10.1016/j.jocd.2012.03.005 [doi]. PMID: 22578772.Exclusion Code: X9.
- 60. Boonen S, Klemes AB, Zhou X, et al. Assessment of the relationship between age and the effect of risedronate treatment in women with postmenopausal osteoporosis: a pooled analysis of four studies. J Am Geriatr Soc. 2010 Apr;58(4):658-63. doi: JGS2763 [pii]; 10.1111/j.1532-5415.2010.02763.x [doi]. PMID: 20345865.Exclusion Code: X3.
- 61. Boonen S, Orwoll E, Magaziner J, et al. Once-yearly zoledronic acid in older men compared with women with recent hip fracture. J Am Geriatr Soc. 2011 Nov;59(11):2084-90. doi: 10.1111/j.1532-5415.2011.03666.x [doi]. PMID: 22091563.Exclusion Code: X4.
- Boonen S, Orwoll ES, Wenderoth D, et al. Once-weekly risedronate in men with osteoporosis: results of a 2year, placebo-controlled, doubleblind, multicenter study. J Bone Miner Res. 2009 Apr;24(4):719-25. doi: 10.1359/jbmr.081214. PMID: 19049326.Exclusion Code: X3.
- 63. Borah B, Dufresne T, Nurre J, et al. Risedronate reduces intracortical porosity in women with osteoporosis. J Bone Miner Res. 2010 Jan;25(1):41-7. doi: 10.1359/jbmr.090711 [doi]. PMID: 19580469.Exclusion Code: X9.
- 64. Borissova AM, Rashkov R, Boyanov M, et al. Femoral neck bone mineral

density and 10-year absolute fracture risk in a national representative sample of Bulgarian women aged 50 years and older. Arch Osteoporos. 2011;6:189-95. doi: 10.1007/s11657-011-0064-x [doi].Exclusion Code: X9.

- 65. Boutroy S, Hans D, Sornay-Rendu E, et al. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int. 2013 Jan;24(1):77-85. doi: 10.1007/s00198-012-2188-2 [doi]. PMID: 23070481.Exclusion Code: X9.
- 66. Bouxsein ML, Chen P, Glass EV, et al. Teriparatide and raloxifene reduce the risk of new adjacent vertebral fractures in postmenopausal women with osteoporosis. Results from two randomized controlled trials. J Bone Joint Surg Am. 2009 Jun;91(6):1329-38. doi: 91/6/1329 [pii]; 10.2106/JBJS.H.01030 [doi]. PMID: 19487509.Exclusion Code: X4.
- 67. Brennan SL, Leslie WD, Lix LM, et al. FRAX provides robust fracture prediction regardless of socioeconomic status. Osteoporos Int. 2014 Jan;25(1):61-9. doi: 10.1007/s00198-013-2525-0 [doi]. PMID: 24190425.Exclusion Code: X8.
- 68. Brewer L, Mellon L, Duggan J. Ability of fracture risk assessment tool and national osteoporosis guideline group guidance to stratify people appropriately before fracture. J Am Geriatr Soc. 2013 Sep;61(9):1633-4. doi: 10.1111/jgs.12435 [doi]. PMID: 24028368.Exclusion Code: X9.

- 69. Bridges MJ, Ruddick S. Ability of FRAX/NOGG guidelines to identify patients sustaining low trauma fractures. Rheumatology (Oxford). 2010 Feb;49(2):391-2. doi: kep353
 [pii]; 10.1093/rheumatology/kep353
 [doi]. PMID: 19900999.Exclusion Code: X9.
- 70. Bridges MJ, Ruddick SA. Do FRAX/NOGG guidelines predict fractures in post-menopausal women with Type 2 diabetes? Diabet Med. 2012 Apr;29(4):555-6. doi: 10.1111/j.1464-5491.2011.03470.x [doi]. PMID: 21978325.Exclusion Code: X9.
- 71. Brown JP, Roux C, Torring O, et al. Discontinuation of denosumab and associated fracture incidence: analysis from the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. J Bone Miner Res. 2013 Apr;28(4):746-52. doi: 10.1002/jbmr.1808 [doi]. PMID: 23109251.Exclusion Code: X9.
- 72. Bruyere O, Fossi M, Zegels B, et al. Comparison of the proportion of patients potentially treated with an anti-osteoporotic drug using the current criteria of the Belgian national social security and the new suggested FRAX(registered trademark) criteria. Rheumatol Int. 2013;33(4):973-8.Exclusion Code: X9.
- 73. Buist DS, LaCroix AZ, Manfredonia D, et al. Identifying postmenopausal women at high risk of fracture in populations: a comparison of three strategies. J Am Geriatr Soc. 2002 Jun;50(6):1031-8. doi: jgs50257 [pii]. PMID: 12110062.Exclusion Code: X9.
- 74. Bumbasirevic M, Lesic A, Denic-Markovic L, et al. Prospective

clinical study of once monthly ibandronate in the treatment of osteoporosis and prevention of fractures in postmenopausal women: ORPHEUM Study. Srp Arh Celok Lek. 2011;139(11-12):790-4.Exclusion Code: X5.

- 75. Bunnell N. Osteoporosis. J Ky Med Assoc. 2005 Nov;103(11):567-8.
 PMID: 16302725.Exclusion Code: X2.
- 76. Bunout D, Barrera G, de la Maza MP, et al. Height reduction, determined using knee height measurement as a risk factor or predictive sign for osteoporosis in elderly women. Nutrition. 2007 Nov-Dec;23(11-12):794-7. doi: S0899-9007(07)00253-5 [pii]; 10.1016/j.nut.2007.08.012 [doi]. PMID: 17936193.Exclusion Code: X7.
- 77. Burger H, de Laet CE, Weel AE, et al. Added value of bone mineral density in hip fracture risk scores. Bone. 1999 Sep;25(3):369-74. PMID: 10495142.Exclusion Code: X14.
- 78. Cadarette SM, Jaglal SB, Kreiger N, et al. Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. CMAJ. 2000 May 2;162(9):1289-94. PMID: 10813010.Exclusion Code: X14.
- 79. Cadarette SM, Jaglal SB, Murray TM, et al. Evaluation of decision rules for referring women for bone densitometry by dual-energy x-ray absorptiometry. JAMA. 2001 Jul 4;286(1):57-63. doi: joc01835 [pii]. PMID: 11434827.Exclusion Code: X16.
- 80. Cass AR, Shepherd AJ. Validation of the Male Osteoporosis Risk

Estimation Score (MORES) in a primary care setting. J Am Board Fam Med. 2013 Jul-Aug;26(4):436-44. doi: 26/4/436 [pii]; 10.3122/jabfm.2013.04.120182 [doi]. PMID: 23833159.Exclusion Code: X16.

- 81. Catalano A, Morabito N, Basile G, et al. Fracture risk assessment in postmenopausal women referred to an italian center for osteoporosis: A single day experience in messina. Clinical Cases in Mineral and Bone Metabolism. 2013;10(3):191-4.Exclusion Code: X9.
- 82. Cauley JA, LaCroix AZ, Robbins JA, et al. Baseline serum estradiol and fracture reduction during treatment with hormone therapy: the Women's Health Initiative randomized trial. Osteoporos Int. 2010 Jan;21(1):167-77. doi: 10.1007/s00198-009-0953-7 [doi]. PMID: 19436934.Exclusion Code: X9.
- 83. Chai J, Chau AC, Chu FC, et al. Diagnostic performance of mandibular bone density measurements in assessing osteoporotic status. Int J Oral Maxillofac Implants. 2014 May-Jun;29(3):667-74. PMID: 24818206.Exclusion Code: X7.
- 84. Chailurkit LO, Jongjaroenprasert W, Rungbunnapun S, et al. Effect of alendronate on bone mineral density and bone turnover in Thai postmenopausal osteoporosis. J Bone Miner Metab. 2003;21(6):421-7. doi: 10.1007/s00774-003-0438-2. PMID: 14586800.Exclusion Code: X5.
- 85. Chan SP, Teo CC, Ng SA, et al. Validation of various osteoporosis risk indices in elderly Chinese females in Singapore. Osteoporos Int. 2006;17(8):1182-8. doi:

10.1007/s00198-005-0051-4 [doi]. PMID: 16699739.Exclusion Code: X16.

- 86. Chao AS, Chen FP, Lin YC. Application of the who fracture risk assessment tool to predict need for DXA scanning in postmenopausal women. Osteoporos Int; 2015. p. S299.Exclusion Code: X9.
- 87. Chao M, Hua Q, Yingfeng Z, et al. Study on the role of zoledronic acid in treatment of postmenopausal osteoporosis women. Pak J Med Sci. 2013 Nov;29(6):1381-4. PMID: 24550958.Exclusion Code: X5.
- 88. Chapman I, Greville H, Ebeling PR, et al. Intravenous zoledronate improves bone density in adults with cystic fibrosis (CF). Clin Endocrinol (Oxf). 2009 Jun;70(6):838-46. doi: 10.1111/j.1365-2265.2008.03434.x. PMID: 18823395.Exclusion Code: X3.
- 89. Chau D, Becker DL, Coombes ME, et al. Cost-effectiveness of denosumab in the treatment of postmenopausal osteoporosis in Canada. J Med Econ. 2012;15 Suppl 1:3-14. doi: 10.3111/13696998.2012.737393
 [doi]. PMID: 23035625.Exclusion Code: X9.
- 90. Chen CK, Chang HT, Chou HP, et al. Alendronate and risk of lower limb ischemic vascular events: a population-based cohort study. Osteoporos Int. 2014 Feb;25(2):673-80. doi: 10.1007/s00198-013-2478-3 [doi]. PMID: 23943167.Exclusion Code: X5.
- 91. Chen F, Osterman AL, Mahony K. Smoking and bony union after ulnashortening osteotomy. Am J Orthop (Belle Mead NJ). 2001 Jun;30(6):486-9. PMID: 11411875.Exclusion Code: X9.

- 92. Chen F, Wang Z, Bhattacharyya T. Absence of femoral cortical thickening in long-term bisphosphonate users: implications for atypical femur fractures. Bone. 2014 May;62:64-6. doi: 10.1016/j.bone.2014.01.011. PMID: 24468718.Exclusion Code: X9.
- 93. Chen JS, Simpson JM, Blyth FM, et al. Managing osteoporosis with FRAX(R) in Australia: proposed new treatment thresholds from the 45&Up Study cohort. Bone. 2014 Dec;69:148-53. doi: S8756-3282(14)00346-9 [pii]; 10.1016/j.bone.2014.09.015 [doi]. PMID: 25263521.Exclusion Code: X9.
- 94. Chen JS, Simpson JM, March LM, et al. Fracture risk assessment in frail older people using clinical risk factors. Age Ageing. 2008
 Sep;37(5):536-41. doi: afn128 [pii]; 10.1093/ageing/afn128 [doi]. PMID: 18541611.Exclusion Code: X6.
- 95. Chen P, Miller PD, Binkley NC, et al. Use of lowest single lumbar spine vertebra bone mineral density T-score and other T-score approaches for diagnosing osteoporosis and relationships with vertebral fracture status. J Clin Densitom. 2008 Oct-Dec;11(4):525-31. doi: S1094-6950(08)00070-X [pii]; 10.1016/j.jocd.2008.04.009 [doi]. PMID: 18599331.Exclusion Code: X3.
- 96. Chen SJ, Lin CS, Lin CL, et al. Osteoporosis Is Associated With High Risk for Coronary Heart Disease: A Population-Based Cohort Study. Medicine (Baltimore). 2015 Jul;94(27):e1146. doi: 10.1097/MD.00000000001146 [doi]

00005792-201507020-00062 [pii]. PMID: 26166125.Exclusion Code: X7.

- 97. Chen Y, Harrold LR, Yood RA, et al. Identifying patients with osteoporosis or at risk for osteoporotic fractures. Am J Manag Care. 2012 Feb;18(2):e61-7. doi: 43593 [pii]. PMID: 22435886.Exclusion Code: X14.
- 98. Chesnut CH, 3rd, Skag A, Christiansen C, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004 Aug;19(8):1241-9. doi: 10.1359/jbmr.040325. PMID: 15231010.Exclusion Code: X3.
- 99. Cheung E, Cheung CL, Kung AWC, et al. Possible FRAX-based intervention thresholds for a cohort of Chinese postmenopausal women. Osteoporos Int. 2014;25(3):1017-23.Exclusion Code: X7.
- 100. Chin KY, Ima-Nirwana S, Isa Naina M, et al. Calcaneal quantitative ultrasound value for middle-aged and elderly Malaysian Chinese men and its association with age and body anthropometry. J Clin Densitom. 2012 Jan-Mar;15(1):86-91. doi: S1094-6950(11)00177-6 [pii]; 10.1016/j.jocd.2011.09.004 [doi]. PMID: 22169197.Exclusion Code: X9.
- 101. Chiu WY, Chien JY, Yang WS, et al. The risk of osteonecrosis of the jaws in Taiwanese osteoporotic patients treated with oral alendronate or raloxifene. J Clin Endocrinol Metab. 2014 Aug;99(8):2729-35. doi: 10.1210/jc.2013-4119 [doi]. PMID: 24758181.Exclusion Code: X5.
- 102. Choi D, Kim DY, Han CS, et al. Measurements of bone mineral density in the lumbar spine and proximal femur using lunar prodigy

and the new pencil-beam dualenergy X-ray absorptiometry. Skeletal Radiol. 2010 Nov;39(11):1109-16. doi: 10.1007/s00256-009-0828-1 [doi]. PMID: 19924413.Exclusion Code: X9.

- 103. Choi YJ, Yang SO, Shin CS, et al. The importance of morphometric radiographic vertebral assessment for the detection of patients who need pharmacological treatment of osteoporosis among postmenopausal diabetic Korean women. Osteoporos Int. 2012 Aug;23(8):2099-105. doi: 10.1007/s00198-011-1803-y [doi]. PMID: 21975560.Exclusion Code: X9.
- 104. Chou SH, Vokes TJ, Ma SL, et al. Simplified criteria for selecting patients for vertebral fracture assessment. J Clin Densitom. 2014 Jul-Sep;17(3):386-91. doi: S1094-6950(13)00210-2 [pii]; 10.1016/j.jocd.2013.11.003 [doi]. PMID: 24582084.Exclusion Code: X14.
- 105. Chow CC, Chan WB, Li JK, et al. Oral alendronate increases bone mineral density in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab. 2003 Feb;88(2):581-7. doi: 10.1210/jc.2002-020890. PMID: 12574184.Exclusion Code: X3.
- 106. Christiansen C, Chesnut CH, 3rd, Adachi JD, et al. Safety of bazedoxifene in a randomized, double-blind, placebo- and activecontrolled Phase 3 study of postmenopausal women with osteoporosis. BMC Musculoskelet Disord. 2010;11:130. doi: 1471-2474-11-130 [pii]; 10.1186/1471-

2474-11-130 [doi]. PMID: 20569451.Exclusion Code: X3.

- 107. Chung HY, Chin SO, Kang MI, et al. Efficacy of risedronate with cholecalciferol on 25hydroxyvitamin D level and bone turnover in Korean patients with osteoporosis. Clin Endocrinol (Oxf). 2011 Jun;74(6):699-704. doi: 10.1111/j.1365-2265.2011.04041.x [doi]. PMID: 21521310.Exclusion Code: X8.
- 108. Chung HY, Park HM. Effects of weekly risedronate with cholecalciferolon 25-hydroxyvitamin D level and bone mineral density in Korean patients with osteoporosis. Osteoporos Int; 2015. p. S98.Exclusion Code: X8.
- 109. Chung YE, Lee SH, Lee SY, et al. Long-term treatment with raloxifene, but not bisphosphonates, reduces circulating sclerostin levels in postmenopausal women. Osteoporos Int. 2012 Apr;23(4):1235-43. doi: 10.1007/s00198-011-1675-1 [doi]. PMID: 21660558.Exclusion Code: X9.
- Clark E, Morrison L, Cuming M, et al. A screening programme for identification of vertebral fractures increases bisphosphonate prescribing and reduces fractures: Results of a large RCT. J Bone Miner Res; 2011.Exclusion Code: X18.
- 111. Clark EM, Gould V, Morrison L, et al. Randomized controlled trial of a primary care-based screening program to identify older women with prevalent osteoporotic vertebral fractures: Cohort for Skeletal Health in Bristol and Avon (COSHIBA). J Bone Miner Res. 2012 Mar;27(3):664-71. doi: 10.1002/jbmr.1478 [doi]. PMID: 22113935.Exclusion Code: X9.

- 112. Clemmesen B, Ravn P, Zegels B, et al. A 2-year phase II study with 1-year of follow-up of risedronate (NE-58095) in postmenopausal osteoporosis. Osteoporos Int. 1997;7(5):488-95. PMID: 9425508.Exclusion Code: X3.
- 113. Cohen S, Levy RM, Keller M, et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebocontrolled, parallel-group study. Arthritis Rheum. 1999 Nov;42(11):2309-18. doi: 10.1002/1529-0131(199911)42:11<2309::aidanr8>3.0.co;2-k. PMID: 10555025.Exclusion Code: X3.
- 114. Cohen SB, Dore RK, Lane NE, et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, doubleblind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 2008 May;58(5):1299-309. doi: 10.1002/art.23417 [doi]. PMID: 18438830.Exclusion Code: X3.
- 115. Colon-Emeric C, Kuchibhatla M, Pieper C, et al. The contribution of hip fracture to risk of subsequent fractures: data from two longitudinal studies. Osteoporos Int. 2003 Nov;14(11):879-83. doi: 10.1007/s00198-003-1460-x [doi]. PMID: 14530910.Exclusion Code: X3.
- 116. Colon-Emeric C, Nordsletten L, Olson S, et al. Association between timing of zoledronic acid infusion and hip fracture healing. Osteoporos Int. 2011 Aug;22(8):2329-36. doi: 10.1007/s00198-010-1473-1. PMID: 21153021.Exclusion Code: X3.

- 117. Colon-Emeric CS, Pieper CF, Artz MB. Can historical and functional risk factors be used to predict fractures in community-dwelling older adults? development and validation of a clinical tool. Osteoporos Int. 2002 Dec;13(12):955-61. doi: 10.1007/s001980200133 [doi]. PMID: 12459938.Exclusion Code: X9.
- 118. Compston J. Assessment of fracture risk key in osteoporosis. Practitioner. 2008 Dec;252(1713):15-6, 9. PMID: 19192698.Exclusion Code: X2.
- 119. Cosman F, Cauley JA, Eastell R, et al. Reassessment of fracture risk in women after 3 years of treatment with zoledronic acid: when is it reasonable to discontinue treatment? J Clin Endocrinol Metab. 2014 Dec;99(12):4546-54. doi: 10.1210/jc.2014-1971 [doi]. PMID: 25215556.Exclusion Code: X3.
- 120. Cosman F, Keaveny TM, Kopperdahl D, et al. Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. J Bone Miner Res. 2013 Jun;28(6):1328-36. doi: 10.1002/jbmr.1853 [doi]. PMID: 23281041.Exclusion Code: X8.
- 121. Cosman F, Lane NE, Bolognese MA, et al. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2010 Jan;95(1):151-8. doi: jc.2009-0358 [pii]; 10.1210/jc.2009-0358 [doi]. PMID: 19858319.Exclusion Code: X5.
- 122. Cosman F, Nieves JW, Zion M, et al. Daily or Cyclical Teriparatide Treatment in Women With
Osteoporosis on no Prior Therapy and Women on Alendronate. J Clin Endocrinol Metab. 2015 Jul;100(7):2769-76. doi: 10.1210/jc.2015-1715 [doi]. PMID: 25961136.Exclusion Code: X8.

- 123. Couris CM, Chapurlat RD, Kanis JA, et al. FRAX(R) probabilities and risk of major osteoporotic fracture in France. Osteoporos Int. 2012 Sep;23(9):2321-7. doi: 10.1007/s00198-011-1883-8 [doi]. PMID: 22179418.Exclusion Code: X9.
- 124. Crabtree NJ, Kroger H, Martin A, et al. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Osteoporos Int. 2002 Jan;13(1):48-54. PMID: 11883408.Exclusion Code: X7.
- 125. Crandall CJ. Risk Assessment Tools for Osteoporosis Screening in Postmenopausal Women: A Systematic Review. Curr Osteoporos Rep. 2015 Oct;13(5):287-301. doi: 10.1007/s11914-015-0282-z. PMID: 26233285.Exclusion Code: X18.
- 126. Crandall CJ, Larson J, Gourlay ML, et al. Osteoporosis screening in postmenopausal women 50 to 64 years old: comparison of US Preventive Services Task Force strategy and two traditional strategies in the Women's Health Initiative. J Bone Miner Res. 2014 Jul;29(7):1661-6. doi: 10.1002/jbmr.2174 [doi]. PMID: 24431262.Exclusion Code: X16.
- 127. Crandall CJ, Newberry SJ, Diamant A, et al. Comparative effectiveness of pharmacologic treatments to prevent fractures: an updated systematic review. Ann Intern Med.

2014 Nov 18;161(10):711-23. doi: 1902273 [pii]; 10.7326/M14-0317 [doi]. PMID: 25199883.Exclusion Code: X19.

- 128. Crans GG, Genant HK, Krege JH. Prognostic utility of a semiquantitative spinal deformity index. Bone. 2005 Aug;37(2):175-9. doi: S8756-3282(05)00147-X [pii]; 10.1016/j.bone.2005.04.003 [doi]. PMID: 15922683.Exclusion Code: X3.
- 129. Crawford BA, Kam C, Pavlovic J, et al. Zoledronic acid prevents bone loss after liver transplantation: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2006 Feb 21;144(4):239-48. PMID: 16490909.Exclusion Code: X3.
- 130. Croswell J. Screening for osteoporosis. Am Fam Physician.
 2011 May 15;83(10):1201-2. doi: d8973 [pii]. PMID: 21568255.Exclusion Code: X2.
- 131. Cummings SR. Prevention of hip fractures in older women: a population-based perspective. Osteoporos Int. 1998;8 Suppl 1:S8-12. PMID: 9682790.Exclusion Code: X8.
- 132. Cummings SR, Cawthon PM, Ensrud KE, et al. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res. 2006 Oct;21(10):1550-6. doi: 10.1359/jbmr.060708 [doi]. PMID: 16995809.Exclusion Code: X9.
- 133. Cummings SR, Ensrud K, Delmas PD, et al. Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med. 2010 Feb 25;362(8):686-96. doi: 362/8/686 [pii]; 10.1056/NEJMoa0808692 [doi].

PMID: 20181970.Exclusion Code: X7.

- 134. Cummings SR, McClung M, Reginster JY, et al. Arzoxifene for prevention of fractures and invasive breast cancer in postmenopausal women. J Bone Miner Res. 2011 Feb;26(2):397-404. doi: 10.1002/jbmr.191 [doi]. PMID: 20658564.Exclusion Code: X7.
- 135. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995 Mar 23;332(12):767-73. doi: 10.1056/nejm199503233321202. PMID: 7862179.Exclusion Code: X9.
- 136. Cummins NM, Poku EK, Towler MR, et al. clinical risk factors for osteoporosis in Ireland and the UK: a comparison of FRAX and QFractureScores. Calcif Tissue Int. 2011 Aug;89(2):172-7. doi: 10.1007/s00223-011-9504-2 [doi]. PMID: 21647704.Exclusion Code: X11.
- 137. Curtis JR, McClure LA, Delzell E, et al. Population-based fracture risk assessment and osteoporosis treatment disparities by race and gender. J Gen Intern Med. 2009 Aug;24(8):956-62. doi: 10.1007/s11606-009-1031-8 [doi]. PMID: 19551449.Exclusion Code: X9.
- 138. Czerwinski E, Kanis JA, Osieleniec J, et al. Evaluation of FRAX to characterise fracture risk in Poland. Osteoporos Int. 2011 Sep;22(9):2507-12. doi: 10.1007/s00198-010-1502-0 [doi]. PMID: 21127840.Exclusion Code: X9.

- 139. D'Amelio P, Sassi F, Buondonno I, et al. Effect of intermittent PTH treatment on plasma glucose in osteoporosis: A randomized trial. Bone; 2015. p. 177-84.Exclusion Code: X9.
- 140. D'Amelio P, Spertino E, Martino F, et al. Prevalence of postmenopausal osteoporosis in Italy and validation of decision rules for referring women for bone densitometry. Calcif Tissue Int. 2013;92(5):437-43.Exclusion Code: X16.
- 141. Damiano J, Kolta S, Porcher R, et al. Diagnosis of vertebral fractures by vertebral fracture assessment. J Clin Densitom. 2006 Jan-Mar;9(1):66-71. doi: S1094-6950(06)00009-6 [pii]; 10.1016/j.jocd.2005.11.002 [doi]. PMID: 16731433.Exclusion Code: X11.
- 142. Damilakis J, Vlasiadis K. Have panoramic indices the power to identify women with low BMD at the axial skeleton? Phys Med. 2011 Jan;27(1):39-43. doi: S1120-1797(10)00022-0 [pii]; 10.1016/j.ejmp.2010.03.002 [doi]. PMID: 20359922.Exclusion Code: X12.
- 143. Dargent-Molina P, Douchin MN, Cormier C, et al. Use of clinical risk factors in elderly women with low bone mineral density to identify women at higher risk of hip fracture: The EPIDOS prospective study. Osteoporos Int. 2002 Jul;13(7):593-9. doi: 10.1007/s001980200078. PMID: 12111021.Exclusion Code: X14.
- 144. Davis SR, Kirby C, Weekes A, et al. Simplifying screening for osteoporosis in Australian primary care: the Prospective Screening for Osteoporosis; Australian Primary Care Evaluation of Clinical Tests

(PROSPECT) study. Menopause. 2011 Jan;18(1):53-9. doi: 10.1097/gme.0b013e3181e77468 [doi]. PMID: 20711081.Exclusion Code: X14.

- 145. Dawson-Hughes B, Looker AC, Tosteson AN, et al. The potential impact of new National Osteoporosis Foundation guidance on treatment patterns. Osteoporos Int. 2010 Jan;21(1):41-52. doi: 10.1007/s00198-009-1034-7 [doi]. PMID: 19705046.Exclusion Code: X9.
- 146. Dawson-Hughes B, Looker AC, Tosteson AN, et al. The potential impact of the National Osteoporosis Foundation guidance on treatment eligibility in the USA: an update in NHANES 2005-2008. Osteoporos Int. 2012 Mar;23(3):811-20. doi: 10.1007/s00198-011-1694-y [doi]. PMID: 21717247.Exclusion Code: X9.
- 147. de Nijs RN, Jacobs JW, Lems WF, et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med. 2006 Aug 17;355(7):675-84. doi: 10.1056/NEJMoa053569. PMID: 16914703.Exclusion Code: X3.
- 148. de Valk-de Roo GW, Stehouwer CD, Meijer P, et al. Both raloxifene and estrogen reduce major cardiovascular risk factors in healthy postmenopausal women: A 2-year, placebo-controlled study. Arterioscler Thromb Vasc Biol. 1999 Dec;19(12):2993-3000. PMID: 10591680.Exclusion Code: X9.
- 149. de Villiers TJ. Individualized therapy for osteoporosis prevention and treatment in women under 60. Climacteric. 2009 Jun;12(3):210-2. doi: 911126945 [pii]; 10.1080/13697130902937644 [doi].

PMID: 19437197.Exclusion Code: X2.

- 150. de Villiers TJ, Chines AA, Palacios S, et al. Safety and tolerability of bazedoxifene in postmenopausal women with osteoporosis: results of a 5-year, randomized, placebo-controlled phase 3 trial. Osteoporos Int. 2011 Feb;22(2):567-76. doi: 10.1007/s00198-010-1302-6 [doi]. PMID: 20535606.Exclusion Code: X3.
- 151. de Vries F, Souverein PC, Cooper C, et al. Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and The Netherlands. Calcif Tissue Int. 2007 Feb;80(2):69-75. doi: 10.1007/s00223-006-0213-1 [doi]. PMID: 17308987.Exclusion Code: X4.
- 152. Del Rio LM, Winzenrieth R, Cormier C, et al. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int. 2013 Mar;24(3):991-8. doi: 10.1007/s00198-012-2008-8 [doi]. PMID: 22581295.Exclusion Code: X11.
- 153. Dencks S, Barkmann R, Padilla F, et al. Wavelet-based signal processing of in vitro ultrasonic measurements at the proximal femur. Ultrasound Med Biol. 2007 Jun;33(6):970-80. doi: S0301-5629(07)00014-2 [pii]; 10.1016/j.ultrasmedbio.2006.12.002 [doi]. PMID: 17445965.Exclusion Code: X3.
- 154. Devlin H, Allen PD, Graham J, et al. Automated osteoporosis risk assessment by dentists: a new pathway to diagnosis. Bone. 2007 Apr;40(4):835-42. doi: S8756-3282(06)00799-X [pii];

10.1016/j.bone.2006.10.024 [doi]. PMID: 17188590.Exclusion Code: X12.

- 155. Devlin H, Horner K. Mandibular radiomorphometric indices in the diagnosis of reduced skeletal bone mineral density. Osteoporos Int. 2002 May;13(5):373-8. doi: 10.1007/s001980200042 [doi]. PMID: 12086347.Exclusion Code: X12.
- 156. Dexue L, Yueyue Z. Salmon calcitonin in the treatment of elderly women with type 2 diabetes complicated with osteoporosis. Pak J Pharm Sci. 2014 Nov;27(6 Suppl):2079-81. PMID: 25410076.Exclusion Code: X5.
- 157. Dhainaut A, Hoff M, Syversen U, et al. Cortical hand bone porosity and its association with distal radius fracture in middle aged and elderly women. PLoS One. 2013;8(7):e68405. doi: 10.1371/journal.pone.0068405 [doi]; PONE-D-13-07478 [pii]. PMID: 23844197.Exclusion Code: X11.
- 158. Dhainaut A, Rohde G, Hoff M, et al. Phalangeal densitometry compared with dual energy X-ray absorptiometry for assessment of bone mineral density in elderly women. J Womens Health (Larchmt). 2011 Dec;20(12):1789-95. doi: 10.1089/jwh.2010.2682 [doi]. PMID: 21970521.Exclusion Code: X11.
- 159. Dhainaut A, Rohde GE, Syversen U, et al. The ability of hand digital Xray radiogrammetry to identify middle-aged and elderly women with reduced bone density, as assessed by femoral neck dual-energy X-ray absorptiometry. J Clin Densitom. 2010 Oct-Dec;13(4):418-25. doi: S1094-6950(10)00219-2 [pii];

10.1016/j.jocd.2010.07.005 [doi]. PMID: 21029976.Exclusion Code: X11.

- 160. Diab DL, Watts NB. Postmenopausal osteoporosis. Curr Opin Endocrinol Diabetes Obes. 2013 Dec;20(6):501-9. doi: 10.1097/01.med.0000436194.10599. 94 [doi]. PMID: 24150190.Exclusion Code: X4.
- 161. Dick IM, Devine A, Beilby J, et al. Effects of endogenous estrogen on renal calcium and phosphate handling in elderly women. Am J Physiol Endocrinol Metab. 2005 Feb;288(2):E430-5. doi: 00140.2004 [pii]; 10.1152/ajpendo.00140.2004 [doi]. PMID: 15466921.Exclusion Code: X7.
- 162. Diez-Perez A, Gonzalez-Macias J, Marin F, et al. Prediction of absolute risk of non-spinal fractures using clinical risk factors and heel quantitative ultrasound. Osteoporos Int. 2007 May;18(5):629-39. doi: 10.1007/s00198-006-0297-5 [doi]. PMID: 17235664.Exclusion Code: X14.
- 163. Dincel VE, Sengelen M, Sepici V, et al. The association of proximal femur geometry with hip fracture risk. Clin Anat. 2008 Sep;21(6):575-80. doi: 10.1002/ca.20680 [doi]. PMID: 18661572.Exclusion Code: X7.
- 164. Dobnig H, Stepan JJ, Burr DB, et al. Teriparatide reduces bone microdamage accumulation in postmenopausal women previously treated with alendronate. J Bone Miner Res. 2009 Dec;24(12):1998-2006. doi: 10.1359/jbmr.090527 [doi]. PMID: 19453263.Exclusion Code: X9.
- 165. Dominguez JR, Kestenbaum B, Chonchol M, et al. Relationships

between serum and urine phosphorus with all-cause and cardiovascular mortality: the Osteoporotic Fractures in Men (MrOS) Study. Am J Kidney Dis. 2013 Apr;61(4):555-63. doi: S0272-6386(12)01472-2 [pii]; 10.1053/j.ajkd.2012.11.033 [doi]. PMID: 23261120.Exclusion Code: X9.

- 166. Domrongkitchaiporn S, Ongphiphadhanakul B, Stitchantrakul W, et al. Risk of calcium oxalate nephrolithiasis in postmenopausal women supplemented with calcium or combined calcium and estrogen. Maturitas. 2002 Feb 26;41(2):149-56. doi: S0378512201002778 [pii]. PMID: 11836046.Exclusion Code: X5.
- 167. Donaldson MG, Palermo L, Ensrud KE, et al. Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density: the Fracture Intervention Trial. J Bone Miner Res. 2012 Aug;27(8):1804-10. doi: 10.1002/jbmr.1625 [doi]. PMID: 22492479.Exclusion Code: X3.
- 168. Duckham RL, Frank AW, Johnston JD, et al. Monitoring time interval for pQCT-derived bone outcomes in postmenopausal women. Osteoporos Int. 2013 Jun;24(6):1917-22. doi: 10.1007/s00198-012-2242-0 [doi]. PMID: 23344257.Exclusion Code: X7.
- 169. Durosier C, Hans D, Krieg MA, et al. Defining risk thresholds for a 10year probability of hip fracture model that combines clinical risk factors and quantitative ultrasound: results using the EPISEM cohort. J Clin Densitom. 2008 Jul-Sep;11(3):397-403. doi: S1094-6950(08)00037-1 [pii];

10.1016/j.jocd.2008.03.002 [doi]. PMID: 18456531.Exclusion Code: X9.

- 170. Dursun N, Dursun E, Yalcin S. Comparison of alendronate, calcitonin and calcium treatments in postmenopausal osteoporosis. Int J Clin Pract. 2001 Oct;55(8):505-9. PMID: 11695068.Exclusion Code: X8.
- 171. Eastell R, Boonen S, Cosman F, et al. Relationship between pretreatment rate of bone loss and bone density response to once-yearly ZOL: HORIZON-PFT extension study. J Bone Miner Res; 2015. p. 483-7.Exclusion Code: X8.
- 172. Eastell R, Christiansen C, Grauer A, et al. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res. 2011 Mar;26(3):530-7. doi: 10.1002/jbmr.251 [doi]. PMID: 20839290.Exclusion Code: X9.
- 173. Eastell R, Devogelaer JP, Peel NF, et al. Prevention of bone loss with risedronate in glucocorticoid-treated rheumatoid arthritis patients. Osteoporos Int. 2000;11(4):331-7. doi: 10.1007/s001980070122. PMID: 10928223.Exclusion Code: X3.
- 174. Eastell R, Lang T, Boonen S, et al. Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial. Osteoporos Int. 2010 Jul;21(7):1277-85. doi: 10.1007/s00198-009-1077-9 [doi]. PMID: 19802508.Exclusion Code: X9.
- 175. Edwards FD, Grover ML, Cook CB, et al. Use of FRAX as a determinant for risk-based osteoporosis screening may decrease unnecessary testing

while improving the odds of identifying treatment candidates. Womens Health Issues. 2014 Nov-Dec;24(6):629-34. doi: S1049-3867(14)00082-6 [pii]; 10.1016/j.whi.2014.06.006 [doi]. PMID: 25128036.Exclusion Code: X9.

- 176. Egorov V, Tatarinov A, Sarvazyan N, et al. Osteoporosis detection in postmenopausal women using axial transmission multi-frequency bone ultrasonometer: clinical findings. Ultrasonics. 2014 Jul;54(5):1170-7. doi: S0041-624X(13)00259-X [pii]; 10.1016/j.ultras.2013.08.017 [doi]. PMID: 24070826.Exclusion Code: X7.
- 177. Elffors L, Gullberg B, Allander E, et al. Methodology of MEDOS multicentre study of hip fracture incidence: validity and relevance considerations. Bone. 1993;14 Suppl 1:S45-9. PMID: 8110520.Exclusion Code: X7.
- 178. El-Hajj Fuleihan G, Baddoura R, Awada H, et al. First update of the Lebanese guidelines for osteoporosis assessment and treatment. J Clin Densitom. 2008 Jul-Sep;11(3):383-96. doi: S1094-6950(08)00031-0 [pii]; 10.1016/j.jocd.2008.02.006 [doi]. PMID: 18448373.Exclusion Code: X2.
- 179. Elvey MH, Pugh H, Schaller G, et al. Failure in the application of fragility fracture prevention guidelines. Ann R Coll Surg Engl. 2014 Jul;96(5):381-5. doi: 10.1308/003588414X139461849011 64 [doi]. PMID: 24992424.Exclusion Code: X9.
- 180. Engel P, Fabre A, Fournier A, et al. Risk of osteoporotic fractures after discontinuation of menopausal hormone therapy: results from the

E3N cohort. Am J Epidemiol. 2011 Jul 1;174(1):12-21. doi: kwr044 [pii]; 10.1093/aje/kwr044 [doi]. PMID: 21555715.Exclusion Code: X3.

- 181. Ensrud KE, Barrett-Connor EL, Schwartz A, et al. Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J Bone Miner Res. 2004 Aug;19(8):1259-69. doi: 10.1359/jbmr.040326. PMID: 15231012.Exclusion Code: X8.
- 182. Ensrud KE, Stock JL, Barrett-Connor E, et al. Effects of raloxifene on fracture risk in postmenopausal women: the Raloxifene Use for the Heart Trial. J Bone Miner Res. 2008 Jan;23(1):112-20. doi: 10.1359/jbmr.070904. PMID: 17892376.Exclusion Code: X3.
- 183. Ettinger B. Appropriate intervention through fracture risk assessment. Manag Care. 2005 Aug;14(8 Suppl Osteoporosis):9-12; discussion 21-3.Exclusion Code: X2.
- 184. Ettinger B, Black DM, Dawson-Hughes B, et al. Updated fracture incidence rates for the US version of FRAX. Osteoporos Int. 2010 Jan;21(1):25-33. doi: 10.1007/s00198-009-1032-9 [doi]. PMID: 19705048.Exclusion Code: X9.
- 185. Ettinger B, Hillier TA, Pressman A, et al. Simple computer model for calculating and reporting 5-year osteoporotic fracture risk in postmenopausal women. J Womens Health (Larchmt). 2005 Mar;14(2):159-71. doi: 10.1089/jwh.2005.14.159 [doi]. PMID: 15775734.Exclusion Code: X9.

- 186. Ezoddini Ardakani F, Owlia MB, Hesami S, et al. Digital panoramic radiography as a useful tool for detection of bone loss: a comparative study. Acta Med Iran. 2013;51(2):94-100. PMID: 23585315.Exclusion Code: X15.
- 187. Fahrleitner-Pammer A, Langdahl BL, Marin F, et al. Fracture rate and back pain during and after discontinuation of teriparatide: 36month data from the European Forsteo Observational Study (EFOS). Osteoporos Int. 2011 Oct;22(10):2709-19. doi: 10.1007/s00198-010-1498-5 [doi]. PMID: 21113576.Exclusion Code: X8.
- 188. Fahrleitner-Pammer A, Piswanger-Soelkner JC, Pieber TR, et al. Ibandronate prevents bone loss and reduces vertebral fracture risk in male cardiac transplant patients: a randomized double-blind, placebo-controlled trial. J Bone Miner Res. 2009 Jul;24(7):1335-44. doi: 10.1359/jbmr.090216. PMID: 19257824.Exclusion Code: X3.
- 189. Faulkner KG, Orwoll E. Implications in the use of T-scores for the diagnosis of osteoporosis in men. J Clin Densitom. 2002 Spring;5(1):87-93. doi: JCD:5:1:087 [pii]. PMID: 11940733.Exclusion Code: X9.
- 190. Finkelstein JS, Wyland JJ, Lee H, et al. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2010 Apr;95(4):1838-45. doi: jc.2009-1703 [pii]; 10.1210/jc.2009-1703 [doi]. PMID: 20164296.Exclusion Code: X8.
- 191. Fitzpatrick LA, Dabrowski CE, Cicconetti G, et al. The effects of ronacaleret, a calcium-sensing

receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab. 2011 Aug;96(8):2441-9. doi: jc.2010-2855 [pii]; 10.1210/jc.2010-2855 [doi]. PMID: 21593114.Exclusion Code: X7.

- 192. Forsblad-d'Elia H, Carlsten H. Hormone replacement therapy in postmenopausal women with rheumatoid arthritis stabilises bone mineral density by digital x-ray radiogrammetry in a randomised controlled trial. Ann Rheum Dis. 2011 Jun;70(6):1167-8. doi: ard.2010.137133 [pii]; 10.1136/ard.2010.137133 [doi]. PMID: 21047910.Exclusion Code: X3.
- 193. Fowler JR, Craig MR. Association of low-energy femoral shaft fractures and bisphosphonate use. Orthopedics. 2012 Jan;35(1):e38-40. doi: 10.3928/01477447-20111122-06 [doi]. PMID: 22229611.Exclusion Code: X4.
- 194. Franek E, Wichrowska H, Gozdowski D, et al. WHO fracture risk calculator (FRAX) in the assessment of obese patients with osteoporosis. Endokrynol Pol. 2009 Mar-Apr;60(2):82-7. PMID: 19396750.Exclusion Code: X9.
- 195. Fransiska Y, Tiksnadi B, Chaidir R, et al. The male osteoporosis risk estimation score and the osteoporosis self-assessment screening tool for Indonesian men. J Orthop Surg (Hong Kong). 2012 Aug;20(2):205-8. PMID: 22933680.Exclusion Code: X15.
- 196. Frisoli A, Jr., Chaves PH, Pinheiro MM, et al. The effect of nandrolone decanoate on bone mineral density,

muscle mass, and hemoglobin levels in elderly women with osteoporosis: a double-blind, randomized, placebocontrolled clinical trial. J Gerontol A Biol Sci Med Sci. 2005 May;60(5):648-53. doi: 60/5/648 [pii]. PMID: 15972619.Exclusion Code: X7.

- 197. Fujita T, Fukunaga M, Itabashi A, et al. Once-Weekly Injection of Low-Dose Teriparatide (28.2 mug) Reduced the Risk of Vertebral Fracture in Patients with Primary Osteoporosis. Calcif Tissue Int. 2014 Feb;94(2):170-5. doi: 10.1007/s00223-013-9777-8 [doi]. PMID: 23963633.Exclusion Code: X3.
- 198. Fujiwara S, Hamaya E, Goto W, et al. Vertebral fracture status and the World Health Organization risk factors for predicting osteoporotic fracture risk in Japan. Bone. 2011 Sep;49(3):520-5. doi: S8756-3282(11)01010-6 [pii]; 10.1016/j.bone.2011.05.021 [doi]. PMID: 21652001.Exclusion Code: X3.
- 199. Fujiwara S, Nakamura T, Orimo H, et al. Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX). Osteoporos Int. 2008 Apr;19(4):429-35. doi: 10.1007/s00198-007-0544-4 [doi]. PMID: 18292977.Exclusion Code: X9.
- 200. Gaal J, Bender T, Varga J, et al. Overcoming resistance to bisphosphonates through the administration of alfacalcidol: results of a 1-year, open follow-up study. Rheumatol Int. 2009 Nov;30(1):25-31. doi: 10.1007/s00296-009-0892-9 [doi]. PMID: 19308412.Exclusion Code: X7.

- 201. Gadam RK, Schlauch K, Izuora KE. Frax prediction without BMD for assessment of osteoporotic fracture risk. Endocr Pract. 2013 Sep-Oct;19(5):780-4. doi: 6V1PP375U5584860 [pii]; 10.4158/EP12416.OR [doi]. PMID: 24121261.Exclusion Code: X9.
- 202. Gaines JM, Marx KA, Narrett M, et al. Validation of the male osteoporosis knowledge quiz. Am J Mens Health. 2011 Jan;5(1):78-83. doi: 1557988310363816 [pii]; 10.1177/1557988310363816 [doi]. PMID: 20413390.Exclusion Code: X9.
- 203. Galesanu C, Lisnic N, Moisii L. Denosumab significantly increases
 BMD compared with alendronate in postmenopausal women. Osteoporos Int; 2015. p. S150.Exclusion Code: X8.
- 204. Gallacher SJ, Dixon T. Impact of treatments for postmenopausal osteoporosis (bisphosphonates, parathyroid hormone, strontium ranelate, and denosumab) on bone quality: a systematic review. Calcif Tissue Int. 2010 Dec;87(6):469-84. doi: 10.1007/s00223-010-9420-x [doi]. PMID: 20872215.Exclusion Code: X9.
- 205. Gallagher JC, Genant HK, Crans GG, et al. Teriparatide reduces the fracture risk associated with increasing number and severity of osteoporotic fractures. J Clin Endocrinol Metab. 2005 Mar;90(3):1583-7. doi: 10.1210/jc.2004-0826. PMID: 15613428.Exclusion Code: X3.
- 206. Gates BJ, Sonnett TE, Duvall CA, et al. Review of osteoporosis pharmacotherapy for geriatric patients. Am J Geriatr Pharmacother. 2009 Dec;7(6):293-323. doi: S1543-

5946(09)00089-0 [pii]; 10.1016/j.amjopharm.2009.12.004 [doi]. PMID: 20129253.Exclusion Code: X4.

- 207. Gatti D, Viapiana O, Idolazzi L, et al. The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab. 2011 May;96(5):1555-9. doi: jc.2010-2552 [pii]; 10.1210/jc.2010-2552 [doi]. PMID: 21367927.Exclusion Code: X9.
- 208. Geary S, Selvi F, Chuang SK, et al. Identifying dental panoramic radiograph features for the screening of low bone mass in postmenopausal women. Int J Oral Maxillofac Surg. 2015;44(3):395-9.Exclusion Code: X9.
- 209. Gebauer M, Stark O, Vettorazzi E, et al. DXA and pQCT predict pertrochanteric and not femoral neck fracture load in a human side-impact fracture model. J Orthop Res. 2014 Jan;32(1):31-8. doi: 10.1002/jor.22478 [doi]. PMID: 24019186.Exclusion Code: X3.
- 210. Genant HK, Siris E, Crans GG, et al. Reduction in vertebral fracture risk in teriparatide-treated postmenopausal women as assessed by spinal deformity index. Bone. 2005 Aug;37(2):170-4. doi: S8756-3282(05)00186-9 [pii]; 10.1016/j.bone.2005.04.023 [doi]. PMID: 15961357.Exclusion Code: X9.
- 211. Gerdhem P, Magnusson H, Karlsson MK, et al. Ultrasound of the phalanges is not related to a previous fracture. A comparison between ultrasound of the phalanges, calcaneus, and DXA of the spine and hip in 75-year-old women. J Clin

Densitom. 2002 Summer;5(2):159-66. doi: JCD:5:2:159 [pii]. PMID: 12110759.Exclusion Code: X9.

- 212. Ghirardi A, Di Bari M, Zambon A, et al. Effectiveness of oral bisphosphonates for primary prevention of osteoporotic fractures: Evidence from the AIFA-BEST observational study. Eur J Clin Pharmacol. 2014;70(9):1129-37.Exclusion Code: X4.
- 213. Girman CJ, Chandler JM, Zimmerman SI, et al. Prediction of fracture in nursing home residents. J Am Geriatr Soc. 2002 Aug;50(8):1341-7. PMID: 12164989.Exclusion Code: X6.
- 214. Gluck JS, Chhabra AB. Loss of alignment after closed reduction of distal radius fractures. J Hand Surg Am. 2013 Apr;38(4):782-3. doi: S0363-5023(12)01130-6 [pii]; 10.1016/j.jhsa.2012.08.001 [doi]. PMID: 23098633.Exclusion Code: X7.
- 215. Gluer CC, Barkmann R. Quantitative ultrasound: use in the detection of fractures and in the assessment of bone composition. Curr Osteoporos Rep. 2003 Dec;1(3):98-104. PMID: 16036071.Exclusion Code: X2.
- 216. Gnudi S, Sitta E, Pignotti E. Prediction of incident hip fracture by femoral neck bone mineral density and neck-shaft angle: a 5-year longitudinal study in postmenopausal females. Br J Radiol. 2012 Aug;85(1016):e467-73. doi: 57130600 [pii]; 10.1259/bjr/57130600 [doi]. PMID: 22096224.Exclusion Code: X7.
- 217. Goderie-Plomp HW, van der Klift M, de Ronde W, et al. Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men

and women: the Rotterdam Study. J Clin Endocrinol Metab. 2004 Jul;89(7):3261-9. doi: 10.1210/jc.2002-022041 [doi]

- 89/7/3261 [pii]. PMID: 15240601.Exclusion Code: X7.
- 218. Goh SK, Yang KY, Koh JS, et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br. 2007 Mar;89(3):349-53. doi: 10.1302/0301-620x.89b3.18146. PMID: 17356148.Exclusion Code: X4.
- 219. Goldstein SR, Bhattoa HP, Neven P, et al. Gynecologic effects of arzoxifene in postmenopausal women with osteoporosis or low bone mass. Menopause. 2012 Jan;19(1):41-7. doi: 10.1097/gme.0b013e318223bbf4 [doi]. PMID: 21993078.Exclusion Code: X7.
- 220. Goldstein SR, Neven P, Cummings S, et al. Postmenopausal Evaluation and Risk Reduction With Lasofoxifene (PEARL) trial: 5-year gynecological outcomes. Menopause. 2011 Jan;18(1):17-22. doi: 10.1097/gme.0b013e3181e84bb4

[doi]. PMID: 20689465.Exclusion Code: X7.

- 221. Gomez-Vaquero C, Bianchi M, Santo P, et al. The activity of a Spanish bone densitometry unit revisited under the point of view of FRAX. Reumatol Clin. 2012 Jul-Aug;8(4):179-83. doi: S1699-258X(12)00080-0 [pii]; 10.1016/j.reuma.2012.02.003 [doi]. PMID: 22608955.Exclusion Code: X9.
- 222. Gordon L, Pope TL, Monen S. Value of vertebral X-rays in osteoporosis. J S C Med Assoc. 2001

Mar;97(3):102-5. PMID: 11285880.Exclusion Code: X2.

- 223. Gosens T, Speigner B, Minekus J. Fracture of the scapular body: functional outcome after conservative treatment. J Shoulder Elbow Surg. 2009 May-Jun;18(3):443-8. doi: S1058-2746(09)00097-4 [pii]; 10.1016/j.jse.2009.01.030 [doi]. PMID: 19393934.Exclusion Code: X11.
- 224. Gourlay ML, Fine JP, Preisser JS, et al. Bone-density testing interval and transition to osteoporosis in older women. N Engl J Med. 2012 Jan 19;366(3):225-33. doi: 10.1056/NEJMoa1107142 [doi]. PMID: 22256806.Exclusion Code: X9.
- 225. Gourlay ML, Miller WC, Richy F, et al. Performance of osteoporosis risk assessment tools in postmenopausal women aged 45-64 years. Osteoporos Int. 2005 Aug;16(8):921-7. doi: 10.1007/s00198-004-1775-2 [doi]. PMID: 16028108.Exclusion Code: X16.
- 226. Grady D, Ettinger B, Moscarelli E, et al. Safety and adverse effects associated with raloxifene: multiple outcomes of raloxifene evaluation. Obstet Gynecol. 2004 Oct;104(4):837-44. doi: 10.1097/01.AOG.0000137349.79204 .b8. PMID: 15458908.Exclusion Code: X16.
- 227. Grbic JT, Black DM, Lyles KW, et al. The incidence of osteonecrosis of the jaw in patients receiving 5 milligrams of zoledronic acid: data from the health outcomes and reduced incidence with zoledronic acid once yearly clinical trials program. J Am Dent Assoc. 2010

Nov;141(11):1365-70. PMID: 21037195.Exclusion Code: X8.

- 228. Grbic JT, Landesberg R, Lin SQ, et al. Incidence of osteonecrosis of the jaw in women with postmenopausal osteoporosis in the health outcomes and reduced incidence with zoledronic acid once yearly pivotal fracture trial. J Am Dent Assoc. 2008 Jan;139(1):32-40. PMID: 18167382.Exclusion Code: X3.
- 229. Green AD, Colon-Emeric CS, Bastian L, et al. Does this woman have osteoporosis? JAMA. 2004 Dec 15;292(23):2890-900. doi: 292/23/2890 [pii]; 10.1001/jama.292.23.2890 [doi]. PMID: 15598921.Exclusion Code: X2.
- 230. Greenspan SL, Bhattacharya RK, Sereika SM, et al. Prevention of bone loss in survivors of breast cancer: A randomized, double-blind, placebocontrolled clinical trial. J Clin Endocrinol Metab. 2007 Jan;92(1):131-6. doi: 10.1210/jc.2006-1272. PMID: 17047022.Exclusion Code: X3.
- 231. Greenspan SL, Perera S, Ferchak MA, et al. Efficacy and safety of single-dose zoledronic acid for osteoporosis in frail elderly women: a randomized clinical trial. JAMA Intern Med. 2015 Jun;175(6):913-21. doi: 2247163 [pii]; 10.1001/jamainternmed.2015.0747 [doi]. PMID: 25867538.Exclusion Code: X3.
- 232. Griffith JF, Yeung DK, Leung JC, et al. Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy. Eur Radiol. 2011 Jun;21(6):1160-9. doi: 10.1007/s00330-010-2054-6 [doi]. PMID: 21225266.Exclusion Code: X7.

- 233. Grotz W, Nagel C, Poeschel D, et al. Effect of ibandronate on bone loss and renal function after kidney transplantation. J Am Soc Nephrol. 2001 Jul;12(7):1530-7. PMID: 11423583.Exclusion Code: X3.
- 234. Gruber M, Bauer JS, Dobritz M, et al. Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry. Eur Radiol. 2013 Feb;23(2):505-12. doi: 10.1007/s00330-012-2629-5 [doi]. PMID: 22932742.Exclusion Code: X7.
- 235. Guessous I, Cornuz J, Ruffieux C, et al. Osteoporotic fracture risk in elderly women: estimation with quantitative heel US and clinical risk factors. Radiology. 2008
 Jul;248(1):179-84. doi: 2481070986
 [pii]; 10.1148/radiol.2481070986
 [doi]. PMID: 18483227.Exclusion Code: X14.
- 236. Guggenbuhl P, Dufour R, Liu-Leage S, et al. Efficiency of bone density testing by dual-biphotonic X-rays absorptiometry for diagnosis of osteoporosis according to French guideline recommendations: the PRESAGE study. Joint Bone Spine. 2011 Oct;78(5):493-8. doi: S1297-319X(11)00010-8 [pii]; 10.1016/j.jbspin.2010.12.009 [doi]. PMID: 21367636.Exclusion Code: X8.
- 237. Guglielmi G, Rossini M, Nicolosi MG, et al. Three-year prospective study on fracture risk in postmenopausal women by quantitative ultrasound at the phalanges. J Clin Densitom. 2013 Jul-Sep;16(3):341-6. doi: S1094-6950(12)00108-4 [pii]; 10.1016/j.jocd.2012.07.006 [doi].

PMID: 22901551.Exclusion Code: X13.

- 238. Gulati D, Kumar S, Arora A, et al. Bone mineral density in young Indian adults with traumatic proximal femoral fractures. A case control study. Acta Orthop Belg. 2010 Jun;76(3):335-40. PMID: 20698454.Exclusion Code: X3.
- 239. Hamdy RC, Kiebzak GM. Variance in 10-year fracture risk calculated with and without T-scores in select subgroups of normal and osteoporotic patients. J Clin Densitom. 2009 Apr-Jun;12(2):158-61. doi: S1094-6950(08)00508-8 [pii]; 10.1016/j.jocd.2008.12.003 [doi]. PMID: 19201635.Exclusion Code: X9.
- 240. Hao Y, Hao G, Qiu S, et al. Effects of age and gender on the likelihood of hip fracture in the elderly population in Shanghai, China. Saudi Med J. 2009 Nov;30(11):1483-5. doi: 20090209' [pii]. PMID: 19882067.Exclusion Code: X7.
- 241. Harness NG, Funahashi T, Dell R, et al. Distal radius fracture risk reduction with a comprehensive osteoporosis management program. J Hand Surg Am. 2012 Aug;37(8):1543-9. doi: S0363-5023(12)00589-8 [pii]; 10.1016/j.jhsa.2012.04.033 [doi]. PMID: 22748352.Exclusion Code: X4.
- 242. Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999 Oct 13;282(14):1344-

52. PMID: 10527181.Exclusion Code: X3.

- 243. Harvey JA, Holm MK, Ranganath R, et al. The effects of bazedoxifene on mammographic breast density in postmenopausal women with osteoporosis. Menopause. 2009 Nov-Dec;16(6):1193-6. doi: 10.1097/gme.0b013e3181a7fb1e [doi]. PMID: 19503006.Exclusion Code: X9.
- 244. Hassani-Nejad A, Ahlqwist M, Hakeberg M, et al. Mandibular trabecular bone as fracture indicator in 80-year-old men and women. Eur J Oral Sci. 2013 Dec;121(6):525-31. doi: 10.1111/eos.12087 [doi]. PMID: 24102691.Exclusion Code: X12.
- 245. Hasserius R, Karlsson MK, Nilsson BE, et al. Non-participants differ from participants as regards risk factors for vertebral deformities: a source of misinterpretation in the European Vertebral Osteoporosis Study. Acta Orthop Scand. 2002 Aug;73(4):451-4. doi: 10.1080/00016470216326 [doi]. PMID: 12358120.Exclusion Code: X4.
- 246. Hauk L. ACOG releases practice bulletin on osteoporosis. Am Fam Physician. 2013 Aug 15;88(4):269-75. doi: d10931 [pii]. PMID: 23944732.Exclusion Code: X2.
- 247. Hawker G, Mendel A, Lam MA, et al. A clinical decision rule to enhance targeted bone mineral density testing in healthy mid-life women. Osteoporos Int. 2012 Jul;23(7):1931-8. doi: 10.1007/s00198-011-1862-0 [doi]. PMID: 22159633.Exclusion Code: X14.
- 248. Heaney RP, Watson P. Variability in the measured response of bone to teriparatide. Osteoporos Int. 2011

Jun;22(6):1703-8. doi: 10.1007/s00198-010-1376-1 [doi]. PMID: 20827548.Exclusion Code: X4.

- 249. Heckbert SR, Li G, Cummings SR, et al. Use of alendronate and risk of incident atrial fibrillation in women. Arch Intern Med. 2008 Apr 28;168(8):826-31. doi: 10.1001/archinte.168.8.826. PMID: 18443257.Exclusion Code: X3.
- 250. Hedstrom L, Baigi A, Bergh H. The relation between bone mineral density in the heel and pixel intensity in the mandibular jaw bone among elderly women. Dentomaxillofac Radiol. 2010 Oct;39(7):409-13. doi: 39/7/409 [pii]; 10.1259/dmfr/50171873 [doi]. PMID: 20841458.Exclusion Code: X8.
- 251. Henry MJ, Pasco JA, Sanders KM, et al. Application of epidemiology to change health policy: defining agerelated thresholds of bone mineral density for primary prevention of fracture. J Clin Densitom. 2008 Oct-Dec;11(4):494-7. doi: S1094-6950(08)00071-1 [pii]; 10.1016/j.jocd.2008.05.090 [doi]. PMID: 18619881.Exclusion Code: X9.
- 252. Henry MJ, Pasco JA, Seeman E, et al. Assessment of fracture risk: value of random population-based samples--the Geelong Osteoporosis Study. J Clin Densitom. 2001 Winter;4(4):283-9. doi: JCD:4:4:283 [pii]. PMID: 11748333.Exclusion Code: X9.
- 253. Henry MJ, Pasco JA, Seeman E, et al. Fracture thresholds revisited. Geelong Osteoporosis Study. J Clin Epidemiol. 2002 Jul;55(7):642-6. doi: S0895435602003967 [pii].

PMID: 12160911.Exclusion Code: X11.

- 254. Holloway KL, Kotowicz MA, Lane SE, et al. FRAX (Aus) and falls risk: Association in men and women. Bone. 2015;76((Holloway K.L., KHOLLO@BarwonHealth.org.au; Kotowicz M.A.; Lane S.E.; Brennan S.L.; Pasco J.A.) School of Medicine, Deakin University, Geelong, Australia):1-4.Exclusion Code: X8.
- 255. Horner K, Allen P, Graham J, et al. The relationship between the OSTEODENT index and hip fracture risk assessment using FRAX. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Aug;110(2):243-9. doi: S1079-2104(10)00212-X [pii]; 10.1016/j.tripleo.2010.03.035 [doi]. PMID: 20659701.Exclusion Code: X14.
- 256. Horner K, Devlin H, Harvey L. Detecting patients with low skeletal bone mass. J Dent. 2002 May;30(4):171-5. doi: S0300571202000106 [pii]. PMID: 12450724.Exclusion Code: X12.
- 257. Horner K, Karayianni K, Mitsea A, et al. The mandibular cortex on radiographs as a tool for osteoporosis risk assessment: the OSTEODENT Project. J Clin Densitom. 2007 Apr-Jun;10(2):138-46. doi: S1094-6950(07)00036-4 [pii]; 10.1016/j.jocd.2007.02.004 [doi]. PMID: 17449308.Exclusion Code: X12.
- 258. Horwitz MJ, Augustine M, Khan L, et al. A comparison of parathyroid hormone-related protein (1-36) and parathyroid hormone (1-34) on markers of bone turnover and bone density in postmenopausal women: the PrOP study. J Bone Miner Res.

2013 Nov;28(11):2266-76. doi: 10.1002/jbmr.1978 [doi]. PMID: 23661240.Exclusion Code: X8.

- 259. Hwang JS, Chin LS, Chen JF, et al. The effects of intravenous zoledronic acid in Chinese women with postmenopausal osteoporosis. J Bone Miner Metab. 2011 May;29(3):328-33. doi: 10.1007/s00774-010-0223-y. PMID: 20922438.Exclusion Code: X3.
- 260. Hwang JS, Liou MJ, Ho C, et al. The effects of weekly alendronate therapy in Taiwanese males with osteoporosis. J Bone Miner Metab. 2010 May;28(3):328-33. doi: 10.1007/s00774-009-0136-9 [doi]. PMID: 20012918.Exclusion Code: X9.
- 261. Iba K, Takada J, Sasaki K, et al. Course of NTX changes under continuous bisphosphonate treatment in cases of NTX over-reduction due to long-term treatment with bisphosphonates. J Orthop Sci. 2011 Jan;16(1):71-6. doi: 10.1007/s00776-010-0008-0 [doi]. PMID: 21290152.Exclusion Code: X4.
- 262. Iida T, Chikamura C, Aoi S, et al. A study on the validity of quantitative ultrasonic measurement used the bone mineral density values on dualenergy X-ray absorptiometry in young and in middle-aged or older women. Radiological Physics and Technology. 2010;3(2):113-9.Exclusion Code: X9.
- 263. Ikegami S, Kamimura M, Uchiyama S, et al. Unilateral vs bilateral hip bone mineral density measurement for the diagnosis of osteoporosis. J Clin Densitom. 2014 Jan-Mar;17(1):84-90. doi: S1094-6950(13)00071-1 [pii]; 10.1016/j.jocd.2013.04.003 [doi].

PMID: 23683727.Exclusion Code: X9.

- 264. Ilter E, Karalok H, Tufekci EC, et al. Efficacy and acceptability of risedronate 5 mg daily compared with 35 mg once weekly for the treatment of postmenopausal osteoporosis. Climacteric. 2006 Apr;9(2):129-34. doi: 10.1080/13697130600652180. PMID: 16698659.Exclusion Code: X5.
- 265. Isaacs JD, Shidiak L, Harris IA, et al. Femoral insufficiency fractures associated with prolonged bisphosphonate therapy. Clin Orthop Relat Res. 2010 Dec;468(12):3384-92. doi: 10.1007/s11999-010-1535-x [doi]. PMID: 20809164.Exclusion Code: X4.
- 266. Ishii S, Greendale GA, Cauley JA, et al. Fracture risk assessment without race/ethnicity information. J Clin Endocrinol Metab. 2012 Oct;97(10):3593-602. doi: jc.2012-1997 [pii]; 10.1210/jc.2012-1997 [doi]. PMID: 22865903.Exclusion Code: X7.
- 267. Itabashi A, Yoh K, Chines AA, et al. Effects of bazedoxifene on bone mineral density, bone turnover, and safety in postmenopausal Japanese women with osteoporosis. J Bone Miner Res. 2011 Mar;26(3):519-29. doi: 10.1002/jbmr.252 [doi]. PMID: 20839291.Exclusion Code: X7.
- 268. Iwamoto J, Makita K, Sato Y, et al. Alendronate is more effective than elcatonin in improving pain and quality of life in postmenopausal women with osteoporosis. Osteoporos Int. 2011 Oct;22(10):2735-42. doi: 10.1007/s00198-010-1495-8 [doi]. PMID: 21104227.Exclusion Code: X8.

- 269. Iwamoto J, Takeda T, Ichimura S, et al. Effects of 5-year treatment with elcatonin and alfacalcidol on lumbar bone mineral density and the incidence of vertebral fractures in postmenopausal women with osteoporosis: a retrospective study. J Orthop Sci. 2002;7(6):637-43. doi: 10.1007/s007760200114 [doi]. PMID: 12486466.Exclusion Code: X7.
- 270. Jacobsen DE, Melis RJ, Verhaar HJ, et al. Raloxifene and tibolone in elderly women: a randomized, double-blind, double-dummy, placebo-controlled trial. J Am Med Dir Assoc. 2012 Feb;13(2):189 e1-7. doi: S1525-8610(11)00194-0 [pii]; 10.1016/j.jamda.2011.05.005 [doi]. PMID: 21741883.Exclusion Code: X3.
- 271. Jagelaviciene E, Krasauskiene A, Zalinkevicius R, et al. The relationship between the calcaneal bone mineral density and the mental index in post-menopausal females. Dentomaxillofac Radiol. 2013;42(4):20120050. doi: dmfr.20120050 [pii]; 10.1259/dmfr.20120050 [doi]. PMID: 23420860.Exclusion Code: X7.
- 272. Jager PL, Slart RH, Webber CL, et al. Combined vertebral fracture assessment and bone mineral density measurement: a patient-friendly new tool with an important impact on the Canadian Risk Fracture Classification. Can Assoc Radiol J. 2010 Oct;61(4):194-200. doi: S0846-5371(09)00280-0 [pii]; 10.1016/j.carj.2009.12.012 [doi]. PMID: 20199851.Exclusion Code: X3.
- 273. Jakob F, Oertel H, Langdahl B, et al. Effects of teriparatide in

postmenopausal women with osteoporosis pre-treated with bisphosphonates: 36-month results from the European Forsteo Observational Study. Eur J Endocrinol. 2012 Jan;166(1):87-97. doi: EJE-11-0740 [pii]; 10.1530/EJE-11-0740 [doi]. PMID: 22048967.Exclusion Code: X8.

- 274. Jamal SA, Ljunggren O, Stehman-Breen C, et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res. 2011 Aug;26(8):1829-35. doi: 10.1002/jbmr.403 [doi]. PMID: 21491487.Exclusion Code: X3.
- 275. Jiang E, Wang Z, Meng Q, et al. Study on bone density at various skeletal sites for the diagnosis of primary osteoporosis. Cell Biochem Biophys. 2012 Sep;64(1):1-3. doi: 10.1007/s12013-012-9361-2 [doi]. PMID: 22535203.Exclusion Code: X9.
- 276. Jiang X, Westermann LB, Galleo GV, et al. Age as a predictor of osteoporotic fracture compared with current risk-prediction models. Obstet Gynecol. 2013 Nov;122(5):1040-6. doi: 10.1097/AOG.0b013e3182a7e29b [doi]. PMID: 24104773.Exclusion Code: X11.
- 277. Jobke B, Muche B, Burghardt AJ, et al. Teriparatide in bisphosphonate-resistant osteoporosis: microarchitectural changes and clinical results after 6 and 18 months. Calcif Tissue Int. 2011 Aug;89(2):130-9. doi: 10.1007/s00223-011-9500-6 [doi]. PMID: 21626160.Exclusion Code: X8.
- 278. Johansson H, Kanis JA, McCloskey EV, et al. A FRAX(R) model for the assessment of fracture probability in

Belgium. Osteoporos Int. 2011 Feb;22(2):453-61. doi: 10.1007/s00198-010-1218-1 [doi]. PMID: 20352409.Exclusion Code: X9.

- 279. Johnston CC, Jr., Bjarnason NH, Cohen FJ, et al. Long-term effects of raloxifene on bone mineral density, bone turnover, and serum lipid levels in early postmenopausal women: three-year data from 2 double-blind, randomized, placebo-controlled trials. Arch Intern Med. 2000 Dec 11-25;160(22):3444-50. PMID: 11112238.Exclusion Code: X4.
- 280. Jonasson G, Alstad T, Vahedi F, et al. Trabecular pattern in the mandible as bone fracture predictor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Oct;108(4):e42-51. doi: S1079-2104(09)00378-3 [pii]; 10.1016/j.tripleo.2009.05.018 [doi]. PMID: 19778734.Exclusion Code: X9.
- 281. Jonasson G, Billhult A. Mandibular bone structure, bone mineral density, and clinical variables as fracture predictors: a 15-year follow-up of female patients in a dental clinic. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Sep;116(3):362-8. doi: S2212-4403(13)00329-5 [pii]; 10.1016/j.0000.2013.06.009 [doi]. PMID: 23953422.Exclusion Code: X9.
- 282. Jonasson G, Sundh V, Ahlqwist M, et al. A prospective study of mandibular trabecular bone to predict fracture incidence in women: a low-cost screening tool in the dental clinic. Bone. 2011 Oct;49(4):873-9. doi: S8756-3282(11)01077-5 [pii]; 10.1016/j.bone.2011.06.036 [doi]. PMID: 21777710.Exclusion Code: X9.

- 283. Kamondetdecha R, Panyakhamlerd K, Chaikittisilpa S, et al. Value of Osteoporosis Self-assessment Tools for Asians (OSTA) with or without Brown's clinical risk factors in detection of postmenopausal osteoporosis. Climacteric. 2013 Feb;16(1):127-32. doi: 10.3109/13697137.2012.678913 [doi]. PMID: 22741522.Exclusion Code: X5.
- 284. Kang JH, Keller JJ, Lin HC. A population-based 2-year follow-up study on the relationship between bisphosphonates and the risk of stroke. Osteoporos Int. 2012 Oct;23(10):2551-7. doi: 10.1007/s00198-012-1894-0 [doi]. PMID: 22270858.Exclusion Code: X5.
- 285. Kang JH, Keller JJ, Lin HC. Bisphosphonates reduced the risk of acute myocardial infarction: a 2-year follow-up study. Osteoporos Int. 2013 Jan;24(1):271-7. doi: 10.1007/s00198-012-2213-5 [doi]. PMID: 23152093.Exclusion Code: X5.
- 286. Kanis JA, Brazier JE, Stevenson M, et al. Treatment of established osteoporosis: a systematic review and cost-utility analysis. Health Technol Assess. 2002;6(29):1-146. PMID: 12654239.Exclusion Code: X16.
- 287. Kanis JA, Johansson H, Oden A, et al. The effects of a FRAX revision for the USA. Osteoporos Int. 2010 Jan;21(1):35-40. doi: 10.1007/s00198-009-1033-8 [doi]. PMID: 19705047.Exclusion Code: X9.
- 288. Kanis JA, Johnell O, De Laet C, et al. International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner

Res. 2002 Jul;17(7):1237-44. doi: 10.1359/jbmr.2002.17.7.1237 [doi]. PMID: 12096837.Exclusion Code: X7.

- 289. Kanis JA, Johnell O, Oden A, et al. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001 Dec;12(12):989-95. doi: 10.1007/s001980170006 [doi]. PMID: 11846333.Exclusion Code: X9.
- 290. Kanis JA, Johnell O, Oden A, et al. Ten-year probabilities of clinical vertebral fractures according to phalangeal quantitative ultrasonography. Osteoporos Int. 2005 Sep;16(9):1065-70. doi: 10.1007/s00198-004-1805-0 [doi]. PMID: 15586268.Exclusion Code: X9.
- 291. Kanis JA, McCloskey EV, Johansson H, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013 Jan;24(1):23-57. doi: 10.1007/s00198-012-2074-y [doi]. PMID: 23079689.Exclusion Code: X2.
- 292. Kanis JA, Oden A, McCloskey EV, et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012 Sep;23(9):2239-56. doi: 10.1007/s00198-012-1964-3 [doi]. PMID: 22419370.Exclusion Code: X7.
- 293. Karjalainen JP, Riekkinen O, Toyras J, et al. Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures. Osteoporos Int. 2012 Apr;23(4):1287-95. doi: 10.1007/s00198-011-1682-2 [doi].

PMID: 21656263.Exclusion Code: X7.

- 294. Karlamangla AS, Barrett-Connor E, Young J, et al. Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int. 2004 Jan;15(1):62-70. doi: 10.1007/s00198-003-1513-1 [doi]. PMID: 14605798.Exclusion Code: X9.
- 295. Karras D, Stoykov I, Lems WF, et al. Effectiveness of teriparatide in postmenopausal women with osteoporosis and glucocorticoid use: 3-year results from the EFOS study. J Rheumatol. 2012 Mar;39(3):600-9. doi: jrheum.110947 [pii]; 10.3899/jrheum.110947 [doi]. PMID: 22247365.Exclusion Code: X4.
- 296. Kaufman JM, Orwoll E, Goemaere S, et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005 May;16(5):510-6. doi: 10.1007/s00198-004-1713-3. PMID: 15322742.Exclusion Code: X7.
- 297. Kauppi M, Impivaara O, Maki J, et al. Quantitative ultrasound measurements and vitamin D status in the assessment of hip fracture risk in a nationally representative population sample. Osteoporos Int. 2013 Oct;24(10):2611-8. doi: 10.1007/s00198-013-2355-0 [doi]. PMID: 23595563.Exclusion Code: X14.
- 298. Kavitha MS, Asano A, Taguchi A, et al. Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC Med Imaging. 2012;12:1. doi: 1471-

2342-12-1 [pii]; 10.1186/1471-2342-12-1 [doi]. PMID: 22248480.Exclusion Code: X12.

- 299. Kavitha MS, Samopa F, Asano A, et al. Computer-aided measurement of mandibular cortical width on dental panoramic radiographs for identifying osteoporosis. J Investig Clin Dent. 2012 Feb;3(1):36-44. doi: 10.1111/j.2041-1626.2011.00095.x [doi]. PMID: 22298519.Exclusion Code: X12.
- 300. Kayalar G, Cevikol A, Yavuzer G, et al. The value of calcaneal bone mass measurement using a dual X-ray laser Calscan device in risk screening for osteoporosis. Clinics (São Paulo, Brazil); 2009. p. 757-62.Exclusion Code: X9.
- 301. Keaveny TM, McClung MR, Genant HK, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014 Jan;29(1):158-65. doi: 10.1002/jbmr.2024 [doi]. PMID: 23794225.Exclusion Code: X9.
- 302. Kendler D. Sustainability of antifracture efficacy and safety of denosumab in postmenopausal osteoporosis. Osteoporos Int. 2013;24(Suppl 4):S653-4.Exclusion Code: X8.
- 303. Kerkeni S, Kolta S, Fechtenbaum J, et al. Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int. 2009 Sep;20(9):1547-52. doi: 10.1007/s00198-008-0832-7 [doi]. PMID: 19137350.Exclusion Code: X9.
- 304. Kern LM, Powe NR, Levine MA, et al. Association between screening for osteoporosis and the incidence of hip fracture. Ann Intern Med. 2005

Feb 1;142(3):173-81. PMID: 15684205.Exclusion Code: X4.

- 305. Kessel B, Nachtigall L, Plouffe L, et al. Effect of raloxifene on sexual function in postmenopausal women. Climacteric. 2003 Sep;6(3):248-56. PMID: 14567773.Exclusion Code: X9.
- 306. Khan AA, Morrison A, Hanley DA, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015 Jan;30(1):3-23. doi: 10.1002/jbmr.2405. PMID: 25414052.Exclusion Code: X3.
- 307. Khan AA, Sandor GK, Dore E, et al. Bisphosphonate associated osteonecrosis of the jaw. J Rheumatol. 2009 Mar;36(3):478-90. doi: 10.3899/jrheum.080759. PMID: 19286860.Exclusion Code: X8.
- 308. Kiebzak GM, Binkley N, Lewiecki EM, et al. Diagnostic agreement at the total hip using different DXA systems and the NHANES III database. J Clin Densitom. 2007 Apr-Jun;10(2):132-7. doi: S1094-6950(07)00035-2 [pii]; 10.1016/j.jocd.2007.02.003 [doi]. PMID: 17416539.Exclusion Code: X9.
- 309. Kim JW, Koh JM, Park JH, et al. Validation of FRAX without BMD: an age-related analysis of the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V-1, 2010). Bone. 2015 Jun;75:27-31. doi: 10.1016/j.bone.2015.02.013. PMID: 25697083.Exclusion Code: X9.
- 310. Kim S, Won CW, Kim BS, et al. The association between the low muscle mass and osteoporosis in elderly Korean people. J Korean Med Sci. 2014 Jul;29(7):995-1000. doi:

10.3346/jkms.2014.29.7.995 [doi]. PMID: 25045234.Exclusion Code: X7.

- 311. Kimber C, Grimmer-Somers K. A novel primary care clinical prediction rule for early detection of osteoporosis. Aust J Prim Health. 2011;17(2):175-80. doi: PY10045 [pii]; 10.1071/PY10045 [doi]. PMID: 21645474.Exclusion Code: X3.
- 312. Koh JM, Oh HJ, Park IH, et al. Efficacy and safety results from a six month double-blind study comparing 60 mg Denosumab (DMAb) and placebo in Korean postmenopausal women with osteoporosis. J Bone Miner Res. 2013 Feb;28 PMID: WOS:000332035804003.Exclusion Code: X18.
- 313. Koyama H, Yoshihara H, Kotera M, et al. The quantitative diagnostic capability of routine MR imaging and diffusion-weighted imaging in osteoporosis patients. Clin Imaging. 2013 Sep-Oct;37(5):925-9. doi: S0899-7071(13)00122-8 [pii]; 10.1016/j.clinimag.2013.05.001 [doi]. PMID: 23849102.Exclusion Code: X7.
- 314. Kreidieh OI, El-Hajj Fuleihan G. Impact of changes in mortality on FRAX-derived fracture probabilities. Bone. 2014 May;62:43-50. doi: S8756-3282(14)00016-7 [pii]; 10.1016/j.bone.2014.01.014 [doi]. PMID: 24480305.Exclusion Code: X9.
- 315. Kuet KP, Charlesworth D, Peel NF. Vertebral fracture assessment scans enhance targeting of investigations and treatment within a fracture risk assessment pathway. Osteoporos Int. 2013 Mar;24(3):1007-14. doi: 10.1007/s00198-012-2255-8 [doi].

PMID: 23306821.Exclusion Code: X9.

- 316. Kung AW, Pasion EG, Sofiyan M, et al. A comparison of teriparatide and calcitonin therapy in postmenopausal Asian women with osteoporosis: a 6-month study. Curr Med Res Opin. 2006 May;22(5):929-37. doi: 10.1185/030079906X104768 [doi]. PMID: 16709314.Exclusion Code: X5.
- 317. Kurland ES, Cosman F, McMahon DJ, et al. Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab. 2000 Sep;85(9):3069-76. doi: 10.1210/jcem.85.9.6818. PMID: 10999788.Exclusion Code: X3.
- 318. Kuruvilla K, Kenny AM, Raisz LG, et al. Importance of bone mineral density measurements in evaluating fragility bone fracture risk in Asian Indian men. Osteoporos Int. 2011 Jan;22(1):217-21. doi: 10.1007/s00198-010-1237-y [doi]. PMID: 20445964.Exclusion Code: X9.
- 319. Lacroix AZ, Buist DS, Brenneman SK, et al. Evaluation of three population-based strategies for fracture prevention: results of the osteoporosis population-based risk assessment (OPRA) trial. Med Care. 2005 Mar;43(3):293-302. PMID: 15725986.Exclusion Code: X8.
- 320. LaFleur J, Nelson RE, Yao Y, et al. Validated risk rule using computerized data to identify males at high risk for fracture. Osteoporos Int. 2012 Mar;23(3):1017-27. doi: 10.1007/s00198-011-1646-6 [doi]. PMID: 21562876.Exclusion Code: X14.
- 321. LaFleur J, Steenhoek CL, Horne J, et al. Comparing fracture absolute risk

assessment (FARA) tools: an osteoporosis clinical informatics tool to improve identification and care of men at high risk of first fracture. Ann Pharmacother. 2015 May;49(5):506-14. doi: 1060028015572819 [pii]; 10.1177/1060028015572819 [doi]. PMID: 25712443.Exclusion Code: X9.

- 322. Lalmohamed A, Welsing PM, Lems WF, et al. Calibration of FRAX (R)
 3.1 to the Dutch population with data on the epidemiology of hip fractures. Osteoporos Int. 2012 Mar;23(3):8619. doi: 10.1007/s00198-011-1852-2 [doi]. PMID: 22120910.Exclusion Code: X9.
- 323. Landfeldt E, Lang A, Robbins S, et al. Gastrointestinal tolerability and patterns of switching in patients treated for primary osteoporosis: the Swedish Adherence Register Analysis (SARA). Calcif Tissue Int. 2011 Sep;89(3):234-45. doi: 10.1007/s00223-011-9511-3 [doi]. PMID: 21695544.Exclusion Code: X8.
- 324. Langdahl BL, Teglbjaerg CS, Ho PR, et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab. 2015 Apr;100(4):1335-42. doi: 10.1210/jc.2014-4079 [doi]. PMID: 25607608.Exclusion Code: X4.
- 325. Lapi F, Cipriani F, Caputi AP, et al. Assessing the risk of osteonecrosis of the jaw due to bisphosphonate therapy in the secondary prevention of osteoporotic fractures. Osteoporos Int. 2013 Feb;24(2):697-705. doi: 10.1007/s00198-012-2013-y [doi]. PMID: 22618266.Exclusion Code: X3.

