
- 196. Haynes E, Kalkwarf H, Hornung R, al. e. Vitamin D Fok1 polymorphism and blood lead concentration in children. *Environ Health Perspect*. 2003;111:1665-1669.
- 197. Bellinger D. Teratogen Update: Lead and Pregnancy. *Birth Defects Research*. 2004;(Part A) 73:409-420.
- 198. Glotzer DE, Bauchner H. Management of childhood lead poisoning: a survey. *Pediatrics*. 1992;89:614-618.
- 199. Markowitz ME, Rosen JF. Need for the lead mobilization test in children with lead poisoning. *J Pediatr*. 1991;119(2):305-310.
- 200. Farfel MR, Chisolm JJ, Jr. Health and environmental outcomes of traditional and modified practices for abatement of residential lead-based paint. *Am J Public Health*. 1990;80(10):1240-1245.
- 201. Amitai Y, Brown MJ, Graef JW, Cosgrove E. Residential deleading: effects on the blood lead levels of lead-poisoned children. *Pediatrics*. 1991;88(5):893-897.
- 202. Amitai Y, Graef JW, Brown MJ, Gerstle RS, Kahn N, Cochrane PE. Hazards of 'deleading' homes of children with lead poisoning. *Am J Dis Child*. 1987;141(7):758-760.
- 203. Rey-Alvarez S, Menke-Hargrave T. Deleading dilemma: pitfall in the management of childhood lead poisoning. *Pediatrics*. 1987;79(2):214-217.
- 204. Feldman RG. Urban lead mining: lead intoxication among deleaders. *N Engl J Med.* 1978;298(20):1143-1145.
- 205. Chisolm JJ, Jr. Treatment of acute lead intoxication--choice of chelating agents and supportive therapeutic measures. *Clin Toxicol*. 1970;3(4):527-540.
- 206. Moel DI, Kumar K. Reversible nephrotoxic reactions to a combined 2,3-dimercapto-1propanol and calcium disodium ethylenediaminetetraacetic acid regimen in asymptomatic children with elevated blood lead levels. *Pediatrics*. 1982;70(2):259-262.
- 207. Shannon MW, Townsend MK. Adverse effects of reduced-dose d-penicillamine in children with mild-to-moderate lead poisoning. *Ann Pharmacother*. 2000;34(1):15-18.
- 208. Mann KV, Travers JD. Succimer, an oral lead chelator. *Clin Pharm.* 1991;10(12):914-922.
- 209. Lane WG, Kemper AR, American College of Preventive M. American College of Preventive Medicine Practice Policy Statement. Screening for elevated blood lead levels in children. *Am J Prev Med.* 2001;20(1):78-82.
- 210. American Academy of Pediatrics Committee on Environmental Health. Screening for elevated blood lead levels. *Pediatrics*. 1998;101(6):1072-1078.
- 211. Ellis MR, Kane KY. Lightening the lead load in children. *Am Fam Physician*. 2000;62(3):545-554.
- 212. Centers for Medicare and Medicaid Services. Medicaid and EPSDT. Added 6.8.05; <u>http://www.cms.hhs.gov/medicaid/epsdt/default.asp</u>. Accessed June 5, 2005.
- 213. Markowitz M, Rosen JF, Clemente I. Clinician follow-up of children screened for lead poisoning. *Am J Public Health*. 1999;89(7):1088-1090.
- 214. Campbell JR, Schaffer SJ, Szilagyi PG, O'Connor KG, Briss P, Weitzman M. Blood lead screening practices among US pediatricians. *Pediatrics*. 1996;98(3 Pt 1):372-377.
- 215. New York State Department of Health and American College of Obstetricians and Gynecologists District II. *Lead poisoning prevention guidelines for prenatal care providers*. Albany, NY: New York City Department of Health; 1995.

