Evidence Synthesis
Number 125

Screening for Breast Cancer With Digital Breast Tomosynthesis

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
540 Gaither Road
Rockville, MD 20850
www.ahrq.gov

Prepared by:
Center for Healthcare Policy and Research
University of California, Davis
Sacramento, CA

Kaiser Permanente Research Affiliates Evidence-based Practice Center
Kaiser Permanente Center for Health Research
Portland, OR

Investigators:
Joy Melnikow, MD, MPH
Joshua J. Fenton, MD, MPH
Diana Miglioretti, PhD
Evelyn P. Whitlock, MD, MPH
Meghan S. Weyrich, MPH

AHRQ Publication No. 14-05201-EF-2
April 2015
Disclaimer

This draft report is based on research conducted by the Kaiser Permanente Research Affiliates Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (HHSA-290-2012-00015I, Task Order No. 5). The investigators involved have declared no conflicts of interest with objectively conducting this research. The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

The final report (not the draft version) may be used, in whole or in part, as the basis for the development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.
Table of Contents

Chapter 1. Introduction

- Purpose
- Background

Chapter 2. Methods

- Key Question
- Data Sources and Searches
- Study Selection
- Quality Assessment and Data Abstraction

Chapter 3. Results

- Literature Search
- Summary of Results

Chapter 4. Discussion

References

Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Screening for Breast Cancer Using Tomosynthesis: Study Characteristics and Reported Outcomes</td>
</tr>
</tbody>
</table>

Appendixes

- Appendix A. Detailed Methods
- Appendix B. Ongoing Studies and Trials Pending Assessment
Chapter 1. Introduction

Purpose

Digital breast tomosynthesis has rapidly been adopted by many providers of mammography screening in the United States. This report summarizes the evidence published through November 2014 on diagnostic tests characteristics of tomosynthesis in screening populations.

Background

Digital breast tomosynthesis, also known as 3-D mammography, uses a computer algorithm to reconstruct multiple low-dose digital images of the breast into thin “slices” spanning the entire breast. These images can be displayed individually or in cine mode. Tomosynthesis has been introduced in radiology as concurrent adjunctive screening with standard two view digital mammography, which more than doubles the total radiation exposure compared to a standard digital mammography screening examination. In 2013, the FDA approved the use of synthetic 2-D images to take place of the standard 2-D, two view digital mammograms. This technology eliminates the additional radiation of a digital mammogram, so that the radiation dose is due only the digital breast tomosynthesis exam. There is a substantial cost to acquire this technology; it is currently not known how frequently synthetic views are used. A GE tomosynthesis system was FDA approved in September 2014, and a single 3D view from this system is reported to have similar radiation dose as a standard two-view digital mammography examination. However, it is not yet clear how this system will be used in practice.
Chapter 2. Methods

Key Question

Using the USPSTF’s methods (detailed in Appendix A), we addressed the following key question (KQ):

1. What are the test performance characteristics of tomosynthesis as a primary screening modality for breast cancer performed either alone or simultaneously with 2-D digital mammography? How do these performance characteristics differ by age and risk factors?

Data Sources and Searches

We searched MEDLINE, PubMed, Embase, and the Cochrane library from January 2000 through November 2014. To ensure the comprehensiveness of our retrieval strategy, we reviewed the reference lists of included studies and relevant systematic reviews to identify relevant articles. We also supplemented our database searches with suggestions from experts, searched the grey literature for relevant reports and reviewed their references, and searched Clinicaltrials.gov to identify relevant ongoing trials (Appendix B).

Study Selection

Two reviewers independently screened titles and abstracts for relevance, and identified 15 articles for full text review. We required that included studies be conducted in screening populations (asymptomatic women age 40 and older) and evaluate test performance characteristics with a comprehensive reference standard applied to both negative and positive tests results. For breast cancer screening this requires further imaging and/or biopsy of positive results, and a minimum of one year clinical follow-up for negative results to ascertain interval breast cancers not identified by screening.