- 326. Leeangkoonsathian E, Boonyanuruk P, Pongchaiyakul C, et al. Validate of clinical risk index for osteoporosis in Thai women at Phramongkutklao Hospital. J Med Assoc Thai. 2012 Apr;95(4):487-92. PMID: 22612000.Exclusion Code: X5.
- 327. Leib E, Winzenrieth R, Lamy O, et al. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int. 2014 Sep;95(3):201-8. doi: 10.1007/s00223-014-9882-3 [doi]. PMID: 24948332.Exclusion Code: X4.
- 328. Lekamwasam S. Sri Lankan FRAX model and country-specific intervention thresholds. Arch Osteoporos. 2013;8:148. doi: 10.1007/s11657-013-0148-x [doi]. PMID: 23975235.Exclusion Code: X9.
- 329. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008 Mar 20;358(12):1304-6. doi: 10.1056/NEJMc0707493. PMID: 18354114.Exclusion Code: X8.
- 330. Lerttrakul S, Soontrapa S. Modified OSTA index for referring women for DEXA measurement. J Med Assoc Thai. 2005 Oct;88 Suppl 5:S80-3.
 PMID: 16871660.Exclusion Code: X15.
- 331. Leslie W, Majumdar S, Morin S, et al. Change in Bone Mineral Density is an Indicator of Treatment-Related Antifracture Effect in Routine Clinical Practice: A Registry-Based Cohort Study. Ann Intern Med. 2016;in press.Exclusion Code: X3.
- 332. Leslie WD, Berger C, Langsetmo L, et al. Construction and validation of

a simplified fracture risk assessment tool for Canadian women and men: results from the CaMos and Manitoba cohorts. Osteoporos Int. 2011 Jun;22(6):1873-83. doi: 10.1007/s00198-010-1445-5 [doi]. PMID: 20967422.Exclusion Code: X9.

- 333. Leslie WD, Brennan SL, Lix LM, et al. Direct comparison of eight national FRAX(registered trademark) tools for fracture prediction and treatment qualification in Canadian women. Arch Osteoporos. 2013;8(1-2).Exclusion Code: X9.
- 334. Leslie WD, Lix LM. Effects of FRAX((R)) model calibration on intervention rates: a simulation study. J Clin Densitom. 2011 Jul-Sep;14(3):272-8. doi: S1094-6950(11)00079-5 [pii]; 10.1016/j.jocd.2011.03.007 [doi]. PMID: 21723769.Exclusion Code: X9.
- 335. Leslie WD, Lix LM, Johansson H, et al. Does osteoporosis therapy invalidate FRAX for fracture prediction? J Bone Miner Res. 2012 Jun;27(6):1243-51. doi: 10.1002/jbmr.1582 [doi]. PMID: 22392538.Exclusion Code: X9.
- 336. Leslie WD, Lix LM, Johansson H, et al. Selection of women aged 50-64 yr for bone density measurement. J Clin Densitom. 2013 Oct-Dec;16(4):570-8. doi: S1094-6950(13)00017-6 [pii]; 10.1016/j.jocd.2013.01.004 [doi]. PMID: 23452870.Exclusion Code: X9.
- 337. Leslie WD, Lix LM, Langsetmo L, et al. Construction of a FRAX(R) model for the assessment of fracture probability in Canada and implications for treatment.

Osteoporos Int. 2011 Mar;22(3):817-27. doi: 10.1007/s00198-010-1464-2 [doi]. PMID: 21161509.Exclusion Code: X9.

- 338. Leslie WD, Lix LM, Wu X. Competing mortality and fracture risk assessment. Osteoporos Int. 2013 Feb;24(2):681-8. doi: 10.1007/s00198-012-2051-5 [doi]. PMID: 22736068.Exclusion Code: X9.
- 339. Leslie WD, Majumdar SR, Lix LM, et al. High fracture probability with FRAX usually indicates densitometric osteoporosis: implications for clinical practice. Osteoporos Int. 2012 Jan;23(1):391-7. doi: 10.1007/s00198-011-1592-3 [doi]. PMID: 21365460.Exclusion Code: X7.
- 340. Leslie WD, Metge C, Salamon EA, et al. Bone mineral density testing in healthy postmenopausal women. The role of clinical risk factor assessment in determining fracture risk. J Clin Densitom. 2002 Summer;5(2):117-30. doi: CT0502117 [pii]. PMID: 12110755.Exclusion Code: X9.
- 341. Leslie WD, Morin S. Fracture burden in relation to low bone mineral density and FRAX((R)) probability. J Clin Densitom. 2011 Jul-Sep;14(3):279-85. doi: S1094-6950(11)00109-0 [pii]; 10.1016/j.jocd.2011.04.010 [doi]. PMID: 21723761.Exclusion Code: X9.
- 342. Leslie WD, Siminoski K, Brown JP. Comparative effects of densitometric and absolute fracture risk classification systems on projected intervention rates in postmenopausal women. J Clin Densitom. 2007 Apr-Jun;10(2):124-31. doi: \$1094-6950(07)00004-2 [pii]; 10.1016/j.jocd.2007.01.003 [doi].

PMID: 17485029.Exclusion Code: X9.

- 343. Leslie WD, Tsang JF, Lix LM. Validation of ten-year fracture risk prediction: a clinical cohort study from the Manitoba Bone Density Program. Bone. 2008 Oct;43(4):667-71. doi: S8756-3282(08)00289-5 [pii]; 10.1016/j.bone.2008.06.001 [doi]. PMID: 18602504.Exclusion Code: X9.
- 344. Leslie WD, Tsang JF, Lix LM. Simplified system for absolute fracture risk assessment: clinical validation in Canadian women. J Bone Miner Res. 2009 Feb;24(2):353-60. doi: 10.1359/jbmr.081012 [doi]. PMID: 19514851.Exclusion Code: X9.
- 345. Levy BT, Hartz A, Woodworth G, et al. Interventions to improving osteoporosis screening: an Iowa Research Network (IRENE) study. J Am Board Fam Med; 2009. p. 360-7.Exclusion Code: X7.
- 346. Li GW, Chang SX, Xu Z, et al. Prediction of hip osteoporotic fractures from composite indices of femoral neck strength. Skeletal Radiol. 2013 Feb;42(2):195-201. doi: 10.1007/s00256-012-1473-7 [doi]. PMID: 22714125.Exclusion Code: X7.
- 347. Li W, Kornak J, Harris TB, et al. Bone fracture risk estimation based on image similarity. Bone. 2009 Sep;45(3):560-7. doi: S8756-3282(09)01552-X [pii]; 10.1016/j.bone.2009.04.250 [doi]. PMID: 19414074.Exclusion Code: X7.
- 348. Licks R, Licks V, Ourique F, et al. Development of a prediction tool for low bone mass based on clinical data and periapical radiography. Dentomaxillofac Radiol. 2010

May;39(4):224-30. doi: 39/4/224 [pii]; 10.1259/dmfr/23760876 [doi]. PMID: 20395463.Exclusion Code: X14.

- 349. Lillholm M, Ghosh A, Pettersen PC, et al. Vertebral fracture risk (VFR) score for fracture prediction in postmenopausal women. Osteoporos Int. 2011 Jul;22(7):2119-28. doi: 10.1007/s00198-010-1436-6 [doi]. PMID: 21069295.Exclusion Code: X12.
- 350. Lin TC, Lee CH, Yang CY, et al. Incidence and risk of venous thromboembolism among Taiwan osteoporotic fracture population under osteoporosis pharmacological treatments. J Clin Endocrinol Metab. 2014 May;99(5):1599-607. doi: 10.1210/jc.2013-3114 [doi]. PMID: 24606074.Exclusion Code: X5.
- 351. Lippuner K, Johansson H, Kanis JA, et al. Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women. Osteoporos Int. 2009 Jul;20(7):1131-40. doi: 10.1007/s00198-008-0779-8 [doi]. PMID: 18974918.Exclusion Code: X11.
- 352. Lippuner K, Roux C, Bone HG, et al. Denosumab treatment of postmenopausal women with osteoporosis for 7 years: Clinical fracture results from the first 4 years of the FREEDOM extension. Osteoporos Int. 2013;24(Suppl 1):S39-40.Exclusion Code: X8.
- 353. Liu JL, Zhu HM, Huang QR, et al. Effects of raloxifene hydrochloride on bone mineral density, bone metabolism and serum lipids in Chinese postmenopausal women with osteoporosis: a multi-center, randomized, placebo-controlled clinical trial. Chin Med J (Engl).

2004 Jul;117(7):1029-35. PMID: 15265377.Exclusion Code: X5.

- 354. Liu JM, Ma LY, Bi YF, et al. A population-based study examining calcaneus quantitative ultrasound and its optimal cut-points to discriminate osteoporotic fractures among 9352 Chinese women and men. J Clin Endocrinol Metab. 2012 Mar;97(3):800-9. doi: jc.2011-1654 [pii]; 10.1210/jc.2011-1654 [doi]. PMID: 22170722.Exclusion Code: X11.
- 355. Lix LM, Quail J, Teare G, et al. Performance of comorbidity measures for predicting outcomes in population-based osteoporosis cohorts. Osteoporos Int. 2011 Oct;22(10):2633-43. doi: 10.1007/s00198-010-1516-7 [doi]. PMID: 21305268.Exclusion Code: X7.
- 356. Ljunggren O, Barrett A, Stoykov I, et al. Effective osteoporosis treatment with teriparatide is associated with enhanced quality of life in postmenopausal women with osteoporosis: the European Forsteo Observational Study. BMC Musculoskelet Disord. 2013;14:251. doi: 1471-2474-14-251 [pii]; 10.1186/1471-2474-14-251 [doi]. PMID: 23968239.Exclusion Code: X8.
- 357. Lo JC, O'Ryan FS, Gordon NP, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010 Feb;68(2):243-53. doi: 10.1016/j.joms.2009.03.050. PMID: 19772941.Exclusion Code: X3.
- 358. Looker AC, Dawson-Hughes B, Tosteson AN, et al. Hip fracture risk in older US adults by treatment eligibility status based on new

National Osteoporosis Foundation guidance. Osteoporos Int. 2011 Feb;22(2):541-9. doi: 10.1007/s00198-010-1288-0 [doi]. PMID: 20480142.Exclusion Code: X9.

- 359. Lu PY, Hsieh CF, Tsai YW, et al. Alendronate and raloxifene use related to cardiovascular diseases: differentiation by different dosing regimens of alendronate. Clin Ther. 2011 Sep;33(9):1173-9. doi: S0149-2918(11)00504-2 [pii]; 10.1016/j.clinthera.2011.07.012 [doi]. PMID: 21849210.Exclusion Code: X8.
- 360. Lufkin EG, Whitaker MD, Nickelsen T, et al. Treatment of established postmenopausal osteoporosis with raloxifene: a randomized trial. J Bone Miner Res. 1998 Nov;13(11):1747-54. doi: 10.1359/jbmr.1998.13.11.1747. PMID: 9797484.Exclusion Code: X2.
- 361. Lundin H, Saaf M, Strender LE, et al. One-leg standing time and hip-fracture prediction. Osteoporos Int. 2014 Apr;25(4):1305-11. doi: 10.1007/s00198-013-2593-1 [doi]. PMID: 24562837.Exclusion Code: X7.
- 362. Lydick E, Cook K, Turpin J, et al. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care. 1998 Jan;4(1):37-48. PMID: 10179905.Exclusion Code: X9.
- 363. Lyles KW, Colon-Emeric CS, Magaziner JS, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007 Nov 1;357(18):1799-809. doi: 10.1056/NEJMoa074941. PMID: 17878149.Exclusion Code: X3.

- 364. Maatta M, Moilanen P, Timonen J, et al. Association between lowfrequency ultrasound and hip fractures -- comparison with DXAbased BMD. BMC Musculoskelet Disord. 2014;15:208. doi: 1471-2474-15-208 [pii]; 10.1186/1471-2474-15-208 [doi]. PMID: 24934318.Exclusion Code: X7.
- 365. Machado P, Coutinho M, da Silva JA. Selecting men for bone densitometry: performance of osteoporosis risk assessment tools in Portuguese men. Osteoporos Int. 2010 Jun;21(6):977-83. doi: 10.1007/s00198-009-1036-5 [doi]. PMID: 19727909.Exclusion Code: X16.
- 366. Mackey DC, Black DM, Bauer DC, et al. Effects of antiresorptive treatment on nonvertebral fracture outcomes. J Bone Miner Res. 2011 Oct;26(10):2411-8. doi: 10.1002/jbmr.446 [doi]. PMID: 21710615.Exclusion Code: X7.
- 367. MacLean C, Newberry S, Maglione M, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med. 2008 Feb 5;148(3):197-213. PMID: 18087050.Exclusion Code: X16.
- 368. MacNeil JA, Adachi JD, Goltzman D, et al. Predicting fracture using 2D finite element modelling. Med Eng Phys. 2012 May;34(4):478-84. doi: S1350-4533(11)00218-9 [pii]; 10.1016/j.medengphy.2011.08.008 [doi]. PMID: 21959170.Exclusion Code: X7.
- 369. Malluche HH, Davenport DL, Cantor T, et al. Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on

dialysis. Clin J Am Soc Nephrol. 2014 Jul;9(7):1254-62. doi: CJN.09470913 [pii]; 10.2215/CJN.09470913 [doi]. PMID: 24948144.Exclusion Code: X3.

- 370. Marques A, Mota A, Canhao H, et al. A FRAX model for the estimation of osteoporotic fracture probability in Portugal. Acta Reumatol Port. 2013 Apr-Jun;38(2):104-12. PMID: 24141347.Exclusion Code: X9.
- 371. Martinez-Aguila D, Gomez-Vaquero C, Rozadilla A, et al. Decision rules for selecting women for bone mineral density testing: application in postmenopausal women referred to a bone densitometry unit. J Rheumatol. 2007 Jun;34(6):1307-12. doi: 0315162X-34-1307 [pii]. PMID: 17552058.Exclusion Code: X16.
- 372. Martino S, Cauley JA, Barrett-Connor E, et al. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst. 2004 Dec 1;96(23):1751-61. doi: 10.1093/jnci/djh319. PMID: 15572757.Exclusion Code: X8.
- 373. Mather J, MacDermid JC, Faber KJ, et al. Proximal humerus cortical bone thickness correlates with bone mineral density and can clinically rule out osteoporosis. J Shoulder Elbow Surg. 2013 Jun;22(6):732-8. doi: S1058-2746(12)00364-3 [pii]; 10.1016/j.jse.2012.08.018 [doi]. PMID: 23183030.Exclusion Code: X7.
- 374. Maurer P, Sandulescu T, Kriwalsky MS, et al. Bisphosphonate-related osteonecrosis of the maxilla and sinusitis maxillaris. Int J Oral Maxillofac Surg. 2011 Mar;40(3):285-91. doi: S0901-

5027(10)00482-0 [pii]; 10.1016/j.ijom.2010.11.006 [doi]. PMID: 21163624.Exclusion Code: X4.

- 375. McAuliffe JA. Isolated diaphyseal fractures of the ulna. J Hand Surg Am. 2012 Jan;37(1):145-7. doi: S0363-5023(11)00563-6 [pii]; 10.1016/j.jhsa.2011.05.005 [doi]. PMID: 21658858.Exclusion Code: X2.
- 376. McCloskey EV, Johansson H, Oden A, et al. Ten-year fracture probability identifies women who will benefit from clodronate therapy-additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int. 2009 May;20(5):811-7. doi: 10.1007/s00198-008-0786-9 [doi]. PMID: 19002369.Exclusion Code: X7.
- 377. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014 Jan 30;370(5):412-20. doi: 10.1056/NEJMoa1305224 [doi]. PMID: 24382002.Exclusion Code: X7.
- 378. McClung MR, Lewiecki EM, Geller ML, et al. Effect of denosumab on bone mineral density and biochemical markers of bone turnover: 8-year results of a phase 2 clinical trial. Osteoporos Int. 2013 Jan;24(1):227-35. doi: 10.1007/s00198-012-2052-4 [doi]. PMID: 22776860.Exclusion Code: X8.
- 379. McGowan B, Kanis JA, Johansson H, et al. Development and application of FRAX in the management of osteoporosis in Ireland. Arch Osteoporos. 2013;8:146. doi: 10.1007/s11657-

013-0146-z [doi]. PMID: 23982943.Exclusion Code: X9.

- 380. McGrother CW, Donaldson MM, Clayton D, et al. Evaluation of a hip fracture risk score for assessing elderly women: the Melton Osteoporotic Fracture (MOF) study. Osteoporos Int. 2002 Jan;13(1):89-96. doi: 10.1007/s198-002-8343-6 [doi]. PMID: 11883411.Exclusion Code: X14.
- 381. Melton LJ, 3rd, Atkinson EJ, O'Fallon WM, et al. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res. 1993 Oct;8(10):1227-33. doi: 10.1002/jbmr.5650081010. PMID: 8256660.Exclusion Code: X9.
- 382. Melton LJ, 3rd, Beck TJ, Amin S, et al. Contributions of bone density and structure to fracture risk assessment in men and women. Osteoporos Int. 2005 May;16(5):460-7. doi: 10.1007/s00198-004-1820-1 [doi]. PMID: 15688123.Exclusion Code: X7.
- 383. Melton LJ, 3rd, Christen D, Riggs BL, et al. Assessing forearm fracture risk in postmenopausal women. Osteoporos Int. 2010 Jul;21(7):1161-9. doi: 10.1007/s00198-009-1047-2 [doi]. PMID: 19714390.Exclusion Code: X7.
- 384. Melton LJ, 3rd, Looker AC, Shepherd JA, et al. Osteoporosis assessment by whole body region vs. site-specific DXA. Osteoporos Int. 2005 Dec;16(12):1558-64. doi: 10.1007/s00198-005-1871-y [doi]. PMID: 15812599.Exclusion Code: X9.
- 385. Meszaros S, Toth E, Ferencz V, et al. Calcaneous quantitative ultrasound measurements predicts vertebral fractures in idiopathic male

osteoporosis. Joint Bone Spine. 2007 Jan;74(1):79-84. doi: S1297-319X(06)00249-1 [pii]; 10.1016/j.jbspin.2006.04.008 [doi]. PMID: 17197223.Exclusion Code: X11.

- 386. Michaelsson K, Bergstrom R, Mallmin H, et al. Screening for osteopenia and osteoporosis: selection by body composition. Osteoporos Int. 1996;6(2):120-6. PMID: 8704349.Exclusion Code: X9.
- 387. Michalska D, Stepan JJ, Basson BR, et al. The effect of raloxifene after discontinuation of long-term alendronate treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab. 2006 Mar;91(3):870-7. doi: 10.1210/jc.2004-2212. PMID: 16352692.Exclusion Code: X8.
- 388. Migliore A, Broccoli S, Massafra U, et al. Ranking antireabsorptive agents to prevent vertebral fractures in postmenopausal osteoporosis by mixed treatment comparison metaanalysis. Eur Rev Med Pharmacol Sci. 2013 Mar;17(5):658-67. PMID: 23543450.Exclusion Code: X8.
- 389. Milgrom C, Finestone A, Novack V, et al. The effect of prophylactic treatment with risedronate on stress fracture incidence among infantry recruits. Bone. 2004 Aug;35(2):418-24. doi: 10.1016/j.bone.2004.04.016. PMID: 15268892.Exclusion Code: X3.
- 390. Miller PD, Barlas S, Brenneman SK, et al. An approach to identifying osteopenic women at increased short-term risk of fracture. Arch Intern Med. 2004 May 24;164(10):1113-20. doi: 10.1001/archinte.164.10.1113 [doi]

164/10/1113 [pii]. PMID: 15159269.Exclusion Code: X9.

- 391. Miller PD, Bilezikian JP, Diaz-Curiel M, et al. Occurrence of hypercalciuria in patients with osteoporosis treated with teriparatide. J Clin Endocrinol Metab. 2007 Sep;92(9):3535-41. doi: 10.1210/jc.2006-2439. PMID: 17609307.Exclusion Code: X7.
- 392. Miller PD, Bolognese MA, Lewiecki EM, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008 Aug;43(2):222-9. doi: S8756-3282(08)00191-9 [pii]; 10.1016/j.bone.2008.04.007 [doi]. PMID: 18539106.Exclusion Code: X7.
- 393. Miller PD, Recker RR, Harris S, et al. Long-term fracture rates seen with continued ibandronate treatment: Pooled analysis of DIVA and MOBILE long-term extension studies. Osteoporos Int. 2014;25(1):349-57.Exclusion Code: X4.
- 394. Miller PD, Recker RR, Reginster JY, et al. Efficacy of monthly oral ibandronate is sustained over 5 years: the MOBILE long-term extension study. Osteoporos Int. 2012 Jun;23(6):1747-56. doi: 10.1007/s00198-011-1773-0 [doi]. PMID: 21953471.Exclusion Code: X8.
- 395. Miller PD, Wagman RB, Peacock M, et al. Effect of denosumab on bone mineral density and biochemical markers of bone turnover: six-year results of a phase 2 clinical trial. J Clin Endocrinol Metab. 2011

Feb;96(2):394-402. doi: jc.2010-1805 [pii]; 10.1210/jc.2010-1805 [doi]. PMID: 21159841.Exclusion Code: X8.

- 396. Minematsu A, Hazaki K, Harano A, et al. A screening model for low bone mass in elderly Japanese men using quantitative ultrasound measurements: Fujiwara-Kyo Study. J Clin Densitom. 2012 Jul-Sep;15(3):343-50. doi: S1094-6950(12)00016-9 [pii]; 10.1016/j.jocd.2012.02.001 [doi]. PMID: 22677197.Exclusion Code: X13.
- 397. Mirkin S, Komm BS, Pan K, et al. Effects of bazedoxifene/conjugated estrogens on endometrial safety and bone in postmenopausal women. Climacteric. 2013 Jun;16(3):338-46. doi: 10.3109/13697137.2012.717994 [doi]. PMID: 23038989.Exclusion Code: X3.
- 398. Miyauchi A, Matsumoto T, Sugimoto T, et al. Effects of teriparatide on bone mineral density and bone turnover markers in Japanese subjects with osteoporosis at high risk of fracture in a 24-month clinical study: 12-month, randomized, placebo-controlled, double-blind and 12-month openlabel phases. Bone. 2010 Sep;47(3):493-502. doi: S8756-3282(10)01255-X [pii]; 10.1016/j.bone.2010.05.022 [doi]. PMID: 20580870.Exclusion Code: X3.
- 399. Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012 Jan;23(1):143-53. doi: 10.1007/s00198-011-1817-5 [doi]. PMID: 22037972.Exclusion Code: X9.

- 400. Moilanen P, Maatta M, Kilappa V, et al. Discrimination of fractures by low-frequency axial transmission ultrasound in postmenopausal females. Osteoporos Int. 2013 Feb;24(2):723-30. doi: 10.1007/s00198-012-2022-x [doi]. PMID: 22638711.Exclusion Code: X11.
- 401. Moricke R, Rettig K, Bethke TD. Use of recombinant human parathyroid hormone(1-84) in patients with postmenopausal osteoporosis: a prospective, openlabel, single-arm, multicentre, observational cohort study of the effects of treatment on quality of life and pain--the PROPOSE study. Clin Drug Investig. 2011;31(2):87-99. doi: 1 [pii]; 10.2165/11538880-000000000-00000 [doi]. PMID: 21155613.Exclusion Code: X8.
- 402. Mosca L, Grady D, Barrett-Connor E, et al. Effect of raloxifene on stroke and venous thromboembolism according to subgroups in postmenopausal women at increased risk of coronary heart disease. Stroke. 2009 Jan;40(1):147-55. doi: 10.1161/strokeaha.108.518621. PMID: 18948611.Exclusion Code: X3.
- 403. Mrgan M, Mohammed A, Gram J. Combined vertebral assessment and bone densitometry increases the prevalence and severity of osteoporosis in patients referred to DXA scanning. J Clin Densitom. 2013 Oct-Dec;16(4):549-53. doi: S1094-6950(13)00080-2 [pii]; 10.1016/j.jocd.2013.05.002 [doi]. PMID: 23769657.Exclusion Code: X3.
- 404. Mueller DK, Kutscherenko A, Bartel H, et al. Phantom-less QCT BMD system as screening tool for

osteoporosis without additional radiation. Eur J Radiol. 2011 Sep;79(3):375-81. doi: S0720-048X(10)00074-4 [pii]; 10.1016/j.ejrad.2010.02.008 [doi]. PMID: 20223609.Exclusion Code: X9.

- 405. Muftic M, Selimovic EK, Miladinovic K. Osteoporosis-comparative study between quantitative ultrasound of calcaneus and DXA. Med Arch. 2013;67(4):289-91.Exclusion Code: X15.
- 406. Murray AW, McQuillan C, Kennon B, et al. Osteoporosis risk assessment and treatment intervention after hip or shoulder fracture. A comparison of two centres in the United Kingdom. Injury. 2005 Sep;36(9):1080-4. doi: S0020-1383(05)00120-8 [pii]; 10.1016/j.injury.2005.03.012 [doi]. PMID: 16051239.Exclusion Code: X3.
- 407. Muschitz C, Dimai HP, Kocijan R, et al. The discriminatory capacity of BMD measurements by DXA and dual X-ray and laser (DXL) at the calcaneus including clinical risk factors for detecting patients with vertebral fractures. Osteoporos Int. 2013 Aug;24(8):2181-90. doi: 10.1007/s00198-013-2266-0 [doi]. PMID: 23344258.Exclusion Code: X11.
- 408. Nakamura T, Matsumoto T, Sugimoto T, et al. Evaluation of efficacy and safety of denosumab in Japanese postmenopausal women with osteoporosis-phase II (dose response) study. Osteoporos Int; 2012. p. S133-s4.Exclusion Code: X2.
- 409. Nakamura T, Sugimoto T, Nakano T, et al. Randomized Teriparatide

[human parathyroid hormone (PTH) 1-34] Once-Weekly Efficacy Research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J Clin Endocrinol Metab. 2012 Sep;97(9):3097-106. doi: jc.2011-3479 [pii]; 10.1210/jc.2011-3479 [doi]. PMID: 22723322.Exclusion Code: X3.

- 410. Nakamura T, Tsujimoto M, Hamaya E, et al. Consistency of fracture risk reduction in Japanese and Caucasian osteoporosis patients treated with teriparatide: a meta-analysis. J Bone Miner Metab. 2012 May;30(3):321-5. doi: 10.1007/s00774-011-0313-5 [doi]. PMID: 21938382.Exclusion Code: X3.
- 411. Nasser EJ, Iglesias ER, Ferreira JA, et al. Association of breast vascular calcifications with low bone mass in postmenopausal women. Climacteric. 2014 Aug;17(4):486-91. doi: 10.3109/13697137.2013.869672 [doi]. PMID: 24286614.Exclusion Code: X8.
- 412. Nasser KM, Quinonez Obiols A, Silverman SL. Identifying individuals at risk for fracture in Guatemala. PLoS One. 2011;6(11):e28042. doi: 10.1371/journal.pone.0028042 [doi] PONE-D-11-10137 [pii]. PMID: 22140503.Exclusion Code: X15.
- 413. Navarro Mdel C, Saavedra P, Gomez-de-Tejada MJ, et al. Discriminative ability of heel quantitative ultrasound in postmenopausal women with prevalent low-trauma fractures: application of optimal threshold cutoff values using CART models. J Clin Densitom. 2011 Oct-Dec;14(4):492-8. doi: S1094-

6950(11)00140-5 [pii]; 10.1016/j.jocd.2011.06.008 [doi]. PMID: 22051094.Exclusion Code: X3.

- 414. Navarro Mdel C, Saavedra P, Gomez-de-Tejada MJ, et al. Discriminative ability of heel quantitative ultrasound in postmenopausal women with prevalent vertebral fractures: application of optimal threshold cutoff values using classification and regression tree models. Calcif Tissue Int. 2012 Aug;91(2):114-20. doi: 10.1007/s00223-012-9616-3 [doi]. PMID: 22752617.Exclusion Code: X3.
- 415. Nayak S, Edwards DL, Saleh AA, et al. Performance of risk assessment instruments for predicting osteoporotic fracture risk: a systematic review. Osteoporos Int. 2014 Jan;25(1):23-49. doi: 10.1007/s00198-013-2504-5. PMID: 24105431.Exclusion Code: X17.
- 416. Nayak S, Roberts MS, Greenspan SL. Cost-effectiveness of different screening strategies for osteoporosis in postmenopausal women. Ann Intern Med. 2011 Dec 6;155(11):751-61. doi: 10.7326/0003-4819-155-11-201112060-00007. PMID: 22147714.Exclusion Code: X9.
- 417. Naylor KE, Clowes JA, Finigan J, et al. The effect of cessation of raloxifene treatment on bone turnover in postmenopausal women. Bone. 2010 Mar;46(3):592-7. doi: S8756-3282(09)02011-0 [pii]; 10.1016/j.bone.2009.10.043 [doi]. PMID: 19897063.Exclusion Code: X3.
- 418. Naylor KL, Leslie WD, Hodsman AB, et al. FRAX predicts fracture risk in kidney transplant recipients.

Transplantation. 2014 May 15;97(9):940-5. doi: 10.1097/01.TP.0000438200.84154.1 a [doi]. PMID: 24503761.Exclusion Code: X8.

- 419. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001 May 10;344(19):1434-41. doi: 10.1056/nejm200105103441904. PMID: 11346808.Exclusion Code: X3.
- 420. Nevitt MC, Chen P, Dore RK, et al. Reduced risk of back pain following teriparatide treatment: a metaanalysis. Osteoporos Int. 2006 Feb;17(2):273-80. doi: 10.1007/s00198-005-2013-2 [doi]. PMID: 16142502.Exclusion Code: X9.
- 421. Nguyen ND, Frost SA, Center JR, et al. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int. 2007 Aug;18(8):1109-17. doi: 10.1007/s00198-007-0362-8 [doi]. PMID: 17370100.Exclusion Code: X14.
- 422. Nguyen ND, Frost SA, Center JR, et al. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008 Oct;19(10):1431-44. doi: 10.1007/s00198-008-0588-0. PMID: 18324342.Exclusion Code: X14.
- 423. Nguyen ND, Pongchaiyakul C, Center JR, et al. Abdominal fat and hip fracture risk in the elderly: the Dubbo Osteoporosis Epidemiology Study. BMC Musculoskelet Disord. 2005;6:11. doi: 1471-2474-6-11 [pii]; 10.1186/1471-2474-6-11 [doi].

PMID: 15727686.Exclusion Code: X7.

- 424. Nguyen TV, Center JR, Eisman JA. Femoral neck bone loss predicts fracture risk independent of baseline BMD. J Bone Miner Res. 2005 Jul;20(7):1195-201. doi: 10.1359/JBMR.050215 [doi]. PMID: 15940372.Exclusion Code: X9.
- 425. Nishiyama KK, Macdonald HM, Hanley DA, et al. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos Int. 2013 May;24(5):1733-40. doi: 10.1007/s00198-012-2160-1 [doi]. PMID: 23179565.Exclusion Code: X3.
- 426. Noale M, Maggi S, Gonnelli S, et al. Quantitative ultrasound criteria for risk stratification in clinical practice: a comparative assessment. Ultrasound Med Biol. 2012 Jul;38(7):1138-44. doi: S0301-5629(12)00117-2 [pii]; 10.1016/j.ultrasmedbio.2012.02.022 [doi]. PMID: 22542263.Exclusion Code: X7.
- 427. Odvina CV, Zerwekh JE, Rao DS, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005 Mar;90(3):1294-301. doi: 10.1210/jc.2004-0952. PMID: 15598694.Exclusion Code: X8.
- 428. Office of Drug Safety. ODS Postmarketing Safety Review. Rockville, MD: U.S. Food and Drug Administration; 2004. www.fda.gov/ohrms/dockets/ac/05/b riefing/2005-4095B2_03_04-FDA-TAB3.pdf. Accessed on September 13 2016.Exclusion Code: X3.

- 429. Oh SM, Nam BH, Rhee Y, et al. Development and validation of osteoporosis risk-assessment model for Korean postmenopausal women. J Bone Miner Metab. 2013 Jul;31(4):423-32. doi: 10.1007/s00774-013-0426-0 [doi]. PMID: 23420298.Exclusion Code: X9.
- 430. Okabe S, Morimoto Y, Ansai T, et al. Assessment of the relationship between the mandibular cortex on panoramic radiographs and the risk of bone fracture and vascular disease in 80-year-olds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008 Sep;106(3):433-42. doi: S1079-2104(07)00756-1 [pii]; 10.1016/j.tripleo.2007.09.013 [doi]. PMID: 18299222.Exclusion Code: X9.
- 431. Ollivier M, Le Corroller T, Blanc G, et al. Radiographic bone texture analysis is correlated with 3D microarchitecture in the femoral head, and improves the estimation of the femoral neck fracture risk when combined with bone mineral density. Eur J Radiol. 2013 Sep;82(9):1494-8. doi: S0720-048X(13)00266-0 [pii]; 10.1016/j.ejrad.2013.04.042 [doi]. PMID: 23756323.Exclusion Code: X11.
- 432. Orwoll ES, Binkley NC, Lewiecki EM, et al. Efficacy and safety of monthly ibandronate in men with low bone density. Bone. 2010 Apr;46(4):970-6. doi: S8756-3282(09)02137-1 [pii]; 10.1016/j.bone.2009.12.034 [doi]. PMID: 20060082.Exclusion Code: X3.
- 433. Oswald AJ, Berg J, Milne G, et al. Teriparatide treatment of severe osteoporosis reduces the risk of vertebral fractures compared with

standard care in routine clinical practice. Calcif Tissue Int. 2014 Feb;94(2):176-82. doi: 10.1007/s00223-013-9788-5 [doi]. PMID: 24026567.Exclusion Code: X8.

- 434. Oyen J, Gjesdal CG, Brudvik C, et al. Low-energy distal radius fractures in middle-aged and elderly men and women--the burden of osteoporosis and fracture risk : A study of 1794 consecutive patients. Osteoporos Int. 2010 Jul;21(7):1257-67. doi: 10.1007/s00198-009-1068-x [doi]. PMID: 19813045.Exclusion Code: X9.
- 435. Palacios S, de Villiers TJ, Nardone Fde C, et al. Assessment of the safety of long-term bazedoxifene treatment on the reproductive tract in postmenopausal women with osteoporosis: results of a 7-year, randomized, placebo-controlled, phase 3 study. Maturitas. 2013 Sep;76(1):81-7. doi: S0378-5122(13)00192-8 [pii]; 10.1016/j.maturitas.2013.06.008 [doi]. PMID: 23871271.Exclusion Code: X7.
- 436. Palacios S, Farias ML, Luebbert H, et al. Raloxifene is not associated with biologically relevant changes in hot flushes in postmenopausal women for whom therapy is appropriate. Am J Obstet Gynecol. 2004 Jul;191(1):121-31. doi: 10.1016/j.ajog.2003.10.701. PMID: 15295352.Exclusion Code: X3.
- 437. Palacios S, Rizzoli R, Zapalowski C, et al. Denosumab reduced osteoporotic fractures in postmenopausal women with osteoporosis with prior fracture: Results from freedom. Osteoporos Int. 2013;24(Suppl 1):S299-300.Exclusion Code: X8.

- 438. Palomba S, Manguso F, Orio F, Jr., et al. Effectiveness of risedronate in osteoporotic postmenopausal women with inflammatory bowel disease: a prospective, parallel, open-label, two-year extension study. Menopause. 2008 Jul-Aug;15(4 Pt 1):730-6. doi: 10.1097/gme.0b013e318159f190. PMID: 18698280.Exclusion Code: X3.
- 439. Palomba S, Orio F, Jr., Colao A, et al. Effect of estrogen replacement plus low-dose alendronate treatment on bone density in surgically postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002 Apr;87(4):1502-8. doi: 10.1210/jcem.87.4.8323. PMID: 11932272.Exclusion Code: X8.
- Palomba S, Orio F, Jr., Manguso F, et al. Efficacy of risedronate administration in osteoporotic postmenopausal women affected by inflammatory bowel disease. Osteoporos Int. 2005 Sep;16(9):1141-9. doi: 10.1007/s00198-005-1927-z. PMID: 15928801.Exclusion Code: X3.
- 441. Pang WY, Inderjeeth CA. FRAX without bone mineral density versus osteoporosis self-assessment screening tool as predictors of osteoporosis in primary screening of individuals aged 70 and older. J Am Geriatr Soc. 2014 Mar;62(3):442-6. doi: 10.1111/jgs.12696 [doi]. PMID: 24617899.Exclusion Code: X4.
- 442. Panico A, Lupoli GA, Marciello F, et al. Teriparatide vs. alendronate as a treatment for osteoporosis: changes in biochemical markers of bone turnover, BMD and quality of life. Med Sci Monit. 2011 Aug;17(8):CR442-8. doi: 881905

[pii]. PMID: 21804463.Exclusion Code: X8.

- 443. Papaioannou A, Kennedy CC, Freitag A, et al. Alendronate once weekly for the prevention and treatment of bone loss in Canadian adult cystic fibrosis patients (CFOS trial). Chest. 2008 Oct;134(4):794-800. doi: 10.1378/chest.08-0608. PMID: 18641106.Exclusion Code: X3.
- 444. Papapoulos S, Chapurlat R, Libanati C, et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of the FREEDOM extension. J Bone Miner Res. 2012 Mar;27(3):694-701. doi: 10.1002/jbmr.1479 [doi]. PMID: 22113951.Exclusion Code: X8.
- 445. Papapoulos S, McClung MR, Franchimont N, et al. Denosumab (DMab) treatment for 6 years maintains low fracture incidence in women (greater-than or equal to) 75 years with postmenopausal osteoporosis (PMO). Osteoporos Int. 2013;24(Suppl):S45-6.Exclusion Code: X8.
- 446. Papapoulos S, Roux C, Bone HG, et al. Denosumab treatment in postmenopausal women with osteoporosis for up to 9 years: Results through year 6 of the freedom extension. Osteoporos Int; 2015. p. S37-s9.Exclusion Code: X8.
- 447. Park HM, Sedrine WB, Reginster JY, et al. Korean experience with the OSTA risk index for osteoporosis: a validation study. J Clin Densitom. 2003 Fall;6(3):247-50. doi: JCD:6:3:247 [pii]. PMID: 14514994.Exclusion Code: X16.
- 448. Patel DV, Bolland M, Nisa Z, et al. Incidence of ocular side effects with intravenous zoledronate: secondary

analysis of a randomized controlled trial. Osteoporos Int. 2014;26(2):499-503.Exclusion Code: X4.

- 449. Pazianas M, Miller P, Blumentals WA, et al. A review of the literature on osteonecrosis of the jaw in patients with osteoporosis treated with oral bisphosphonates: prevalence, risk factors, and clinical characteristics. Clin Ther. 2007 Aug;29(8):1548-58. doi: 10.1016/j.clinthera.2007.08.008. PMID: 17919538.Exclusion Code: X4.
- 450. Pedrazzoni M, Girasole G, Giusti A, et al. Assessment of the 10-year risk of fracture in Italian postmenopausal women using FRAX(R): a north Italian multicenter study. J Endocrinol Invest. 2011 Dec;34(11):e386-91. doi: 7862 [pii]; 10.3275/7862 [doi]. PMID: 21750394.Exclusion Code: X8.
- 451. Penning-van Beest FJ, Erkens JA, Olson M, et al. Loss of treatment benefit due to low compliance with bisphosphonate therapy. Osteoporos Int. 2008 Apr;19(4):511-7. doi: 10.1007/s00198-007-0466-1 [doi]. PMID: 17874028.Exclusion Code: X8.
- 452. Pfister AK, Welch CA, Emmett MK, et al. An approach to identify rural women aged 60 to 64 for osteoporosis treatment. South Med J. 2012 Jan;105(1):11-7. doi: 10.1097/SMJ.0b013e3182e1b57 [doi] 00007611-201201000-00004 [pii]. PMID: 22189661.Exclusion Code: X9.
- 453. Phillips MB. Risedronate-induced Hepatitis. Am J Med. 2007 Mar;120(3):e1-2. doi: S0002-9343(06)00683-8 [pii]; 10.1016/j.amjmed.2006.04.032 [doi].

PMID: 17349419.Exclusion Code: X2.

- 454. Pickhardt PJ, Bodeen G, Brett A, et al. Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography. J Clin Densitom. 2015 Jan-Mar;18(1):5-12. doi: S1094-6950(14)00036-5 [pii]; 10.1016/j.jocd.2014.03.002 [doi]. PMID: 24880495.Exclusion Code: X9.
- 455. Pickhardt PJ, Lee LJ, del Rio AM, et al. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res. 2011 Sep;26(9):2194-203. doi: 10.1002/jbmr.428 [doi]. PMID: 21590738.Exclusion Code: X7.
- 456. Pickhardt PJ, Pooler BD, Lauder T, et al. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013 Apr 16;158(8):588-95. doi: 1676454 [pii]; 10.7326/0003-4819-158-8-201304160-00003 [doi]. PMID: 23588747.Exclusion Code: X9.
- 457. Pinheiro MM, Reis Neto ET, Machado FS, et al. Development and validation of a tool for identifying women with low bone mineral density and low-impact fractures: the Sao Paulo Osteoporosis Risk Index (SAPORI). Osteoporos Int. 2012 Apr;23(4):1371-9. doi: 10.1007/s00198-011-1722-y [doi]. PMID: 21769663.Exclusion Code: X15.
- 458. Pinkerton JV, Archer DF, Utian WH, et al. Bazedoxifene effects on the

reproductive tract in postmenopausal women at risk for osteoporosis. Menopause. 2009 Nov-Dec;16(6):1102-8. doi: 10.1097/gme.0b013e3181a816be [doi]. PMID: 19546825.Exclusion Code: X7.

- 459. Pisani P, Conversano F, Muratore M, et al. A novel ultrasound parameter to assess skeletal fragility and fracture risk from an echographic scan of lumbar spine. Osteoporos Int; 2015. p. S270.Exclusion Code: X12.
- 460. Piscitelli P, Chitano G, Johannson H, et al. Updated fracture incidence rates for the Italian version of FRAX(R). Osteoporos Int. 2013 Mar;24(3):859-66. doi: 10.1007/s00198-012-2021-y [doi]. PMID: 22638710.Exclusion Code: X8.
- 461. Pluijm SM, Koes B, de Laet C, et al. A simple risk score for the assessment of absolute fracture risk in general practice based on two longitudinal studies. J Bone Miner Res. 2009 May;24(5):768-74. doi: 10.1359/jbmr.081244 [doi]. PMID: 19113932.Exclusion Code: X14.
- 462. Pluskiewicz W, Drozdzowska B, Adamczyk P. Ten-year fracture risk in the assessment of osteoporosis management efficacy in postmenopausal women: a pilot study. Climacteric. 2013 Feb;16(1):117-26. doi: 10.3109/13697137.2011.646345 [doi]. PMID: 22335356.Exclusion Code: X9.
- 463. Pongchaiyakul C, Leerapun T, Wongsiri S, et al. Value and validation of RCOST and TOPF clinical practice guideline for osteoporosis treatment. J Med Assoc Thai. 2012 Dec;95(12):1528-35.

PMID: 23390783.Exclusion Code: X9.

- 464. Pugely AJ, Martin CT, Gao Y, et al. A risk calculator for short-term morbidity and mortality after hip fracture surgery. J Orthop Trauma. 2014 Feb;28(2):63-9. doi: 10.1097/BOT.0b013e3182a22744 [doi]. PMID: 23872716.Exclusion Code: X3.
- 465. Rabiei M, Masooleh IS, Leyli EK, et al. Salivary calcium concentration as a screening tool for postmenopausal osteoporosis. Int J Rheum Dis. 2013 Apr;16(2):198-202. doi: 10.1111/1756-185X.12003 [doi]. PMID: 23773645.Exclusion Code: X8.
- 466. Rabier B, Heraud A, Grand-Lenoir C, et al. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone. 2010 Jan;46(1):176-81. doi: S8756-3282(09)01821-3 [pii]; 10.1016/j.bone.2009.06.032 [doi]. PMID: 19747992.Exclusion Code: X4.
- 467. Rajatanavin R, Chailurkit L, Saetung S, et al. The efficacy of calcium supplementation alone in elderly Thai women over a 2-year period: a randomized controlled trial. Osteoporos Int. 2013 Nov;24(11):2871-7. doi: 10.1007/s00198-013-2387-5 [doi]. PMID: 23681085.Exclusion Code: X3.
- 468. Recker R, Stakkestad JA, Chesnut CH, 3rd, et al. Insufficiently dosed intravenous ibandronate injections are associated with suboptimal antifracture efficacy in

postmenopausal osteoporosis. Bone. 2004 May;34(5):890-9. doi: 10.1016/j.bone.2004.01.008. PMID: 15121021.Exclusion Code: X3.

- 469. Reginster JY, Felsenberg D, Pavo I, et al. Effect of raloxifene combined with monofluorophosphate as compared with monofluorophosphate alone in postmenopausal women with low bone mass: a randomized, controlled trial. Osteoporos Int. 2003 Sep;14(9):741-9. doi: 10.1007/s00198-003-1432-1. PMID: 12827224.Exclusion Code: X8.
- 470. Rehman DE, Qureshi S, Abdul Haq A. Early detection of osteoporosis from incisure depth of human mandible in an orthopantomogram. J Pak Med Assoc. 2014 Jul;64(7):766-9. doi: 6829 [pii]. PMID: 25255583.Exclusion Code: X8.
- 471. Reid DM, Hughes RA, Laan RF, et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J Bone Miner Res. 2000 Jun;15(6):1006-13. doi: 10.1359/jbmr.2000.15.6.1006. PMID: 10841169.Exclusion Code: X3.
- 472. Reid IR, Eastell R, Fogelman I, et al. A comparison of the effects of raloxifene and conjugated equine estrogen on bone and lipids in healthy postmenopausal women. Arch Intern Med. 2004 Apr 26;164(8):871-9. doi: 10.1001/archinte.164.8.871. PMID: 15111373.Exclusion Code: X3.
- 473. Rendl S, Lapa C, Blumel C, et al. Decision making for osteoporotic treatment using FRAX or DVO risk algorithms in a clinical setting. J

Musculoskelet Neuronal Interact. 2013 Sep;13(3):339-45. PMID: 23989255.Exclusion Code: X9.

- 474. Rianon NJ, Lang TF, Siggeirsdottir K, et al. Fracture risk assessment in older adults using a combination of selected quantitative computed tomography bone measures: a subanalysis of the Age, Gene/Environment Susceptibility-Reykjavik Study. J Clin Densitom. 2014 Jan-Mar;17(1):25-31. doi: S1094-6950(13)00042-5 [pii]; 10.1016/j.jocd.2013.03.005 [doi]. PMID: 23562129.Exclusion Code: X8.
- 475. Richards JS, Lazzari AA, Teves Qualler DA, et al. Validation of the osteoporosis self-assessment tool in US male veterans. J Clin Densitom. 2014;17(1):32-7.Exclusion Code: X8.
- 476. Richy F, Gourlay M, Ross PD, et al. Validation and comparative evaluation of the osteoporosis selfassessment tool (OST) in a Caucasian population from Belgium. QJM. 2004 Jan;97(1):39-46. PMID: 14702510.Exclusion Code: X16.
- 477. Rikkonen T, Sirola J, Salovaara K, et al. Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int. 2012 Aug;91(2):131-8. doi: 10.1007/s00223-012-9618-1 [doi]. PMID: 22733383.Exclusion Code: X9.
- 478. Ringe JD, Dorst A, Faber H, et al. Alendronate treatment of established primary osteoporosis in men: 3-year results of a prospective, comparative, two-arm study. Rheumatol Int. 2004 Mar;24(2):110-3. doi: 10.1007/s00296-003-0388-y. PMID: 13680141.Exclusion Code: X3.

- 479. Ringe JD, Dorst A, Farahmand P. Efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Arzneimittelforschung. 2010;60(5):267-72. PMID: 20533764.Exclusion Code: X7.
- 480. Ringe JD, Farahmand P, Schacht E, et al. Superiority of a combined treatment of Alendronate and Alfacalcidol compared to the combination of Alendronate and plain vitamin D or Alfacalcidol alone in established postmenopausal or male osteoporosis (AAC-Trial). Rheumatol Int. 2007 Mar;27(5):425-34. doi: 10.1007/s00296-006-0288-z. PMID: 17216477.Exclusion Code: X8.
- 481. Ripamonti C, Lisi L, Avella M. Femoral neck shaft angle width is associated with hip-fracture risk in males but not independently of femoral neck bone density. Br J Radiol. 2014 May;87(1037):20130358. doi: 10.1259/bjr.20130358 [doi]. PMID: 24678889.Exclusion Code: X9.
- 482. Robbins J, Aragaki AK, Kooperberg C, et al. Factors associated with 5-year risk of hip fracture in postmenopausal women. JAMA. 2007 Nov 28;298(20):2389-98. doi: 10.1001/jama.298.20.2389. PMID: 18042916.Exclusion Code: X3.
- 483. Robbins JA, Aragaki A, Crandall CJ, et al. Women's Health Initiative clinical trials: interaction of calcium and vitamin D with hormone therapy. Menopause. 2014 Feb;21(2):116-23. doi: 10.1097/GME.0b013e3182963901 [doi]. PMID: 23799356.Exclusion Code: X3.
- 484. Roberts BJ, Thrall E, Muller JA, et al. Comparison of hip fracture risk prediction by femoral aBMD to

experimentally measured factor of risk. Bone. 2010 Mar;46(3):742-6. doi: S8756-3282(09)01988-7 [pii]; 10.1016/j.bone.2009.10.020 [doi]. PMID: 19854307.Exclusion Code: X8.

- 485. Rossini M, Gatti D, Girardello S, et al. Effects of two intermittent alendronate regimens in the prevention or treatment of postmenopausal osteoporosis. Bone. 2000 Jul;27(1):119-22. PMID: 10865218.Exclusion Code: X3.
- 486. Roux C, Briot K, Horlait S, et al. Assessment of non-vertebral fracture risk in postmenopausal women. Ann Rheum Dis. 2007 Jul;66(7):931-5. doi: ard.2006.064071 [pii]; 10.1136/ard.2006.064071 [doi]. PMID: 17314119.Exclusion Code: X3.
- 487. Rozental TD, Deschamps LN, Taylor A, et al. Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture. J Bone Joint Surg Am. 2013 Apr 3;95(7):633-42. doi: 1669276 [pii]; 10.2106/JBJS.L.00588 [doi]. PMID: 23553299.Exclusion Code: X9.
- 488. Rubin KH, Abrahamsen B, Hermann AP, et al. Fracture risk assessed by Fracture Risk Assessment Tool (FRAX) compared with fracture risk derived from population fracture rates. Scand J Public Health. 2011 May;39(3):312-8. doi: 1403494811402412 [pii]; 10.1177/1403494811402412 [doi]. PMID: 21429990.Exclusion Code: X8.
- 489. Rubin KH, Friis-Holmberg T, Hermann AP, et al. Risk assessment tools to identify women with increased risk of osteoporotic

fracture: complexity or simplicity? A systematic review. J Bone Miner Res. 2013 Aug;28(8):1701-17. doi: 10.1002/jbmr.1956. PMID: 23592255.Exclusion Code: X17.

- 490. Rubin MR, Lee KH, McMahon DJ, et al. Raloxifene lowers serum calcium and markers of bone turnover in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab. 2003 Mar;88(3):1174-8. doi: 10.1210/jc.2002-020667. PMID: 12629102.Exclusion Code: X3.
- 491. Rud B, Hilden J, Hyldstrup L, et al. Performance of the Osteoporosis Self-Assessment Tool in ruling out low bone mineral density in postmenopausal women: a systematic review. Osteoporos Int. 2007 Sep;18(9):1177-87. doi: 10.1007/s00198-006-0319-3 [doi]. PMID: 17361324.Exclusion Code: X9.
- 492. Rud B, Hilden J, Hyldstrup L, et al. The Osteoporosis Self-Assessment Tool versus alternative tests for selecting postmenopausal women for bone mineral density assessment: a comparative systematic review of accuracy. Osteoporos Int. 2009 Apr;20(4):599-607. doi: 10.1007/s00198-008-0713-0 [doi]. PMID: 18716823.Exclusion Code: X17.
- 493. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis.
 Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med. 1998 Jul 30;339(5):292-9. doi: 10.1056/nejm199807303390502.
 PMID: 9682041.Exclusion Code: X3.
- 494. Sambrook PN, Rodriguez JP, Wasnich RD, et al. Alendronate in the prevention of osteoporosis: 7year follow-up. Osteoporos Int. 2004 Jun;15(6):483-8. doi: 10.1007/s00198-003-1571-4. PMID: 15205720.Exclusion Code: X7.
- 495. Sanad Z, Ellakwa H, Desouky B. Comparison of alendronate and raloxifene in postmenopausal women with osteoporosis. Climacteric. 2011 Jun;14(3):369-77. doi: 10.3109/13697137.2010.537408 [doi]. PMID: 21254911.Exclusion Code: X8.
- 496. Sanfelix-Genoves J, Peiro S, Sanfelix-Gimeno G, et al. Development and validation of a population-based prediction scale for osteoporotic fracture in the region of Valencia, Spain: the ESOSVAL-R study. BMC Public Health. 2010;10:153. doi: 1471-2458-10-153 [pii]; 10.1186/1471-2458-10-153 [doi]. PMID: 20334639.Exclusion Code: X2.
- 497. Sato Y, Iwamoto J, Kanoko T, et al. Alendronate and vitamin D2 for prevention of hip fracture in Parkinson's disease: a randomized controlled trial. Mov Disord. 2006 Jul;21(7):924-9. doi: 10.1002/mds.20825. PMID: 16538619.Exclusion Code: X10.
- 498. Schnatz PF, Marakovits KA, Dubois M, et al. Osteoporosis screening and treatment guidelines: are they being followed? Menopause. 2011 Oct;18(10):1072-8. doi: 10.1097/gme.0b013e318215101a [doi]. PMID: 21753740.Exclusion Code: X9.
- 499. Schneider DL, Worley K, Beard MK, et al. The primary care osteoporosis risk of fracture screening (POROS) study: design

and baseline characteristics. Contemp Clin Trials. 2010 Jul;31(4):336-44. doi: S1551-7144(10)00042-X [pii]; 10.1016/j.cct.2010.03.012 [doi]. PMID: 20382273.Exclusion Code: X2.

- 500. Schousboe JT, Rosen HR, Vokes TJ, et al. Prediction models of prevalent radiographic vertebral fractures among older women. J Clin Densitom. 2014 Jul-Sep;17(3):378-85. doi: S1094-6950(13)00209-6 [pii]; 10.1016/j.jocd.2013.09.021 [doi]. PMID: 24582085.Exclusion Code: X14.
- 501. Schousboe JT, Rosen HR, Vokes TJ, et al. Prediction models of prevalent radiographic vertebral fractures among older men. J Clin Densitom. 2014 Oct-Dec;17(4):449-57. doi: S1094-6950(13)00182-0 [pii]; 10.1016/j.jocd.2013.09.020 [doi]. PMID: 24289883.Exclusion Code: X14.
- 502. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004 Jan;34(1):195-202. doi: S8756328203003776 [pii]. PMID: 14751578.Exclusion Code: X9.
- 503. Schuler B, Fritscher KD, Kuhn V, et al. Assessment of the individual fracture risk of the proximal femur by using statistical appearance models. Med Phys. 2010 Jun;37(6):2560-71. PMID: 20632568.Exclusion Code: X3.
- 504. Sen SS, Rives VP, Messina OD, et al. A risk assessment tool (OsteoRisk) for identifying Latin American women with osteoporosis. J Gen Intern Med. 2005 Mar;20(3):245-50. doi: JGI40900

[pii]; 10.1111/j.1525-1497.2005.40900.x [doi]. PMID: 15836528.Exclusion Code: X15.

- 505. Seok H, Kim KJ, Kim KM, et al. High prevalence of spine-femur bone mineral density discordance and comparison of vertebral fracture risk assessment using femoral neck and lumbar spine bone density in Korean patients. J Bone Miner Metab. 2014 Jul;32(4):405-10. doi: 10.1007/s00774-013-0512-3 [doi]. PMID: 24122250.Exclusion Code: X9.
- 506. Sestak I. Changes in bone mineral density at 3 years in postmenopausal women receiving anastrozole and risedronate in the IBIS-II bone substudy: an international, doubleblind, randomised, placebocontrolled trial. The Lancet. Oncology. 2014;15(13):1460-8.Exclusion Code: X3.
- 507. Shahla A. Validity of bone mineral density and WHO fracture risk assessment thresholds in hip fractures. Arch Iran Med. 2011 Sep;14(5):352-4. doi: 0011145/AIM.0012 [pii]; 0012 [doi]. PMID: 21888461.Exclusion Code: X9.
- 508. Shan LP, Bee OF, Suniza SS, et al. Developing a Malaysian Osteoporosis Screening Tool (MOST) for early osteoporosis detection in Malaysian women. Sex Reprod Healthc. 2011 Apr;2(2):77-82. doi: S1877-5756(10)00087-X [pii]; 10.1016/j.srhc.2010.11.004 [doi]. PMID: 21439525.Exclusion Code: X15.
- 509. Sheehy O, Kindundu C, Barbeau M, et al. Adherence to weekly oral bisphosphonate therapy: cost of wasted drugs and fractures. Osteoporos Int. 2009

Sep;20(9):1583-94. doi: 10.1007/s00198-008-0829-2 [doi]. PMID: 19153677.Exclusion Code: X8.

- 510. Shepherd AJ, Cass AR, Ray L. Determining risk of vertebral osteoporosis in men: validation of the male osteoporosis risk estimation score. J Am Board Fam Med. 2010 Mar-Apr;23(2):186-94. doi: 23/2/186 [pii]; 10.3122/jabfm.2010.02.090027 [doi]. PMID: 20207929.Exclusion Code: X9.
- 511. Shepstone L, Fordham R, Lenaghan E, et al. A pragmatic randomised controlled trial of the effectiveness and cost-effectiveness of screening older women for the prevention of fractures: rationale, design and methods for the SCOOP study. Osteoporos Int. 2012 Oct;23(10):2507-15. doi: 10.1007/s00198-011-1876-7 [doi]. PMID: 22314936.Exclusion Code: X2.
- 512. Shkolnikova J, Flynn J, Choong P. Burden of bisphosphonate-associated femoral fractures. ANZ J Surg. 2013 Mar;83(3):175-81. doi: 10.1111/ans.12018 [doi]. PMID: 23216704.Exclusion Code: X4.
- 513. Short CE, Shaw SG, Fisher MJ, et al. Comparison of peripheral forearm DXA and clinical risk factor screening using FRAX(R) to assess the risk of HIV-associated low bone mass: a cross-sectional study. Arch Osteoporos. 2014;9(1):181. doi: 10.1007/s11657-014-0181-4 [doi]. PMID: 24847675.Exclusion Code: X3.
- 514. Shribman S, Torsney KM, Noyce AJ, et al. A service development study of the assessment and management of fracture risk in Parkinson's disease. J Neurol. 2014

Jun;261(6):1153-9. doi: 10.1007/s00415-014-7333-8 [doi]. PMID: 24718980.Exclusion Code: X3.

- 515. Sievanen H, Weynand LS, Wacker WK, et al. A novel DXA-based hip failure index captures hip fragility independent of BMD. J Clin Densitom. 2008 Jul-Sep;11(3):367-72. doi: S1094-6950(08)00032-2 [pii]; 10.1016/j.jocd.2008.02.005 [doi]. PMID: 18456529.Exclusion Code: X12.
- 516. Silverman S, Miller P, Sebba A, et al. The Direct Assessment of Nonvertebral Fractures in Community Experience (DANCE) study: 2-year nonvertebral fragility fracture results. Osteoporos Int. 2013 Aug;24(8):2309-17. doi: 10.1007/s00198-013-2284-y [doi]. PMID: 23404615.Exclusion Code: X3.
- 517. Silverman SL, Chines AA, Kendler DL, et al. Sustained efficacy and safety of bazedoxifene in preventing fractures in postmenopausal women with osteoporosis: results of a 5-year, randomized, placebo-controlled study. Osteoporos Int. 2012 Jan;23(1):351-63. doi: 10.1007/s00198-011-1691-1 [doi]. PMID: 21779819.Exclusion Code: X7.
- 518. Silverman SL, Christiansen C, Genant HK, et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and activecontrolled clinical trial. J Bone Miner Res. 2008 Dec;23(12):1923-34. doi: 10.1359/jbmr.080710. PMID: 18665787.Exclusion Code: X3.

- 519. Silverman SL, Siris E, Kendler DL, et al. Persistence at 12 months with denosumab in postmenopausal women with osteoporosis: interim results from a prospective observational study. Osteoporos Int. 2015 Jan;26(1):361-72. doi: 10.1007/s00198-014-2871-6 [doi]. PMID: 25236877.Exclusion Code: X8.
- 520. Siris ES, Genant HK, Laster AJ, et al. Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int. 2007 Jun;18(6):761-70. doi: 10.1007/s00198-006-0306-8 [doi]. PMID: 17245546.Exclusion Code: X9.
- 521. Siris ES, Harris ST, Eastell R, et al. Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J Bone Miner Res. 2005 Sep;20(9):1514-24. doi: 10.1359/jbmr.050509. PMID: 16059623.Exclusion Code: X3.
- 522. Skowronska-Jozwiak E, Wojcicka A, Lorenc RS, et al. Comparison of selected methods for fracture risk assessment in postmenopausal women: analysis of the Lodz population in the EPOLOS study. Pol Arch Med Wewn. 2010 May;120(5):197-202. PMID: 20502405.Exclusion Code: X9.
- 523. Smith MR, Eastham J, Gleason DM, et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol. 2003 Jun;169(6):2008-12. doi: 10.1097/01.ju.0000063820.94994.95 . PMID: 12771706.Exclusion Code: X3.

- 524. Smith MR, Fallon MA, Lee H, et al. Raloxifene to prevent gonadotropinreleasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J Clin Endocrinol Metab. 2004 Aug;89(8):3841-6. doi: 10.1210/jc.2003-032058. PMID: 15292315.Exclusion Code: X3.
- 525. Sobel EM, Ettinger B, Lo JC, et al. Application of new method for evaluating performance of fracture risk tool. Am J Manag Care. 2012 Oct;18(10):e398. doi: 79772 [pii]. PMID: 23145848.Exclusion Code: X8.
- 526. Soontrapa S, Chaikitpinyo S. Using quantitative ultrasound and OSTA index to increase the efficacy and decrease the cost for diagnosis of osteoporosis. J Med Assoc Thai. 2009 Sep;92 Suppl5:S49-53. PMID: 19894331.Exclusion Code: X15.
- 527. Sornay-Rendu E, Duboeuf F, Boutroy S, et al. How to predict fragility fracture beyond 10 years? The OFELY study. J Clin Endocrinol Metab. 2014 Dec;99(12):4690-7. doi: 10.1210/jc.2014-2601 [doi]. PMID: 25250635.Exclusion Code: X9.
- 528. Springe B, Slaidina A, Soboleva U, et al. Bone mineral density and mandibular residual ridge resorption. Int J Prosthodont. 2014 May-Jun;27(3):270-6. PMID: 24905270.Exclusion Code: X3.
- 529. Stepan JJ, Burr DB, Li J, et al. Histomorphometric changes by teriparatide in alendronate-pretreated women with osteoporosis. Osteoporos Int. 2010 Dec;21(12):2027-36. doi: 10.1007/s00198-009-1168-7 [doi]. PMID: 20135094.Exclusion Code: X9.

- 530. Steurer J, Haller C, Hauselmann H, et al. Clinical value of prognostic instruments to identify patients with an increased risk for osteoporotic fractures: systematic review. PLoS One. 2011;6(5):e19994. doi: 10.1371/journal.pone.0019994. PMID: 21625596.Exclusion Code: X17.
- 531. Stevenson M, Jones ML, De Nigris E, et al. A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of postmenopausal osteoporosis. Health Technol Assess. 2005 Jun;9(22):1-160. PMID: 15929857.Exclusion Code: X3.
- 532. Stuart AL, Williams LJ, Brennan SL, et al. Poor agreement between self-reported diagnosis and bone mineral density results in the identification of osteoporosis. J Clin Densitom. 2015 Jan-Mar;18(1):13-6. doi: S1094-6950(14)00170-X [pii]; 10.1016/j.jocd.2014.04.123 [doi]. PMID: 24912958.Exclusion Code: X8.
- 533. Sugimoto T, Matsumoto T, Hosoi T, et al. Three-year denosumab treatment in postmenopausal Japanese women and men with osteoporosis: results from a 1-year open-label extension of the Denosumab Fracture Intervention Randomized Placebo Controlled Trial (DIRECT). Osteoporos Int. 2015 Feb;26(2):765-74. doi: 10.1007/s00198-014-2964-2 [doi]. PMID: 25403903.Exclusion Code: X3.
- 534. Sumino H, Ichikawa S, Kasama S, et al. Effects of raloxifene on the reninangiotensin-aldosterone system and blood pressure in hypertensive and normotensive osteoporotic

postmenopausal women. Geriatr Gerontol Int. 2010 Jan;10(1):70-7. doi: GGI562 [pii]; 10.1111/j.1447-0594.2009.00562.x [doi]. PMID: 20102385.Exclusion Code: X9.

- 535. Summers RM, Baecher N, Yao J, et al. Feasibility of simultaneous computed tomographic colonography and fully automated bone mineral densitometry in a single examination. J Comput Assist Tomogr; 2011. p. 212-6.Exclusion Code: X9.
- 536. Sun LM, Lin MC, Muo CH, et al. Calcitonin nasal spray and increased cancer risk: a population-based nested case-control study. J Clin Endocrinol Metab. 2014 Nov;99(11):4259-64. doi: 10.1210/jc.2014-2239 [doi]. PMID: 25144633.Exclusion Code: X7.
- 537. Sunder R, Tyler K. Basal skull fracture and the halo sign. CMAJ. 2013 Mar 19;185(5):416. doi: cmaj.120055 [pii]; 10.1503/cmaj.120055 [doi]. PMID: 22891200.Exclusion Code: X9.
- 538. Svejme O, Ahlborg HG, Nilsson JA, et al. Low BMD is an independent predictor of fracture and early menopause of mortality in post-menopausal women--a 34-year prospective study. Maturitas. 2013 Apr;74(4):341-5. doi: S0378-5122(13)00011-X [pii]; 10.1016/j.maturitas.2013.01.002 [doi]. PMID: 23374709.Exclusion Code: X4.
- 539. Swaminathan K, Flynn R, Garton M, et al. Search for secondary osteoporosis: are Z scores useful predictors? Postgrad Med J. 2009 Jan;85(999):38-9. doi: 85/999/38 [pii]; 10.1136/pgmj.2007.065748 [doi]. PMID: 19240287.Exclusion Code: X3.

- 540. Takaishi Y, Arita S, Honda M, et al. Assessment of alveolar bone mineral density as a predictor of lumbar fracture probability. Adv Ther. 2013 May;30(5):487-502. doi: 10.1007/s12325-013-0028-1 [doi]. PMID: 23674163.Exclusion Code: X12.
- 541. Tamone C, Fonte G, Panico A, et al. Impact of a phone follow-up program on persistence with teriparatide or PTH(1-84) treatment. Calcif Tissue Int. 2012 Apr;90(4):272-8. doi: 10.1007/s00223-012-9574-9 [doi]. PMID: 22322409.Exclusion Code: X9.
- 542. Tanaka S, Kuroda T, Sugimoto T, et al. Changes in bone mineral density, bone turnover markers, and vertebral fracture risk reduction with once weekly teriparatide. Curr Med Res Opin. 2014 May;30(5):931-6. doi: 10.1185/03007995.2013.879440 [doi]. PMID: 24392946.Exclusion Code: X3.
- 543. Tanprasertkul C, Wattanaruangkowit P, Panyakhamlerd K. The combination of body mass index and age as a new index for identifying osteoporosis in Thai postmenopausal women. J Med Assoc Thai. 2010 Dec;93 Suppl 7:S76-82. PMID: 21294400.Exclusion Code: X15.
- 544. Tay WL, Chui CK, Ong SH, et al. Osteoporosis screening using areal bone mineral density estimation from diagnostic CT images. Acad Radiol. 2012 Oct;19(10):1273-82. doi: S1076-6332(12)00324-8 [pii]; 10.1016/j.acra.2012.05.017 [doi]. PMID: 22958722.Exclusion Code: X7.
- 545. Taylor BC, Schreiner PJ, Stone KL, et al. Long-term prediction of incident hip fracture risk in elderly

white women: study of osteoporotic fractures. J Am Geriatr Soc. 2004 Sep;52(9):1479-86. doi: 10.1111/j.1532-5415.2004.52410.x [doi]

- JGS52410 [pii]. PMID: 15341549.Exclusion Code: X9.
- 546. Teede HJ, Renouf DA, Jayasuriya IA, et al. STOP fracture study: southern health osteoporotic fracture screening project. Intern Med J. 2012 May;42(5):e74-9. doi: IMJ2258 [pii]; 10.1111/j.1445-5994.2010.02258.x [doi]. PMID: 20492007.Exclusion Code: X9.
- 547. Tell GS, Fried LP, Hermanson B, et al. Recruitment of adults 65 years and older as participants in the Cardiovascular Health Study. Ann Epidemiol. 1993 Jul;3(4):358-66. PMID: 8275211.Exclusion Code: X4.
- 548. Thevenot J, Hirvasniemi J, Pulkkinen P, et al. Assessment of risk of femoral neck fracture with radiographic texture parameters: a retrospective study. Radiology. 2014 Jul;272(1):184-91. doi: 10.1148/radiol.14131390 [doi]. PMID: 24620912.Exclusion Code: X8.
- 549. Thomson AB, Marshall JK, Hunt RH, et al. 14 day endoscopy study comparing risedronate and alendronate in postmenopausal women stratified by Helicobacter pylori status. J Rheumatol. 2002 Sep;29(9):1965-74. PMID: 12233894.Exclusion Code: X3.
- 550. Toulis KA, Anastasilakis AD. Increased risk of serious infections in women with osteopenia or osteoporosis treated with denosumab. Osteoporos Int. 2010 Nov;21(11):1963-4. doi:

10.1007/s00198-009-1145-1. PMID: 20012939.Exclusion Code: X3.

- 551. Touvier J, Winzenrieth R, Johansson H, et al. Fracture discrimination by combined bone mineral density (BMD) and microarchitectural texture analysis. Calcif Tissue Int. 2015 Apr;96(4):274-83. doi: 10.1007/s00223-015-9952-1 [doi]. PMID: 25586017.Exclusion Code: X11.
- 552. Tremollieres F, Cochet T, Cohade C, et al. Fracture risk in early postmenopausal women assessed using FRAX. Joint Bone Spine. 2010 Jul;77(4):345-8. doi: 10.1016/j.jbspin.2010.04.012. PMID: 20605507.Exclusion Code: X7.
- 553. Trimpou P, Bosaeus I, Bengtsson BA, et al. High correlation between quantitative ultrasound and DXA during 7 years of follow-up. Eur J Radiol. 2010 Feb;73(2):360-4. doi: S0720-048X(08)00655-4 [pii]; 10.1016/j.ejrad.2008.11.024 [doi]. PMID: 19135327.Exclusion Code: X3.
- 554. Tsai JN, Uihlein AV, Lee H, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet. 2013 Jul 6;382(9886):50-6. doi: S0140-6736(13)60856-9 [pii]; 10.1016/S0140-6736(13)60856-9 [doi]. PMID: 23683600.Exclusion Code: X8.
- 555. Tsang JF, Leslie WD. Exclusion of focal vertebral artifacts from spine bone densitometry and fracture prediction: a comparison of expert physicians, three computer algorithms, and the minimum vertebra. J Bone Miner Res. 2007 Jun;22(6):789-98. doi:

10.1359/jbmr.070319 [doi]. PMID: 17371161.Exclusion Code: X9.

- 556. Tseng WJ, Hung LW, Shieh JS, et al. Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study. BMC Musculoskelet Disord. 2013;14:207. doi: 1471-2474-14-207 [pii]; 10.1186/1471-2474-14-207 [doi]. PMID: 23855555.Exclusion Code: X8.
- 557. Tsujimoto M, Chen P, Miyauchi A, et al. PINP as an aid for monitoring patients treated with teriparatide. Bone. 2011 Apr 1;48(4):798-803. doi: S8756-3282(10)02092-2 [pii]; 10.1016/j.bone.2010.12.006 [doi]. PMID: 21168536.Exclusion Code: X9.
- 558. Tufts G. The treatment of osteopenia in Asian women: a new approach. J Am Acad Nurse Pract. 2011 Aug;23(8):434-42. doi: 10.1111/j.1745-7599.2011.00629.x [doi]. PMID: 21790837.Exclusion Code: X9.
- 559. Urushihara H, Kikuchi N, Yamada M, et al. Raloxifene and stroke risks in Japanese postmenopausal women with osteoporosis on postmarketing surveillance. Menopause. 2009 Sep-Oct;16(5):971-7. doi: 10.1097/gme.0b013e3181a15622 [doi]. PMID: 19357545.Exclusion Code: X4.
- 560. Uusi-Rasi K, Kannus P, Cheng S, et al. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003 Jul;33(1):132-43. PMID: 12919708.Exclusion Code: X9.
- 561. Valerio CS, Trindade AM, Mazzieiro ET, et al. Use of digital panoramic radiography as an auxiliary means of

low bone mineral density detection in post-menopausal women. Dentomaxillofac Radiol. 2013;42(10):20120059. doi: dmfr.20120059 [pii]; 10.1259/dmfr.20120059 [doi]. PMID: 24005062.Exclusion Code: X9.

- 562. van Staa TP, Geusens P, Kanis JA, et al. A simple clinical score for estimating the long-term risk of fracture in post-menopausal women. QJM. 2006 Oct;99(10):673-82. doi: 10.1093/qjmed/hcl094. PMID: 16998210.Exclusion Code: X9.
- 563. Vestergaard P, Jorgensen NR, Mosekilde L, et al. Effects of parathyroid hormone alone or in combination with antiresorptive therapy on bone mineral density and fracture risk--a meta-analysis. Osteoporos Int. 2007 Jan;18(1):45-57. doi: 10.1007/s00198-006-0204-0. PMID: 16951908.Exclusion Code: X8.
- 564. Voelker R. Osteoporosis screening may be needed less often than previously believed. JAMA. 2012 Feb 15;307(7):654. doi: 307/7/654 [pii]; 10.1001/jama.2012.129 [doi]. PMID: 22337665.Exclusion Code: X2.
- 565. Vujasinovic-Stupar N, Milic N, Petrovic-Rackov L, et al. Efficacy and safety of once monthly ibandronate treatment in patients with reduced bone mineral density--ESTHER study. Srp Arh Celok Lek. 2010;138(1-2):56-61.Exclusion Code: X5.
- 566. Walker MD, Cusano NE, Sliney J, Jr., et al. Combination therapy with risedronate and teriparatide in male osteoporosis. Endocrine. 2013 Aug;44(1):237-46. doi: 10.1007/s12020-012-9819-4 [doi].

PMID: 23099796.Exclusion Code: X8.

- 567. Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012 Apr;27(4):808-16. doi: 10.1002/jbmr.1539 [doi]. PMID: 22190331.Exclusion Code: X7.
- 568. Wang YJ, Zhan JK, Huang W, et al. Effects of low-dose testosterone undecanoate treatment on bone mineral density and bone turnover markers in elderly male osteoporosis with low serum testosterone. Int J Endocrinol; 2013.Exclusion Code: X7.
- 569. Watts NB, Brown JP, Cline G. Risedronate on 2 consecutive days a month reduced vertebral fracture risk at 1year compared with historical placebo. J Clin Densitom. 2010 Jan-Mar;13(1):56-62. doi: S1094-6950(09)00234-0 [pii]; 10.1016/j.jocd.2009.09.005 [doi]. PMID: 19942469.Exclusion Code: X4.
- 570. Watts NB, Geusens P, Barton IP, et al. Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res. 2005 Dec;20(12):2097-104. doi: 10.1359/JBMR.050814 [doi]. PMID: 16294263.Exclusion Code: X9.
- 571. Wei GS, Jackson JL. Postmenopausal bone density referral decision rules: correlation with clinical fractures. Mil Med. 2004 Dec;169(12):1000-4. PMID: 15646195.Exclusion Code: X11.
- 572. Weinstein L, Ullery B. Identification of at-risk women for osteoporosis

screening. Am J Obstet Gynecol. 2000 Sep;183(3):547-9. doi: 10.1067/mob.2000.106594. PMID: 10992172.Exclusion Code: X9.

- 573. Wells G, Cranney A, Peterson J, et al. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev. 2008(1):Cd004523. doi: 10.1002/14651858.CD004523.pub3. PMID: 18254053.Exclusion Code: X7.
- 574. Wells GA, Cranney A, Peterson J, et al. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev. 2008(1):Cd001155. doi: 10.1002/14651858.CD001155.pub2. PMID: 18253985.Exclusion Code: X3.
- 575. Wells GA, Cranney A, Peterson J, et al. Etidronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev. 2008(1):Cd003376. doi: 10.1002/14651858.CD003376.pub3. PMID: 18254018.Exclusion Code: X3.
- 576. Wilczek ML, Kalvesten J, Algulin J, et al. Digital X-ray radiogrammetry of hand or wrist radiographs can predict hip fracture risk--a study in 5,420 women and 2,837 men. Eur Radiol. 2013 May;23(5):1383-91. doi: 10.1007/s00330-012-2706-9 [doi]. PMID: 23229168.Exclusion Code: X12.
- 577. Winzenrieth R, Dufour R, Pothuaud L, et al. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral

fracture. Calcif Tissue Int. 2010 Feb;86(2):104-9. doi: 10.1007/s00223-009-9322-y [doi]. PMID: 19998029.Exclusion Code: X11.

- 578. Woo C, Gao G, Wade S, et al. Gastrointestinal side effects in postmenopausal women using osteoporosis therapy: 1-year findings in the POSSIBLE US study. Curr Med Res Opin. 2010 Apr;26(4):1003-9. doi: 10.1185/03007991003633603 [doi]. PMID: 20201623.Exclusion Code: X4.
- 579. Wood WA, Muss H. Quantitation of individual risk for osteoporotic fracture. Oncology (Williston Park). 2010 Jul;24(8):753-5. doi: 166867 [pii]. PMID: 20718256.Exclusion Code: X8.
- 580. Wyshak G. Percent body fat, fractures and risk of osteoporosis in women. J Nutr Health Aging. 2010 Jun;14(6):428-32. PMID: 20617283.Exclusion Code: X8.
- 581. Xu L, Tsai KS, Kim GS, et al. Efficacy and safety of bazedoxifene in postmenopausal Asian women. Osteoporos Int. 2011 Feb;22(2):559-65. doi: 10.1007/s00198-010-1259-5 [doi]. PMID: 20535607.Exclusion Code: X5.
- 582. Yaffe K, Krueger K, Cummings SR, et al. Effect of raloxifene on prevention of dementia and cognitive impairment in older women: the Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. Am J Psychiatry. 2005 Apr;162(4):683-90. doi: 162/4/683 [pii]; 10.1176/appi.ajp.162.4.683 [doi]. PMID: 15800139.Exclusion Code: X9.
- 583. Yamamoto T, Taketsuna M, Guo X, et al. The safety and effectiveness

profile of daily teriparatide in a prospective observational study in Japanese patients with osteoporosis at high risk for fracture: interim report. J Bone Miner Metab. 2014;32(6):699-708.Exclusion Code: X3.

- 584. Yamamoto T, Tsujimoto M, Sowa H. Safety of daily teriparatide treatment: A post hoc analysis of a Phase III study to investigate the possible association of teriparatide treatment with calcium homeostasis in patients with serum procollagen type I Nterminal propeptide elevation. Clin Interv Aging; 2015. p. 1101-9.Exclusion Code: X9.
- 585. Yarnall AJ, Duncan GW, Khoo TK, et al. Falling short: underestimation of fracture risk in atypical parkinsonian syndromes. Parkinsonism Relat Disord. 2012 Jun;18(5):692-3. doi: 10.1016/j.parkreldis.2012.01.004. PMID: 22265139.Exclusion Code: X3.
- 586. Yazdani S, Iranpour Asli A, Salemi A, et al. Determination of clinical decision rule for estimation of bone mineral density in women. Med Princ Pract. 2011;20(5):416-21. doi: 000327661 [pii]; 10.1159/000327661 [doi]. PMID: 21757929.Exclusion Code: X4.
- 587. Yu R, Leung J, Woo J. Sarcopenia combined with FRAX probabilities improves fracture risk prediction in older Chinese men. J Am Med Dir Assoc. 2014 Dec;15(12):918-23. doi: S1525-8610(14)00470-8 [pii]; 10.1016/j.jamda.2014.07.011 [doi]. PMID: 25262197.Exclusion Code: X3.
- 588. Yun H, Delzell E, Ensrud KE, et al. Predicting hip and major osteoporotic fractures using

administrative data. Arch Intern Med. 2010 Nov 22;170(21):1940-2. doi: 170/21/1940 [pii]; 10.1001/archinternmed.2010.410 [doi]. PMID: 21098356.Exclusion Code: X2.

- 589. Zanchetta JR, Farias J, Bogado CE, et al. A clinicaltrial on the efficacy and safety of two teriparatide formulations. Osteoporos Int; 2015. p. S258.Exclusion Code: X8.
- 590. Zegels B, Eastell R, Russell RG, et al. Effect of high doses of oral risedronate (20 mg/day) on serum parathyroid hormone levels and urinary collagen cross-link excretion in postmenopausal women with spinal osteoporosis. Bone. 2001 Jan;28(1):108-12. PMID: 11165950.Exclusion Code: X3.
- 591. Zein CO, Jorgensen RA, Clarke B, et al. Alendronate improves bone mineral density in primary biliary cirrhosis: a randomized placebo-controlled trial. Hepatology. 2005 Oct;42(4):762-71. doi: 10.1002/hep.20866. PMID: 16175618.Exclusion Code: X3.
- 592. Zerbini CAF, Szejnfeld VL, Abergaria BH, et al. Incidence of hip fracture in Brazil and the

development of a FRAX model. Archives of Osteoporosis. 2015;10(1).Exclusion Code: X5.