- 216. Pirkle JL, Brody DJ, Gunter EW, et al. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES) *JAMA*. 1994;272(4):284-291.
- 217. Annest JL, Pirkle JL, Makuc D, Neese JW, Bayse DD, Kovar MG. Chronological trend in blood lead levels between 1976 and 1980. *N Engl J Med.* 1983;308(23):1373-1377.
- 218. Centers for Disease Control and Prevention. Blood lead levels United States, 1988-1991. *MMWR*. 1994;43:545-548.
- 219. Hayes EB, McElvaine MD, Orbach HG, Fernandez AM, Lyne S, Matte TD. Long-term trends in blood lead levels among children in Chicago: relationship to air lead levels. *Pediatrics*. 1994;93(2):195-200.
- 220. Davis JM, Elias RW, Grant LD. Current issues in human lead exposure and regulation of lead. *Neurotoxicology*. 1993;14(2-3):15-27.
- 221. Galal-Gorchev H. Dietary intake, levels in food and estimated intake of lead, cadmium, and mercury. *Food Addit Contam.* 1993;10(1):115-128.
- 222. Prpic-Majic D, Pongracic J, Hrsak J, Pizent A. A follow-up study in a lead smelter community following the introduction of an effective pollution control system. *Isr J Med Sci.* 1992;28(8-9):548-556.
- 223. Yankel AJ, von Lindern IH, Walter SD. The Silver Valley lead study: the relationship between childhood blood lead levels and environmental exposure. *J Air Pollut Control Assoc.* 1977;27(8):763-767.
- 224. Department of Health and Human Services, Department of Housing and Urban Development, and Environmental Protection Agency. Report of the Interagency Task Force on the Prevention of Lead Poisoning: a report to Congress. *Washington, DC: Department of Housing and Urban Development.* 1993.

Author, Year	Aims	Study Design	Type of Intervention	Ν	
Besunder, 1995 ¹⁵⁰	To determine the short-term efficacy of DMSA in mild to moderate lead intoxication	Retrospective case- series	Chelation with DMSA and abatement of domestic lead hazards	46 treated, 18 excluded, N = 28	Regional treatmen hospital,
Chisolm, 2000 ¹⁵²	Assess safety and efficacy of DMSA	Open label non- comparative (case- series)	Chelation with DMSA, relocation to lead-safe housing	59	Regional referral c MD
Dietrich, 2004 ¹⁴⁰	To assess neurobehavioral outcomes of children in the TLC study at 7 years of age.	Randomized multicenter, placebo controlled, double- blind trial	Chelation with DMSA after domestic cleaning with HEPA vacuum and damp cloth wiping	1854 evaluated, 780 randomized	Multicent Cincinna Newark,
Liebelt, 1994 ¹⁴⁸	To compare effect of DMSA treatment in children with initial blood lead level < 45 ug and > 45 ug	Retrospective cohort study	Chelation with DMSA	30	Regional treatmen children's MA

		Source of Exposure/ Risk		
Author, Year	Population/ Risk Factors	Factors	Lead Levels	Main Eligibility Criteria
Besunder, 1995 ¹⁵⁰	Referral population, 35% African American, 10% Hispanic	Housing	25-49 ug/dl	Convenience sample. Children receiving 19 days of DMSA treatment during 6/91 to 5/93, with initial blood lead level between 25 and 49 ug/dl. Exclusion criteria: drug cosponsored trial (N=14), prior (previous 28 days) chelation therapy, concommitant chelating agent (EDTA, N=3), documented noncompliance (N=1).
Chisolm, 2000 ¹⁵²	Children ages 12-65 months	Housing	25-70 ug/dl	Convenience sample. Children 12-72 months old (actual range 12-65 months), with initial blood lead level 25-120 ug/dl (actual range 25-70 ug/dl), residing in lead-safe housing for duration of study, asymptomatic, having no other disease or other lead treatment in 2 prior months
Dietrich, 2004 ¹⁴⁰	Children ages 12-33 months, 77% African-American. Most had poor, single mothers and lived in older, poorly maintained residences.	Housing	20-44 ug/dl	Children ages 12-33 months with blood lead level 20-44 ug/dl on two occasions, living in a residence suitable for lead dust reduction. Recruitment varied by location. Patients were randomized by strata to treatment or placebo.
Liebelt, 1994 ¹⁴⁸	Ages 5-161 months (mean 34 months)	Housing	Range=20-60 ug/dl. GP1 (N=23) < 45 ug (mean = 31 ug) GP2 (N=7) > 45 ug (mean=51 ug)	30 consecutive children (convenience sample) who received DMSA during a 15 month period. Indications for DMSA use: 11 = blood lead level > 45 ug/dl, 11 =complications resulting from , use of pencillamine (another chelator), 1=chronic renal failure thought to preclude penicillamine use, 7 = failure of penicillamine and EDTA (persistent elevated blood lead level)