Quality Assessment and Data Abstraction

Two reviewers independently assessed the full text of each study to assess whether it met our predefined inclusion criteria. No studies met all inclusion criteria. To illustrate the state of available research addressing this key question, results from screening population studies were abstracted into a standard evidence table. A second reviewer checked the data for accuracy. Elements abstracted included population characteristics (e.g., baseline demographics, family or personal history of breast cancer), study design (e.g., inclusion/exclusion criteria, followup, screening rounds), screening test characteristics (e.g., number of readers), and proximate health outcomes, including breast cancer detection rates, invasive breast cancer detection rates, recall rates, and biopsy rates.
Chapter 3. Results

Literature Search

We identified no studies that met our inclusion criteria. To illustrate the state of available research addressing this key question, results from 15 screening studies were abstracted, including a systematic review of the use of breast tomosynthesis for breast cancer screening or diagnosis performed by the Technology Evaluation Center. This review identified one additional study we had not previously located.

Summary of Results

After screening the full-text articles, none met the inclusion criteria. No studies met the required criteria of reporting results on a screening population and employing a comprehensive reference standard; hence, there is no evidence available that addresses the key question regarding the test performance characteristics of tomosynthesis in a screening population. Characteristics of the identified studies conducted are briefly summarized in this report, and those studies reporting on cancer detection rates, recall rates and biopsy rates in a screening population are summarized in Table 1.

One small study from Sweden included both symptomatic and asymptomatic women. This was the only study that applied a comprehensive reference standard including one year clinical follow up. However, of 185 total women, 89 (48%) were diagnosed with breast cancer, so the study sample is not representative of a screening population. Four studies utilized test sets of mammograms with known diagnoses, with and without tomosynthesis images, to evaluate radiologist diagnostic performance. All of these test sets were enriched with images of known breast cancers, ranging from 16 percent to 41 percent of the total images.

The remaining nine studies were screening cohort studies that reported on recall rates and cancer detection rates for digital mammography with or without tomosynthesis. These studies compared findings from single cohort undergoing both studies or compared 2 screening cohorts, one undergoing digital mammography only compared to a cohort undergoing mammography and tomosynthesis. After elimination of reports from the same dataset, findings from 7 studies are summarized in Table 1. In these studies, tomosynthesis was generally associated with an increase in the breast cancer detection rates compared to digital mammography alone. The proportions of invasive cancers with and without the use of tomosynthesis were somewhat higher with tomosynthesis in some studies and similar to digital mammography in others. Compared to digital mammography, tomosynthesis was associated with reduced immediate recall rate and higher positive predictive value for an initial positive result (PPV). In two of four studies reporting biopsy rates, the biopsy rate was slightly higher with tomosynthesis compared to digital mammography alone (Table 1).
Chapter 4. Discussion

Current studies do not provide information on diagnostic test characteristics of tomosynthesis for breast cancer screening, as none report on a comprehensive reference standard. Studies are consistent in finding reduced overall recall rates with similar or higher biopsy rates. One factor that may reduce immediate recall rates with tomosynthesis is that the technology obtains additional breast images at the time of initial screening, which for the commonly used current technology more than doubles the breast radiation dose of digital mammography. Technology approved by the FDA in 2013 for synthetic 2-D mammography reduces the radiation dose to that of the tomosynthesis exam alone.\(^5\) Cancer detection rates are somewhat higher, and the proportion of invasive cancers detected is similar to or higher than the proportion detected with digital mammography alone. Ongoing studies registered with clinical trials.gov are listed in Appendix B and descriptions of these studies suggest that results of the application of a comprehensive reference standard to a screening population may become available within a few years. Studies are needed that employ the standard approach to breast imaging interpretation in the United States (single reading), and that report on both interval cancers identified by a comprehensive reference standard and longer term outcomes, including effects of the addition of tomosynthesis to digital mammography on the stage distribution of detected cancers, breast cancer recurrence or 2\(^{nd}\) (contralateral) breast cancers and mortality rates.
References

Table 1. Screening for Breast Cancer Using Tomosynthesis: Study Characteristics and Reported Outcomes