- 593. Zheng S, Wu Y, Zhang Z, et al. Effects of raloxifene hydrochloride on bone mineral density, bone metabolism and serum lipids in postmenopausal women: a randomized clinical trial in Beijing. Chin Med J (Engl). 2003 Aug;116(8):1127-33. PMID: 12935394.Exclusion Code: X5.
- 594. Zhu K, Devine A, Lewis JR, et al. "'Timed up and go' test and bone mineral density measurement for fracture prediction. Arch Intern Med. 2011 Oct 10;171(18):1655-61. doi: 171/18/1655 [pii]; 10.1001/archinternmed.2011.434 [doi]. PMID: 21987195.Exclusion Code: X8.
- 595. Zimering MB, Shin JJ, Shah J, et al. Validation of a novel risk estimation tool for predicting low bone density in Caucasian and African American men veterans. J Clin Densitom. 2007 Jul-Sep;10(3):289-97. doi: S1094-6950(07)00037-6 [pii]; 10.1016/j.jocd.2007.03.001 [doi]. PMID: 17459748.Exclusion Code: X16.

Appendix D Table 1. KQ 1 Risk of Bias Assessment

		Study	Method of Randomization	Allocation Concealment	Baseline Imbalances Suggesting a
Author, Year	Interventions and Comparators	Design	Adequate?	Adequate?	Problem With Randomization?
Barr, 2010 ⁷⁶	G1: Invitation to osteoporosis screening	RCT	Yes	Probably yes	No
	G2: Control (no invitation to screen)	parallel			

Abbreviations: DXA = dual energy x-ray absorptiometry; G = group; KQ = key question; NA = not applicable; RCT = randomized controlled trial.

	Study Selection	Start of Followup	Adjustment Techniques	Controls Sampled From		
	Unrelated to	and Intervention	Likely to Correct for	Population That Gave Rise to	Bias From	
	Intervention or	Coincide for Most	Presence of Selection	Cases, or Another Method	Randomization	
Author, Year	Outcome?	Subjects?	Biases?	That Avoids Selection Bias?	or Selection?	Comments
Barr, 2010 ⁷⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	NR

Abbreviations: KQ = key question; NA = not applicable; NR = not reported.

		Participants Analyzed According	Intervention Discontinuations or	Appropriate Analysis Method
	Confounding of the Effect	to Initial Intervention Group	Switches Unlikely to Be Related to	Adjusting for All Critically
Author, Year	of Intervention Unlikely?	Throughout Followup?	Factors Prognostic for the Outcome?	Important Confounding Domains?
Barr, 2010 ⁷⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort

Abbreviations: KQ = key question; NA = not applicable.

	Avoids Adjusting for	Appropriate Analysis Method Adjusting for	Bias From	
Author, Year	Postintervention Variables?	Time-Varying Confounding?	Confounding?	Comments
Barr, 2010 ⁷⁶	NA-not a cohort	NA-not a cohort	No	RCT design mitigates risk of confounding
				from known and unknown factors.

Abbreviations: KQ = key question; NA = not applicable; RCT = randomized controlled trial.

			Information on Intervention Status	Bias From	
	Intervention Status Well	Information on Intervention Status	Unaffected by Knowledge or Risk	Measurement of	
Author, Year	Defined?	Recorded at Time of Intervention?	of Outcome?	Intervention?	Comments
Barr, 2010 ⁷⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	RCT design so all
					items NA.

Abbreviations: KQ = key question; NA = not applicable; RCT = randomized controlled trial

			Proportion of Participants	Proportion of Participants
	Overall Attrition	High Attrition	and Reasons for Missing	and Reasons for Missing
AppAuthor,	Attrition by Group	Raising Concern	Data Similar Across	Data Similar Across Cases
Year	Did Attrition Vary for Different Outcomes?	for Bias?	Interventions?	and Controls?
Barr, 2010 ⁷⁶	Overall: [%] unclear. Study reports >60% response rate but the	Yes	No	NA
	analysis relevant for this manuscript is the per protocol analysis,			
	and no Ns are provided. (The "ITT" analysis compares			
	responders in the control arm to randomized in the intervention			
	arm and therefore is not a full representation of the randomized			
	arms and would not qualify.)			

Abbreviations: ITT = intent to treat; KQ = key question; N = number; NA = not applicable.

	Appropriate Statistical Methods Used to	Bias From Missing	
Author, Year	Account for Missing Data?	Outcome Data?	Comments
Barr, 2010 ⁷⁶	No	Probably yes	Although this level of attrition would be considered high for trials of
			treatment, it's not actually unreasonable given the length of followup and
			that this was a trial of invitation to screening.

Abbreviations: KQ = key question.

	Patients Unaware of	Trial Personnel and Clinicians	Intervention		Bias From Departures
	Intervention Status of	Unaware of Intervention Status	Fidelity	Crossovers or Contamination That	From Intended
Author, Year	Participants?	of Participants?	Adequate?	Would Raise Concern for Bias?	Interventions?
Barr, 2010 ⁷⁶	No	No	No information	No information	No information

Abbreviations: KQ = key question; NA = not applicable; RCTs = randomized controlled trials.

	Benefit Outcomes Adequately		Duration of Followup	
	Described, Prespecified, Valid, and	Similar Techniques Used to	Adequate to Assess Benefit	Harm Outcomes Adequately
Author, Year	Reliable?	Ascertain Benefit Outcomes?	Outcomes?	Described, Valid, and Reliable?
Barr, 2010 ⁷⁶	Probably yes	Yes	Yes	No information

Abbreviations: KQ = key question; NA = not applicable

	Similar Techniques Used to Ascertain Harm	Duration of Followup Adequate to Assess	Bias From Measurement of
Author, Year	Outcomes?	Harm Outcomes?	Outcomes?
Barr, 2010 ⁷⁶	No information	No information	Probably no

Abbreviations: KQ = key question; NA = not applicable.

	Effect Estimate Unlikely to Be Selected From Multiple Outcome	Effect Estimate Unlikely to Be Selected	
	Measurements Within the Domain, Multiple Analyses, or Different	From Multiple Definitions of the	Bias From Selection of
Author, Year	Subgroups?	Intervention?	Reposted Results?
Barr, 2010 ⁷⁶	No	No	No

Abbreviations: KQ = key question; NA = not applicable; RCTs = randomized controlled trials

Author, Year	Overall Rating	Rating Justification	Rating Vary by Outcome?	Comments
Barr, 2010 ⁷⁶	Poor	The ITT analysis is not eligible because it does not	No	Need to pull Torgeson to fully understand
		fully account for all randomized; the per-protocol		randomization procedures (Torgerson DJ,
		analysis does not account for contamination or		Thomas RE, Campbell MK, Reid DM.
		crossovers over the long followup period; also N		Randomized trial of osteoporosis screening:
		and loss-to-followup for per-protocol is unclear but		use of hormone replacement therapy and
		could be at least as high as 40%.		quality-of-life results. Arch Intern Med.
				1997;157:2121-5.)

Abbreviations: ITT = intent to treat; KQ = key question; N = number; NR = not reported.

Appendix D Table 2. KQ 2 systematic review risk of bias assessments

		Adheres to Predefined Objectives	Eligibility Criteria Appropriate	Eligibility Criteria
Author, Year	Interventions and Comparators	and Eligibility Criteria?	for the Question?	Unambiguous?
Crandall, 2015 ¹⁴⁷	Not applicable	Yes	Yes	Yes
Marques et al, 2015 ¹⁴⁴	Fracture risk prediction models	Yes	Yes	Yes
Nayak et al, 2014 ¹¹⁷	Osteoporosis absolute fracture risk	Probably yes	Yes	Yes
	assessment instruments			
Rubin et al, 2013 ¹⁴⁵	Risk assessment tools	Yes	Yes	Yes
Steurer et al, 2011 ¹⁴⁶	Development of instruments and validation	Yes	Yes	Yes

Abbreviations: KQ = key question

	Appropriate Restrictions in	Appropriate Restrictions in	Concerns Regarding	Searched Appropriate Range of
	Eligibility Criteria Based on	Eligibility Criteria Based on	Specification of Study	Databases/Electronic Sources for
Author, Year	Study Characteristics?	Sources of Information?	Eligibility Criteria?	Published and Unpublished Reports?
Crandall, 2015 ¹⁴⁷	Yes	Yes	Low	Probably no
Marques et al, 2015 ¹⁴⁴	Yes	Yes	Low	Yes
Nayak et al, 2014 ¹¹⁷	Yes	Yes	Low	Yes
Rubin et al, 2013 ¹⁴⁵	Yes	Yes	Low	Probably no
Steurer et al, 2011 ¹⁴⁶	Yes	Yes	Low	Yes

Abbreviations: KQ = key question

	Additional Methods Used to	Search Strategy Likely to Retrieve as	Appropriate Restrictions Based on	Minimized Error in
Author, Year	Identify Relevant Reports?	Many Eligible Studies as Possible?	Date, Publication Format, or Language?	Selection of Studies?
Crandall, 2015 ¹⁴⁷	Probably no	Yes	Yes	No information
Marques et al, 2015 ¹⁴⁴	Yes	Yes	Yes	Yes
Nayak et al, 2014 ¹¹⁷	Yes	Yes	Yes	Yes
Rubin et al, 2013 ¹⁴⁵	Yes	Yes	No	Yes
Steurer et al, 2011 ¹⁴⁶	Yes	Yes	Yes	Yes

Abbreviations: KQ = key question

	Concerns Regarding Methods	Minimized Error in Data	Sufficient Study Characteristics	All Relevant Results
Author, Year	Used to identify/Select Studies?	Collection?	to interpret Results?	Collected for Synthesis?
Crandall, 2015 ¹⁴⁷	Unclear or some concerns	No information	Yes	Yes
Marques et al, 2015 ¹⁴⁴	Low	Yes	Probably yes	Yes
Nayak et al, 2014 ¹¹⁷	Low	Yes	Yes	Yes
Rubin et al, 2013 ¹⁴⁵	Unclear or some concerns	No information	Yes	Yes
Steurer et al, 2011 ¹⁴⁶	Low	Yes	Yes	Yes

Abbreviations: KQ = key question

Appendix D Table 2. KQ 2 systematic review risk of bias assessments

	Risk of Bias (or Methodological Quality)	Minimized Error in Risk	Concerns Regarding Methods of Data	Synthesis Includes All
Author, Year	Formally Assessed With Appropriate Tool?	of Bias Assessment?	Collection and Study Appraisal?	Studies it Should?
Crandall, 2015 ¹⁴⁷	No	No information	Unclear or some concerns	Yes
Marques et al, 2015 ¹⁴⁴	Yes	Yes	Low	Yes
Nayak et al, 2014 ¹¹⁷	Probably yes	No information	Low	Yes
Rubin et al, 2013 ¹⁴⁵	Yes	Yes	Low	Yes
Steurer et al, 2011 ¹⁴⁶	Yes	No information	Low	Yes

Abbreviations: KQ = key question

	Predefined Analyses Reported or	Synthesis Appropriate Given Degree of Similarity in Research Questions, Study Designs, and Outcomes	Between-Study Variation	
Author, Year	Departures Explained?	Across Included Studies?	Minimal or Addressed?	Robust Findings?
Crandall, 2015 ¹⁴⁷	Yes	Yes	Probably yes	No information
Marques et al, 2015 ¹⁴⁴	Probably yes	Yes	Probably no	Probably yes
Nayak et al, 2014 ¹¹⁷	Probably yes	Yes	Yes	No information
Rubin et al, 2013 ¹⁴⁵	Yes	Yes	Yes	Probably yes
Steurer et al, 2011 ¹⁴⁶	Yes	Yes	No information	No information

Abbreviations: KQ = key question

			Interpretation of	Relevance of Identified	Reviewers Avoid	
	Biases in Primary	Concerns	Findings Address All	Studies to the Research	Emphasizing Results	
	Studies Minimal	Regarding the	Concerns Identified in	Question Appropriately	on Basis of Statistical	Risk of Bias in
Author, Year	or Addressed?	Synthesis?	Domains 1–4?	Considered?	Significance?	the Review
Crandall, 2015 ¹⁴⁷	No	Unclear or some	Probably no	Yes	Yes	Unclear or some
		concerns				concerns
Marques et al, 2015 ¹⁴⁴	Probably yes	Low	Yes	Yes	Yes	Low
Nayak et al, 2014 ¹¹⁷	Yes	Low	Yes	Yes	Probably yes	Low
Rubin et al, 2013 ¹⁴⁵	Yes	Low	Yes	Yes	Yes	Low
Steurer et al, 2011 ¹⁴⁶	Yes	Unclear or some	No	Yes	Yes	Unclear or some
		concerns				concerns

Abbreviations: KQ = key question

Author Vers	Defineta		Reference Standard and
Author, Year	Patients	Index Test(s)	Target Condition
Adler, 2003	Iven enrolled in a pulmonary clinic (January-Iviay 2001) and a		DXA
	meumatology clinic (November 2001-March 2002) at a single VA medical	(USI)	
	testing inclinible	(IISK=[(weight in kg-age in years) 0.2,	
Don Codrino	All female patients either consulting enerteneously or referred for a BMD		
Den Seunne,	All remain patients either consuling spontaneously of referred for a BMD	SCORE	DXA
2001	Intersurement between January 1996 and September 1999 to an		
Bronnomon	Postmononousol womon ages 60.70 years in the OPPA study	SCORE	
2002 ⁸²	rosumenopausal women ages 00-19 years in the Orica study	SOE based screening tool	DAA
2003	Restmananaural waman in CaMOS		
Cauarelle, 2001			DAA
		*weight criterion and NOE also evaluated	
Cadarette 2004 ⁸⁴	Women age >45 years recruited prospectively from university setting and		
Cauarelle, 2004	retrospectively analyzed from family practices		DAA
Case 2006 ⁸⁵	Primary care, women		ΠΧΑ
Case 2013 ⁸⁶	Primary care, wenter	MORES	
Chan 2006 ⁸⁷	Community-based elderly women	ORAL SCORE ABONE OSTA	
Cook 2005 ⁸⁸	UK DXA scanning clinics, patients referred from general practitioners	Two OUS systems: CUBA Clinical (BUA	DXA I S-4 and total hip
COOK, 2003	based on >1 clinical risk factors for OP	VOS) Sunlight Omnisense (distal radius	DAA, ES-4, and total hip
		provimal phalany mid-finger mid-shaft	
		tibia)	
Crandall, 2014 ⁵⁷	Postmenopausal women enrolled in the WHI observational or clinical trial	OST, SCORE, USPSTF criteria (FRAX	DXA
	studies	MOF risk ≥9.3%)	
D'Amelio, 2005 ⁸⁹	Postmenopausal women referred to a university-based bone metabolic	NOF, OST, ORAI	DXA T score ≤-2.5
	unit for DXA		
D'Amelio, 201390	Postmenopausal women recruited from general practice	NOF	DXA
		ORAI	
		OST	
		AMMEB	
Geusens, 2002 ⁹¹	Postmenopausal women age ≥45 years, US and Netherlands, 81.8% white	OST, ORAI, SCORE, SOFSURF	DXA
Gnudi, 2005 ⁹²	Postmenopausal Italian women requiring a DXA scan	Gnudi et al clinical prediction tool	DXA
Gourlay, 2005°°	Postmenopausal women referred for DXA scans at an outpatient	OST, ORAI, SCORE	DXA T score ≤-2.5
	osteoporosis center in Belgium, based on suspicion of osteoporosis		
Gourlay, 2008 93	US ambulatory white women age ≥65 years	OST, ORAI, SCORE	DXA
Harrison, 2006 ⁹⁴	Caucasian females, ages 55-80 years (referred to clinical radiology),	QUS x2	DXA
	intended use of index test (QUS x2), underwent DXA and categorized as		
	nonosteoporosis and osteoporosis. Subsequently underwent QUS and risk		
	assessment using demographics and then combined algorithms-QUS		
	used to predict osteoporosis.		
Jimenez-Nunez,	Women from primary and tertiary care, diagnosis, no prior testing	4 risk scores + PIXI of the heel	DXA of the hip and spine
2013 3			

	Detiente		Reference Standard and
Author, Year	Patients		larget Condition
Kung, 2003	Vomen in Hong Kong recruited from the community	OSTA Index and QUI	
Kung, 2005	Community of Asian (Southern Chinese) men; developed index based on	Clinical index	Calcaneal QUS; target
	PMD (T approved 2.5) by DXA		condition of osteoporosis,
	BIND (1 Scole <-2.5) by DAR		the bin and spine by DXA
Lypp 2008 ⁹⁸	US Caucasian (4658) and Hong Kong Chinese (1914) from the MrOS		
Lynn, 2000	Istudy with DXA and OUS measurements to compare screening tools		DXA
	(OST, MOST, QUI) to DXA		
Machado, 2010 ⁹⁹	Population-based sample of Portugese men age ≥50 years	OST <1. OSTA <2	DXA T score ≤-2.5 at anv
,			of the 3 sites (LS, FN, TH)
			measured
Martinez-Aguila,	Postmenopausal women ages 40-69 years referrred to a local bone	ORAI (≥9), OST (<2), OSIRIS(≤1)	DXA T score ≤-2.5 at FN
2007 ¹⁰⁰	densitometry unit from local gynecologists in Spain; 24% with history of		or LS
	prior fracture		
Mauck, 2005 ¹⁰¹	Population-based sample of postmenopausal women age ≥45 years in	SCORE ≥6	DXA T score ≤-2.5 at FN
	Rochester, MN	ORAI ≥9	or LS
102		NOF ≥1	
McLeod, 2015 ¹⁰²	Women referred for screening in Canada, no prior testing	QUS and OST	DXA
Morin, 2009 ¹⁰³	Population-based sample of all women ages 40-59 years and older who	OST ≤1	DXA T score ≤-2.5 at FN
	received DXA testing in Manitoba, Canada. Note criteria for BMD testing in		or LS or total hip
	women age <65 years include premature ovarian failure, history of steroid		
	use, prior fracture, x-ray evidence of osteopenia, and other pertinent		
Nauven 2004 ¹⁰⁴	Clinical risk factors.		
Nguyen, 2004	based cohort of men and women from Dubbo. Australia	DUESCOIE, FUSTA, SUFSURF, URAI	IDAA I SCOLE <-2.5
	based conort of men and women norn Dubbo, Australia.		(reference fariges
Oh 2013 ¹⁰⁵	National population-based health and nutrition cohort	OSTA	
Oh. 2016 ¹⁰⁶	Population-based sample of Korean men age ≥50 years	OSTA	DXA
Pang, 2014 ⁵⁶	Persons age \geq 70 years recruited from general practice, excluded persons	OST, FRAX without BMD, MOF, and Hip	DXA
	with history of fracture		
Richards, 2014 ¹⁰⁸	Male VA patients	OST	DXA
Richy, 2004 ⁸¹	Postmenopausal white women	OST	DXA
Shepherd, 2007 ¹¹⁰	Men age ≥50 years with DXA scan in NHANES III	MORES	DXA
Shepherd, 2010 ¹¹³	Men age ≥50 years included in NHANES	MORES	BMD DXA osteo
Sinnott, 2006 ¹¹¹	African American men, age ≥35 years (outpatient general medicine clinics	Ultrasound of calcaneous on	BMD by DXA at the 1)
	at veteran hospital; intended use of clinical assessment tools and	nondominant foot	lumbar spine (L1-L4) and
	calcaneous ultrasound compared with the reference measure of BMD by		2) nondominant hip
	DXA; no description of presentation in article; no prior testing): index text is		(femoral neck, trochanter,
	lultrasound of calcaneous on nondominant foot, outcome is low bone mass		total hip)
Zimering, 2007	Men age ≥40 years, ambulatory veterans attending general medicine	MSCORE	DXA
	clinics, endocrinology clinics, or osteoporosis clinics		
1		INISCORE (age-weight)	1

Abbreviations: AA= African American; ABONE = assessing age, body size, and estrogen use; AMMEB= Age, Years after Menopause, Age at Menarche, Body Mass Index ; BMD= bone mineral density; BUA = broadband attenuation; CaMOS = Canadian Multicentre Osteoporosis Study; DOEScore = Dubbo Osteoporosis Epidemiology Score; DXA = dual energy x-ray absorptiometry; DXA T = dual energy x-ray _; FN = femoral neck; FOSTA = Female Osteoporosis Self-assessment Tool for Asia; FRAX = Fracture Risk Assessment tool; LS = lumbar spine; LS-4 = lumbar spine 4; MOF= major osteoporotic fracture defined as fractures of the proximal femur, distal radius, proximal humerus, and clinical vertebral fractures; MORE = Multiple Outcomes of Raloxifene Trial; MOST = Male Osteoporosis Screening Tool; MrOS = Evaluation of osteoporosis screening tools for the osteoporotic fractures in men; MSCORE= male, simple calculated osteoporosis risk estimation, NHANES III = National Health And Nutrition Examination Survey III; NOF = National Osteoporosis Foundation; OP = osteoporosis; OPRA = Osteoporosis Population-based Risk Assessment; ORAI = Osteoporosis Risk Assessment Instrument; OST = osteoporosis self-assessment tool; QUI = ultrasound index; QUS = quantitative ultrasound; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; SOF = Study of Osteoporotic Fractures; SOFSURF = Study of Osteoporotic Fractures Simple Useful Risk Factors; UK = United Kingdom; US = United States; USPSTF = United States Preventive Services Task Force; VA = Veterans' Administration; VOS = velocity of sound; WHI = Women's Health Initiative

		Enrolls Consecutive or	Avoids Case-	Avoids Inappropriate
Author, Year	Describes Method of Patient Selection?	Random Sample of Patients?	Control Design?	Exclusions?
Adler, 2003 ⁷⁸	Yes	Unclear	Yes	Yes
Ben Sedrine, 2001 ⁷⁹	Yes	Unclear	Yes	Yes
Brenneman, 2003 ⁸²	Yes	Yes	Yes	Unclear
Cadarette, 2001 ⁸³	Yes	Yes	Yes	Yes
Cadarette, 2004 ⁸⁴	Yes	Yes	Yes	Yes
Cass, 2006 ⁸⁵	Yes	Yes	Yes	Yes
Cass, 2013 ⁸⁶	Yes	Yes	Yes	Yes
Chan, 2006 ⁸⁷	Yes	Unclear	Yes	Unclear
Cook, 2005 ⁸⁸	Patients referred by general practitioner to DXA screening clinic	Unclear	Yes	Unclear
Crandall, 2014 ⁵⁷	Yes	Yes	Yes	Yes
D'Amelio, 2005 ⁸⁹	Yes	Unclear	Yes	Yes
D'Amelio, 2013 ⁹⁰	Yes	Yes	Yes	Yes
Geusens, 2002 91	Postmenopausal women age ≥45 years from US clinics and general practice in the Netherlands	Yes	Yes	Yes
Gnudi, 2005 ⁹²	Yes	Yes	Yes	Yes
Gourlay, 2005 ⁸⁰	Yes	Yes	Yes	Yes
Gourlay, 2008 93	US ambulatory white women age ≥65 years, from population-based listings	Yes	Yes	Yes
Harrison, 2006 ⁹⁴	White Caucasian females ages 55-70 years (mean age, 61 [SD, 4]) referred to Clinical Radiology, Imaging Science, and Biomedical Engineering, University of Manchester for routine bone densitometry scans were invited to take part in the study	Unclear	Yes	Unclear
Jimenez-Nunez, 2013 ⁹⁵	Described as random from 2 sites	Yes	Yes	Yes
Kung, 2003 ⁹⁶	Women from community, all comers who did not meet exclusion	Unclear	Yes	Yes

		Enrolls Consecutive or	Avoids Case-	Avoids Inappropriate
Author, Year	Describes Method of Patient Selection?	Random Sample of Patients?	Control Design?	Exclusions?
Kung, 2005 ⁹⁷	Men from community, all comers who did not meet exclusion	Yes	Yes	Yes
Lynn, 2008 ⁹⁸	US participants were recruited using population-based listings at 6 clinical settings in Birmingham, AL; Minneapolis, MN; Palo Alto, CA; Pittsburgh, PA; Portland, OR; and San Diego, CA. Hong Kong participants were recruited using a combination of private solicitation and public advertising from community centers, housing estates, and the general community. Men who had bilateral hip replacements or who were unable to walk without the assistance of another person were excluded.	Yes	Yes	Unclear
Machado, 2010 ⁹⁹	Yes	Yes	Yes	Yes
Martinez-Aguila, 2007 ¹⁰⁰	Yes	No	Yes	Unclear
Mauck, 2005 ¹⁰¹	Yes	Yes	Yes	Yes
McLeod, 2015 ¹⁰²	Patients referred for screening to 1 facility	Yes	Yes	Yes
Morin, 2009 ¹⁰³	Yes	Yes	Yes	Unclear
Nguyen, 2004 ¹⁰⁴	Yes	Yes	Yes	Yes
Oh, 2013 ¹⁰⁵	Yes	Yes	Yes	Yes
Oh, 2016 ¹⁰⁶	Yes	Yes	Yes	Yes
Pang, 2014 ⁵⁶	Yes	Yes	Yes	Yes
Park, 2003 ¹⁰⁷	From a menopause clinic, not referred from elsewhere	Unclear	Yes	Yes
Richards, 2014 ¹⁰⁸	Attending primary care clinics at 4 participating VA Medical Centers	Unclear	Yes	Yes
Richy, 2004 ⁸¹	Patients seen at an outpatient osteoporosis centre	Unclear	Yes	Yes
Shepherd, 2007 ¹¹⁰	Yes	Unclear	Yes	Unclear
Shepherd, 2010 ¹¹³	Yes	Yes	Yes	Yes
Sinnott, 2006 ¹¹¹	Subjects were recruited from outpatient general medicine clinics at the Jesse Brown VA Medical Center over an 11- month period in 2004	Unclear	Yes	Yes
Zimering, 2007 ¹¹²	Yes	Unclear	Yes	Yes

Abbreviations: AL = Alabama; CA = California; DXA = dual energy x-ray absorptiometry; MN = Minnesota; PA = Pennsylvania; SD = standard deviation; US = United States; VA = Veterans' Administration.

Author. Year	Could Patient Selection Have Introduced Bias?	Comments	Describes Index Test and How it Was Conducted and Interpreted?	Index Test Results Interpreted Without Knowledge of Results of Reference Standard?
Adler, 2003 ⁷⁸	Unclear	Risk of spectrum bias used this reference for patient selection methods—appears random, majority of sample (107/181): Adler et al. Osteoporosis in pulmonary clinic patients: does point-of-care screening predict central dual- energy x-ray absorptiometry? <i>Chest</i> .	Yes	Unclear
Ben Sedrine, 2001 ⁷⁹	Unclear	Risk of spectrum bias	Yes	Yes
Brenneman, 2003 ⁸²	Low	Patients recruited by mailing to random sample	Yes	Unclear
Cadarette, 2001 ⁸³	Low	Age-, sex-, and region-stratified random sample of the Canadian population selected using telephone-based sampling frame	Yes	Unclear
Cadarette, 2004 ⁸⁴	Low	NA	Yes	Unclear
Cass, 2006 ⁸⁵	Low	NR	Yes	Yes
Cass, 2013 ⁸⁶	Low	NR	Yes	Yes
Chan, 2006 ⁸⁷	Unclear	No information on participant inclusion/exclusion criteria	Yes	Unclear
Cook, 2005 ⁸⁸	Unclear	Sample has potential for bias toward low BMD due to recruitment from DXA clinic (all patients referred by doctor for clinical risk factors)	2 QUS tests: CUBA clinical and Sunlight Omnisense measurements. Performed on nondominant side with same ultrsaound gel. System quality verification tests each day.	Unclear
Crandall, 2014 ⁵⁷	Low	NA	Yes	Unclear
D'Amelio, 2005 ⁸⁹	Unclear	Potential for spectrum bias, given the study population was referred specifically for DXA testing, in some cases for suspected secondary osteoporosis	Yes	Unclear
D'Amelio, 2013 ⁹⁰	Low	NA	Yes	Unclear
Geusens, 2002 ⁹¹	Low	NR	OST: age and weight ORAI: age, weight, estrogen use SCORE: race, rheumatoid arthritis, history of nontraumatic fracture, HRT usage, age, weight SOFSURF: age, weight, current smoker, history of postmenopausal fracture	Unclear
Gnudi, 2005 ⁹²	Low	Patient refered to densitometry unit, possible spectrum bias	Yes	Yes

	Could Patient		Describes Index Test and How	Index Test Results Interpreted
Author Vers	Selection Have	0	it Was Conducted and	Without Knowledge of Results
Author, Year	Introduced Blas?	Comments	Interpreted ?	of Reference Standard?
Gourlay, 2005 ⁵⁵	Unclear	Potential for spectrum bias, given the study population was referred specifically for DXA testing	Yes	Yes
Gourlay, 2008 ⁹³	Low	NR	OST: age and weight ORAI: age, weight, estrogen use SCORE: race, rheumatoid arthritis, history of nontraumatic fracture, HRT usage, age, weight	Low
Harrison, 2006 ⁹⁴	Low	No details on setting or how participants were selected	QUS x2	Unclear
Jimenez-Nunez, 2013 ⁹⁵	Low	Approach to randomization using "cards" is more casual than best practice	4 risk scores + PIXI of the heel, algorithms were developed	Yes
Kung, 2003 ⁹⁶	Low	Interesting that the study claims to be in early postmenopausal women but the age mean is 62 years, which makes it seem unlikely that this is actually the case	Index characteristics through interview and QUI of right heel by technician	Unclear
Kung, 2005 ⁹⁷	Low	Unclear who chose to participate relative to larger group, excluded abnormal TSH group	Index developed by authors based on characteristics	Unclear
Lynn, 2008 ⁹⁸	Low	Only exclusions listed were hip replacement and inability to walk without a cane	OST, MOST, QUI	Unclear
Machado, 2010 ⁹⁹	Low	NR	Yes	Unclear
Martinez-Aguila, 2007 ¹⁰⁰	Unclear	Patients were all referred for DXA, so potential for spectrum bias	Yes	Unclear
Mauck, 2005 ¹⁰¹	Low	NR	Yes	Unclear
McLeod, 2015 ¹⁰²	Low	NA	QUS of BUA and SOS of left calcaneus and personal data based on questionnaire	Yes
Morin, 2009 ¹⁰³	Unclear	Population is younger women ages 40-59 years who received a DXA; however, in this province, younger women are only eligible for coverage for DXA testing if they have clinical risks for secondary osteoporosis, history of prior fracture, or x-ray evidence of osteoporosis	Yes	Unclear
Nguyen, 2004 ¹⁰⁴	Low	NA	Yes	Unclear
Oh, 2013 ¹⁰⁵	Low	NA	Yes	Unclear
Oh, 2016 ¹⁰⁶	Low	NR	Yes	Unclear
Pang, 2014 ⁵⁶	Low	NA	Yes	Unclear
Park, 2003 ¹⁰⁷	Low	NR	OSTA: age and weight	Unclear
Richards, 2014 ¹⁰⁸	Low	NR	OST: age and weight	Unclear

Author, Year	Could Patient Selection Have Introduced Bias?	Comments	Describes Index Test and How it Was Conducted and Interpreted?	Index Test Results Interpreted Without Knowledge of Results of Reference Standard?
Richy, 2004 ⁸¹	Low	NR	SCORE: race, rheumatoid arthritis, history of nontraumatic fracture, HRT usage, age, weight ORAI: age, weight, estrogen use OSIRIS: age, weight, HRT use, history of low trauma fracture OST: age and weight	Unclear
Shepherd, 2007 ¹¹⁰	Low	NHANES uses a complex, multistage, probability sampling design to select participants representative of the civilian, noninstitutionalized population of the coterminous United States, excluding Indian reservations (i.e., not random or consecutive sampling)	Yes	Unclear
Shepherd, 2010 ¹¹³	Low	NR	Yes	Unclear
Sinnott, 2006 ¹¹¹	Low	Selection of participants may be a convenience sample but unclear. Men were recruited from general medicine clinics so selection bias likely low.	Ultrasound of calcaneous on nondominant foot	Unclear
Zimering, 2007 ¹¹²	Unclear	Convenience sample. 30% came from specialty clinics (endocrinology or outpatient) for total cohort, but unknown for valdiation cohort. Excluded those unable to assess risk factors or DXA, though did not exclude based on known medical comorbidities or bone active medications (glucocorticoids). Reported only 14% on glucocorticoids, and 4% with RA.	Yes	Unclear

Abbreviations: BMD= bone mineral density; BUA = broadband attenuation; DXA = dual energy x-ray absorptiometry; HRT = hormone replacement therapy; MOST = Male Osteoporosis Screening Tool; NA = not applicable; NHANES = National Health And Nutrition Examination Survey; NR = not reported; ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OSTA = Osteoporosis Self-assessment Tool for Asians; OST = osteoporosis self-assessment tool; QUI = ultrasound index; QUS = quantitative ultrasound; RA = radiographic absorptiometry; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; SOS= speed of sound; TSH = thyroid stimulating hormone;

		Could Conduct or		
	Threshold	Interpretation of Index Test		Describes Reference Standard and How it
Author, Year	Prespecified?	Have Introduced Bias?	Comments	Was Conducted and Interpreted?
Adler, 2003 ⁷⁸	Yes	Low	Used 3 cutoffs for OST: 2 based on	Yes
			published literature, 1 based on what they	
			thought was appropriate	
Ben Sedrine,	Yes	Low	Authors reported on outcomes of clinical	Yes
2001'			prediction tools using a priori cutoffs but	
			also calibrated tool for this population	
_			using AUC curve	
Brenneman,	Yes	Low	SCORE cutoff was recalibrated using	Yes
2003			study data to achieve sensitivity of about	
			90%.	
			Developer cutoff ≥6	
O I // 0004 ⁸³			Study cutoff ≥8	N/
Cadarette, 2001	Yes	Low	Used cutoffs based on those of the	Yes
O I " 000 4 ⁸⁴			developers of the study	N/
Cadarette, 2004	Yes	Low	Unclear timing of DXA, reference test, in	res
			relationship to index test in prospective	
			and retrospective parts of the study	
Coop. 2006 ⁸⁵	Vee	Low		l Ingleer
Cass, 2000	Voc	Low		Vac
Cass, 2013 Chap, 2006 ⁸⁷	Vee	Low	NK Study only reports outcomes for femoral	l les
Chan, 2000	165	LOW	study only reports outcomes for remoral	Unclear
			lumbar spine outcomes are reported using	
			empirically derived thresholds	
Cook 2005 ⁸⁸	Yes	Linclear	Threshold question: yes and no used a	DXA Unclear Were all scans done on the same
00000, 2000	105	onoicai	90% sensitivity threshold, but also created	DXA machine? Were machine readings
			a cutoff level based on the highest	standardized? Did multiple radiologists read?
			combined value of sensitivity and	Agreement? Also unclear if radiologist reading
			specificity	DXA blinded to QUS results.
Crandall, 2014 ⁵⁷	Unclear	Unclear	Study mentions the existing thresholds	Yes
, -			used for the instruments from the	
			literature, but outcomes are not reported	
			by these thresholds	
D'Amelio, 2005 ⁸⁹	Yes	Low	NR	Yes
D'Amelio, 2013 ⁹⁰	Yes	Low	Thresholds mentioned in study do not	Unclear
			correspond entirely to thresholds used by	
			other studies	
Geusens, 2002 91	Yes	Low	NR	DXA, femoral neck or lumbar spine

Author, Yea Threshold Prespecified? Interpretation of Index Test Author, Yea Describes Reference Standard and How it Was Conducted and Interpreted? Gnudi, 2005 ⁴⁷² Yes Low Does not report on blinded index test assessment. Had 3 apriork, 98%, 98%, and 99% sensitivity. Yes Gourlay, 2005 ⁴⁷⁰ No Unclear Did not use prespecified outoffs for ORAI, OST, or SCORE. Instead, picked cutoff to achieve sensitivity of 90% for each age group under and over 65 years. Yes Gourlay, 2008 ⁴⁷⁰ Yes Low NR DXA, femoral neck or lumbar spine Harrison, 2006 ⁴⁷¹ Yes Low NR DXA, femoral neck or lumbar spine Kung, 2003 ⁴⁷⁰ Yes Low NR DXA, femoral neck or lumbar spine, femoral neck Kung, 2003 ⁴⁷⁰ Yes Low NR DXA of the hip and spine Kung, 2003 ⁴⁷⁷ Yes Low Index based on characteristics can be biased based on analysis decicions DXA: BMD of the lumbar spine, femoral neck Kung, 2005 ⁴⁷⁷ Yes Low NR Yes Low NR Yes DXA: BMD of the lumbar spine, femoral neck interview Kung, 2005 ⁴⁷⁷ Yes Low			Could Conduct or		
Author, Year Prespecified? Have Introduced Bias? Comments Was Conducted and Interpreted? Gnudi, 2005 ⁹² Yes Low Does not report on bilinded index test assessment. Had 3 apriori outoffs from development cohort to achieve 97%, 98%, and 99% sensitivity. Yes Gourlay, 2005 ⁹² No Unclear Did not use prespecified cutoffs for ORAI, OST, or SCORE: Instead, picked cutoff to achieve sensitivity of 90% for each age group under and over 65 years. DXA, femoral neck or lumbar spine Harrison, 2006 ⁸⁴ Yes Low NR Yes Jimenez-Nunez, 2013 ⁸⁵ Yes Low NR DXA of the hip and spine Kung, 2003 ⁹⁰ Yes Low NR DXA of the hip and spine Strug, 2005 ⁹⁷ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck biased based on analysis decisions Kung, 2005 ⁹⁷ Yes Low NR Yes Lynn, 2008 ⁹⁸ Ves Low NR Yes Machado, 2010 ⁹⁰ Yes Low NR Yes Mackado, 2010 ⁹⁰ Yes Low NR <td< th=""><th></th><th>Threshold</th><th>Interpretation of Index Test</th><th></th><th>Describes Reference Standard and How it</th></td<>		Threshold	Interpretation of Index Test		Describes Reference Standard and How it
Gnudi, 2005 ⁹² Yes Low Does not report on binded index test assessment. Held 3 apriori cutoffs from development cohort to achieve 97%, 98%, and 99% sensitivity. Yes Gourlay, 2005 ⁹⁰ No Unclear Did not use prespecified cutoffs for ORAI, OST, or SCORE. Instead, picked cutoff to achieve sensitivity. Yes Gourlay, 2008 ¹⁸³ Yes Low NR DXA, femoral neck or lumbar spine Harrison, 2006 ¹⁸⁴ Yes Low NR Yes Jimenez-Nunez, 2013 ²⁸⁵ Ves Low NR DXA of the hip and spine 2013 ²⁸⁵ Low NR DXA of the hip and spine 2013 ²⁸⁵ Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck biased based on analysis decisions Kung, 2005 ⁹⁷⁷ Yes Low NR Yes Lynn, 2008 ³⁸⁶ Yes Low NR Yes Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Machado, 2010 ¹⁰⁰ Yes Low NR Yes Mackedo, 2005 ¹⁰¹⁴ Yes Low NR Yes Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Mackedo, 2005 ¹⁰¹⁴ Yes Low NR Yes Machado, 2005	Author, Year	Prespecified?	Have Introduced Bias?	Comments	Was Conducted and Interpreted?
Gourlay, 2005 ⁸⁰ No Unclear Did not use prespecified cutoffs from development cohort to achieve 97%, 98%, and 99% sensitivity. Gourlay, 2005 ⁸⁰ No Unclear Did not use prespecified cutoffs for ORAI, OST, or SCORE. Instead, picked cutoff to achieve sensitivity of 90% for each age group under and over 65 years. DXA, femoral neck or lumbar spine Harrison, 2006 ⁸⁴ Yes Low NR Yes Jimenez-Nunez, Vres Low NR Yes Aung, 2003 ⁸⁶ Yes Low NR DXA of the hip and spine Xung, 2003 ⁸⁷ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2005 ⁸⁷⁷ Yes Low NR Yes Low NR Yes DXA: BMD of the lumbar spine, femoral neck Machado, 2010 ⁸⁷⁸ Yes Low NR Yes Machado, 2010 ⁸⁷⁴ Yes Low NR Yes Machado, 2010 ⁸⁷⁴ Yes Low NR Yes Machado, 2010 ⁸⁷⁴ Yes Low NR Yes McLeod, 2015 ¹⁷⁰² Yes Low NR Yes Morin, 2009 ¹⁷⁰³ Yes Low NR Yes Morin, 2009 ¹⁷⁰⁴ Yes Low	Gnudi, 2005 ⁹²	Yes	Low	Does not report on blinded index test	Yes
development cohort to achieve 97%, 98%, and 99% sensitivity. Gourlay, 2005 ⁸⁰ No Unclear Did not use prespecified cutoffs for ORAI, OST, or SCORE. Instead, picked cutoff to achieve sensitivity of 90% for each age group under and over 65 years. Yes Gourlay, 2008 ¹⁰⁵ Yes Low NR Yes Jimenez-Nunez, 2013 ⁶⁹ Yes Low NR Yes Jimenez-Nunez, 2013 ⁶⁹ Yes Low NR Yes Kung, 2003 ⁸⁶ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2003 ⁸⁶ Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 ⁹⁶⁷ Yes Low NR Yes Macrinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Macdad, 2010 ⁵⁹⁷ Yes Low NR Yes Macrinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Morin, 2008 ¹⁰³ Yes Low NR Yes <tr< td=""><td></td><td></td><td></td><td>assessment. Had 3 apriori cutoffs from</td><td></td></tr<>				assessment. Had 3 apriori cutoffs from	
Gourlay, 2005 ⁸⁰ No Unclear Did not use prespecified cutoffs for ORAI, OST, or SCORE. Instead, picked cutoffs for ORAI, Schweiser Structure, Jimenez-Nunez, 2013 ⁸⁶ Ves Low NR DXA, femoral neck or lumbar spine Harrison, 2006 ⁸⁰ Yes Low NR Yes DXA of the hip and spine Jimenez-Nunez, 2013 ⁸⁶ Yes Low NR DXA of the hip and spine Kung, 2003 ⁸⁴ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2005 ⁸⁷ Yes Low NR Ves Lynn, 2008 ⁸⁸ Yes Low NR DXA: BMD of the lumbar spine, femoral neck Machado, 2010 ⁹⁹ Yes Low NR Yes Machado, 2010 ⁹⁹ Yes Low NR Yes Mack, 2005 ¹⁰⁰ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR DXA: BMD of the lumbar spine, left and right femoral neck Morin, 2009 ¹⁰³ <				development cohort to achieve 97%, 98%,	
Gourlay, 2005 TM No Unclear Did not use prespecified cutofts for ORAI, or Second and picked cutofts for ORAI, or Second and picked cutofts for achieve sensitivity of 90% for each age group under and over 65 years. Gourlay, 2008 ^{BS} Yes Low NR DXA, femoral neck or lumbar spine Harrison, 2006 ^{BA} Yes Low NR Yes Jimenez-Nunez, 2003 ^{BB} Yes Low NR Yes Z013 ^{BS} Yes Low Index based on characteristics can be biased based on analysis decisions DXA of the hip and spine Kung, 2008 ^{BB} Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 ^{BB} Yes Low NR Yes Martinez-Aguila, 2007 ^{BB} Yes Low NR Martinez-Aguila, 2007 ^{BB} Yes Low NR Mauck, 2005 ^{TMB} Yes Low NR Morin, 2009 ^{TBB} Yes Low NR Martinez-Aguila, 2007 ^{TBB} Yes Low NR Mauck, 2005 ^{TMB} Yes Low NR Morin, 2009 ^{TBB} Yes Low NR Morin, 2009 ^{TBB} Yes Low NR Morin, 2009 ^{TBB}	a i a a a a b b b b b b b b b b			and 99% sensitivity.	
Gourlay, 2008 Machieve sensitivity of 90% for each age group under and over 65 years. DXA, femoral neck or lumbar spine Harrison, 2006 Ves Low NR DXA of the hip and spine Jimengez-Nunez, 2013 Yes Low NR DXA of the hip and spine Kung, 2003 Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2005 Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 Yes Low NR Yes Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Machado, 2010 ³⁰⁰ Yes Low NR Yes Molecod, 2015 ¹⁰¹ Yes Low NR Yes Molecod, 2015 ¹⁰¹⁴ Yes Low NR Yes </td <td>Gourlay, 2005</td> <td>No</td> <td>Unclear</td> <td>Did not use prespecified cutoffs for ORAI,</td> <td>Yes</td>	Gourlay, 2005	No	Unclear	Did not use prespecified cutoffs for ORAI,	Yes
Gourlay, 2008 Yes Low NR DXA, femoral neck or lumbar spine Harrison, 2006 Yes Low NR Yes Jimenez-Numez, Yes Low NR DXA of the hip and spine 2013 ⁶⁵ Yes Low NR DXA of the hip and spine 2013 ⁶⁶ Yes Low NR DXA of the hip and spine 2013 ⁶⁶ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2005 ⁹⁷ Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. Yes Lynn, 2008 ⁹⁸ Yes Low NR Yes Machado, 2010 ⁹⁸ Yes Low NR Yes Machado, 2010 ⁹⁹ Yes Low NR Yes Mack, 2005 ¹⁰¹ Yes Low NR Yes McLeod, 2015 ¹⁰² Yes Low NR Yes McLeod, 2015 ¹⁰⁴ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of 1 is what has been used in other studies, so data were on				UST, or SCORE. Instead, picked cutoff to	
Gourlay, 2008 ⁹³ Yes Low NR DXA, femoral neck or lumbar spine Harrison, 2006 ⁹⁴ Yes Low NR Yes Jimenez-Nunez, 2013 ⁹⁵ Yes Low NR DXA of the hip and spine Kung, 2003 ⁹⁶ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2005 ⁹⁷ Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Matrinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes McLeod, 2015 ¹⁰² Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold Yes Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple threshold of this threshold Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for a different threshold of OSTA; instead they report findings for a different threshold of CSTA				achieve sensitivity of 90% for each age	
Gouliay, 2008 ¹⁴ Yes Low NR DAA, refinition fleck of rulation spinle Jimenez-Nunez, 2013 ⁹⁵ Yes Low NR Yes 2013 ⁹⁵ Ves Low NR DXA of the hip and spine Kung, 2003 ⁹⁶ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 ⁹⁶ Yes Low NR Yes Machado, 2010 ⁹⁶ Yes Low NR Yes Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR Yes Morin, 2009 ¹⁰⁴ Yes Low Validation cohont only Yes Morin, 200	Courley, 2008 93	Voc	Low		DXA formeral neck or lumbar spine
Index Soft 2000 INR DXA of the hip and spine 2013 ⁶⁵ Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2003 ⁹⁶ Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 ⁹⁶ Yes Low NR Yes Machado, 2010 ¹⁹⁹ Yes Low NR Yes Machado, 2010 ¹⁹⁹ Yes Low NR Yes Machado, 2010 ¹⁹⁰ Yes Low NR Yes Machado, 2010 ¹⁹¹ Yes Low NR Yes Machado, 2010 ¹⁹¹ Yes Low NR Yes Machado, 2010 ¹⁹¹ Yes Low NR Yes Macka, 2005 ¹⁰¹¹ Yes Low NR Yes McLeod, 2015 ¹⁰² Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR Yes Morin, 2009 ¹⁰⁴ Yes Low Valiation cohort only Yes Morin, 200	Harrison 2006 ⁹⁴	Ves	Low	NP	
Intersection Low Intersection DxA of the linp and spine Kung, 2003 ⁸⁶ Yes Low Index based on characteristics can be biased based on analysis decisions DxA: BMD of the lumbar spine, femoral neck Kung, 2005 ⁹⁷ Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 ⁹⁸ Yes Low NR Yes Machado, 2010 ⁹⁹ Yes Low NR Matinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Mauck, 2005 ¹⁰¹ Yes Low NR Maccod, 2015 ¹⁰¹² Yes Low NR Maccod, 2015 ¹⁰¹² Yes Low NR Maccod, 2015 ¹⁰¹² Yes Low NR Morin, 2009 ¹⁰¹³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of 51 is what has been used in other studies, so data were only extracted for this threshold Yes Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they select	limenez-Nunez	Ves	Low	NP	DXA of the hip and spine
Kung, 2003 ⁹⁶ Yes Low Index based on characteristics can be biased based on analysis decisions DXA: BMD of the lumbar spine, femoral neck Kung, 2005 ⁹⁷ Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 ⁹⁸ Yes Low NR Yes Machado, 2010 ⁹⁹ Yes Low NR Yes Machado, 2010 ⁹⁰ Yes Low NR Yes Machado, 2010 ¹⁰¹ Yes Low NR Yes Morin, 2005 ¹⁰¹ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low NR Yes Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of s1 is what has been used in other studies, so data were only extracted for this threshold Yes Morin, 2009 ¹⁰³ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead thereshold of OSTA; instead thereshold of OSTA	2013 ⁹⁵	105	Low		
Kung, 2005YesLowbiased based on analysis decisionsKung, 2005YesLowThe authors are developing their own index test and so by definition are playing with their data. QUI is okay.DXA: BMD of the lumbar spine, femoral neckLynn, 2008YesLowNRYesMachado, 2010YesLowNRYesMatinez-Aguila, 2007YesLowNRYesMatck, 2005YesLowNRYesMauck, 2005YesLowNRYesMauck, 2005YesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009YesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009YesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009YesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009YesLowVesSensitivity and specificity reported for multiple thresholds; threshold of 51 is what has been used in other studies, so data were only extracted for this thresholdYesNguyen, 2004YesLowValidation cohort onlyYesOh, 2013NoUnclearAuthors do not report findings for the predefined threshold of OSTA; instead threshold of OSTA; instead threshold that they selected to maximize discriminative abilityYesOh, 2016UnclearUnclearUnclear whether OSTA threshold used was prespecifiedYes	Kung, 2003 ⁹⁶	Yes	Low	Index based on characteristics can be	DXA: BMD of the lumbar spine, femoral neck
Kung, 2005 ⁹⁷ Yes Low The authors are developing their own index test and so by definition are playing with their data. QUI is okay. DXA: BMD of the lumbar spine, femoral neck Lynn, 2008 ⁹⁸ Yes Low NR Yes Machado, 2010 ⁹⁹ Yes Low NR Yes Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Mauck, 2005 ¹⁰¹ Yes Low NR Yes Macda, 2015 ¹⁰² Yes Low NR Yes Morin, 2009 ¹¹⁰³ Yes Low NR Yes Morin, 2009 ¹¹⁰³ Yes Low NR Yes Morin, 2009 ¹¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this threshold Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear whether OSTA threshold used was prespecified Yes				biased based on analysis decisions	
Lynn, 2008YesLowNRYesMachado, 2010YesLowNRYesMachado, 2010YesLowNRYesMartinez-Aguila, YesLowNRYesMatchado, 2007YesLowNRYesMatchado, 2007100YesLowNRYesMauck, 2005101YesLowNRYesMolecod, 2015102YesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009103YesLowSensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this thresholdNguyen, 2004104YesLowValidation cohort onlyYesOh, 2013105NoUnclearAuthors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative abilityYesOh, 2016106UnclearUnclearUnclear whether OSTA threshold used was prespecifiedYes	Kung, 2005 ⁹⁷	Yes	Low	The authors are developing their own	DXA: BMD of the lumbar spine, femoral neck
Lynn, 2008 ³⁸ YesLowNRYesLynn, 2008 ³⁹ YesLowNRYesMachado, 2010 ⁹⁹ YesLowNRYesMatrinez-Aguila, 2007 ¹⁰⁰ YesLowNRYesMauck, 2005 ¹⁰¹ YesLowNRYesMauck, 2005 ¹⁰¹ YesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009 ¹⁰³ YesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009 ¹⁰³ YesLowSensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this thresholdYesNguyen, 2004 ¹⁰⁴ YesLowValidation cohort onlyYesOh, 2013 ¹⁰⁵ NoUnclearAuthors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative abilityYesOh, 2016 ¹⁰⁶ UnclearUnclearUnclearYes				index test and so by definition are playing	
Lynn, 2008**oYesLowNRYesMachado, 2010**iYesLowNRYesMartinez-Aguila, 2007**oYesLowNRYesMauck, 2005**iYesLowNRYesMauck, 2005**iYesLowNRYesMorin, 2009***iYesLowNRDXA: BMD of the lumbar spine, left and right femoral neckMorin, 2009***iYesLowSensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this thresholdYesNguyen, 2004***iYesLowValidation cohort onlyYesOh, 2013***i>NoUnclearAuthors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative abilityYesOh, 2016***i>UnclearUnclearUnclear whether OSTA threshold used was prespecifiedYes	00			with their data. QUI is okay.	
Machado, 2010 ⁹⁹ Yes Low NR Yes Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Mauck, 2005 ¹⁰¹ Yes Low NR Yes Mauck, 2005 ¹⁰² Yes Low NR DXA: BMD of the lumbar spine, left and right femoral neck Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this threshold Yes Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes	Lynn, 2008 ⁹⁰	Yes	Low	NR	Yes
Martinez-Aguila, 2007 ¹⁰⁰ Yes Low NR Yes Mauck, 2005 ¹⁰¹ Yes Low NR Yes McLeod, 2015 ¹⁰² Yes Low NR DXA: BMD of the lumbar spine, left and right femoral neck Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this threshold Yes Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes	Machado, 2010 ³³	Yes	Low	NR	Yes
Mauck, 2005 ¹⁰¹ Yes Low NR Yes McLeod, 2015 ¹⁰² Yes Low NR DXA: BMD of the lumbar spine, left and right femoral neck Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this threshold Yes Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes	Martinez-Aguila, 2007 ¹⁰⁰	Yes	Low	NR	Yes
McLeod, 2015 ¹⁰² Yes Low NR DXA: BMD of the lumbar spine, left and right femoral neck Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this threshold Yes Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes	Mauck, 2005 ¹⁰¹	Yes	Low	NR	Yes
Image: Morin, 2009 ¹⁰³ Yes Low Sensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this threshold Yes Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes	McLeod, 2015 ¹⁰²	Yes	Low	NR	DXA: BMD of the lumbar spine, left and right
Morin, 2009 ¹⁰³ YesLowSensitivity and specificity reported for multiple thresholds; threshold of ≤1 is what has been used in other studies, so data were only extracted for this thresholdYesNguyen, 2004 ¹⁰⁴ YesLowValidation cohort onlyYesOh, 2013 ¹⁰⁵ NoUnclearAuthors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative abilityYesOh, 2016 ¹⁰⁶ UnclearUnclearUnclear whether OSTA threshold used was prespecifiedYes					femoral neck
Mguyen, 2004 ¹⁰⁴ YesLowValidation cohort onlyYesOh, 2013 ¹⁰⁵ NoUnclearAuthors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative abilityYesOh, 2016 ¹⁰⁶ UnclearUnclearUnclear whether OSTA threshold used was prespecifiedYes	Morin, 2009 ¹⁰³	Yes	Low	Sensitivity and specificity reported for	Yes
Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes				multiple thresholds; threshold of ≤1 is what	
Nguyen, 2004 ¹⁰⁴ Yes Low Validation cohort only Yes Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes				has been used in other studies, so data	
Nguyen, 2004 Yes Low Validation cohort only Yes Oh, 2013 No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes	104			were only extracted for this threshold	
Oh, 2013 ¹⁰⁵ No Unclear Authors do not report findings for the predefined threshold of OSTA; instead they report findings for a different threshold that they selected to maximize discriminative ability Yes Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes	Nguyen, 2004 ¹⁰⁴	Yes	Low	Validation cohort only	Yes
Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear Unclear Unclear Unclear Unclear Ves	Oh, 2013 ¹⁰⁵	No	Unclear	Authors do not report findings for the	Yes
Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear Unclear Unclear Unclear Ves				predefined threshold of OSTA; instead	
Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear Unclear whether OSTA threshold used was prespecified				they report findings for a different	
Oh, 2016 ¹⁰⁶ Unclear Unclear Unclear Unclear whether OSTA threshold used was prespecified Yes				threshold that they selected to maximize	
Oh, 2016 ¹⁰⁰ Unclear Unclear Unclear Unclear whether OSTA threshold used Yes was prespecified	e t es (e ¹⁰⁶			discriminative ability	
I was prespecified	Oh, 2016 ¹⁰⁰	Unclear	Unclear	Unclear whether OSIA threshold used	Yes
	D 004 4 ⁵⁶				N/
Pang, 2014 No Unclear Inresholds were not prespecified, rather Yes	Pang, 2014	NO	Unclear	Inresholds were not prespecified, rather	res
dispriminative ability				discriminative ability	
UISUITITIAIVE ADIIIY.	Park 2002 ¹⁰⁷	Voc	Low		DXA femoral neck RMD was measured using
I dir, 2003 I tes I Luw INT. I DAA, lettiolal neuk DIVID Was measured using DXA GE Lupar Model DPO-IO, no other details	r aik, 2003	100			DXA GE Lunar Model DPO-IO no other details

		Could Conduct or		
Author, Year	Threshold Prespecified?	Interpretation of Index Test Have Introduced Bias?	Comments	Describes Reference Standard and How it Was Conducted and Interpreted?
Richards, 2014 ¹⁰⁸	Yes	Low	NR	DXA, femoral neck and total hip
Richy, 2004 ⁸¹	Yes	Low	NR	DXA, total hip, femoral neck, lumbar spine, any
				site
Shepherd, 2007 ¹¹⁰	Yes	Low	Does not report on blinded index test	Yes
			assessment. Threshold is determined in	
			development cohort in this study. Applied	
			to validation cohort.	
Shepherd, 2010 ¹¹³	Yes	Low	NR	Yes
Sinnott, 2006 ¹¹¹	Unclear	Low	NR	Yes
Zimering, 2007 ¹¹²	Yes	Low	Does not report on blinded index test	Yes
			assessment. Threshold is determined in	
			development cohort in this study. Applied	
			to validation cohort.	

Abbreviations: AUC= area under the curve; BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; GE = General Electric; NR = not reported; ORAI = Osteoporosis Risk Assessment Instrument; OST = osteoporosis self-assessment tool; OSTA = Osteoporosis Self-assessment Tool for Asians; QUI = ultrasound index; QUS = quantitative ultrasound; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; Sn = sensitivity; Sp = specificity.

	Reference Standard	Reference Standard Results	Could Reference	
	Likely to Correctly	Interpreted Without	Standard or Its Conduct	
	Classify Target	Knowledge of Results of	or Interpretation Have	
Author, Year	Condition?	Index Test?	Introduced Bias?	Comments
Adler, 2003 ⁷⁸	Yes	Unclear	Low	NR
Ben Sedrine, 2001 ⁷⁹	Yes	Yes	Low	From discussion: "All of our DXA tests come from the same densitometers and from the same clinical unit"
Brenneman, 2003 ⁸²	Yes	Unclear	Low	NR
Cadarette, 2001 ⁸³	Yes	Unclear	Low	NR
Cadarette, 2004 ⁸⁴	Yes	Unclear	Low	Unclear timing of DXA, reference test, in relationship to index test in prospective and retrospective parts of the study sample
Cass, 2006 ⁸⁵	Yes	Yes	Low	Specific reference range for T-scores not reported, but used manufacturer's ranges, so likely NHANES
Cass, 2013 ⁸⁶	Yes	Yes	Low	NR
Chan, 2006 ⁸⁷	Unclear	Unclear	Unclear	No information on the specific reference ranges used to determine T-score
Cook, 2005 ⁸⁸	Yes	Unclear	Unclear	NR
Crandall, 2014 ⁵⁷	Yes	Unclear	Low	NR
D'Amelio, 2005 ⁸⁹	Yes	Unclear	Low	No information about masking of test results, but given objective calculations that go into both the index and reference test, low chance of bias

	Reference Standard Likely to Correctly Classify Target	Reference Standard Results Interpreted Without Knowledge of Results of	Could Reference Standard or Its Conduct or Interpretation Have	
Author, Year	Condition?	Index Test?	Introduced Bias?	Comments
D'Amelio, 2013 ⁹⁰	Unclear	Unclear	Unclear	Reference range for T-score NR
Geusens, 2002 ⁹¹	Yes	Unclear	Low	NR
Gnudi, 2005 ⁹²	Yes	Yes	Low	Does not report on blinded reference test assessment
Gourlay, 2005 ⁸⁰	Yes	Yes	Low	NR
Gourlay, 2008 93	Yes	Unclear	Low	NR
Harrison, 2006 ⁹⁴	Yes	Unclear	Low	NR
Jimenez-Nunez, 2013 ⁹⁵	Yes	Yes	Low	NR
Kung, 2003 ⁹⁶	Yes	Unclear	Low	NR
Kung, 2005 ⁹⁷	Yes	Yes	Low	NR
Lynn, 2008 ⁹⁸	Yes	Unclear	Low	All obtained from MrOS (sequence of data collection not described)
Machado, 2010 ⁹⁹	Yes	Unclear	Low	NR
Martinez-Aguila, 2007 ¹⁰⁰	Yes	Unclear	Low	Did not use NHANES reference standards, but may be appropriate since conducted in a Spanish population
Mauck. 2005 ¹⁰¹	Yes	Unclear	Low	Used a local reference range for T-score values
McLeod, 2015 ¹⁰²	Yes	Yes	Low	NR
Morin. 2009 ¹⁰³	Yes	Yes	Low	NR
Nguyen, 2004 ¹⁰⁴	Yes	Unclear	Low	Used a local reference range for young Australian
Oh 2013 ¹⁰⁵	Yes	Unclear	Low	NR
Oh 2016 ¹⁰⁶	Yes	Unclear	Low	NR
Pang, 2014 ⁵⁶	Yes	Unclear	Low	NR
Park, 2003 ¹⁰⁷	Yes	Unclear	Unclear	NR
Richards, 2014 ¹⁰⁸	Yes	Yes	Unclear	NR
Richv. 2004 ⁸¹	Yes	Unclear	Unclear	NR
Shepherd, 2007 ¹¹⁰	Yes	Yes	Low	Index test was developed after DXA done, so presumably reference test interpretation blinded
Shepherd, 2010 ¹¹³	Yes	Unclear	Low	NR
Sinnott, 2006 ¹¹¹	Yes	Unclear	Low	Threshold values not explicity provided
Zimering, 2007 ¹¹²	Yes	Unclear	Low	Does not report on blinded reference test assessment

Abbreviations: BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; FN = femoral neck; LS = lumbar spine; MrOS = Evaluation of osteoporosis screening tools for the osteoporotic fractures in men; NHANES III = National Health And Nutrition examination Survey; NR = not reported.

		Time Interval and		All Patients		
	Any Patients Not Receiving Index	Interventions Between	Appropriate Interval	Received	Patients Received	All Patients
	Test, Reference Standard, or	Index Test and Reference	Between Index Test and	Reference	Same Reference	Included in
Author, Year	Excluded?	Standard	Reference Standard?	Standard?	Standard?	Analysis?
Adler, 200378	Excluded patients with previous DXA	1 month	Yes	Unclear	Yes	Yes
	scan (i.e., the reference test)					
Ben Sedrine,	NR	NR: gathered retrospective	Unclear	Yes	Yes	Unclear
2001 ⁷⁹		medical data on BMD				
		measurement and risk				
		factors between January				
		1996 and 1999				
Brenneman,	1,986 recruited, 428 consented, 416	Occurred concurrently	Yes	Yes	Yes	Yes
2003°2	had complete data					
Cadarette, 2001° ³	69 participants missing data to	Not specifically reported. All	Unclear	Yes	Yes	No
	calculate clinical decision rules	baseline data collected				
		2/2016 to 9/2017,				
		presumably includes				
		questionnaire and DXA				
Cadaratta 2004 ⁸⁴	Of vetween estive semale. CC did not	testing	Linglage	Vaa	Vaa	Nia
Cadarelle, 2004	Or retrospective sample, 66 did hot	Unclear	Unclear	res	res	INO
	to be negative. Only nations with DXA					
	included.					
Cass, 2006 ⁸⁵	Yes	Yes	Yes	Yes	Yes	No
Cass, 2013 ⁸⁶	Yes	Yes	Yes	Yes	Yes	No
Chan, 2006 ⁸⁷	No	Yes	Yes	Yes	Yes	Unclear
Cook, 2005 ⁸⁸	None	None	Yes	Yes	Yes	Yes
Crandall, 2014 ⁵⁷	No	Yes	Yes	Yes	Yes	Yes
D'Amelio, 2005 ⁸⁹	NR	Clinical risk factors	Yes	Yes	Yes	Yes
		collected at time of DXA				
		scan				
D'Amelio, 201390	Yes	Yes	Yes	Yes	Yes	No
Geusens, 2002 91	NA	Unclear	Unclear	Yes	Yes	Yes
Gnudi, 2005 ⁹²	NR	NR	Unclear	Yes	Yes	Unclear
Gourlay, 2005°	NR	NR	Unclear	Yes	Yes	Unclear
Gourlay, 2008 93	NA	Unclear	Unclear	Yes	Yes	Yes
Harrison, 2006 ⁹⁴	NR	NR	Unclear	Yes	Yes	Unclear
Jimenez-Nunez,	Nursing home, homebound, prior	Same day	Unclear	Yes	Yes	Unclear
2013 3	diagnosis of osteoporosis, taking					
	osteoporosis drugs, serious acute or					
	chronic disease, hip replacement,					
	steroids					

		Time Interval and		All Patients		
	Any Patients Not Receiving Index	Interventions Between	Appropriate Interval	Received	Patients Received	All Patients
	Test, Reference Standard, or	Index Test and Reference	Between Index Test and	Reference	Same Reference	Included in
Author, Year	Excluded?	Standard	Reference Standard?	Standard?	Standard?	Analysis?
Kung, 2003 ⁹⁶	History or evidence of metabolic bone	NR	Unclear	Yes	Yes	Yes
	disease, menopause before age 40					
	years, history of cancer, evidence of					
	significant renal impariment, both hips					
	previously fractured or replaced, prior					
	use of any bisphosphonates, fluoride,					
	or calcitonin					
Kung, 2005"	History or evidence of metabolic bone	NR	Unclear	Yes	Yes	Yes
	disease, hightory of cancer, evidence					
	of significant renal impariment, both					
	nips previously fractured or replaced,					
	fluorido, or acloitanin, obnormal					
	biochemisty including renal and liver					
	function serum calcium phosphate					
	total alkaline phosphatase and TSH					
l vnn 2008 ⁹⁸	NB	NR	Unclear	Yes	Yes	NA
Machado, 2010 ⁹⁹	NB	NR	Unclear	Yes	Yes	Yes
Martinez-Aguila,	Yes	NR	Unclear	Yes	Yes	No
2007 ¹⁰⁰						
Mauck, 2005 ¹⁰¹	NR	Yes	Yes	Yes	Yes	Yes
McLeod, 2015 ¹⁰²	Previous diagnosis, progressive	Within 3 weeks	Yes	Yes	Yes	Yes
400	terminal illness					
Morin, 2009 ¹⁰³	NR	Unclear	Unclear	Yes	Yes	Yes
Nguyen, 2004 ¹⁰⁴	NR	Not explicitly, but given	Yes	Yes	Yes	Yes
		study design presume it				
O L 00 10 ¹⁰⁵		was concurrent				
Oh, 2013 ¹⁰⁶	Yes	Yes	Yes	Yes	Yes	Yes
On, 2016	Yes	Yes	Yes	Yes	Yes	Yes
Pang, 2014		res	Yes	Yes	Yes	Yes
Park, 2003 Disharda, 2014 ¹⁰⁸		Unclear	Unclear	res	Yes	Yes
Richards, 2014				NU Voo	Yes	NO
RICITY, 2004 Shaphard, 2007 ¹¹⁰	INA From Looker et al. Done mineral			Yes	Yes	Yes
Shepherd, 2007	FIORI LOOKET EL AL BORE MINERAL	INK	Unclear	res	res	res
	3 176 older men in NHANES III, but 86					
	(3%) were rejected for technical					
	reasons after review leaving 3 000					
	with acceptable data					
Shepherd, 2010 ¹¹³	Yes	Yes	Yes	Yes	Yes	Yes

		Time Interval and		All Patients		
	Any Patients Not Receiving Index	Interventions Between	Appropriate Interval	Received	Patients Received	All Patients
	Test, Reference Standard, or	Index Test and Reference	Between Index Test and	Reference	Same Reference	Included in
Author, Year	Excluded?	Standard	Reference Standard?	Standard?	Standard?	Analysis?
Sinnott, 2006 ¹¹¹	NR	NR	Unclear	Yes	Yes	Yes
Zimering, 2007 ¹¹²	NR	NR, presumably concurrent	Unclear	Yes	Yes	No
_		testing				

Abbreviations: BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; NHANES III = National Health And Nutrition examination Survey III; NR = not reported; TSH = thyroid stimulating hormone.

	Could Patient Flow		Overall	
Author, Year	Have Introduced Bias?	Comments	Judgement	Overall Comments
Adler, 2003 ⁷⁸	Low	From Adler et al. Osteoporosis in pulmonary clinic patients: does point-of-care screening predict central dual-energy x-ray absorptiometry? <i>Chest.</i> 2003;123(6): 2012-8. 98 or 107 patients received DXA scan from pulmonary cohort; unknown.	Low	Unclear for domain of patient selection. Also unclear how many excluded for no DXA, but from pulmonary cohort appears small. Would give it a "fair" for ROB.
Ben Sedrine, 2001 ⁷⁹	Unclear	No report of timing between index and reference test	Low	Risk of spectrum bias. No mention of who was excluded or if any dropped out; unclear if results looked at independently blind; unclear for domain of flow and timing
Brenneman, 2003 ⁸²	Low	416 includes those with complete information, not sure how many were dropped due to incomplete data; sounds like data collected all at the same time.	Low	416 includes those with complete information, not sure how many were dropped due to incomplete data; sounds like data collected all at the same time; not sure if blinded interpretation
Cadarette, 2001 ⁸³	Low	Multisite study with different DXA machines in each site. T-scores were calculated from cross-calibrated Hologic BMD equivalent. Baseline period <2 years.	Low	Unclear it assessments were blind; unclear on timing of assessments; excluded those who had osteoporosis and taking bone sparing medications, those with secondary osteoporosis, those with missing data
Cadarette, 2004 ⁸⁴	Low	Study authors collected clinical risk factors taken at the same time as the DXA scan for the retrospective sample of patients. For prospective study, presumably concurrent.	Low	The difference in recruitment could be an issue; unclear on assessment timing; unclear on blinding; looks like those with missing data were excluded
Cass, 2006 ⁸⁵	Low	23 enrolled patients did not undergo DXA scan so were not included. 173 eligible patients declined to participate.	Low	NR
Cass, 2013 ⁸⁶	Low	40 patients did not undergo DXA so were dropped from the analysis.	Low	NR
Chan, 2006 ⁸⁷	Unclear	Number eligible and number of dropouts are not reported, only the final N analyzed is reported	unclear	Some concerns in multiple domains of risk of bias lead to an overal rating of unclear
Cook, 2005 ⁸⁸	Low	NR	Unclear	Patient selection has the potential to skew the sample toward low BMD
Crandall, 2014 ⁵⁷	Low	Analysis was restricted to a subgroup of non-HRT users by design	Low	NR

Author Year	Could Patient Flow Have Introduced Bias?	Comments	Overall	Overall Comments
D'Amelio, 2005 ⁸⁹	Low	NR	Low	NR
D'Amelio, 2013 ⁹⁰	Low	Some patients initially enrolled were excluded because it was determined they did not meet study criteria	Low	NR
Geusens, 2002 ⁹¹	Unclear	Unclear because of lack of clarity around timing of the tests	unclear	No details on how the reference standard data were collected or the time interval between it and the index test
Gnudi, 2005 ⁹²	Low	While authors don't report on timing between reference and index test, validation cohort was recruited over 6 months (<2 years)	Low	NR
Gourlay, 2005 ⁸⁰	Unclear	NR	Unclear	NR
Gourlay, 2008 ⁹³	unclear	Unclear because of lack of clarity around timing of the tests	unclear	No details on how the reference standard data were collected or the time interval between it and the index test
Harrison, 2006 ⁹⁴	Unclear	Participants underwent DXA and were categorized as non-osteo or osteo prior to QUS or risk indices	Low	Low-to-high given that osteoporosis status determined first
Jimenez- Nunez, 2013 ⁹⁵	Low	Random sample done with some sort of cards	Low	NR
Kung, 2003 ⁹⁶	Low	NR	Low	NR
Kung, 2005 ⁹⁷	Low	Not clear what the time frame between clinical assessment of risk factors and QUS is; however, should be little impact; all participants received the same reference standard (referring to the validated group)	Low	NR
Lynn, 2008 ⁹⁸	Low	NR	Low	Data were collected prospectively from MrOS study and then analyzed as part of this study focus
Machado, 2010 ⁹⁹	Low	Interval between clinical risks and BMD inferred to be <2 years	Low	NR
Martinez- Aguila, 2007 ¹⁰⁰	Unclear	30 eligible patients were excluded for missing data. Clinical risk factors assessed retrospectively by asking participants to answer based on the date of their BMD testing.	Unclear	NR
Mauck, 2005 ¹⁰¹	Low	NR	Low	NR
McLeod, 2015 ¹⁰²	Low	Effort made to contact patient, enroll and conduct OST and QUS within 3 weeks of DXA scan to complete study assessments prior to provider receiving DXA results and talking with patient	Low	NR
Morin, 2009 ¹⁰³	Unclear	Unclear for timing between DXA and index test	Unclear	NR
Nguyen, 2004 ¹⁰⁴	Low	NR	Low	NR

	Could Patient Flow		Overall	
Author, Year	Have Introduced Bias?	Comments	Judgement	Overall Comments
Oh, 2013 ¹⁰⁵	Low	Some patients meeting preliminary criteria based on age	Low	Low ROB for the test thresholds used by study
106		were not eligible for a variety of reasons		authors
Oh, 2016 ¹⁰⁶	Low	Excluded some men for probably valid reasons	Low	NR
Pang, 2014 ⁵⁶	Low	Some patients meeting preliminary age criteria not eligible to be included	Low	Low ROB for the test thresholds used by study authors
Park, 2003 ¹⁰⁷	Unclear	Unclear because of lack of clarity around timing of the tests	Unclear	No details on how the reference standard data were collected or the time interval between it and the index test
Richards, 2014 ¹⁰⁸	Unclear	Unclear because of lack of clarity around timing of the tests. 2 patients were excluded from the analysis because no BMD tests were done, but not the primary cause of the unclear rating.	Unclear	No details on how the reference standard data were collected or the time interval between it and the index test
Richy, 2004 ⁸¹	Unclear	Unclear because of lack of clarity around timing of the tests	Unclear	No details on how the reference standard data were collected or the time interval between it and the index test
Shepherd, 2007 ¹¹⁰	Low	NR	Low	NR
Shepherd, 2010 ¹¹³	Low	Excluded men without DXA available, though not specifically reported, NHANES enrolls subjects prospectively, so clinical risks and DXA likely collected concurrently	Low	NR
Sinnott, 2006 ¹¹¹	Low	The flow was not specifically described, but appears sequence was clinical assessment followed by ultrasound and then DXA	Low	Primarily due to: 1) no information on the type of sampling. Assuming conveneience sampling; 2) not clear about the sequence of testing, but low risk of bias.
Zimering, 2007 ¹¹²	Unclear	No report of timing between index and reference test or on missing data in the validation cohort; presumably concurrent testing	Unclear	NR

Abbreviations: BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; HRT = hormone replacement therapy; MrOS = Evaluation of osteoporosis screening tools for the osteoporotic fractures in men; NHANES = National Health And Nutrition examination Survey; NR = not reported; OST = osteoporosis self-assessment tool; QUS = quantitative ultrasound; ROB = risk of bias.

			Reference		Enrolls Consecutive	Avoids	Avoids	Could Selection of Patients	
Author,			and Target	Methods of Patient	Sample of	Control	Inappropriate	Introduced	
Year	Patients	Index Test	Condition	Selection	Patients?	Design?	Exclusions?	Bias?	Comments
Boonen, 2005 ¹¹⁴	Commmunty-dwelling postmenopausal women	QUS	I-score <2.5 using DXA	Community-dwelling postmenopausal women who had been referred for bone densitometry at 1 facility in Belgium	Yes	Yes	Yes	Low	NR
Cook, 2005 ⁸⁸	UK, DXA scanning clinics, patients referred from general practitioners based on ≥1 clinical risk factors for OP	2 QUS systems: CUBA Clinical (BUA, VOS), Sunlight Omnisense (distal radius, proximal phalanx mid-finger, mid- shaft tibia)	DXA, LS-4, and total hip	Patients referred by general practitioner to DXA screening clinic	Unclear	Yes	Unclear	Unclear	Sample has potential for bias toward low BMD due to recruitment from DXA clinic (all patients referred for clinical risk factors)
Harrison, 2006 ⁹⁴	Caucasian females, ages 55-80 years (referred to clinical radiology, intended use of index test [QUS x2]), underwent DXA and categorized as nonosteoporosis and osteoporosis. Subsequently underwent QUS and risk assessment using demographics and then combined algorithms-QUS used to predict osteoporosis	QUS x2	DXA	White Caucasian females ages 55 to 70 years (mean, 61 [SD, 4]) who were referred to Clinical Radiology, Imaging Science, and Biomedical Engineering, University of Manchester for routine bone densitometry scans were invited to take part in the study	Unclear	Yes	Unclear	Low	No details on setting or how participants were selected
Jimenez- Nunez, 2013 ⁹⁵	Women from primary and tertiary care, diagnosis, no prior testing	4 risk scores + PIXI of the heel	DXA of the hip and spine	Described as random from 2 sites	Yes	Yes	Yes	Low	NR

Author,			Reference Standard and Target	Methods of Patient	Enrolls Consecutive or Random Sample of	Avoids Case- Control	Avoids Inappropriate	Could Selection of Patients Have Introduced	
Year	Patients	Index Test	Condition	Selection	Patients?	Design?	Exclusions?	Bias?	Comments
Kung, 2003 ⁹⁶	Women in Hong Kong recruited from the community	OSTA index and QUI	DXA	Women from community, all comers who did not meet exclusion	Unclear	Yes	Yes	Low	Although noted to be early postmenopausal women, age mean is 62 years
Kung, 2005 ⁹⁷	Community of Asian (Southern Chinese) men; developed index based on clinical factors; compared clinical index with calcaneal QUS in predicting BMD (T-score <-2.5) by DXA	Clinical index	Calcaneal QUS; target condition: osteoporosis as determined by BMD at the hip and spine by DXA	Men from community, all comers who did not meet exclusion	Yes	Yes	Yes	Low	Unclear who chose to participate relative to larger group, excluded abnormal TSH group
Lynn, 2008 ⁹⁸	US Caucasian (4658) and Hong Kong Chinese (1914) from the MrOS study with DXA and QUS measurements to compare screening tools (OST, MOST, QUI) to DXA	OST, MOST, QUI	DXA	US participants were recruited using population- based listings at 6 clinical settings in Birmingham, AL; Minneapolis, MN; Palo Alto, CA; Pittsburgh, PA; Portland, OR; and San Diego, CA. Hong Kong participants were recruited using a combination of private solicitation and public advertising from community centers, housing estates, and the general community. Men who had bilateral hip replacements or who were unable to walk without the assistance of another person were excluded.	Yes	Yes	Unclear	Low	NR
McLeod, 2015 ¹⁰²	Women referred for screening in Canada, no prior testing	QUS and OST	DXA	Patients referred for screening to 1 facility	Y es	Yes	Yes	Low	NA

Author, Year	Patients	Index Test	Reference Standard and Target Condition	Methods of Patient Selection	Enrolls Consecutive or Random Sample of Patients?	Avoids Case- Control Design?	Avoids Inappropriate Exclusions?	Could Selection of Patients Have Introduced Bias?	Comments
Minnock, 2008 ¹¹⁵	Causian women underwent clinical risk factor questionnaire, QUS, and DXA to determine whether a combined clinical assessment tool + QUS would be predictive of osteoporosis (low bone mass) by DXA	Combined clinical risk facors + QUS	DXA	Women were referred to DXA scanning clinic at Great Western Hospital, Swindon, UK. Referral was performed by the patients' GPs or hospital-based clinics	Unclear	Yes	Unclear	Unclear	Insufficient information
Richy, 2004 ¹¹⁶	2 cohorts of postmenopasual women, age ≥45 years; purpose of study #1 was to develop a clinical algorithm tool+QUS (n=407 women) with bone mass as the outcome measure, as derived from DXA, and then in study #2 used a 2nd cohort (202 women) to validate the algorithm by comparing it to QUS alone and to the OST; community screening clinic; no prior testing	Clinical algorithm; QUS	DXA for low bone mass; osteoporosis	Women who attended public screening for osteoporosis	Yes	Yes	Yes	Low	NR

Author, Year	Patients	Index Test	Reference Standard and Target Condition	Methods of Patient Selection	Enrolls Consecutive or Random Sample of Patients?	Avoids Case- Control Design?	Avoids Inappropriate Exclusions?	Could Selection of Patients Have Introduced Bias?	Comments
Sinnott, 2006 ¹¹¹	African American men, age ≥35 years (outpatient general medicine clinics at veteran hospital; intended use of clinical assessment tools and calcaneous ultrasound compared with the reference measure of BMD by DXA; no description of presentation in article; no prior testing); index text is ultrasound of calcaneous on nondominant foot, outcome is low bone mass	Ultrasound of calcaneous on nondominant foot	BMD by DXA at the 1) lumbar spine (L1- L4) and 2) non- dominant hip (femoral neck, trochanter, total hip)	Subjects were recruited from outpatient general medicine clinics at the Jesse Brown VA Medical Center over an 11-month period in 2004	Unclear	Yes	Yes	Low	Selection of participants may be a convenience sample but unclear. Men were recruited from general medicine clinics so selection bias likely low.

Abbreviations: AL = Alabama; BMD= bone mineral density; BUA = broadband attenuation; CA = California; ; DXA = dual energy x-ray absorptiometry; GPs = general practitioners; KQ = key question; LS-4 = lumbar spine 4; MD = medical doctor; MN = Minnesota; MOST = Male Osteoporosis Screening Tool; MrOS = Evaluation of osteoporosis screening tools for the osteoporotic fractures in men; NA = not applicable; OP = osteoporosis; OR = Oregon; OST = osteoporosis self-assessment tool; OSTA = Osteoporosis Self-assessment Tool for Asians; PA = Pennsylvania; QUI = ultrasound index; QUS = quantitative ultrasound; SD = standard deviation; TSH = thyroid-stimulating hormone; UK = United Kingdom; US = United States; VA = Veterans' Administration; VOS = velocity of sound.

Author, Year	Index Test	Results Interpreted Without Knowledge of Reference Standard Results?	Threshold Prespecified?	Could Conduct or Interpretation of Index Test Have Introduced Bias?	Comments
Boonen, 2005 ¹¹⁴	QUS, DXR, RA	Yes	Yes	Low	NR
Cook, 2005 ⁸⁸	2 QUS tests- CUBA Clinical and Sunlight Omnisense measurements. Performed on nondominant side with same ultrsaound gel. System quality verification tests each day.	Unclear	Yes	Unclear	Threshold question–yes and no–used a 90% sensitivity threshold, but also created a cutoff level based on the highest combined value of sensitivity and specificity. ROB assessment–depends if QUS studies read independently of DXA imaging.