Author, Year	Duration of Follow-up	Interventions Described	Outcomes Assessed	Results
Besunder, 1995 ¹⁵⁰	80 days	DMSA 10 mg/kg every 8 hours for 5 days, followed by 10 mg/kg every 12 hours for 14 days	Blood lead level, ZPP	Blood lead level: post-treatment (day 18) -43% (± 20.8%), 80 Days -31% (± 20.2%); ZPP post- treatment (day 18) -12% (±21.7%), 80 days -32% (±21.9%)
Chisolm, 2000 ¹⁵²	21 days	1050 mg/ m^2/day DMSA in three divided doses for five days, followed by 700 mg/ m^2/ day in two dived doses for 21-23 days	Blood lead level	Mean blood lead level decreased to below 35% of pretreatment value after 4 weeks of DMSA treatment, and rebounded to 58% of pre-treatmen level 2-3 weeks after cessation of therapy
Dietrich, 2004 ¹⁴⁰	6 years (until 7 years of age)	DMSA treatment lasting 26 days, dose based on body surface area; treatment repeated up to 3 times for persistently elevated blood lead level. Domestic cleaning with HEPA vacuum and damp cloth wiping	Cognition, behavior, learning and memory, attention, g neurmotora battery of tests	No statistically significant difference in neurobehavioral outcomes except DMSA-treated children did worse on attention/executive functions
Liebelt, 1994 ¹⁴⁸	6 months	DMSA 30 mg/kg daily divided into 3 doses for five days, followed by 20 mg/kg daily in two divided doses for 14 days	Blood lead level, ZPP, AST, ALT	GP1 (<45 ug): mean blood lead level declined to 60% (19ug/dl) of pretreatment level during treatment, and rebounded (22 days after termination of treatment) to 74% of pretreatment levels, a net 26% reduction in mean blood lead level; GP2(>45ug): mean blood lead level declined to 58% (30 ug/dl) during treatment, and rebounde (18 days after termination of treatment) to 69% of pretreatment level, a net 31% decrease in mean blood lead level.

	Adverse Effects (NR for absence; ND for failure	9	
Author, Year	to describe)	Comments	Quality Rating
Besunder, 1995 ¹⁵⁰	Neutropenia (N=1)	No control group, cannot exclude other intervention (abatement of domestic lead hazards prior to treatment)	Case series; non-controlled study.
Chisolm, 2000 ¹⁵²	Elevated alkaline phosphate levels (n=2), eosinophilia (N=1)		Case series; non-controlled study.
Dietrich, 2004 ¹⁴⁰	No statistically significant difference compared to placebo. Excess noted: trauma, scalp rashes, neutropenia/thrombocytopenia, elevated ALT.	High quality	Good
Liebelt, 1994 ¹⁴⁸	Vomitting/diarrhea (N=1), mildly but statistically significantly increased ALT levels (mean 26 ± 3 mU/ml) (N=17)	No statistically significant difference in mean blood lead level percentage decrease between groups. Similar percentage reduction in both groups. Absolute reduction of blood lead level greater in high blood lead level group.	Case series; non-controlled study.

Author, Year	Aims	Study Design	Type of Intervention	Ν	
Liu, 2002 ¹³⁹	A reanalysis of TLC data using change in blood lead level as independent variable (TLC trial)	Randomized multicenter, placebo controlled, double- blind trial	Chelation with DMSA after domestic cleaning with HEPA vacuum and damp cloth wiping	1854 evaluated, 780 randomized, results from 741 reanalyzed for this study	Multicent Cincinna Newark,
Markowitz, 1996 ¹⁵⁷	To determine the pattern of change in blood Pb (BPb) levels in the absence of chelation therapy	non-compatible study, cross sectional	observation, education	79 (206 eligible, 113 enrolled, 79 completed	regional NY

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria
Liu, 2002 ¹³⁹	Children ages 12-33 months, 77% African-American. Most had poor, single mothers and lived in older, poorly maintained residences.	Housing	20-44 ug/dl	Children ages 12-33 months with blood lead level 20-44 ug/dl on two occasions, living in a residence suitable for lead dust reduction. Recruitment varied by location. Patients were randomized by strata to treatment or placebo.
Markowitz, 1996 ¹⁵⁷	Low income, inner city, 2/3 Hispanic 1/3 African American	Housing	25-55 ug/dl	Ages 1-7, blood lead level 25-55 ug, negative EDTA mobilization test, no prior chelation therapy, no neurobehavioral disorders from other causes