<table>
<thead>
<tr>
<th>Author, Year (Location)</th>
<th>Study Design and Setting</th>
<th>Study N</th>
<th>Radiologist/Population Characteristics</th>
<th>Breast Cancer Prevalence</th>
<th>Cancer Detection Rate (% Invasive)</th>
<th>Recall/Biopsy Rate</th>
<th>Positive Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenberg, 2014 (Washington, DC area)</td>
<td>Cohort (2 arm) Community-based multi-site radiology practice</td>
<td>DBT+DM: 20,943 exams DM only: 38,674 exams</td>
<td>14 radiologists</td>
<td>DBT+DM: 131/20,943 exams DM only: 190/38,674 exams</td>
<td>DBT: 6.3 per 1,000 exams (73.6%) DM only: 4.9 per 1,000 exams (62.1%)</td>
<td>Recall DBT+DM: 13.6% DM only: 16.2% Biopsy DBT+DM: 2.6% DM only: 2.2%</td>
<td>PPV1 DBT+DM: 4.6% DM only: 3.0% PPV3 DBT+DM: 23.8% DM only: 22.8%</td>
</tr>
<tr>
<td>Friedewald, 2014* (Multi-state)</td>
<td>Retrospective cohort (2 arm) 13 academic health centers and community breast diagnostic/screening centers</td>
<td>DBT+DM: 173,663 exams DM only: 281,187 exams</td>
<td>139 radiologists Mean age: DBT+DM: 56.2 y DM only: 57.0 y Limited to screening exams and subsequent follow-ups</td>
<td>DBT+DM: 950/173,663 exams DM only: 1207/281,187 exams</td>
<td>DBT+DM: 5.5 per 1,000 exams (74.5%) DM only: 4.3 per 1,000 exams (67.4%)</td>
<td>Recall DBT+DM: 8.9% DM only: 10.6% Biopsy DBT+DM: 1.9% DM only: 1.8%</td>
<td>PPV1 DBT+DM: 6.1% DM only: 4.1% PPV3 DBT+DM: 29.0% DM only: 24.0%</td>
</tr>
<tr>
<td>McCarthy, 2014 (Pennsylvania)</td>
<td>Cohort (2 arm) One academic medical center</td>
<td>DBT+DM: 15,571 exams DM only: 10,728 exams</td>
<td>6 radiologists Mean age: DBT+DM: 56.7 y DM only: 56.9 y Excluded personal hx breast cancer</td>
<td>DBT+DM: 85/15,571 exams DM only: 49/10,728 exams</td>
<td>DBT+DM: 5.5 per 1,000 exams (71%) DM only: 4.6 per 1,000 exams (69%)</td>
<td>Recall DBT+DM: 8.8% DM only: 10.4% Biopsy DBT+DM: 2.0% DM only: 1.8%</td>
<td>PPV1 DBT+DM: 6.2% DM only: 4.4% PPV3 DBT+DM: 25.4% DM only: 24.7%</td>
</tr>
<tr>
<td>Ciatto, 2013 (Italy)</td>
<td>Prospective cohort (1 arm) Population screening program</td>
<td>7,294 exams DM+DBT images interpreted independently from DM only images</td>
<td>8 radiologists Median age: 58 y Screen positive if either reader interpreted DM or DBT as abnormal</td>
<td>DBT+DM: 59/7,994 exams DM only: 39/7,994 exams</td>
<td>DBT+DM: 8.1 per 1,000 exams (88.1%) DM only: 5.3 per 1,000 exams (89.7%)</td>
<td>Recall DBT+DM: 4.3% DM only: 4.4% Biopsy NR</td>
<td>DBT+DM: 18.8% DM only: 12.1%</td>
</tr>
</tbody>
</table>
Table 1. Screening for Breast Cancer Using Tomosynthesis: Study Characteristics and Reported Outcomes