Appendix D Table 4. Risk of bias assessment for KQ2a imaging studies predicting bone density status

Author, Year	Index Test	Results Interpreted Without Knowledge of Reference Standard Results?	Threshold Prespecified?	Could Conduct or Interpretation of Index Test Have Introduced Bias?	Comments
Harrison, 2006 ⁹⁴	QUS x2	Unclear	Yes	Unclear	Osteoporosis status determined before index tests conducted, but unclear if results available
Jimenez- Nunez, 2013 ⁹⁵	4 risk scores + PIXI of the heel, algorithms were developed	Yes	Yes	Low	NR
Kung, 2003 ⁹⁶	Index characteristics through interview and QUI of right heel by technician	Unclear	Yes	Low	Index based on characteristics can be biased based on analysis decisions
Kung, 2005 ⁹⁷	Index developed by authors based on characteristics	Unclear	Yes	Low	NR
Lynn, 2008 ⁹⁸	OST, MOST, QUI	Unclear	Yes	Low	NR
McLeod, 2015 ¹⁰²	QUS of BUA and SOS of left calcaneus and personal data based on questionnaire	Yes	Yes	Low	NR
Minnock, 2008 ¹¹⁵	Combined clinical risk facors + QUS	Unclear	Yes	Low	NR
Richy, 2004 ¹¹⁶	Clinical algorithm; QUS	Unclear	Yes	Low	NR
Sinnott, 2006 ¹¹¹	Ultrasound of calcaneous on nondominant foot	Unclear	Unclear	Low	NR

Abbreviations: BUA = broadband attenuation; DXR = digital x-ray radiogrammetry; MOST = Male Osteoporosis Screening Tool; NR = not reported; OST = osteoporosis self-assessment tool; QUI = ultrasound index; QUS = quantitative ultrasound; RA = radiographic absorptiometry; Sn = sensitivity; SOS = speed of sound; Sp = specificity

Author,		Reference Standard Likely to Correctly Classify	Results Interpreted Without Knowledge of	Could Reference Standard or Its Conduct/Interpretation	
Year	Reference Standard	Target Condition?	Index Test Results?	Have Introduced Bias?	Comments
Boonen, 2005 ¹¹⁴	DXA, BMD of the lumbar spiine and proximal femur	Yes	Unclear	Low	NR
Cook, 2005 ⁸⁸	DXA, BMD of the lumbar spine and total hip	Yes	Unclear	Unclear	NR
Harrison, 2006 ⁹⁴	DXA, BMD of the femoral neck and total hip	Yes	Unclear	Low	NR
Jimenez- Nunez, 2013 ⁹⁵	DXA, BMD of the hip and spine	Yes	Yes	Low	NR
Kung, 2003 ⁹⁶	DXA, BMD of the lumbar spine, femoral neck	Yes	Unclear	Low	NR

		Reference Standard Likely	Results Interpreted	Could Reference Standard or	
Author,		to Correctly Classify	Without Knowledge of	Its Conduct/Interpretation	
Year	Reference Standard	Target Condition?	Index Test Results?	Have Introduced Bias?	Comments
Kung,	DXA, BMD of the lumbar spine,	Yes	Yes	Low	NR
2005°'	femoral neck				
Lynn, 2008 ⁹⁸	DXA, lumbar spine and proximal	Yes	Unclear	Low	All obtained from MrOS
	femur				(sequence of data
					collection not described)
McLeod,	DXA, BMD of the lumbar spine,	Yes	Yes	Low	NR
2015 ¹⁰²	left and right femoral neck				
Minnock,	DXA, BMD of the lumbar spine,	Yes	Unclear	Low	NR
2008 ¹¹⁵	femoral neck, and total hip				
Richy,	DXA, BMD of the femoral neck	Yes	Yes	Low	NR
2004 ¹¹⁶					
Sinnott,	DXA, BMD of the hip, spine	Yes	Unclear	Low	NR
2006 ¹¹¹					

Abbreviations: BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; KQ = key question; MrOS = Evaluation of osteoporosis screening tools for the osteoporotic fractures in men; NR = not reported; QUS = quantitative ultrasound.

Author, Year	Patients Not Receiving Index Test, Reference Standard, or Were Excluded?	Time Interval and Interventions Between Index Test and Reference Standard	Appropriate Interval Between Index Test and Reference Standard?	All Patients Received Reference Standard?	Patients Received Same Reference Standard?	All Patients Included in Analysis?
Boonen, 2005 ¹¹⁴	On treatment for osteoporosis, peripheral oedema	Same day	Yes	Yes	Yes	Yes
Cook, 2005 ⁸⁸	None	None	Yes	Yes	Yes	Yes
Harrison, 2006 ⁹⁴	NR	NR	Unclear	Yes	Yes	Unclear
Jimenez- Nunez, 2013 ⁹⁵	Nursing home, homebound, prior diagnosis of osteoporosis, on osteoporosis drugs, serious acute or chronic disease, hip replacement, steroids	Same day	Unclear	Yes	Yes	Unclear
Kung, 2003 ⁹⁶	History or evidence of metabolic bone disease, menopause before age 40 years, history of cancer, evidence of significant renal impariment, both hips previously fractured or replaced, prior use of any bisphosphonates, fluoride, or calcitonin	NR	Unclear	Yes	Yes	Yes
Kung, 2005 ⁹⁷	History or evidence of metabolic bone disease, history of cancer, evidence of significant renal impairment, both hips previously fractured or replaced, prior use of any bisphosphonates, fluoride, or calcitonin, abnormal biochemisty including renal and liver function, serum calcium, phosphate, total alkaline phosphatase, and TSH	NR	Unclear	Yes	Yes	Yes
Lynn, 2008 ⁹⁸	NR	NR	Unclear	Yes	Yes	NA
Appendix D Table 4. Risk of bias assessment for KQ2a imaging studies predicting bone density status

Author, Year	Patients Not Receiving Index Test, Reference Standard, or Were Excluded?	Time Interval and Interventions Between Index Test and Reference Standard	Appropriate Interval Between Index Test and Reference Standard?	All Patients Received Reference Standard?	Patients Received Same Reference Standard?	All Patients Included in Analysis?
McLeod, 2015 ¹⁰²	Previous diagnosis, progressive terminal illness	Within 3 weeks	Yes	Yes	Yes	Yes
Minnock, 2008 ¹¹⁵	NR	NR	Unclear	Yes	Yes	No
Richy, 2004 ¹¹⁶	NR	NR	Unclear	Yes	Yes	Yes
Sinnott, 2006 ¹¹¹	NR	NR	Unclear	Yes	Yes	Yes

Abbreviations: NA = not applicable; NR = not reported; TSH = thyroid-stimulating hormone.

Author,	Could Patient Flow Have		Overall	
Year	Introduced Bias?	Comments	Judgement	Overall Comments
Boonen,	Low	NR	Low	Not a community-based sample.
2005 ¹¹⁴				Women referred for bone densitometry.
Cook, 2005 ⁸⁸	Low	NR	Unclear	Patient selection has the potential to
				skew the sample toward low BMD
Harrison,	Unclear	Participants underwent DXA and were categorized as	Unclear	Osteoporosis status determined first
2006 ⁹⁴		nonosteoporosis or osteoporosis prior to QUS or risk indices		
Jimenez-	Low	Random sample done with some sort of cards	Low	NR
Nunez,				
2013 ⁹⁵				
Kung, 2003 ⁹⁶	Low	NR	Low	NR
Kung, 2005 ⁹⁷	Low	It is not clear what the time frame was between clinical	Low	NR
		assessment of risk factors and QUS; however, should be little		
		impact; all participants received the same reference standard		
		(referring to the validated group)		
Lynn, 2008 ⁹⁸	Low	NR	Low	NR
McLeod,	Low	Effort made to contact patient, enroll, and conduct OST and QUS	Low	NR
2015 ¹⁰²		within 3 weeks of DXA scan to complete study assessments prior		
		to provider receiving DXA results and talking with patient.		
Minnock,	Low	NR	Unclear	Initial sample is 274 but number in
2008115				analysis is 235 because of missing
				data, impact of missing data unclear
Richy,	Low	NR	Low	NR
2004 ¹¹⁶				
Sinnott,	Low	The flow was not specifically described, but appears sequence	Low	NR
2006 ¹¹¹		was clinical assessment followed by ultrasound and then DXA		

Abbreviations: BMD = body mineral density; DXA = dual energy x-ray absorptiometry; KQ = key question; MrOS = Evaluation of osteoporosis screening tools for the osteoporotic fractures in men; NR = not reported; OST = osteoporosis self-assessment tool; QUS = quantitative ultrasound

		Prediction Model Development	Tests Performance of a	
		and External Validation in	Previously Developed Prediction	Appropriate Data
Author, Year	Interventions and Comparators	Same Publication?	Model in Other Individuals	Sources Used?
Ahmed, 2014 ¹⁵⁴	1. Garvan FRC with BMD, adjusted for age, prior	No	Yes- Val only	Yes
	fracture, prior fall			
	2. Garvan FRC, adjusted for body weight, age, prior			
191	fracture, prior fall			
Azagra, 2011	FRAX (Spain)	No	No	Probably no
Bauer, 2007 ¹²⁰	QUS	No	No	Yes
Berry, 2013 ¹⁹⁵	Assess contribution of repeat BMD in 4 years to Fx risk:	No	Yes- Val only	Yes
	1. BMD at baseline and Fx risk			
	2. BMD percent change and Fx risk			
	3. BMD at baseline, BMD percent change, and Fx risk			
Chan, 2012 ¹²⁵	1. FNBMD (adjusted for age, falls, prior fracture)	No	Yes- Val only	Yes
	2. QUS (BUA) plus FNBMD (adjusted for age, falls,			
404	prior fracture)			
Chan, 2013	1. FN plus BMD (adjusted for age, falls, prior fracture)	No	Yes- Val only	Yes
	2. QUS (BUA) plus FNBMD (adjusted for age, falls,			
E0	prior fracture)			
Crandall, 2014 ⁵⁰	Comparison of 3 screening strategies for women ages	No	Yes- Val only	Yes
	50-64 year:			
	1. USPSTF strategy (FRAX 3.0 without BMD, with			
	followup BMD testing for Fx risk ≥9.3%)-10 yr horizon			
	2. OST-horizon unknown, developed to identify			
	osteoporosis, not fracture			
	3. SCORE-horizon unknown, developed to identify			
100	osteoporosis, not fracture			
Hans, 2011 ¹²²	TBS alone, DXA alone, TBS plus DXA	No	No	Probably yes
Hillier, 2007 ¹⁹⁴	Imaging screening: DXA, initial BMD, repeat BMD,	No	No	Yes
	change in BMD, initial BMD plus change in BMD			
Hippisley-Cox,	QFracture updated with additional clinical predictors	Yes- Dev and Val	Yes- Val only	Yes
2012 3	and outcomes			
lki, 2014 ¹²¹	DXA- spine areal BMD, trabecular bone score	No	No	Yes
lki, 2015 ¹⁵⁷	FRAX and TBS	no	Yes- Val only	yes
Kalveston,	FRAX and BMD	Yes- Val only	Yes- Val only	Yes
2016				
Kanis, 2007 ³²	FRAX	Yes- Dev and Val	No	Yes
Kwok, 2012 ¹²⁴	Imaging screening: QUS (BUA, SOS, QUI measures), DXA (tHIP, fnHIP, spine BMD)	No	No	Yes
Leslie, 2010 ¹⁵⁶	CAROC	No	Yes	Yes
Leslie, 2012 ¹⁵²	FRAX	No	Yes- Dev and Val	Yes
Leslie, 2012 ¹⁴⁸	FRAX with and without DXA	No	Yes	Yes
Leslie, 2013 ¹²³	Trabecular bone score	No	No	Yes
Lo, 2011 ¹⁷⁸	FRC	No	Yes- Val only	Probably ves

		Prediction Model Development and External Validation in	Tests Performance of a Previously Developed Prediction	Appropriate Data
Author, Year	Interventions and Comparators	Same Publication?	Model in Other Individuals	Sources Used?
Lundin, 2015 141	FRAX and BMD	No	Yes- Val only	yes
Melton, 2005 ³³³	NOF model including femoral neck BMD and clinical risk factors (personal Fx history, FHx, low BWT, smoking status)	No	Yes- Val only	Yes
Miller, 2002 ¹⁴³	Heel SXR, Heel QUS, forearm DXA, finger DXA; NORA study	No	No	Yes
Morin, 2009 ¹⁰³	Body weight, BMI, OST	No	Yes	Yes
Nguyen, 2004 ¹²⁶	QUS, DOES	No	No	Yes
Rubin, 2013 ¹⁵³	FRAX (no BMD), OST, ORAI, OSIRIS, SCORE, age alone	No	Yes- Val only	Yes
Stewart, 2006 ¹¹⁹	DXA	No	Yes- Val only	Yes
van Geel, 2014 ¹⁴⁹	FRAX, Garvan FRCr	No	Yes- Val only	Yes

Abbreviations: BMD= bone mineral density; BMI = body mass index; BUA = broadband attenuation; BWT = body weight; CAROC = Canadian Association of Radiologists and Osteoporosis Canada; DOES = Dubbo Osteoporosis Epidemiology Study; DXA = dual energy x-ray absorptiometry; FNBMD = femoral neck bone mineral density; fnHIP = femoral neck of hip; FNplus = femoral neck plus; FRAX = Fracture Risk Assessment tool; FRC = Fracture Risk Calculator; Fx = fracture; NOF = National Osteoporosis Foundation; NORA = National Osteoporosis Risk Assessment; ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OST = osteoporosis self-assessment tool; QUI = ultrasound index; QUS = quantitative ultrasound; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; SOS = speed of sound; SXR = single x-ray absorptiometry; TBS = trabecular bone score; tHIP = total hip; US = United States; USPSTF = United States Preventive Services Task Force.

	Inclusion/Exclusion of	Participants Enrolled at Similar Health State or Considered Predictors to Account for	Risk of Bias Introduced by Selection of		
Author, Year	Participants Appropriate?	Dissimilarities?	Participants?	Justification of Bias Rating	Comments
Ahmed, 2014 ¹⁵⁴	Yes	Yes	Low	NR	NR
Azagra, 2011 ¹⁸¹	Yes	Yes	Unclear	Cohort was assembled from participants referred for screening by primary or specialty care physicians. Thus, the cohort does not represent an entirely unselected population.	NR
Bauer, 2007 ¹²⁰	Yes	Yes	Low	NR	NR
Berry, 2013 ¹⁹⁵	Yes	Yes	Low	NR	NR
Chan, 2012 ¹²⁵	Yes	Yes	Low	NR	NR
Chan, 2013 ¹⁹¹	No	Yes	High	High concern for spectrum bias in the subgroup analysis, since participants were limited to those with BMD <-2.5	NR
Crandall, 2014 ⁵⁸	Yes	Yes	Low	NR	NR
Hans, 2011 ¹²²	Probably yes	Probably yes	Low	NR	NR

Author Year	Inclusion/Exclusion of Participants Appropriate?	Participants Enrolled at Similar Health State or Considered Predictors to Account for Dissimilarities?	Risk of Bias Introduced by Selection of Participants?	Justification of Bias Rating	Comments
Hillier 2007 ¹⁹⁴	Probably yes	Yes	Low	NR	NR
Hippisley-Cox, 2012 ¹⁵⁵	Probably yes	Probably yes	Low	NR	NR
lki, 2014 ¹²¹	Yes	Yes	Low	NR	NR
lki, 2015 ¹⁵⁷	yes	yes	low	Population-based cohort	None
Kalvesten, 2016 ¹⁴²	Yes	Yes	Low	Population-based recruitment into study	None
Kanis, 2007 ³²	No information	Probably yes	Low	NR	Inclusion/exclusion criteria for the 11 independent validation cohorts is not included
Kwok, 2012 ¹²⁴	Yes	Yes	Low	NR	NR
Leslie, 2010 ¹⁵⁶	No information	Probably no	Low	Database covers population in Manitoba age 50 years with a first bone density measurement, and all citizens of Manitoba have university access to publicly funded medical care, including BMD.	NR
Leslie, 2012 ¹⁵²	No information	Probably no	Low	Database covers population in Manitoba age 50 years with a first bone density measurement, and all citizens of Manitoba have university access to publicly funded medical care, including BMD.	NR
Leslie, 2012 ¹⁴⁸	No information	Probably no	Low	Database covers population in Manitoba age 50 years with a first bone density measurement, and all citizens of Manitoba have university access to publicly funded medical care, including BMD.	NR
Leslie, 2013 ¹²³	No information	Probably no	Low	Database covers all women in Manitoba age 50 years with a first bone density measurement, and all citizens of Manitoba have university access to publicly funded medical care, including BMD.	NR

Author Voor	Inclusion/Exclusion of	Participants Enrolled at Similar Health State or Considered Predictors to Account for	Risk of Bias Introduced by Selection of	hustification of Disc Dating	Commente
	Participants Appropriate ?	Dissimilarities ?	Participants?	Justification of Blas Rating	Comments
Lo, 2011	Probably no	Probably yes	Unclear	Possible spectrum bias due to use of population of women referred for DXA testing. Other exclusions may also have introduced some selection bias. Impact of these cannot be determined. Only about 94,000 of an eligible population of 500,000 were analyzed.	Study limited to women ages 50 to 85 years referred to bone density scanning. Women without continuous membership both prior to and following DXA scans, and those for whom DXA results were not electronically accessible and those with missing race/ethnicity.
Lundin, 2015 ¹⁴¹	Yes	Yes	Low	Population-based recruitment strategy	None
Melton, 2005 ³³³	No information	No information	Unclear	NR	NR
Miller, 2002 ¹⁴³	Yes	No information	Unclear	It is unclear whether sites selected people with similar underlying characteristics	NR
Morin, 2009 ¹⁰³	No information	Probably no	Low	Database covers all women in Manitoba ages 40 to 59 years with a first bone density measurement, and all citizens of Manitoba have university access to publicly funded medical care, including BMD.	NR
Nguyen, 2004 ¹²⁶	No information	No information	Unclear	Unclear whether patients selected from database have similar underlying characteristics	NR
Rubin, 2013 ¹⁵³	Yes	Yes	Low	NR	NR
Stewart, 2006 ¹¹⁹	Yes	No information	Low	NR	NR
van Geel, 2014 ¹⁴⁹	Probably yes	Yes	Low	NR	NR

Abbreviations: BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; KQ = key question; NR = not reported.

			Risk of Bias		
		Predictors Defined and	Introduced by		
	Predictors Defined and Assessed in Similar	Assessed in Similar Way to	Predictors or Their	Justification of Bias	
Author, Year	Way for All Participants?	Those in Development Model?	Assessment?	Rating	Comments
Ahmed, 2014 ¹⁵⁴	1. Garvan FRC with BMD, adjusted for age,	Yes	Yes	NR	NR
	prior fracture, prior fall				
	2. Garvan FRC, adjusted for body weight, age,				
	prior fracture, prior fall				
Azagra, 2011 ¹⁸¹	FRAX (Spain)	Yes	Yes	NR	NR
Bauer, 2007 ¹²⁰	QUS	Yes	Yes	NR	NR
Berry, 2013 ¹⁹⁵	Assess contribution of repeat BMD in 4 years	Yes	Yes	NR	NR
	to Fx risk:				
	1. BMD at baseline and Fx risk				
	2. BMD percent change and Fx risk				
	3. BMD at baseline, BMD percent change, and				
	Fx risk				
Chan, 2012 ¹²⁵	1. FNBMD (adjusted for age, falls, prior	Yes	Yes	NR	NR
	fracture)				
	2. QUS (BUA) plus FNBMD (adjusted for age,				
	falls, prior fracture)				
Chan, 2013 ¹⁹¹	1. FN plus BMD (adjusted for age, falls, prior	Yes	Yes	NR	NR
	fracture)				
	2. QUS (BUA) plus FNBMD (adjusted for age,				
E0	falls, prior fracture)				
Crandall, 2014 ⁵⁰	Comparison of 3 screening strategies for	Yes	Yes for FRAX and	Authors show that use of	NR
	women ages 50-64 years:		OST, probably no for	different age cutoff for	
	1. USPSTF strategy (FRAX 3.0 without BMD,		SCORE	prior history of fracture	
	with followup BMD testing for Fx risk ≥9.3%)-			would likely have little	
	10 yr horizon			impact	
	2. OST-horizon unknown, developed to identify				
	osteoporosis, not fracture				
	3. SCORE-horizon unknown, developed to				
11 0044122	Identify osteoporosis, not fracture				
Hans, 2011	IBS alone, DXA alone, IBS plus DXA	NA-NOT VAL	NA-NOT VAL	NR	NR
Hillier, 2007^{104}	Imaging screening: DXA, initial BMD, repeat	NA-NOT VAL	NA-NOT VAL	NR	NR
	BMD, change in BMD, initial BMD plus change				
Hippisley-Cox,	QFracture updated with additional clinical	Yes	Yes	NK	NK
2012	predictors and outcomes				
IKI, 2014	DXA- spine areal BMD, trabecular bone score	Yes	NA-NOT VAL		NK
[IKI, 2015 ¹⁹⁷	Yes	Yes	LOW	In-person interviews	None

Author, Year	Predictors Defined and Assessed in Similar Way for All Participants?	Predictors Defined and Assessed in Similar Way to Those in Development Model?	Risk of Bias Introduced by Predictors or Their Assessment?	Justification of Bias	Comments
Kalvesten,	Yes	Yes	Low	Questionnaire-based	None
2016 ¹⁴²				assessment, all relevant	
				predictors assessed	
Kanis, 2007 ³²	FRAX	Probably yes	Probably yes	NR	NR
Kwok, 2012 ¹²⁴	Imaging screening: QUS (BUA, SOS, QUI measures), DXA (tHIP, fnHIP, spine BMD)	NA-NOT VAL	NA-NOT VAL	Imaging prediction of fracture, not clinical preduction tool	NR
Leslie, 2010 ¹⁵⁶	CAROC	Yes	No	The final risk category was modified to reflect the presence of additional risk factors: any prior osteoporotic fracture (from 1987 to date of BMD testing) and/or recent systemic corticosteroid use (in the year before BMD testing)	NR
Leslie, 2012 ¹⁵²	FRAX	Yes	No	Parental hip fracture information missing for FRAX probability estimates prior to 2005, adjusted using age- and sex-specific adjustment factors derived from 2005 to 2008 parental hip fracture responses	NR
Leslie, 2012 ¹⁴⁸	FRAX with and without DXA	Yes	No	Parental hip fracture information missing for FRAX probability estimates prior to 2005, adjusted using age- and sex-specific adjustment factors derived from 2005 to 2008 parental hip fracture responses	NR
Leslie, 2013 ¹²³	TBS	Yes	NA	TBS assessed the same way for all	NR
Lo. 2011 ¹⁷⁸	FRC	Yes	Probably ves	NR	NR

		Predictors Defined and	Risk of Bias		
	Predictors Defined and Assessed in Similar	Assessed in Similar Way to	Predictors or Their	Justification of Bias	
Author, Year	Way for All Participants?	Those in Development Model?	Assessment?	Rating	Comments
Lundin, 2015 141	Yes for DXA	Yes for DXA	Low for DXA	Study does not describe	NR
	No for FRAX	No information for FRAX	Unclear for FRAX	how inputs to FRAX were	
				obtained	
Melton, 2005 ³³³	NOF model including femoral neck BMD and	Yes	Probably yes	NR	NR
	clinical risk factors (personal Fx history, FHx,				
	low BWT, smoking status)				
Miller, 2002 ¹⁴³	Heel SXR, heel QUS, forearm DXA, finger	Yes	NA	Peripheral bone	NR
	DXA; NORA study			densitometry done in	
2.00				similar ways for all	
Morin, 2009 ¹⁰³	Body weight, BMI, OST	Yes	No information	Unclear whether data for	NR
				OST (age, weight) was	
				collected before fracture	
400				for all participants	
Nguyen, 2004 ¹²⁰	QUS, DOES	Yes	NA	QUS done in similar ways	NR
150				for all	
Rubin, 2013 ¹⁵³	FRAX (no BMD), OST, ORAI, OSIRIS,	Yes	No information	NR	NR
	SCORE, age alone				
Stewart, 2006 ¹¹⁹	DXA	Yes	Yes	NR	NR
van Geel,	FRAX, Garvan Fracture Risk Calculator	Probably yes	Probably yes	NR	NR
2014 ¹⁴⁹					

Abbreviations: BMD= bone mineral density; BMI = body mass index; BUA = broadband attenuation; BWT = body weight; CAROC = Canadian Association of Radiologists and Osteoporosis Canada; DOES = Dubbo Osteoporosis Epidemiology Study; DXA = dual energy x-ray absorptiometry; FHx = fracture history; FNBMD = femoral neck BMD; fnHIP = femoral neck of hip; FNplus = femoral neck plus; FRAX = Fracture Risk Assessment tool; FRC = Fracture Risk Calculator; Fx = fracture; KQ = key question; NOF = National Osteoporosis Foundation; NORA = National Osteoporosis Risk Assessment; NR = not reported; ORAI = Osteoporosis Risk Assessment tool; QUI = ultrasound index; QUS = quantitative ultrasound; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; SOS = speed of sound; SXR = single x-ray absorptiometry; TBS = trabecular bone score; tHIP = total hip; US = United States; USPSTF = United States Preventive Services Task Force; VAL = validity.

	Outcome	Outcome Defined and		
	Definition	Determined in Similar Way	Outcome Defined and Determined in Similar	Outcome Determined Without
Author, Year	Prespecified?	for All?	Way to Those in Development Model?	Knowledge of Predictor Information?
Ahmed, 2014 ¹⁵⁴	Yes	Yes	Yes	No information
Azagra, 2011 ¹⁸¹	Yes	Yes	Yes	Yes
Bauer, 2007 ¹²⁰	Yes	Yes	Yes	No information
Berry, 2013 ¹⁹⁵	Yes	Yes	Yes	No information
Chan, 2012 ¹²⁵	Yes	Yes	Probably yes	No information
Chan, 2013 ¹⁹¹	Yes	Yes	Probably yes	No information
Crandall, 201458	Yes	Yes	No for OST and SCORE, yes for FRAX	No information
Hans, 2011 ¹²²	Yes	Yes	NA-NOT VAL	Yes

	Outcome	Outcome Defined and		
Author Veer	Definition	Determined in Similar Way	Outcome Defined and Determined in Similar	Outcome Determined Without
Author, Year	Prespecified?	for All?	way to Those in Development Model?	Knowledge of Predictor Information?
Hillier, 2007 ¹⁹⁴	Yes	Yes	NA-NOT VAL	Yes
Hippisley-Cox, 2012 ¹⁵⁵	Yes	Yes	Yes	Yes
lki, 2014 ¹²¹	Yes	Yes	NA-NOT VAL	Yes
lki, 2015 ¹⁵⁷	Yes	Yes	Yes	No information
Kalvesten, 2016 ¹⁴²	Yes	Yes	Yes	No information
Kanis, 2007 ³²	No information	No	Probably yes	No information
Kwok, 2012 ¹²⁴	Yes	Yes	NA-NOT VAL	Yes
Leslie, 2010 ¹⁵⁶	Yes	Yes	No information	Probably yes
Leslie, 2012 ¹⁵²	Yes	Yes	No information	Probably yes
Leslie, 2012 ¹⁴⁸	Yes	Yes	No information	Probably yes
Leslie, 2013 ¹²³	Yes	Yes	Yes	Yes
Lo, 2011 ¹⁷⁸	Yes	Yes	Probably yes	No information
Lundin, 2015 ¹⁴¹	Yes	Yes	Yes	No Information
Melton, 2005 ³³³	Yes	Yes	Probably no	Yes
Miller, 2002 ¹⁴³	Yes	Yes	Yes	Yes
Morin, 2009 ¹⁰³	Yes	Yes	No information	No information
Nguyen, 2004 ¹²⁶	Yes	Yes	Yes	Yes
Rubin, 2013 ¹⁵³	Yes	Yes	No information	Yes
Stewart, 2006 ¹¹⁹	Yes	Yes	Yes	No information
van Geel, 2014 ¹⁴⁹	Yes	Yes	Probably yes	Yes

Abbreviations: FRAX = Fracture Risk Assessment tool; KQ = key question; OST = osteoporosis self-assessment tool; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; VAL = validity.

	Risk of Bias Introduced by		
Author, Year	Outcome or Its Determination?	Justification of Bias Rating	Comments
Ahmed, 2014 ¹⁵⁴	Low	NR	NR
Azagra, 2011 ¹⁸¹	Low	NR	NR
Bauer, 2007 ¹²⁰	Low	NR	NR
Berry, 2013 ¹⁹⁵	Low	NR	NR
Chan, 2012 ¹²⁵	Low	NR	NR
Chan, 2013 ¹⁹¹	Low	NR	NR
Crandall, 2014 ⁵⁸	Unclear	NR	Both OST and SCORE were initially developed and validated for prediction of low BMD; in this study they were used to predict fracture. It's unclear what impact this will have.
Hans, 2011 ¹²²	Low	NR	NR
Hillier, 2007 ¹⁹⁴	Low	NR	NR
Hippisley-Cox, 2012 ¹⁵⁵	Low	NR	NR
lki, 2014 ¹²¹	Low	NR	NR

	Risk of Bias Introduced by		
Author, Year	Outcome or Its Determination?	Justification of Bias Rating	Comments
lki, 2015 ¹⁵⁷	Low	Fractures were confirmed	None
Kalvesten, 2016 ¹⁴²	Low	Confirmation of all self-reported fractures.	NR
		Outcomes censored at 10 years.	
Kanis, 2007 ³²	Unclear	Fracture ascertainment was by self-report in	NR
		some cohorts and by medical record or radiology	
		report confirmation in other cohorts	
Kwok, 2012 ¹²⁴	Low	Did not exclude traumatic fractures; would have to	NR
		use just number of fragility fractures	
Leslie, 2010 ¹⁵⁶	Low	NR	NR
Leslie, 2012 ¹⁵²	Low	NR	NR
Leslie, 2012 ¹⁴⁸	Low	NR	NR
Leslie, 2013 ¹²³	Low	NR	NR
Lo, 2011 ¹⁷⁸	Low	NR	NR
Lundin, 2015 ¹⁴¹	Low	Identification of fractures from population-based	None
		claims/diagnosis data	
Melton, 2005 ³³³	High	13.3% of fractures were due to severe trauma,	NR
	-	another 18.3% had unclear cause	
Miller, 2002 ¹⁴³	High	Self-reported factures	NR
Morin, 2009 ¹⁰³	Unclear	Unclear whether OST variables collected for all	NR
		women before fracture outcome	
Nguyen, 2004 ¹²⁶	Low	NR	NR
Rubin, 2013 ¹⁵³	Low	NR	NR
Stewart, 2006 ¹¹⁹	Low	NR	NR
van Geel, 2014 ¹⁴⁹	Low	NR	NR

Abbreviations: BMD= bone mineral density; KQ = key question; NR = not reported; OST = osteoporosis self-assessment tool; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool.

			Appropriate Time Interval	
		Reasonable Number of	Between Predictor Assessment	All Enrolled Participants
Author, Year	Missing Data on Predictors and Outcomes?	Outcome Events?	and Outcome Determination?	Included in Analysis?
Ahmed, 2014 ¹⁵⁴	Subjects with missing data were excluded	Yes	Yes for 5 years, no for 10 years	Yes
Azagra, 2011 ¹⁸¹	Not clear how missing data handled	Yes	Yes	No
Bauer, 2007 ¹²⁰	No missing data	Yes	Yes	Yes
Berry, 2013 ¹⁹⁵	No data on parental history of hip fracture, set to	Yes	Yes	Yes
	"no"			
Chan, 2012 ¹²⁵	No missing data described	Yes	Yes	Probably no
Chan, 2013 ¹⁹¹	No missing data described	Yes	Yes	Probably no
Crandall, 2014 ⁵⁸	Missing data set to "not present". Most common	No information	Yes	Yes
	predictor missing was parental hip Fx history.			
Hans, 2011 ¹²²	N eligible NR (>34,000, see comments)	Yes	Probably yes	Probably yes
	N included 29,407			

			Appropriate Time Interval	
Author, Year	Missing Data on Predictors and Outcomes?	Reasonable Number of Outcome Events?	Between Predictor Assessment and Outcome Determination?	All Enrolled Participants Included in Analysis?
Hillier, 2007 ¹⁹⁴	9704 enrolled in SOF, 8141 women had followup	Yes	Yes	Probably no
	(93%), 4124 had repeat BMD measurement,			
	excluded patients with incident hip or nonspine			
	fractures between BMD measurement (72,513			
	respectively)			
Hippisley-Cox,	Did not report amount of missing data (particularly	Yes	Probably yes	No
2012.00	for BMI, smoking status, alcohol intake), though			
	detabases 12,000,000 potients but only 4,726,046			
	used for development and validation cohorts			
Iki 2014 ¹²¹		Ves	Vec	Probably yes
1Ki, 2014	665 analyzed	103		Tiobably yes
	112 lost to followup			
	4 unassessable VFA			
	8 developed disease affecting bone metabolism			
lki, 2015 ¹⁵⁷	No information about the men excluded from the	Probably No	Probably No	Probably Yes
	analysis			
Kalvesten, 2016 ¹⁴²	Only subjects with complete data were included in	Yes	Yes	Probably No
22	analysis			
Kanis, 2007 ³²	Sensitivity analyses used to assess impact of	Probably yes	Yes	No information
16l. 004.0 ¹²⁴	missing predictor information	Deskahlussa	Deskakkuuss	NI-
KWOK, 2012	IN (eligible)=2000, N (analyzed)=1921, those	Probably yes	Probably yes	NO
	Inissing QUS of DXA readings excluded, invalid			
Leslie 2010 ¹⁵⁶		Vec	Ves	Vec
Leslie, 2010	Unclear	Yes	Ves	Yes
Leslie, 2012 ¹⁴⁸	Unclear	Yes	Yes	Yes
Leslie, 2013 ¹²³	Not reported	Yes	Yes	Probably yes
$10,2011^{178}$	Women with missing data on race/ethnicity and	Yes	Yes	Yes
20, 2011	BMD were excluded from analysis			100
Lundin, 2015 ¹⁴¹	Missing data for 5 participants	Yes	Yes	Yes
Melton, 2005 ³³³	1,479 approached, 1,315 eligible, 655 consented,	Probably yes	Yes	No
	only 393 included in analysis - unclear why			
Miller, 2002 ¹⁴³	Not reported	Yes	No	Unclear
Morin, 2009 ¹⁰³	Not reported	Yes	Yes	Unclear
Nguyen, 2004 ¹²⁶	Not reported	Yes	Unclear	Unclear
Rubin, 2013 ¹⁵³	Eligible: 5000	Probably yes	Probably no	Yes
	Analysis: 3614			
	Exclusion: 334			
	Missing questionnaire data, 246 diagnosed with/			
1	Itreated for OP, reported "near complete followup"			

Author, Year	Missing Data on Predictors and Outcomes?	Reasonable Number of Outcome Events?	Appropriate Time Interval Between Predictor Assessment and Outcome Determination?	All Enrolled Participants Included in Analysis?
	in registry			
Stewart, 2006 ¹¹⁹	Nonresponse analysis done	Yes	Yes	Yes
van Geel, 2014 ¹⁴⁹	Random sample: 1686, analysis sample: 506 Missing: no coop with MD (272), no coop with patient (448), untraceable/deceased (207), age <60 years (110)	Probably yes	Probably no	Yes

Abbreviations: BMD= bone mineral density; BMI = body mass index; DXA = dual energy x-ray absorptiometry; KQ = key question; MD = medical doctor; N = number; NR = not reported; OP = osteoporosis; QUS = quantitative ultrasound; SOF = study of osteoporotic fractures; VFA = vertebral fracture assessment.

	Participants With Missing	Risk of Bias Introduced by Sample Size or Participant		
Author, Year	Appropriately?	Flow?	Justification of Bias Rating	Comments
Ahmed, 2014 ¹⁵⁴	Yes	Low for 5 yr outcomes;	Inadequate duration of follow-up for 10 year risk	NR
		unclear for 10 yr outcomes	predictions.	
Azagra, 2011 ¹⁸¹	No information	Unclear	Unclear eligible N	NR
Bauer, 2007 ¹²⁰	Yes	Low	NR	No mention of missing data
Berry, 2013 ¹⁹⁵	Yes	Low	NR	NR
Chan, 2012 ¹²⁵	Yes	Unclear	Some members of the cohort began before the use of QUS was introduced, so they would not be eligible. It's still not clear why of the 3678 eligible in the cohort, < 1,000 comprised the analytic sample	NR
Chan, 2013 ¹⁹¹	Yes	Unclear	NR	NR
Crandall, 2014 ⁵⁸	Yes	Low	NR	NR
Hans, 2011 ¹²²	Probably yes	Low	NR	No mention of missing data Only says matching of personal identifier information with the administrative data repository in over 34,000 DXA patients was achieved in over 99%
Hillier, 2007 ¹⁹⁴	Yes	Low	NR	NR
Hippisley-Cox, 2012 ¹⁵⁵	Probably yes	Unclear	Unclear exclusion criteria	Over 13 million in database, only 4.7 million used
lki, 2014 ¹²¹	Probably yes	Low	NR	NR
lki, 2015 ¹⁵⁷	probably yes	Unclear	Follow-up was only 4.5 yrs, but using a 10 year risk prediction. 93% of those enrolled were included in the analysis.	NR

	Participants With Missing	Risk of Bias Introduced by		
Author, Year	Appropriately?	Flow?	Justification of Bias Rating	Comments
Kalvesten, 2016 ¹⁴²	probably yes	unclear	The entire study cohort was about 9000, but not	NR
			all had complete data for calculation of FRAX and	
			DXA measurement. Thus, analysis restricted to	
			those with complete data, those included were	
			younger and a little healthier and had lower	
			prevalence of prior fracture; though BMD	
			measures were similar.	
Kanis, 2007 ³²	Probably yes	Low	NR	NR
Kwok, 2012 ¹²⁴	Probably yes	Low	2.5% excluded for missing data (small)	NR
Leslie, 2010 ¹⁵⁶	No information	Unclear	NR	NR
Leslie, 2012 ¹⁵²	No information	Unclear	NR	NR
Leslie, 2012 ¹⁴⁸	No information	Unclear	NR	NR
Leslie, 2013 ¹²³	Probably yes	Low	99% accuracy and completeness	NR
Lo, 2011 ¹⁷⁸	Probably yes	Low	NR	NR
Lundin, 2015 ¹⁴¹	yes	low	No concerns	NR
Melton, 2005 ³³³	No information	High	Only about 50% of eligible patietns consented,	NR
			and of those only 2/3rd included for analysis	
Miller, 2002 ¹⁴³	No information	Unclear	Unclear whether followup window is sufficient	NR
Morin, 2009 ¹⁰³	No information	Unclear	Unclear what proportion of cohort did not have	NR
			information on predictors	
Nguyen, 2004 ¹²⁶	No information	Unclear	The average time between imaging and fractures	NR
			is unclear	
Rubin, 2013 ¹⁵³	No information	Unclear	Only 3 year follow-up while FRAX predicts 10	NR
			year fracture for women over 40 years old	
Stewart, 2006 ¹¹⁹	Probably yes	Low	NR	NR
van Geel, 2014 ¹⁴⁹	Probably yes	Unclear	FRAX and Garvan predict 10 year risk - follow-up	NR
			only for 5 years. Likely underestimates risk. 124	
			of 630 patients lost to follow-up	

Abbreviations: DXA = dual energy x-ray absorptiometry; FRAX = Fracture Risk Assessment tool; KQ = key question; N = number; NR = not reported; QUS = quantitative ultrasound.

	Nonbinary Predictors	Complexities in Data	Model Recalibrated or Likely Not	Risk of Bias Introduced by
Author, Year	Handled Appropriately?	Accounted for Appropriately?	Needed?	Analysis?
Ahmed, 2014 ¹⁵⁴	Probably yes	No information	Probably no	Unclear for AUC
				High for NRIs at both 5 and 10 yrs.
Azagra, 2011 ¹⁸¹	Yes	Probably yes	Yes	Low
Bauer, 2007 ¹²⁰	Yes	No information	No information	Low
Berry, 2013 ¹⁹⁵	Yes	No information	Probably yes	Low
Chan, 2012 ¹²⁵	Probably yes	No information	Yes	Varies by outcome
Chan, 2013 ¹⁹¹	Probably yes	No information	Yes	Varies by outcome

	Nonbinary Predictors	Complexities in Data	Model Recalibrated or Likely Not	Risk of Bias Introduced by
Author, Year	Handled Appropriately?	Accounted for Appropriately?	Needed?	Analysis?
Crandall, 2014 ⁵⁸	Yes	No information	No information	Unclear
Hans, 2011 ¹²²	Yes	Probably yes	Probably yes	Low
Hillier, 2007 ¹⁹⁴	Probably yes	Yes	Yes	Low
Hippisley-Cox, 2012 ¹⁵⁵	Probably yes	Yes	Yes	Low
lki, 2014 ¹²¹	Yes	Probably yes	Yes	Low
lki, 2015 ¹⁵⁷	Yes	no information	yes	low
Kalvesten, 2016 ¹⁴²	yes	no information	yes	low
Kanis, 2007 ³²	Yes	Probably yes	Probably yes	Low
Kwok, 2012 ¹²⁴	Yes	Yes	NA-NOT VAL	Low
Leslie, 2010 ¹⁵⁶	Yes	No information	No	Low
Leslie, 2012 ¹⁵²	Yes	No information	No	Low
Leslie, 2012 ¹⁴⁸	Yes	No information	No	Low
Leslie, 2013 ¹²³	Yes	No information	No	Low
Lo, 2011 ¹⁷⁸	Yes	No information	Probably yes	Low
Lundin, 2015 ¹⁴¹	yes	no	yes	low
Melton, 2005 ³³³	Yes	Probably yes	Yes	Low
Miller, 2002 ¹⁴³	Yes	No information	No	Low
Morin, 2009 ¹⁰³	Yes	No information	No	Low
Nguyen, 2004 ¹²⁶	Yes	No information	No	Low
Rubin, 2013 ¹⁵³	Yes	Yes	Yes	Low
Stewart, 2006 ¹¹⁹	NA	Probably no	Na	Low
van Geel, 2014 ¹⁴⁹	Yes	Probably yes	Yes	Low

Abbreviations: AUC= area under the curve; KQ = key question; NA = not applicable; NRI = net reclassification improvement; VAL = validity.

			Overall Judgement	
Author, Year	Justification of Bias Rating	Comments	of Risk of Bias	Justification of Bias Rating
Ahmed, 2014 ¹⁵⁴	Except for perhaps hip fx in women at 5 yrs, calibration plots suggest underestimation of risk at lower risk levels, and overestimation of risk at higher risk levels.	The NRI thresholds used were based on quintiles of the sample distribution of fracture risks. Thresholds used for NRI should be based on sensible and accepted thresholds to define risk groups.	Unclear for AUCs, High for NRIs	NRI risk thresholds not based on sensible/acceptable categories to define risk, they were based on sample distribution. Inadequate followup for 10 year risk prediction.
Azagra, 2011 ¹⁸¹	NR	NR	Unclear	Some concerns about selection bias due to source of study population and attrition of subjects over period of followup.
Bauer, 2007 ¹²⁰	NR	NR	Low	NR
Berry, 2013 ¹⁹⁵	NR	NR	Low	NR

			Overall Judgement	
Author, Year	Justification of Bias Rating	Comments	of Risk of Bias	Justification of Bias Rating
Chan, 2012 ¹²⁵	Low for AUC, High for NRI	The NRI thresholds used were based on tertiles of the sample distribution. Thresholds used for NRI should be based on sensible and accepted thresholds to define risk groups.	Varies by outcome	Unclear for AUC, High For NRI
Chan, 2013 ¹⁹¹	Low for AUC, High for NRI	The NRI thresholds used were based on tertiles of the sample distribution. Thresholds used for NRI should be based on sensible and accepted thresholds to define risk groups.	High	Spectrum bias introducted by subgroup analysis.
Crandall, 2014 ⁵⁸	NR	NR	Unclear	OST and SCORE were not devleoped and validated to predict fractures; they were developed and validated to predict low BMD/osteoporosis.
Hans, 2011 ¹²²	NR	If multiple DXA scans, just took first one	Low	NR
Hillier, 2007 ¹⁹⁴	Removed patients with incident fractures.	NR	Low	NR
Hippisley-Cox, 2012 ¹⁵⁵	NR	NR	Unclear	Unclear because of partipant flow
lki, 2014 ¹²¹	NR	NR	Low	NR
lki, 2015 ¹⁵⁷	Evidence of good calibration	None	unclear	Length of follow-up only 4.5 years for a 10-year prediction.
Kalvesten, 2016 ¹⁴²	NR	None	low	No serious risks of bias. Eligible Outcomes include the discrimination of DXA for predicting fracture, and FRAX (without DXA BMD) for predicting fracture. The diagnostic performance of FRAX for predicting osteoporosis is not eligible because there was 2.1 years between FRAX assessment and DXA measurement. For same reason FRAX w/BMD not eligible as well.
Kanis, 2007 ³²	NR	NR	Low	NR
Kwok, 2012 ¹²⁴	NR	NR	Low	Did not exclude traumatic fractures in definition of "all fractures" but we can just take the data for fragility fractures)
Leslie, 2010 ¹⁵⁶	NR	NR	Unclear	Effect of adjustment to final risk category unclear
Leslie, 2012 ¹⁵²	Model demonstrates the effect of using various non-femoral neck BMD measures	NR	Unclear	Effect of adjustments of absence of data on parental hip fractures unclear
Leslie, 2012 ¹⁴⁸	Model demonstrates the effect of not using BMD	NR	Unclear	Effect of adjustments of absence of data on parental hip fractures unclear

			Overall Judgement	
Author, Year	Justification of Bias Rating	Comments	of Risk of Bias	Justification of Bias Rating
Leslie, 2013 ¹²³	NR	NR	Low	NR
Lo, 2011 ¹⁷⁸	NR	NR	Unclear	Selection bias and spectrum bias due to how cohort was assembled.
Lundin, 2015 ¹⁴¹	Most of the items are NA.	None	low	No serious risks of bias
Melton, 2005 ³³³	For patients with multiple fractures, only included the first fracture, but unclear if different types of fractures in same person or same types of fracture	NR	High	Due to sampling, definition of outcome
Miller, 2002 ¹⁴³	NR	NR	High	Self-reported fracture outcomes
Morin, 2009 ¹⁰³	NR	NR	Unclear	Unclear whether data for OST (age, weight) was collected before fracture for all participants, unclear what proportion of cohort did not have information on predictors
Nguyen, 2004 ¹²⁶	NR	NR	Unclear	Proportion and management of missing data unclear
Rubin, 2013 ¹⁵³	NR	NR	Unclear	For short follow-up duration to predict 10 year risk.
Stewart, 2006 ¹¹⁹	NR	NR	Low	NR
van Geel, 2014 ¹⁴⁹	NR	NR	Unclear	Follow-up period shorter than instrument

Abbreviations: AUC= area under the curve; BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; NR = not reported; NRI = net reclassification improvement; OST = osteoporosis self-assessment tool; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; Yrs = years

Appendix D Table 6. KQ4 and KQ5 systematic review risk of bias assessments

Author, Year	Interventions and Comparators	Adhered to Predefined Objectives and Eligibility Criteria?	Eligibility Criteria Appropriate for Review Question?	Eligibility Criteria Unambiguous?
Crandall et al,	Treatments to prevent fractures vs.	Yes	Yes	Yes
2012				

Abbreviations: KQ = key question; vs= versus

		Appropriate Restrictions in	Concerns Regarding	Searched an Appropriate Range of
	Appropriate Restrictions in Eligibility	Eligibility Criteria Based on	Specification of Study	Databases/Electronic Sources for
Author, Year	Criteria Based on Study Characteristics?	Sources of Information?	Eligibility Criteria?	Published and Unpublished Reports?
Crandall et al,	Yes	Yes	Low	Yes
2012 ²²¹				

Abbreviations: KQ = key question

	Used Methods in Addition to Database	Search Likely to Retrieve as Many	Appropriate Restrictions Based on	Minimized Error in
Author, Year	Searching to Identify Relevant Reports?	Eligible Studies as Possible?	Date, Publication Format, or Language?	Selection of Studies?
Crandall et al,	Yes	Yes	Probably yes	Yes
2012 ²²¹				

Abbreviations: KQ = key question

	Concerns Regarding Methods Used to	Minimized Error in Data	Sufficient Study Characteristics for Authors	All Relevant Study
Author, Year	Identify and/or Select Studies?	Collection?	and Readers to Interpret the Results?	Results Collected?
Crandall et al, 2012 ²²¹	Low	No information	Yes	Yes

Abbreviations: KQ = key question

	Risk of Bias Formally Assessed	Minimized Error in Risk of Bias	Concerns Regarding Methods Used to	Synthesis Includes All
Author, Year	Using an Appropriate Tool?	Assessment?	Collect Data and Appraise Studies?	Studies That It Should?
Crandall et al,	Yes	No information	Low	Yes
2012 ²²¹				

Abbreviations: KQ = key question

	Predefined Analyses Reported	Synthesis Appropriate Given the Degree of Similarity in the Research	Between-Study Variation	Findings
Author, Year	or Departures Explained?	Questions, Study Designs, and Outcomes Across Included Studies?	Minimal or Addressed?	Robust?
Crandall et al,	Yes	Yes	Yes	Yes
2012 ²²¹				I
A11.	VO 1 C			

Abbreviations: KQ = key question

	Biases in Primary	Concerns	Interpretation of Findings	Relevance of Identified Studies	Avoids Emphasizing	Risk of
	Studies Minimal or	Regarding the	Address All Concerns	to Research Question	Results on Basis of	Bias in
Author, Year	Addressed?	Synthesis?	Identified in Domains 1–4?	Appropriately Considered?	Statistical Significance?	Review
Crandall et al,	Yes	Unclear or some	Yes	Yes	Yes	Low
2012 ²²¹		concerns				

Abbreviations: KQ = key question

			Method of	Allocation	Baseline Imbalances That Suggest a
Author, Year	Interventions and Comparators	Study Design	Adequate?	Adequate?	Randomization?
Abrahamsen, 2010 ²⁷¹	G1: Alendronate G2: Untreated	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
Adachi, 2009 ²⁴⁸	G1: Alendronate 10 mg/day (generic preparation) G2: Placebo	RCT parallel	Yes	Yes	Probably yes
Barrett-Connor, 2002 ³⁰⁸	G1: Raloxifene (60 mg/day) G2: Raloxifene (120 mg/day) G2: Placebo	Post-hoc or subgroup analysis of RCT	Yes	Yes	No
Barrett-Connor, 2004 ³⁰⁷	G1: Raloxifene (60 or 120 mg/day) G2: Placebo	RCT parallel	Yes	Yes	No
Bone, 2000 ²¹⁶	G1: Alendonate 10 mg/day G2: Conjugage equine estrogen 0.625 mg/day G3: Alendronate + CEE G4: Placebo	RCT parallel	Yes	No information	No
Bone, 2008 ²³⁷	G1: Denosumab G2: Placebo	RCT parallel	Probably yes	Probably yes	No
Boonen, 2012 ²¹⁸	G1: Intravenous infusion of zoledronic acid (5 mg) for 12 months G2: Placebo	RCT parallel	Yes	Yes	No
Cartsos, 2008 ²⁹⁵	Intervention: Bisphosphonate use Comparator: No bisphosphonate use	Case-control (how they described)	NA-not an RCT	NA-not an RCT	NA-not an RCT
Chapurlat, 2013 ²⁸²	G1: Ibandronate G2: Placebo	RCT parallel	Probably yes	Yes	No
Cryer, 2005 ²⁵⁰	G1: Alendronate 70 mg weekly G2: Placebo	RCT parallel	Yes	Yes	No
Cummings, 1998 ²⁰⁰ Quandt, 2005 ²⁰⁵ Bauer, 2000 ²⁴⁹	G1: Alendronate 5 mg/day for 2 years, then 10 mg/day for 3 years G2: Placebo	RCT parallel	Yes	Yes	No
Cummings, 2009 ²³⁸ ; Watts, 2012 ³¹¹ ; McClung, 2012 ²⁴² ; Boonen, 2011 ²⁴³	G1: Denosumab G2: Placebo	RCT parallel	Probably yes	Probably yes	No
Eisman, 2004 ²⁵³	G1: Alendronate 70 mg weekly G2: Placebo	RCT parallel	Yes	Yes	No
Fogelman, 2000 ²²⁶	G1: Risedronate 5 mg/day x 24 months G2: Placebo	RCT parallel	No information	No information	No
Greenspan, 2002 ²⁵²	G1: Alendronate 70 mg weekly G2: Placebo	RCT parallel	No information	No information	No

Author, Year	Interventions and Comparators	Study Design	Method of Randomization Adequate?	Allocation Concealment Adequate?	Baseline Imbalances That Suggest a Problem With Randomization?
Greenspan, 2003 ²⁴⁷	G1: Alendonate 10 mg/day G2: Conjugated equine estrogen 0.625 mg/day with or without medroxyprogesterone 2.5 mg/day based on uterus presence G3: Alendronate + CEE G4: Placebo	RCT parallel	Yes	Yes	No
Grey, 2010 ²⁷²	G1: Zolendronate 5 mg IV x 1 dose G2: Placebo	RCT parallel	Yes	Yes	Probably yes
Hosking, 2003 ²⁰²	G1: Risedronate 5 mg/day x 3 months G2: Alendronate 70 mg weekly x 3 months G3: Placebo	RCT parallel	Yes	Yes	No
Hosking, 2003 ²⁰²	G1: Alendronate 70 mg weekly G2: Risendronate 5 mg/day G3: Placebo	RCT parallel	Yes	Yes	No
Johnell, 2002 ²⁴⁴	RLX 60, placebo	RCT parallel	Yes	Yes	Probably no
Keech, 2005 ³⁰⁹	G1: Raloxifene 60 mg/day G2: Placebo	Post-hoc or subgroup analysis of RCT	Yes	Yes	No
Kung, 2000 ³³⁴	G1: Alendronate 10 mg/day G2: Placebo	RCT parallel	No information	No information	No
Lasco, 2011 ²⁴⁰	G1: Teriparatide + calcium + vitamin D G2: Calcium + vitamin D	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
Lewiecki, 2007 ²³⁶	G1: Denosumab (included varying dosages over 3 and 6 months) G2: Alendronate G3: Placebo	RCT parallel	Probably yes	Probably yes	No
McCloskey, 2012 ³³⁵	G1: 60 mg denosumab SC q 6 months for 36 months G2: Placebo	RCT parallel	No information	No information	No
McClung, 2004 ²⁸³	G1: 0.5 mg ibandronate daily G2: 1.0 mg ibandronate daily G3: 2.5 mg ibandronate daily G4: Placebo	RCT parallel	No information	No information	No
McClung, 2006 ³⁰³	G1: Lasofoxifene 0.25 mg/day G2: Lasofoxifene 1.0 mg/day G3: Raloxifene 60 mg/day G4: Placebo	RCT parallel	No information	No information	No

Author, Year	Interventions and Comparators	Study Design	Method of Randomization Adequate?	Allocation Concealment Adequate?	Baseline Imbalances That Suggest a Problem With Randomization?
McClung, 2006 ²⁰⁹	G1: Denosumab 6 mg g 3 months	RCT parallel	No information	No information	No
5, 5,	G2: Denosumab 14 mg g 3 months				-
	G3: Denosumab 30 mg g 3 months				
	G4: Denosumab 14 mg g 6 months				
	G5: Denosumab 60 mg g 6 months				
	G6: Denosumab 100 mg g 6 months				
	G7: Denosumab 210 mg q 6 months				
	G8: Alendronate 70 mg weekly				
	G9: Placebo				
McClung, 2009 ²⁷³	G1: Zoledronic acid 5 mg IV q 12 months for 2 doses	RCT parallel	Yes	Yes	No
	G2: Zoledronic acic 5 mg IV once and placebo at 12 months				
	G3: Placebo at baseline and 12 months				
Meunier, 1999 ³⁰⁴	Raloxifene 60 mg, 150 mg, or placebo	RCT parallel	No information	Probably yes	No
Miller, 2008 ³⁰⁵	G1: Bazedoxifene 10 mg	RCT parallel	Yes	Yes	No
	G2: Bazedoxifene 20 mg				
	G3: Bazedoxifene 40 mg				
	G4: Raloxifene 60 mg				
206	G5: Placebo				
Morii, 2003 ³⁰⁰	Raloxifene, 2 dosage amounts vs. placebo	RCT parallel	No information	No information	Probably no
Murphy, 2001 ²⁷⁰	G1: MK-677 25 mg/day	RCT parallel	Yes	Yes	No
	G2: Alendronate 10 mg/day				
	G3: MK-677 and alendronate				
	G4: Placebo				
	**G2 and G4 data only for KQ5				
Nakamura, 2012	G1: Denosumab 14 mg	RCT parallel	No information	No information	No
	G2: Denosumab 60 mg				
	G3: Denosumab 100 mg				
o "	G4: Placebo	DOT			
Orwoll, 2003-00	G1: 20 µg teriparatide: 151	RCT parallel	Yes	Yes	NO
	G2: 40 µg teriparatide: 139				
D : 0000 ²⁹⁶	G3: Placebo: 147				
Pazianas, 2008	Intervention: Oral bisphosphate use	Case-control (how	NA-not an RCT	NA-not an RCT	NA-not an RCT
D 4000 ²⁸⁴	Comparator: No bisphosphate use	they described)			
Ravn, 1996-5	G1: 0.25 mg ibandronate daily	RCT parallel	No information	No information	NO
	G2: 0.5 mg ibandronate daily				
	G3: 1.0 mg ibandronate dally				
	G4: 2.5 mg ibandronate daily				
	Go: Disasta				
			1	1	

					Baseline Imbalances
			Method of	Allocation	That Suggest a
Author Year	Interventions and Comparators	Study Design		Adequate?	Randomization?
Reginster, 2005 ²⁸⁵	G1: 50 mg ibandronate monthly for 1 month, followed by 50	RCT parallel	No information	No information	Yes
,,,	mg monthly for 2 months for half the sample and 100 mg				
	monthly for 2 months for the other half				
	G2: 100 mg ibandronate monthly for 3 months				
	G3: 150 mg ibandronate monthly for 3 months				
	G4: Placebo for 3 months				
Rhee, 2012 ³³⁷	G1: Bisphosphonate use	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
	G2: Nonbisphosphonate use				
Riis, 2001 ²⁰⁰	G1: 2.5 mg ibandronate daily continuous therapy	RCT parallel	No information	No information	No
	G2: 20 mg ibandronate intermittent cyclical therapy				
Samalaan 2014 ³³⁸	G3: Placebo	Doot hoo or	No information	No information	Drobobly no
Sameison, 2014	G1. 60 mg denosumad SC q 6 months for 36 months	FUSI-HUC UI	NO INIOMALION	NO INFORMATION	FTODADIY TIO
		of RCT			
Shiraki, 2003 ²⁸¹	G1: Risedronate 5 mg/day x 36 weeks	RCT cluster	No information	No information	No
C	G2: Placebo				
Simon, 2013 ³³⁹	G1: 60 mg Denosumab SC q 6 mos for 36 mos	RCT parallel	No information	No information	No
	G2: Placebo	-			
Sontag, 2010 ²⁴¹	G1: Raloxifene in women without baseline prevalent vertebral	Post-hoc or	Yes	Yes	No
	fracture	subgroup analysis			
	G2: Placebo in women without baseline prevalent vertebral	of RCT			
0	fracture	On an ann tual			
Sorensen, 2008	C2: Pleasha	Case-control	NA-not an RCT	NA-not an RCT	NA-not an RCT
	Study examined all hisphosphonates used in Danish				
	prescription database predominently alendronate etidronate				
	Only 5 control patients used risendronate. No patients used				
	zolendronic acid.				
Tanko, 2003 ²⁸⁷	G1: 5 mg ibandronate weekly	RCT parallel	No information	No information	No
	G2: 10 mg ibandronate weekly				
	G3: 20 mg ibandronate weekly				
200	G4: Placebo				
Thiebaud, 1997 ²⁰⁰	G1: 2.5 mg ibandronate IV every 3 months	RCT parallel	No information	No information	No
	G2: 0.5 mg ibandronate IV every 3 months				
	G4: 2 mg ibandronate IV every 3 months				
	IG5: Placeho				
	G4: 2 mg ibandronate IV every 3 months G5: Placebo				

Author, Year	Interventions and Comparators	Study Design	Method of Randomization Adequate?	Allocation Concealment Adequate?	Baseline Imbalances That Suggest a Problem With Randomization?
Tucci, 1996 ²⁵¹	G1: Alemg/ndronate 5 mg daily G2: Alendronate 10 mg daily G3: Alendronate 20 mg/day for 2 years then 5 mg/day for 1 year G4: Placebo	RCT parallel	Yes	Yes	No
Van Staa, 1997 ³⁴⁰	G1: Cyclinical Etidronate (1 or more cyclical etidronate prescriptions) G2: Nonosteoporosis control (as recorded in their medical records and no bisphosphonate use)	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
Vestergaard, 2010 ³⁴¹	Gastric and esophagus events	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
Vestergaard, 2011 ³⁴²	Stroke	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
Vestergaard, 2012 ³⁴³	Cardiac and atherosclerosis	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
Vestergaard, 2011 ³⁴⁴	Femoral shaft and subtrochanteric fractures	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT
Vestergaard, 2012 ³⁴⁵	Jaw disease	Cohort study	NA-not an RCT	NA-not an RCT	NA-not an RCT

Abbreviations: CEE = conjugated equine estrogen; G = group; KQ = key question; mg = milligram; mg/d = milligram per day; mo = month; NA = not applicable; RCT = randomized controlled trials.

			Adjustment	Controls Sampled From		
	Study Selection	Start of Followup	Techniques Used	Population That Gave		
	Unrelated to	and Intervention	to Correct for	Rise to Cases, or Using	Bias From	
	Intervention or	Coincide for Most	Presence of	Another Method That	Randomization	
Author, Year	Outcome?	Subjects?	Selection Biases?	Avoids Selection Bias?	or Selection?	Comments
Abrahamsen, 2010 ²⁷¹	Probably no	Yes	Yes	NA-not a case-control	Probably no	Women treated with alendronate by definition have increased risk of fracture, prompting their treatment with the drug.
Adachi, 2009 ²⁴⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably yes	Alendronate group had greater proportion of patients with history of UGI disease, active UGI disease, esophogeal disease, no statistical comparison is given, but the differences are large enough to warrant some concern for risk of bias as it does not appear that these differences were corrected for in the analysis.

			Adjustment	Controls Sampled From		
	Study Selection	Start of Followup	Techniques Used	Population That Gave		
	Unrelated to	and Intervention	to Correct for	Rise to Cases, or Using	Bias From	
	Intervention or	Coincide for Most	Presence of	Another Method That	Randomization	
Author, Year	Outcome?	Subjects?	Selection Biases?	Avoids Selection Bias?	or Selection?	Comments
Barrett-	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Connor, 2002 ³⁰⁸						
Barrett-	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	Not enough information on randomization
Connor, 2004 ³⁰⁷						process.
Bone, 2000 ²¹⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Bone, 2008 ²³⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	No information on allocation concealment
Boonen, 2012 ²¹⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Cartsos, 2008 ²⁹⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	Yes	data comes from medical claims data; possible errors in coding; does not include uninsured; sample not representative of total population
Chapurlat, 2013 ²⁸²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Cryer, 2005 ²⁵⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Cummings, 1998 ²⁰⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Quandt, 2005 ²⁰⁵						
Bauer, 2000 ²⁴⁹						
Cummings, 2009 ²³⁸ ;	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	No information on allocation concealment
Watts, 2012 ³¹¹ ;						
McClung, 2012 ²⁴² ;						
Boonen, 2011 ²⁴³						
Eisman, 2004 ²⁵³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Fogelman, 2000 ²²⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	NR
Greenspan, 2002 ²⁵²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	The article does not include information on randomization or concealment

			Adjustment	Controls Sampled From		
	Study Selection	Start of Followup	Techniques Used	Population That Gave		
	Unrelated to	and Intervention	to Correct for	Rise to Cases, or Using	Bias From	
	Intervention or	Coincide for Most	Presence of	Another Method That	Randomization	
Author, Year	Outcome?	Subjects?	Selection Biases?	Avoids Selection Bias?	or Selection?	Comments
Greenspan, 2003 ²⁴⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Grey, 2010 ²⁷²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably yes	The authors did not clearly adjust for baseline fracture.
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Johnell, 2002 ²⁴⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Keech, 2005 ³⁰⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Kung, 2000 ³³⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	The article does not include information on randomization or concealment
Lasco, 2011 ²⁴⁰	No	Yes	NA	NA-not a case-control	Yes	One arm has osteoporosis and other has osteopenia; the differences between arms could have served as a prognostic factor and contribute to confounding.
Lewiecki, 2007 ²³⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	No information on allocation concealment.
McCloskey, 2012 ³³⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No information	NR
McClung, 2004 ²⁸³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	No information provided on method of randomization or concealment
McClung, 2006 ³⁰³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	Not enough information on randomization process
McClung, 2006 ²⁰⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	NR
McClung, 2009 ²⁷³	No	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	NR
Meunier, 1999 ³⁰⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	NR
Miller, 2008 ³⁰⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	NR
Morii, 2003 ³⁰⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	Some missing information
Murphy, 2001 ²⁷⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Nakamura, 2012 ³³⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	No information provided on method of randomization or concealment

			Adjustment	Controls Sampled From		
	Study Selection	Start of Followup	Techniques Used	Population That Gave		
	Unrelated to	and Intervention	to Correct for	Rise to Cases, or Using	Bias From	
	Intervention or	Coincide for Most	Presence of	Another Method That	Randomization	
Author, Year	Outcome?	Subjects?	Selection Biases?	Avoids Selection Bias?	or Selection?	Comments
Orwoll, 2003 ²³⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Pazianas, 2008 ²⁹⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	Yes	Data comes from medical claims data; possible errors in coding; does not include uninsured; sample not representative of total population
Ravn, 1996 ²⁸⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	No information provided on method of randomization or concealment
Reginster, 2005 ²⁸⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	Absence of specific BMD criteria led to the inclusion of some participants were not osteoporotic
Rhee, 2012 ³³⁷	Yes	No	No information	NA-not a case-control	Probably yes	Although the authors attempt to create an new user cohort by excluding anyone with a prescription for 16 months prior to the observation of the outcome, it's unclear whether and how many participants might have been exposed to osteoporosis drugs before that period and stopped taking medications.
Riis, 2001 ²⁸⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	No information provided on method of randomization or concealment
Samelson, 2014 ³³⁸	Yes	Yes	No information	NA-not a case-control	Probably no	NR
Shiraki, 2003 ²⁸¹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	Probably no	NR
Simon, 2013 ³³⁹	Yes	Yes	Probably yes	NA-not a case-control	Probably no	No detail on method of randomization and allocation concealment.
Sontag, 2010 ²⁴¹	yes	yes	NA	NA-not a case-control	Probably no	NR
Sorensen, 2008 ²⁴⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	Yes	No	NR
Tanko, 2003 ²⁸⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	No information provided on method of randomization or concealment
Thiebaud, 1997 ²⁸⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	No information provided on method of randomization or concealment Slight differences length of menopause

Author, Year	Study Selection Unrelated to Intervention or Outcome?	Start of Followup and Intervention Coincide for Most Subjects?	Adjustment Techniques Used to Correct for Presence of Selection Biases?	Controls Sampled From Population That Gave Rise to Cases, or Using Another Method That Avoids Selection Bias?	Bias From Randomization or Selection?	Comments
Tucci, 1996 ²⁵¹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a case-control	No	NR
Van Staa, 1997 ³⁴⁰	Yes	Yes	Yes	NA-not a case-control	Probably no	NR
Vestergaard, 2010 ³⁴¹	Yes	Yes	Irrelevant, claim there is no missing data	NA-not a case-control	No	NR
Vestergaard, 2011 ³⁴²	Yes	Yes	Irrelevant, claim there is no missing data	Yes	No	NR
Vestergaard, 2012 ³⁴³	Yes	Yes	Irrelevant, claim there is no missing data	NA-not a case-control	No	NR
Vestergaard, 2011 ³⁴⁴	Yes	Yes	Irrelevant, claim there is no missing data	NA-not a case-control	No	NR
Vestergaard, 2012 ³⁴⁵	Yes	Yes	Irrelevant, claim there is no missing data	NA-not a case-control	No	NR

Abbreviations: NA = not applicable; NR = not reported.

		Participants Analyzed	Intervention Discontinuations or	
	Confounding of Effect	According to Their Initial	Switches Unlikely to Be Related to	Used an Appropriate Analysis
	of Intervention	Intervention Group	Factors That Are Prognostic for the	Method Adjusting for All Critically
Author, Year	Unlikely?	Throughout Followup?	Outcome?	Important Confounding Domains?
Abrahamsen, 2010 ²⁷¹	Probably no	Yes	No information	Probably yes
Adachi, 2009 ²⁴⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Barrett-Connor, 2002 ³⁰⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Barrett-Connor, 2004 ³⁰⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Bone, 2000 ²¹⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Bone, 2008 ²³⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Boonen, 2012 ²¹⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Cartsos, 2008 ²⁹⁵	Probably no	NA-not a cohort	NA-not a cohort	No information
Chapurlat, 2013 ²⁸²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Cryer, 2005 ²⁵⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Cummings, 1998 ²⁰⁰ ;	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Quandt, 2005 ²⁰⁵ ; Bauer, 2000 ²⁴⁹				

		Participants Analyzed	Intervention Discontinuations or	
	Confounding of Effect	According to Their Initial	Switches Unlikely to Be Related to	Used an Appropriate Analysis
	of Intervention	Intervention Group	Factors That Are Prognostic for the	Method Adjusting for All Critically
Author, Year	Unlikely?	Throughout Followup?	Outcome?	Important Confounding Domains?
Cummings, 2009 ²³⁸ ; Watts,	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
2012 ³¹¹ ; McClung, 2012 ²⁴² ;				
Boonen, 2011 ²⁴³				
Eisman, 2004 ²⁵³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Fogelman, 2000 ²²⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Greenspan, 2002 ²⁵²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Greenspan, 2003 ²⁴⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Grey, 2010 ²⁷²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Johnell, 2002 ²⁴⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Keech, 2005 ³⁰⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Kung, 2000 ³³⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Lasco, 2011 ²⁴⁰	No	Yes	No information	No information
Lewiecki, 2007 ²³⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
McCloskey, 2012 ³³⁵	Probably yes	Yes	Yes	Probably yes
McClung, 2004 ²⁸³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
McClung, 2006 ³⁰³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
McClung, 2006 ²⁰⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
McClung, 2009 ²⁷³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Meunier, 1999 ³⁰⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Miller, 2008 ³⁰⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Morii, 2003 ³⁰⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Murphy, 2001 ²⁷⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Nakamura, 2012 ³³⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Orwoll, 2003 ²³⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Pazianas, 2008 ²⁹⁶	Probably no	NA-not a cohort	NA-not a cohort	Yes
Ravn, 1996 ²⁸⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Reginster, 2005 ²⁸⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Rhee, 2012 ³³⁷	Yes	Yes	Unclear, all switches dropped from	NA
			analysis	
Riis, 2001 ²⁰⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Samelson, 2014 ³³⁸	Probably yes	Yes	Yes	Probably yes
Shiraki, 2003 ²⁰¹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Simon, 2013 ³³⁹	Probably yes	Yes	Yes	Probably yes
Sontag, 2010 ²⁴¹	Yes	NA	Yes	No
Sorensen, 2008 ²⁴⁵	No	NA-not a cohort	NA-not a cohort	Yes
Tanko, 2003 ²⁸⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Thiebaud, 1997 ²⁸⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort

		Participants Analyzed	Intervention Discontinuations or	
	Confounding of Effect	According to Their Initial	Switches Unlikely to Be Related to	Used an Appropriate Analysis
	of Intervention	Intervention Group	Factors That Are Prognostic for the	Method Adjusting for All Critically
Author, Year	Unlikely?	Throughout Followup?	Outcome?	Important Confounding Domains?
Tucci, 1996 ²⁵¹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort
Van Staa, 1997 ³⁴⁰	Yes	NA	NA	NA
Vestergaard, 2010 ³⁴¹	No	No information	No information	No
Vestergaard, 2011 ³⁴²	No	No information	No information	No
Vestergaard, 2012 ³⁴³	No	No information	No information	No
Vestergaard, 2011 ³⁴⁴	No information	No information	No	Yes
Vestergaard, 2012 ³⁴⁵	No	No information	No information	No

Abbreviations: KQ = key question; NA = not applicable.

	Avoid Adjusting for	Used an Appropriate Analysis Method Adjusting for All Critically Important		
	Postintervention	Confounding Domains and Time-Varying	Bias From	
Author, Year	Variables?	Confounding?	Confounding?	Comments
Abrahamsen, 2010 ²⁷¹	yes	Probably yes	Probably yes	NR
Adachi, 2009 ²⁴⁸	NA-not a cohort	NA-not a cohort	No	NR
Barrett-Connor, 2002 ³⁰⁸	NA-not a cohort	NA-not a cohort	NA	NR
Barrett-Connor, 2004 ³⁰⁷	NA-not a cohort	NA-not a cohort	NA	NR
Bone, 2000 ²¹⁶	NA-not a cohort	NA-not a cohort	No	NR
Bone, 2008 ²³⁷	NA-not a cohort	NA-not a cohort	No	NR
Boonen, 2012 ²¹⁸	NA-not a cohort	NA-not a cohort	No	NR
Cartsos, 2008 295	NA-not a cohort	NA-not a cohort	Probably yes	Possible patients could have been taking other
				treatments that were not documented; no mention
				of how confounding was handled or if considered
Chapurlat, 2013 ²⁸²	NA-not a cohort	NA-not a cohort	N/A	NR
Cryer, 2005 ²⁵⁰	NA-not a cohort	NA-not a cohort	No	NR
Cummings, 1998 ²⁰⁰	NA-not a cohort	NA-not a cohort	No	NR
Quandt, 2005 ²⁰⁵				
Bauer, 2000 ²⁴⁹				
Cummings, 2009 ²³⁸ ; Watts,	NA-not a cohort	NA-not a cohort	No	NR
2012 ³¹¹ ; McClung, 2012 ²⁴² ;				
Boonen, 2011 ²⁴³				
Eisman, 2004 ²⁵³	NA-not a cohort	NA-not a cohort	No	NR
Fogelman, 2000 ²²⁶	NA-not a cohort	NA-not a cohort	No information	NR
Greenspan, 2002 ²⁵²	NA-not a cohort	NA-not a cohort	No	NR
Greenspan, 2003 ²⁴⁷	NA-not a cohort	NA-not a cohort	No	NR
Grey, 2010 ²⁷²	NA-not a cohort	NA-not a cohort	No	NR
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	No information	NR
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	No	NR
Johnell, 2002 ²⁴⁴	NA-not a cohort	NA-not a cohort	Probably no	NR

	Avoid Adjusting	Used an Appropriate Analysis Method		
	for	Adjusting for All Critically Important		
	Postintervention	Confounding Domains and Time-Varying	Bias From	
Author, Year	Variables?	Confounding?	Confounding?	Comments
Keech, 2005 ³⁰⁹	NA-not a cohort	NA-not a cohort	NA	NR
Kung, 2000 ³³⁴	NA-not a cohort	NA-not a cohort	No	NR
Lasco, 2011 ²⁴⁰	No information	No information	Yes	One arm has osteoporosis and other has
				baye conved as a prognostic factor and contribute
				to confounding
Lewiecki, 2007 ²³⁶	NA-not a cohort	NA-not a cohort	No	NR
McCloskey, 2012 ³³⁵	Probably yes	NA	No information	Analysis was prespecified according to the
5.				methods and does not appear to be a subgroup.
				Looks at efficacy across the range of baseline
				FRAX risk.
McClung, 2004 ²⁸³	NA-not a cohort	NA-not a cohort	NA	NA, Not a cohort or case control
McClung, 2006 ³⁰³	NA-not a cohort	NA-not a cohort	No	Not a cohort or case control
McClung, 2006 ²⁰⁹	NA-not a cohort	NA-not a cohort	No	NR
McClung, 2009 ²⁷³	NA-not a cohort	NA-not a cohort	No	RCT design mitigates risk of confounding from
				known and unknown factors.
Meunier, 1999 ³⁰⁴	NA-not a cohort	NA-not a cohort	Probably no	NR
Miller, 2008 ³⁰⁵	NA-not a cohort	NA-not a cohort	No	NR
Morii, 2003 ³⁰⁶	NA-not a cohort	NA-not a cohort	Probably no	NR
Murphy, 2001 ²⁷⁰	NA-not a cohort	NA-not a cohort	No	NR
Nakamura, 2012 ³³⁶	NA-not a cohort	NA-not a cohort	NA	NR
Orwoll, 2003 ²³⁹	NA-not a cohort	NA-not a cohort	No	Not a cohort study
Pazianas, 2008 ²⁹⁶	NA-not a cohort	NA-not a cohort	Probably no	Possible patients could have been taking other
B_{23} m 1006^{284}	NA not a aphart	NA not a pohort	NA Note cohort	
Ravn, 1996	INA-not a conort	INA-not a conort	INA, NOL a CONOIL	INK
Baginatar 2005 ²⁸⁵	NA not a aphart	NA not a pohort	NA Net a sebert	ND
Reginster, 2005	INA-not a conort	INA-not a conort	INA, NOL a CONOIL	INR
Phase 2012 ³³⁷	No	No	Voc	Dropped all patients with switches, which
Kilee, 2012	NO		165	not opped all patients with switches, which
				to initial drug therapy
Piie 2001 ²⁸⁶	NA-not a cohort	NA-not a cohort	NA Not a cohort	
KIIS, 2001	NA-HOL & COHOIL		or case control	
Samelson 2014 ³³⁸	Vec	NA if item 10 is ves/probably ves	Probably no	Treatment assignment is random: CV risks were
	100			Instantion assignment is random, ov risks were
Shiraki 2003 ²⁸¹	NA-not a cohort	NA-not a cohort	No information	NR
Simon 2013 ³³⁹	Prohably ves	NA	Prohably no	NR
5111011, 2010	1 iobubly yes		1 iobably no	

Author Yoar	Avoid Adjusting for Postintervention	Used an Appropriate Analysis Method Adjusting for All Critically Important Confounding Domains and Time-Varying	Bias From	Comments
Sontag 2010 ²⁴¹	No	NA Comounding!	Voc	During a 1 year extension phase, we man were
Soniag, 2010				permitted to take other bone-active agents, except for oral estrogen or estrogen–progestin therapy. 16.4% and 12.3% of women in the placebo and raloxifene 60 mg/day groups, respectively, used other bone-active agents
Sorensen, 2008 ²⁴⁵	NA-not a cohort	NA-not a cohort	No	NR
Tanko, 2003 ²⁸⁷	NA-not a cohort	NA-not a cohort	NA, Not a cohort or case control	NR
Thiebaud, 1997 ²⁸⁸	NA-not a cohort	NA-not a cohort	NA, Not a cohort or case control	NR
Tucci, 1996 ²⁵¹	NA-not a cohort	NA-not a cohort	No	NR
Van Staa, 1997 ³⁴⁰	NA	NA	No	NR
Vestergaard, 2010 ³⁴¹	Yes	Probably no	Probably yes	Given the results, it's likely there were other underlying variables not fully accounted for. For example, are all NSAIDS in the drugs registry? What about OTC NSAIDS?
Vestergaard, 2011 ³⁴²	Yes	Probably no	Probably yes	NR
Vestergaard, 2012 ³⁴³	Yes	Probably no	Probably yes	Given the results it's likely there were other underlying variables not fully accounted for. For example, did they fully control for all other causes of MI, such as smoking and hypertension?
Vestergaard, 2011	Probably no	Probably yes	No	NR
Vestergaard, 2012 ³⁴⁵	Yes	Probably no	Probably yes	NR

Abbreviations: FRAX = Fracture Risk Assessment tool; KQ = key question; MI = myocardial infarction; NA = not applicable; NR = not reported; NSAIDS = nonsteroidal anti-inflammatory drugs; OTC = over the counter.