Author, Year	Duration of Follow-up	Interventions Described	Outcomes Assessed	Results
Liu, 2002 ¹³⁹	36 months	DMSA treatment lasting 26 days, dose based on body surface area; treatment repeated up to 3 times for persistently elevated blood lead level. Domestic cleaning with HEPA vacuum and damp cloth wiping	Change in cognitive function by change in blood lead level	Six months after treatment, blood lead level had fallen a similar amount in both DMSA and placebc groups. There was no association between change in blood lead level and change in cognitive test score. blood lead level continued to fall, but a 36 months after treatment, cognitive test scores improved 4.0 points for every 10 ug/dl drop in blood lead level in the placebo group only. This implies that factors other than declining blood lead levels per se are responsible for the cognitive improvement. The data do not support the hypothesis that lead-induced cognitive defects are reversible by chelation therapy.
Markowitz, 1996 ¹⁵⁷	6 months	Eligible children received the following interventions: notification of the health department to remediate lead hazards; reinforced educational efforts about the toxicity sources and treatment of Pb during 10 clinic and 3 home visits; and iron therapy for children with ferritin levels less than 16 g/l. To quantify the lead paint hazards in the home, we combined a visual rating of the surfaces (intact to peeling) with an X-ray fluorescence (XRF) measurement of the lead content of the painted surface. The sum of these assessments is termed the home environmental score (HES).	Blood lead level	blood lead level declined 27% on average over 6 months. In 2/3, blood lead level declined to < 25 ug/dl, in 7% blood lead level declined to <15 ug/dl

	Adverse Effects (NR for absence; ND for failure	3	
Author, Year	to describe)	Comments	Quality Rating
Liu, 2002 ¹³⁹	No statistically significant difference compared to placebo. Excess noted: trauma, scalp rashes, neutropenia/thrombocytopenia, elevated ALT.	Suggests that chelation may have adverse effect on cognitive development.	Good

Markowitz, 1996¹⁵⁷ ND

Mixed intervention. Describes home assessmentCase series; non-controlledtool (HES: home environmental score)study.

Author, Year	Aims	Study Design	Type of Intervention	Ν	
O'Connor, 1999 ¹⁵¹	To determine the effectiveness of DMSA and environmental modification vs. placebo and environmental modification	Randomized placebo-controlled double-blind trial	Chelation with DMSA, domestic cleaning and repair	39	Urban ch Clevelan
Peterson, 2004 ¹⁴¹	To determine if chelation would have beneficial effect on growth in lead-exposed children (TLC trial)	Randomized multicenter, placebo controlled, double- blind trial	Chelation with DMSA after domestic cleaning with HEPA vacuum and damp cloth wiping	1854 evaluated, 780 randomized	Multicent Cincinna Newark,
Rogan, 1998 ¹³⁷	Describes study design/methods of TLC trial	Randomized multicenter, placebo controlled, double- blind trial	Chelation with DMSA after domestic cleaning with HEPA vacuum and damp cloth wiping	1854 evaluated, 780 randomized	Multicent Cincinna Newark,
Rogan, 2000 ¹⁴⁴	To determine the efficacy of DMSA (TLC trial)	Randomized multicenter, placebo controlled, double- blind trial	Chelation with DMSA after domestic cleaning with HEPA vacuum and damp cloth wiping	1854 evaluated, 780 randomized	Multicent Cincinna Newark,