<table>
<thead>
<tr>
<th>Author, Year (Location)</th>
<th>Study Design and Setting</th>
<th>Study N</th>
<th>Radiologist/Population Characteristics</th>
<th>Breast Cancer Prevalence</th>
<th>Cancer Detection Rate (% Invasive)</th>
<th>Recall/Biopsy Rate</th>
<th>Positive Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haas, 2013 (Connecticut)</td>
<td>Cohort (2 arm) Multi-site (1 academic medical center, 2 outpatient radiology clinics, 1 mobile mammography van)</td>
<td>DBT+DM: 6,100 women DM only: 7,058 women</td>
<td>8 radiologists Mean age: DBT+DM: 55.8 y DM 57.5 y Personal hx of breast cancer: DBT+DM: 5.5% DM only: 2.8%</td>
<td>DBT+DM: 35/6,100 women DM only: 37/7,058 women</td>
<td>DBT+DM: 5.7 per 1,000 women (69%) DM only: 5.2 per 1,000 women (68%)</td>
<td>Recall DBT: 8.4% DM: 12.0% Biopsy NR</td>
<td>DBT+DM: 6.8% DM only: 4.3%</td>
</tr>
<tr>
<td>Rose, 2013 (Texas)</td>
<td>Cohort (2 arm) Multisite community-based comprehensive breast cancer center</td>
<td>DBT+DM: 9,499 exams DM only: 13,856 exams</td>
<td>6 radiologists Asymptomatic women</td>
<td>DBT+DM: 51/9,499 exams DM only: 56/13,856 exams</td>
<td>DBT+DM: 5.4 per 1,000 exams (80%) DM only: 4.0 per 1,000 exams (70%)</td>
<td>Recall DBT+DM: 5.5% DM only: 8.7% Biopsy</td>
<td>DBT+DM: 10.1% DM only: 4.1% PPV1</td>
</tr>
<tr>
<td>Skaane, 2013 (Norway)</td>
<td>Prospective cohort (1 arm) City-wide (Oslo) breast cancer screening program</td>
<td>12,621 exams DM+DBT images interpreted independently from DM only images</td>
<td>8 radiologists Median age: 58 y Screen positive if either reader interpreted DM or DBT as abnormal</td>
<td>DBT+DM: 101/12,621 exams DM only: 77/12,621 exams</td>
<td>DBT+DM: 8.0 per 1,000 exams (80.2%) DM: 6.1 per 1,000 exams (72.7%)</td>
<td>Recall DBT+DM: 6.1% DM only: 6.7% Biopsy NR</td>
<td>DBT+DM: 13.1% DM only: 9.1%</td>
</tr>
</tbody>
</table>

Possible inclusion of data from Rose (2013) and Greenberg (2014).

DBT=digital breast tomosynthesis; DM=digital mammography; hx=history; NR=not reported; PPV=positive predictive value; PPV1=true positives (cancers)/all positives; PPV3=true positives (cancers)/all biopsies.
Appendix A. Detailed Methods

Key Question Literature Search Strategy

Note: The literature search strategy for this supplemental review overlapped with our main evidence review, “Adjunctive Screening for Breast Cancer in Women With Dense Breasts,” and is therefore not limited to only tomosynthesis.

Database: Cochrane
Search Strategy:

'mammogra* AND screen* AND (breast density OR dense breast OR parenchym*) in Title, Abstract, Keywords

Database: Ovid MEDLINE(R)
Search Strategy:

1. "breast densit*".ti,ab.
2. parenchym*.ti,ab.
3. mammo* pattern.ti,ab.
4. mammo* patterns.ti,ab.
5. radiological pattern*.ti,ab.
6. wolfe*.ti,ab.
7. tabar*.ti,ab.
8. mammo* feature*.ti,ab.
9. breast pattern*.ti,ab.
10. mammo* densit*.ti,ab.
11. tissue densit*.ti,ab.
12. or/1-11
13. (negative test result* or false negative).mp. or exp False Negative Reactions/
14. "sensitivity and specificity"/ or "limit of detection"/ or roc curve/ or signal-to-noise ratio/
15. "sensitivity and specificity"/ or "limit of detection"/ or roc curve/ or signal-to-noise ratio/
16. or/13-15
17. ((negative adj4 mammogra*) or negative screen).mp.
18. 16 or 17
19. (supplementa* adj3 screen*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
20. (breast or mammogra*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
21. 12 and 16 and 18
22. 20 and 21
23. 12 and 19
24. (((supplementa* adj5 ultraso*) or supplementa*) adj5 imag*).mp.
25. 12 and 24
26. 20 and 25
27. 22 or 26
Appendix A. Detailed Methods

28. 23 or 27
29. limit 28 to ((abstracts or english language) and yr="2000 -Current")

Database: Ovid MEDLINE(R)
Search Strategy:

1. exp "Sensitivity and Specificity"/
2. sensitivity.tw.
3. specificity.tw.
4. ((pre-test or pretest) adj probability).tw.
5. post-test probability.tw.
6. post-test probability.tw.
7. likelihood ratio$.tw.
8. or/1-7
9. Breast Neoplasms/
10. (breast adj (neoplasm or neoplasms or tumour or tumor or tumors or tumours or cancer or carcinoma or carcinomas or oncologic or oncology)).mp.
11. 9 or 10
12. exp Mammography/
14. 12 or 13
15. 8 and 14
16. "breast densit*",ti,ab.
17. parenchym*.ti,ab.
18. mammo* pattern,ti,ab.
19. mammo* patterns,ti,ab.
20. radiological pattern*.ti,ab.
21. wolfe*,ti,ab.
22. tabar*.ti,ab.
23. (birad* or bi-rad*).ti,ab.
24. mammo* feature*,ti,ab.
25. breast pattern*.ti,ab.
26. mammo* densit*,ti,ab.
27. tissue densit*,ti,ab.
28. "breast imaging reporting and data system",ti,ab.
29. or/16-28
30. 8 and 11 and 14 and 29
31. limit 30 to english language