		Information on	Information on Intervention		
	Intervention	Intervention Status	Status Unaffected by	Bias From	
	Status Well	Recorded at Time of	Knowledge or Risk of	Measurement of	
First Author, Year	Defined?	Intervention?	Outcome?	Intervention?	Comments
Abrahamsen, 2010 ²⁷¹	Yes	Yes	Yes	Probably no	NR
Adachi, 2009 ²⁴⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Barrett-Connor, 2002 ³⁰⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA	NR
Barrett-Connor, 2004 ³⁰⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Bone, 2000 ²¹⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Bone, 2008 ²³⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Boonen, 2012 ²¹⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA-not a cohort	NR

240

	Intervention	Information on Intervention Status	Information on Intervention Status Unaffected by	Bias From	
	Status Well	Recorded at Time of	Knowledge or Risk of	Measurement of	
First Author, Year	Defined?	Intervention?	Outcome?	Intervention?	Comments
Cartsos, 2008 ²⁹⁵	No	No	Probably yes	Yes	Intervention based on dispensing information
					from claims data, information on dose not
					available
Chapurlat, 2013 ²⁸²	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA	NR
Cryer, 2005 ²⁵⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Cummings, 1998 ²⁰⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Quandt, 2005 ²⁰⁵					
Bauer, 2000 ²⁴⁹					
Cummings, 2009 ²³⁸ ; Watts,	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
2012 ³¹¹ ; McClung, 2012 ²⁴² ;					
Boonen, 2011 ²⁴³					
Eisman, 2004 ²⁵³	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Fogelman, 2000 ²²⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	No information	NR
Greenspan, 2002 ²⁵²	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Greenspan, 2003 ²⁴⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Grey, 2010 ²⁷²	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	NA-not a cohort	No information	NR
Hosking, 2003 ²⁰²	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Johnell, 2002 ²⁴⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	NR
Keech, 2005 ³⁰⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA	NR
Kung, 2000 ³³⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Lasco, 2011 ²⁴⁰	Yes	Yes	No information	Probably no	NR
Lewiecki, 2007 ²³⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
McCloskey, 2012 ³³⁵	Yes	Yes	Yes	No	It was prespecified.
McClung, 2004 ²⁸³	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA, not a cohort	NR
				or case control	
McClung, 2006 ³⁰³	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	Not a cohort or case control
McClung, 2006 ²⁰⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
McClung, 2009 ²⁷³	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	RCT design so all items NA.
Meunier, 1999 ³⁰⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	NR
Miller, 2008 ³⁰⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Morii, 2003 ³⁰⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	Probably no	NR
Murphy, 2001 ²⁷⁰	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Nakamura, 2012 ³³⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA	NR
Orwoll, 2003 ²³⁹	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Pazianas, 2008 ²⁹⁶	No	No	Probably yes	Yes	intervention based on dispensing information
					from claims data, information on dose, etc.
					not available

		Information on	Information on Intervention		
	Intervention	Intervention Status	Status Unaffected by	Bias From	
	Status Well	Recorded at Time of	Knowledge or Risk of	Measurement of	
First Author, Year	Defined?	Intervention?	Outcome?	Intervention?	Comments
Ravn, 1996 ²⁸⁴	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA, not a cohort	NR
				or case control	
Reginster, 2005 ²⁸⁵	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA, not a cohort	NR
				or case control	
Rhee, 2012 ³³⁷	Yes	Yes	Yes	No	NR
Riis, 2001 ²⁸⁶	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA, not a cohort	NR
				or case control	
Samelson, 2014 ³³⁸	Probably yes	Yes	Yes	Probably no	NR
Shiraki, 2003 ²⁸¹	NA-not a cohort	NA-not a cohort	NA-not a cohort	No information	NR
Simon, 2013 ³³⁹	Yes	Yes	Yes	Probably no	NR
Sontag, 2010 ²⁴¹	Yes	Yes	Yes	Probably no	NR
Sorensen, 2008 ²⁴⁵	Yes	Yes	Yes	No	NR
Tanko, 2003 ²⁸⁷	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA, not a cohort	NR
				or case control	
Thiebaud, 1997 ²⁸⁸	NA-not a cohort	NA-not a cohort	NA-not a cohort	NA, not a cohort	NR
				or case control	
Tucci, 1996 ²⁵¹	NA-not a cohort	NA-not a cohort	NA-not a cohort	No	NR
Van Staa, 1997 ³⁴⁰	No	Yes	Yes	Yes	Intervention status defined as patients who
					had received a prescription
Vestergaard, 2010 ³⁴¹	No	No information	Yes	Probably yes	NR
Vestergaard, 2011 ³⁴²	No	No information	Yes	Probably yes	NR
Vestergaard, 2012 ³⁴³	No	No information	Yes	Probably yes	NR
Vestergaard, 2011 ³⁴⁴	Yes	Probably yes	None	No	NA, no attrition
Vestergaard, 2012 ³⁴⁵	No	No information	Yes	Probably yes	NR

Abbreviations: NA = not applicable; NR = not reported; RCT = randomized controlled trials.

	Overall Attrition?	High Attrition	Proportion of Participants and	Proportion of Participants and
	Attrition by Group?	Raising Concern	Reasons for Missing Data Similar	Reasons for Missing Data Similar
Author, Year	Did Attrition Vary for Different Outcomes?	for Bias?	Across Interventions?	Across Cases and Controls?
Abrahamsen,	Overall: NR	No	Yes	NA-not a case-control
2010 ²⁷¹	G1: 3.1%			
	G2: 3.0%			
	Vary by outcome: Probably no			
Adachi,	Overall: 16.2 [%]	No	Yes	NA-not a case-control
2009 ²⁴⁸	G1: 18.6 [%]			
	G2: 11.6% [%]			
	Vary by outcome: No			

	Overall Attrition?	High Attrition	Proportion of Participants and	Proportion of Participants and
	Attrition by Group?	Raising Concern	Reasons for Missing Data Similar	Reasons for Missing Data Similar
Author, Year	Did Attrition Vary for Different Outcomes?	for Bias?	Across Interventions?	Across Cases and Controls?
Barrett-	Overall: 26%	Yes	No	NA
Connor,	G1: 26%			
2002 ³⁰⁸	G2: 25%			
	G3: 26%			
	Vary by outcome: No			
Barrett-	Overall: 26%	No	Yes	NA
Connor,	G1: 26.2			
2004 ³⁰⁷	G2: 25.2			
	G3: 26.4			
	Vary by outcome: No			
Bone, 2000 ²¹⁶	Overall: 24.7 [%]	Yes	Yes	NA-not a case-control
	G1: 24/92 = 26%			
	G4: 16/50 = 32%			
	Other reasons for attrition: withdrew consent, lost			
	to followup, protocol violations, no signficant			
	variation between groups			
Bone, 2008 ²³⁷	Overall attrition: 3/332=0.09%	No	Yes	NA-not a cohort
	G1: 2/166 (1.2%)			
	G2: 1/166 (0.06%)			
Boonen,	Overall: 11%	No	Yes	na-not a case control
2012-10	G1: 10%			
	G2: 12%			
0.1	Vary by outcome: No	NIA (/)()		
Cartsos,	NA- no attrition	NA- no attrition	NA- no attrition	NA- no attrition
2008 Chapurlat	Overally 0.67	No	Vee	NIA no ottrition
2012^{282}		INO	res	NA- no auniion
2013				
	Vary by outcome: No			
	Overall: Unclear			
	G1: Unclear			
	G2: Unclear			
Crver, 2005 ²⁵⁰	Overall: 13.7 [%]	No	Probably ves	NA-not a case-control
	G1: 13.8 [%]	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	G2: 13.5[%]			
	G3: [%]			
	Vary by outcome: No			

	Overall Attrition?	High Attrition	Proportion of Participants and	Proportion of Participants and
	Attrition by Group?	Raising Concern	Reasons for Missing Data Similar	Reasons for Missing Data Similar
Author, Year	Did Attrition vary for Different Outcomes?	for Blas?	Across Interventions?	Across Cases and Controls?
Cummings,	Patients missing followup x-ray	NO	Yes	NA-not a case-control
Quandt	(5.9%)			
2005^{205}	(3.276)			
Bauer.				
2000 ²⁴⁹				
Cummings,	Attrition varies by outcome, lowest for fractures:	No	Yes	NA-not a cohort
2009 ²³⁸ ;	475/7868 (6.03%)			
Watts,	G1: 231/3933 (5.87%)			
2012°'';	G2: 244/3935 (6.20%)			
McClung,				
ZUIZ , Boonen				
2011 ²⁴³				
Eisman,	Overall: 6.2 [%]	No	Probably yes	NA-not a case-control
2004 ²⁵³	G1: 8.0 [%]			
	G2: 4.5 [%]			
-	Vary by Outcome: No			
Fogelman,	G1: 40/179 = 22%	Yes	Yes	NA-not a case control
2000	G2: 37/180 = 21%	N		
Greenspan,		NO	res	NA-not a case-control
2002	G1. 0.3% G2: 7.5%			
	Vary by Outcome: No			
Greenspan	Overall: 10 [%]	No	Yes	NA-not a case-control
2003 ²⁴⁷	G1: 8.6%			
	G2: 9.7%			
	G3: 9.6%			
	G4: 10.8%			
	Vary by Outcome: No			
Grey, 2010 ²⁷²	Overall: 2 [%]	No	Yes	NA-not a case-control
	G1: 4 [%]			
	G2: 0 [%]			
L La a Leira	Vary by Outcome: No Information	N -		
HOSKING,	Attrition was only reported at 3 months	INO	ΝΟ	INA-not a case control
2003				
	G2: 21.3% G2: 17.6%			
	G2: 17.6%			

	Overall Attrition?	High Attrition	Proportion of Participants and	Proportion of Participants and
	Attrition by Group?	Raising Concern	Reasons for Missing Data Similar	Reasons for Missing Data Similar
Author, Year	Did Attrition Vary for Different Outcomes?	for Bias?	Across Interventions?	Across Cases and Controls?
Hosking,	Overall: 25 [%]	Yes	Yes	No
2003202	G1: 21.5 [%]			
	G2: 19.8 [%]			
	G3: 17.6 [%]			
	Vary by outcome: Yes			
	Clincal AE leading to discontinuation			
	Overall: 17 [%]			
	G1: 14.1 [%]			
	G2: 14.0 [%]			
	[G3: 11.1 [%]			
	**Of note: these are attrition % at 3 months. The			
	study went on for 12 months.			
Johnell, 2002 ²⁴⁴	Overall: 17%; differences by group NR	No	Yes	NA- no attrition
Keech,	Overall: NR	Yes	No	NA
2005 ³⁰⁹	G1: 29%			
	G2: 33%			
	Vary by outcome: No			
Kung, 2000 ³³⁴	Overall: 80 [%]	Yes	Yes	NA-not a case-control
	G1: 80 [%]			
	G2: 80 [%]			
	G3: [%]			
	Vary by outcome: No			
Lasco,	Overall: 0	NA- no attrition	NA- no attrition	NA
Lewiecki.	Overall attrition: $5/365 = 1.00\%$	No	Yes	NA-not a cohort
2007^{236}	G1: 0/46 (0%)			
	G2: 5/319 (1.57%)			
McCloskev.	Overall: 82%	No	No information	NA-not a case-control
2012 ³³⁵	G1: NR			
	G2: NR			
	Vary by outcome: Probably no			
McClung,	Overall: 16%	No	Yes	NA-not a case-control
2004 ²⁸³	G1: 15%			
	G2: 13%			
	G3: 18%			
	G4: 17%			
	Vary by outcome: No			

Author, YearAttrition by Group? Did Attrition Vary for Different Outcomes?Raising Concern for Bias?Reasons for Missing Data Similar Across Interventions?Reasons for Missing Data Similar Across Cases and ControlsMcClung, 2006 ³⁰³ Overall: 36% G1: 37% G2: 30% G3: 29% G4: 31% Vary by outcome: NoYesNo informationNA-not a case-control		Overall Attrition?	High Attrition	Proportion of Participants and	Proportion of Participants and
Author, YearDid Attrition Vary for Different Outcomes?for Bias?Across Interventions?Across Cases and Controls'McClung, 2006 ³⁰³ Overall: 36% G1: 37% G2: 30% G3: 29% G4: 31% Vary by outcome: NoYesNo informationNA-not a case-control		Attrition by Group?	Raising Concern	Reasons for Missing Data Similar	Reasons for Missing Data Similar
McClung, 2006 ³⁰³ Overall: 36% G1: 37% G2: 30% G3: 29% G4: 31% Vary by outcome: NoYesNo informationNA-not a case-control	Author, Year	r Did Attrition Vary for Different Outcomes?	for Bias?	Across Interventions?	Across Cases and Controls?
2006 ³⁰³ G1: 37% G2: 30% G3: 29% G4: 31% Vary by outcome: No	McClung,	Overall: 36%	Yes	No information	NA-not a case-control
G2: 30% G3: 29% G4: 31% Vary by outcome: No	2006 ^{303 -}	G1: 37%			
G3: 29% G4: 31% Vary by outcome: No		G2: 30%			
G4: 31% Vary by outcome: No		G3: 29%			
Vary by outcome: No		G4: 31%			
		Vary by outcome: No			
McClung, Overall: 10 [%] No Yes NA-not a case-control	McClung,	Overall: 10 [%]	No	Yes	NA-not a case-control
2006 ²⁰⁹ NR by group overall. For below, only reported by	2006 ²⁰⁹	NR by group overall. For below, only reported by			
drug (not dosing group)		drug (not dosing group)			
Vary by outcome: Yes		Vary by outcome: Yes			
Withdrawal of consent		Withdrawal of consent			
G1-G7: 8 [%]		G1-G7: 8 [%]			
G8: 2 [%]		G8: 2 [%]			
G9: 7 [%]		G9: 7 [%]			
Adverse effects		Adverse effects			
G1-G7: 2 [%]		G1-G7: 2 [%]			
G8: 0 [%]		G8: 0 [%]			
		G9: 2 [%]			
McClung, Overall: 90% (calculated) No no NA-not a case-control	McClung,	Overall: 90% (calculated)	No	no	NA-not a case-control
2009 ²⁷⁰ G1: 91.4%	2009-10	G1: 91.4%			
G2: 85.1%		G2: 85.1%			
G3: 93.1%		G3: 93.1%			
		Vary by outcome: No			
Meunier, Overall: 20/129 (19%) at 24 months, of these, 14 No Yes NA- no attrition	Meunier,	Overall: 20/129 (19%) at 24 months, of these, 14	NO	Yes	NA- no attrition
1999 In year 1; differences by group NR	1999 Miller 2000 ³⁰⁵	In year 1, differences by group NR	Vee	Vaa	
Willer, 2008 Overall: 29.7% (N=470) discontinued treatment, Yes Yes NA-not a case-control	Miller, 2008	Overall: 29.7% (N=470) discontinued treatment,	res	res	NA-not a case-control
abour patients who did not complete begauge of		another 2.9% (46) railed to return. The now chart			
"aubiotic request and "atter"		shows patients who did not complete because of			
Marii 2002 ³⁰⁶ Quaralli 129/ : differences bu group NP	Marii 2002 ³⁰⁶	⁶ Overall: 129/: differences by group NP	No	Vaa	NA no attrition
Murphy Overall: 15%, ullelences by gloup NR NO Tes NA- To allinion	Murphy	Overall: 15%, differences by group INR	No for 6 months	Probably yes	NA- no allillon
12001 ²⁷⁰ of 19 months, 50% at 12 months, 41% No 1016 months, Probably yes INA-hot a case-control	2001^{270}	overall. 15% at 6 months, 30% at 12 months, 41%	NO IOI 6 MONUNS,	Probably yes	NA-not a case-control
No data by group months	2001	AL TO INUMINS	yes for 12 and 10		
			monuis.		
		G2: [/0]			
		G3: [%]			
Vary by outcome: No Information		Vary by outcome: No Information			
Attrition by Group? Author, Ver Bid Attrition Vary for Different Outcomes?Raising Concern for Bias?Reasons for Missing Data Similar Across Interventions?Reasons for Missing Data Similar Across Interventions?Nakamura, 2012****Overall: 8.0% G1: (5/53) 9.4% G2: (4/54) 1.74% G3: (5/50) 10% G4: (3/55) 5.5% Vary by outcome: Probably noNoNo informationNAOrwall. 2003****Overall: 77 [17.6%] G2: 28 [19%] G3: 36 [26%] No information by outcomeYesNoNA- no attritionPazianas, 2003***********************************		Overall Attrition?	High Attrition	Proportion of Participants and	Proportion of Participants and
--	--------------------------	---	------------------	----------------------------------	----------------------------------
Author, Year Did Attrition Vary for Different Outcomes? for Bias? Across Interventions? Across Cases and Controls? Nakamura, 2012 ³⁵⁶ Overall: 60% S0% No No information NA 2012 ³⁵⁶ G1: (5/53) 9.4% S0 No No No No 2012 ³⁵⁶ G1: (5/53) 9.4% S2: (4/54) 7.4% No No No 2003 ³⁵⁹ G1: (17,6%) Yes No No No 2003 ³⁵⁹ G1: 17 [12%] Yes No No 2003 ³⁵⁹ G1: 17 [12%] Yes No NA- no attrition Pazianas, 2008 ³⁵⁶ NA- no attrition NA- no attrition NA- no attrition NA- no attrition Pazianas, 2008 ³⁵⁶ Overall: 39/180 (22%) Yes Yes Na-not a case-control G1: 4/30 (13%) G2: 8/30 (27%) Yes Yes NA-not a case-control G3: 4/30 (13%) G3: 6/30 (20%) G3: 12/30 (40%) G3: 12/30 (40%) S2: 12/30 (40%) G3: 0 G2: 0 G3: 0 G2: 0 G3: 0 G		Attrition by Group?	Raising Concern	Reasons for Missing Data Similar	Reasons for Missing Data Similar
Nakamura, 2012 ³⁵⁸ Overall: 8.0% G1: (5/50) 9.4% G2: (4/54) 7.4% G3: (5/50) 10% G4: (3/55) 5.5% Vary by outcome: Probably no No No information NA 2003 ²⁵⁸ Overall: 7.17 [7.6%] G1: 17 [12%] G2: 28 [19%] G3: 36 [26%] No information by outcome Yes No NA- no attrition Pazianas, 2003 ²⁵⁸ Na- no attrition NA- no attrition NA- no attrition NA- no attrition Ravn, 1996 ⁷⁸⁵ Overall: 39/180 (22%) G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) G4: 6/30 (20%) G4: 6/30 (20%) G4: 6/30 (20%) G4: 6/30 (20%) G3: 12/30 (40%) G5: 5/30 (20%) G4: 3% G3: 0 G4: 3% G3: 0 G4: 3% G3: 0 G4: 3% G3: 0 G4: 3% G5: 8% Vary by outcome: No Rhee, 2012 ³⁸⁷ No Yes NA-not a case-control Ravn, 1996 ⁷⁸⁶ Overall: 3% G1: 0 G3: 0 G4: 3% G3: 0 G3: 0 G3: 0 G4: 3% G3: 0 G3: 0 G3: 0 G4: 3% G3: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No Rhee, 2012 ³⁸⁷ No Yes NA-not a case-control Rese, 2012 ³⁸⁷ Na ditrition because data are from registry Na ditrition NA- no attrition NA- no attrition NA- no attrition Ris, 2001 ⁷⁸⁶ Overall: 14% No Yes NA- no attrition NA- no attrition	Author, Year	Did Attrition Vary for Different Outcomes?	for Bias?	Across Interventions?	Across Cases and Controls?
2012 ⁵⁸⁰ G1: (5/53) 9.4% G2: (4/54) 7.4% G3: (5/50) 10% G2: (4/55) 5.5% Verall: 77 [17.6%] Vary by outcome: Probably no Vers Orwoll, Overall: 77 [17.6%] 2003 ²⁶⁹ G1: 17 [12%] G3: 36 [26%] Verall: 77 [17.6%] No information by outcome NA- no attrition Pazianas, NA- no attrition 2003 ²⁶⁹ Overall: 39/180 (22%) G1: 4/30 (13%) Yes G2: 48 (30 (27%) G3: 4/30 (13%) G3: 4/30 (13%) Yes G3: 4/30 (13%) Yes G3: 10 (27%) Yes G3: 4/30 (13%) Yes G3: 4/30 (13%) Yes G3: 10 (40%) G6: 5/30 (17%) Vary by outcome: No No Reginster, Overall: 3% G1: 0 G2: 0 G3: 0 G4: 3% G5: 430 (17%) No Yes NA-not a case-control G1: 0 G2: 0 G3: 0 G4: 3% G5: 12/37 No attrition because data are from registry NA- no attrition	Nakamura,	Overall: 8.0%	No	No information	NA
G2: (4/54) 7.4% G3: (5/50) 10% G4: (3/55) 5.5% Vary by outcome: Probably no Oweall: Overall: 77 [17.6%] 2003 ²³⁹ G1: 17 [12%] G2: 28 [19%] G3: 36 [26%] No information by outcome NA- no attrition Pazianas, NA- no attrition 2008 ²⁵⁹ Verall: 39/180 (22%) G1: 4/30 (13%) Yes G4: 4/30 (13%) Yes G2: 8/30 (27%) Yes G3: 6 (20%) Yes Vary by outcome: No Yes Reginster, Overall: 3% Q05 ²⁸⁵ G1: 0 G2: 0 G3: 0 G3: 0 Yes Reginster, Overall: 3% Q05 ²⁸⁵ G1: 0 G2: 0 G3: 0 G3: 0 G4: 3% G3: 0 Na Yary by outcome: No	2012330	G1: (5/53) 9.4%			
G3: (5/50) 10% (G4: (3/55) 5.5% Vary by outcome: Probably no Yes No Orwoll, 2003 ²³⁹ Overall: 77 [17.6%] G1: 77 [17.6%] Yes No Pazianas, 2008 ²³⁹ G2: 28 [19%] G3: 36 [26%] No information by outcome NA- no attrition NA- no attrition Pazianas, 2008 ²³⁹ No information by outcome NA- no attrition NA- no attrition Ravn, 1996 ²³⁴ Overall: 39/180 (22%) G1: 4/30 (13%) G2: 8/30 (13%) G3: 4/30 (13%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: No Yes Yes Reginster, 2005 ²⁶⁵ Overall: 3% G1: 0 G2: 0 G3: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No No Yes NA-not a case-control Rhee, 2012 ³³⁴ No attrition because data are from registry NA- no attrition NA- no attrition NA- no attrition Rhee, 2012 ³³⁴ No tartition because data are from registry NA- no attrition NA- no attrition NA- no attrition		G2: (4/54) 7.4%			
G4: (3/5) 5.5% Vary by outcome: Probably noYesNoOnwoll, 2003 ²⁵⁹ Overall: 77 [17.6%] G1: 17 [12%] G3: 36 [26%] No information by outcomeYesNoPazianas, 2008 ²⁶⁶ NA- no attritionNA- no attritionNA- no attritionPazianas, 2008 ²⁶⁶ NA- no attritionNA- no attritionNA- no attritionPazianas, 2008 ²⁶⁶ NA- no attritionNA- no attritionNA- no attritionPazianas, 2008 ²⁶⁶ Overall: 39/180 (22%) G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) G5: 12/30 (40%) G6: 5/30 (17%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: NoNoYesReginster, 2005 ²⁸⁵ Overall: 3% G1: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: NoNoYesNA-no attritionRhee, 2012 ²³⁷ No attrition because data are from registryNA- no attritionNA- no attritionNA- no attritionRhee, 2012 ²³⁴⁹ No attrition because data are from registryNA- no attritionNA- no attritionRis, 201 ²⁴⁸⁰ NoOverall: 14%NoYesNA-not a case-control		G3: (5/50) 10%			
Vary by outcome: Probably noNoOnwoll, Q03239Overall: 77 [17.6%] G1: 17 [12%] G2: 28 [19%] G3: 36 [26%] No information by outcomeYesNoPazianas, 2008286NA- no attritionNA- no attritionNA- no attritionPazianas, 2008286NA- no attritionNA- no attritionNA- no attritionRavn, 1996284Overall: 39/180 (22%) G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%)YesYesReginster, 2005285Overall: 3% G1: 0 G3: 30 G3: 30 G3: 30 G3: 30 G4: 3% G5: 8%NoYesReginster, 2005285Overall: 3% G5: 8% G5: 8% Vary by outcome: NoNoYesRhee, 20122847 Ris, 20122847NA- no attritionNA- no attritionRhee, 20122847 Ris, 20122847NoYesNA- no attritionReginster, Ris, 20012848Overall: 14%NA- no attritionNA- no attritionRhee, 20122847 Ris, 20012848Na- no attritionNA- no attritionNA- no attritionRhee, 20122847 Ris, 20012848Na- no attritionNA- no attritionNA- no attritionRis, 20012848 Ris, 20012848Overall: 14%NoYesNA- no attrition		G4: (3/55) 5.5%			
Orwoll, 2003 ²³⁹ Overall: 77 [17:6%] G1: 17 [12:%] G2: 28 [19%] G3: 36 [26%] No information by outcome Yes No NA- no attrition Pazianas, 2008 ²⁵⁶ NA- no attrition NA- no attrition NA- no attrition NA- no attrition Pazianas, 2008 ²⁵⁶ NA- no attrition NA- no attrition NA- no attrition NA- no attrition Ravn, 1996 ²⁵⁴ Overall: 39/180 (22%) G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G5: 12/30 (40%) G5: 12/30 (40%) G5: 12/30 (40%) G5: 12/30 (40%) G5: 5/30 (17%) Vary by outcome: No Yes NA-not a case-control Reginster, 2005 ²⁶⁵ Overall: 3% G1: 0 G3: 0 G3: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No No Yes NA-not a case-control Rhee, 2012 ²⁴⁷ No attrition because data are from registry NA- no attrition NA- no attrition NA- no attrition Ris, 2001 ²⁴⁹ Overall: 14% No Yes NA-not a case-control	-	Vary by outcome: Probably no			
2003 ²⁻³⁵ G1: 17 [12%] G2: 28 [19%] G3: 36 [26%] No information by outcome NA- no attrition Pazianas, 2008 ²⁵⁶ NA- no attrition Ravn, 1996 ²⁸⁴ Overall: 39/180 (22%) G1: 4/30 (13%) Yes G2: 4/30 (27%) Yes G3: 4/30 (13%) G2: 8/30 (27%) G4: 6/30 (20%) G5: 12/30 (40%) G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: No No Reginster, 2005 ²⁸⁵ Overall: 3% G2: 0 G3: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No Ree, 2012 ²⁵⁷ No attrition because data are from registry NA- no attrition Rhee, 2012 ²⁵⁷ Overall: 14% No Yes	Orwoll,	Overall: 77 [17.6%]	Yes	No	NA- no attrition
G2: 28 [19%] G3: 36 [26%] No information by outcome NA- no attrition Pazianas, 2008 ²⁰⁶ NA- no attrition Ravn, 1996 ²⁸⁴ Overall: 39/180 (22%) G1: 4/30 (13%) Yes G2: 8/30 (27%) G3: 4/30 (13%) G3: 4/30 (13%) Yes G5: 12/30 (40%) G6: 5/30 (17%) G5: 12/30 (40%) G6: 5/30 (17%) G3: 0 Yes Reginster, 2005 ²⁸⁵ Overall: 3% G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No No Rhee, 2012 ²³⁷ No attrition because data are from registry NA- no attrition Rhee, 2012 ²⁸⁰ Overall: 14%	2003239	G1: 17 [12%]			
G3: 36 [26%] No information by outcome NA- no attrition NA- no attrition Pazianas, 2008 ²⁶⁶ NA- no attrition NA- no attrition NA- no attrition Ravn, 1996 ²⁸⁴ Overall: 39/180 (22%) G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: No Yes Yes Na-not a case-control Reginster, 2005 ²⁸⁵ Overall: 3% G1: 0 G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No No Yes Na-not a case-control Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition NA- no attrition NA- no attrition Ris, 2001 ²⁸⁶ Overall: 14% No Yes Na-not a case-control		G2: 28 [19%]			
No information by outcomeNo.Pazianas, 2008296NA- no attritionNA- no attritionRavn, 1996284 G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: NoYesYesReginster, 2005285Overall: 3% G1: 0 G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: NoNoYesReginster, C05285Overall: 3% G5: 10 G5: 8% Vary by outcome: NoNoYesRee, 2012237NoYesNA- no attritionRhee, 2012237NoNA- no attritionNA- no attritionRis, 2001286Overall: 14%NoYesNa <td></td> <td>G3: 36 [26%]</td> <td></td> <td></td> <td></td>		G3: 36 [26%]			
Pazianas, 2008 ²³⁶ NA- no attrition NA- no attrition NA- no attrition Ravn, 1996 ²⁸⁴ Overall: 39/180 (22%) Yes Yes NA-not a case-control G1: 4/30 (13%) G2: 8/30 (27%) Yes Yes NA-not a case-control G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) Yes NA-not a case-control Reginster, 2005 ²⁸⁵ Overall: 3% Overall: 3% No Yes NA-not a case-control G1: 4/30 (17%) Vary by outcome: No No Yes NA-not a case-control Reginster, 2005 ²⁸⁵ Overall: 3% Overall: 3% No Yes NA-not a case-control G1: 0 G2: 0 G3: 0 G4: 3% No Yes NA-no attrition Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition NA- no attrition NA-no t a case-control Ris, 2001 ²⁸⁶ Overall: 14% No Yes NA-no atcase-control		No information by outcome			
2008-00 Ravn, 1996 Verall: 39/180 (22%) Yes NA-not a case-control G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) Yes Yes NA-not a case-control G2: 8/30 (20%) G5: 12/30 (40%) G5: 5/30 (17%) Yes NA-not a case-control Vary by outcome: No No Yes No NA-not a case-control G3: 0 G4: 6/30 (20%) G5: 12/30 (40%) No Yes NA-not a case-control Reginster, 2005 ²⁸⁵ Overall: 3% No Yes NA-not a case-control No G3: 0 G4: 3% G5: 8% No Yes NA-not a case-control Rhee, 2012 ²³⁷ No attrition because data are from registry NA- no attrition NA- no attrition Ris, 2001 ²⁸⁶ Overall: 14% No Yes NA-not a case-control	Pazianas,	NA- no attrition	NA- no attrition	NA- no attrition	NA- no attrition
Ravn, 1996 Overall: 39/180 (22%) Yes Yes Yes NA-not a case-control G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) A	2008-00				
G1: 4/30 (13%) G2: 8/30 (27%) G3: 4/30 (13%) G4: 6/30 (20%) G4: 6/30 (20%) G5: 12/30 (40%) G5: 51/30 (40%) G6: 5/30 (17%) Vary by outcome: No Ves Reginster, 2005 ²⁸⁵ Overall: 3% G1: 0 G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition Ris, 2001 ²⁸⁶ Overall: 14% No Yes	Ravn, 1996-04	Overall: 39/180 (22%)	Yes	Yes	NA-not a case-control
G2: 8/30 (27%) G3: 4/30 (13%) G3: 4/30 (13%) G4: 6/30 (20%) G4: 6/30 (20%) G5: 12/30 (40%) G5: 5/30 (17%) Vary by outcome: No Reginster, 2005 ²⁸⁵ Overall: 3% G2: 0 G3: 0 G3: 0 G4: 3% G4: 3% No Yes NA-not a case-control Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14%		G1: 4/30 (13%)			
G3: 4/30 (13%) G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: NoNoYesReginster, 2005 ²⁸⁵ Overall: 3% G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: NoNoYesRhee, 2012 ³³⁷ Riis, 2001 ²⁸⁶ NoNA- no attritionNA- no attritionRhee, 2012 ³³⁷ Riis, 2001 ²⁸⁶ Overall: 14%NoYes		G2: 8/30 (27%)			
G4: 6/30 (20%) G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: NoNoYesReginster, 2005Overall: 3% G1: 0 G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: NoNoYesRhee, 2012No attrition because data are from registryNA- no attritionNA- no attritionRhee, 2012Overall: 14%NoYesNa-not a case-control		G3: 4/30 (13%)			
G5: 12/30 (40%) G6: 5/30 (17%) Vary by outcome: NoNoYesReginster, 2005Overall: 3% G1: 0 G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: NoNoYesRhee, 2012NoAtrition because data are from registryNA- no attritionNA- no attritionRhee, 2012Overall: 14%NoYesNA-not a case-control		G4: 6/30 (20%)			
G6: 5/30 (17%) Vary by outcome: No Reginster, 2005 ²⁸⁵ Overall: 3% No 2005 ²⁸⁵ G1: 0 Pes G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No Pes Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14% No Yes		G5: 12/30 (40%)			
Vary by outcome: No No Yes NA-not a case-control 2005 ²⁸⁵ G1: 0 G2: 0 G3: 0 G4: 3% G5: 8% No Vary by outcome: No Vary by outcome: No No Yes NA-not a case-control Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14% No Yes NA-not a case-control		G6: 5/30 (17%)			
Reginster, 2005 ²⁸⁵ Overall: 3% G1: 0 G2: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No No Yes NA-not a case-control Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition NA- no attrition Rhee, 2012 ³⁸⁶ Overall: 14% No Yes NA-not a case-control		Vary by outcome: No			
2005 G1: 0 G2: 0 G3: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14%	Reginster,	Overall: 3%	NO	Yes	NA-not a case-control
G2: 0 G3: 0 G3: 0 G4: 3% G5: 8% Vary by outcome: No Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14% No	2005				
G3: 0 G4: 3% G5: 8% Vary by outcome: No Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14% No					
G4. 3% G5: 8% Vary by outcome: No Vary by outcome: No Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14% No Yes					
C5. 6% Vary by outcome: No Vary by outcome: No NA- no attrition Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14% No Yes NA- no attrition NA- no attrition NA- no attrition					
Rhee, 2012 ³³⁷ No attrition because data are from registry NA- no attrition NA- no attrition Riis, 2001 ²⁸⁶ Overall: 14% No Yes NA- no attrition		Vary by outcome: No			
Riis, 2012NoYesNA-no autionRiis, 2001286Overall: 14%NoYesNA-not a case-control	Phon 2012 ³³⁷	No attrition because data are from registry	NA no attrition	NA no attrition	NA no attrition
	Dije 2001 ²⁸⁶				NA not a case control
C1: 150/	1115, 2001	C1. 15%			
G2: 15%		C2: 15%			
		G2. 10/0 G3. 11%			
Vary by outcome: No		Vary by outcome: No			

	Overall Attrition?	High Attrition	Proportion of Participants and	Proportion of Participants and
	Attrition by Group?	Raising Concern	Reasons for Missing Data Similar	Reasons for Missing Data Similar
Author, Year	Did Attrition Vary for Different Outcomes?	for Bias?	Across Interventions?	Across Cases and Controls?
Samelson, 2014 ³³⁸	Overall: 82% for the main FREEDOM trial, but this was a subgroup analysis of patients at increased CV risk with adequate imaging studies. Only 1045/2363 patients eligible had evaluation data at baseline and followup. G1: NR G2: NR	Yes	No information	NA-not a case-control
Shiraki, 2003 ²⁸¹	G1: 9/56 = 16% G2: 9/54 = 17%	No	No information	NA-not a case control
Simon, 2013 ³³⁹	Overall: 82% (for overall FREEDOM study; 83% in DXA substudy, 86% in QCT substudy, attrition by treatment group NR) Vary by outcome: Probably no	No	No information	NA-not a case-control
Sontag, 2010 ²⁴¹	Article reports only ITT results, but based on original trial: Overall: 26% G1: 26% G2: 25% G3: 26% Vary by outcome: No	Yes	No	NA
Sorensen, 2008 ²⁴⁵	NA-not an RCT	NA-not an RCT	NA-not an RCT	Yes
Tanko, 2003 ²⁸⁷	Overall: 14% G1: NR G2: NR G3: NR G4: NR G5: NR Vary by outcome: No	No	Yes	NA-not a case-control
Thiebaud, 1997 ²⁸⁸	Overall: 10% G1: 12.5% (3/24) G2: 3.7% (1/27) G3: 11.5% (3/26) G4: 8.7% (2/23) G5: 7.7% (2/26) Vary by outcome: No	No	Yes	NA-not a case-control

Author, Year	Overall Attrition? Attrition by Group? Did Attrition Vary for Different Outcomes?	High Attrition Raising Concern for Bias?	Proportion of Participants and Reasons for Missing Data Similar Across Interventions?	Proportion of Participants and Reasons for Missing Data Similar Across Cases and Controls?
Tucci, 1996 ²⁵¹	Overall: 29/478 = 6.0% (from numbers in Table 4) G1: 9.2% G2: 6.4% G3: 8.5% G4: 3.1%	No	No information	NA-not a case-control
Van Staa, 1997 ³⁴⁰	No attrition	NA- no attrition	NA	NA
Vestergaard, 2010 ³⁴¹	None	No	NA, no attrition	NA, no attrition
Vestergaard, 2011 ³⁴²	None	No	NA, no attrition	NA, no attrition
Vestergaard, 2012 ³⁴³	None	No	NA, no attrition	NA, no attrition
Vestergaard, 2011 ³⁴⁴	NA, no attrition	NA, no attrition	No	NA-not an RCT
Vestergaard, 2012 ³⁴⁵	None	No	NA, no attrition	NA, no attrition

Abbreviations: AE = adverse event; DXA = dual energy x-ray absorptiometry; FREEDOM = Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Month; G = group; KQ = key question; NA = not applicable; NR = not reported; QCT = Quantitative computed tomography; RCT = randomized controlled trials.

	Appropriate Statistical Methods Used	Bias From Missing	
Author, Year	to Account for Missing Data?	Outcome Data?	Comments
Abrahamsen, 2010 ²⁷¹	Yes	No	NR
Adachi, 2009 ²⁴⁸	No information	Probably no	Authors do not specifically say they performed an ITT analysis.
Barrett-Connor, 2002 ³⁰⁸	Yes	Probably yes	Overall attrition a little high
Barrett-Connor, 2004 ³⁰⁷	Yes	No	NR
Bone, 2000 ²¹⁶	Yes	Probably yes	>20% attrition, and >30% attrition in one of the arms.
Bone, 2008 ²³⁷	Yes	No	NR
Boonen, 2012 ²¹⁸	Yes	No	NR
Cartsos, 2008 295	NA- no attrition	No information	No mention of how missing data was handled
Chapurlat, 2013 ²⁸²	Yes	Probably no	NR
Cryer, 2005 ²⁵⁰	Yes	Probably no	There is a small difference in reasons for discontinuation. More patients in placebo group dropped out due to any clinical AE; however, this difference is judged to be small.

	Appropriate Statistical Methods Used	Bias From Missing	
Author, Year	to Account for Missing Data?	Outcome Data?	Comments
Cummings, 1998 ²⁰⁰	Yes	No	Missing data = missing x-ray at followup
Quandt, 2005 ²⁰⁵			FIT1 (Black, 1996)
Bauer, 2000 ²⁴⁹			Overall: 81/2027 = 4.0%
			G1: 41/981 = 4.2%
			G2: 40/965 = 4.1%
			FIT2 (Cummings, 1998 [8400])
			Overall: 298/4432 (6.7%)
			G1: 157/2214 (7.1%)
			G2: 141/2218 (6.4%)
			Combining FII1 and FII2
Cummings,	Yes	No	NR
2009^{200} ; Watts,			
$2012^{\circ 11}$; McClung,			
2012; Boonen,			
2011 Eigmon 2004 ²⁵³	Voo	Drobobly po	Mara withdrawala for aligical AE in alandranata group val placaba, but na
EISITIALI, 2004	Tes	FIODADIY NO	Indie withdrawais for clinical AE in diendronate group vs. placebo, but no
Fogelman 2000 ²²⁶	Yes	Probably no	
Greenspan	Yes	No	NR
2002 ²⁵²			
Greenspan,	Yes	No	ITT analysis
2003 ²⁴⁷			
Grey, 2010 ²⁷²	Yes	No	NR
Hosking, 2003 ²⁰²	Unclear	Probably yes	Unclear what attrition was at 12 months.
Hosking, 2003 ²⁰²	Yes	No information	NR
Johnell, 2002 ²⁴⁴	Yes	Probably no	NR
Keech, 2005 ³⁰⁹	Yes	Probably yes	NR
Kung, 2000 ³³⁴	Yes	Probably yes	NR
Lasco, 2011240	NA- no attrition	Probably no	NR
Lewiecki, 2007 ²³⁰	No information	No	NR
McCloskey, 2012 ³³⁵	Probably yes	Probably no	It is discussed in the main study.
McClung, 2004 ²⁸³	Yes	No	NR
McClung, 2006 ³⁰³	Yes	Probably yes	17, not a case-control; overall attrition a little high
McClung, 2006 ²⁰⁹	Yes	No	NR
McClung, 2009 ²⁷³	Probably no	Unclear	Risk of bias for harms data because it is limited to ITT analysis.
Meunier, 1999 ³⁰⁴	Yes	No	Harms analysis is only relevant information. All participants taken into account
Miller, 2008 ³⁰⁵	Yes	Probably no	Table 3 appears to have an event for almost the whole sample, so individuals
200			weren't missed.
Morii, 2003 ³⁰⁰	Yes	Probably no	NR
Murphy, 2001 ²⁷⁰	Probably yes	Probably yes	Per protocol, analysis probably okay for harms outcomes. Table 6 suggests
1			Isimilar AE profile, but reasons for discontinuation not provided by group.

	Appropriate Statistical Methods Used	Bias From Missing	
Author, Year	to Account for Missing Data?	Outcome Data?	Comments
Nakamura, 2012 ³³⁶	Yes	Probably no	NR
Orwoll, 2003 ²³⁹	Yes	Probably yes	Differential attrition between arms
Pazianas, 2008 ²⁹⁶	NA- no attrition	No information	No mention of how missing data was handled
Ravn, 1996 ²⁸⁴	No information	Probably no	High overall and differential attrition; however, safety appears to have been
			collected and reported on a larger subset of the population
Reginster, 2005 ²⁸⁵	Yes	No	NR
Rhee, 2012 ³³⁷	NA- no attrition	No	NR
Riis, 2001 ²⁸⁶	Yes	No	NR
Samelson, 2014 ³³⁸	No	Probably yes	NR
Shiraki, 2003 ²⁸¹	Yes	Probably no	NR
Simon, 2013 ³³⁹	Yes	Probably no	NR
Sontag, 2010 ²⁴¹	Yes	Probably yes	Overall attrition a little high
Sorensen, 2008 ²⁴⁵	Yes	No	Authors report Danish registry information is complete.
Tanko, 2003 ²⁸⁷	Yes	Probably no	Not able to calculate group attrition
Thiebaud, 1997 ²⁸⁸	Yes	Probably no	Used ITT, but 1 patient who dropped out before treatment because of inability
			to administer the drug was not included. Missing values were not replaced.
Tucci, 1996 ²⁵¹	Yes	Probably no	Study was extended for a third year, 14 subjects did not consent to blinded
			treatment for a third year, 5 declined third year altogether.
Van Staa, 1997 ³⁴⁰	NA	No information	The study did not provide any information on attrition or missing data.
Vestergaard,	NA, no attrition	No	NR
2010 ³⁴¹			
Vestergaard,	NA, no attrition	No	NR
2011 ³⁴²			
Vestergaard,	NA, no attrition	No	NR
2012 ³⁴³			
Vestergaard,	NA-not an RCT	No information	No information
2011 344			
Vestergaard, 2012 ³⁴⁵	NA, no attrition	No	NR

Abbreviations: AE = adverse event; FIT = fracture intervention trial; ITT = intent to treat; KQ = key question; NA = not applicable; NR = not reported; UGI = upper gastrointestinal.

	Patients	Trial personnel and		Enough crossovers	Bias from	
	unaware of	clinicians unaware of	Intervention	or contamination	departures from	
	intervention	intervention status of	fidelity	that would raise	intended	
Author, Year	status?	participants?	adequate?	concern for bias?	interventions?	Comments
Abrahamsen, 2010 ²⁷¹	NA-not an RCT	NA-not an RCT	Probably yes	No information	Probably no	NR
Adachi, 2009 ²⁴⁸	Yes	Yes	No information	No information	Probably no	No data on adherence
Barrett-Connor,	Yes	Yes	Probably yes	Probably no	Probably no	In year 4 could take additional
2002 ³⁰⁸						medications.

	Patients	Trial personnel and		Enough crossovers	Bias from	
	unaware of	clinicians unaware of	Intervention	or contamination	departures from	
	intervention	intervention status of	fidelity	that would raise	intended	
Author, Year	status?	participants?	adequate?	concern for bias?	interventions?	Comments
Barrett-Connor,	Yes	Yes	Yes	No	No	Stated in larger study that 92% of
2004 ³⁰⁷						women took >80% of study medication
Bone, 2000 ²¹⁶	Yes	Yes	No information	No information	No	Authors did not report crossover, but were thorough about patient accounting
Bone, 2008 ²³⁷	Probably no	Probably no	NA (subcutaneous)	No information	Probably no	NR
Boonen, 2012 ²¹⁸	Probably no	Probably no	NA (subcutaneous)	No information	Probably no	NR
Cartsos, 2008 ²⁹⁵	NA-not an RCT	NA-not an RCT	No information	No information	No information	Fidelity, not sure if participants took medication correctly; no information on crossovers but not clear if other treatments were allowed
Chapurlat, 2013 ²⁸²	Yes	Yes	Yes	No	No	NR
Cryer, 2005 ²⁵⁰	Yes	Yes	Yes	No	No	
Cummings, 1998 ²⁰⁰	Yes	Yes	Yes	No	No	NR
Quandt, 2005 ²⁰⁵ Bauer, 2000 ²⁴⁹						
Cummings, 2009 ²³⁸ ; Watts, 2012 ³¹¹ ; McClung, 2012 ²⁴² ; Boonen, 2011 ²⁴³	Probably no	Probably no	NA (subcutaneous)	No information	Probably no	NR
Eisman, 2004 ²⁵³	NR	Yes	Yes	No	No	Mean compliance 95% and 96% for alendronate and placebo groups
Fogelman, 2000 ²²⁶	Yes	Yes	No information	Probably no	Probably no	NR
Greenspan, 2002 ²⁵²	Yes	Yes	Probably yes	Probably no	Probably no	NR
Greenspan, 2003 ²⁴⁷	Yes	Yes	Yes	No	No	NR
Grey, 2010 ²⁷²	Yes	Yes	Yes	No	No	NR
Hosking, 2003 ²⁰²	Yes	Yes	Yes	No	No	NR
Hosking, 2003 ²⁰²	Yes	Yes	Yes	No information	No	>75% adherence to medications
Johnell, 2002 ²⁴⁴	Yes	Yes	Yes	No	Probably no	NR
Keech, 2005 ³⁰⁹	Yes	Yes	Yes	No	No	NR
Kung, 2000 ³³⁴	Yes	Yes	No information	No information	Probably no	NR
Lasco, 2011 ²⁴⁰	NA-not an RCT	NA-not an RCT	Probably yes	Probably no	Probably no	NR

	Patients	Trial personnel and		Enough crossovers	Bias from	
	unaware of	clinicians unaware of	Intervention	or contamination	departures from	
	intervention	intervention status of	fidelity	that would raise	intended	
Author, Year	status?	participants?	adequate?	concern for bias?	interventions?	Comments
Lewiecki, 2007 ²³⁶	Probably no	Probably no	NA (subcutaneous)	No information	Probably no	NR
McCloskey, 2012 ³³⁵	Yes	Yes	Yes	No information	No	NR
McClung, 2004 ²⁸³	Yes	Yes	Yes	No	No	Compliance in mid- to high-80s
McClung, 2006 ³⁰³	Yes	Yes	No information	No information	probably yes	Adherence unknown
McClung, 2006 ²⁰⁹	Yes	Yes	Yes	No	No	Double blinding for denosumab but not alendronate (open label); all answers are for denosumab. For alendronate (no, no, yes, no information, probably yes)
McClung, 2009 ²⁷³	Yes	Yes	Probably yes	Probably no	Probably no	NR
Meunier, 1999 ³⁰⁴	Yes	Yes	Probably yes	No	No	NR
Miller, 2008 ³⁰⁵	Yes	Probably yes	No information	No information	Probably no	NR
Morii, 2003 ³⁰⁶	Yes	No information	Probably yes	No	No	NR
Murphy, 2001 ²⁷⁰	Yes	Yes	Yes	No	No	Only 4 patients failed to take >75% of assigned drug
Nakamura, 2012 ³³⁶	Probably yes	Probably yes	Yes	No	No	NR
Orwoll, 2003 ²³⁹	Yes	Yes	Yes	Probably no	Probably no	Patient-administered injections of placebo or drug
Pazianas, 2008 ²⁹⁶	NA-not an RCT	NA-not an RCT	No information	No information	No information	Fidelity, not sure if participants took medication correctly; no information on crossovers but not clear if other treatments were allowed
Ravn, 1996 ²⁸⁴	Yes	No	No information	No	Probably no	Data safety review committee was not blinded to treatment, and it monitored adverse events during each step. Information on compliance was not provided.
Reginster, 2005 ²⁸⁵	NA-not an RCT	NA-not an RCT	Probably no	No	Probably yes	No way to determine if participants took dose
Rhee, 2012 ³³⁷	Yes	Yes	Yes	No	No	NR
Riis, 2001 ²⁸⁶	Probably yes	Probably yes	Yes	No	Probably no	NR
Samelson, 2014 ³³⁸	Yes	Yes	Probably yes	No information	Probably no	NR
Shiraki, 2003 ²⁸¹	Yes	Yes	No information	Probably no	Probably no	NR
Simon, 2013 ³³⁹	Yes	Yes	Probably yes	No information	No	NR

	Patients	Trial personnel and		Enough crossovers	Bias from	
	unaware of	clinicians unaware of	Intervention	or contamination	departures from	
	intervention	intervention status of	fidelity	that would raise	intended	
Author, Year	status?	participants?	adequate?	concern for bias?	interventions?	Comments
Sontag, 2010 ²⁴¹	Probably yes	Probably yes	No	Probably no	Probably no	Study was reported as double-blind but no other details were provided. Placebo arm received active treatment after 1 year but results are not reported separately for before and after receipt of active treatment.
Sorensen, 2008 ²⁴⁵	NA-not an RCT	NA-not an RCT	Probably yes	No information	Probably no	NR
Tanko, 2003 ²⁸⁷	Yes	Yes	No information	No	Probably no	Large proportion of patients in each study group took at least 75% of study medication: 89% (placebo), 88.8% (5 mg), 90.1% (10 mg) and 88.7% (20 mg) patients.
Thiebaud, 1997 ²⁸⁸	Yes	No	No information	No	Probably no	Information on compliance was not provided. Investigator was not blind for all arms.
Tucci, 1996 ²⁵¹	Yes	Yes	Yes	No	No	Investigators only evaluated blinded results (excluded patients who declined blinding for third year)
Van Staa, 1997 ³⁴⁰	NA-not an RCT	NA-not an RCT	No information	No	No information	Did not evaluate adherence
Vestergaard, 2010 ³⁴¹	NA-not an RCT	NA-not an RCT	No information	No information	No information	NR
Vestergaard, 2011 ³⁴²	NA-not an RCT	NA-not an RCT	No information	No information	No information	NR
Vestergaard, 2012 ³⁴³	NA-not an RCT	NA-not an RCT	No information	No information	No information	NR
Vestergaard, 2011 ³⁴⁴	No information	NA-no benefits outcomes	NA-no benefits outcomes	NA-no benefits outcomes	Probably no	NR
Vestergaard, 2012 ³⁴⁵	NA-not an RCT	NA-not an RCT	No information	No information	No information	NR

Abbreviations: KQ = key question; NA = not applicable;

	Benefit Outcomes	Similar Techniques			
	Adequately Described,	Used Among Groups	Duration of Followup	Bias from	
	Prespecified, Valid,	to Ascertain Harm	Adequate to Assess	Measurement	
Author, Year	and Reliable?	Outcomes?	Harm Outcomes?	of Outcomes?	Comments
Abrahamsen,	NA-no benefits	Probably yes	Probably yes	Probably yes	Not able to identify atypia.
2010 ²⁷¹	outcomes				

Author, Year	Benefit Outcomes Adequately Described, Prespecified, Valid, and Reliable?	Similar Techniques Used Among Groups to Ascertain Harm Outcomes?	Duration of Followup Adequate to Assess Harm Outcomes?	Bias from Measurement of Outcomes?	Comments
Adachi, 2009 ²⁴⁸	NA-no benefits outcomes	Yes	Yes	Probably no	No specific information about how often patients were assessed for harms, though did describe adequate blinding of patients.
Barrett-Connor, 2002 ³⁰⁸	NA-no benefits outcomes	Yes	Yes	No	NR
Barrett-Connor, 2004 ³⁰⁷	Yes	Yes	Yes	No	NR
Bone, 2000 ²¹⁶	Probably Yes	Probably yes	Yes	Probably yes	Patients were seen at 3, 6, 12, 18, and 24 months, but doesn't specifically describe clinical assessment (i.e., patient assessed for harms at this time)
Bone, 2008 ²³⁷	Yes	Yes	Probably yes	Probably no	NR
Boonen, 2012 ²¹⁸	Yes	Yes	Yes	No	NR
Cartsos, 2008 ²⁹⁵	NA-no benefits outcomes	Probably yes	Probably yes	Probably yes	Not clear how outcomes were measured due to only a code being provided
Chapurlat, 2013 ²⁸²	Yes	Probably yes	Yes	No	NR
Cryer, 2005 ²⁵⁰	Yes	Yes	Yes	No	NR
Cummings, 1998 ²⁰⁰ Quandt, 2005 ²⁰⁵ Bauer, 2000 ²⁴⁹	Yes	Yes	Yes	No	NR
Cummings, 2009 ²³⁸ ; Watts, 2012 ³¹¹ ; McClung, 2012 ²⁴² ; Boonen, 2011 ²⁴³	Yes	Yes	Probably yes	Probably no	NR
Eisman, 2004 ²⁵³	Yes	Yes	Yes	No	NR
Fogelman, 2000 ²²⁶	Probably Yes	Yes	Yes	Probably no	NR
Greenspan, 2002 ²⁵²	NA-no benefits outcomes	Yes	Yes	No	NR
Greenspan, 2003 ²⁴⁷	Yes	Yes	Yes	No	NR

	Benefit Outcomes	Similar Techniques			
	Adequately Described,	Used Among Groups	Duration of Followup	Bias from	
	Prespecified, Valid,	to Ascertain Harm	Adequate to Assess	Measurement	
Author, Year	and Reliable?	Outcomes?	Harm Outcomes?	of Outcomes?	Comments
Grey, 2010 ²⁷²	Probably yes	Probably yes	Yes	Probably no	Looked at parent article to identify clinical assessment of harms-no information.
Hosking, 2003 ²⁰²	NA-no benefits outcomes	Yes	Probably yes	Probably no	NR
Johnell, 2002 ²⁴⁴	NA-no benefits outcomes	Yes	Probably yes	Probably no	12-month study
Keech, 2005 ³⁰⁹	NA-no benefits outcomes	Yes	Yes	No	NR
Kung, 2000 ³³⁴	NA-no benefits	Yes	Yes	Probably yes	No information on how harms were ascertained
Lasco, 2011 ²⁴⁰	NA-no benefits outcomes	No information	No information	Probably no	NR
Lewiecki, 2007 ²³⁶	Yes	Yes	Probably yes	Probably no	NR
McCloskey, 2012 ³³⁵	Yes	NA-no harms outcomes	NA-no harms outcomes	No	NR
McClung, 2004 ²⁸³	NA-no benefits outcomes	Yes	Yes	No	NR
McClung, 2006 ³⁰³	NA-no benefits outcomes	Yes	Yes	No	NR
McClung, 2006 ²⁰⁹	Yes	Yes	Yes	No	NR
McClung, 2009 ²⁷³	NA-no benefits outcomes	yes	Yes	Probably no	NR
Meunier, 1999 ³⁰⁴	NA-no benefits outcomes	Yes	Yes	Probably no	Followup was 2 years
Miller, 2008 ³⁰⁵	NA-no benefits outcomes	Yes	Yes	Probably no	NR
Morii, 2003 ³⁰⁶	NA-no benefits outcomes	Yes	Yes	Probably no	NR
Murphy, 2001 ²⁷⁰	Yes	Yes	Yes	No	NR
Nakamura, 2012 ³³⁶	Yes	Yes	Probably yes	No	NR
Orwoll, 2003 ²³⁹	Yes	Yes	Probably no	Probably no	NR
Pazianas, 2008 ²⁹⁶	NA-no benefits outcomes	Yes	Probably yes	Probably no	NR
Ravn, 1996 ²⁸⁴	NA-no benefits outcomes	Yes	Yes	No	NR
Reginster, 2005 ²⁸⁵	NA-no benefits outcomes	Yes	Yes	No	NR

	Benefit Outcomes Adequately Described,	Similar Techniques Used Among Groups	Duration of Followup	Bias from	
	Prespecified, Valid,	to Ascertain Harm	Adequate to Assess	Measurement	
Author, Year	and Reliable?	Outcomes?	Harm Outcomes?	of Outcomes?	Comments
Rhee, 2012 ³³⁷	NA-no benefits	Yes	Yes	No	NR
2005	outcomes				
Riis, 2001 ²⁰⁰	NA-no benefits	Yes	Yes	No	NR
	outcomes				
Samelson,	NA-no benefits	Yes	Yes	Probably yes	Post hoc analysis and approach to reporting
2014 ³³⁰	outcomes				cardiovascular events in this analysis is different from
					reporting in the main FREEDOM trial, where
					cardiovascular events were adjudicated by a panel.
Shiraki, 2003 ²⁰¹	NA-no benefits	Yes	Yes	Probably yes	NR
339	outcomes				
Simon, 2013	Probably Yes	NA-no harms	NA-no harms	Probably no	NR
- 241		outcomes	outcomes		
Sontag, 2010 ²⁴¹	Yes	Yes	Yes	Probably no	NR
Sorensen,	NA-no benefits	Yes	Probably yes	Probably no	Case-control; harms only identified in the case group
2008243	outcomes				
Tanko, 2003 ²⁰⁷	NA-no benefits	Yes	Yes	No	NR
	outcomes				
Thiebaud,	NA-no benefits	Yes	Yes	No	NR
1997200	outcomes				
Tucci, 1996 ²³¹	Yes	Yes	Yes	No	Some data on reduction of vertebral fractures, but
					investigators have planned another arm with future
					reporting. Study not powered for fracture reduction.
Van Staa,	NA-no benefits	Yes	Yes	No	NR
1997 ³⁴⁰	outcomes				
Vestergaard,	NA-no benefits	Yes	Probably yes	Probably no	NR
2010341	outcomes				
Vestergaard,	NA-no benefits	Yes	Probably yes	Probably no	NR
2011 342	outcomes				
Vestergaard,	NA-no benefits	Yes	Probably yes	Probably yes	NR
2012343	outcomes				
Vestergaard,	Probably Yes	Probably no	Yes	Probably yes	NR
2011 2011					
Vestergaard,	NA-no benefits	Yes	Probably yes	Probably yes	NR
2012 343	outcomes				

Abbreviations: FREEDOM = Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Month; KQ = key question; NA = not applicable; NR = not reported;

Author, Year	Effect Estimate Unlikely to Be Selected, on the Basis of Results, From Multiple Outcome Measurements Within the Domain, Multiple Analyses, or Different Subgroups?	Effect Estimate Unlikely to Be Selected, on the Basis of Results, From Multiple Definitions of the Intervention?	Bias From Selection of Reposted Results?	Comments
Abrahamsen, 2010 ²⁷¹	Probably yes	NA-not a case-control	Probably no	NR
Adachi, 2009 ²⁴⁸	Yes	NA-not a case-control	No	NR
Barrett-Connor, 2002 ³⁰⁸	No	NA-not a case-control	No	NR
Barrett-Connor, 2004 ³⁰⁷	No	NA-not a case-control	No	NR
Bone, 2000 ²¹⁶	Yes	NA-not a case-control	No	NR
Bone, 2008 ²³⁷	Probably no	NA-not a case-control	Probably no	NR
Boonen, 2012 ²¹⁸	Yes	NA-not a case-control	Probably no	NR
Cartsos, 2008 ²⁹⁵	NA-not an RCT	Probably yes	Probably no	None
Chapurlat, 2013 ²⁸²	No	NA-not a case-control	No	NR
Cryer, 2005 ²⁵⁰	Yes	NA-not a case-control	No	NR
Cummings, 1998 ²⁰⁰ Quandt, 2005 ²⁰⁵ Bauer, 2000 ²⁴⁹	Yes	NA-not a case-control	No	NR
Cummings, 2009 ²³⁸ ; Watts, 2012 ³¹¹ ; McClung, 2012 ²⁴² ; Boonen, 2011 ²⁴³	Probably no	NA-not a case-control	Probably no	NR
Eisman, 2004 ²⁵³	Yes	NA-not a case-control	No	NR
Fogelman, 2000 ²²⁶	Yes	NA-not a case-control	No	NR
Greenspan, 2002 ²⁵²	Yes	NA-not a case-control	No	NR
Greenspan, 2003 ²⁴⁷	Yes	NA-not a case-control	No	NR
Grey, 2010 ²⁷²	Yes	NA-not a case-control	No	NR
Hosking, 2003 ²⁰²	Yes	NA-not a case-control	No	NR
Hosking, 2003 ²⁰²	Yes	NA-not a case-control	No	NR
Johnell, 2002 ³⁴⁶	Probably yes	NA-not a case-control	Probably no	NR
Keech, 2005 ³⁰⁹	No	NA-not a case-control	No	NR
Kung, 2000 ³³⁴	Yes	NA-not a case-control	No	NR
Lasco, 2011 ²⁴⁰	Probably no	NA-not a case-control	Probably no	NR
Lewiecki, 2007 ²³⁶	Probably no	NA-not a case-control	Probably no	NR
McCloskey, 2012 ³³⁵	No	NA-not a case-control	Probably no	NR
McClung, 2004 ²⁸³	No	No	No	NR
McClung, 2006 ³⁰³	No	NA-not a case-control	No	NR
McClung, 2006 ²⁰⁹	Yes	NA-not a case-control	No	Study was powered for primary outcome of urinary markers, not harms. Reports nominal p-values for harms.

	Effect Estimate Unlikely to Be Selected, on the	Effect Estimate Unlikely to Be	Bias From	
	Basis of Results, From Multiple Outcome	Selected, on the Basis of Results,	Selection of	
	Measurements Within the Domain, Multiple	From Multiple Definitions of the	Reposted	
Author, Year	Analyses, or Different Subgroups?	Intervention?	Results?	Comments
McClung, 2009 ²⁷³	Probably yes	NA-not a case-control	Probably no	NR
Meunier, 1999 ³⁰⁴	Yes	NA-not a case-control	Probably no	NR
Miller, 2008 ³⁰⁵	Probably no	NA-not a case-control	Probably no	NR
Morii, 2003 ³⁰⁶	Yes	NA-not a case-control	Probably no	NR
Murphy, 2001 ²⁷⁰	Yes	NA-not a case-control	No	NR
Nakamura, 2012 ³³⁶	No	NA-not a case-control	No	NR
Orwoll, 2003 ²³⁹	Probably yes	NA-not a case-control	Probably no	NR
Pazianas, 2008 ²⁹⁶	NA-not an RCT	Probably yes	Probably no	NR
Ravn, 1996 ²⁸⁴	No	No	No	NR
Reginster, 2005 ²⁸⁵	No	No	No	NR
Rhee, 2012 ³³⁷	No	NA-not a case-control	No	NR
Riis, 2001 ²⁸⁶	No	No	No	NR
Samelson, 2014 ³³⁸	Probably yes	NA-not a case-control	No	It is not clear how the cardiovascular
				adverse events reported in this study
				relate to the harms reported in the
				main FREEDOM trial. This appears
204				to be a post-hoc analysis.
Shiraki, 2003201	Yes	NA-not a case-control	No	NR
Simon, 2013 ³³⁹	Probably yes	NA-not a case-control	Probably no	NR
Sontag, 2010 ²⁴¹	Probably no	NA-not a case-control	Probably no	NR
Sorensen, 2008 ²⁴⁵	NA-not an RCT	Yes	No	NR
Tanko, 2003 ²⁸⁷	No	No	No	NR
Thiebaud, 1997 ²⁸⁸	No	No	No	NR
Tucci, 1996 ²⁵¹	Yes	NA-not a case-control	No	Stepwise Tukey trend test to adjust
				for multiple comparisons.
Van Staa, 1997 ³⁴⁰	Yes	NA-not a case-control	No	Intervention status defined as
				patients who had received a
				prescription; adherence not
				measured; attrition and how missing
3/1				data were handled was not reported.
Vestergaard, 2010 ³⁴¹	Probably no	NA-not a case-control	Probably no	NK
Vestergaard, 2011 ³⁴²	Probably no	NA-not a case-control	Probably no	INR
Vestergaard, 2012 ³⁴³	Probably no	NA-not a case-control	Probably no	NR
Vestergaard, 2011	Probably no	NA-not a case-control	Probably no	NR
Vestergaard, 2012 ³⁴⁵	Probably no	NA-not a case-control	Probably no	NR

Abbreviations: FREEDOM = Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Month; KQ = key question; NA = not applicable; NR = not reported; RCT = randomized controlled trials.

	Rating		Does Quality Rating of
Author, Year	Overall	Rating Justification	Study Vary by Outcome?
Abrahamsen, 2010 ²⁷¹	Poor	Risk of bias from residual confounding and measurement of outcomes.	No
Adachi, 2009 ²⁴⁸	Fair	Baseline differences between groups raise some concerns for risk of bias.	No
Barrett-Connor, 2002 ³⁰⁸	Fair	About 25% lost to followup. Also year 4 data allows additional therapy for osteoporosis, which	No
		was different per group, athough a small number (<7%)this study included year 4 participants	
		but didn't report concomitant medications. Additionally, there was differential loss to followup	
		due to excessive bone loss in the placebo group (3% vs. 1%).	
Barrett-Connor, 2004 ³⁰⁷	Fair	About 25% lost to followup. Also year 4 data allows additional therapy for osteoporosis, which	No
		was different per group, although a small number (<7%)this study included year 4 participants	
		but didn't report concomitant medications. (No sensitivity analysis looked at 3 years of data	
		where there was no additional medications.) Additionally, there was differential loss to followup	
Dava 2000 ²¹⁶		due to excessive bone loss in the placebo group (3% vs. 1%).	N I -
Bone, 2000	Poor	High attrition and no information about now narms were specified or assessed.	NO
Bone, 2008	Fair	Some uncertainties in reporting of randomization, allocation concealment, and billioning.	No
Boonen, 2012	Gooa	NK	No
Cartsos, 2008	Poor	Unclear now outcomes were measured. Fidelity: not sure if participants took medication	NO
		correctly; no information on crossovers but unclear if other treatments were allowed. No mention is	
		of now missing data was natured. Sample not representative or rotal population	
Chapurlat 2013 ²⁸²	Fair	Considering IVR with minimization scheme to be just adequate: unclear how dropouts were	No
onapanat, 2010		handled.	
Cryer, 2005 ²⁵⁰	Good	Fair for differential attrition, no information on contamination.	No
Cummings, 1998 ²⁰⁰	Good	NR	No
Quandt, 2005 ²⁰⁵			
Bauer, 2000 ²⁴⁹			
Cummings, 2009 ²³⁸ ;	Fair	Some uncertainties in reporting of randomization, allocation concealment, and blinding.	No
Watts, 2012 ³¹¹ ; McClung,			
2012 ²⁴² ; Boonen, 2011 ²⁴³	<u> </u>		
Eisman, 2004 ²⁰⁰	Good	NR	No
Fogelman, 2000-20	Fair	NR	No
Greenspan, 2002	Fair	Missing information on randomization. No washout period for patients previously on bisphosphonates.	No
Greenspan, 2003 ²⁴⁷	Good	NR	No
Grey, 2010 ²⁷²	Fair	Differences in baseline fracture rates, minimal specification of harm outcomes.	No
Hosking, 2003 ²⁰²	Fair	NR	No
Hosking, 2003 ²⁰²	Fair	Fair or poor depending on how rate attrition was modeled.	No
Johnell, 2002 ²⁴⁴	Good	NR	No
Keech, 2005 ³⁰⁹	Fair	About 25% lost to followup. Also year 4 data allows additional therapy for osteoporosis, which	No
		was different per group, though a small number (<7%)this study included year 4 participants	
		but didn't report concomitant medications. (No sensitivity analysis looked at 3 years of data	
		where there were no additional medications.) Additionally, there was differential loss to followup	
		due to excessive bone loss in the placebo group (3% vs. 1%).	

	Rating		Does Quality Rating of
Author, Year	Overall	Rating Justification	Study Vary by Outcome?
Kung, 2000 ³³⁴	Poor	No information on randomization methods, fidelity, or contamination; 20% attrition with not	No
		enough information to judge differential attrition; and poorly specified harms outcomes (very	
		specific patient self-reported AEs, with no indication as to seriousness or whether it resulted in	
		discontinuation); data offered are number of events, not number of women, making it difficult to	
		know whether the risk is higher in one group vs. the other.	
Lasco, 2011 ²⁴⁰	Poor	Potential for confounding.	No
Lewiecki, 2007 ²³⁶	Fair	Some uncertainties in reporting of randomization, allocation concealment, and blinding.	No
McCloskey, 2012 ³³⁵	Fair	No detail on randomization and allocation concealment prevents this from being rated as good. No fatal flaws.	No
McClung, 2004 ²⁸³	Fair	No information provided on method of randomization or concealment.	No
McClung, 2006 ³⁰³	Fair	Overall attrition high, not a lot of information provided on randomization process; fidelity issue:	No
0.		no information whether participants actually took their assigned doses.	
McClung, 2006 ²⁰⁹	Good	Good for denosumab. Poor for alendronate for lack of blinding.	No
McClung, 2009 ²⁷³	Fair	Higher risk of bias for harms than benefits (ITT analysis understates harms).	No
Meunier, 1999 ³⁰⁴	Good	Documentation on randomization missing, outcomes mostly self reported.	No
Miller, 2008 ³⁰⁵	Fair	Cannot say how missing cases were accounted for in the analysis. Study has a potential to	No
		underestimate harms by using N randomized in the denominator and N retained in the	
		numerator.	
Morii, 2003 ³⁰⁶	Fair	NR	No
Murphy, 2001 ²⁷⁰	Poor	Very poor attrition at 12 and 18 months, unable to assess differential attrition, and missing	No
		information on randomization.	
Nakamura, 2012 ³³⁶	Fair	Article was lacking information on method of randomization and concealment; lack of	No
		information on participants who discontiuned study.	
Orwoll, 2003 ²³⁹	Fair	Differential attrition; higher in treatment arm; used ITT to adjust for analysis.	No
Pazianas, 2008 ²⁹⁶	Poor	Fidelity: not sure if participants took medication correctly; no information on crossovers but not	No
		clear if other treatments were allowed. No mention of how missing data was handled. Sample	
		not representative of total population. Intervention based on dispensing information from claims	
		data, information on dose not available.	
Ravn, 1996 ²⁸⁴	Fair	High attrition; however, safety data appears to have been collected and reported on a larger	No
		subset of the population. No information provided on method of randomization or concealment.	
Reginster, 2005 ²⁰⁵	Fair	No information provided on method of randomization or concealment. Information on	No
		compliance was not provided.	
Rhee, 2012 ³³⁷	Poor	Potential bias arising from creation of a new user cohort and from restriction to those without	No
786		switches.	
Riis, 2001 ²⁰⁰	Fair	No information provided on method of randomization or concealment.	No
Samelson, 2014	Poor	No detail on randomization and allocation concealment prevents the main trial from being rated	No
		as good. Attrition/missing data and outcome measurement in this specific substudy make this	
0		analysis at high risk of bias, thus poor quality.	l
Shiraki, 2003	Fair	INR	No
Simon, 2013	Fair	In the end, the only outcome that is of interest is wrist fractures in subgroups based on baseline	No
		Irisk.	

	Rating		Does Quality Rating of
Author, Year	Overall	Rating Justification	Study Vary by Outcome?
Sontag, 2010 ²⁴¹	Poor	The open-label portion of the trial allowed patient choice, and as a result, outcomes could be the	No
		result of confounding because of prognostic variables.	
Sorensen, 2008 ²⁴⁵	Good	NR	No
Tanko, 2003 ²⁸⁷	Fair	No information provided on method of randomization or concealment. Not able to calculate group attrition.	No
Thiebaud, 1997 ²⁸⁸	Fair	No information provided on method of randomization or concealment. Slight differences in	No
		length of menopause. Information on compliance was not provided. Investigator was not blinded for all arms.	
Tucci, 1996 ²⁵¹	Fair	Randomization methods, fidelity, and contamination missing information.	No
Van Staa, 1997 ³⁴⁰	Poor	NR	No
Vestergaard, 2010 ³⁴¹	Poor	Concerns include lack of adjustment for all potential confounders, particularly OTC NSAID use	No
		and smoking. Additionally, the study does not control for adherence.	
Vestergaard, 2011 ³⁴²	Poor	Concerns include lack of adjustment for all potential confounders. For example, smoking,	No
		hypertension, or diabetes could explain the stroke, and it's possible that these underlying	
		conditions are highly associated with both the osteoporosis medications and the outcome.	
Vestergaard, 2012 ³⁴³	Poor	Concerns include lack of adjustment for all potential confounders. For example, smoking and	No
		hypertension could explain the stroke, and it's possible that these underlying conditions are	
344		highly associated with both the osteoporosis medications and the outcome.	
Vestergaard, 2011	Poor	Concerns include lack of adjustment for all potential confounders, particularly underlying disease	No
		that might also be related to the choice of medication for osteoporosis and the outcome.	
1/2 at a map a mat. 0.04.0 ³⁴⁵	Deer	Additionally, the outcome did not distinguish between typical and atypical inactures.	NI-
vestergaard, 2012	Poor	Concerns include lack of adjustment for all potential confounders, particularly underlying causes	INO
		for initianimatory jaw disease (e.g., autoinimune disorders) that might also be related to fisk	
		paciols for use uponosis. Additionally, the outcome includes many valied conditions with different	
		רבוטוטעובי נוומו חוועחו שב עחובומנבע נט טגובטטטוטאוג.	

Abbreviations: AE = adverse event; ITT = intent to treat; IVR = interactive voice response; KQ = key question; NR = not reported; NSAIDS = nonsteroidal anti-inflammatory drugs; OTC = over the counter.