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria
O'Connor, 1999 ¹⁵¹	Low-income African-American inner city children 2.5-5 years old	Housing	30-45 ug/dl	Recruited from urban children's hospital, pediatric clinic or from referral practice of author. Exclusion criteria: previously high blood lead level (> 45 ug/dl) with chelation or history of numerous missed scheduled appointments or difficulty contacting family.
Peterson, 2004 ¹⁴¹	Children ages 12-33 months, 77% African-American. Most had poor, single mothers and lived in older, poorly maintained residences.	Housing	20-44 ug/dl	Children ages 12-33 months with blood lead level 20-44 ug/dl on two occasions, living in a residence suitable for lead dust reduction. Recruitment varied by location. Patients were randomized by strata to treatment or placebo.
Rogan, 1998 ¹³⁷	Children ages 12-33 months, 77% African-American. Most had poor, single mothers and lived in older, poorly maintained residences.	Housing	20-44 ug/dl	Children ages 12-33 months with blood lead level 20-44 ug/dl on two occasions, living in a residence suitable for lead dust reduction. Recruitment varied by location. Patients were randomized by strata to treatment or placebo.
Rogan, 2000 ¹⁴⁴	Children ages 12-33 months, 77% African-American. Most had poor, single mothers and lived in older, poorly maintained residences.	Housing	20-44 ug/dl	Children ages 12-33 months with blood lead level 20-44 ug/dl on two occasions, living in a residence suitable for lead dust reduction. Recruitment varied by location. Patients were randomized by strata to treatment or placebo.

Author, Year	Duration of Follow-up	Interventions Described	Outcomes Assessed	Results
O'Connor, 1999 ¹⁵¹	6 months	Children weighing < 15 kg: 1000 mg DMSA t.i.d. for 5 days followed by 100 mg bid for 14 days; Children weighing > 15 kg: 200 mg tid for 5 days, followed by 200 mg bid for 14 days	Blood lead level	DMSA group: Baseline 34.9 ± 4.7 ug/dl, 1 month 27.4 \pm 7.5 ug/dl, 6 months 28.8 ± 6.4 ug/dl; Placebo baseline 33.0 ± 6.2 ug/dl , 1 month $33.2 \pm$ 10.3 ug/dl , 6 months 25.1 ± 6.8 ug/dl (p=0.06). Differences in blood lead level between groups were not statistically significant (p = 0.16 at 1 month, p = 0.06 at 6 months)
Peterson, 2004 ¹⁴¹	34 months	DMSA treatment lasting 26 days, dose based on body surface area; treatment repeated up to 3 times for persistently elevated blood lead level. Domestic cleaning with HEPA vacuum and damp cloth wiping	Change in height and weight from baseline to 9 month follow up and from b	Difference in mean change in height between DMSA treatment vs Placebo. 0-9 months: -0.27 cm (CI =42,11), 0-34 months -0.43 cm (CI - 0.77, -001).
Rogan, 1998 ¹³⁷	36 months	DMSA treatment lasting 26 days, dose based on body surface area; treatment repeated up to 3 times for persistently elevated blood lead level. Domestic cleaning with HEPA vacuum and damp cloth wiping	Behavioral and psychometric assesments, BPb, and a battery of other biochemical tests.	Description of baseline measurements, group characteristics, study methodology.
Rogan, 2000 ¹⁴⁴	12 months	DMSA treatment lasting 26 days, dose based on body surface area; treatment repeated up to 3 times for persistently elevated blood lead level. Domestic cleaning with HEPA vacuum and damp cloth wiping	Blood lead level, ZPP	DMSA-treated group blood lead level 11 ug/dl lower at one week. Rebound began at one week and at 7 weeks DMSA group mean blood lead level was 72% of baseline (placebo group mean blood lead level was 88% of baseline). During the six months after initiation of treatment, the DMSA group had a mean blood lead level 4.5 ug/dl lower than the control group. At 12 months mean DMS/ group blood lead level is 2.7 ug/dl lower than the control group, but confidence intervals for overlap At 12 months groups are similar.

Adverse Effects (NR for absence; ND for failure				
Author, Year	to describe)	Comments	Quality Rating	
O'Connor, 1999 ¹⁵¹	ND		Fair	
Peterson, 2004 ¹⁴¹	Small, marginally significant decrease in height among treatment group compared to placebo. Excess noted: trauma, scalp rashes, neutropenia/thrombocytopenia, elevated ALT.	Chelation may have adverse effect on growth	Good	
Rogan, 1998 ¹³⁷	ND		Good	
Rogan, 2000 ¹⁴⁴	No statistically significant difference compared to placebo. Excess noted: trauma, scalp rashes, neutropenia/thrombocytopenia, elevated ALT.	Essentially no effect at 12 months	Good	