1. 65. Image Processing, Computer-Assisted/ or Radiographic Image Interpretation, Computer-Assisted/ or Tomography, X-Ray Computed/ or Radiographic Image Enhancement/ or Tomography, X-Ray/ or tomosynthesis.mp. or Imaging, Three-Dimensional/
2. 66. 64 and 65
3. 67. Ultrasonography, Mammary/ or automated ultrasound.mp.
4. 68. whole breast ultrasound.mp.
5. 69. hand help ultrasound.mp.
6. 70. magnetic resonance imaging.mp. or Magnetic Resonance Imaging/
Appendix A. Detailed Methods

7. mri.mp.
8. Technetium Tc 99m Sestamibi/ or scintimammography.mp.
9. or/67-72
10. 31 and 73
11. limit 74 to (english language and yr="2000 -Current")
12. or/76-78
13. 62 and 79
14. limit 80 to (english language and yr="2000 -Current")
15. 81 not 75
16. 65 or 73
17. 82. 84. 82 and 83

Database: Embase
Search Strategy:

1. 'mammography'/exp OR 'mammography' OR 'mammography system'/exp OR 'mammography system' OR mammograph*:ab,ti AND [2000-2014]/py
2. 'dosimetry'/exp OR 'dosimetry' OR 'radiation protection'/exp OR 'radiation protection' OR 'radiation measurement'/exp OR 'radiation measurement' AND [2000-2014]/py
3. 'radiation exposure'/exp OR 'radiation exposure' OR 'radiation induced neoplasm'/exp OR 'radiation induced neoplasm' OR 'radiation injury'/exp OR 'radiation injury' AND [2000-2014]/py
4. 'morbidity'/exp OR 'morbidity' OR 'mortality'/exp OR 'mortality' OR 'adverse effect':ab,ti OR 'adverse effects':ab,ti OR harm:ab,ti OR harms:ab,ti OR contraindic*:ab,ti AND [2000-2014]/py
5. #2 OR #4
6. #1 AND #5 AND #6
7. 'breast tumor'/exp/dm_pc,dm_di
8. (breast NEXT/5 (neoplasm* OR tumour* OR tumor* OR cancer* OR carcinom* OR oncolog*)):ab,ti
9. #8.1 OR #8.2
10. 'mass screening'/exp OR 'mass radiography'/exp
11. 'neoplasm'/exp/dm_pc,dm_di
12. 'mammography'/exp OR 'mammography system'/exp OR mammograph*:ab,ti
13. screen*:ab,ti
14. #8.4 OR #8.5 OR #8.6 OR #8.7
15. #8.3 AND #8.8
16. 'sensitivity and specificity'/exp OR sensitivity:ab,ti OR specificity:ab,ti
17. (('pre test' OR pretest) NEAR/5 probability):ab,ti
18. (('pre test' OR pretest) NEAR/5 probability):ab,ti
19. 'likelihood ratio':ab,ti OR 'likelihood ratios':ab,ti
20. #8.10 OR #8.11 OR #8.12 OR #8.13
21. #8.9 AND #8.14
22. 'breast density':ab,ti OR 'dense breasts':ab,ti OR 'dense breast':ab,ti OR parenchym*:ab,ti OR 'mammographic feature':ab,ti OR 'mammographic features':ab,ti OR (mammography
Appendix A. Detailed Methods

NEAR/2 feature*:ab,ti OR 'breast pattern':ab,ti OR 'breast patterns':ab,ti OR (breast NEAR/3 pattern):ab,ti OR 'mammographic density':ab,ti OR (mammography NEAR/3 density):ab,ti OR 'mammographic pattern':ab,ti OR 'mammographic patterns':ab,ti OR (mammography NEAR/2 patterns):ab,ti OR 'radiological pattern':ab,ti OR 'radiological patterns':ab,ti OR wolfe*:ab,ti OR tabar*:ab,ti OR birad*:ab,ti OR 'bi rad':ab,ti OR 'breast imaging reporting and data system':ab,ti OR 'tissue density':ab,ti OR (tissue NEAR/3 density):ab,ti
8.17 #8.15 AND #8.16
8.18 #8.17 AND [english]/lim AND [2000-2014]/py
Appendix A. Detailed Methods