Appendix E. Overview of 2010 included studies and inclusion/exclusion status in current report

Author, Year	Status in Current Report	Reasons for Exclusion
Adler, 2003 ⁷⁸	Include	NA
Alexandersen, 2005 ³⁴⁷	Exclude	BMD screening after identification of fractures
Anderson, 2003 348	Exclude	Not osteoporotic women, WHI
Anderson, 2004 ³⁴⁹	Exclude	Wrong population
Ascott-Evans, 2003 ²⁰⁴	Include	NA
Barrett-Connor, 2006 ²³³	Exclude	Wrong population
Bauer, 1997 ³⁵⁰	Exclude	No AUCs
Bauer, 2007 ¹²⁰	Include	NA
Ben Sedrine, 2001 ⁷⁹	Include	NA
Black, 2001 ¹⁶⁸	Exclude	Wrong or no outcome
Black, 2007 ²¹⁹	Exclude	Wrong population
Brenneman, 2003 ⁸²	Include	NA
Cadarette, 2001 ⁸³	Include	NA
Cadarette, 2004 ⁸⁴	Include	NA
Cadarette, 2008 ³⁵¹	Exclude	Not a relevant comparison
Cass, 2006 ⁸⁵	Include	NA
Cauley, 2003 ³⁵²	Exclude	Not osteoporotic women, WHI
Chesnut, 1995 ²⁰³	Include	NA
Chesnut, 2000 ³⁵³	Exclude	Wrong intervention
Chesnut, 2004 ³⁵⁴	Exclude	Wrong population
Chlebowski, 2003 ³⁵⁵	Exclude	Not osteoporotic women, WHI
Colon-Emeric, 2002 ¹⁶⁷	Exclude	Wrong or no outcome
Cook, 2005 ⁸⁸	Include	NA
Crabtree, 2002 ³⁵⁶	Exclude	Wrong or no intervention
Cranney, 2002 ³⁵⁷	Exclude	Calcitonin was not an included intervention
Cryer, 2002 ³⁵⁸	Exclude	Wrong study design
Cummings, 1998 ²⁰⁰	Include	NA
Cummings, 2006 ³⁵⁹	Exclude	Wrong or no outcome
Curb, 2013 ³⁶⁰	Exclude	Not osteoporotic women, WHI
Cushman, 2004 ³⁶¹	Exclude	Not osteoporotic women, WHI
D'Amelio, 2005 ⁸⁹	Include	NA
Dargent-Molina, 2003 ³⁶²	Exclude	Not in externally validated cohort
Delmas, 2002 ²³²	Include	NA
Diez-Perez, 2007 ³⁶³	Exclude	Not in externally validated cohort
Donaldson, 2009 ³³⁰	Include	NA
Dursun, 2001 ²⁰⁷	Exclude	Wrong or no comparator
Ensrud, 2009 ¹³⁸	Include	NA
Ettinger, 1999 ²³¹	Include	NA
Frediani, 2006 ³⁶⁴	Exclude	BMD screening after identification of fractures
Gennari, 1985 ³⁶⁵	Exclude	Calcitonin was not an included intervention
Girman, 2002 ¹⁶⁹	Exclude	Wrong clinical setting
Gluer, 2003 ³⁶⁶	Exclude	Not original research
Gnudi, 2005 ⁹²	Include	NA
Goh, 2007 ²⁶⁷	Exclude	Wrong study design
Gonnelli, 2005 ³⁶⁷	Exclude	Not a key question reviewed in the current report (DXA in
		men)
Gourlay, 2005 ⁰⁰	Include	NA
Grbic, 2008 ²⁷⁹	Exclude	Wrong population
Greenfield, 2007 ³⁰⁰	Exclude	Wrong population
		Note: the authors of Nelson, 2010 have a discrepancy in
035		the author names in references vs. tables.
Greenspan, 2005	Exclude	Superseded by the current meta-analysis in this update.
Greenspan, 2007 ³⁰	Include	
Hans, 1996 ³⁷⁹	Exclude	No AUCs
Hans, 2008 ³	Exclude	Not in externally validated cohort
Harris, 2008 ³⁷²	Exclude	Superseded by the current meta-analysis in this update.
Harrison, 2006 ^s ⁴	Include	NA

Appendix E. Overview of 2010 included studies and inclusion/exclusion status in current report

Author, Year	Status in Current Report	Reasons for Exclusion
Heckbert, 2008 ²⁵⁴	Exclude	Wrong population
Herd, 1997 ²²⁸	Include	NA
Hillier, 2007 ¹⁹⁴	Include	NA
Hippislev-Cox. 2009 ¹⁷¹	Include	NA
Hizmetli, 1996 ³⁷³	Exclude	Calcitonin was not an included intervention
Hooper, 2005 ²²⁷	Include	NA
Hosking, 1998 ²¹⁵	Include	NA
Hsia. 2006 ³⁷⁴	Exclude	Not osteoporotic women. WHI
Kanis, 2007 ³²	Include	NA
Karam, 2007 ²⁹¹	Exclude	Superseded by the current meta-analysis in this update.
Kaufman, 2005 ³⁷⁵	Exclude	Wrong or no intervention
Khaw. 2004 ³⁷⁶	Exclude	No AUCs
Kurland, 2000 ³⁷⁷	Exclude	Wrong population
LaCroix, 2005 ³⁷⁸	Exclude	Wrong or no comparator
Lenart, 2008 ²⁶¹	Exclude	Wrong or no comparator
Lynn, 2008 ⁹⁸	Include	NA
Macl ean, 2008 ²⁶⁸	Exclude	Superseded by new evidence
Manson 2003 ³⁷⁹	Exclude	Not osteoporotic women WHI
Martinez-Aguila, 2007 ¹⁰⁰	Include	NA
Masoni. 2005 ³⁸⁰	Exclude	Risk prediction instruments predicting BMD with no
		information on imaging tests screening for BMD.
Mauck, 2005 ¹⁰¹	Include	NA
McClung, 2004 ²⁸³	Include	NA
Meunier 1997 ²²⁹	Include	NA
Minnock 2008 ¹¹⁵	Exclude	Not in an externally validated cohort
Mortensen 1998 ²²⁴		NA
Mulleman 2002 ³⁸¹	Exclude	Not a key question reviewed in the current report (DXA in
		men)
Navak, 2006 ¹¹⁸	Exclude	Superseded by the current meta-analysis in this update.
Neer, 2001 ³⁸²	Exclude	Wrong population
Nelson 2009 ³⁸³	Include	NA
Nelson 2009 ³⁸⁴	Include	NA
Nguyen 2004 ¹⁰⁴	Include	NA
Odvina 2005 ²⁶²	Exclude	Wrong or no comparator
Office of Drug Safety 2004 ²⁵⁵	Exclude	Wrong population
Orwoll 2003^{239}		NA
Overgaard 1992 ³⁸⁵	Exclude	Wrong intervention
Pols 1999 ²⁰¹	Include	NA
Pouilles 1997^{230}	Exclude	Wrong population
Reid 2002 ²¹⁷		ΝΔ
Richards 2008 ³⁸⁶	Exclude	Not in externally validated cohort
Richy 2004 ⁸¹		
Rico 1995 ³⁸⁷	Exclude	Calcitonin was not an included intervention
Robbins 2007^{172}	Exclude	Not osteoporotic women WHI
Rossouw 2002 ³⁸⁸	Exclude	Not osteoporotic women, WHI
Rossouw, 2002	Exclude	Not osteoporotic women, WHI
Rud 2005 ¹⁰⁹		
Rud, 2005 Rud, 2007 ³⁹⁰	Exelude	INA Study doop not look at fracture outcompo
Rud, 2007 Rudoall, 2001 ³⁹¹		Diale prediction instruments predicting DMD with pe
Russell, 2001	Exclude	risk prediction instruments predicting bivid with no
Saloffi 2005 ³⁹²	Exelude	Pick prediction instruments predicting PMD with pe
SaiaIII, 2003		information on imaging tasts screening for PMD
Sandhu 2010 ¹⁶⁶	Includo	
Sandru, 2010	Evoludo	INA Suppression by the ourrent mate analysis in this water
Sawka, 2005 Sobuit 2004 ²³		Superseded by the current meta-analysis in this update.
Schull, 2004 Sodring, 2002 ¹⁷⁷		Pick prediction instruments predicting DMD with re-
Seuline, 2002	Exclude	Information on imaging toots acrossing for DMD
2007^{110}	la alvala	
Snephera, 2007	Include	INA

Appendix E. Overview of 2010 included studies and inclusion/exclusion status in current report

Author, Year	Status in Current Report	Reasons for Exclusion
Shiraki, 2003 ²⁸¹	Include	NA
Sinnott, 2006 ¹¹¹	Include	NA
Sorensen, 2008 ²⁴⁵	Include	NA
Stefanick, 2006 394	Exclude	Not osteoporotic women, WHI
Stewart, 2006 ¹¹⁹	Include	NA
Tracz, 2006 ³⁹⁵	Exclude	Wrong or no intervention testosterone
Valimaki, 2007 ²²⁵	Include	NA
Van der Klift, 2002 ³⁹⁶	Exclude	Not a key question reviewed in the current report (DXA in
		men)
Van Staa, 1997 ³⁴⁰	Include	NA
Varenna, 2005 ³⁷⁶	Exclude	No AUCs
Vestergaard, 2007 ³⁹⁷	Exclude	Wrong or no comparator
Wallace, 2004 ³⁹⁸	Exclude	Risk prediction instruments predicting BMD with no
		information on imaging tests screening for BMD.
Wassertheil-Smoller, 2003 ³⁹⁹	Exclude	Not osteoporotic women, WHI
Wei, 2004 ¹⁶⁵	Exclude	Bone measurement happens after outcome
Wells, 2008 ⁴⁰⁰	Exclude	Wrong population
Wells, 2008 ⁴⁰¹	Exclude	Wrong population
Wells, 2008 ⁴⁰²	Exclude	Wrong or no intervention

Abbreviations: AUC= area under the curve; BMD= bone mineral density; DXA = dual energy x-ray absorptiometry; MA= meta-analysis; NA = not applicable; WHI= Women's Health Initiative

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Cadarette, 2001 ⁸³	ABONE	ABONE	CaMOS- Canadian study of women from the	ABONE:
Low			general population (97% white)	Age
			Canada	Body size
				No estrogen use or no estrogen use for ≥6 months
Chan, 2006 ⁸⁷	ABONE	ABONE	Free-living ambulant Chinese	ABONE:
Unclear			postmenopausal women age ≥55 years	Age
			(Tanjong Rhu community in Singapore)	Body size
			Singapore	No estrogen use or no estrogen use for ≥6 months
D'Amelio, 201390	AMMEB	AMMEB	Female and menopausal (general practices	AMMEB:
Low			in Italy). Race not reported.	Age
			Italy	BMI
				Age at menarche
104	D 0 D 0 0	20200		Postmenopausal period
Nguyen, 2004	DOESCore	DOESCore	Women from the Dubbo Osteoporosis	DOESCore
Low			Epidemiology Study, a population-based	
			conort of men and women from Dubbo,	
			Australia (98.6% White)	
Dame: 004 4 ⁵⁶		EDAV: 40		ED A Ve
Pang, 2014	NA	FRAX: 10-year nip	when and women age ≥ 70 years who	
LOW			presented to a participating GP, excluded	Height
		>3%	Australia	weight
Dong 2014 ⁵⁶	ΝΙΔ	EDAX: 10 year MOE	Australia Mon and woman ago >70 years who	EDAY:
Fally, 2014	INA	EBAX without BMD	presented to a participating CP, evoluted	FRAA.
LOW			presented to a participating GF, excluded	Woight
		>0.5 /0		weight
Gnudi 2005 ⁹²	Gnudi et al clinical	Gnudi et al clinical	Postmenonausal Italian women requiring a	Age at menarche
Low	prediction tool	prediction tool	DXA scan	Weight
2011			Italy	Years since menopause
				Previous fracture
				Weight
				Maternal fracture history
				Arm help to get up from sitting
Cass, 2013 ⁸⁶	MORES	MORES	Men who attended unviersity-based primary	Age
Low			care clinics for usual care; age >60 years	Weight
			United States	History of COPD
Shepherd, 2007 ¹¹⁰	MORES	MORES	Men age ≥50 years with DXA scan in	MORES:
Low			NHANES III	Age
			United States	Weight
				COPD

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Shepherd, 2010 ¹¹³ Low	MORES	MORES	Men age ≥50 years from NHANES III cohort United States	Race/ethnicity COPD Age Weight
Lynn, 2008 ⁹⁸ Low	MOST	MOST	Community-dwelling, ambulatory men age ≥65 years United States and Hong Kong	Weight QUI
Zimering, 2007 ¹¹² Unclear	MSCORE (age- weight)	MSCORE (age- weight)	Men age ≥40 years, ambulatory veterans attending general medicine, endocrinology, or osteoporosis clinics United States	MSCORE (age-weight)
Zimering, 2007 ¹¹² Unclear	MSCORE	MSCORE	Men age ≥40 years, ambulatory veterans attending general medicine, endocrinology, or osteoporosis clinics United States	MSCORE: Age Weight Gastrectomy Emphysema Prior fracture
D'Amelio, 2013 ⁹⁰ Low	NOF	NOF	Female and menopausal (general practices in Italy). Race not reported. Italy	NOF: Weight Age Previous fracture Smoking Family history
Cadarette, 2001 ⁸³ Low	NOF guidelines	NOF guidelines	CaMOS- Canadian study of women from the general population (97% white) Canada	NOF guidelines
Mauck, 2005 ¹⁰¹ Low	NOF guidelines	NOF guidelines	Population-based sample of postmenopausal women age ≥45 years in Rochester, MN United States	NOF ≥1
D'Amelio, 2005 ⁸⁹ Low	NOF, OST, ORAI (Note: "weight" and "AMMEB" are not eligible interventions.)	NOF-specified risk factors	Postmenopausal Italian women referred to university bone metabolic unit within the Department of Internal Medicine for DXA. 13% were noted to have secondary osteoporosis. Italy	NOF-specified risk factors
Cadarette, 2001 ⁸³ Low	ORAI	ORAI	CaMOS- Canadian study of women from the general population (97% white) Canada	ORAI: Age Weight in pounds Current estrogen use

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Cadarette, 2004 ⁸⁴ Low	ORAI	ORAI	Caucasian women age ≥45 years recruited prospectively from university setting and retrospectively analyzed from family practices in Canada Canada	ORAI: Age Weight in pounds Current estrogen use
Cass, 2006 ⁸⁵ Low	ORAI	ORAI	Postmenopausal women age ≥45 years (receiving usual care at U.S. university- based family practice clinic). Diverse practice: 29% white, 43% black, 28% Hispanic United States	ORAI: Age Weight in pounds Current estrogen use
Cook et al, 2005 ⁸⁸ Unclear	ORAI	ORAI	Postmenopausal UK women through natural or unnatural causes, referred by GPs or hospital-based clinics because of ≥1 clinical risk factors for osteoporosis. Race not reported. United Kingdom	ORAI: Age Weight in pounds Current estrogen use
D'Amelio, 2005 ⁸⁹ Low	NOF, OST, ORAI (Note: "weight" and "AMMEB" are not eligible interventions.)	ORAI	Postmenopausal Caucasian Italian women referred to university bone metabolic unit within the Departmen of Internal Medicine for DXA. 13% were noted to have secondary osteoporosis. Italy	ORAI: Age Weight in pounds Current estrogen use
D'Amelio, 2013 ⁹⁰ Low	ORAI	ORAI	Female and menopausal (general practices in Italy). Race not reported. Italy	ORAI: Age Weight in pounds Current estrogen use
Gourlay, 2005 ⁸⁰ Unclear	ORAI	ORAI	Postmenopausal Caucasian women ages 45 to 96 years referred for DXA scans at an outpatient osteoporosis center in Belgium, based on suspicion of osteoporosis. Belgium	ORAI: Age Weight in pounds Current estrogen use
Harrison et al, 2006 ⁹⁴ Low	ORAI	ORAI	White women ages 55 to 70 years (mean, 61 [SD, 4]) referred to University of Manchester for routine bone densitometry scans. Risk factors include suggested osteopenia on radiography. United Kingdom	ORAI: Age Weight in pounds Current estrogen use

Author, Year	Interventions and	Tool and Risk			
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables	
Jimenez-Nunez, 2013 ⁹⁵ Low	ORAI	ORAI	Caucasian women age ≥50 years with menopausal status for ≥12 months, in good general health, without prior diagnosis of osteoporosis. 60% of women recruited from primary care, 40% from specialty clinics in Spain Spain	ORAI: Age Weight in pounds Current estrogen use	
Martinez-Aguila, 2007 ¹⁰⁰ Unclear	ORAI	ORAI	Postemenopausal women ages 40 to 69 years referrred to a local bone densitometry unit from local gynecologists in Spain; 24% with history of prior fracture. Race not reported. Spain	ORAI: Age Weight in pounds Current estrogen use	
Mauck, 2005 ¹⁰¹ Low	ORAI	ORAI	Population-based sample of postmenopausal women age ≥45 years in Rochester, MN (99% white) United States	ORAI: Age Weight in pounds Current estrogen use	
Nguyen, 2004 ¹⁰⁴ Low	ORAI	ORAI	Women from the Dubbo Osteoporosis Epidemiology Study, a population-based cohort of men and women from Dubbo, Australia (98.6% white) Austrailia	ORAI: Age Weight in pounds Current estrogen use	
Richy, 2004 ⁸¹ Unclear	ORAI	ORAI	Caucasian women either consulting spontaneously or referred for a BMD measurement between January 1996 and September 1999 to an osteoporosis outpatient center in Liege, Belgium Belgium	ORAI: Age Weight in pounds Current estrogen use	
Rud, 2005 ¹⁰⁹ Low	Screening tool: SCORE, ORAI, OST Comparator: DXA	ORAI	White women from the genreal population recruited for the Danish Osteoporosis Prevention Study (DOPS) Denmark	ORAI: Age Weight in pounds Current estrogen use	
Chan, 2006 ⁸⁷ Unclear	ORAI (femoral neck)	ORAI	Free-living ambulant Chinese postmenopausal women age ≥55 years (Tanjong Rhu community in Singapore) Singapore	ORAI: Age Weight in pounds Current estrogen use	
Gourlay, 2008 ⁹³	OST, ORAI, SCORE	ORAI	Study of Osteoporotic Fractures (SOF) inception cohort; a population-based cohort of women age ≥65 years. United States	Age Weight Estrogen use	

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Geusens, 2002 ⁹¹	OST, ORAI, SOFSURF, SCORE	ORAI	4 cohorts were evaluated, including a clinic- based U.S. population, 1 population-based cohort and 1 clinic-based sample in the Netherlands, and 1 clinic-based sample enrolled in a clinical trial of alendronate (FIT) in the United States. United States	Age Weight Estrogen use
Cook et al, 2005 ⁸⁸ Unclear	OSIRIS	OSIRIS	Postmenopausal women through natural or unnatural causes, referred by GPs or hospital-based clinics because of ≥1 clinical risk factors for osteoporosis United Kingdom	Age Weight HRT use History of low-trauma fracture
Harrison et al, 2006 ⁹⁴ Low	OSIRIS	OSIRIS	White women ages 55 to 70 years (mean, 61 [SD, 4]) referred to University of Manchester for routine bone densitometry scans. Risk factors include suggested osteopenia on radiography. United Kingdom	Age Weight HRT use History of low-trauma fracture
Jimenez-Nunez, 2013 ⁹⁵ Low	OSIRIS	OSIRIS	Caucasian women age ≥50 years with menopausal status for ≥12 months, in good general health, without prior diagnosis of osteoporosis. 60% of women recruited from primary care, 40% from specialty clinics in Spain. Spain	Age Weight HRT use History of low-trauma fracture
Martinez-Aguila, 2007 ¹⁰⁰ Unclear	OSIRIS	OSIRIS	Postemenopausal women ages 40 to 69 years referrred to a local bone densitometry unit from local gynecologists in Spain; 24% with history of prior fracture. Race not reported. Spain	Age Weight HRT use History of low-trauma fracture
Richy, 2004 ⁸¹ Unclear	OSIRIS	OSIRIS	Caucasian women either consulting spontaneously or referred for a BMD measurement between January 1996 and September 1999 to an osteoporosis outpatient center in Liege, Belgium Belgium	Age Weight HRT use History of low-trauma fracture

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Adler, 2003 ⁷⁸	Screening tool:	OST	Men enrolled in a pulmonary clinic (January-	OST:
LOW	USI Comparator: DXA		May 2001) and a meumatology clinic	Age Wojaht
	Comparator. DAA		VA medical center: received questionnaire	Risk-I(weight in kg-age in years)*0.2 truncated to
			and DXA scan: patients with previous DXA	integer]
			testing ineligible.	
			United States	
Cadarette, 2004 ⁸⁴	OST	OST	Caucasian women age ≥45 years recruited	OST:
Low			prospectively from university setting and	Age
			retrospectively analyzed form family	Weight
			practices in Canada.	
Crandall 2014 ⁵⁷	OST	OST	Postmenonausal women ages 50 to 64	OST- calculation using weight and age
Low	001	001	vears free from serious medical conditions	Con calculation using weight and age
			(WHI) and not using menopausal hormone	
			therapy	
			United States	
D'Amelio, 2005°	NOF, OST, ORAI	OST	Postmenopausal Caucasian Italian women	Age
Low	(Note: "weight" and		referred to university bone metabolic unit	Weight
	"AIVIMEB" are not		for DXA 13% were noted to have secondary	
	interventions)		osteoporosis	
	interventions.)		Italy	
Gourlay, 2005 ⁸⁰	OST	OST	Postmenopausal Caucasian women ages	OST
Unclear			45 to 96 years referred for DXA scans at an	
			outpatient osteoporosis center in Belgium,	
			based on suspicion of osteoporosis.	
Mashada 0010 ⁹⁹	007	007	Belgium	
Iviachado, 2010	051	051	Population-based sample of Portugese men	USTA <2 (threshold previously validated in
			Portugal	OST < 2 (threshold previously validated in
			lonagai	postmenopausal women)
Martinez-Aguila,	OST	OST	Postmenopausal women ages 40 to 69	Age
2007 ¹⁰⁰			years referrred to a local bone densitometry	Weight
Unclear			unit from local gynecologists in Spain; 24%	
			with history of prior fracture. Race not	
			reported.	
Richards 201/1108	OST	OST	Male VA natients are <50 years attending	Age
Unclear	001		primary care clinics at 4 participating VA	Weight
			medical centers	
			United States	

|--|

Author, Year Risk of Bias	Interventions and	Tool and Risk Prediction Horizon	Cobort or Study Population and Country	Risk Prediction Variables
Richy, 2004 ⁸¹ Unclear	OST	OST	Caucasian women either consulting spontaneously or referred for a BMD measurement between January 1996 and September 1999 to an osteoporosis outpatient center in Liege, Belgium. Belgium	Age Weight
Rud, 2005 ¹⁰⁹ Low	Screening tool: SCORE, ORAI, OST Comparator: DXA	OST	White women from the general population recruited for the Danish Osteoporosis Prevention Study (DOPS). Denmark	OST: Age Weight
Zimering, 2007 ¹¹² Unclear	OST	OST	Men age ≥40 years, ambulatory veterans attending general medicine, endocrinology, or osteoporosis clinics United States	OST: Age Weight
Gourlay, 2008 ⁹³	OST, ORAI, SCORE	OST	Study of Osteoporotic Fractures (SOF) inception cohort; a population-based cohort of women age ≥65 years. United States	Age Weight
Geusens, 2002 ⁹¹	OST, ORAI, SOFSURF, SCORE	OST	4 cohorts were evaluated, including a clinic- based U.S. population, 1 population-based cohort and 1 clinic-based sample in the Netherlands, and 1 clinic-based sample enrolled in a clinical trial of alendronate (FIT) in the United States. United States	Age Weight
Morin, 2009 ¹⁰³ Unclear	OST	OST ≤1	Population-based sample of all women ages 40 to 59 and older who received DXA scans in Manitoba, Canada. Note: criteria for BMD testing in women age <65 years include premature ovarian failure, history of steroid use, prior fracture, and x-ray evidence of osteopenia. Canada	NR
Cook et al, 2005 ⁸⁸ Unclear	OST	OST	Postmenopausal women through natural or unnatural causes, referred by GPs or hospital-based clinics because of ≥1 clinical risk factors for osteoporosis United Kingdom	Age Weight

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Harrison et al, 2006 ⁹⁴ Low	OST	OST	White women ages 55 to 70 years (mean, 61 [SD, 4]) referred to University of Manchester for routine bone densitometry scans. Risk factors include suggested osteopenia on radiography. United Kingdom	Age Weight
Jimenez-Nunez, 2013 ⁹⁵ Low	OST	OST	Caucasian women age ≥50 years with menopausal status for ≥12 months, in good general health, without prior diagnosis of osteoporosis. 60% of women recruited from primary care, 40% from specialty clinics in Spain. Spain	Age Weight
Lynn, 2008 ⁹⁸ Low	OST	OST	Community-dwelling, ambulatory men age ≥65 years. Hong Kong and United States	Age Weight
McLeod, 2015 ¹⁰² Low	OST	OST	Women referred for screening in Canada, no prior testing. Canada	Age Weight
Sinnott, 2006 ¹¹¹ Low	OST	OST	African American men age ≥35 years. United States	Age Weight
Pang, 2014 ⁵⁶ Low	NA	OST <0	Men and women age ≥70 years who presented to a participating GP, excluded persons with history of fracture. Australia	FRAX: Height Weight
Nguyen, 2004 ¹⁰⁴ Low	OSTA	OSTA	Women from the Dubbo Osteoporosis Epidemiology Study, a population-based cohort of men and women from Dubbo, Australia (98.6% white) Australia	OSTA
D'Amelio, 2013 ⁹⁰ Low	OSTA	OSTA	Female and menopausal (general practices in Italy). Race not reported. Italy	OSTA- calculation using weight and age
Kung, 2005 ⁹⁷ Low	OSTA	OSTA	Community of Asian (Southern Chinese) men; developed index based on clinical factors; compared clinical index with calcaneal QUS in predicting BMD (T<-2.5) by DXA. Hong Kong	Age Weight
Machado, 2010 ⁹⁹ Low	OSTA	OSTA	Population-based sample of Portugese men age ≥50 years. Portugal	OSTA <2 (threshold previously validated in postmenopausal women) OST <2 (threshold previously validated in postmenopausal women)

Author, Year	Interventions and	Tool and Risk				
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables		
Oh, 2016 ¹⁰⁶ Low	OSTA	OSTA	Population-based sample of Korean men (KNHANES) age ≥50 years. Republic of Korea	ge ody weight		
Oh, 2016 ¹⁰⁶ Low	OSTA	OSTA	Population-based sample of Korean men (KNHANES) age ≥50 years. Republic of Korea	Age Body weight		
Oh, 2013 ¹⁰⁵ Low	Data from validation cohort only	OSTA (≤0)	Postmenopausal women age ≥50 years, KNHANES data set Republic of Korea	OSTA - calculation using weight and age		
Oh, 2013 ¹⁰⁵ Low	Data from validation cohort only	OSTA (≤-1)	Postmenopausal women age ≥50 years, KNHANES data set Republic of Korea	OSTA - calculation using weight and age		
Kung, 2003 ⁹⁶ Low	OSTA	OSTA	Postmenopausal women in Hong Kong recruited from the community Hong Kong	Age Weight		
Park, 2003 ¹⁰⁷ Unclear	osteoporosis self- assessment tool for Asians (OSTA)	OSTA	Postmenopausal women at a menopause clinic in Korea not currently using HRT Republic of Korea	Age Weight		
Chan, 2006 ⁸⁷ Unclear	OSTA, NR (femoral neck)	OSTA, NR (femoral neck)	Free-living ambulant Chinese postmenopausal women age ≥55 years (Tanjong Rhu community in Singapore) Singapore	OSTA - calculation using weight and age		
Ben Sedrine, 2001 ⁷⁹ Low	Comparator: DXA	SCORE	Liege (Belgian cohort) Belgium	SCORE: Race Rheumatoid arthritis Low-trauma fracture Never received HRT Age Weight		
Brenneman, 2003 ⁸² Low	Postmenopausal women in OPRA study	SCORE	OPRA study, Group Health participants United States	Race Rheumatoid arthritis Low-trauma fracture Never received HRT Age Weight		
Crandall, 2014 ⁵⁷ Low	SCORE	SCORE	Ages 50-64 years, postmenopausal, and free from serious medical conditions (WHI) and not using menopausal hormone therapy United States	SCORE - age, weight, and estrogen replacement therapy, the SCORE instrument includes race/ethnicity, history of rheumatoid arthritis, and history of nontraumatic fractures after age 45 years		

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Gourlay, 2005 ⁸⁰ Unclear	SCORE	SCORE	Postmenopausal Caucasian women ages 45-96 years referred for DXA scans at an outpatient osteoporosis center in Belgium, based on suspicion of osteoporosis. Belgium	SCORE
Mauck, 2005 ¹⁰¹ Low	SCORE	SCORE	Population-based sample of postmenopausal women age ≥45 years in Rochester, MN (99% white) United States	SCORE ≥6
Gourlay, 2008 ⁹³	OST, ORAI, SCORE	SCORE	Study of Osteoporotic Fractures (SOF) inception cohort; a population-based cohort of women age ≥65 years. United States	Race Rheumatoid arthritis Fracture Age Estrogen use Weight
Geusens, 2002 ⁹¹	OST, ORAI, SOFSURF, SCORE	SCORE	4 cohorts were evaluated, including a clinic- based U.S. population, 1 population-based cohort and 1 clinic-based sample in the Netherlands, and 1 clinic-based sample enrolled in a clinical trial of alendronate (FIT) in the United States. The Netherlands and United States	Race Rheumatoid arthritis Fracture Age Estrogen use Weight
Cadarette, 2001 ⁸³ Low	SCORE *weight criterion and NOF also evaluated but not abstracted	SCORE	CaMOS- Canadian study of women from the general population (97% white) Canada	SCORE Race Rheumatoid arthritis Low-trauma fracture Never received HRT Age Weight
Cook et al, 2005 ⁸⁸ Unclear	SCORE	SCORE	Postmenopausal women through natural or unnatural causes, referred by GPs or hospital-based clinics because of ≥1 clinical risk factors for osteoporosis United Kingdom	Race Rheumatoid arthritis History of nontraumatic fracture HRT usage Age Weight
Harrison et al, 2006 ⁹⁴ Low	SCORE	SCORE	White Caucasian females ages 55-70 years (mean, 61 [SD, 4]) referred to University of Manchester for routine bone densitometry scans. Risk factors include suggested osteopenia on radiography. United Kingdom	Race Rheumatoid arthritis History of nontraumatic fracture HRT usage Age Weight

Author, Year	Interventions and	Tool and Risk			
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables	
Jimenez-Nunez, 2013 ⁹⁵ Low	SCORE	SCORE	Caucasian women age ≥50 years with menopausal status for ≥12 months, in good general health, without prior diagnosis of osteoporosis. 60% of women recruited from primary care, 40% from specialty clinics in Spain Spain	Race Rheumatoid arthritis History of nontraumatic fracture HRT usage Age Weight	
Richy, 2004 ⁸¹ Unclear	SCORE	SCORE	Caucasian women either consulting spontaneously or referred for a BMD measurement between January 1996 and September 1999 to an osteoporosis outpatient center in Liege, Belgium Belgium	Race Rheumatoid arthritis History of nontraumatic fracture HRT usage Age Weight	
Rud, 2005 ¹⁰⁹ Low	Screening tool: SCORE, ORAI, OST Comparator: DXA	SCORE	White women from the general population recruited for the Danish Osteoporosis Prevention Study (DOPS) Denmark	SCORE: Race Rheumatoid arthritis Low-trauma fracture Never received HRT Age Weight	
Cass, 2006 ⁸⁵ Low	SCORE, NR	SCORE, NR	Postmenopausal women age ≥45 years receiving usual care at university-based family practice clinic in the United States. Diverse practice, 29% white, 43% black, 28% Hispanic. United States	SCORE - age, weight, and estrogen replacement therapy, the SCORE instrument includes race/ethnicity, history of rheumatoid arthritis, and history of nontraumatic fractures after age 45 years	
Chan, 2006 ⁸⁷ Unclear	SCORE, NR (femoral neck)	SCORE, NR (femoral neck)	Free-living ambulant Chinese postmenopausal women age ≥55 years (Tanjong Rhu community in Singapore) Singapore	SCORE - age, weight, and estrogen replacement therapy, the SCORE instrument includes race/ethnicity, history of rheumatoid arthritis, and history of nontraumatic fractures after age 45 years	
Brenneman, 2003 ⁸² Low	Postmenopausal women in the OPRA study	SOF-based screening tool	OPRA study, Group Health participants United States	1 point each: 1st-degree relative with hip fracture; current weight less than at age 25 years; diagnosed with dementia; using corticosteroids, seizure medication, or benzodiazepines; had a fracture at age 50 years; not taking HRT; on feet <4 hours/day; heart rate	
Nguyen, 2004 ¹⁰⁴ Low	SOFSURF	SOFSURF	Women from the Dubbo Osteoporosis Epidemiology Study, a population-based cohort of men and women from Dubbo, Australia (98.6% white) Australia	SOFSURF	

Author, Year	Interventions and	Tool and Risk		
Risk of Bias	Comparators	Prediction Horizon	Cohort or Study Population and Country	Risk Prediction Variables
Geusens, 2002 ⁹¹	OST, ORAI,	SOFSURF	4 cohorts were evaluated, including a clinic-	Age
	SOFSURF,		based U.S. population, 1 population-based	Weight
	SCORE		cohort and 1 clinic-based sample in the	Smoker
			Netherlands, and 1 clinic-based sample	History of fracture
			enrolled in a clinical trial of alendronate	
			(FIT) in the United States.	
			United States and the Netherlands	
Cook et al, 2005 ⁸⁸	SOFSURF: risk	SOFSURF: risk index	Postmenopausal women through natural or	Age
Unclear	index derived using	derived using data	unnatural causes, referred by GPs or	Weight
	data from SOF	from SOF	hospital-based clinics because of ≥1 clinical	Smoking
			risk factors for osteoporosis	History of postmenopausal fracture
			United Kingom	
Crandall, 2014 ⁵⁷	USPSTF	USPSTF	Ages 50-64 years, postmenopausal, and	USPTSF - FRAX 10-yearr risk of MOF without BMD
Low			free from serious medical conditions (WHI)	of ≥9.3%
			and not using menopausal hormone therapy	
			United States	

Abbreviations: ABONE = assessing age, body size, and estrogen use; AMMEB= Age, Years after Menopause, Age at Menarche, Body Mass Index ; BMD= bone mineral density; CaMOS = Canadian Multicentre Osteoporosis Study; COPD= Chronic obstructive pulmonary disease; DOEScore = Dubbo Osteoporosis Epidemiology Score; DXA = dual energy x-ray absorptiometry; FRAX = Fracture Risk Assessment tool; GP= general practitioner; h/o= history of; HRT= hormone replacement therapy; kg= kilogram; KNHANES; Korean National Health and Nutrition Examination Survey MORE = Multiple Outcomes of Raloxifene Trial; MOST = Male Osteoporosis Screening Tool; MSCORE= male, simple calculated osteoporosis risk estimation; NA= not applicable; NR= not reported; NOF = National Osteoporosis Foundation; OPRA = Osteoporosis Population-based Risk Assessment; ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OST = osteoporosis self-assessment tool; QUI = ultrasound index; QUS = quantitative ultrasound; RA= rheumatoid arthritis; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; SD= standard deviation; SOF = Study of Osteoporotic Fractures Simple Useful Risk Factors; US= United States; USPSTF= United States Preventative Services Task Force; WHI = Women's Health Initiative

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Cadarette, 2001 ⁸³	2434	2365	240 (10%) based on femoral neck	66.4 (SD, 8.8)	2365 (100)	Femoral neck
Low						
Chan, 2006 ⁸⁷	135	135	Femoral neck: 33 (24)	68.4 (SD, 5.5)	135 (100)	Primary was femoral neck; spine
Unclear			Spine: 37 (27)			was also analyzed
D'Amelio, 2013 ⁹⁰	NR	995	335 (33.7)	65	995 (100)	Lumbar spine and femoral neck
Low			Unclear what BMD site this is based on			
Nguyen, 2004 ¹⁰⁴	2095 (entire	410	At any site: 41.5% (95% CI, 36.7 to 46.3)	70.5 (7.5)	410 (100)	Lumbar spine and femoral neck
Low	cohort)	(validation	Femoral neck: 30.0% (95% CI, 25.8 to 34.6)			
		cohort)	Lumbar spine: 26.1% (95% CI, 22.1 to 30.6)			
Pang, 2014 ⁵⁶	626	626	Lumber spine: 32 (5.2)	78.2 (SD, 5.8)	282 (45.1)	Lumbar spine, femoral neck, and
Low			Femoral neck: 47 (8.7)			total hip
			Total hip: 34 (5.4)			
			Lowest any site: 77 (12.3)			

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Gnudi, 2005 ⁹²	478	478	37.2% based on femoral neck or lumbar spine	64.3 (7.6)	100	Lumbar spine and femoral neck
Low						
Cass, 2013 ⁸⁶	386	346	15 (4.3)	70.2 (, 6.9)	0 (0)	Femoral neck and total hip
LOW Shophard 2007 ¹¹⁰	1409	1409	4 4% based on total hin	64.2 (0.7)	0	Total hip
Low	1490	1490	4.4% based on total hip	04.2 (9.7)	0	Total hip
Shepherd, 2010 ¹¹³ Low	2984	2944	10.3% (95% CI, 9.0 to 11.7) based on BMD at any site; 4.3% (95% CI, 3.5 to 5.4) based on BMD at lumbar spine only	63 (SD, NR)	0 (0)	Lumbar spine, other sites not specifically reported.
Lynn, 2008 ⁹⁸	U.S.: 4658	U.S.: 4658	U.S.	All age ≥65	0	Femoral neck, lumbar spine, or
Low	Hong Kong: 1914	Hong Kong: 1914	Femoral neck: 5% Lumbar spine: 3% Total spine: 10% Hong Kong Femoral neck: 5% Lumbar spine: 2% Total spine: 5%	years		total hip
Zimering, 2007 ¹¹²	197	197	11% based on femoral neck	68.2 (10.2)	0	Femoral neck
Zimoring 2007 ¹¹²	107	107	11% based on femoral neck	69.2 (10.2)	0	Formaral nack
Unclear	197	197	11% based on remoral neck	00.2 (10.2)	0	remoral neck
D'Amelio, 2013 ⁹⁰ Low	NR	995	335 (33.7), unclear what BMD site this is based on	65	995 (100)	Lumbar spine and femoral neck
Cadarette, 2001 ⁸³ Low	2434	2365	239 (10%) based on femoral neck	66.4 (SD, 8.8)	2365 (100)	Femoral neck
Mauck, 2005 ¹⁰¹ Low	Unclear how many were eligible in the stated age group of interest	202	Overall: 69 (34%) (based on femoral neck T- score, would have been 7% if based on lumbar spine T- score) Ages 45-64: 11 (5%) Age ≥65: 58 (29%)	Mean, 69.2 (SD, 11.9) N (%) Ages 45-64: 79 (39%) Age ≥65: 123 (61%)	202 (100%)	Femoral neck and lumbar spine
D'Amelio, 2005 ⁸⁹ Low	553 (estimated based on 95% paticipation rate)	525	249 (47.4)	(Provided by bone density status) Normal BMD: 57.3 (6.6) Osteopenic BMD: 60.2 (7.8) Osteoporotic BMD: 62.2 (6.7)	525 (100%)	Lumbar spine and femoral neck

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Cadarette, 2001 ⁸³ Low	2434	2365	241 (10%) based on femoral neck	66.4 (SD, 8.8)	2365 (100)	Femoral neck
Cadarette, 2004 ⁸⁴ Low	NR	644	106 (16.5%) based on lowest value of femoral neck or lumbar spine 10.5% based on femoral neck 11.2% based on lumbar spine	62.4 (11.2)	190 (100)	Femoral neck and lumbar spine
Cass, 2006 ⁸⁵ Low	399 eligible, 226 enrolled (remainder declined enrollment)	203	Hip only: 1.0% Spine only: 7.9% Both: 2.0%	60.2 (SD, 9.6)	226 (100)	Total hip and total lumbar spine; lowest T-score from either was used.
Cook et al, 2005 ⁸⁸ Unclear	208	208	45 (21.6)	59.7 (29-87)	208 (100)	Lumbar spine and proximal femur
D'Amelio, 2005 ⁸⁹ Low	555 (estimated based on 95% paticipation rate)	525	251 (47.4)	(Provided by bone density status) Normal BMD: 57.3 (6.6) Osteopenic BMD: 60.2 (7.8) Osteoporotic BMD: 62.2 (6.7)	525 (100)	Lumbar spine and femoral neck
D'Amelio, 2013 ⁹⁰ Low	NR	995	335 (33.7), unclear what BMD site this is based on	65	995 (100)	Lumbar spine and femoral neck
Gourlay, 2005 ⁸⁰ Unclear	4035	4035	380 (9.4)	61.5 (8.8)	4035 (100)	Femoral neck
Harrison et al, 2006 ⁹⁴ Low	207	207	70 (33.8) at any site	61	207 (100)	Hip (femoral neck and total hip) and lumbar spine (L1-L4)
Jimenez-Nunez, 2013 ⁹⁵ Low	505	505	20% at any site	61	505 (100)	Total femur, femoral neck, and lumbar spine
Martinez-Aguila, 2007 ¹⁰⁰ Unclear	694	665	117 (17.6) based on lowest BMD at spine or femoral neck 16.7% based on lumbar spine 3.8% based on femoral neck	54.2 (5.4)	665 (100)	Femoral neck or lumbar spine
Mauck, 2005 ¹⁰¹ Low	Unclear how many were eligible in the stated age group of interest	202	Overall: 69 (34) (based on femoral neck T- score, would have been 7% if based on lumbar spine T-score) Ages 45-64: 11 (5) Age ≥65: 58 (29)	Mean, 69.2 (SD, 11.9) N (%) Ages 45-64: 79 (39) Age ≥65: 123 (61)	202 (100)	Femoral neck and lumbar spine

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Nguyen, 2004 ¹⁰⁴	2095 (entire	410	At any site: 41.5% (95% CI, 36.7 to 46.3)	70.5 (7.5)	410 (100)	Lumbar spine and femoral neck
Low	cohort)	(validation	Femoral neck: 30.0% (95% CI, 25.8 to 34.6)			
		cohort)	Lumbar spine: 26.1% (22.1 to 30.6)			
Richy, 2004 ⁸¹	4035	4035	32% at one or more site	61.5	4035 (100)	Total femur, femoral neck, and
Unclear						lumbar spine
Rud, 2005 ¹⁰⁹	2016	2009	92 (4.6%) based on lowest T-score in the	50.5 (48.4-52.6)	100	Femoral neck, total hip, and
Low			femoral neck, total hip, and lumbar spine			lumbar spine
Chan, 2006 ⁸⁷	135	135	Femoral neck: 33 (24)	68.4 (SD, 5.5)	135 (100)	Primary was femoral neck; spine
Unclear			Spine: 37 (27)			was also analyzed
Gourlay, 2008 ⁹³	7779	7679	20.5% (based on femoral neck)	Age ≥75: 2714	1	Lumbar spine and femoral neck
				(34.9%)		
				Ages 67-74:		
				5065 (65.1%)		
Geusens, 2002 ⁹¹	US clinic	1102 US	US clinic sample (based on femoral neck): 14%	US clinic	1	Lumbar spine and femoral neck
	sample NR	clinic sample	US trial sample (site not specified, presumably	sample: 61.3		(femoral neck not measured in
		3374	femoral neck): 21%	(SD, 9.6)		Netherlands clinic-based sample)
		Netherlands	Netherlands population sample (site not	NR for other		
		population	specified, presumably femoral neck): 19%	samples		
		sample				
		23,833 US				
00		trial sample				
Cook et al, 2005°°	208	208	45 (21.6)	59.7 (29-87)	208 (100)	Lumbar spine and proximal femur
Unclear						
Harrison et al,	207	207	70 (33.8) at any site	61	207 (100)	Hip (femoral neck and total hip)
2006						and lumbar spine (L1-L4)
Low						
Jimenez-Nunez,	505	505	20% at any site	61	505 (100)	Total femur, femoral neck, and
2013**						lumbar spine
Low	0.0.1	0.05				
Martinez-Aguila,	694	665	117 (17.6%) based on lowest BMD at spine or	54.2 (5.4)	665 (100)	Femoral neck or lumbar spine
2007			remoral neck			
Unclear			16.7% based on lumbar spine			
D: 1 000.4 ⁸¹	1005	1005	3.8% based on femoral neck	04.5	4005 (400)	
Richy, 2004	4035	4035	32% at one or more site	61.5	4035 (100)	I otal femur, femoral neck, and
Unclear		101				lumbar spine
Adler, 2003.°	Unknown	181	15.6% based on lowest 1-score of spine, total	64.3 (12.3)	0	Spine, femoral neck, and total hip
LOW			nip, or femoral neck		400 (400)	
Cadarette, 2004	NK	644	106 (16.5%) based on lowest value of femoral	62.4 (11.2)	190 (100)	Femoral neck and lumbar spine
LOW			neck or lumbar spine			
			10.5% based on temoral neck			
		1	11.2% based on lumbar spine			

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Crandall, 2014 ⁵⁷	2857	2857	NR (5)	57.7 (based on	2857 (100)	3 sites: femoral neck, total hip and
Low				entire sample of		lumbar spine; outcomes reported
				5167)		are based on femoral neck BMD
D'Amelio, 2005°°	554	526	25,049 (47.4) (site not specified but implied to	(Provided by	526 (100)	Lumbar spine and femoral neck
Low	(estimated		be the lowest of either femoral neck or lumbar	bone density		
	based on		spine)	status)		
	90%			57 2 (6 6)		
	rate)			Osteopenic		
	14(0)			BMD: 60 2 (7 8)		
				Osteoporotic		
				BMD: 62.2 (6.7)		
Gourlay, 2005 ⁸⁰	4035	4035	380 (9.4) at femoral neck	61.5 (8.8)	4,035 (100)	Femoral neck
Unclear				,		
Machado, 2010 ⁹⁹	202	202	35 (16.8) based on lowest T-score at any site	63.8 (8.2)	0 (0)	Femoral neck, total hip, and
Low			30 (14.9) based on lumbar spine	75.7% were		lumbar spine, but the lowest value
			10 (5) based on femoral neck	age <70		at any site was used to determine
	004	005	2 (1) based on total hip	54.0 (5.4)	005 (100)	osteoporosis
Martinez-Aguila,	694	665	117 (17.6) based on lowest BIVID at spine or	54.2 (5.4)	665 (100)	Femoral neck or lumbar spine
2007 Linclear			16 7% based on lumbar spine			
Unclear			3.8% based on femoral neck			
Richards, 2014 ¹⁰⁸	520	518	92 (17.8)	66	0	Femoral neck and total hip
Unclear					-	· · · · · · · · · · · · · · · · · · ·
Richy, 2004 ⁸¹	4035	4035	32% at one or more site	61.5	4035 (100)	Total femur, femoral neck, and
Unclear						lumbar spine
Rud, 2005 ¹⁰⁹	2016	2009	92 (4.6) based on lowest T-score in the femoral	50.5 (48.4-52.6)	100	Femoral neck, total hip, and
Low			neck, total hip, and lumbar spine		-	lumbar spine
Zimering, 2007	197	197	11% based on femoral neck	68.2 (10.2)	0	Femoral neck
Unclear	7770	7617	20 E% based on femaral peak	Ago >75: 2714	1	Fomoral pack and lumbar aping
Gounay, 2006	1119	/01/	20.5% based off femoral fleck	Aye $\geq 75, \geq 714$	1	remotal neck and tumbal spine
				Ages 67-74		
				5065 (65.1%)		
Geusens, 2002 ⁹¹	US clinic	1102 US	US clinic sample (based on femoral neck): 14%	US clinic	1	Femoral neck and lumbar spine
	sample NR	clinic sample	US trial sample (site not specified, presumably	sample: 61.3		(femoral neck not measured in
		3374	femoral neck): 21%	(SD, 9.6)		Netherlands clinic-based sample)
		Netherlands	Netherlands population sample (site not	NR for other		
		population	specified, presumably femoral neck): 19%	samples		
		sample				
		23,833 US				
		trial sample				

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Morin, 2009 ¹⁰³	8254	8254	1226 (14.9) at any site	52.7 (4.9)	8254 (100)	Femoral neck, total hip, proximal
Unclear						femur, lumbar spine
Cook et al, 2005 ⁸⁸	208	208	45 (21.6) at any site	59.7 (29-87)	208 (100)	Lumbar spine and proximal femur
Unclear						
Harrison et al,	207	207	70 (33.8) at at any site	61	207 (100)	Hip (femoral neck and total hip)
200694						and lumbar spine (L1-L4)
Low						
Jimenez-Nunez,	505	505	20% at any site	61	505 (100)	Total femur, femoral neck, and
2013						lumbar spine
Low						
Lynn, 2008°°	US: 4658	US: 4658		All age ≥65	0	Femoral neck, lumbar spine, or
Low	Hong Kong:	Hong Kong:	Femoral neck: 5%			total hip
	1914	1914	Lumbar spine: 3%			
			Total spine: 10%			
			Hong Kong			
			Femoral neck: 5%			
			Lumbar spine: 2%			
102			Total spine: 5%			
McLeod, 2015 ¹⁰²	174	174	18 (10.3)	59	100	Femoral neck and lumbar spine
Low						
Sinnott, 2006	128	128	7% (any site)	63.8	0	Lumbar spine (L1–L4) and
Low						nondominant hip (femoral neck,
56						trochanter, total hip)
Pang, 2014 ³⁰	626	626	Lumber spine: 32 (5.2)	78.2 (SD, 5.8)	282 (45.1)	Lumbar spine, femoral neck, and
Low			Femoral neck: 47 (8.7)			total hip
			Total hip: 34 (5.4)			
104			Lowest any site: 77 (12.3)			
Nguyen, 2004 ¹⁰⁴	2095 (entire	410	Any site: 41.5% (95% CI, 36.7 to 46.3)	70.5 (7.5)	410 (100)	Lumbar spine and femoral neck
Low	cohort)	(validation	Femoral neck: 30.0% (95% CI, 25.8 to 34.6)			
		cohort)	Lumbar spine: 26.1% (95% CI, 22.1 to 30.6)			
D'Amelio, 201390	NR	995	335 (33.7), unclear what BMD site this is based	65	995 (100)	Lumbar spine and femoral neck
Low			on			
Kung, 2005 [°]	356	356	Femoral neck: 11.2%	64	0	Femoral neck, lumbar spine, or
Low			Lumbar spine: 10.1%			either
00			Either region: 15.8%			
Machado, 2010 ⁹⁹	202	202	34 (16.8) based on lowest T-score at any site	63.8 (8.2)	0 (0)	Femoral neck, total hip, and
Low			30 (14.9) based on lumbar spine	75.7% age <70		lumbar spine, but the lowest value
			10 (5) based on femoral neck			at any site was used to determine
			2 (1) based on total hip			osteoporosis
Oh, 2016 ¹⁰⁶	1353	1110	Based on -2.5 at femoral neck: 35 (3.2)	63.5 (8.3)	0 (0)	Total femur, femoral neck, and
Low			Based on -2.5 at lumbar spine: 73 (6.6)			lumbar spine (L1-L4)
			Based on lowest at any site: 91 (8.2)			
Author, Year		N for	N (%) With Osteoporosis		N (%)	
--------------------------------	-----------------	----------	---	------------------	------------	---------------------------------------
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Oh, 2016 ¹⁰⁶	1353	1110	Based on -2.5 at femoral neck: 35 (3.2)	63.5 (8.3)	0 (0)	Total femur, femoral neck, and
Low			Based on -2.5 at lumbar spine: 73 (6.6)			lumbar spine (L1-L4)
105			Based on lowest at any site: 91 (8.2)			
Oh, 2013 ¹⁰⁵	1046	1046	Based on T-score at lumbar spine: 252 (24.1)	62.3 (SD, 8.2)	1046 (100)	Total femur, femoral neck, and
Low			Based on T-score at femoral neck: 155 (14.8)			lumbar spine (L1-L4)
O L D A A A 1 05			Based on lowest 1-score at any site: 310 (29.6)			
Oh, 2013	1046	1046	Based on 1-score at lumbar spine: 252 (24.1)	62.3 (SD, 8.2)	1046 (100)	I otal femur, femoral neck, and
Low			Based on 1-score at femoral neck: 155 (14.8)			lumbar spine (L1-L4)
16	700	700	Based on lowest 1-score at any site: 310 (29.6)	00	100	Farrant and humber or in a set
Kung, 2003	722	722	Femoral neck: 21.5%	62	100	Femoral neck, lumbar spine, or
LOW			Lumbar spine: 30.6%			either
Dark 2002 ¹⁰⁷	1101	1101	Elliner region. 37.7%	E0 1	100	Fomorol pool
Unclear	1101	1101		59.1	100	remoral neck
Chan, 2006 ⁸⁷	135	135	Femoral neck: 33 (24)	68.4 (SD, 5.5)	135 (100)	Primary was femoral neck; spine
Unclear			Spine: 37 (27)			was also analyzed
Ben Sedrine,	NR	4035	18.5% based on femoral neck	61.5 (8.8)	100	Femoral neck, total hip, and
2001'			9.5% based on total hip			lumbar spine
Low			24.3% based on spine			
Brenneman,	428	416	126 (30.3) based on lowest T-score of hip or	69.3 (5.5)	100	Hip and lumbar spine
2003			lumbar spine			
LOW	0057	0057			0057 (400)	
Crandall, 2014	2857	2857	NR (5)	57.7 (based on	2857 (100)	3 sites: remoral neck, total nip, and
LOW				entire sample or		lumbar spine, outcomes reported
Courley 2005 ⁸⁰	4025	4025	280 (0.4)	5107	4025 (100)	Econoral pook
Gouriay, 2005	4035	4035	360 (9.4)	01.5 (0.0)	4035 (100)	Femoral neck
Mauck 2005 ¹⁰¹	Linclear how	202	Overall: 69 (34) (based on femoral neck T-	Mean 69.2	202 (100)	Femoral neck and lumbar spine
Low	many were	202	score would have been 7% if based on lumbar	(SD 11.9)	202 (100)	I emoral neck and fumbal spine
LOW	eligible in the		spine T-score)	N (%)		
	stated are	,	Age $45-64$ 11 (5)	Ages 45-64.79		
	aroup of		Age ≥ 65 ; 58 (29)	(39)		
	interest			Age ≥65: 123		
				(61)		
Gourlay, 2008 ⁹³	7779	7235	20.5% (based on femoral neck)	Age ≥75: 2714	1	Femoral neck and lumbar spine
				(34.9)		
				Ages 67-74:		
				5065 (65.1)		

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
Geusens, 2002 ⁹¹	US clinic sample NR	1102 US clinic sample 3374 Netherlands population sample 23,833 US trial sample	US clinic sample (based on femoral neck): 14% US trial sample (site not specified, presumably femoral neck): 21% Netherlands population sample (site not specified, presumably femoral neck): 19%	US clinic sample: 61.3 (SD, 9.6) NR for other samples	1	Femoral neck and lumbar spine (femoral neck not measured in Netherlands clinic-based sample)
Cadarette, 2001 ⁸³ Low	2434	2365	239 (10) based on femoral neck	66.4 (SD, 8.8)	2365 (100)	Femoral neck
Cook et al, 2005 ⁸⁸ Unclear	208	208	45 (21.6)	59.7 (29-87)	208 (100)	Lumbar spine and proximal femur
Harrison et al, 2006 ⁹⁴ Low	207	207	70 (33.8) at any site	61	207 (100)	Hip (femoral neck and total hip) and lumbar spine (L1-L4)
Jimenez-Nunez, 2013 ⁹⁵ Low	505	505	20% at any site	61	505 (100)	Total femur, femoral neck, and lumbar spine
Richy, 2004 ⁸¹ Unclear	4035	4035	32% at one or more site	61.5	4035 (100)	Total femur, femoral neck, and lumbar spine
Rud, 2005 ¹⁰⁹ Low	2016	2009	92 (4.6) based on lowest T-score in the femoral neck, total hip, and lumbar spine	50.5 (48.4-52.6)	100	Femoral neck, total hip, and lumbar spine
Cass, 2006 ⁸⁵ Low	399 eligible, 226 enrolled (remainder declined enrollment)	203	Hip only: 1.0% Spine only: 7.9% Both: 2.0%	60.2 (SD, 9.6)	226 (100)	Total hip or total lumbar spine; lowest T-score from either was used.
Chan, 2006 ⁸⁷ Unclear	135	135	Femoral neck: 33 (24) Spine: 37 (27)	68.4 (SD, 5.5)	135 (100)	Primary was femoral neck; spine was also analyzed
Brenneman, 2003 ⁸² Low	428	416	126 (30.3) based on lowest T-score of hip or lumbar spine	69.3 (5.5)	100	Hip and lumbar spine
Nguyen, 2004 ¹⁰⁴ Low	2095 (entire cohort)	410 (validation cohort)	At any site: 41.5% (95% CI, 36.7 to 46.3) Femoral neck: 30.0% (95% CI, 25.8 to 34.6) Lumbar spine: 26.1% (95% CI, 22.1 to 30.6)	70.5 (7.5)	410 (100)	Lumbar spine and femoral neck
Geusens, 2002 ⁹¹	US clinic sample NR	1102 US clinic sample 3374 Netherlands population sample 23,833 US	US clinic sample (based on femoral neck): 14% US trial sample (site not specified, presumably femoral neck): 21% Netherlands population sample (site not specified, presumably femoral neck): 19%	US clinic sample: 61.3 (SD, 9.6) NR for other samples	1	Lumbar spine and femoral neck (femoral neck not measured in Netherlands clinic-based sample)

Author, Year		N for	N (%) With Osteoporosis		N (%)	
Risk of Bias	N Eligible	Analysis	Report for Each Site	Age	Female	Location of BMD
		trial sample				
Cook et al, 2005 ⁸⁸	208	208	45 (21.6)	59.7 (29-87)	208 (100)	Lumbar spine and proximal femur
Unclear						
Crandall, 2014 ⁵⁷	2857	2857	NR (5)	57.7 (based on	2857 (100)	3 sites: femoral neck, total hip, and
Low				entire sample of		lumbar spine; outcomes reported
				5167)		are based on femoral neck BMD.

Abbreviations: BMD= body mass index; L1-L4= lumber 1 to lumbar 4; N= number; NR= not reported; SD= standard deviation; US= United States

Author, Year		Machine and	Other Comments	Analysis Include	Adjustment
Risk of Bias	T-Score Reference Range	Software Version	on BMD Test	Additional Adjustments?	Variables
Adler, 2003 ⁷⁸	NHANES reference database for hip	Hologic QDR 4500	NR	No	NA
Low	Hologic reference source for spine				
	Age, gender, race of reference group not reported				
Ben Sedrine,	Hologic QDR reference values specifically established	Hologic	NR	No	NA
2001'	for the population of Liege, Belgium (local reference				
Low	values)				
Brenneman,	NHANES III	Hologic QDR 2000	NR	No	NA
2003°2	Does not specify age or gender of reference group				
Low					
Brenneman,	NHANES III	Hologic QDR 2000	NR	No	NA
2003°2	Does not specify age or gender of reference group				
Low					
Cadarette, 2001	Canadian young adult normal values at the femoral	Hologic QDR 4500	BMD at femoral	No	NA
Low	neck (Authors note that Canadian young adult normal	Hologic QDR 2000	neck used to		
	reference at the femoral neck (mean, 0.857 g/cm [°] [SD,	Hologic QDR 1000	determine I-score		
	0.125]) is similar to that reported by NHANES III for	Lunar DPX			
	Inon-Hispanic w nite Americans (mean, 0.858 g/cm ²				
Coderatta 2004 ⁸⁴	[5D, 0.120]).	Llalazia		No	NIA
Cadarette, 2004	пот геропеа	Hologic	Lowest BIVID at	NO	NA
LOW		Lunar	lemoral neck, or		
		Inoriariu	to determine T		
		UIKIUWII			
Case 2006 ⁸⁵	NUANES III non Hispania white women ages 20.20	DXA (Hologic ODP	"Positivo" tost is a	Lindoar	ΝΔ
Cass, 2000	Veare	1500A) NR	T-score of -2.5 at	Officieal	
	years	+000A), NIX	the femoral neck		
			or total hin		
Cass 2013 ⁸⁶	NHANES III non-Hispanic white women ages 20-29	DXA (Hologic QDR	"Positive" test is a	Unclear	NA
Low	vears	4500A) NR	T-score of -2.5 at	onoicai	
	Jouro	(standardized	the femoral neck		
		conversion formulas	or total hip		
		furnished by GE	- · · · · · ·		

Author, Year		Machine and	Other Comments	Analysis Include	Adjustment
Risk of Bias	T-Score Reference Range	Software Version	on BMD Test	Additional Adjustments?	Variables
		Health Care)			
Chan, 2006 ⁸⁷ unclear	Reference ranges used NR	DXA (Hologic QDR 4500A), NR	BMD at femoral neck used to determine T-score	Unclear	NA
Cook, 2005 ⁸⁸ Unclear	T-scores were computed using the databases supplied with the systems	Hologic QDR-4500C	Lowest value of lumbar spine or total hip used to classify as osteoporosis	No	NA
Crandall, 2014 ⁵⁷ Low	NHANES III normative reference database (presumably young non-Hispanic white females ages 20-29 years, though this is not specifically reported)	DXA (Hologic QDR 4500A), NR	Femoral neck	Unclear	NA
D'Amelio, 2005 ⁸⁹ Low	Reference values for T-scores NR. Site of measurement used for T-score NR.	Hologic QDR 4500	NR	No	NA
D'Amelio, 2013 ⁹⁰ Low	NR	DXA (Hologic QDR 4500), NR	Lowest BMD at total hip, femoral neck, or lumbar spine used to determine T- score	Unclear	NA
Geusens, 2002 ⁹¹	Femoral neck: Non-Hispanic female white women ages 20-29 years (NHANES) Lumbar spine: Unclear	Brand of DXA manufacturer varied among centers; included Norland, Hologic, and Lunar	NR	No	NA
Gnudi, 2005 ⁹² Low	"Reference values were those reported by Norland for the European female population." Age not given.	Norland XR 36	NR	No	NA
Gourlay, 2005 ⁸⁰ Unclear	T-score reference range was NHANES III Non-Hispanic white women ages 20-29 years at the femoral neck	Hologic QDR 1000, 2000, and 4500 densitometers	BMD at femoral neck used to determine T-score	No	NA
Gourlay, 2008 ⁹³	Femoral neck: Non-Hispanic female white women ages 20-29 years (NHANES) Lumbar spine: Manufacturers norms for women age 30 years	Hologic	NR	No	NA
Harrison et al, 2006 ⁹⁴ Low	Hologic reference data for the T- and z-scores calculated using Hologic reference data for the lumbar spine and NHANES reference data for the proximal femur	GE Lunar Prodigy (GE Lunar, Madison, WI) or Hologic Discovery (Hologic, Bedford, MA)	Value of -2.5 or less at the total hip, femoral neck, or lumbar spine	No	NA
Jimenez-Nunez, 2013 ⁹⁵ Low	Manufacturer's reference for the Spanish population	GE Lunar Prodigy Advance DEXA densitometer (software ENCORE 2006)	Lowest score at femoral neck or lumbar spine	No	NA

Author, Year		Machine and	Other Comments	Analysis Include	Adjustment
Risk of Bias	T-Score Reference Range	Software Version	on BMD Test	Additional Adjustments?	Variables
Kung, 2003 ⁹⁶ Low	Peak young Chinese mean values used for calculating T-scores: L1–L4 BMD 1.02±0.11 g/cm ² , femoral neck 0.77±0.09 g/cm ² , total hip BMD 0.86±0.10 g/cm ²	Sahara ultrasound bone densitometer (Hologic)	Results presented for femoral neck, or femoral neck or lumbar spine	no	NA
Kung, 2005 ⁹⁷ Low	NR	QDR 2000 Plus, Hologic	Results presented for femoral neck, lumbar spine, or femoral neck or lumbar spine	no	NA
Lynn, 2008 ⁹⁸ Low	US: NHANES Hong Kong: Local Chinese reference ranges	Hologic QDR 4500W bone densitometers	Results presented for femoral neck, lumbar spine, total hip, or any site	no	NA
Machado, 2010 ⁹⁹ Low	NHANES III young normal references values (sex unspecified) for femoral neck; manufacturer's database for male Caucasian references values for lumbar spine (age unspecified)	Hologic QDR 4500/c bone densitometer	NR	No	NA
Martinez-Aguila, 2007 ¹⁰⁰ Unclear	T-scores from reference range from a study conducted in a Spanish population of healthy subjects of same sex with peak bone mass	Hologic QDR	Lowest site at femoral neck or lumbar spine	No	NA
Mauck, 2005 ¹⁰¹ Low	T-scores based on references ranges for young healthy women ages 20-29 years in the local community area	QDR2000; Hologic (Waltham, MA)	NR	Yes	Age
McLeod, 2015 ¹⁰² Low	NHANES III	GE Lunar Prodigy densitometer	Results presented for femoral neck and lumbar spine	No	NA
Morin, 2009 ¹⁰³ Unclear	T-scores for lumbar spine used manufacturer's US white female reference ranges, based on revised NHANES III, but these are only applicable to femoral neck	Lunar Prodigy; GE Lunar (Madison, WI)	NR	No	NA
Nguyen, 2004 ¹⁰⁴ Low	Reference ranges for calculation of T-scores not described. Used BMD values of young Australian women at either the femoral neck or lumbar spine as reference to determine T-score.	LUNAR DPX-L densitometer	Lowest BMD at femoral neck, or lumbar spine used to determine T- score.	No	NA
Oh, 2013 ¹⁰⁵ Low	Sex-specific normal values for young Japanese women	QDR Discovery fan- beam densitometer (Hologic), Hologic Discovery software (version 13.1)	NR	Unclear	NA

Author, Year		Machine and	Other Comments	Analysis Include	Adjustment
Risk of Bias	I-Score Reference Range	Software Version	on BMD Test	Additional Adjustments?	Variables
Oh, 2016 ¹⁰⁰ Low	Sex-specific norms for young Japanese men	Hologic	Defined osteoporosis as BMD of -2.5 or -2.0 at the femoral neck or lumbar spine.	No	NA
Pang, 2014 ⁵⁶ Low	Manufactuer's sex-specific normative databse and an ethnic database	Lunar Prodigy limited fan-beam machine, NR	NR	Unclear	NA
Park, 2003 ¹⁰⁷ Unclear	Reference range for young Korean women	GE Lunar Model DPQ- IQ	NR	No	NA
Richards, 2014 ¹⁰⁸ Unclear	NHANES III	DXA on either Hologic (Hologic, Bedford, MA) or Lunar (GE Healthcare, Madison, WI) scanner, specific to each participating center. To adjust for systematic differences in BMD by DXA, values were standardized to the Hologic BMD using published data.	NR	No	NA
Richy, 2004 ⁸¹ Unclear	Reference values specifically established for the population of Liege.	Hologic QDR2000	Lowest BMD at total hip, femoral neck, or lumbar spine used to determine T- score. Individual T-score by site also reported.	no	NA
Rud, 2005 ¹⁰⁹ Low	T-scores for the femoral neck and total hip calculated using NHANES III reference values. Hologic reference values were used for the lumbar spine. Authors do not specify if age-matched reference group was used or young white women.	Hologic QDR 1000/W and QDR 2000	NR	No	NA
Shepherd, 2007 ¹¹⁰ Low	T-scores derived from race/ethnicity and sex-specific BMD for Hispanic, non-Hispanic white, and non- Hispanic black men ages 20-29 years.	Hologic QDR	NR	No	NA

Author, Year		Machine and	Other Comments	Analysis Include	Adjustment
Risk of Bias	T-Score Reference Range	Software Version	on BMD Test	Additional Adjustments?	Variables
Shepherd,	White men ages 20-29 years;	Whole body DXA	NR	No	No
2010 ¹¹³		Hologic QDR-4500A			
Low		-			
Sinnott, 2006 ¹¹¹	T-scores were calculated using the manufacturer's	GE lunar machine	Results presented	No	NA
Low	reference values, namely a young Caucasian male	(GE, Madison, WI)	for total hip,		
	database for the hip and a Caucasian female		femoral neck, or		
	database for the spine		trochanter		
Zimering, 2007 ¹¹²	T-score ≤-2.5 compared to NHANES III young male,	Hologic QDR 4500 SL	NR	No	NA
Unclear	ethnicity/race specific reference data	-			

Abbreviations: BMD= body mass index; cm= centimeter; G= gram; NA= not applicable; NHANES= National Health And Nutrition examination Survey; NR= not reported; SD= standard deviation.

	BMD Threshold for Osteoporosis	Time Between Risk Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Adler, 2003 ⁷⁸ Low	Yes	1 month	AUROC for DXA outcome of T- score <-2.5 for any of 3 sites (LS, FN, TH) (OST <2) Lumbar spine: 0.845 (0.731-0.960) Femoral neck: 0.814 (0.717-0.910) Total hip: 0.866 (0.768-0.963) Any site: 0.836 (0.747-0.924)	Cutoff used by study authors (OST <3): 93% Cutoff used for older men (OST <2): 82% Cutoff used for white women (OST <1): 75% All compared to DXA outcome of any T-score <-2.5 (LS, FN, TH)	Cutoff used by study authors (OST <3): 66% Cutoff used for older men (OST <2): 74% Cutoff used for white women (OST <1): 80% All compared to DXA outcome of any T-score <-2.5 (LS, FN, TH)
Ben Sedrine, 2001 ⁷⁹ Low	Yes	NR	AUC (SE) for DXA T-score <-2.5 at each of the following sites: Femoral neck: 0.75 (0.010) Total hip: 0.78 (0.012) Lumbar spine: 0.66 (0.010) Any site: 0.71 (0.009) Hip (total or neck) or spine: 0.74 (0.012) All sites: 0.78 (0.015)	A priori cutoff ≥6, T-score <-2.5 Total hip: 98.2 Femoral neck: 96.9 Lumbar spine: 93.5 Any site: 93.9 Hip (total or neck) or spine: 98.1 All sites: 98.0 Study cutoff ≥8, T-score <-2.5 Total hip: 93.7 Femoral neck: 88.4 Lumbar spine: 81.0 Any site: 82.4 Hip (total or neck) or spine: 89.6 All sites: 93.5	A priori cutoff ≥6, T <-2.5 Total hip: 19.7 Femoral neck: 21.4 Lumbar spine: 21.7 Any site: 23.7 Hip (total or neck) or spine: 20.1 All sites: 19.0 Study cutoff ≥8, T <-2.5 Total hip: 37.3 Femoral neck: 39.5 Lumbar spine: 39.3 Any site: 42.4

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Brenneman,	Yes	Concurrent	AUROC for DXA outcome of T-	SCORE cutoff ≥7: 93.7 (88.3-	SCORE cutoff ≥7: 23.8 (9.6-38.0)
200382			score <-2.5 for total hip or lumbar	99.1)	
Low			spine: 0.73 (SE, 0.03)		
Brenneman,	Yes	Concurrent	AUROC for DXA outcome of T-	SOF cutoff ≥5: 32.6 (26.6-38.6)	SOF cutoff ≥5: 76.0 (63.5-88.6)
2003 ⁸²			score <-2.5 for total hip or lumbar		
Low			spine: 0.54 (SE, 0.03)		
Cadarette,	Yes	NR. Likely <2 years	AUROC for DXA outcome of T-	Cutoffs determined by original	Cutoffs determined by original
2001 ⁸³			score <-2.5 at femoral neck	developers of clinical decision	developers of clinical decision
Low			ABONE: 0.72 (0.02)	rules (ABONE ≥2)	rules (ABONE ≥2)
				ABONE: 83.3 (78.5-88.0)	ABONE: 47.7 (45.6-49.8)
Cadarette,	Yes	NR. Likely <2 years	AUROC for DXA outcome of T-	NOF cutoff ≥1 risk factor	NOF cutoff ≥1 risk factor
2001°3			score <-2.5 at femoral neck (NOF	NOF: 96.2 (93.8-98.6)	NOF: 17.8 (16.2-19.4)
Low			cutoff ≥1 risk factor)		
			NOF: 0.70 (0.02)		
Cadarette,	Yes	NR. Likely <2 years	AUROC for DXA outcome of T-	Cutoffs determined by original	Cutoffs determined by original
200100			score <-2.5 at femoral neck	developers of clinical decision	developers of clinical decision
Low			ORAI: 0.79 (0.01)	rules (ORAI ≥9)	rules (ORAI ≥9)
0 1 11	N/			ORAI: 97.5 (95.5-99.5)	ORAI: 27.8 (25.9-29.7)
Cadarette,	Yes	NR. Likely <2 years	AUROC for DXA outcome of 1-	Cutoffs determined by original	Cutoffs determined by original
2001			SCORE <-2.5 at remoral neck	developers of clinical decision	developers of clinical decision
LOW			SCORE: 0.80 (0.01)	rules (SCORE 26)	rules (SCORE 26)
Cadaratta	Vee			SCORE: 99.6 (98.8-100)	SCORE: 17.9 (16.2-19.5)
Cadarette,	res	UNKNOWN	AUROC IOI DAA outcome of 1-	developer (OPAL > 8)	developer (OPAL > 8)
2004			formaral nack or lumbar spina:	(OKAI > 0)	(ORA > 0)
LOW			0.802 (SE 0.02)	92.3 (83.0-90.7)	56.7 (54.5-42.9)
Cadarette	Yes	Unknown	ALIBOC for DXA outcome of T	Cutoff determined by original	Cutoff determined by original
2004^{84}	103	Chikhown	score < -2.5 by lowest value at	developer (OST < 2)	developer ($OST < 2$)
Low			femoral neck or lumbar spine:	95.3 (89.3-98.5)	39.6 (35.4-43.9)
			0.733 (SE. 0.02)		
Cass. 2006 ⁸⁵	Yes	Not specifically	ORAI ≥9	ORAI ≥9	ORAI ≥9
Low		indicated but	0.74 (0.63-0.84)	0.68 (0.49-0.88)	0.66 (0.596-0.73)
-		appears to have			()
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
		prospectively.			

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Cass, 2006 ⁸⁵	Yes	Not specifically	SCORE ≥6	SCORE ≥6	SCORE ≥6
Low		indicated but	0.67 (0.54-0.79)	0.54 (0.34-0.75)	0.72 (0.65-0.78)
		appears to have	, , , , , , , , , , , , , , , , , , ,	, , , ,	
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
		prospectively.			
Cass, 2013 ⁸⁶	Yes	Concurrent	SCORE ≥6	SCORE ≥6	SCORE ≥6
Low			0.82 (0.71-0.92)	0.80 (0.52-0.96)	0.70 (0.64-0.74)
Chan, 2006 ⁸⁷	Yes	Not specifically	AUROC for DXA outcome of T-	ABONE ≥3	ABONE ≥3
Unclear		indicated but	score <-2.5 at femoral neck	81.8% (NR)	55.9% (NR)
		appears to have	0.70 (0.63-0.78)		
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
		prospectively.			
Chan, 2006°'	Yes	Not specifically	AUC for ORAI ≥9 was NR	ORAI ≥9	ORAI ≥9
Unclear		indicated but	ORAI ≥20: 0.76 (0.68-0.84)	100% (NR)	9.8% (NR)
		appears to have			
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
Chan 2000 ⁸⁷	Vaa	prospectively.	0.00.(0.75.0.00)		
Chan, 2006	res	Not specifically	0.82 (0.75-0.90)	$OSTA \leq 1$	
Unclear				97% (NR)	10.0% (NR)
		appears to have			
		ofter oprollmont			
		since subjects were			
		enrolled			
		prospectively			
Chan 2006 ⁸⁷	Yes	Not specifically	0.80 (0.72-0.87)	SCORE >6	SCORE >6
Linclear	105	indicated but	0.00 (0.12 0.01)	100% (NR)	30.4% (NR)
Choicai		annears to have			
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			

	BMD Threshold	Time Between Risk			
Author Maan	for Osteoporosis	Prediction			
Author, Year	Defined as 1-	Measurement and			
RISK OF BIAS	Score <-2.5 ?	BIND Weasurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Cook at al	Vaa	prospectively.	0.004 (0.720 to 0.505)		
COOK et al,	res	None	0.664 (0.739 to 0.595)	ORAI <14	ORAI <14
2005				0.43	0.86
Unclear Cook et al	Vaa	Nono	$0.747(0.905 \pm 0.702)$		
2005^{88}	res	None	0.747 (0.805 10 0.702)	031R13 <0	USIRIS <0 72
Linclear				70	73
Cook et al	Yes	None	0 716 (0 775 to 0 669)	OST <-1	OST <-1
2005 ⁸⁸	100	None		52	82
Unclear					-
Cook et al.	Yes	None	0.720 (0.674 to 0.779)	SCORE <12	SCORE <12
2005 ⁸⁸			, , , , , , , , , , , , , , , , , , , ,	0.5	0.83
Unclear					
Cook et al,	Yes	None	0.717 (0.777 to 0.670)	SOFSURF <1	SOFSURF <1
2005 ⁸⁸				0.72	0.67
Unclear					
Crandall,	Yes	Not specifically	OST <2	OST <2	OST <2
2014		indicated but	0.75 (0.72-0.78)	79.3 (73.2-85.4)	70.1 (68.4-71.8)
LOW		appears to nave			
		ofter enrollment			
		since subjects were			
		enrolled			
		prospectively.			
Crandall,	Yes	Not specifically	SCORE >7	SCORE >7	SCORE >7
2014 ⁵⁷		indicated but	0.72 (0.69-0.76)	74.1 (67.6-80.7)	70.8 (69.1-72.5)
Low		appears to have		, , ,	
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
		prospectively.			
	yes	Not specifically	FRAX MUF FISK 29.3%	FRAX MOF fisk 29.3%	FRAX MOF fisk $\geq 9.3\%$
2014		appears to have	0.00 (0.00-0.03)	33.3 (20.3-40.4)	00.4 (00.1-07.7)
LOW		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
		prospectively.			

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
D'Amelio,	Yes	NR	AUROC for DXA outcome of	NR	NR
2005 ⁸⁹			lowest T-score <-2.5 of all sites		
Low			(NOF cutoff ≥1 risk factor)		
			NOF: 0.60 (NR)		
D'Amelio,	Yes	NR	ORAI	NR	NR
2005°°			0.32 (NR)		
Low					
D'Amelio,	Yes	NR	OST <2	NR	NR
2005			0.33 (NR)		
Low					
D'Amelio,	Yes	Not specifically		NR	NR
2013		indicated but	0.63 (NR)		
LOW		appears to have			
		ofter oprollmont			
		since subjects were			
		enrolled			
		prospectively			
D'Amelio.	Yes	Not specifically	AUROC for DXA outcome of	NR	NR
2013 ⁹⁰		indicated but	lowest T-score <-2.5 of all sites		
Low		appears to have	(NOF cutoff ≥1 risk factor)		
-		been done shortly	0.60 (NR)		
		after enrollment			
		since subjects were			
		enrolled			
		prospectively.			
D'Amelio,	Yes	Not specifically	SCORE >8	NR	NR
201390		indicated but	0.68 (NR)		
Low		appears to have			
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
D'Amalia		prospectively.	SCORE 12	ND	ND
D Amelio,	yes	indicated but	500RE <2	INR	NR
2013		appears to have	0.52 (NR)		
		heen done shortly			
		after enrollment			
		since subjects were			
		enrolled			

	BMD Threshold	Time Between Risk			
Author Vear	Defined as T-	Measurement and			
Risk of Riss	Score <-2.52	RMD Measurement		Sensitivity (95% CI)	Specificity (95% CI)
	00016 <-2.5 :	prospectively			
Geusens, 2002 ⁹¹	Yes	NR	NR	US clinic sample ORAI >8: 90% (85-95) US trial sample ORAI >9: 137/593=23.1% Netherlands population study OST ≤1: 4903/20,820=23.5%	US clinic sample ORAI >8: 52% (49-55) US trial sample NR Netherlands population sample NR
Geusens, 2002 ⁹¹	Yes	NR	NR	US clinic sample OST <2 (FN site): 88% (83-93) US trial sample OST ≤1: (94+39)/(67+525)=22.3% Netherlands population study OST ≤1: (3648+1134)/(16059+ 1974)= 26.5%	US clinic sample OST <2 (FN site): 52% (49-55) US trial sample NR Netherlands population sample NR
Geusens, 2002 ⁹¹	Yes	NR	NR	US clinic sample SCORE >7: 89% (84-94) US trial sample SCORE ≥7: 143/628=22.8% Netherlands population sample: 4819/18724=25.7%	US clinic sample SCORE >7: 58% (55-61) US trial sample NR Netherlands population sample NR
Geusens, 2002 ⁹¹	Yes	NR	NR	US clinic sample SOFSURF ≥-1: 92% (88-96) US trial sample: 140/736=19.0% Netherlands population sample: 5007/23,033=21.7%	US clinic sample SOFSURF ≥-1: 37% (34-40) US rrial sample NR Netherlands population sample NR
Gnudi, 2005 ⁹² Low	Yes	NR	Compared to T-score ≤-2.5 at either FN or LS: 0.744 (SE, 0.023)	Cutoffs based on predicted probablity to have low BMD (PPL-BMD) (1) PPL-BMD=0.090 (2) PPL-BMD=0.132 (3) PPL-BMD=0.156 (1) 97.2% (2) 95.5% (3) 91.6%	Cutoffs based on predicted probablity to have low BMD (PPL- BMD) (1) PPL-BMD=0.090 (2) PPL-BMD=0.132 (3) PPL-BMD=0.156 (1) 16.9% (2) 27.7% (3) 31.0%
Gourlay, 2005 ⁸⁰ Unclear	Yes	NR	Reported by age groups: Ages 45-64, ORAI: 0.75 (0.71-0.79) Age ≥65+, ORAI: 0.75 (0.71-0.78)	Reported by age groups: Ages 45-64, ORAI (higher risk ≥8): NR Age ≥65, ORAI (higher risk ≥13): 89.2 (84.6-92.8)	Reported by age groups: Ages 45-65, ORAI (higher risk ≥8) 46.2 (44.2-48.2) Age ≥65, ORAI (higher risk ≥13): 44.7 (42.0-47.5)

	BMD Threshold	Time Between Risk			
Author Vear	TOF Usteoporosis	Prediction Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Gourlay, 2005 ⁸⁰ Unclear	Yes	NR	Reported by age groups: Ages 45-64: OST 0.77 (0.73-0.81) Age ≥65: OST 0.76 (0.73-0.79)	Reported by age groups: Ages 45-64: OST (higher risk ≤1) 89.2 (82.8-93.8) 88.5 (82.0-93.3) Age ≥65: OST (higher risk ≤-1) 84.6 (79.5-89.0)	Reported by age groups: Ages 45-64: OST (higher risk ≤1) 45.0 (43.0-47.0) Age ≥65: OST (higher risk ≤-1) 47.5 (44.7-50.3)
Gourlay, 2005 ⁸⁰ Unclear	Yes	NR	Reported by age groups: Ages 45-64: SCORE 0.76 (0.72- 0.80) Age ≥65: SCORE 0.75 (0.71-0.78)	Reported by age groups: Ages 45-65: SCORE (higher risk ≥7) 88.5 (82.0-93.3) Age ≥65: SCORE (higher risk ≥11) 88.8 (84.1-92.5)	Reported by age groups: Ages 45-66: SCORE (higher risk ≥7) 39.8 (37.8-41.7) Age ≥65: SCORE (higher risk ≥11) 42.3 (39.6-45.1)
Gourlay, 2008 ⁹³	Yes	NR	ORAI ≥9 0.70 (0.69-0.71) for lowest site (FN or LS)	NR (wrong T-score threshold used)	NR (wrong T-score threshold used)
Gourlay, 2008 ⁹³	Yes	NR	OST ≤-1 0.76 (0.74-0.77) for FN site 0.72 (0.71-0.73) for lowest site (FN or LS)	OST ≤-1 85% (83-87)	48% (inferred from 1-Specificity)
Gourlay, 2008 ⁹³	Yes	NR	SCORE ≥6 0.71 (0.70-0.72) for lowest site (FN or LS)	NR (wrong T-score threshold used)	NR (wrong T-score threshold used)
Harrison, 2006 ⁹⁴ Low	Yes	Unclear	0.67	NR	NR
Harrison, 2006 ⁹⁴	Yes	Unclear	0.7	NR	NR
Harrison, 2006 ⁹⁴ Low	Yes	Unclear	0.69	NR	NR
Harrison, 2006 ⁹⁴ Low	Yes	Unclear	0.67	NR	NR
Jimenez- Nunez, 2013 ⁹⁵ Low	Yes	None	0.684	Threshold for risk set at ≥9 points: 78	Threshold for risk set at ≥9 points: 52
Jimenez- Nunez, 2013 ⁹⁵ Low	yes	None	0.711	Threshold for risk set at ≤-3: 81	Threshold for risk set at ≤-3: 54

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Jimenez- Nunez, 2013 ⁹⁵ Low	Yes	None	0.71	Threshold for risk set at ≤-1: 83	Threshold for risk set at ≤-1: 52
Jimenez- Nunez, 2013 ⁹⁵ Low	Yes	None	0.672	Threshold for risk set at ≥6 points: 68	Threshold for risk set at ≥6 points: 60
Kung, 2003 ⁹⁶ Low	Yes	Unclear	Femoral neck: 0.80 (0.78-0.84) Femoral neck or lumbar spine: 0.75 (0.72-0.79)	Threshold set at ≤-1 for high risk Femoral neck: 88% Femoral neck or lumbar spine: 79%	Threshold set at ≤-1 for high risk Femoral neck: 54% Femoral neck or lumbar spine: 60%
Kung, 2005 ⁹⁷ Low	Yes	Unclear	Femoral neck: 0.85 (0.80-0.89) Lumbar spine: 0.79 (0.74-0.83) Femoral neck or lumbar spine: 0.78 (0.73-0.82)	Threshold set at ≤-1 for high risk Femoral neck: 83% Lumbar spine: 72% Femoral neck or lumbar spine: 73%	Threshold set at ≤-1 for high risk Femoral neck: 67% Lumbar spine: 65% Femoral neck or lumbar spine: 68%
Lynn, 2008 ⁹⁸ Low	Yes	Unclear	US Lumbar spine (SE): 0.782 (0.019) Total hip: 0.889 (0.016) Femoral neck: 0.808 (0.014) Any site: 0.799 (0.012) Hong Kong Lumbar spine (SE): 0.814 (0.016) Total hip: 0.892 (0.016) Femoral neck: 0.876 (0.018) Any site: 0.831 (0.014)	NR	NR
Lynn, 2008 ⁹⁸ Low	Yes	Unclear	US Lumbar spine (SE): 0.662 (0.022) Total hip: 0.823 (0.020) Femoral neck: 0.740 (0.016) Any site: 0.714 (0.014) Hong Kong Lumbar spine (SE): 0.717 (0.018) Total hip: 0.855 (0.018) Femoral neck: 0.849 (0.019) Any site: 0.759 (0.016)	OST <2: 87.6%	OST <2: 36.1%
Machado, 2010 ⁹⁹ Low	Yes	NR	Based on a priori thresholds (data for other thresholds are also presented in Table 4) OST <2: 0.627 (0.524-0.731)	OST <2: 61.8% (NR)	OST <2: 63.7% (NR)

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Machado, 2010 ⁹⁹ Low	Yes	NR	Based on a priori thresholds (data for other thresholds are also presented in Table 4) OSTA <2: 0.62 (0.51-0.72)	Based on a priori thresholds (data for other thresholds are also presented in Table 4) OSTA <2: 55.9% (NR)	Based on a priori thresholds (data for other thresholds are also presented in Table 4) OSTA <2: 67.9% (NR)
Martinez- Aguila, 2007 ¹⁰⁰ Unclear	Yes	NR, but study was done restrospectively so assumption is clinical risks were collected at the time of the BMD measurement.	ORAI ≥9: 0.62 (0.56-0.67)	Based on a priori thresholds ORAI ≥9: 64.1 (54.7-72.7)	Based on a priori thresholds ORAI ≥9: 58.9 (54.7-63.1)
Martinez- Aguila, 2007 ¹⁰⁰ Unclear	Yes	NR, but study was done restrospectively so assumption is clinical risks were collected at the time of the BMD measurement.	OSIRIS ≤1: 0.63 (0.57-0.69)	Based on a priori thresholds OSIRIS ≤1: 58.1 (48.6-67.2)	Based on a priori thresholds OSIRIS ≤1: 67.9 (63.8-71.8)
Martinez- Aguila, 2007 ¹⁰⁰ Unclear	Yes	NR, but study was done restrospectively so assumption is clinical risks were collected at the time of the BMD measurement.	OST ≤1: 0.64 (0.59-0.69)	Based on a priori thresholds OST <2: 69.2 (60.0-77.4)	Based on a priori thresholds OST <2: 58.8 (54.5-62.9)
Mauck, 2005 ¹⁰¹ Low	Yes	Concurrent	AUROC for DXA outcome of T- score <-2.5 at femoral neck NOF cutoff \geq 1 risk factor Unadjusted analyses NOF Overall: 0.70 (0.63-0.77) Ages 45-64: 0.69 (0.51-0.70) Age \geq 65: 0.60 (0.51-0.70)	NOF cutoff ≥1 risk factor NOF overall: 100% (95-100) Ages 45-64: 100% (72-100) Age ≥65: 100% (94-100)	NOF cutoff ≥1 risk factor NOF overall: 10% (5-16) Ages 45-64: 19% (11-31) Age ≥65: 0% (0-6)
Mauck, 2005 ¹⁰¹ Low	Yes	Concurrent	Unadjusted analyses ORAI Overall: 0.84 (0.78-0.89) Ages 45-64: 0.82 (0.71-0.94) Age ≥65: 0.79 (0.71-0.87)	ORAI ≥9 Overall: 99% (92 to 100) Ages 45-64: 91% (59 to 100) Age ≥65: 100% (94 to 100)	ORAI ≥9 Overall: 36% (28 to 44) Ages 45-64: 69% (57 to 80) Age ≥65: 0% (0 to 6)

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Mauck, 2005 ¹⁰¹ Low	Yes	Concurrent	Unadjusted analyses SCORE Overall: 0.87 (0.81-0.92) Ages 45-64: 0.85 (0.72-0.99) Age ≥65: 0.80 (0.72-0.88)	SCORE ≥6 Overall: 100% (95 to 100) Ages 45-64: 100% (72 to 100) Age ≥65: 100% (94 to 100)	SCORE ≥6 Overall: 25% (18 to 33) Ages 45-64: 41% (29 to 54) Age ≥65: 8% (3 to 17)
McLeod, 2015 ¹⁰² Low	Yes	3 weeks	Femoral neck: 0.807 (0.692-0.985) Lumbar spine: 0.706 (0.559-0.852)	OST <2 for femoral neck: 87.5 OST <21 for lumbar spine: 78.6	OST <2 for femoral neck: 62.7 OST <2 for lumbar spine: 63.7
Morin, 2009 ¹⁰³ Unclear	Yes	Unclear	Using lowest T-score from femoral neck: 0.77 (0.75 to 0.79) Using T-score from any site: 0.71 (0.69 to 0.72)	Only values associated with OST <2 are extracted (a priori threshold) Using lowest T-score from any site: 46.8% (45.7 to 47.9) Using FN T-score: 60.2% (59.2 to 61.3)	Only values associated with OST <2 are extracted (a priori threshold) Using lowest T-score from any site: 81.1% (80.3 to 82.0) Using FN T-score: 78.8 (77.9 to 79.6)
Nguyen, 2004 ¹⁰⁴ Low	Data presented for both -2.0 and -2.5 thresholds.	Concurrent	DOEScore: 0.75 (SE, 0.03) NR for FOSTA, SOFSURF, or ORAI	DOEScore >10 : 82% (NR)	DOEScore >10: 52% (NR)
Nguyen, 2004 ¹⁰⁴ Low	Data presented for both -2.0 and -2.5 thresholds.	Concurrent	NR	ORAI >15: 61% (NR)	ORAI >15: 68% (NR)
Nguyen, 2004 ¹⁰⁴ Low	Data presented for both -2.0 and -2.5 thresholds.	Concurrent	NR	OSTA <-1: 41% (NR) FN	OSTA <-1: 24% (NR) FN
Nguyen, 2004 ¹⁰⁴ Low	Data presented for both -2.0 and -2.5 thresholds.	Concurrent	NR	SOFSURF >10 : 78% (NR)	SOFSURF >10 : 36% (NR)
Oh, 2013 ¹⁰⁵ Low	Yes	Not specifically indicated but appears to have been done shortly after enrollment since subjects were enrolled prospectively.	OST ≤0 0.646 (SE, 0.013)	OST ≤0 94.2 (91.0-96.5)	OST ≤0 29.2 (26.0-32.6)
Oh, 2013 ¹⁰⁵ Low	yes	Not specifically indicated but appears to have been done shortly after enrollment since subjects were	OST ≤-1 0.617 (SE, 0.11)	OST ≤-1 76.1 (71.0-80.8)	OST ≤-1 67.1 (63.6-70.5)