Author, Year	Aims	Study Design	Type of Intervention	Ν	
Rogan, 2001 ¹³⁸	To determine whether treatment of blood lead level < 45 ug/dl with chelation improves cognitive outcomes (TLC trial)	Randomized multicenter, placebo controlled, double- blind trial	Chelation with DMSA after domestic cleaning with HEPA vacuum and damp cloth wiping	1854 evaluated, 780 randomized	Multicent Cincinna Newark,

Shannon, 2000 ²⁰⁷	Determine incidence of adverse affects of low doses of penicillamine for treatment of blood lead level < 04 ug/dl.	Retrospesctive analysis	Chelation with penicillamine	55	Urban Cl Boston N

Abbreviations

ALT = Alanine transferase; AST = Aspartate aminotransferase; CBC = Complete blood count; DMSA = Dimercapto = Ethylenediaminetetraacetic acid; EP = Erythrocyte protoporphyrin; HEPA = High efficiency particulate air; MCH = hemoglobin; TLC = Treatment of Lead-Exposed Children study; UA = Urine analysis; WBC = White blood cell count protoporphyrin

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria
Rogan, 2001 ¹³⁸	Children ages 12-33 months, 77% African-American. Most had poor, single mothers and lived in older, poorly maintained residences.	Housing	20-44 ug/dl	Children ages 12-33 months with blood lead level 20-44 ug/dl on two occasions, living in a residence suitable for lead dust reduction. Recruitment varied by location. Patients were randomized by strata to treatment or placebo.
Shannon, 2000 ²⁰⁷	Children, mean age 37.4 ± 24.6 months	Housing	24 ± 5 ug/dl (range 15-37)	Retrospective analysis of medical records of all children who were prescribed d-PCN by the Lead and Toxicology Clinic (LTC) of Children's Hospital, Boston, in 1996. The LTC treatment program receives approximately 1200 annual visits, and works in cooperation with the Massachusetts Childhood Lead Poisoning Prevention Program.

Abbreviations

ALT = Alanine transferase; AST = Aspartate aminotransferase; CBC = Complete blood count; DMSA = Dimercaptosuccinic acid; EDTA = Ethylenediaminetetraacetic acid; EP = Erythrocyte protoporphyrin; HEPA = High efficiency particulate air; MCH = Mean corpuscular hemoglobin; TLC = Treatment of Lead-Exposed Children study; UA = Urine analysis; WBC = White blood cell count; ZPP = Zinc protoporphyrin

	Duration of		Outcomes	
Author, Year	Follow-up	Interventions Described	Assessed	Results
Rogan, 2001 ¹³⁸	36 months	DMSA treatment lasting 26 days, dose based on body surface area; treatment repeated up to 3 times for persistently elevated blood lead level. Domestic cleaning with HEPA vacuum and damp cloth wiping	Scores on developmental, neuropsychological, and behavioral tests (Bayley Scales of Infant Development II, Wechsler Preschool and Primary Scales of Intelligence-Revices, Developmental Neuropsychological Assesment, Connors' Parent Rating Scale- Revised)	First six months: succimer treatment mean blood lead level 4.5 ug/dl lower than placebo. At 36 months, DMSA group scored on average 1 IQ point lower than the control group, and had slightly worse behavior by parental rating compared to the placebo group. The placebo group fared slightly better on a developmental neuropsychological battery of tests. But overall, there was no statistically significant difference between the two groups.
Shannon, 2000 ²⁰⁷	Convenience sample, children who received penicillamine in 1996	Penicillamine at 15 mg/kg/d administered until blood lead level declined and remained < 15 ug/dl, mean duration of treatment was 77 \pm 44 days	Blood lead level, CBC, EP, UA	Mean total white blood cell count fell from 8270 \pm 2630/mm^3 to 7020 \pm 1940/mm^3 (p =0.009) during treatment, post-treatment WBC was not significantly differenent than pre-treatment WBC. Mean platelet count fell from 364000 \pm 117000 /mm^3 to 308000 \pm 74000/mm^3 during treatmen (p<0.001) and was 338000 \pm 74000/mm^3 after chelation (p=0.02). Rash occurred in 4.5% (N=3) of patients. No cases of abnormal urinalysis.