Inclusion and Exclusion Criteria

<table>
<thead>
<tr>
<th>Category</th>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populations</td>
<td>KQ 1: Women primarily aged 40 years and older receiving tomosynthesis screening</td>
<td>Women with:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pre-existing breast cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clinically significant BRCA 1/2 mutations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Li-Fraumeni syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cowden syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hereditary diffuse gastric syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Other familial breast cancer syndromes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High-risk breast lesions (DCIS, LCIS, ADH, ALH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Previous doses of chest radiation (>20Gy) before age 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Undergoing diagnostic or surveillance mammography</td>
</tr>
<tr>
<td>Setting</td>
<td>Conducted in primary care or other setting with primary care-comparable population</td>
<td>Settings not generalizable to primary care</td>
</tr>
<tr>
<td>Intervention or Exposure</td>
<td>Tomosynthesis</td>
<td>Digital or full-film mammography alone; other new technologies, such as MRI or ultrasound; use for diagnostic or surveillance purposes; use in a diagnostic or surveillance setting only</td>
</tr>
<tr>
<td>Comparisons or Nonexposure</td>
<td>Digital or film mammography</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td>Test performance characteristics (sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratios for invasive breast cancers, breast lesions [DCIS], total breast cancers, breast cancers by stage); biopsy rates, recall rates</td>
<td></td>
</tr>
<tr>
<td>Study Designs</td>
<td>Diagnostic accuracy studies with reference standard and more than one radiologist/reader, RCTs, cohort studies with more than one radiologist/reader, and meta-analyses</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English only</td>
<td>Non-English languages</td>
</tr>
<tr>
<td>Publication Date</td>
<td>Trials published from January 2000 to present</td>
<td>Trials published before January 2000</td>
</tr>
<tr>
<td>Study Quality</td>
<td>Fair- and good-quality studies</td>
<td>Poor-quality studies</td>
</tr>
</tbody>
</table>
Appendix B. Ongoing Studies and Trials Pending Assessment

<table>
<thead>
<tr>
<th>Investigator (Location)</th>
<th>Study Title/Name</th>
<th>Number of Participants/Estimated Enrollment</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>2014 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophia Zackrisson (Sweden)</td>
<td>Malmö Breast Tomosynthesis Screening Trial</td>
<td>15,000</td>
<td>Screening with tomosynthesis compared to digital mammography</td>
<td>Cancer detection; sensitivity; specificity</td>
<td>Study Period: March 2010 – March 2016; Recruiting</td>
</tr>
<tr>
<td>Emily Conant (United States)</td>
<td>Comparison of Full-Field Digital Mammography With Digital Breast Tomosynthesis Image Acquisition in Relation to Screening Call-Back Rate</td>
<td>550</td>
<td>Screening with digital mammography compared to a combination of 2D and 3D tomosynthesis</td>
<td>Recall rates; sensitivity; specificity; lesion characterization; radiation dose</td>
<td>Study Period: December 2012 – June 2012; Status unknown</td>
</tr>
<tr>
<td>Jules Sumkin (United States)</td>
<td>Assessment of Digital Breast Tomosynthesis (DBT) in the Screening Environment</td>
<td>1,080</td>
<td>Screening with digital mammography and tomosynthesis (images interpreted independently)</td>
<td>Recall rates; specificity</td>
<td>Study Period: May 2010 – May 2014; Recruiting</td>
</tr>
<tr>
<td>Per Skaane (Norway)</td>
<td>Tomosynthesis in the Oslo Breast Cancer Screening Program (DBT)</td>
<td>25,000</td>
<td>Screening with digital mammography and tomosynthesis</td>
<td>Screening performance indicators; interval cancer rates</td>
<td>Study Period: November 2010 – September 2015; Ongoing, but not recruiting</td>
</tr>
<tr>
<td>Thomas Moritz (Austria)</td>
<td>Digital Breast Tomosynthesis vs. Digital Mammography: A National Multicenter Trial</td>
<td>600</td>
<td>Screening with digital mammography and tomosynthesis</td>
<td>Specificity; sensitivity</td>
<td>Study Period: January 2012 – December 2012; Status unknown</td>
</tr>
</tbody>
</table>