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
		enrolled			
		prospectively.			
Oh, 2016 ¹⁰⁶	Yes	Not specifically	SCORE ≤0	SCORE ≤0	SCORE ≤0
Low		reported, but	0.665 (SE, 0.021)	84.6 (75.5 to 91.3)	48.4 (45.3 to 51.5)
		prospective			
		enrollment so			
		presumed to be at			
		the same time.			
Oh, 2016 ¹⁰⁶	Yes	NR	0.627 (SE, 0.016)	Score ≤1	Score ≤1
Low				92.3 (84.8 to 96.9)	33.2 (30.3 to 36.2)
Pang, 2014 ⁵⁶	Yes	Not specifically	Based on lowest BMD at any site	Based on lowest BMD at any	Based on lowest BMD at any site,
Low		indicated but	(FN, total hip, LS)	site, FRAX score >3%	FRAX score >3%
		appears to have	0.70 (0.64-0.75)	92.2	37.1
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
EC		prospectively.			
Pang, 2014 ⁵⁶	Yes	Not specifically	Based on lowest BMD at any site	Based on lowest BMD at any	Based on lowest BMD at any site,
Low		indicated but	0.68 (0.63-0.74)	site, FRAX score >6.5%	FRAX score >6.5%
		appears to have		89.6	35
		been done shortly			
		after enrollment			
		since subjects were			
		enrolled			
56		prospectively.			
Pang, 2014°°	Yes	Not specifically	Based on lowest BMD at any site	Based on lowest BMD at any site	Based on lowest BMD at any site
Low		indicated but	OST threshold of 0 (not clear if this	OST threshold of 0 (not clear if	OST threshold of 0 (not clear if
		appears to have	means ≤0 or <0)	this means ≤0 or <0)	this means ≤0 or <0)
		been done shortly	0.76 (0.71-0.82)	90.9	39.9
		after enrollment			
		since subjects were			
		enrolled			
Dark 0000 ¹⁰⁷		prospectively.	0.070		
Park, 2003	res	Unclear	0.873	OSTA ≤-1: 87%	OSTA ≤-1: 67%
Dickardo	Vaa	Undoor	0.67		
Richards,	res	Unclear	0.07	051 S-0. 62.0%	OST >-0. 33.0%
2014 Undoor				031 ≤0. 40.2%	031 ≤0. 85.4%
Unclear	1			1	

Author, Year	BMD Threshold for Osteoporosis Defined as T-	Time Between Risk Prediction Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Richy, 2004°' Unclear	Yes	Unclear	Total hip: 74.1 Femoral neck: 70.6 Lumbar spine: 64.4 Any site: 67	ORAI ≥8 Total hip: 90 Femoral neck: 82 Lumbar spine: 76 Any site: 76	ORAI <8 Total hip: 43 Femoral neck: 45 Lumbar spine: 45 Any site: 48
Richy, 2004 ⁸¹ Unclear	Yes	Unclear	Total hip: 81.7 Femoral neck: 77.2 Lumbar spine: 69 Any site: 73	OSIRIS <1 Total hip: 84 Femoral neck: 75 Lumbar spine: 63 Any site: 64	OSIRIS ≥1 Total hip: 63 Femoral neck: 66 Lumbar spine: 65 Any site: 69
Richy, 2004 ⁸¹ Unclear	Yes	Unclear	OST <2 Total hip: 81.3 Femoral neck: 76.8 Lumbar spine: 68.6 Any site: 72.6	OST <2 Total hip: 97 Femoral neck: 92 Lumbar spine: 85 Any site: 86	OST <2 Total hip: 34 Femoral neck: 37 Lumbar spine: 37 Any site: 40
Richy, 2004 ⁸¹ Unclear	Yes	Unclear	Total hip: 78.5 Femoral neck: 74.9 Lumbar spine: 66.6 Any site: 70.8	SCORE ≥7 Total hip: 94 Femoral neck: 88 Lumbar spine: 81 Any site: 86	SCORE <7 Total hip: 37 Femoral neck: 40 Lumbar spine: 39 Any site: 40
Rud, 2005 ¹⁰⁹ Low	Yes	NR	AUROC for DXA outcome of T- score <-2.5 for any of3 sites (femoral neck, total hip, lumbar spine) ORAI: 0.64 (0.58-0.70)	 A priori cutoff based on developer cutoff and DXA outcome of T-score at FN <-2.5 Cutoff based on ROC analysis to yield sensitivity close to 90% and DXA outcome of lowest T- score at FN, TH, LS <-2.5 ORAI >8: 50 (44-56) (<-2.0) >2: 81 (76-86) (<-2.0) >2: 82 (72-89) (<-2.5) 	ORAI 1) >8: 75 (73-77) (<-2.0) 2) >2: 39 (37-41) (<-2.0) 3) >2: 37 (35-39)(<-2.5)
Rud, 2005 ¹⁰⁹ Low	Yes	NR	AUROC for DXA outcome of T- score <-2.5 for any of 3 sites (femoral neck, total hip, lumbar spine) OST ≤1 0.68 (0.63-0.74)	 A priori cutoff based on developer cutoff and DXA outcome of T-score at FN <-2.5 Cutoff based on ROC analysis to yield sensitivity close to 90% and DXA outcome of lowest T- score at FN, TH, LS <-2.5 OST <2: 92 (64-100) (<-2.5) <5: 92 (89-95) (<-2.0) 	OST 1) <2: 71 (69-73) (<-2.5) 2) <5: 24 (22-26) (<-2.0) 3) <5: 23 (21-25) (<-2.5)

	BMD Threshold	Time Between Risk			
	for Osteoporosis	Prediction			
Author, Year	Defined as T-	Measurement and			
Risk of Bias	Score <-2.5?	BMD Measurement	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
				3) <5: 94 (86-98) (<-2.5)	
Rud, 2005 ¹⁰⁹ Low	Yes	Not reported	AUROC for DXA outcome of T- score <-2.5 for any of 3 sites (femoral neck, total hip, lumbar spine) SCORE 0.68 (0.63-0.73)	 A priori cutoff based on developer cutoff and DXA outcome of T-score at FN <-2.5 Cutoff based on ROC analysis to yield sensitivity close to 90% and DXA outcome of lowest T- score at FN, TH, LS <-2.5 SCORE NA (wrong DXA threshold) >3: 90 (86-93) (<-2.0) 	1) A priori cutoff based on developer cutoff and DXA outcome of T-score at FN <-2.5 2) Cutoff based on ROC analysis to yield sensitivity close to 90% and DXA outcome of lowest T- score at FN, TH, LS <-2.5 SCORE 1) NA (wrong DXA threshold) 2) >3: 28 (25-29)
Shepherd, 2007 ¹¹⁰ Low	Yes	Unknown	AUROC for DXA outcome of T- score <-2.5 at total hip 0.842 (0.811-0.873)	3) >3. 89 (81-95) (<-2.5) MORES ≥6 0.95 (0.81-0.99)	MORES ≥6 0.61 (0.57-0.64)
Shepherd, 2010 ¹¹³ Low	Yes	Not specifically reported	SCORE ≥6 at any site: 0.73 SCORE ≥6 at lumbar spine: 0.66	SCORE ≥6 at any site: 0.66 (0.58 to 0.72) SCORE ≥6 at lumbar spine: 0.58 (0.46 to 0.69)	SCORE ≥6 at any site: 0.68 (0.65 to 0.70) SCORE ≥6 at lumbar spine: 0.65 (0.63 to 0.68)
Sinnott, 2006 ¹¹¹ Low	Yes	Unclear	0.89 (0.75-1.03)	OST <4 at femoral neck, total hip, or trochanter: 89 OST ≤1: 89%	OST <4 fat femoral neck, total hip, or trochanter: 54 OST <2: 71%
Zimering, 2007 ¹¹² Unclear	Yes	Unknown	AUROC for DXA outcome of T- score <-2.5 at FN MSCORE age-weight: 0.84 (0.74- 0.95)	MSCORE age-weight (>9): 85	MSCORE age-weight (>9): 58
Zimering, 2007 ¹¹² Unclear	Yes	Unknown	AUROC for DXA outcome of T- score <-2.5 at FN MSCORE: 0.84 (0.74-0.95)	MSCORE (>9): 88	MSCORE (>9): 57
Zimering, 2007 ¹¹² Unclear	Yes	Unknown	AUROC for DXA outcome of T- score <-2.5 at FN OST: 0.81 (0.70-0.92)	OST (<2 [established in elderly male population]): 75 OST (<3 [established in male veteran population]): 75	OST (<2 [established in elderly male population]): 68 OST (<3 [established in male veteran population]): 59

Abbreviations: AA= African American; ABONE = assessing age, body size, and estrogen use; AMMEB= Age, Years after Menopause, Age at Menarche, Body Mass Index ; BMD= bone mineral density; CaMOS = Canadian Multicentre Osteoporosis Study; COPD= Chronic obstructive pulmonary disease; DOEScore = Dubbo Osteoporosis Epidemiology Score; DXA = dual energy x-ray absorptiometry; FRAX = Fracture Risk Assessment tool; GP= general practitioner; h/o= history of; HRT= hormone replacement therapy; kg= kilogram; KNHANES; Korean National Health and Nutrition Examination Survey MORE = Multiple Outcomes of Raloxifene Trial; MOST = Male Osteoporosis Screening Tool; MSCORE= male, simple calculated osteoporosis risk estimation; NA= not applicable; NR= not reported; NOF = National Osteoporosis Foundation; OPRA = Osteoporosis Population-based Risk Assessment; ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OST = osteoporosis self-assessment tool; QUI = ultrasound index; QUS = quantitative ultrasound; RA= rheumatoid arthritis; SCORE = Simple Calculated Osteoporosis Risk Estimation Tool; SD= standard deviation;

SOF = Study of Osteoporotic Fractures; SOFSURF = Study of Osteoporotic Fractures Simple Useful Risk Factors; TH= total hip; US= United States; USPSTF= United States Preventative Services Task Force; WHI = Women's Health Initiative

Author, Year				
Risk of Bias	NPV	PPV	Other Outcomes	Comments
Risk of Bias Adler, 2003 ⁷⁸ Low	NPV Cutoff used by study authors (OST <3): 98% Cutoff used for older men (OST <2): 97% Cutoff used for white women (OST <1): 95% All compared to DXA outcome of any T-score (LS, FN, TH) <-2.5	PPV Cutoff used by study authors (OST <3): 33% Cutoff used for older men (OST <2): 38% Cutoff used for white women (OST <1): 41% All compared to DXA outcome of any T-score (LS, FN, TH) <-2.5	Other Outcomes None	CommentsSubgroup analyses for race, age deciles, corticosteroid treatment (Table 4: AUC, Sn, Sp, PPV, NPV)AUC (no Cl): White: 0.848Black: 0.800Ages 50-59: 0.938Ages 60-69: 0.894Ages 70-79: 0.696Age ≥80: 0.993
				Current CS treatment: 0.786
70				No current CS: 0.803
Ben Sedrine, 2001 ⁷⁹ Low	A priori cutoff ≥6, T-score <-2.5 Total hip: 99.0 Femoral neck: 96.8 Lumbar spine: 91.2 Any site: 89.1 Hip (total or neck) or spine: 98.8 All sites: 99.3 Study cutoff ≥8, T-score <-2.5 Total hip: 98.3 Femoral neck: 93.7 Lumbar spine: 86.5 Any site: 83.4	A priori cutoff ≥6, T-score <-2.5 Total hip: 11.3 Femoral neck: 21.9 Lumbar spine: 27.7 Any site: 37.0 Hip (total or neck) or spine: 14.0 All sites: 7.3 Study cutoff ≥8, T-score <-2.5 Total hip: 13.5 Femoral neck: 25.0 Lumbar spine: 30.0 Any site: 40.6	NR	A priori cutoff >6, T-score <-2.5 Sn in women age ≥65 Total hip: 100 Femoral neck: 99.8 Lumbar spine: 98.7 Any site: 98.9 Hip (total or neck) or spine: 100.0 All sites: 100.0 Sp in women age ≥65 Total hip: 4.4 Femoral neck: 5.1 Lumbar spine: 4.7 Any site: 5.7 Hip (total or neck) or spine: 4.5 All sites: 4.1 PPV in women age ≥65 Total hip: 16.2 Femoral neck: 30.3 Lumbar spine: 31.6 Any site: 44.8 Hip (total or neck) or spine: 18.8 All sites: 10.4 NPV in women age ≥65 Total hip: 100.0 Femoral neck: 98.2 Lumbar spine: 89.1 Any site: 87.3 Hip (total or neck) or spine: 100.0

Author, Year Risk of Bias	NPV	PPV	Other Outcomes	Comments
				All sites: 100.0 Sn in women age <65 Total hip: 95.3 Femoral neck: 92.9 Lumbar spine: 88.9 Any site: 88.9 Hip (total or neck) or spine: 95.5 All sites: 94.8 Sp in women age <65 Total hip: 27.7 Femoral neck: 29.1 Lumbar spine: 30.3 Any site: 31.7 Hip (total or neck) or spine: 28.3 All sites: 27.2 PPV in women age<65 Total hip: 7.6 Femoral neck: 15.5 Lumbar spine: 24.8 Any site: 31.0 Hip (total or neck) or spine: 10.3 All sites: 4.9 NPV in women age <65 Total hip: 99.0 Femoral neck: 96.7 Lumbar spine: 91.3 Any site: 89.3 Hip (total or neck) or spine: 98.7 All sites: 4.9
Brenneman, 2003 ⁸² Low	NR	NR	NR	SCORE cutoff recalibrated for older population of this study compared to development cohort (≥ 6 to ≥ 7)
Brenneman, 2003 ⁸² Low	NR	NR	NR	NR
Cadarette, 2001 ⁸³ Low	NR	NR	NR	NR
Cadarette, 2001 ⁸³ Low	NR	NR	NR	NR
Cadarette, 2001 ⁸³ Low	NR	NR	NR	NR
Cadarette, 2001 ⁸³ Low	NR	NR	NR	NR

Author, Year				
Risk of Bias	NPV	PPV	Other Outcomes	Comments
Cadarette, 2004 ⁸⁴	NR	NR	NR	Study also looked at weight criterion and
Low				OST-chart tool that was developed just for
				this study (not validated)
Cadarette, 2004 ⁸⁴	NR	NR	NR	Study also looked at weight criterion and
Low				OST-chart tool that was developed just for
				this study (not validated)
Cass, 2006 ⁸⁵	ORAI ≥9	ORAI ≥9	NR	Has subgroup analysis for non-Hispanic
Low	0.94 (0.90-0.98)	0.20 (0.11-0.29)		white, Hispanic, and African American
Cass, 2006 ⁸⁵	SCORE ≥6	SCORE ≥6	NR	Has subgroup analysis for non-Hispanic
Low	0.93 (0.89-0.97)	0.19 (0.09-0.29)		white, Hispanic, and African American
Cass, 2013 ⁸⁶	SCORE ≥6	SCORE ≥6	NR	None
Low	0.99 (0.96-1.00)	0.11 (0.06-0.18)		
Chan, 2006 ⁸⁷	NR	NR	NR	This is just for the femoral neck
Unclear				
Chan, 2006 ⁸⁷	NR	NR	NR	This is just for the femoral neck
Unclear				
Chan, 2006 ⁸⁷	NR	NR	NR	This is just for the femoral neck
Unclear				
Chan, 2006 ⁸⁷	NR	NR	NR	This is just for the femoral neck
Unclear				
Cook, 2005 ⁸⁸	ORAI <14	ORAI <14	NR	None
Unclear	0.84	0.48		
Cook, 2005 ⁸⁸	OSIRIS <0	OSIRIS <0	NR	None
Unclear	89	42		
Cook, 2005 ⁸⁸	OST ≤-1	OST ≤-1	NR	None
Unclear	56	44		
Cook, 2005 ⁸⁸	SCORE <12	SCORE <12	NR	None
Unclear	0.85	0.46		
Cook, 2005 ⁸⁸	SOFSURF <1	SOFSURF <1	NR	None
Unclear	0.89	0.42		
Crandall, 2014 ⁵⁷	NR	OST <2	NR	Other cutpoints are also available
Low		14.7 (12.4-16.9)		
Crandall, 2014 ⁵⁷	NR	SCORE >7	NR	Other cutpoints are also available
Low		14.1 (11.9-16.4)		
Crandall, 2014 ⁵⁷	NR	FRAX MOF risk ≥9.3%	NR	Other cutpoints are also available
Low		13.7 (10.4-17.0)		
D'Amelio, 2005 ⁸⁹	NR	NR	NR	NR
Low				
D'Amelio, 2005 ⁸⁹	NR	NR	NR	NR
Low				
D'Amelio, 2005 ⁸⁹	NR	NR	NR	NR
Low				

Author, Year				
Risk of Bias	NPV	PPV	Other Outcomes	Comments
D'Amelio, 2013 ⁹⁰	NR	NR	NR	NR
Low				
D'Amelio, 2013 ⁹⁰	NR	NR	NR	NR
Low				
D'Amelio, 2013 ⁹⁰	NR	NR	NR	NR
Low				
D'Amelio, 2013 ⁹⁰	NR	NR	NR	NR
Low				
Geusens, 2002 ⁹¹	NR	NR	NR	NR
Geusens, 2002 ⁹¹	NR	NR	NR	NR
Geusens, 2002 ⁹¹	NR	NR	NR	NR
Geusens, 2002 ⁹¹	NR	NR	NR	NR
Gnudi, 2005 ⁹²	Cutoffs based on predicted	Cutoffs based on predicted	NR	NR
Low	probability to have low BMD	probability to have low BMD		
	(PPL-BMD)	(PPL-BMD)		
	1) PPL-BMD = 0.090	1) PPL-BMD = 0.090		
	2) PPL-BMD = 0.132	2) PPL-BMD = 0.132		
	3) PPL-BMD = 0.156	3) PPL-BMD = 0.156		
	1) 90.9%	1) 40.9%		
	2) 91.2%	2) 43.9%		
	3) 86.1%	3) 44.1%		
Gourlay, 2005 ⁸⁰	NR	NR		Same study cohort as reported in Richy and
Unclear				Ben Sedrine, reports findings by age groups
				instead of overall.
Gourlay, 2005 ⁸⁰	NR	NR		Same study cohort as reported in Richy and
Unclear				Ben Sedrine, reports findings by age groups
80				instead of overall.
Gourlay, 2005 ^{⁰⁰}	NR	NR		Same study cohort as reported in Richy and
Unclear				Ben Sedrine, i reports findings by age groups
				instead of overall.
Gourlay, 2008	NR	NR	NR	NR
Gourlay, 2008 ⁹³	NR	NR	LR-: 0.31	NR
			LR+: 1.64	
Gourlay, 2008 ⁹³	NR	NR	NR	NR
Harrison et al,	NR	NR	NR	None
200694				
Low				
Harrison et al,	NR	NR	NR	None
2006**				
Low				

Author, Year				
Risk of Bias	NPV	PPV	Other Outcomes	Comments
Harrison et al, 200692	NR	NR	NR	None
Low				
Harrison et al, 2006 ⁹²	NR	NR	NR	None
Low				
Jimenez-Nunez, 2013 ⁹⁵	NR	NR	NR	None
Low				
Jimenez-Nunez, 2013 ⁹⁵	NR	NR	NR	None
Low				
Jimenez-Nunez, 2013 ⁹⁵	NR	NR	NR	None
Low				
Jimenez-Nunez, 2013 ⁹⁵	NR	NR	NR	None
Low				
Kung, 2003 ⁹⁶ Low	NR	NR	NR	None
Kung, 2005 ⁹⁷ Low	NR	NR	NR	None
Lvnn 2008 ⁹⁸	NR	NR	NR	None
Low				
Lynn, 2008 ⁹⁸ Low	OST <2: 97.4%	OST <2: 9.7%	NR	None
Machado, 2010 ⁹⁹	OST <2: 89.2%	OST <2: 25.6% (NR)	NR	NR
Low				
Machado, 2010 ⁹⁹ Low	Based on a priori thresholds (data for other thresholds are also presented in Table 4) OSTA <2: 88.4% (NR)	Based on a priori thresholds (data for other thresholds are also presented in Table 4) OSTA <2: 26.0% (NR)	NR	
Martinez-Aguila, 2007 ¹⁰⁰ Unclear	Based on a priori thresholds ORAI ≥9: 25.0 (20.2 to 30.3)	Based on a priori thresholds ORAI ≥9: 88.5 (84.8 to 91.6)	NR	NR
Martinez-Aguila, 2007 ¹⁰⁰ Unclear	Based on a priori thresholds OSIRIS ≤1: 88.4 (84.9 to 91.3)	Based on a priori thresholds OSIRIS ≤1: 27.9 (22.3 to 33.9)	NR	NR
Martinez-Aguila, 2007 ¹⁰⁰ Unclear	Based on a priori thresholds OST <2: 89.9 (86.3 to 92.9)	Based on a priori thresholds OST <2: 26.4 (21.5 to 31.7)	NR	NR

Author, Year Risk of Bias	NPV	PPV	Other Outcomes	Comments
Mauck, 2005 ¹⁰¹ Low	NOF ≥1 risk factor NOF overall: 100% (75 to 100) Ages 45-64: 100% (75 to 100) Age ≥65: NA	NOF overall: 37% (30 to 44) Ages 45-64: 17% (9 to 28) Age ≥65: 48% (38 to 57)	+LR and -LR are also presented in Table 3.	Age-adjusted analysis: AUC: 0.65 (0.58 to 0.71) Sn: 100% (55 to 100) Sp: 10% (4 to 29) NPV: 100% (30 to 100) PPV: 27% (17 to 41)
Mauck, 2005 ¹⁰¹ Low	ORAI ≥9 Overall: 44% (36 to 53) Ages 45-64: 32% (17 to 51) Age ≥65: 48% (38 to 57)	ORAI ≥9 Overall: 98% (89 to 100) Ages 45-64: 98% (89 to 100) Age ≥65: NA	+LR and -LR are also presented in Table 3.	Age-adjusted analysis: AUC: 0.79 (0.74 to 0.83) Sn: 98% (51 to 100) Sp: 40% (30 to 56) NPV: 77% (46 to 100) PPV: 29% (18 to 59)
Mauck, 2005 ¹⁰¹ Low	SCORE ≥6 Overall: 100% (89 to 100) Ages 45-64: 100% (88 to 100) Age ≥65: 100% (48 to 100)	SCORE ≥6 Overall: 41% (34 to 39) Ages 45-64: 22% (11 to 35) Age ≥65: 50% (40 to 59)	+LR and -LR are also presented in Table 3.	Age-adjusted analysis: AUC: 0.85 (0.80 to 0.89) Sn: 100% (55 to 100) Sp: 29% (18 to 48) NPV: 100% (51 to 100) PPV: 27% (17 to 48)
McLeod, 2015 ¹⁰² Low	NR	NR	NR	Score of <2 considered to be optimal to achieve close to 90% sensitivity
Morin, 2009 ¹⁰³ Unclear	NR	NR	NR	NR
Nguyen, 2004 ¹⁰⁴ Low	NR	DOEScore >10: 55% (NR)	LR+ are also reported.	NR
Nguyen, 2004 ¹⁰⁴ Low	NR	ORAI >15: 57% (NR)	LR+ are also reported.	NR
Nguyen, 2004 ¹⁰⁴ Low	NR	OSTA <-1: 28% (NR) FN	LR+ are also reported.	NR
Nguyen, 2004 ¹⁰⁴ Low	NR	SOFSURF >10: 47% (NR)	LR+ are also reported.	NR
Oh, 2013 ¹⁰⁵ Low	OST ≤0 92.3 (88.1-95.4)	OST ≤0 35.9 (32.6-39.3)	OST <0 LR+: 1.33 (1.26-1.40) LR-: 0.20 (0.13-0.32)	Provides information from development dataset, day for <2.0 or TIs <-2.0, p-values for differences between models and OSTA
Oh, 2013 ¹⁰⁵ Low	OST ≤-1 87.0 (83.9-89.6)	OST ≤-1 49.4 (44.8-54.0)	OST ≤-1 LR+: 2.32 (2.05-2.61) LR-: 0.36 (0.29-0.44)	Provides information from development dataset, day for <2.0 or Tls <-2.0, p- values for differences between models and OSTA
Oh, 2016 ¹⁰⁶	Score ≤0 97 2 (95 4 to 98 5)	Score ≤0 12 8 (10 2 to 15 0)	NR	Only extracted values for validation dataset
Oh, 2016 ¹⁰⁶ Low	Score ≤1 98.0 (95.9 to 99.2)	Score ≤1 11.0 (8.9 to 13.4)	NR	NR

Author, Year				
Risk of Bias	NPV	PPV	Other Outcomes	Comments
Pang, 2014 ⁵⁶	Based on lowest BMD at any	Based on lowest BMD at any	Also reports based on BMD	NR
Low	site, FRAX score >3%: 97.1	site, FRAX score >3%: 17.1	at each individual site, and	
			lowest of the 2 hip sites.	
Pang, 2014 ⁵⁶	Based on lowest BMD at any	Based on lowest BMD at any	Also reports based on BMD	NR
Low	site, FRAX score >6.5%: 96.2	site, FRAX score >6.5%: 16.8	at each individual site, and	
			lowest of the 2 hip sites.	
Pang, 2014 ⁵⁶	Based on lowest BMD at any site	Based on lowest BMD at any	Also reports based on BMD	NR
Low	(OST cutoff of 0, not clear if this	site (OST cutoff of 0, not clear	at each individual site, and	
	means ≤0 or <0): 96.9	if this means ≤0 or <0): 17.5	lowest of the 2 hip sites.	
Park, 2003 ¹⁰⁷	OSTA ≤-1: 98%	OSTA ≤-1: 24%	NR	NR
Unclear				
Richards, 2014 ¹⁰⁸	NR	NR	NR	This study also reported sensivity and
Unclear				specifity of FRAX without BMD to predict
				osteoporosis but did not report the threshold
				value, so it is not clear how to interpret it.
				Also reports results by race and age.
Richy, 2004 ⁸¹	ORAI <8	ORAI ≥8	NR	NR
Unclear	Total hip: 98	Total hip: 14		
	Femoral neck: 92	Femoral neck: 26		
	Lumbar spine: 85	Lumbar spine: 31		
	Any site: 80	Any site: 41		
Richy, 2004 ⁸¹	OSIRIS ≥1	OSIRIS <1	NR	NR
Unclear	Total hip: 97	Total hip: 19		
	Femoral neck: 92	Femoral neck: 34		
	Lumbar spine: 84	Lumbar spine: 37		
	Any site: 80	Any site: 50		
Richy, 2004 ⁸¹	OST <2	OST <2	NR	NR
Unclear	Total hip: 99	Total hip: 13		
	Femoral neck: 95	Femoral neck: 25		
	Lumbar spine: 89	Lumbar spine: 31		
	Any site: 86	Any site: 41		
Richy, 2004 ⁸¹	SCORE <7	SCORE ≥7	NR	NR
Unclear	Total hip: 98	Total hip: 14		
	Femoral neck: 94	Femoral neck: 25		
	Lumbar spine: 87	Lumbar spine: 30		
	Any site: 86	Any site: 41		
Rud, 2005 ¹⁰⁹	ORAI	ORAI	When the authors evaluated	NR
Low	1) >8: 91 (90-93) (<-2.0)	1) >8: 23 (1926) (<-2.0)	the performance of these	
	2) >2: 17 (15-19) (<-2.0)	2) >2: 93 (91-95) (<-2.0)	clinical prediction tools as	
	3) f>2: 6 (5-7) (<-2.5)	3) >2: 98 (96-99) (<-2.5)	the developers described,	
			with cutoffs and using FN	
			DXA of -2.5 as reference,	
			did not perform well in this	

Author, Year Risk of Bias	NPV	PPV	Other Outcomes	Comments
			population of women that was generally younger (by >10 years)	
Rud, 2005 ¹⁰⁹ Low	OST 1) <2: 100 (99-100) (<-2.5) 2) <5: 96 (93-97) (<-2.0) 3) <5: 99 (97-100) (<-2.5)	OST 1) <2: 2 (1-3) (<-2.5) 2) <5: 15 (14-17) (<-2.0) 3) <5: 6.0 (4-7) (<-2.5)	When the authors evaluated the performance of these clinical prediction tools as the developers described, with cutoffs and using FN DXA of -2.5 as reference, did not perform well in this population of women that was generally younger (by >10 years)	NR
Rud, 2005 ¹⁰⁹ Low	 A priori cutoff based on developer cutoff and DXA outcome of T-score at FN <-2.5 Cutoff based on ROC analysis to yield Sn close to 90% and DXA at FN, TH, LS <-2.5 SCORE NA (wrong DXA threshold) Cutoff >3: 95 (92-97) 	1) A priori cutoff based on developer cutoff and DXA outcome of T-score at FN <-2.5 2) Cutoff based on ROC analysis to yield Sn close to 90% and DXA outcome of lowest T-score at FN, TH, LS <-2.5 SCORE 1) NA (wrong DXA threshold) 2) cutoff >3: 16 (14-18)	When the authors evaluated the performance of these clinical prediction tools as the developers described, with cutoffs and using FN DXA of -2.5 as reference, did not perform well in this population of women that was generally younger (by >10 years)	NR
Shepherd, 2007 ¹¹⁰ Low	NR	ŃŔ	Simulation study yielding number needed to screen to prevent 1 additional hip fracture in 10,000 men age ≥50 years (Table 5)	Abstracted data for validation cohort only.
Shepherd, 2010 ¹¹³ Low	NR	NR	NR	Outcomes by race/ethnicity also provided
Sinnott, 2006 ¹¹¹ Low	OST <4 at femoral neck, total hip, or trochanter: 13 OST <2: 40%	OST <4 at femoral neck, total hip, or trochanter: 98 OST <2: 19%	NR	Score of 4 considered optimal for African American men
Zimering, 2007 ¹¹² Unclear	MSCORE age-weight (>9): 97	MSCORE age-weight (>9): 18	NR	Abstracted data for Caucasian validation cohort only. Also data for African American validation cohort, but combined data from 95 new subjects and 39 subjects from development cohort so not pure external validation cohort.

Author, Year				
Risk of Bias	NPV	PPV	Other Outcomes	Comments
Zimering, 2007 ¹¹² Unclear	MSCORE (>9): 98	MSCORE (>9): 16	NR	Abstracted data for Caucasian validation cohort only. Also data for African American validation cohort, but combined data from 95 new subjects and 39 subjects from development cohort so not pure external validation cohort.
Zimering, 2007 ¹¹² Unclear	OST (<2 [established in elderly male population]): 96 OST (<3 [established in male veteran popualation]): 95	OST (<2 [established in elderly male population]): 22 OST (<3 [established in male veteran popualation]): 17	NR	Abstracted data for Caucasian validation cohort only. Also data for African American validation cohort, but combined data from 95 new subjects and 39 subjects from development cohort so not pure external validation cohort.

Abbreviations: AUC= area under the curve; BMD= bone mineral density; CI, = confidence interval; DOEScore = Dubbo Osteoporosis Epidemiology Score; DXA = dual energy x-ray absorptiometry; FN = femoral neck; FRAX = Fracture Risk Assessment tool; LR = likelihood ratio; LS = lumbar spine; MOF= major osteoporotic fracture defined as fractures of the proximal femur, distal radius, proximal humerus, and clinical; NA = not applicable; NOF = National Osteoporosis Foundation; NPV = negative predictive value; NR = not reported; ORAI = Osteoporosis Risk Assessment Instrument; OSIRIS = Osteoporosis Index of Risk; OST = osteoporosis self-assessment tool; OSTA = Osteoporosis Self-assessment tool; OSTA = Osteoporosis Risk Estimation Tool; Sn = sensitivity; SOFSURF = Study of Osteoporotic Fractures Simple Useful Risk Factors; Sp = specificity; TH = total hip.

Study, Year Risk of	Participant	BMD Status; Baseline	Inclusion/Exclusion	Index Bone		Location and Threshold	
Bias	Characteristics	Fracture Rate	Criteria	Measurement Test	Gold Standard Test	of Index Test	AUC (95% CI)
Boonen et al, 2005 ¹¹⁴ Low	Women Baseline mean age: 61 (50-75) Belgium N=221	41/221 (18.5%) had T-score <-2.5; proportion with baseline fractures NR	Included community- dwelling postmenopausal women consecutively referred to Leuven University Center for Metabolic Bone Diseases for bone densitometry. Excluded if receiving therapy for osteoporosis, including HRT, SERM, or bisphosphonates; having peripheral edema (to avoid interference with	DXR standardized protocol and analyzed with the X-Posure System version 2 software RA performed with a self-contained single energy x-ray system QUS calcaneal ultrasound attenuation was measured using Sahara equipment (Hologic)	Areal bone density was measured using the DXA QDR 4500a fan- beam system; national reference data were used to derive T-scores at the lumbar spine (vertebrae L2–L4) and the total hip region	QUS calcaneous against hip or spine T-score <-2.5 DXR (nondominant hand) against hip or spine T- score <-2.5 RA BMD of the 2nd, 3rd, and 4th digits of the nondominant hand against hip or spine T- score <-2.5	0.72 (SE, 0.04) 0.84 (SE, 0.03) 0.80 (SE, 0.03)
Kung et al, 2003 ⁹⁶ Low	Women Baseline mean age: 62 (43-81) Hong Kong N=767	FN BMD (g/cm ²): 0.61±0.10; 18.7% had a history of fragility fractures	Community-based study of Southern Chinese women ≤6 months postmenopausal. Excluded if history or evidence of metabolic bone disease (other than postmenopausal bone loss, hyper- or hypoparathyroidism, Paget's disease, osteomalacia, renal osteodystrophy, or osteogenesis imperfecta), menopause before age 40 years, presence of cancer with known metastasis to bone, evidence of significant renal impairment, ≥1 ovary removed, both hips previously fractured or replaced, and prior use of any bisphosphonates,	QUS, using Sahara ultrasound bone densitometer (Hologic, Waltham, MA) to measure the attenuation slope (broadband ultrasound attenuation, BUA) and the SOS of the right heel, and the QUI (an algorithm that combines the information from measurements of BUA and SOS)	DXA (QDR 2000 Plus, Hologic) on the lumbar spine (L1–L4) and left femur (femoral neck, trochanter, Ward's triangle, and total hip)	QUI based on femoral neck BMD T-score ≤-2.5	0.78 (0.74- 0.81)

Study,							
Year Bick of	Participant	BMD Status;	Inclusion/Exclusion	Index Bone		Location and Throshold	
Rias	Characteristics	Fracture Rate	Criteria	Measurement Test	Gold Standard Test	of Index Test	
Dias	onaracteristics	Tracture Nate	fluoride or calcitonin:	Medourement rest	Oold Otalidard Test	of index rest	AUC (33 /8 CI)
			abnormal biochemistry.				
Kung et	Men	FN BMD	Community-based study	Quantitative bone	DXA (QDR 2000 Plus,	QUI based on femoral	0.79 (0.75-
al,	Baseline mean	(g/cm^2) :	of southern Chinese men	ultrasound (QUS) using	Hologic) on the lumbar	neck BMD T-score ≤-2.5	0.83)
2005 ⁹⁷	age: 62 (43-81)	0.68±0.12;	in Hong Kong age ≥50	Sahara ultrasound bone	spine (L1–L4) and left		,
	Hong Kong	15.6% had a	from 1999-2003.	densitometer (Hologic,	femur (femoral neck,		
Low	N=356	history of	Excluded if history or	Waltham, MA) to	trochanter, Ward's		
		fragility	evidence of metabolic	measure the attenuation	triangle, and total hip)		
		fractures	bone disease (hyper- or	slope (broadband			
			hypoparathyroidism,	ultrasound attenuation,			
			Paget's disease,	BUA) and the SOS of the			
			osteomalacia, renal	right heel, and the QUI			
			osteodystrophy, or	(an algorithm that			
			osteogenesis	combines the information			
			imperfecta), history of	from measurements of			
			cancer in preceding 5	BUA and SOS)			
			years, evidence of				
			significant renai				
			impairment, both hips				
			previously fractured or				
			of any bianhaanhaantaa				
			fluorido, or calcitonia:				
			abnormal biochomistry				
			including renal and liver				
			function test serum				
			calcium phosphate total				
			alkaline phosphatase				
			and TSH				
Jimenez-	Women	T-score: -1.01	Included Caucasian	PIXI on nondominant	GE Lunar Prodigy	PIXI vs. T-score ≤-2.5	0.803
Nunez et	Mean age: 61	(SD, 1.05); no	women age ≥50 years,	heel, using GE Lunar	Advance DXA		(variance NR)
al,	(SD, 8)	nontraumatic	menopausal ≥12	PIXI densitometer	densitometer (software		
2013 ⁹⁵	Spain	fractures	months, from tertiary	(software 50699)	ENCORE 2006, PA+		
	N=505		care referred for routine		300274; GE, Chalfont		
Low			bone density screening		St. Giles, UK); T-scores		
			by DXA (recruited		and Z-scores calculated		
			consecutively) at the		using the		
			Rheumatology		manufacturer's		
			Department of Carlos		reference for the		
			Haya University Hospital.		Spanish population		

Study, Year		BMD Status;					
Risk of Bias	Participant	Baseline Fracture Pate	Inclusion/Exclusion	Index Bone Measurement Test	Gold Standard Test	Location and Threshold	
			Excluded if nursing home resident, homebound, or had any of the following: previous diagnosis of >12 months with any potential antiosteoporotic drug (bisphosphonate, parathormone, estrogen, strontium ranelate, calcitonin, SERM), serious acute or chronic disease, steroid treatment in last 6 months, or bilateral hip replacement				
McLeod et al, 2015 ¹⁰² Low	Women Mean age: 59.0 (50-80) Canada N=174	57.4% had osteoporosis or osteopenia; 22.4% with fracture after age 40 years	Included if referred by health care provider for DXA screening to the Regina General Hospital, Saskatchewan, Canada, July 2010 to September 2011	Left calcaneal QUS	BMD using DXA (GE Lunar Prodigy densitometer (Madison, WI)	QUS SI based on femoral neck DXA T-score <-2.5 QUS T-score based on femoral neck DXA T- score <-2.5 QUS SI based on lumbar spine DXA T-score <-2.5 QUS T-score based on lumbar spine DXA T- score <-2.5	0.892 (0.042; 0.809-0.975) 0.898 (0.041; 0.817-0.978) 0.696 (0.076; 0.517-0.846) 0.698 (0.077; 0.548-0.848)
Cook et al, 2005 ⁸⁸	Women Baseline mean age: 59.7 (29-	Osteoporotic at LS or hip: 21.6% (n=45)	Included postmenopausal women recruited through DXA	QUS using Sunlight Omnisense ultrasound, measured at the distal	BMD as measured by DXA at the lumbar spine or total hip; no	Sunlight distal radius based on DXA T-score ≤-2.5	0.676 (0.731- 0.628)
unclear	87) UK N=208	Osteopenic: 47.6% (n=99) Normal BMD: 30.8% (n=64); fractures NR	clinics at Great Western Hospital, Swindon, UK. All were referred due to presence of 1+ clinical risk factors for osteoporosis. No exclusion criteria.	radium proximal phalanx of the middle finger, and the midshaft tibia (all nondominant) QUS using CUBA clinical ultrasound measured by BUA and VOS at the	population-specific reference used, T- scores computed with databases supplied with systems.	Sunlight proximal phalanx based on DXA T-score ≤-2.5 Sunlight midshaft tibia based on DXA T-score ≤-2.5 Sunlight combined based	0.678 (0.737- 0.629) 0.582 (0.645- 0.521) 0.698 (0.751-
				calcaneus (all nondominant)		on DXA T-score ≤-2.5 BUA calcaneus based on DXA T-score ≤-2.5	0.654) 0.766 (0.805- 0.743)

Study, Year		BMD Status;					
Risk of	Participant	Baseline	Inclusion/Exclusion	Index Bone		Location and Threshold	
Bias	Characteristics	Fracture Rate	Criteria	Measurement Test	Gold Standard Test	of Index Test	AUC (95% CI)
						VOS calcaneus based on DXA T-score ≤-2.5	0.723 (0.781- 0.676)
Harrison et al, 2006 ⁹⁴ Low	Women Mean age: 61 (SD, 4) UK N=207	Mean BMD at hip, FN, TH, LS (L1-L4) Non- osteoporotic patients: 0.463 (SD, 0.46) Osteoporotic patients: 0.369 (SD, 1.64)	Included white women ages 55-70 referred for BMD, reasons for referral included suggested osteopenia on radiograph, low-trauma fracture, estrogen deficiency, secondary causes of osteoporosis, glucocorticoid excess or therapy, monitoring of therapy, or other reason (family history); exclusion NR	Peripheral DXA scanner, PIXI Peripheral QUS scanner: McCue CubaClinical (McCue PLC, Winchester, Hampshire, UK) Peripheral QUS Scanner: GE Lunar Achilles (GE Lunar Corp, Madison, WI)	Central DXA of the hip, FN, TH, and LS (L1-L4) on the GE Lunar Prodigy (GE Lunar Corp, Madison, WI) or Hologic Discovery (Hologic Inc., Bedford, MA); T- and Z-scores from the 2 DXA scanners merged, then transformed into Hologic BMD values before calculation of T- and Z-scores using	Achilles based on T-score <-2.5 of total hip, femoral neck, or lumbar spine CubaClinical based on T- score <-2.5 of total hip, femoral neck, or lumbar spine PIXI based on T-score <-2.5 of total hip, femoral neck, or lumbar spine	0.77 (variance NR) 0.75 (variance NR) 0.67 (variance NR)
Lynn et	Men	NR	Included community-	Sahara clinical bone	fologic reference data for LS and NHANES reference data for proximal femur BMD measured for the	QUI, based on T-score	0.738 (SE,
al, 2008 ⁹⁸	Mean age NR US and Hong Kong		dwelling older men (age >65 years) in the U.S. Similar for Hong Kong.	sonometer (Hologic Inc.) of the right calcaneus	lumbar spine (L1–L4 in anteroposterior projection) and proximal	≤-2.5 at any site (lumbar spine, femoral neck, total hip) for Causasian men	0.014)
Low	N=6572 (4,658 US Caucasian men and 1914 Hong Kong		Excluded if bilateral hip replacement or unable to walk without assistance.		femur using fan-beam DXA with Hologic QDR 4500W bone densitometers (Hologic	QUI, based on T-score ≤-2.5 at any site (lumbar spine, femoral neck, total hip) for Chinese men	0.731 (SE, 0.018)
	Chinese men)				Inc). T-score defined by using ethnic-specific male normative databases for	QUI, based on T-score ≤-2.0 at any site (lumbar spine, femoral neck, total hip) for Causasian men	0.696 (SE, 0.010)
					Causasian and Chinese populations.	QUI, based on T-score ≤-2.0 at any site (lumbar spine, femoral neck, total hip) for Chinese men	0.720 (SE, 0.013)
Minnock	Women	23.8% had	Included	QUS using Sunlight	BMD as measured by	Sunlight SOS distal radius	0.72 (0.63-
et al,	Baseline mean	BMD T-score	postmenopausal	Omnisense ultrasound,	DXA at the lumbar	based on DXA T-score ≤-	0.80)
2008	age: 59.7 (29-	<-2.5 at any	Caucasian women	measured at the distal	spine; BMD values	2.5	
	87)	site; 32.3% had	recruited through DXA	radium proximal phalanx	determined for the	Sunlight proximal phalanx	0.68 (0.60-

Study,							
Year Risk of	Particinant	BMD Status; Baseline	Inclusion/Exclusion	Index Bone		Location and Threshold	
Bias	Characteristics	Fracture Rate	Criteria	Measurement Test	Gold Standard Test	of Index Test	AUC (95% CI)
Unclear	UK	a history of	clinics at Great Western	of the middle finger, and	lumbar spine, femoral	SOS based on DXA T-	0.77)
	N=235	nontraumatic	Hospital, Swindon, UK.	the midshaft tibia using	neck, and total hip and	score ≤-2.5	
		fracture	Excluded if disease	SOS QUS using CUBA	the corresponding T-	Sunlight mid-shaft tibia	0.59 (0.47-
			known to cause	Clinical ultrasound		SOS based on DXA 1-	0.71)
			secondary osteoporosis.	VOS at the calcaneus	database	Score \geq -2.5 BLIA calcaneus based on	0 70 (0 72-
					dalabase	DXA T-score ≤ 2.5	0.85)
						VOS calcaneus based on	0.75 (0.67-
						DXA T-score ≤-2.5	0.83) ์
Richy et	Women	Mean_BMD	Included healthy	QUS (DBMSonic 1200,	Femoral neck DXA	QUS based on DXA T-	0.69 (variance
al,	Mean age: 63.4	(g/cm ²): 0.73	postmenopausal women	IGEA, Italy), reporting	(Hologic QDR 4500,	score ≤-2.5	NR)
2004	(SD, 6.6) Bolgium	(SD, 0.15);	age ≥45 years. Excluded	speed of sound of the	Hologic Inc., US)	QUS based on DXA 1-	0.64 (variance
Low	N=202	NR	Paget disease RA use	I IBPI using graphic		OUS UBPI based on DXA	NK) 0.71 (variance
LOW	11-202		of bone active drugs	traces of the receiving		T-score <-2 5	NR)
			other than HRT	probe; manufacturer's		QUS UBPI based on DXA	0.68 (variance
				reference values used to		T-score -1 to -2.49	NR) `
0: //				calculate T-scores.			0.00.(0.07.0.00
Sinnott	Mean age: 62.8	FN BMD $(\alpha/\alpha m^2)$: 1.02	Included African	Ultrasound	GE lunar machine (GE,	Heel I-score against DXA	0.93 (0.87-0.99
2006^{111}	(SD 14.8)	(g/cm). 1.02 (SD 0.18)	vears recruited from	calcaneus of the	lumbar spine (I 1–I 4)		
2000	Chicago	40% had prior	general medicine clinics	nondominant heel	and the nondominant		
Low	N=128	traumatic	at Jesse Brown VA	obtained using an	hip (femoral neck,		
		fractures	Medical Center.	Achilles Plus System	trochanter, total hip);		
			Excluded if history or	(Lunar, Madison, WI);	DXA hip scores used in		
			evidence of metabolic	results include SOS,	majority of analysis		
			fractures history of any	named the SI which is a			
			medical condition	linear combination of			
			predisposing to low bone	SOS and BUA			
			mass, history of cancer in				
			prior 10 years or use of				
			medications that cause				
			(except calcium and				
			vitamin D)				

Abbreviations: AUC= area under the curve; BMD= bone mineral density; BUA = broadband attenuation; CI, = confidence interval; DXA = dual energy x-ray absorptiometry; DXR = digital x-ray radiogrammetry; FN = femoral neck; GE = General Electric; HRT = hormone replacement therapy; LS = lumbar spine; MrOS = Evaluation of osteoporosis screening tools for the osteoporotic fractures in men; N = number; NHANES = National Health and Nutrition Examination; NR = not reported; QUI = ultrasound index; QUS = quantitative ultrasound; RA = radiographic absorptiometry SD = standard deviation; SE = standard error; SERMS = Selective estrogen receptor modulators; SI = stiffness index;

SOS = speed of sound; TH = total hip; UBPI = ultrasonometric bone profile; UK = United Kingdom; USA = United States of America; VA = Veterans' Administration; VOS = velocity of sound.

Study, Year			Baseline			Bone		Controlled
Cohort	Participant	Additional Inclusion/	BMD	Length of	Type of Incident	Measurement	AUC (95%	Characteristics
Risk of Bias	Characteristics	Exclusion Criteria	Fracture Rate	Followup	Fracture	Test	CÌ)	in Model
Cheung et al, 2012 ^{136a} Hong Kong Osteoporosis Study	Women Baseline mean age: 62.1 (SD, 8.5) (40+) Hong Kong (N=2,266)	Postmenopausal community sample. Excluded if already prescribed treatment for osteoporosis	Lumbar BMD Mean: 0.807 (0.148) Fracture rate: 12.8%	Mean: 4.5 (2.8) years	Major osteoporotic fracture (wrist, clinical spine, hip or humerus) Hip fracture	DXA femoral neck	0.711 (0.66- 0.763) 0.855 (0.791- 0.919)	None
Bolland et al, 2011 ^{129a}	Women Baseline mean age: 74.2 (>55) New Zealand (N=1422)	Postmenopause, no major medical conditions, normal lumbar spine BMD for age (Z-score >-2), not taking treatment for osteoporosis, excluded those with no BMD measurement at baseline	Femoral neck: Mean: -1.3 Osteoporotic fracture rate: 15%-20% Fracture rate: 4%	Mean: 8.8 years (0.2 to 11.4)	Hip fractures All fractures	DXA femoral neck	0.64 (0.57- 0.72) 0.59 (0.56- 0.62)	None
Friis-Holmberg et al, 2014 ^{134a} Danish Health Examination Survey cohort	Women and men Baseline age: 49.0 Denmark (N=12,758)	None	Phalangeal BMD: Women: 0.32 (0.04) Men: 0.36 (0.04 Previous fracture: Women: 5.9% Men: 2.5%)	Mean: 4.3 years (0.3-4.9)	Women Major osteoporotic Hip Men Major osteoporotic Hip	DXA BMD phalanges	0.713 (0.686- 0.739) 0.834 (0.777- 0.890) 0.638 (0.576- 0.701) 0.640 (0.511- 0.770)	None
Kalvesten et al, 2016 ¹⁴² Study of Osteoporotic Fracture Low	Women Baseline mean age: 71 (65-80+) US (N= 5278)	Caucasian, community- dwelling. Excluded if no information on parental history of hip fracture.	Femoral neck BMD: 0.647 (0.111); lumbar spine BMD: 0.854 (0.169); DXR-BMD: 0.485 (0.059) Previous fracture since age 50: 34%	10 years	Major osteoporotic Hip	DXA BMD Femoral neck DXR BMD Metacarpal DXA BMD Femoral neck DXR BMD Metacarpal	0.68 (0.66- 0.70) 0.65 (0.63- 0.75 (0.72- 0.77) 0.69 (0.66- 0.72)	Age

Study, Year			Baseline			Bone		Controlled
Cohort	Participant	Additional Inclusion/	BMD	Length of	Type of Incident	Measurement	AUC (95%	Characteristics
Risk of Bias	Characteristics	Exclusion Criteria	Fracture Rate	Followup	Fracture	Test	CI)	in Model
Leslie et al,	Women and men	Medical coverage	Minimum T-	10 years	Hip	DXA BMD	0.801	None
2010	Baseline mean	from Manitoba Health and	score ≤-2.5			femoral neck	(0.783-	
Mantiba Bone	age:	a valid femoral BMD	Women: 30.9%				0.819)	
Density	Women: 65.7	measurement	Men: 19.3%		Osteoporotic: Hip, clinical		0.679	
Program	Men: 68.2 (50+)		Fracture rate:		vertebral, forearm, or	femoral neck	(0.668-	
			14.9%		numerus		0.690)	
	101al N=39,003							
	N-36 730. Men							
	N=2.873)							
Lundin et al,	Women	Living in the area of	NR	Mean: 9.9	Hip	DXL BMD	0.61	None
2015 141	Age: (69-81)	Bagarmossen, Sweden;				Heel		
Primary Health	Sweden	born between 1920 and				DXA	0.66	
Care and	N=388)	1930, able to come to the				Femoral neck		
Osteoporosis		health center						
Study								
(PRIMOS)								
LOW		Destroans and a mout	Craine DMD	Lin to 10	Osta en aratia, anh y Llin	DVA humber	0.00 (0.04	Are height
Stewart et al,	Vvomen Totol bosolino	Postmenopause, may	Spine BiviD	Up to TU	Usteoporotic only: Hip,	DXA lumbar	0.66 (0.64-	Age, neight,
Aberdeen	noial Daselline	treatment for osteoporosis	1 052 (0 161)	years	bumeral	spille iolai	0.00)	menonausal
Prospective	(44-56)	fracture self-report must be	0US		numerai	DXA femoral	0.64 (0.63-	status neck BMD
Osteoporosis	OUS subaroup	confirmed by x-ray or	subaroup.			neck total	0.04 (0.03-	(OUS only)
Screening	Baseline mean:	clinician	Mean: 1.066			sample	0.00)	(dee enily)
Study	47.8 (44-51)		(0.127)			DXA lumbar	0.66 (0.62-	
Low	Scotland, UK		Fracture rate:			spine QUS	0.69)	
	Total: (N=3883)		10.8% of 1239			subgroup	,	
	QUS subgroup:		who provided			DXA femoral	0.70 (0.66-	
	(N=775)		self-report			neck QUS	0.73)	
						subgroup		
						QUS BUA heel	0.72 (0.69-	
							0.75)	
Sund et al,	Women	Postmenopause, clinical	Femoral neck	Up to 10	Нір	DXA femoral	73.9 (64.4-	None
2014	Baseline mean	risk factors, excluded	I-score mean:	years		neck	83.4)	
	age: 59.1 (47-56)	women with hip fractures	-1 Freesture reter					
Usteoporosis Bick Easter	$r_{1111ana}$	beiore 1994						
and Prevention	(11=2,755)		20%					
(OSTPRE)								

Study, Year			Baseline			Bone		Controlled
Cohort Bisk of Bias	Participant	Additional Inclusion/	BMD Eracture Bate	Length of	Type of Incident	Measurement	AUC (95%	Characteristics
Tamaki et al, 2011 ^{137a} Japanese Population- based Osteoporosis	Women Baseline mean age: 56.7 (9.6) (40-74) Japan (N=815)	Exclude if no femoral neck BMD, taking osteoporosis drugs or hormore replacement therapy	Femoral neck BMD: 0.706 (0.111) Fracture rate: 8%	10 years	Major osteoporotic fracture (clinical fracture of the hip, vertebra, distal forearm, or proximal humerus	DXA femoral	0.64 (0.57- 0.72)	None
(JPOS) Cohort Study	(11-010)					neck	0.98)	
Tanaka et al, 2011 ^{127a} Nagano Cohort	Women Baseline mean: 63.3 (SD, 10.8)	Postmenopausal outpatients at a medical institute receiving	Lumbar BMD Mean: 1.010 (0.191)	10 years; median followup	Long bone and vertebral fracture	DXA lumbar spine	0.598 (0.551- 0.646)	None
Study	Japan (N=765)	treatment for primary and secondary osteoporosis	Fracture rate: 11.6%	5.1 years	Vertebral fracture	DXA lumbar spine	0.613 (0.560- 0.666)	
Tanaka et al, 2010 ^{140a} Miyama and Taiji cohorts	Women Baseline mean: 59.5 (11.3) Japan (n=400)	Community cohorts	T-score: -1.61 (1.84) Fracture rate: 25%	10 years	Osteoporotic fracture	DXA femoral neck	0.651 (0.575- 0.728)	None
Tebé Cordomi et al ^{135a} Central	Women Baseline mean age: 56.8 (40-90)	Had received a bone density scan, in the age group of interest	T-score mean: -1.4 (1.1) Fracture rate:	Mean: 10.95 years	Major osteoporotic only: forearm, clinical spine, hip, or proximal humerus	Normal BMD DXA femoral neck	0.54 (0.45- 0.62)	BMD status
Initiative System- transport	Spain (N=1231)		15%			Osteopenia DXA femoral neck	0.57 (0.52- 0.63)	
information reporting system (CETIR cohort)						Osteoposis DXA femoral neck	0.63 (0.54- 0.72)	
Tremollieres et al, 2010 ^{132a} Menopause et Os (MENOS) Study	Women Baseline age: >45 France (N=556)	Postmenopausal. Excluded: past/current treatment for osteoporosis for >3 months, HRT use at baseline	Vertebral BMD Prevalent fracture group: 0.96 (0.126) Nonfracture group: 1.03 (0.148) Fracture rate: 6.6% of 2196	Mean: 13.4 years	Minimal or no trauma only: spine, vertebral, hip, distal forearm, and humeral	Hip BMD	0.66 (0.60- 0.73)	None
Study, Year	Particinant	Additional Inclusion/	Baseline BMD	l ength of	Type of Incident	Bone Measurement	AUC (95%	Controlled Characteristics
--	--	--	---	---	--	---	--	---
Risk of Bias	Characteristics	Exclusion Criteria	Fracture Rate	Followup	Fracture	Test	CI)	in Model
Sornay-Rendu et al, 2010 ^{130a} Os des Femmes de Lyon (OFELY) cohort	Women Baseline mean Age: 58.8 (SD, 10.3) France (N=867; of these, N=680 postmenopausal	Post and premenopausal, age ≥40 years	Femoral neck Mean BMD: 0.717 (0.12) Fracture rate: 10.3%	10 years	Low-trauma nonvertebral and clinical vertebral fracture	DXA femoral neck	0.74 (0.71- 0.77)	None
Iki et al, 2014 ¹²¹ Japanese Population- Based Osteoporosis (JPOS) Baseline Study Low	Women Followup mean age: 64.1 Baseline: (53-61) Japan (N=665)	Excluded: history or present condition affecting bone metabolism including glucocorticoids, amenorrhea, oligomenorrhea, bilateral oophorectomy, parathyroid gland disease, hyperthyroidism, rheumatoid arthritis,	Spine Mean BMD: 0.802 (0.142) History of fragility fracture: 16.5%	Median: 10 years Mean: 8.3 years	Vertebral fracture diagnosed morphometrically when vertebra reduction in any of its anterior, central, and posterior heights by ≥20% in followup image vs baseline height; and satisfied McCloskey- Kanis criteria or grade 2	DXA aBMD thoracolumbar vertebra DXA TBS thoracolumbar vertebra DXA aBMD & TBS thoracolumbar vertebra	0.673 (0.614- 0.732) 0.682 (0.621- 0.743) 0.700 (0.614- 0.732)	NA
		gastrectomy resulting from gastric cancer, myasthenia gravis, or ossification of the posterior longitudinal ligament			or 3 fracture criteria in Genant's method on followup image.	DXA aBMD & TBS thoracolumbar vertebra DXA aBMD & TBS thoracolumbar vertebra	0.718 (0.662- 0.773) 0.729 (0.675- 0.773)	Age Age, prevalent vertebral deformity
Hans, 2011 ¹²² Leslie et al, 2013 ¹²³ The Manitoba Study Low	Women Baseline mean age: 65.4 years (≥50 years) Canada (N=29,407)	Medical coverage	Lumbar spine: Mean TBS: 1.241 (0.12) Prior major fracture: 13.6%	4.7 years (SD, 2.2)	Clinical spine	DXA BMD total hip DXA BMD femoral neck DXA BMD spine TBS spine DXA BMD total hip+TBS spine DXA BMD femoral neck+TBS spine DXA BMD spine+TBS	0.71 (0.68- 0.73) 0.71 (0.68- 0.73) 0.69 (0.67- 0.72) 0.66 (0.64- 0.69) 0.73 (0.71- 0.75) 0.73 (0.71- 0.75) 0.71 (0.69- 0.74)	None

Appendix F Table 2. Characteristics and results of imaging studies predicting fractures

Study, Year			Baseline			Bone		Controlled
Cohort	Participant	Additional Inclusion/	BMD	Length of	Type of Incident	Measurement	AUC (95%	Characteristics
Risk of Bias	Characteristics	Exclusion Criteria	Fracture Rate	Followup	Fracture	Test	CI)	in Model
						spine		
					Hip fracture	DXA BMD total	0.81 (0.79-	
					-	hip	0.83)	
						DXA BMD	0.80 (0.77-	
						femoral neck	0.82)	
						DXA BMD	0.65 (0.62-	
						spine	0.69)	
						TBS spine	0.68 (0.65-	
							0.71)	
						DXA BMD total	0.82 (0.79-	
						hip+TBS spine	0.84)	
						DXA BMD	0.81 (0.79-	
						femoral	0.83)	
						neck+TBS		
						spine		
						DXA BMD	0.69 (0.66-	
						spine+TBS	0.72)	
					Any major osteoporotic	DXA BMD total	0.68 (0.66-	
					fractures (hip, clinical	hip	0.69)	
					spine, forearm, humerus)	DXA BMD	0.68 (0.66-	
						femoral neck	0.69)	
						DXA BMD	0.64 (0.63-	
						spine	0.66)	
						TBS spine	0.63 (0.61-	
							0.64)	
						DXA BIMD total	0.69 (0.68-	
						nip+185 spine	0.71)	
							0.69 (0.68-	
						remoral	0.71)	
						neck+165		
							0.66 (0.65	
							0.00 (0.05-	
							0.00)	
						Spine	0.04	
						Shine	0.65)	

Study, Year			Baseline			Bone		Controlled
Cohort Biok of Biog	Participant	Additional Inclusion/	BMD	Length of	Type of Incident	Measurement	AUC (95%	Characteristics
	Characteristics	Exclusion Criteria	Fracture Rate	Followup	Fracture			
KWOK, 2012	Nien Receline meen	Community dwelling, able	Spine	iviean 6.5	including his wrigt	QUS 505 neel	0.64 (0.57-	Age and fracture
Erectures in	Daseline mean	to walk without assistance,		years	forcerm or choulder		0.71)	nistory
Mon (MrOS)	age. 72.4 years	no bilateral hip	0.95 (0.16) Erecture		loreann, or shoulder	QUS BUA neel	0.65 (0.58-	
Study	(n-1021)	replacement	history: 12 0%				0.72)	
	(1=1921)		1115tory. 13.976			QUS QUI neel		
LOW							(0.59, 0.73)	
							0.71(0.65-	
							0.77)	
						DAA DIVID IOIAI	0.72 0.65-	
							0.70)	
							0.72 (0.66-	
Dever 2007 ¹²⁰	Mara	Community dysalling, able			Nex erine		0.79)	Nana
Bauer, 2007	Nen Deseline meen	Community dwelling, able	BIVIDIN Amuran anina	Wean 4.2	Non-spine	QUS BUA neer	0.68 (NR)	None
Osteoporotic Erectures in	Baseline mean	to walk without assistance,	Any non-spine	years (SD	Non-spine		0.68 (NR)	
Man (MrOS)	aye Any non oning	roploomont oblo to	11 acture. Mean.	1.0)	Nex erine			
	fracture: 76.6	provide cell reported data	0.72 (0.13) No non spino		Non-spine	QUS BUA neel	0.69 (NR)	
LOW	No non-spine	provide self-reported data,	fracture: Mean:			+ BIVID Temoral		
	fracture: 73.5	site for the duration of the	0.79 (0.13)		Lin			
	Hip fracture: 80.7	study absence of a	0.79 (0.13)		HIP	QUS BUA neel	0.84 (NR)	
	No hip fracture:	medical condition that	Prior non-spine		нір		0.85 (NR)	
	73 6	could result in imminent	fracture: 4 3%		1.8	Ternoral neck		
	I Inited States	death ability to understand	Hip fracture		нір	QUS BUA neel	0.85 (NR)	
	(N=5.606)	and sign consent	0.9%			+ BIVID Temoral		
Chan at al				Madian 10			0.74 (0.00	Are felle and
Chan et al,	Fallowing and	Exclude: malignant		wedian 13	vvomen	DXA BIVID	0.71(0.66)	Age, fails, and
ZU1Z Dubbo	Followup age	disease, Paget disease of	Nonfracture	years,	Any fracture evoluting		(0, 0.76)	prior fracture
Dubbo		bone	group. 0.92		from major trauma		0.73(0.68)	
Enidomiology	Austrolio		(0.14)	15	nom major trauma	+ DAA BIVID	10 0.78)	
Study (DOES)	Mon $(N = 145)$		haseline: 0.86		Llip Fracture		0.77 (0.60	
Linclear for	Momen (N=443)		(0 17)				0.77(0.09)	
ALIC high For	Women (N=434)		(0.17) Baseline				(0, 0.00)	
NRI			fracture: 25.8%				0.01(0.73)	
			11201016. 20.070			+ DAA BIVID	10 0.66)	
) / a stable sol fire at use		0.70 (0.00	
					venebrai fracture	LUNA BIVID	0.70 (0.62	
							0.72 (0.65)	
							0.72(0.05)	
						+ DAA BIVID	10 0.79)	
					Mon		0 71 /0 64	Ago follo and
						fomoral pack	(0.71 (0.04)	Aye, Ialis, allu
	1		1			nemoral neck	10 0.78)	phor fracture

Study, Year			Baseline			Bone		Controlled
Cohort	Participant	Additional Inclusion/	BMD	Length of	Type of Incident	Measurement	AUC (95%	Characteristics
Risk of Bias	Characteristics	Exclusion Criteria	Fracture Rate	Followup	Fracture	Test	CÌ)	in Model
				_	Any fracture, excluding	QUS BUA heel	0.71 (0.64	
					from major trauma	+ DXA BMD	to 0.77)	
					-	femoral neck		
					Hip Fracture	DXA BMD	0.77 (0.67	
						femoral neck	to 0.87)	
						QUS BUA heel	0.78 (0.67	
						+ DXA BMD	to 0.88)	
						femoral neck		
					Vertebral fracture	DXA BMD	0.75 (0.66	
						femoral neck	to 0.83)	
						QUS BUA heel	0.75 (0.66	
						+ DXA BMD	to 0.84)	
						femoral neck		
Fraser et al,	Men and women	Lived near one of	Femoral neck	10 years	Major osteoporotic (hip,	DXA femoral	0.66 (0.64-	None
2010	Baseline mean	Canadian cities, spoke	T-score:		clinical spine, humerus,	neck	0.69)	
	age:	English, French, or	Women: -1.5		forearm/wrist)			
	Women: 65.8	Chinese	(1.1)		Hip fracture	DXA femoral	0.76 (0.72-	
	(8.8)		Men: -0.5 (1.2)			neck	0.79)	
	Men: 65.3 (9.1)		Fracture rate:					
	Canada		9.4%					
Neuvien et el	N=6,697	Neze		Net			0.77	Nana
Inguyen et al, 126	Women	None	NR	NOT	Any fracture, excluding	DXA BIVID	0.77	None
2004 Dubba	Mean age: 63.2			reported	from major trauma	lumbar spine	0.70	
Dubbo	(49-88) Austrolia						0.76	
Enidemiology	Australia N_540					Temoral neck	0.74	
	N=049					QUS SUS	0.71	
Unclear							0.00	
Uncieal						QUS SUS IDIA	0.00	
						QUS 505	0.07	
						phalanx		

^aIncluded in Marques et al. (2015) meta-analysis report, risk of bias assessment results not reported.

Abbreviations: AUC = area under receiver operating characteristic curve; BMD = bone mineral density; BUA = broadband ultrasound attenuation; CI, = confidence interval; DXA = dual energy x-ray absorptiometry; DXL = dual x-ray and laser; DXR = digital x-ray radiogrammetry; NRI= net reclassification improvement; QUI = quantitative ultrasound index (combines BUA and SOS); QUS = quantitative ultrasound measured at the calcaneus in all studies; RR = risk ratio; SI = stillness index; SOS = speed of sound; SXA = single x-ray absorptiometry; TBS = trabecular bone score; UBPI = ultrasound bone profile index.

			Risk Prediction			
	Participant	Baseline BMD	Instrument	Fracture Definition	Length of	
Study, Year	Characteristics,	and Fracture	(Prediction	Used, Number of	Cohort	
Risk of Bias	Sample Size	Rate	Interval)	Fracture Events	Followup	Summary of Results
Leslie et al, 2012 ¹⁴⁸	Men and women age	BMD NR	FRAX (10 year	Hip and MOF based	Mean 5.4	AUC (95% CI) for fracture prediction
	≥50 years from		prediction), with	on hospital	years	Women (MOF)
Unclear	Manitoba, Canada	History of	and without BMD	discharge abstracts		Femoral neck BMD alone: 0.682 (0.670-0.693)
		fracture NR		and physician billing		Without BMD: 0.666 (0.655-0.678)
	N=36,730 (92.7%)			claims		With BMD: 0.698 (0.687-0.708)
	women					Men (MOF)
	N=2,873(7.3%) men			Number of fractures:		Femoral neck BMD alone: 0.645 (0.601-0.689)
				2,543		Without BMD: 0.609 (0.564-0.654)
	Mean age:					With BMD: 0.661 (0.619-0.703)
	65.7 (SD, 9.8) women					Women (Hip)
	68.2 (SD, 10.1) men					Femoral neck BMD alone: 0.802 (0.783-0.820)
						Without BMD: 0.789 (0.772-0.807)
						With BMD: 0.822 (0.805-0.838)
						Men (Hip)
						Femoral neck BMD alone: 0.798 (0.726-0.870)
						Without BMD: 0.733 (0.659-0.807)
						With BMD: 0.789 (0.722-0.855)
lki et al, 2015 ¹⁵⁷	Men age ≥65 yearsr	BMD: 0.741	FRAX, version 3.8	MOF (femoral neck,	4.5 years	AUC
	from Japan	g/cm ² (0.114)	for Japan and	spine, distal		FRAX 10 years (w/BMD)
Unclear			TBS	forearm, proximal		Men MOF: 0.681 (0.586 to 0.776)
	N=2012 eligible and	History of		humerus) from low-		TBS
	1805 for analysis	fracture: 22		energy trauma		Men MOF after 4.5 years: 0.669 (0.548 to 0.79)
	Mean age: 73.0 (SD,					
	5.1)	(
Van Geel, 2014	Postmenopausal	Mean (SD)	FRAX (10 year	All (included clinical	5 years	AUC for fracture prediction
	women ages 50-80	femoral neck	prediction),	spine, humerus,		FRAX OF fracture risk without BMD: 0.653
Unclear	years from 12	BMD 1-score		forearm, hip, other),		FRAX OF fracture risk with BMD: 0.693
	practices in	Fracture group:	Garvan FRC (5,	MOF (all above		FRAX hip fracture risk with BMD: 0.698
	southeastern	-1.7 (1.0)	10 years)	except other), hip		Garvan OF fracture risk without BMD: 0.646
	Netherlands	Nonfracture		fractures		Garvan OF fracture risk with BMD: 0.689
	N 500	group: -1.2				Garvan hip fracture risk with BMD: 0.695
	N=506	(1.0)		Self-report with		
	Magaz - 200	HISTORY OF		medical record		
	Mean age: 68	Tracture NR		confirmation.		
				Number of fractures:		
				All: 48		
				MOF: 33		
Iki et al, 2015 ¹⁵⁷ Unclear Van Geel, 2014 ¹⁴⁹ Unclear	Men age ≥65 yearsr from Japan N=2012 eligible and 1805 for analysis Mean age: 73.0 (SD, 5.1) Postmenopausal women ages 50-80 years from 12 practices in southeastern Netherlands N=506 Mean age: 68	BMD: 0.741 g/cm ² (0.114) History of fracture: 22 Mean (SD) femoral neck BMD T-score Fracture group: -1.7 (1.0) Nonfracture group: -1.2 (1.0) History of fracture NR	FRAX, version 3.8 for Japan and TBS FRAX (10 year prediction), Garvan FRC (5, 10 years)	MOF (femoral neck, spine, distal forearm, proximal humerus) from low- energy trauma All (included clinical spine, humerus, forearm, hip, other), MOF (all above except other), hip fractures Self-report with medical record confirmation. Number of fractures: All: 48 MOF: 33	4.5 years	Without BMD: 0.789 (0.772-0.807) With BMD: 0.822 (0.805-0.838) Men (Hip) Femoral neck BMD alone: 0.798 (0.726-0.870) Without BMD: 0.733 (0.659-0.807) With BMD: 0.789 (0.722-0.855) AUC FRAX 10 years (w/BMD) Men MOF: 0.681 (0.586 to 0.776) TBS Men MOF after 4.5 years: 0.669 (0.548 to 0.79) AUC for fracture prediction FRAX OF fracture risk without BMD: 0.653 FRAX OF fracture risk with BMD: 0.693 FRAX hip fracture risk with BMD: 0.698 Garvan OF fracture risk with BMD: 0.689 Garvan OF fracture risk with BMD: 0.689 Garvan hip fracture risk with BMD: 0.695

			Risk Prediction			
	Participant	Baseline BMD	Instrument	Fracture Definition	Length of	
Study, Year	Characteristics,	and Fracture	(Prediction	Used, Number of	Cohort	
Risk of Bias	Sample Size	Rate	Interval)	Fracture Events	Followup	Summary of Results
Rubin, 2013 ¹⁵³	Women ages 40 to 90	BMD NR	FRAX 3.0 without	FRAX defined MOF,	3 years	AUC (95% CI) for fracture prediction
	years living in		BMD (10 year	any OF from registry		MOF:
Unclear	southern Denmark	History of OF:	prediction), OST,			FRAX (no BMD): 0.722 (0.686-0.758)
	diagnosed and	337 (9%)	ORAI, OSIRIS,	Number of fractures:		Age alone: 0.720 (0.685-0.755)
	treated for		SCORE, age	OF: 225		OSIRIS: 0.713 (0.677-0.749)
	osteoporosis	Secondary	alone	MOF: 156		OST: 0.712 (0.675-0.750)
		osteoporosis:				ORAI: 0.704 (0.663-0.745)
	N=3614	655 (18%)	With followup			SCORE: 0.703 (0.664-0.742)
			BMD testing for			Any OF:
	Mean age: 64 (SD,		Fx risk ≥9.3% (10			FRAX (no BMD): 0.701 (0.668-0.735)
	13)		year horizon)			Age alone: 0.694 (0.660-0.727)
						OSIRIS: 0.690 (0.658-0.723)
						OST: 0.691 (0.657-0.725)
						ORAI: 0.682 (0.646-0.717)
						SCORE: 0.681 (0.646-0.716)
Azagra, 2011 ¹⁰ and	Random sample of	BMD NR	FRAX version 3.2	Incident fragility	10 years	AUC (95% CI) for fracture prediction
2012	participations ages 40		(10 year	fractures of hip or		Without BMD, hip: 0.88 (0.82 to 0.95)
	to 90 years from the	History of	prediction)	MOF, major trauma		Without BMD, MOF: 0.69 (0.62 to 0.76)
Unclear	FRIDEX cohort,	fracture: 22.8%	calibrated for	associated fractures		With FN BMD, hip: 0.85 (0.74 to 0.96)
	comprised of women		Spain	were excluded		With FN BMD, MOF: 0.72 (0.65 to 0.79)
	in Spain referred by	Use of		0 - 16		With LS BMD, hip: 0.77 (0.66 to 0.88)
	general practitioners	medication for		Self-report		With LS BMD, MOF: 0.71 (0.64 to 0.78)
	and specialists for	osteoporosis:		confirmed by		BMD FN only, hip: 0.78 (0.63 to 0.93)
	bone density	27.9%		medical records.		BMD FN ONLY, MOF: 0.66 (0.58 to 0.74)
	screening					BMD LS only, np: 0.63 (0.49 to 0.77) (p=0.067)
	N 770			Number of fractures:		BMD LS ONLY, MOF: 0.64 (0.57 to 0.71)
	N = 770			60		Without DMD, vertebral: 0.75 (0.64 to 0.66)
	Maan ago: F6 9 (SD					With LC DMD, vertebral, $0.82 (0.73 to 0.91)$
	Niean aye. 50.0 (SD,					[VVIII] LO DIVID, VEILEDIAL U.71 (U.30 IU U.84)
	0.0)					Age alone, HIP. 0.69 ($p=0.976$)
						Aye alone, MOF. 0.07 (p=0.000)

			Risk Prediction			
	Participant	Baseline BMD	Instrument	Fracture Definition	Length of	
Study, Year	Characteristics,	and Fracture	(Prediction	Used, Number of	Cohort	
Risk of Bias	Sample Size	Rate	Interval)	Fracture Events	Followup	Summary of Results
Leslie, 2012 ¹⁵²	Women and men age	BMD NR,	FRAX (10 year	MOF not associated	Mean 8	AUC (95% CI) for fracture prediction
	≥50 years from	history of	prediction)	with major trauma	years	With FN BMD: 0.695 (0.683-0.708)
Unclear	Manitoba, Canada	fracture NR	. ,	based on hospital	-	Without BMD: 0.668 (0.655-0.681)
				discharge abstracts		With LS BMD: 0.685 (0.673-0.698)
	N=20,477			and physician billing		With minimum BMD: 0.694 (0.681-0.706)
				claims		With weighted mean BMD: 0.697 (0.685-0.710)
	Mean age: 65 (SD, 9)					With BMD offset: 0.698 (0.685-0.710)
				Number of fractures:		Percent appropriate reclassification:
	94.1% women			1,845		With FN BMD: reference
						Without BMD: 44.5%
						With LS BMD: 41.1%
						With minimum BMD: 10.5%
						With Weighted mean BMD: 50.6%
Alexand 0.04 4 ¹⁵⁴					Madian 0.0	WITH BIND Offset: 52.4%
Anmed, 2014	Men and women age	Femoral neck	Garvan Fracture	All fractures except	Median 6.9	AUC for fracture prediction
	260 years from the	BIVID 1-Score	(EBC) with and	ninger, toe, or skull,	years	5 yr risk with BMD, nonvertebrai fracture (women):
for NPI	Cohort	(SD 1 10)	(FRC) with and	recorded in the		5 vr rick without BMD, popyortobral fracture
	Conon	(Nonfracture	(5 and 10 year	fracture registry Hip		(women): 0.57
	N-2992	(Normacture aroun): -1.89	(5 and 10 year	fractures were		5 vr risk with BMD, bin fracture (women): 0.78
	11-2002	(SD 1 10)	production	verified through		5 vr risk without BMD, hip fracture (women): 0.70
	55% women	(Eracture		hospital discharge		5 vr risk with BMD_nonvertebral fracture (men): 0.67
		aroup)		records.		5 vr risk without BMD, nonvertebral fracture (men):
		5 - 17				0.56
		History of				5 yr risk with BMD, hip fracture (men): 0.79
		fracture NR				5 yr risk without BMD, hip fracture (men): 0.69
						10 yr risk with BMD, nonvertebral fracture (women):
						0.62
						10 yr risk without BMD, nonvertebral fracture
						(women): 0.58
						10 yr risk with BMD, hip fracture (women): 0.73
						10 yr risk without BMD, hip fracture (women): 0.68
						10 yr risk with BMD, nonvertebral fracture (men):
						10 yr risk without BMD, nonvertebral fracture (men):
						U.57
						10 yr rick without, hip fracture (men): 0.74
Ahmed, 2014 ¹⁵⁴ Unclear AUC, high for NRI	Men and women age ≥60 years from the Norwegian Tromso Cohort N=2992 55% women	Femoral neck BMD T-score Mean: -1.46 (SD, 1.19) (Nonfracture group); -1.89 (SD, 1.10) (Fracture group) History of fracture NR	Garvan Fracture Risk Calculator (FRC) with and without BMD (5 and 10 year prediction)	All fractures except finger, toe, or skull, or vertebral recorded in the fracture registry. Hip fractures were verified through hospital discharge records.	Median 6.9 years	With weighted mean BMD: 50.6% With BMD offset: 52.4% <i>AUC for fracture prediction</i> 5 yr risk with BMD, nonvertebral fracture (women): 0.61 5 yr risk without BMD, nonvertebral fracture (women): 0.57 5 yr risk with BMD, hip fracture (women): 0.78 5 yr risk without BMD, hip fracture (women): 0.70 5 yr risk with BMD, nonvertebral fracture (men): 0.67 5 yr risk with BMD, nonvertebral fracture (men): 0.67 5 yr risk with BMD, hip fracture (men): 0.79 5 yr risk with BMD, hip fracture (men): 0.69 10 yr risk with BMD, nonvertebral fracture (women): 0.62 10 yr risk with BMD, nonvertebral fracture (women): 0.58 10 yr risk with BMD, hip fracture (women): 0.73 10 yr risk with BMD, hip fracture (women): 0.68 10 yr risk with BMD, nonvertebral fracture (men): 0.61 10 yr risk with BMD, nonvertebral fracture (men): 0.57 10 yr risk without BMD, nonvertebral fracture (men): 0.57 10 yr risk with BMD, hip fracture (men): 0.74 10 yr risk with BMD, hip fracture (men): 0.74 10 yr risk without BMD, hip fracture (men): 0.74 10 yr risk without, hip fracture (men): 0.74 10 yr risk without, hip fracture (men): 0.74

			Risk Prediction			
	Participant	Baseline BMD	Instrument	Fracture Definition	Length of	
Study, Year	Characteristics.	and Fracture	(Prediction	Used, Number of	Cohort	
Risk of Bias	Sample Size	Rate	Interval)	Fracture Events	Followup	Summary of Results
Hippisley-Cox,	Patients ages 30 to	BMD NR	QFracture (10 yr	OF defined as a hip,	Up to 15	AUC (95% CI) for fracture prediction
2012 ¹⁵⁵	100 years from a		prediction)	vertebral, proximal	years	Women OF: 0.790 (0.787 to 0.793)
	database of 13 million	History of	. ,	humerus, or distal	5	Women hip fracture: 0.893 (0.890 to 0.896)
Unclear	patients in 620	fracture: 1.8%		radius fracture		Men OF: 0.711 (0.703 to 0.719)
	nationally			during followup		Men hip fracture: 0.875 (0.868 to 0.883)
	representative			5 1		
	practices in the			Number of OF:		
	United Kinadom usina			28.685		
	the Egton Medical			-,		
	Information System.			Number of hip		
	,			fractures: 9.610		
	N=1.583.373					
	, ,			Fractures recorded		
	Mean age: 50			on general practice		
				record or the linked		
	50.8% women			death record.		
Leslie, 2010 ¹⁵⁶	Men and women ages	14.3% of	CAROC, 10-year	MOF not associated	Women,	Risk categorization, N fracture/N in category
	50 and older from	women have a	prediction	with major trauma	mean 5.4	Women
Unclear	Manitoba, Canada	BMD T-score		based on hospital	vears, men,	With BMD FN
	,	of ≤-2.5 based		discharge abstracts	mean 4.4	Low (<10% 10 yr risk): 341/12,878
	N=36,730 (92.7%)	on the female		and physician billing	years	Moderate (10%-20% 10 yr risk): 748/13,813
	women	reference;		claims	5	High (>20% 10 yr risk): 1291/10,039
	N=2,873 (7.3%) men	18.9% of men				p<0.001
		have a BMD T-		Number of fractures:		With minimum site BMD
	Mean age:	score based		2,543		Low (<10% 10 yr risk): 231/9866
	65.7 (SD, 9.8) women	on the male				Moderate (10%-20% 10 yr risk): 599/12,960
	68.2 (SD, 10.1) men	reference				High (>20% 10 yr risk): 1550/13,904
						p<0.001
						Men
						With BMD FN
						Low (<10% 10 yr risk): 42/1255
						Moderate (10%-20% 10 yr risk): 71/1187
						High (>20% 10 yr risk): 50/431
						p<0.001
						With minimum site BMD
						Low (<10% 10 yr risk): 33/1120
						Moderate (10%-20% 10 yr risk): 70/1199
						High (>20% 10 yr risk): 60/554
						p<0.001

			Risk Prediction			
	Participant	Baseline BMD	Instrument	Fracture Definition	Length of	
Study, Year	Characteristics,	and Fracture	(Prediction	Used, Number of	Cohort	
Risk of Bias	Sample Size	Rate	Interval)	Fracture Events	Followup	Summary of Results
Morin, 2009 ¹⁰³	Women ages 40 to 59	BMD T-score	Weight, BMI, OST	Incident fractures	Mean 3.3	AUC (95% CI) for fracture prediction
	years who had	at any site	(no prediction	not associated with	years	Weight: 0.55 (95% CI, 0.51-0.59)
Unclear	baseline BMD testing	≤- 2.5: 14.9%;	time interval	trauma ascertained	-	BMI: 0.55 (95% CI, 0.51-0.59)
	in Manitoba, Canada	history of	specified)	by administrative		OST: 0.56 (95% CI, 0.52-0.60)
		fracture: 7.1%		diagnosis codes		
	N=8,254			from longitudinal		
				health record and		
	Mean age: 52.7					
				Number of fractures:		
				225		
Crandall, 2014 ⁵⁸	Women ages 50 to 64	BMD NR,	USPSTF Strategy	MOF (clinical	10 years	AUC (95% CI), sensitivity (95% CI), specificity (95%
	years participating in	history of	(FRAX 3.0 without	vertebral, hip, lower		CI) for fracture prediction
Unclear	the Women's Health	fracture NR	BMD with	arm/wrist, and upper		FRAX without BMD (risk ≥9.3%): 0.56 (0.55 to 0.57),
	Initiative clinical trials		followup BMD	arm fractures)		25.8 (24.6 to 27.0), 83.3 (83.0 to 83.6)
	and observational		testing for Fx risk			SCORE (>7): 0.53 (0.53 to 0.54), 38.6 (37.3 to 39.9),
	studies.		≥9.3%)	Hip fractures were		65.8 (65.4 to 66.2)
				centrally		OST (<2): 0.52 (0.52 to 0.53), 39.8 (38.5 to 41.1),
	Mean age: 57.9 (SD,		SCORE	adjudicated, other		60.7 (60.3 to 61.1)
	4.1)			fractures were self-		
			OST	report.		
	N=62,492					

Abbreviations: AUC = area under the curve; BMD = bone mineral density; CI, = confidence interval; FN = femoral neck; FRAX = fracture risk assessment tool; FRISK = absolute measure of fracture risk; LS = lumbar spine; MOF= major osteoporotic fracture; NR = not reported OF = osteoporotic fracture; OST = osteoporosis self-assessment tool; SCORE = simple calculated osteoporosis risk estimate; SD = standard deviation; USPSTF = United States Preventive Services Task Force

			Incident Vertebral Fracture Risk in Treatment Group;	Incident Nonvertebral Fracture Risk in	Incident Hip Fracture Risk in Treatment	Other Incident Fracture Risk in Treatment Group;	
Study Reference	Participant Characteristics	Intervention; Duration	Group RR (95% CI)	Risk in Control Group RR (95% CI)	Control Group RR (95% CI)	Group RR (95% C])	Quality Rating
Liberman et al, 1995 ¹⁹⁹	Women >5 years postmenopausal; mean age 64 years; mean T-score -2.2; 21% with prior vertebral fracture	Alendronate 10 mg/day; 3 years	4/384; 5/253; RR, 0.53 (0.14-1.94)	NR	NR	NR	Fair
Cummings et al, 1998 ²⁰⁰	Women least 2 years postmenopausal age 55-80 years; mean age: 67.7 years mean T-score: -2.2 previous fractures: excluded	Alendronate 5 mg/dayfor 2 years, then 10 mg/day for 1 year	43/2214; 78/2218; RR, 0.56 (0.39-0.80; p=0.002)	261/2214; 294/2218; RR, 0.88 (0.74-1.04; p=0.13)	19/2214; 24/2218 RR, 0.79 (0.43- 1.44)	Wrist fractures 83/2214; 70/2218 RR, 1.19 (0.87- 1.62)	Good
Pols et al, 1999 ²⁰¹	Women ≥3 years postmenopausal; mean age 63.0 years; mean T-score -2.0; unknown prior fracture	Alendronate 10 mg/day; 1 year	Not assessed	19/950; 37/958 0.52 (0.30-0.89)	2/950; 3/958 0.67 (0.11-4.01)	Wrist fracture: 6/950; 15/958 RR 0.47 (0.19-1.15)	Fair
Hosking et al, 2003 ²⁰²	Postmenopausal women ages 60-90 years with osteoporosis defined by lumbar spine or total hip BMD T-score <-2.5 or both <-2.0; mean age 69; history of fracture 48.5%	Alendronate 70 mg weekly; 12 months	NR	NR	NR	Clinically diagnosed vertebral or nonvertebral 6/172; 2/89 RR, 1.55 (0.31- 7.53)	Fair
Chesnut et al, 1995 ²⁰³	Women at least 5 years postmenopausal; age 43-75 with mean age 63 years; mean hip T-score -1.1; no prior fractures	Alendronate 10 mg/day; 2 years	0/30; 0/31 RR not estimable	Unclear	NR	NR	Fair
Ascott-Evans et al, 1995 ²⁰³	Postmenopausal women age <80 years with 85% of enrollees <65 years; mean T- score -2.3; no prior fractures	Alendronate 10 mg/day; 1 year	0/95; 0/47 RR not estimable	0/95; 0/47 RR not estimable	NR	NR	Fair
Hosking et al, 1998 ²¹⁵	Women ≥6 months postmenopausal; mean age 53.3 years; mean T-score -0.1; prior fracture unknown	Alendronate 5 mg/day; 2 years	0/498; 0/502 [§] RR not estimable	22/498;14/502 [§] RR, 1.58 (0.82-3.06)	NR	NR	Fair
Quandt et al, 2005 ²⁰⁵	Women at least 2 years postmenopausal, ages 55-80 years; mean age: 67.7 years femoral neck T-score: -1.6 to -2.5	Alendronate 5 mg/day for 2 years, then 10 mg/day for 1 year	48/1775; 81/1757 RR, 0.59 (0.41-0.83)	NR	NR	Clinical vertebral fracture 12/1878; 29/1859 RR, 0.41 (0.21- 0.80)	Good

Study Reference	Participant Characteristics	Intervention; Duration	Incident Vertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Nonvertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Hip Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Other Incident Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Quality Rating
Reid et al, 2002 (#8413)	Women ≥5 years postmenopausal; mean age 64.2 years; mean T- score -1.2; no prior	Zoledronic acid 4 mg over 1 year in 1 to 4 infusions; 12 months	0/174; 0/56 RR not estimable	4/174; 1/59 RR, 1.36 (0.15-11.89)	NR	NR	Fair
Boonen, 2012 ²¹⁸	Men ages 50-85 years; median age 66; mean femoral neck T-score -2.23 to -2.24; mean total hip T- score -1.70 to -1.72. 31.3% vertebral fracture at baseline.	Intravenous infusion of 5 mg of zoledronic acid at baseline and 12 months; 24 months	9/588; 28/611 RR, 0.33 (0.16-0.70)	5/588; 8/611; RR, 0.65 (0.21-1.97)	NR	Clinical fractures (vertebral and nonvertebral) 6/588; 11/611; RR, 0.57 (0.21- 1.52)	Good

Abbreviations: CI, = confidence interval; RR = relative risk.