Abbreviations

ALT = Alanine transferase; AST = Aspartate aminotransferase; CBC = Complete blood count; DMSA = Dimercaptosuccinic acid; EDTA = Ethylenediaminetetraacetic acid; EP = Erythrocyte protoporphyrin; HEPA = High efficiency particulate air; MCH = Mean corpuscular hemoglobin; TLC = Treatment of Lead-Exposed Children study; UA = Urine analysis; WBC = White blood cell count; ZPF = Zinc protoporphyrin

	Adverse Effects (NR for absence; ND for failure		
Author, Year	to describe)	Comments	Quality Rating
Rogan, 2001 ¹³⁸	No statistically significant difference compared to placebo. Excess noted: trauma, scalp rashes, neutropenia/thrombocytopenia, elevated ALT.	Conclusion: chelation < 45 ug/dl not effective	Good

Shannon, Rash, depressed WBC and platelet counts. 2000 ²⁰⁷	When compared to results of their previous investigation involving a higher dose, the results suggest that penicillamine at 15mg/kg/d is safer than a higher dose regimen without a significant loss of efficacy.	Case series; non-controlled study.
--	---	------------------------------------

Abbreviations

ALT = Alanine transferase; AST = Aspartate aminotransferase; CBC = Complete blood count; DMSA = Dimercaptosuccinic acid; EDTA = Ethylenediaminetetraacetic acid; EP = Erythrocyte protoporphyrin; HEPA = High efficiency particulate air; MCH = Mean corpuscular hemoglobin; TLC = Treatment of Lead-Exposed Children study; UA = Urine analysis; WBC = White blood cell count; ZPP = Zinc protoporphyrin

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	Ν	
Author, Year Aschengrau, 1994 ¹⁸² ; Aschengrau, 1997 ¹⁸³	Title The impact of soil lead abatement on urban children's blood lead levels: Phase II results from the Boston lead- in-soil demonstration project; Residential lead-based paint hazard remediation and soil	Aims To study the impact of urban soil lead abatement on children's blood lead levels (The Boston Lead-In-Soil Demonstration Project, 1989-1990); To report the Phase II results of the Boston Lead-in-Soil Demonstration Project, which was designed to assess children's blood lead levels and household dust lead levels following (1) lead-based-paint hazard and remediation alone and (2) in combination	Study Design Randomized environmental intervention; no untreated comparison group	Intervention Soil	N 152	B n w ir p
	lead abatement: their impact among children with mildly elevated blood lead levels	with soil abatement.				

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Aschengrau, 1994 ¹⁸² ; Aschengrau, 1997 ¹⁸³	Children age <4	Soil	7 to 24 ug/dL	Children were eligible if they lived in the neighborhoods of Boston with a high incidence of lead poisoning, were under 4 years of age, and had a finger stick blood lead level from 10-20 ug/dL. Children up to age 4 living on the same premises were also eligible. Also: 1) the amount of peeling paint was less than 30% of exterior walls of the house or 40% of the exterior walls of adjacent buildings; 2) the child's house had a yard at least 10 square feet in size that was composed, at least partlyl, of accessible soil and/or grass; 3) the surface soil lead levels, 1m from the house, averaged at least 1500 ppm; 4) the house had 8 or fewer apartments; 5) the child was mobile and had never been lead poisoned; and 6) the family lived on the premises for at least 3 months and had no plans to move in the near future.	2 years

Author, Year	Interventions Described	Outcomes Assessed
Aschengrau, 1994 ¹⁸² ; Aschengrau, 1997 ¹⁸³	 Phase I, 1989-1990: Study group (n=54) received soil and interior dust abatement and loose paint stabilization Comparison group A (n=51) received received interior dust abatement and loose paint stabilization, and Comparison Group B received only loose paint stabilization. Phase II, 1990-1991: Soil abatement was conducted in Comparison Groups A and B, and residential lead-based paint removal was offered to all three groups. Soil abatement: removed 6 inches of top soil from entire yard. Interior dust abatement: vacuuming walls, woodwork, floors, and rugs with a HEPA filter vacuum, and wiping surfaces with wet cloths and furniture with oil-treated cloths Lead-based paint remediation: licensed contractors performed the remediation on exterior and interior areas, using containment barriers and HEPA vacuum units. Surfaces were then wet washed and wood floors were coated with polyurethane. 	Three venous blood smples were taken over a 2-year period. During Phase I, samples were obtained before and 10 months after soil or paint abatement. During Phase II, follow-up sampling took place 9 months after soil or paint abatement.