Study Reference	Participant Characteristics	Intervention; Duration	Incident Vertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Nonvertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Hip Risk in Treatment Group; Risk in Control Group RR (95% Cl)	Other Incident Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Quality Rating
Hooper et al, 2005 ²²⁷	Women 6-36 months postmenopausal; mean age 53 years; mean lumbar T- score -0.7; unknown prior fracture	Risedronate 5 mg/day; 2 years	10/129; 10/125 RR, 0.97 (0.42- 2.25) ^a	5/129; 6/125 RR, 0.81 (0.25-2.58) ^a	NR	NR	Fair
McClung et al, 2001 ²²³	Women age ≥70 years, mean femoral neck T-score -3.7	Risedronate 5 mg/day; 2 years treatment (mean followup 2.3 years)	NR	NR	137/6197; 95/3134 RR, 0.73 (0.56 to 0.94) Subgroup ages 70-79 without prevalent vertebral fracture ^b 14/1773; 12/875 RR, 0.58 (0.27 to 1.24)	NR	Fair
Mortensen et al, 1998 ²²⁴	Women 6-60 months postmenopausal; mean age 51.5 years; mean T-score -1.1; no prior osteoporotic fracture	Risedronate 5 mg/day; 2 years treatment (followup 3 years)	1/37; 0/36 RR, 2.92 (0.12- 69.43) ^a	0/37; 3/36 RR, 0.14 (0.01-2.60) ^a	0/37; 0/36 RR not estimable ^a	NR	Fair
Valimaki et al, 2007 ²²⁵	Women ≥5 years postmenopausal; osteoporosis risk factors or low hip BMD; mean age 65.9 years; mean femoral neck T-score -1.2; unknown prior fracture	Risedronate 5 mg/day; 2 years	0/114; 0/56 RR not estimable ^a	2/114; 2/56 RR, 0.49 (0.07-3.40) ^a	NR	NR	Fair
Fogelman et al, 2000 ^{226c}	Postmenopausal women age <80 years, with mean lumbar T-score of ≤-2.0; mean age 65 years; 31% with vertebral fractures	Risedronate 5 mg/day; 2 years	8/112;17/125 RR, 0.53 (0.24 to 1.17) ^a	7/112;13/125 RR, 0.68 (0.30 to 1.58) ^a	NR	NR	Fair

^a Fractures were not primary or secondary efficacy measures in these studies, and studies were not powered based on fracture outcomes.

^b Results from a post-hoc analysis of women aged 70 to 79 without prevalent vertebral fracture at baseline. The RR in women aged 70-79 with prevalent vertebral fracture at baseline was 0.4 (95% CI, 0.2 to 0.8).

^c Excluded from previous review because \geq 20% of study had prior or prevalent fracture; however, this study was considered in the prior review's sensitivity analysis.

Study Reference	Participant Characteristics	Intervention; Duration	Incident Fracture Vertebral Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Fracture Nonvertebral Risk in Treatment Group; Risk in Control Group RR (95% CI)	Hip Risk in Treatment Group; Risk in Control Group RR (95% Cl)	Quality Rating
Herd et al, 1997 ²²⁸	Women 1-10 years postmenopausal; mean age 54.8 years; mean T- score -1.3; no prior fracture	Cyclical etidronate 400 mg/day; 2 years	0/75; 0/77 RR not calculable	NR	NR	Fair
Meunier et al, 1997 ²²⁹	Women 6-60 months postmenopausal; mean age 52.7 years; mean T- score -1.1; unknown prior fracture	Cyclical etidronate 400 mg/day; 2 years	1/27; 0/27 RR, 3.00 (0.13-70.53)	2/27; 3/27 RR, 0.67 (0.12-3.68)	NR	Fair

			Incident Vertebral	Incident Nonvertebral			
			Fracture Risk in	Fracture Risk in	Hip Risk in		
			Treatment Group;	Treatment Group;	Treatment Group;	Other Risk in	
			Risk in Control	Risk in Control	Risk in Control	Treatment Group;	
Study	Participant	Intervention;	Group	Group	Group	Risk in Control Group	Quality
Reference	Characteristics	Duration	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR (95% CI)	Rating
Multiple Outcomes	Women, ≥2 years	Raloxifene 60	3 years	3 years	3 years	3 years	Good
of Raloxifene	postmenopausal;	or 120 mg/day;	148/2259 (60 mg);	437/4536 (both doses	40/4536 (both doses	Wrist fracture	
(MORE) trial;	mean age 66.9	3 and 4 years	231/2292 (placebo)	combined [°]);	combined");	151/4536 (both doses	
Ettinger et al,	years (range, 31-		RR, 0.7 (0.5-0.8)	240/2292 (placebo)	18/2292 (placebo)	combined [®]);	
1999 ²³¹ , Delmas et	80); mean femoral			RR, 0.9 (0.8-1.9)	RR, 1.1 (0.6-1.9)	86/2292 (placebo)	
al, 2002 ²³²	neck or lumbar		4 years			RR, 0.9 (0.6-1.1)	
	spine T-score		169/2259 (60 mg);	4 years	4 years		
	-2.57; 37% with		287/2292 (placebo)"	548/4536 (both doses	56/4536 (both doses	Ankle fracture	
	prior vertebral		RR, 0.64 (0.53-0.76)	combined [°]); 296/2292	combined");	34/4536 (both doses	
	fractures; total 4			(placebo)	29/2292	combined);	
	year sample		Subgroup with no use	RR, 0.93 (0.81-1.06)	RR, 0.97 (0.62-1.52)	28/2292 (placebo)	
	includes 1751		of other bone-active			RR, 0.6 (0.4-1.0)	
	women who used		agents in year 4				
	≥1 other bone-		145/2016 (60 mg);			4 years	
	active agents in		315/1977 (placebo)			Wrist fracture	
	year 4		RR, 0.63 (0.52-0.77)			180/4536 (both doses	
						combined");	
	Radiologically-					109/2292	
	confirmed fracture					RR, 0.83 (0.66-1.05)	
	incidence						
						Ankle fracture	
						54/4536 (both doses	
						combined");	
						29/2292	
						RR, 0.94 (0.60-1.47)	

^a Figures interpolated by Nelson et al. (2010) from in-text graph.³

^bData available only for combined group of participants receiving dosages of 60 mg/day or 120 mg/day. Recommended dosage is 60 mg/day.

Abbreviations: CI= confidence interval; HR = hazard ratio; mg= milligram; RR= risk ratio

Study Reference	Participant Characteristics	Intervention; Duration	Incident Vertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Nonvertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Hip Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Other Incident Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Quality Rating
Lewiecki et al, 2007 ^{236a}	Postmenopausal women with lumbar spine BMD T-scores of -1.8 to -4.0 or femoral neck/total hip T-scores of -1.8 to -3.5. Lumbar spine T-score of <-2.5: n=120 (29.1%) Total hip T-score of <-2.5: n=27 (6.6%)	Denosumab for 24 months; dosed at 6, 14, or 30 mg subcutaneously every 3 months, or 14, 60, 100, or 210 mg subcutaneously every 6 months, alternating with placebo	NR	NR	NR	Osteoporotic fractures 12/314; 0/46 RR, 3.73 (0.22 to 61.96] Clinical fractures 21/314; 1/46 RR, 1.58 (0.68 to 3.63)	Fair
Bone et al, 2008 ^{237a}	Postmenopausal women with a lumbar spine BMD T-score between -1.0 and -2.5	Denosumab 60 mg every 6 months for 24 months subcutaneously (last dose at 18 months)	Morphometric 0/164; 1/165	NR	NR	Clinical fractures 2/164; 7/165 RR, 0.29 (0.06 to 1.36)	Fair
Cummings et al, 2009 ²³⁸	Women ages 60-90 years with BMD T-score of <-2.5 but not <-4.0 at the lumbar spine or total hip	Denosumab 60 mg every 6 months for 36 months subcutaneously	86/3702;264/3691 RR, 0.32 (0.26 to 0.41) ^b	238/3902; 293/3906 RR, 0.80 (0.67 to 0.95) ^c	26/3902; 43/3906 RR, 0.60 (0.37 to 0.97) ^c	New clinical vertebral fracture 29/3902; 92/3906 RR, 0.31 (0.20 to 0.47) ^c Multiple (\geq 2) new vertebral fractures 23/3702; 59/3691 RR, 0.39 (0.24 to 0.63) ^b	Fair

^a Fractures were not primary or secondary efficacy measures 86/in this studies, and studies were not powered based on fracture outcomes.
^b Risk ratio, adjusted for age-stratification variable
^c Hazard ratio, adjusted for age-stratification variable

Appendix F Table 10. Fracture outcomes of placebo-controlled primary prevention trials of parathyroid hormone in women and men

Study Reference	Participant Characteristics	Intervention; Duration	Incident Vertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Nonvertebral Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Incident Hip Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Other Incident Fracture Risk in Treatment Group; Risk in Control Group RR (95% CI)	Quality Rating
Greenspan et al, 2007 ³⁶	Postmenopausal women with mean age 64.4 years; T-score ≤-3.0; no prevalent vertebral fractures or T-score -2.5 with 1 to 4 vertebral fractures; mean T-score -2.2; 19% with prior vertebral fracture	Parathyroid hormone 100 µg daily injection; 18 months	No baseline fracture: 7/1050/ 21/1011 RR, 0.32 (0.14-0.75) With baseline fracture: 10/236, 21/235; RR, 0.47 (0.22-0.98)	72/1286; 72/1246 RR, 0.97 (0.71-1.33)	NR	NR	Fair
Orwoll et al, 2003 ²³⁹	Men with mean age 59 years; mean T-score -2.7; unknown prior fracture	Teriparatide 20 or 40 µg daily injection; mean duration of 11 months	NR	2/151 (20 ug); 1/139 (40 ug); 3/147 (placebo) RR, 0.65 (0.11-3.83) RR, 0.35 (0.04-3.35)	NR	NR	Fair

Abbreviations: CI= confidence interval; NR= not reported; RR= risk ratio; ug= microgram

334

			Discontinuations Due	Serious AE			
			to AE Risk in	Risk in Treatment	Gastrointestinal AE ^a		
			Treatment Group; Risk	Group; Risk in	Risk in Treatment Group;		
Study	Participant	Intervention;	in Control Group	Control Group	Risk in Control Group	Other Adverse	Quality
Reference	Characteristics	Duration	RR (95% CI)	RR (95% CI)	RR (95% CI)	Events	Rating
Cummings et al, 1998 ²⁰⁰	Women at least 2 years postmenopausal, ages 55-80 years; mean age 67.7 years; mean T-score -2.2; previous fractures excluded	Alendronate 5 mg/day for 2 years, then 10 mg/day for 1 year	221/2214; 227/2218 RR, 1.00 (0.84-1.20)	NR	Any upper GI event: 1052/2214; 1047/2218; RR, 1.01 (0.95-1.07) Abdominal pain: 322/2214; 325/2218; RR, 1.90 (0.86- 1.14) Esophagitis: 19/2214; 10/2218; RR, 1.90 (0.89-2.08) Esophageal ulcer: 4/2214; 4/2218; RR, 1.00 (0.25-4.00) Other esophageal: 44/2214; 41/2218; RR, 1.08 (0.71-1.63)	All-cause mortality: 37/2214; 40/2218; RR, 0.93 (0.59-1.44)	Good
Liberman et al, 1995 ¹⁹⁹	Women >5 years postmenopausal; mean age 64 years; mean T-score -2.2; 21% with prior vertebral fracture	Alendronate 10 mg/day; 3 years	35/597; 24/397 RR, 0.97 (0.59-1.60)	NR	Acid regurgitation/reflux: 204/2214; 194/2218; RR, 1.05 (0.87-1.27) Abdominal pain: 13/196; 19/397; RR, 1.32 (0.66-2.62) Dyspepsia: 7/196; 14/397 RR, 1.01 (0.42-2.37)	NR	Fair
Pols et al, 1999 ²⁰¹	Women ≥3 years postmenopausal; mean age 63.0 years; mean T-score -2.0; unknown prior fracture	Alendronate 10 mg/day; 1 year	61/950; 54/958 RR, 1.14 (0.80-1.62)	NR	NR	NR	Fair
Hosking et al, 2003 ²⁰²	Postmenopausal women ages 60-90 years with osteoporosis defined by lumbar spine or total hip BMD T-score <-2.5 or both <-2.0; mean age 69 years; history of fracture 48.5%	Alendronate 70 mg weekly; 12 months	31/219; 12/108 RR, 1.27 (0.68-2.38)	17/219; 12/108 RR, 0.70 (0.35-1.41)	Any upper GI AE: 62/219; 29/108; RR, 1.05 (0.72-1.54) Any esophogeal AE: 5/219; 0/108 Peptic ulcers, perforations, or bleeds: 0/219; 0/108	Any AE: 169/219; 76/108; RR, 1.10 (0.95-1.26)	Fair

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR (95% CI)	Serious AE Risk in Treatment Group; Risk in Control Group RR (95% CI)	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control Group RR (95% CI)	Other Adverse Events	Quality Rating
Johnell et al, 2002 ²⁴⁴	Postmenopausal women, age <75 years; >2 years since last menstrual period, with femoral neck BMD <-2.0; mean age 63.6; mean femoral neck BMD 0.62	Alendronate 10 mg daily; 12 months	8/83; 4/82 RR, 1.98 (0.62-6.30)	NR	Abdominal pain 9/83; 5/82 RR, 1.78 (0.62-5.08)	Chest pain substernal 6/83; 2/82 RR, 2.96 (0.62- 14.26)	Good
Sorensen et al, 2008 ²⁴⁵	Cases of women with atrial fibrillation and flutter compared with 5 controls matched on age, sex, and county from Danish registry ^a Osteoporosis rates: 1209 (8.9%) of case participants 5328 (7.8%) of control participants	Any bisphosphonates	NR	NR	NR	435/13,586 cases (3.2%) and 1958/68,054 population controls (2.9%) RR for new users: 0.75 (0.49-1.16)	Good
Cummings et al, 2008 ²⁴⁶	Women at least 2 years postmenopausal, ages 55-80 years; mean age 69 years	Alendronate 5 mg qd for 2 years, then 10 mg qd for 1 year; 4 years	NR	NR	NR	Serious atrial fibrillation ^b : 47/3236; 31/3226; RR, 1.51 (0.96- 2.37) Any atrial fibrillation: 81/3236; 71/3226; RR, 1.14 (0.83- 1.56)	Good
Ascott-Evans et al, 1995 (#8399)	Postmenopausal women age <80 years with 85% of enrollees age <65 years; mean T-score -2.3; no prior fractures	Alendronate 10 mg/day; 1 year	10/95; 10/49 RR, 0.49 (0.22-1.11)	NR	Upper GI events: 15/95; 6/49 RR, 1.24 (0.51-2.98)	Any clinical AE 60/95; 30/49 RR, 0.99 (0.76- 1.29)	Fair
Chesnut et al, 1995 ²⁰³	Women≥ 5 years post- menopausal; ages 43-75 years with mean age 63 years; mean hip T-score -1.1; no prior fractures	Alendronate 10 mg/day; 2 years	Withdrawals: 18/188 (10%) overall (not stratified by treatment group)	NR	NR	NR	Fair

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR (95% CI)	Serious AE Risk in Treatment Group; Risk in Control Group RR (95% CI)	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control Group RR (95% CI)	Other Adverse Events	Quality Rating
Hosking et al, 1998 ²¹⁵	Women ≥6 months postmenopausal; mean age 53.3 years; mean T-score -0.1; prior fracture unknown	Alendronate 5 mg/day or placebo; 2 years	67/997; 27/503 RR, 1.25 (0.81-1.93)	NR	Upper GI AE, any type: 300/997; 148/502 RR, 1.02 (0.87-1.21)	CV AE: 99/997; 47/502 RR, 0.11 (0.05- 0.22)	Fair
Greenspan et al, 2003 ²⁴⁷	Women ages 65-90 years; mean age 71.5; baseline femoral neck T-score -1.7; baseline fracture rate NR	Alendronate 10 mg daily or placebo; 3 years	NR	NR	Esophagitis 26/93; 21/93 RR, 1.24 (0.75-2.04)	Myocardial infarction 2/93; 1/93 RR, 2 (0.18- 21.68)	Good
Adachi et al, 2001 ²⁴⁸	Postmenopausal women, ≥6 months after last menses, age ≥40 years (or 25 years if surgical menopause) with history of osteoporotic fracture or T-score <-2.0; mean age 65.5; baseline osteoporotic fracture 6.8%	Alendronate 10 mg daily or placebo; 12 weeks	NR	Serious AE: 1.4% (4/291) vs. 0.7% (1/147) RR, 2.02 (0.23- 17.91)	Serious upper GI event: 59/291; 19/147; RR, 1.57 (0.97-2.53) Upper GI event: 66/291; 30/147; RR, 1.11 (0.76-1.63) Dyspepsia: 23/291; 0/147 Esophageal spasm: 1/291; 0/147 Nonserious upper GI bleed: 1/291; 0/147	Any AE: 166/291; 76/147; RR, 1.10 (0.92- 1.33) Death: 0/291; 0/147	Fair
Greenspan et al, 2003 ²⁵²	Postmenopausal women or men with osteoporosis determined by BMD or clinical diagnosis; mean age 67; 92% female; baseline antiresorptive use 77%; baseline bisphosphonate use 44%-50%	Alendronate 70 mg weekly or placebo; 12 weeks	10/224; 11/226 RR, 0.92 (0.40-2.12)	28/224; 34/226 RR, 0.83 (0.52-1.32)	Total upper GI events: 25/224; 30/226; RR, 0.84 (0.51-1.38) Abdominal pain: 7/224; 8/226 RR, 0.88 (0.33-2.39) Dyspepsia: 4/224; 6/226 RR, 0.67 (0.19-2.35) GERD: 3/224; 1/226; RR, 3.03 (0.32-28.88) Duodenal ulcer: 1/224; 0/226 Gastritis: 1/224: 0/226	Any AE: 104/224; 97/226; RR, 1.08 (0.88-1.33)	Fair

			Discontinuations Due	Serious AE			
			to AE Risk in	Risk in Treatment	Gastrointestinal AE ^a		
			Treatment Group; Risk	Group; Risk in	Risk in Treatment Group;		
Study	Participant	Intervention;	in Control Group	Control Group	Risk in Control Group	Other Adverse	Quality
Reference	Characteristics	Duration	RR (95% CI)	RR (95% CI)	RR (95% CI)	Events	Rating
Bauer et al, 2000 ²⁴⁹	Women at least 2 years postmenopausal, ages 55-80 years; mean age 69; baseline fracture 40% Baseline mean (SD) BMD in alendronate group: Lumbar spine: 0.83 (0.13) Femoral neck: 0.58 (0.06) Placebo group: Lumbar spine: 0.83 (0.14) Femoral neck: 0.58 (0.06)	Alendronate 5 mg qd for 2 years, then 10 mg qd for 1 year; 4.5 years	NR	NR	Any upper GI AE: 1536/3226; 1490/3223; RR, 1.03 (0.98- 1.08) Any gastric or duodenal AE: 130/3226; 129/3223; RR, 1.01 (0.79-1.28) Gastritis: 82/3226; 75/3223; RR, 1.05 (0.90-1.22) Any gastric or duodenal perforations, ulcers, bleeding: 53/3226; 61/3223; RR, 0.87 (0.60-1.25) Any esophageal AE: 322/3226; 202/3223; RR, 1.59 (1.34-1.89) Acid regurgitation/reflux: 279/3226; 269/3223 BR 1.04 (0.88.1.22)	NR	Good
Cryer et al, 2005 ²⁵⁰	Postmenopausal women, ≥6 months after last menses, age ≥40 years (or 25 years if surgical menopause) with low BMD defined as T-score <-2.0 below young mean bone mass at 1 of any of the following sites: total hip, hip trochanter, femoral neck, total spine; mean age 65 years; mean T- score lumbar spine -2.52 to 2.46; baseline fractures not reported	Alendronate 70 mg weekly or placebo; 6 months	10/224; 18/230 RR, 0.57 (0.27-1.21)	9/224; 8/230 RR, 1.16 (0.45-2.94)	Any upper GI event: 79/224; 86/230; RR, 0.94 (0.74-1.20) Dyspepsia: 11/224; 9/230; RR, 1.26 (0.53-2.97) Abdominal pain: 6/224; 3/230 RR, 2.05 (0.52-8.11) GERD: 3/224; 3/230; RR, 1.03 (0.21-5.03)	Any AE: 141/224; 120/230; RR, 1.21 (1.03-1.42)	Good

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR (95% CI)	Serious AE Risk in Treatment Group; Risk in Control Group RR (95% CI)	Gastrointestinal AE ^ª Risk in Treatment Group; Risk in Control Group RR (95% CI)	Other Adverse Events	Quality Rating
Tucci, et al, 1996 ²⁵¹	Women 42 to 82 years postmenopausal for at least 5 years and have osteoporosis as defined by low lumbar spine BMD <2.5 SD below mean BMD or young white female; mean age 64; baseline fracture rate NR	Aledronate 10 mg or placebo; 3 years	5/94; 13/192 RR, 0.79 (0.29-2.14)	20/94; 35/192 RR, 1.17 (0.71-1.91)	Any Upper GI AE: 49/94; 79/192 RR,1.27 (0.98-1.64)	Any AE: 89/94; 181/192 RR, 1.00 (0.95- 1.07)	Fair
Eisman et al, 2004 ²⁵³	Postmenopausal women and men with osteoporosis (as determined by investigators); mean age 63.6 years; 93%-96% female; baseline fracture rate NR	Alendronate 70 mg weekly or placebo; 12 weeks	NR	NR	Any upper GI event: 22/225; 21/224; RR, 1.04 (0.59-1.84) Abdominal pain: 2/225; 2/224 RR, 1.00 (0.14-7.01) Dyspepsia: 2/225; 1/224; RR, 1.99 (0.18-21.80) Gastritis: 0/225; 2/224 Esophogeal ulcer: 0/225; 1/224 GERD: 0/225; 1/224	Any AE: 91/225; 86/224; RR, 1.05 (0.84-1.33)	Good

^a case control study, comparing cases with atrial fibrillation and flutter with controls without. ^b Because these data were presented in a letter to the editor, we extracted information on denominators from related citations^{200, 206}

Abbreviations: AE= adverse event; CI= confidence interval; CV= cardiovascular; GI= gastrointestinal; mg= milligram; NR= not reported; RR= risk ratio

			Discontinuations Due	Serious AE	Gastrointestinal		
			to AE Risk in	Risk in Treatment	AE ^a Risk in Treatment		
			Treatment Group:	Group: Risk in	Group: Risk in		
Study	Participant	Intervention;	Risk in Control Group	Control Group	Control Group		Quality
Reference	Characteristics	Duration	RR (95% CI)	RR (95% CI)	RR (95% CI)	Other Adverse Events	Rating
Reid et al,	Women ≥5 years	Zoledronic acid 4	13/292; 1/59	26/292; 3/59	NR	Any AE: 262/292; 45/59	Fair
2002 ²¹⁷	postmenopausal; mean	mg over 1 year in	RR, 2.62 (0.35-19.70)	RR, 2.67 (0.36-20.03)		RR, 1.18 (1.02-1.36)	
	age 64.2 years; mean	1 to 4 infusions					
	T-score -1.2; no prior	vs. placebo; 1				Myalgia: 41/292; 1/59	
	vertebral fracture	year				RR, 8.28 (1.16-59.04)	
						Arthralgia: 46/292; 9/59	
						RR, 1.03 (0.54-1.99)	
Boonen,	Men ages 50 to 85	Intravenous	NR	149/588; 154/611	NR	Any AE: 534/588; 466/611	Good
2012218	years; median age 66;	infusion of 5 mg of		RR, 1.01 (0.83-1.22)		RR, 1.19 (1.13-1.25)	
	mean femoral neck	zoledronic acid at					
	T- score -2.23 to -2.24;	baseline and 12				Death: 15/588; 18/611	
	mean total hip T-score	months; 24				RR, 0.87 (0.44-1.70)	
	-1.70 to -1.72. 31.3%	months					
	vertebral fracture at					Atrial fibrillation: 7/588;	
	baseline.					5/611; RR, 1.45 (0.46-4.56)	
						Musserdial information: 0/599	
						2/011, KK, 4.00 (1.01-	
						21.55)	
						Osteonecrosis of the jaw:	
						0/588: 0/611	
						0,000,0,011	
						Arthralgia: 123/588: 68/611	
						RR. 1.88 (1.43-2.47)	
						Myalgia: 129/588; 25/611	
						RR, 5.20 (3.44-7.86)	
Grey et al,	Postmenopausal	Zolendronate 5	NR	NR	NR	Atrial fibrillation: 0/25; 0/25	Fair
2010 ²⁷²	women with	mg intravenous					
	osteopenia, BMD -1 to	vs. placebo at				Osteonecrosis of the jaw:	
	-2 at the lumbar spine	baseline; 3 years				0/25; 0/25	
	or total hip; mean age						
	62-65; total hip T-score					Other fracture: 4/25; 2/25	
	-1.3 to 01.2					RR, 2.0 (0.40-9.95)	
						Symptomatic hypocalcemia:	
1				1		0/25; 0/25	1

Appendix F Table 12. Harms of placebo-controlled primary prevention trials of zoledronic acid

Study	Participant	Intervention;	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group	Serious AE Risk in Treatment Group; Risk in Control Group	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control Group		Quality
Reference McClung et al, 2009 ²⁷³	Characteristics Postmenopausal women age ≥45 years who had low bone mass, defined as BMD T-score <-1.0 and >-2.5 at the lumbar spine and BMD T-score >-2.5 at femoral neck; mean age 59.6 to 60.5; mean baseline femoral neck T-score -1.47 to -1.40.	Duration G1: zoledronic acid 5 mg intravenously at randomization and at month 12 G2: zoledronic acid 5 mg intravenously only at randomization and placebo month 12 G3: placebo at randomization and month 12	RR (95% CI)	RR (95% CI) 17/198; 21/181; 23/202 RR (G1/G3), 0.75 (0.42-1.37) RR (G2/G3), 1.01 (0.58-1.78)	RR (95% CI)	Other Adverse Events Any AE: 186/189; 173/181; 186/202; RR (G1/G3), 0.98 (0.94-1.03); RR (G2/G3), 1.038 (0.99-1.09) Myalgia: 38/189; 41/181; 14/202; RR (G1/G3), 2.77 (1.55-4.95); RR (G2/G3), 3.27 (1.84-5.79) Arthralgia: 54/189; 34/181; 39/202; RR (G1/G3), 1.41 (0.98-2.03); RR (G2/G3), 0.97 (0.64-1.47)	Rating Fair
						Osteonecrosis of the jaw: 0/189; 0/181; 0/202 Atrial fibrillation: 0/189; 0/181; 0/202	

			Discontinuations Due	Sorious AE Pick in	Gastrointestinal AE ^a	Other Risk in	
			Treatment Group: Risk	Treatment Group: Risk	Group: Risk in Control	Group: Risk in	
Study	Participant	Intervention:	in Control Group	in Control Group	Group	Control Group	Quality
Reference	Characteristics	Duration	RR (95% CI)	RR (95% CI)	RR (95% CI)	RR, (95% CI)	Rating
Hooper et al,	Women 6-36 months	Risedronate 5	7/129; 6/125	12/129; 22/125	Upper GI event: 25/129;	NR	Fair
2005227	postmenopausal; mean	mg/day; 2 years	RR,1.13 (0.39 to 3.27)	RR, 0.53 (0.27 to 1.02)	20/125; RR, 1.21 (0.71		
	age 53 years; mean				to 2.06)		
	lumbar T-score -0.7;						
MaChuranat	Unknown prior fracture	Dia admontata 5		040/0404.070/0404	Linner CLevente		F air
NICCIUNG et	vvomen age ≥70 years;	Risedronate 5	550/3104; 564/3134	943/3104; 973/3134	Upper GI event:	NR	Fair
ai, 200 i	subgroup ages 70.70	trootmont (moon	RR, 0.96 (0.89 to 1.10)	RR, 0.98 (0.91 to 1.05)	PP 0 01 (0 98 to 1 07)		
	with no prevalent	followup 2.3 years)					
	vertebral fracture at						
	baseline, mean femoral						
	neck T-score -3.7						
Mortensen et	Women 6-60 months	Risedronate 5	3/37;2/36	NR	Dyspepsia: 6/37;10/36	NR	Fair
al,1998 ²²⁴	postmenopausal; mean	mg/day; 2 years	RR, 1.46 (0.26 to 8.23)		RR, 0.59 (0.24 to 1.44)		
	age 51.5 years; mean	treatment (followup					
	I-score -1.1; no prior	3 years)			Abdominal pain:		
	osteoporotic fracture				3/37;4/36; RR, 0.73		
Valimaki et al	Women >5 years	Risedronate 5	10/115:0/55	12/11/1 · 3/56	(0.10 (0 3.04)	NR	Fair
2007^{225}	postmenopausal:	mg/day: 2 years	RR 0.53 (0.23 to 1.23)	RR 1 97 (0.58 to 6.68)	14/55 [•] RR 0.72 (0.40 to		
2007	osteoporosis risk factors	ing/day, 2 youro			1.30)		
	or low hip BMD; mean				,		
	age 65.9 years; mean						
	femoral neck T-score						
	-1.2; unknown prior						
	fracture						
Fogelman et	Postmenopausal women	Risedronate 5	19/175; 14/173	26/173; 27/180	Upper GI event: 40/174;	NR	Fair
al, 2000	age <80 years, mean	mg/day; 2 years	RR, 1.34 (0.70 to 2.59)	RR, 1.00 (0.61 to 1.65)	4//180; 0.88 (0.61 to		
	mean age 65 years:				1.21)		
	31% with vertebral						
	fractures						

			Discontinuations Due to AE Risk in Treatment Group; Risk	Serious AE Risk in Treatment Group; Risk	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control	Other Risk in Treatment Group; Risk in	
Study Reference	Participant Characteristics	Intervention; Duration	in Control Group RR (95% CI)	in Control Group RR (95% CI)	Group RR (95% CI)	Control Group RR, (95% CI)	Quality Rating
Shiraki et al, 2003 ²⁸¹	Mostly women ages 40- 75 years with senility and postmenopausal osteoporosis; mean age 60.3 years; mean # of prevalent vertebral fractures 0.3 (SD, 0.8); mean lumbar T-score -2.9	Risedronate 5 mg/d; 36 weeks	NR	0/53; 0/51 RR not calcuable	GI disturbance: 13/53; 7/51; RR, 1.79 (0.78 to 4.11)	Cardiac disturbances: 2/53; 0/51; RR not estimable Disturbances of skin and subcutaneous tissues: 0/53; 2/51; RR not estimable Disturbances of musculoskeletal bone and connective tissues: 1/53; 0/51; RR, not	Fair
Hosking et al, 2003 ^{202c}	Postmenopausal women; mean age 69 years; 48% with history of fracture	Risedronate 5 mg/day; 3 months	31/222; 12/108 RR, 1.26 (0.67 to 2.35)	15/222; 12/108 RR, 0.61 (0.30-1.25)	Upper GI event: 1/222; 29/108; RR, 1.02 (0.70- 1.49)	NR	Fair

^a Defined differently in each study, but estimates generally represent a variety of gastrointestinal adverse events including moderate to severe abdominal pain, dyspepsia, esophagitis, gastritis, stomach ulcer, gastrointestinal disorder, esophageal ulcer, duodenal ulcer, unless specifically indicated.

^b Excluded from previous review because $\geq 20\%$ of study had prior or prevalent fracture; was considered in the prior review's sensitivity analysis.

^c Not identified for consideration in previous review.

Abbreviations: CI= confidence interval; GI= gastrointestinal; mg= milligram; NR= not reported; RR= risk ratio

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR (95% CI)	Serious AE Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Other Adverse Events	Quality Rating
Herd et al, 1997 ²²⁸	Women 1-10 years postmenopausal; mean age 54.8 years; mean T-score -1.3; no prior fracture	Cyclical etidronate 400 mg/day; 2 years	5/75; 0/77 RR, 11.23 (0.64 to 200.68)	8/75; 7/77 RR, 1.17 (0.44 to 3.07)	GI AE events: 9/75; 17/77 RR, 0.54 (0.26 to 1.14)	Infection: 18/74; 22/76 RR, 0.84 (0.49 to 1.43)	Fair
Meunier et al, 1997 ²²⁹	Women 6-60 months postmenopausal; mean age 52.7 years; mean T-score -1.1; unknown prior fracture	Cyclical etidronate 400 mg/day; 2 years	0/27; 2/27 RR, 0.20 (0.01 to 3.98)	NR	Severe GI: 0/27; 0/27 RR not calculable Mild abdominal pain: 4/27; 1/27 (all had history of GI problems); RR, 4.00 (0.48 to 33.51)	NR	Fair

Abbreviations: AE= adverse event; CI= confidence interval; GI= gastrointestinal; mg= milligram; NR= not reported; RR= risk ratio

			Discontinuations Due to	Serious AE Risk in	Gastrointestinal AE ^a		
			AE Risk in Treatment	Treatment Group;	Risk in Treatment		
			Group; Risk in Control	Risk in Control	Group; Risk in Control		
Study	Participant	Intervention;	Group	Group	Group	Other Adverse	Quality
Reference	Characteristics	Duration	RR, (95% CI)	RR, (95% CI)	RR, (95% CI)	Events	Rating
Chapurlat et al,	Women at least 1 year	150 mg	Due to AE (including	15/71; 13/76	NR	NR	Fair
2013 ²⁸²	postmenopausal; mean	ibandronate	fractures): 4/71; 6/76	RR, 1.23 (0.63 to 2.41)			
	age 63 years; mean	monthly;	RR, 0.71 (0.21 to 2.42)				
	T-score -1.4; unknown	2 years					
	prior osteoporotic						
	fractures			· · · · · ·			
McClung et al,	Women at least 1 year	0.5, 1.0, 2.5 mg	Any withdrawals due to	Any serious AE: 6/161;	Dyspepsia: 16/161;	NR	Fair
2004203	postmenopausal; mean	ibandronate	AE: 5/161; 5/165; 7/163;	13/165; 5/163; 8/159	14/165; 15/163; 14/159		
	age 58 years; mean	daily; 2 years	9/159	RR, 0.74 (0.26 to 2.09)	RR, 1.13 (0.57 to 2.23)		
	I-score 1.0; no prior		RR, 0.55 (0.19 to 1.60)	RR, 1.57 (0.67 to 3.68)	RR, 0.96 (0.47 to 1.96)		
	osteoporotic fractures		RR, 0.54 (0.18 to 1.56)	RR, 0.61 (0.20 to 1.82)	RR, 1.05 (0.52 to 2.09)		
			RR, 0.76 (0.29 to 1.99)				
			Dereentage of all aubiente	Any drug-related			
			Percentage of all subjects	Serious AE. 0/161,	$\frac{4}{100}, \frac{5}{100}, \frac{6}{100}, \frac{6}{100}$		
			modiaction because of AE	0/105, 0/105, 0/159	RR, $1.46(0.54(0.4.07))$		
			medication because of AE	RR, not calculable	RR, 0.04 (0.16 to 2.23)		
			the placebo group (9%		RR, 0.81 (0.23 to 2.01)		
			5% 5% and 7% in the		Nausea: 6/161:1/165:		
			placebo 0.5- 1- and 2.5-		4/163: 3/159		
			ma arouns respectively)		RR 1 98 (0 50 to 7 76)		
			although the differences		RR 0.32 (0.03 to 3.06)		
			between placebo and		RR. 1.30 (0.30 to 5.72)		
			ibandronate groups did				
			not reach significance.		GI pain: 2/161; 0/165;		
			5		4/163; 4/159		
					RR, 0.49 (0.09 to 2.66)		
					RR, 0.11 (0.01 to 1.98)		
					RR, 0.98 (0.25 to 3.83)		
					GI disorder: 1/161; 2/165;		
					0/163; 3/159		
					RR, 0.33 (0.03 to 3.13)		
					RR, 0.64 (0.11 to 3.79)		
					RR, 0.14 (0.01 to 2.68)		
					Eructation: 1/161; 1/165;		
					1/163; 1/159		
					RR, 0.99 (0.06 to 15.65)		

Appendix F Table 15. Harm outcomes of placebo-controlled primary prevention trials of ibandronate

			Discontinuations Due to AE Risk in Treatment	Serious AE Risk in Treatment Group:	Gastrointestinal AE ^a Risk in Treatment		
			Group; Risk in Control	Risk in Control	Group; Risk in Control		
Study	Participant	Intervention;	Group	Group	Group	Other Adverse	Quality
Reference	Characteristics	Duration	RR, (95% CI)	RR, (95% CI)	RR, (95% CI)	Events	Rating
					RR, 0.96 (0.06 to 15.28)		
					RR, 0.98 (0.06 to 15.47)		
					Gastritis: 0/161: 1/165:		
					2/163; 1/159		
					RR, 0.33 (0.01 to 8.02)		
					RR, 0.96 (0.06 to 15.28)		
					RR, 1.95 (0.18 to 21.30)		
					Dysphagia: 2/161; 1/165;		
					1/163; 0/159 RR 4 94 (0.24 to 102.06)		
					RR. 2.89 (0.12 to 70.46)		
					RR, 2.91 (0.12 to 71.32)		
					Vomiting: 2/161: 0/165:		
					1/163; 0/159; RR, 4.94		
					(0.24 to 102.06)		
					1 mg vs. placebo: RR not		
					calculable [2.92 (0.12 to		
					[[1.52]]		
					Esophagitis: 1/161; 0/165;		
					1/163; 1/159		
					RR, 0.99 (0.06 to 15.65)		
					RR, 0.98 (0.06 to 15.46)		
					GL carcinoma: 0/161		
					0/165; 1/163; 0/159		
					0.5 mg vs. placebo: RR		
					not calculable		
					1 mg vs. placebo: KR not		
					49.17)]		
					/1		
					GI hemorrhage: 0/161;		
					RR. 0.33 (0.01 to 8.02)		

Appendix F Table 15. Harm outcomes of placebo-controlled primary prevention trials of ibandronate

			Discontinuations Due to	Serious AE Risk in	Gastrointestinal AE ^a		
			AE Risk in Treatment	Treatment Group;	Risk in Treatment		
			Group; Risk in Control	Risk in Control	Group; Risk in Control		
Study	Participant	Intervention;	Group	Group	Group	Other Adverse	Quality
Reference	Characteristics	Duration	RR, (95% CI)	RR, (95% CI)	RR, (95% CI)	Events	Rating
					RR, 0.32 (0.01 to 7.83)		
					RR, 0.33 (0.01 to 7.92)		
					Hemorrhage gastritis:		
					1/161; 0/165; 0/163; 0/159		
					RR, 2.96 (0.12 to 72.20)		
					1 mg vs. placebo: RR not		
					calculable		
					2.5 mg vs. placebo: RR		
					not calculable		
					RR, 0.96 (0.02 to 48.29)		
					RR, 0.98 (0.02 to 48.87)		- ·
Ravn et al,	Women at least 10	0.25, 0.5, 1.0,	1/30; 4/30; 2/30; 0/30;	1/30; 1/30; 0/30; 2/30;	GI AE: 12/30; 17/30; 8/30;		⊦aır
1996	years postmenopausal;	2.5, or 5.0 mg	6/30; 2/30	1/30; 3/30	5/30; 17/30; 11/30	0/22; 0/26; 0/24;	
	mean age 65 years;	Ibandronate	RR, 0.50 (0.05 to 5.22)	RR, 0.33 (0.04 to 3.03)	RR, 1.09 (0.57 to 2.07)	0/18; 0/25	
	mean 1-score -0.852,	dally, i year	RR, 2.00 (0.40 to 10.11)	RR, 0.33 (0.04 to 3.03)	RR, 1.55 $(0.66 \ 10 \ 2.72)$	RR, 2.09 (U.12-	
	frosturos		RR, 1.00(0.15(0.04))	RR, 0.14 (0.01 to 2.03)	RR, 0.73 (0.34 to 1.53)		
	liactures		RR, 0.20 (0.01 to 4.00)	RR, 0.07 (0.12 (0.3.71))	$PP_{1} = 1.55 (0.16 to 1.15)$	KK, 1.13 (0.02-	
			111, 3.00 (0.00 to 13.09)	1(1, 0.35(0.04 to 3.05))	(K, 1.55 (0.66 to 2.72)	PP 0.06 (0.02-	
					Diarrhea: 6/30: 5/30: 2/30:	A6 76)	
					2/30: 9/30: 2/30	RR 1 04 (0 02-	
					RR 3 00 (0 66 to 13 69)	50 43)	
					RR. 2.50 (0.53 to 11.89)	RR. 1.37 (0.03-	
					RR. 1.00 (0.15 to 6.64)	65.94)	
					RR. 1.00 (0.15 to 6.64)		
					RR, 4.50 (1.06 to 19.11)	Death: 0/26;	
						0/22; 0/26;1/24;	
						0/18; 1/25	
						RR, 0.32 (0.01-	
						7.53)	

			Discontinuations Due to	Serious AE Risk in	Gastrointestinal AE ^a		
			AE Risk in Treatment	Treatment Group;	Risk in Treatment		
	D estation of		Group; Risk in Control	Risk in Control	Group; Risk in Control		
Study	Participant	Intervention;	Group	Group	Group	Other Adverse	Quality
Reference	Characteristics	Duration	RR, (95% CI)	RR, (95% CI)	RR, (95% CI)	Events	Rating
Reginster, et	Women at least 3 years	50, 50/100, 100,	Any AE leading to	0/18; 0/18; 0/36; 0/36;	Upper GIAE within 3 days	Death: 0/18;	⊦aır
al, 2005 ²⁰⁰	postmenopausal; mean	or 150 mg	withdrawal: 0/18; 0/18;	0/36	of treatment: 0/18; 4/18;	0/18; 0/36;	
	age 64 years; mean	ibandronate	0/36; 1/36; 2/36	RR not calculable	8/36; 9/36; 6/36	0/36; 0/36	
	I-score -1.14; unknown	monthly; 3	RR, 0.39 (0.02 to 7.71)		RR, 0.15 (0.01 to 2.52)	RR, 1.95 (0.04	
	prior fracture	months	RR., 0.39 (0.02 to 7.71)		RR, 1.33 (0.43 to 4.13)	to 94.37)	
			RR, 0.20 (0.01 to 4.03)		RR, 1.33 (0.51 to 3.46)	RR, 1.94 (0.04	
			RR, 0.50 (0.05 to 5.27)		RR, 1.50 (0.60 to 3.78)	to 94.37)	
						RR, 1.00 (0.02	
			Any drug-related AE		Upper GI AE any time	to 49.08)	
			leading to withdrawal:		during treatment: 3/18;	RR, 1.00 (0.02	
			0/18; 0/18; 0/36; 1/36;		11/18; 15/36; 15/36; 12/36	to 49.08)	
			2/36		RR, 0.50 (0.16 to 1.55)		
			RR, 0.39 (0.02 to 7.71)		RR, 1.83 (1.02 to 3.31)		
			RR, 0.39 (0.02 to 7.71)		RR, 1.25 (0.68 to 2.28)		
			RR, 0.20 (0.01 to 4.03)		RR, 1.25 (0.68 to 2.28)		
D " (1			RR, 0.50 (0.05 to 5.27)				- ·
Riis et al,	Women at least 5 years	Continuous	NR	NR	No differences between	Death: 1/81;	⊦aır
2001-**	postmenopausal; mean	therapy with 2.5			continuous treatment,	0/78; 1/81	
	age 67 years; average	mg ibandronate			intermittent treatment,	RR, 1.00 (0.06	
	spinal 1-score <-3.2;	daily or			and placebo	to 15.72)	
	unknown prior fracture	intermittent				RR, 0.35 (0.01	
		cyclical therapy			During first 12 months,	to 8.37)	
		with 20 mg			ibandronate-treated		
		ibandronate			groups showed a		
		every other day			numerically higher		
		for first 24 days			incidence of diarrnea vs.		
		of every 3			placebo groups.		
		montns,					
		tollowed by a 9-			Incluence of diarrnea was		
		week period			lower during the second		
		without active			year		
		arug; 2 years	1	1	1		

Appendix F Table 15. Harm outcomes of placebo-controlled primary prevention trials of ibandronate

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Serious AE Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Other Adverse Events	Quality Rating
Tanko et al, 2003 ²⁸⁷	Women 1-10 years postmenopausal; mean age 55 years; mean T-score for lumbar spine 1.03; no prior osteoporotic fractures	5, 10, or 20 mg ibandronate weekly; 2 years	Withdrawals due to AE related to treatment: 8	12% experienced a serious AE, but none were assessed as related to study drug (6 withdrew as a result of serious AE)	Gastrointestinal AE: 6%; 5%; 3%; 3%	NR	Fair
Thiebaud et al, 1997 ²⁸⁸	Women at least 5 years postmenopausal; mean age 64 years; mean T-score 0.71 at lumbar spine; no prior osteoporotic fractures	0.25, 0.5, 1.0, or 2.0 mg ibandronate every 3 months; 1 year	7 withdrew because of AEs	3 nondrug related serious AEs	6/24; 6/27; 7/26; 3/23; 4/26 No differences between groups RR, 1.63 (0.52 to 5.07) RR, 1.44 (0.46 to 4.54) RR, 1.75 (0.58 to 5.27) RR, 0.85 (0.21 to 3.40)	NR	Fair

Abbreviations: AE= adverse event; CI= confidence interval; GI= gastrointestinal; mg= milligram; NR= not reported; RR= risk ratio

			Discontinuations Due to			
			AE Risk in Treatment	Serious AE Risk in		
			Group; Risk in Control	Treatment Group; Risk in	Other AE [®] Risk in Treatment	
Study	Participant	Intervention;	Group	Control Group	Group; Risk in Control Group	Quality
Reference	Characteristics	Duration	RR, (95% CI)	RR, (95% CI)		Rating
Johnell et al,	Postmenopausal	Raloxifene, 60	7/82; 4/82	None reported	Hot flashes: 4/82; 4/82: RR, 1.00	Good
2002	women; mean age	mg/day; 1 year	RR, 1.75 (0.53-5.75)		(0.26-3.86)	
	T score ≤ 2.0				Swooting: 1/82: 2/82: PP 0.50	
	1-30016 3-2.0				(0.05-5.41)	
					(0.00 0.41)	
					Abdominal pain: 6/82: 5/82: RR.	
					1.2 (0.38-3.78)	
Multiple	Women ≥2 years	Raloxifene 60 or	3 years: 527/5129 (both	3 years	3 years	Good
Outcomes of	postmenopausal;	120 mg/day; 3	doses combined ^a);	VTE events: 25/2557 (60	Flu syndrome: 346/2557 (60 mg);	
Raloxifene	mean age 66.9 years	and 4 years	227/2576 (placebo); RR,	mg); 8/2576 (placebo); RR,	293/2576 (placebo); RR, 1.19	
(MORE) trial;	(range, 31-80); mean		1.17 (1.01-1.35)	3.15 (1.42-6.97)	(1.03-1.38)	
Ettinger et al,	temoral neck or		4 years: 327/2557 (60 mg);			
1999 [•] , Delmos et el	Iumbar spine 1-score		285/2576 (placebo); RR,	4 years	Hot flashes: 249/2557 (60 mg);	
2002^{232}	-2.57, 37% with phot		1.16 (1.00-1.34)	VIE events	(1 26 1 94)	
Barrett-Connor	total 4 year sample			mg): 17/2576 (placebo): RR	(1.20-1.04)	
et al 2002 ³⁰⁸	includes 1751 women			1 78 (0 99-3 19)	Leg cramps: 178/2557 (60 mg):	
Barrett-Connor	who used 1+ other			Participants without baseline	96/2576 (placebo): RR. 1.87	
et al, 2004 ³⁰⁷ ,	bone-active agents in			vertebral fracture: 17/1574	(1.47-2.38)	
Keech et al,	year 4			(60 mg); 13/1629 (placebo);		
2005 ³⁰⁹ ,				RR, 1.35 (0.66-2.78)	Peripheral edema: 134/2557 (60	
Cauley et al,					mg); 114/2576 (placebo); RR,	
2001310,				DVT	1.18 (0.93-1.51)	
Sontag et al,				All participants: 20/2557 (60		
2010-11				mg); 8/2576 (placebo); RR,	Endometrial cavity fluid: 60/2557	
				2.52 (1.11-5.71)	(60 mg), 43/2576 (placebo), RR,	
				vertebral fracture: 12/1574	1.41 (0.93-2.07)	
				(60 mg): $6/1629 (placebo)$:	4 vears	
				RR. 21.07 (0.78-5.50)	Flu syndrome: 415/2557 (60 mg):	
					360/2576 (placebo); RR, 1.16	
				CHD: 50/5127 (both doses	(1.02-1.32)	
				combined ^a); 28/2576		
				(placebo); HR, 0.88 (0.56-	Hot flashes	
				1.40)	All participants: 272/2557 (60	
				.	mg); 183/2576 (placebo); RR,	
				Stroke: 22/2557 (60 mg);	1.50 (1.25-1.79)	
	1			32/2576 (placebo); RR, 0.69	Participants without baseline	

Appendix F Table 16. Harm outcomes of placebo-controlled primary prevention trials of raloxifene

Study Par Reference Chara	ticipant Intervention acteristics Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Serious AE Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Other AE ^a Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Quality Rating
			(0.40-1.18) Pulmonary embolism All participants: 11/2557 (60 mg); 4/2576 (placebo); RR, 2.77 (0.88-8.69) Participants without baseline vertebral fracture: 6/1574 (60 mg); 3/1629 (placebo); RR, 2.07 (0.52-8.26) Retinal vein thrombosis: 2/2557 (60 mg); 5/2576 (placebo); RR, 0.40 (0.08- 2.08) Any coronary event: 45/2557 (60 mg); 55/2576; RR, 0.82 (0.56-1.22) Any cerebrovascular event: 37/2557 (60 mg); 41/2576 (placebo); RR, 0.91 (0.58- 1.41) Any cardiovascular event: 82/2557 (60 mg); 96/2576 (placebo); RR, 0.86 (0.63- 1.18) Any cardiovascular event (in women at increased risk): 28/359 (60 mg); 41/317 (placebo); RR, 0.60 (0.38- 0.95) Endometrial cancer: 5/2557 (60 mg); 5/2576 (placebo); D d (20 0 0 10)	vertebral fracture: 158/1574 (60 mg); 103/1629 (placebo); RR, 1.59 (1.25-2.01) Leg cramps: 234/2557 (60 mg); 154/2576 (placebo); RR, 1.53 (1.26-1.86) Peripheral edema All participants: 182/2557 (60 mg); 158/2576 (placebo); RR, 1.16 (0.94-1.43) Participants without baseline vertebral fracture: 104/1574 (60 mg); 80/1629 (placebo); RR, 1.34 (1.01-1.79) Endometrial cavity fluid: 99/2557 (60 mg); 76/2576 (placebo); RR, 1.31 (0.98-1.76) Diabetes: 38/2557 (60 mg); 17/2576 (placebo); RR, 2.25 (1.27-3.98)	

			Discontinuations Due to AE Risk in Treatment Group: Risk in Control	Serious AE Risk in Treatment Group: Risk in	Other AF ^a Risk in Treatment	
Study Reference	Participant Characteristics	Intervention; Duration	Group RR, (95% CI)	Control Group RR, (95% CI)	Group; Risk in Control Group RR, (95% CI)	Quality Rating
McClung et al, 2006 ³⁰³	Postmenopausal women; mean age raloxifene group 57.5 years, mean age placebo group 57.5 years (range, 47-72); T-score mean -1.0 (range, -2.5 to 2)	Raloxifene, 60 mg/day; 2 years	23/163; 12/83 RR, 0.98 (0.51-1.86)	Any serious AE: 14/163; 4/83 RR, 1.78 (0.61-5.24)	Hot flashes: 39/163; 17/83; RR, 1.30 (0.68-2.47) Leg cramps: 28/163; 11/83; RR, 1.17 (0.70-1.93) Vaginal bleeding: 3/163; 3/83; RR, 0.51 (0.10-2.47)	Fair
Meunier et al, 1999 ³⁰⁴	Postmenopausal women, mean age 60.2 years (range, 50- 75); lumbar T-score mean -2.8 (36% ≤-2.5); 36% prior nonvertebral fracture	Raloxifene 60 mg/day; 2 years	3/45; 4/40 RR, 0.67 (0.16-2.80)	DVT: 0/45; 0/40 RR not calculable	Hot flashes: 4/45; 4/40; RR, 0.89 (0.24-3.32) Change in endometrial thickness (mm): mean, 0.49±1.45; mean, 0.44±1.47 (p=NS)	Good
Miller et al, 2008 ³⁰⁵	Postmenopausal women, mean age 57.6 (≥45); lumbar T-score mean raloxifene group -1.12, placebo group -1.24 (range, -1.0 to -2.5)	Raloxifene 60 mg/day; 2 years	43/311; 48/310 RR, 0.89 (0.61-1.31)	Any serious AE: 29/311; 28/310; RR, 1.03 (0.63-1.69) Myocardial infarction: 0/311; 1/310; RR, 0.33 (0.01-8.12) DVT: 0/311; 1/310; RR, 0.33 (0.01-8.12) Retinal vein thrombosis: 1/311; 0/310; RR, 2.99 (0.12- 73.13)	Hot flashes: 58/311; 44/310 RR, 1.31 (0.92-1.88) Leg cramps: 37/311; 36/310 RR, 1.02 (0.67-1.58)	Fair
Morii et al, 2003 ³⁰⁶	Postmenopausal women; mean age raloxifene group 65.2 years, mean age placebo group 64.3 years (≤80 years); lumbar T-score ≤2.5; 26% prior vertebral fracture	Raloxifene 60 mg/day; 1 year	7/92; 3/97 RR, 2.36 (0.63-8.85)	Any serious AE: 5/92; 7/97 RR, 0.75 (0.25-2.29) VTE: 0/92; 0/97; RR not calculable Colitis ischaemic: 1/92; 1/97 RR, 1.05 (0.07-16.61) Gastrointestinal disorder NOS: 0/92; 0/97; RR not calculable	No events of interest reported	Fair

Appendix F Table 16. Harm outcomes of placebo-controlled primary prevention trials of raloxifene

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Serious AE Risk in Treatment Group; Risk in Control Group RR, (95% Cl)	Other AE ^a Risk in Treatment Group; Risk in Control Group RR, (95% CI)	Quality Rating
				Oesophageal carcinoma NOS: 0/92; 1/97; RR, 0.35 (0.01-8.51)		
				Dissecting aortic aneurysm: 1/92; 0/97; RR, 3.16 (0.13- 76.63)		
				Hypertension NOS: 0/92; 1/97; RR, 0.35 (0.01-8.51)		

^aData available only for combined group of participants receiving dosages of 60 mg/day or 120 mg/day. Recommended dosage is 60 mg/day. ^bAbsolute values calculated by authors from data on percentage per group.

Abbreviations: AE = adverse events; mg = milligram; NR = not reported; NS = not significant; osteo = osteoporosis; RR, = relative risk; SD = standard deviation;

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR [95% CI]	Serious AE Risk in Treatment Group; Risk in Control Group RR [95% CI]	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control Group RR [95% CI]	Other Adverse Events	Quality Rating
Lewiecki et al, 2007 ^{236a}	Postmenopausal women with lumbar spine BMD T-scores of -1.8 to -4.0 or femoral neck/total hip T-scores of -1.8 to -3.5	Denosumab for 24 months; dosed at 6, 14, or 30 mg subcutaneously every 3 months, or 14, 60, 100, or 210 mg subcutaneously every 6 months, alternating with placebo	42/314; 4/46 RR, 1.54 [0.58 to 4.09]	11/314; 1/46 RR, 1.61 [0.21 to 12.19]	1/314; 0/46	Death: 1/314; 0/46 Cardiac disorder: 6/314; 2/46; RR, 0.45 [0.02 to 10.83] Serious infection: 6/314; 0/46	Fair
Bone et al, 2008 ^{237a}	Postmenopausal women with a lumbar spine BMD T-score between -1.0 and -2.5	Denosumab 60 mg every 6 months for 24 months subcutaneously (last dose at 18 months)	1/164; 2/165 RR, 0.50 [0.05 to 5.49]	18/164; 9/165 RR, 2.01 [0.93 to 4.35]	2/164; 0/165	Death: 0/164; 0/165 RR not calculable Rash: 14/164; 5/165 RR, 2.82 [1.04 to 7.64] Serious infection: 8/164; 1/165	Fair
Cummings et al, 2009 ²³⁸ Watts et al, 2012 ³¹¹	Women ages 60 to 90 years with a BMD T-score <-2.5 at the lumbar spine or total hip	Denosumab 60 mg every 6 months for 36 months subcutaneously	93/3886; 81/3876 RR, 1.15 [0.85 to 1.54]	1004/3886; 972/3876 RR, 1.03 [0.95 to 1.11]	NR	Death: 70/3886; 90/3876; RR, 0.78 [0.57 to 1.06] Osteonecrosis of the jaw: 0/3886; 0/3876; RR not calculable Cardiovascular events 186/3886; 178/3876; RR, 1.04 [0.85 to 1.27] Eczema: 118/3886; 65/3876; RR, 1.81 [1.34 to 2.44] Serious infection: 159/3886;133/3876; RR, 1.19 [0.95 to 1.49]	Fair
Appendix F Table 17. Harm outcomes of placebo-controlled primary prevention trials of denosumab

Study Reference	Participant Characteristics	Intervention; Duration	Discontinuations Due to AE Risk in Treatment Group; Risk in Control Group RR [95% CI]	Serious AE Risk in Treatment Group; Risk in Control Group RR [95% CI]	Gastrointestinal AE ^a Risk in Treatment Group; Risk in Control Group RR [95% CI]	Other Adverse Events	Quality Rating
						Serious skin infection (cellulitis and erysipelas): 15/3886; 1/3876; RR, 14.96 [1.98 to 113.21]	

Abbreviations: CI= confidence interval; mg= milligram; NR= not reported; RR= risk ratio

Appendix F Table 23. Harm outcomes of placebo-controlled primary prevention trials of parathyroid hormone

		Intervention;				
Study	Participant Characteristics	Duration	Discontinuation	Serious Adverse Events	Other Adverse Events	Quality Rating
Greenspan et al,	Postmenopausal women with	Parathyroid	389/1286 (100 ug);	None reported	291/1286; 114/1246	Fair
2007 ³⁶	mean age of 64.4 years;	hormone 100 µg	306/1246 (placebo)		RR, 2.47 (2.02-3.03)	
	T-score ≤-3.0; no prevalent	daily injection; 18	RR, 1.22 (1.08-1.40)			
	vertebral fractures or T-score	months				
	-2.5 with 1 to 4 vertebral					
	fractures; mean T-score -2.2;					
	19% with prior vertebral					
	fracture					
Orwoll et al,	Men with mean age 59 years;	Teriparatide 20 or	14/151 (20 µg); 18/139 (40	Cancer: 3/151 (20 µg);	Nausea: 0/151(20 µg);	Fair
2003 ²³⁹	mean T-score -2.7; unknown	40 µg daily	μg); 7/147 (placebo)	0/139 (40 µg); 3/147	5/139 (40 µg); 0/147	
	prior fracture	injection; mean	RR, 1.94 (0.81-4.69)	(placebo)	(placebo)	
		treatment duration:	RR, 2.72 (1.17-6.3)	RR, 0.97 (0.20-4.74)		
		11 months		RR, 0.15 (0.008-2.900)		

Abbreviations: RR= risk ratio; ug= micrograms

Principal			Approximate			
Investigators	Location	Population	Size	Investigations	Outcomes	Status as of 2017
Hyoung-Moo Park	Seoul, Republic of Korea	Women, postmenopausal	150	Risedronate combined, Risedronate, Placebo,	Proportion of patients with 25(OH)D level <20 ng/mL at 16 weeks. [Time Frame: 16 weeks form first drug administration.] [Designated as safety issue: No]	Completed, not published
Eli Lilly	United States, Argentina, Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Hungary, Israel, Italy, Mexico, Netherlands, New Zealand, Norway, Poland, Singapore, Slovakia, Slovenia, Spain, Sweden, United Kingdom	Women, age <80 years, postmenopausal with osteoporosis		Raloxifene HCL 60 mg, Raloxifene 120 mg, Placebo	To establish the effect of long- term treatment with raloxifene, compared with placebo, on the rate of new vertebral fractures in osteoporotic postmenopausal women with and without prevalent vertebral fractures by spinal x-ray	Completed, not published
Eli Lilly and Company	United States	Females ages 45 to 85 years (adult, senior) with osteoporosis		Teriparatide and Roloxifene, Roloxifene, Placebo	The study will evaluate any side effects that may be associated with the 2 drugs and may help to determine whether teriparatide and raloxifene together can help patients with osteoporosis more than teriparatide alone	Completed, not published
Clifford Rosen, MD, St. Joseph Hospital Health Center	United States	Females ages 45 to 70 years with osteoporosis	50	Teriparatide, Placebo	Bone mineral density will be measured at 6 and 12 months	Completed, not published

Principal			Approximate			
Investigators	Location	Population	Size	Investigations	Outcomes	Status as of 2017
Sudhaker D Rao, MD,	United	Women age 50	1000	(Risedronate) Pathogenesis of	Determine the prevalence of PBD	Recruiting
Henry Ford Health	States	years and older		atypical femur fractures on long	and/or atypical femoral fractures	
System				term bisphosphonate therapy	(AFF) in patients	
Susan L. Greenspan,	United	Women age 65	1000	(Zoledronic Acid) Zoledronic	Total nontraumatic incident	Recruiting
University of	States	years and older		acid for osteoporotic fracture	clinical fractures (vertebral and	
Pittsburgh				prevention (ZEST II)	nonvertebral)	
Elizabeth Shane,	United	Premenopausal	40	(Teriparatide) Forteo trial on	Change in lumbar spine bone	Recruiting
Columbia University	States	women		idiopathic osteoporosis in	mineral density	
				premenopausal women	[Time Frame: Baseline and 12	
					months]	
					[Designated as safety issue: Yes]	
Susan L. Greenspan,	United	Men and	212	Preventing osteoporosis	Increased bone density of the	Recruiting
University of	States	women age 65		using denosumab (PROUD)	total hip/spine	
Pittsburgh		years and older				

Proportion

Studies	Estima	ate (95%	k C.I.)	Ev/Trt
Ben Sedrine 2001	0.700	(0.686,	0.714)	2825/4035
Brenneman 2003	0.731	(0.688,	0.773)	304/416
Cook 2005	0.721	(0.660,	0.782)	150/208
Rud 2005	0.680	(0.660,	0.700)	1366/2009
Cass 2006	0.670	(0.605,	0.735)	136/203
Harrison 2006	0.671	(0.608,	0.735)	139/207
Gourlay 2008	0.710	(0.700,	0.720)	5452/7679
Jimenez-Nunez 2013	0.671	(0.630,	0.712)	339/505

Overall (I^2=46.33 %, P=0.071) 0.698 (0.685, 0.711) 10711/15262

Studies	Estin	nate (959	& C.I.)	Ev/Trt
Richy 2004	0.688	(0.622,	0.750)	139/202
Boonen 2005	0.719	(0.658,	0.777)	159/221
Kung 2003	0.780	(0.749,	0.809)	563/722
Harrison 2006	0.749	(0.687,	0.806)	155/207
Minnock (estimated) 2008	0.791	(0.737,	0.841)	186/235
Cook (estimated) 2005	0.726	(0.663,	0.785)	151/208
McLeod (estimated) 2015	0.897	(0.846,	0.938)	156/174
Overall (I^2=82.25 % , P< 0.001)	0.768	(0.719,	0.813)	1509/1969

Appendix H Figure 10. FRAX without bone mineral density testing for predicting hip fractures in men

Appendix H Figure 11. FRAX with bone mineral density testing for predicting major osteoporotic fractures in men

Studies	Estin	nate (959	€ C.I.)	Ev/Trt
Donaldson 2009	0.680	(0.663,	0.696)	2069/3043
Ensrud 2009	0.640	(0.628,	0.652)	4001/6252
Sornay-Rendu 2010	0.750	(0.721,	0.779)	650/867
Tremollieres 2010	0.630	(0.612,	0.648)	1670/2651
Bolland 2011	0.620	(0.595,	0.645)	882/1422
Henry 2011	0.660	(0.622,	0.698)	396/600
Sambrook 2011	0.620	(0.613,	0.627)	12143/19586
Tamaki 2011	0.670	(0.638,	0.702)	546/815
Azagra 2012	0.690	(0.657,	0.722)	531/770
Cheung 2012	0.706	(0.687,	0.725)	1600/2266
Gonzalez-Macias 2012	0.615	(0.601,	0.629)	2739/4453
Leslie 2012	0.670	(0.665,	0.675)	24609/36730
Rubin 2013	0.722	(0.707,	0.737)	2609/3614
Crandall 2014	0.560	(0.556,	0.564)	34996/62492
Friis-Holmberg 2014	0.679	(0.668,	0.690)	5128/7552
Van Geel 2014	0.652	(0.611,	0.694)	330/506
Kalveston 2016	0.640	(0.627,	0.653)	3378/5278

Overall (I^2=99.16 %, P< 0.001) 0.659 (0.630, 0.687) 98277/158897

Studies	Estim	nate (959	& C.I.)	Ev/Trt
Ensrud 2009	0.710	(0.699.	0.721)	4439/6252
Bolland 2011	0.690	(0.666,	0.714)	981/1422
Pressman 2011	0.830	(0.828,	0.832)	78426/94489
Sambrook 2011	0.650	(0.643,	0.657)	12731/19586
Tamaki 2011	0.860	(0.836,	0.884)	701/815
Azagra 2012	0.881	(0.858,	0.903)	678/770
Cheung 2012	0.899	(0.887,	0.911)	2037/2266
Gonzalez-Macias 2012	0.640	(0.626,	0.654)	2850/4453
Leslie 2012	0.790	(0.786,	0.794)	29017/36730
Friis-Holmberg 2014	0.860	(0.852,	0.868)	6495/7552
Sund 2014	0.650	(0.641,	0.659)	7268/11182
Kalveston 2016	0.700	(0.688,	0.712)	3695/5278

Overall (I^2=99.79 %, P< 0.001) 0.763 (0.717, 0.810) 149318/190795

Studies	Estin	nate (958	& C.I.)	Ev/Trt
Donaldson 2009	0.710	(0.694,	0.726)	2161/3043
Ensrud 2009	0.680	(0.668,	0.692)	4251/6252
Sornay-Rendu 2010	0.780	(0.752,	0.807)	676/867
Bolland 2011	0.640	(0.615,	0.665)	910/1422
Henry 2011	0.670	(0.632,	0.708)	402/600
Tamaki 2011	0.690	(0.658,	0.721)	562/815
Azagra 2012	0.719	(0.688,	0.751)	554/770
Cheung 2012	0.730	(0.712,	0.748)	1654/2266
Leslie 2012	0.700	(0.695,	0.705)	25711/36730
Tebe-Cordomi 2013	0.610	(0.583,	0.637)	751/1231
Friis-Holmberg 2014	0.720	(0.710,	0.730)	5437/7552
Van Geel 2014	0.694	(0.654,	0.734)	351/506

Overall (1^2=92.07 %, P< 0.001) 0.696 (0.680, 0.713) 43420/62054

Studies	Estin	uate (959	k C.I.)	Ev/Trt
Ensrud 2009	0.750	(0.739,	0.761)	4689/6252
Pressman 2011	0.840	(0.838,	0.842)	79371/94489
Bolland 2011	0.700	(0.676,	0.724)	995/1422
Tamaki 2011	0.690	(0.658,	0.721)	562/815
Cheung 2012	0.880	(0.867,	0.893)	1994/2266
Azagra 2012	0.851	(0.825,	0.876)	655/770
Leslie 2012	0.820	(0.816,	0.824)	30119/36730
Van Geel 2014	0.698	(0.658,	0.738)	353/506
Friis-Holmberg 2014	0.860	(0.852,	0.868)	6495/7552
Sund 2014	0.760	(0.752,	0.768)	8498/11182

Overall (I^2=99.06 %, P< 0.001) 0.788 (0.764, 0.813) 133731/161984

Appendix H Figure 17. FRAX without bone mineral density testing for predicting major osteoporotic fractures in both sexes

Appendix H Figure 18. FRAX with bone mineral density testing for predicting major osteoporotic fractures in both sexes

Appendix H Figure 19. Garvan Fracture Risk Calculator with bone mineral density testing for predicting major osteoporotic fractures in women

Appendix H Figure 20. Garvan Fracture Risk Calculator with bone mineral density testing for predicting hip fractures in women

Studies	Esti	imate (9	5% C.I.)	Ev/Trt	Ev/Ctrl	trl	
Ascott-Evans 1995	0.516	(0.230,	1.155)	10/95	10/49	9	
Liberman 1995	0.970	(0.586,	1.605)	35/597	24/397	97	
Tucci 1996	0.786	(0.289,	2.139)	5/94	13/192	92	
Cummings 1998	0.975	(0.818,	1.163)	221/2214	227/2218	218 -	
Pols 1999	1.139	(0.799,	1.625)	61/950	54/958	58 -	
Greenspan 2002	0.917	(0.397,	2.117)	10/224	11/226	26	
Johnell 2002	1.976	(0.619,	6.308)	8/83	4/82	2	
Hosking (alendronate) 2003	1.274	(0.682,	2.381)	31/219	12/108	08	
Cryer 2005	0.570	(0.269,	1.209)	10/224	18/230	30	
Subgroup Alendronate (I^2=0 % , P=0.492)	0.979	(0.853,	1.122)	391/4700	373/4460	460 🔶	
Ravn 1996	3.000	(0.657,	13.692)	6/30	2/30	0	
McClung 2004	0.759	(0.290,	1.988)	7/163	9/159	59	
Reginster 2005	0.500	(0.047,	5.272)	1/36	2/36	6	
Chapurlat 2013	0.714	(0.210,	2.425)	4/71	6/76	6	
Subgroup Ibandronate (I^2=0 % , P=0.407)	0.930	(0.485,	1.783)	18/300	19/301	01	
Herd 1997	11.289	(0.635,	200.666)	5/75	0/77	7	
Meunier 1997	0.200	(0.010,	3.980)	0/27	2/27	7	
Subgroup Etidronate (I^2=72.43 % , P=0.057)	1.535	(0.029,	79.916)	5/102	2/104	04	
Mortensen 1998	1.459	(0.259,	8.227)	3/37	2/36	6	
Fogelman 2000	1.342	(0.695,	2.590)	19/175	14/173	73 —	
McClung(a) 2001	0.985	(0.885,	1.095)	550/3104	564/3134	134	
Hosking (risedronate) 2003	1.257	(0.672,	2.349)	31/222	12/108	08	
Valimaki 2007	0.531	(0.229,	1.232)	10/115	9/55	5	
Subgroup Risedronate (I^2=0 % , P=0.450)	0.991	(0.894,	1.098)	613/3653	601/3506	506 🔶	
Reid 2002	2.627	(0.350,	19.695)	13/292	1/59	9	
Subgroup Zoledronic acid (I^2=NA , P=NA)	2.627	(0.350,	19.695)	13/292	1/59	9	
Overall (I^2=0 % , P=0.534)	0.988	(0.911,	1.072)	1040/9047	996/8430	430	
						0.01 0.02 0.05 0.1 0.2 0.5 0.99 2.01 5.02 10.05 20.1 50.25 100.49 200.	.67

Relative Risk (log scale)

Studies	Estim	nate (99	5% C.I.)	Ev/Trt	Ev/Ctrl	
Ravn 1996	0.667 ((0.120,	3.709)	2/30	3/30	•
McClung 2004	0.610 ((0.204,	1.824)	5/163	8/159	-
Reginster 2005	1.000 ((0.020,	49.075)	0/36	0/36	\leftarrow
Chapurlat 2013	1.235 ((0.633,	2.410)	15/71	13/76	
Subgroup Ibandronate (I^2=0 % , P=0.712)	0.978 ((0.572,	1.672)	22/300	24/301	
Tucci 1996	1.167 ((0.714,	1.907)	20/94	35/192	
Adachi 2001	2.021 ((0.228,	17.916)	4/291	1/147	
Greenspan 2002	0.831 ((0.522,	1.323)	28/224	34/226	_
Hosking (alendronate) 2003	0.699 ((0.346,	1.410)	17/219	12/108	_
Cryer 2005	1.155 ((0.454,	2.941)	9/224	8/230	
Subgroup Alendronate (I^2=0 % , P=0.670)	0.949 ((0.713,	1.265)	78/1052	90/903	\rightarrow
Herd 1997	1.173 ((0.448,	3.074)	8/75	7/77	_
Subgroup Etidronate (I^2=NA , P=NA)	1.173 ((0.448,	3.074)	8/75	7/77	
Fogelman 2000	1.002 ((0.610,	1.646)	26/173	27/180	
McClung 2001	0.979 ((0.908,	1.054)	943/3104	973/3134	
Hosking (risedronate) 2003	0.608 ((0.295,	1.254)	15/222	12/108	_
Shiraki 2003	0.963 ((0.019,	47.639)	0/53	0/51	\leftarrow
Valimaki 2007	1.965 ((0.578,	6.683)	12/114	3/56	
Subgroup Risedronate (I^2=0 % , P=0.572)	0.977 ((0.908,	1.051)	996/3666	1015/3529	•
Reid 2002	1.751 ((0.548,	5.597)	26/292	3/59	_
McClung 2009	0.754 ((0.416,	1.368)	17/198	23/202	_
Boonen 2012	1.005 ((0.828,	1.221)	149/588	154/611	_
Subgroup Zoledronic acid (I^2=0 % , P=0.416)	0.992 ((0.826,	1.191)	192/1078	180/872	
Overall (I^2=0 % , P=0.952)	0.978 ((0.916,	1.044)	1296/6171	1316/5682	4
						0.06 0.11 0.28 0.55 0.98 2.75 5.51 11.02 22.31 Relative Risk (log scale)

Appendix H Figure 31. Discontinuations due to adverse events for denosumab versus placebo