		Adverse		Quality
Author, Year	Results	Effects	Comments	Rating
Aschengrau, 1994 ¹⁸² ; Aschengrau, 1997 ¹⁸³	 Pre- and post- soil abatement levels (ug/dL) and change before and after (ug/DL, 95% CI): Study group (Phase I, mixed interventions): 13.10, 10.65; -2.44 (-3.32, -1.57) Group A (Phase II): pre 12.94, post 7.69; change -5.25 (-6.51, -3.99) Group B (Phase II): pre 10.54, post 9.15; change -1.30 (-4.03, +1.26) (includes only children in Groups A and B whose homes were not deleaded during phase II) All groups, all phases combined, irrespective of Phase II deleading status: pre 12.66, post 9.77; change -2.89 (-3.64, -2.13) Soil lead reduction of 2060 ppm is associated with a 2.25 to 2.70 ug/dL decline in blood lead levels. Low levels of soil recontamination 1 to 2 years following abatement indicate that the intervention is persistent. Paint hazard remediation alone was associated with a blood lead increase of 6.5 ug/dL (p=0.05) Paint hazard remediation combined with soil abatement was associated with an increase of 0.9 ug/dL (p=0.36) Conclusion: lead-based-paint hazard remediation is not an effective secondary prevention strategy among children with mildly elevated blood lead levels. 	ND	Soil abatement effects on blood lead were reported only for selected children in Groups A and B. Group S had mixed interventions.	Not rated; no comparisor group

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	Ν	
Aschengrau, 1998 ¹⁶³	The impact of low technology lead hazard reduction activities among children with mildly elevated blood lead levels	To determine the effect of low-technology lead hazard reduction activities on children's blood and household dust lead levels. The purpose of the intervention was to reduce children's exposure to household lead hazards by removing lead- contaminated dust and loose paint chips from the window and floor areas and by instructing caregivers to maintain clean window and floor surfaces over the follow- up period.	RCT	Dust	63	В
Campbell, 2003 ¹⁶⁷	Effect of a follow-up professional home cleaning on serial dust and blood lead levels of urban children	To determine the effects of a follow-up professional lead dust cleaning of their homes 18 months after an initial cleaning and commencement of therapy.	Non- randomized trial; followup of chelation RCT (TLC)	Dust	73	T L C n d ir

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Aschengrau, 1998 ¹⁶³	Children age <=4	lead-based paint in home	16.9 ug/dL	Eligible children: 1) resided in the city of Boston, 2) were age <=4, 3) had a venous blood lead level from 11 to 24 ug/dL, 4) had no history of lead poisoning (venous lead >=25 ug/dL) or chelation therapy, 5) were not expected to undergo chelation treatment, 6) lived on the premises for at least 3 months with no definite plans to move within the next 3 months, 7) lived in home with lead-based paint in at least two window sills and/or window wells, as determined by sodium sulfied tests, 8) the home had not been previously deleaded or received lead hazard reduction activities, 9) the parents spoke English, Spanish, or Cape Verdean creole, and 10) no other child in the home was already a study participant.	6 months
Campbell, 2003 ¹⁶⁷	Toddlers aged 12- 34 month at enrollment	lead-based paint in home	20-44 ug/dL	780 toddlers with BLLs 20-44 ug/dL enrolled in RCT (TLC study) comparing chelation therapy and placebo. The original study was conducted in Newark NJ, Baltimore MD, Cincinnati OH, and phladelphia PA. In this study, the 165 study families in PHiladelphia were offered a second professional lead dust cleaning of their home, at the 18-month follow-up visit after initiation of treatment.	9 months (from 15 to 24 months posttreatment, with the 2nd cleaning occurring after 18 and before 21 months

Author, Year	Interventions Described	Outcomes Assessed
Aschengrau, 1998 ¹⁶³	 Children were screened 1993-1995. Children with severe lead hazards were automatically assigned to an intervention group. Severe hazards were one of the following: 1) paint chips on any floors, 2) severe amounts of loose dust or paint chips in any window well, or 3) holes in walls larger than 1 inch in diameter and positive for lead paint. Children whose homes had lesser hazards were randomly assigned to the intervention group or control group. A one-time intervention was performed by a trained staff member of the Boston Lead Poisoning Prevention Program: 1) HEPA-vacuuming all window well, window sill, and floor surfaces; 2) washing window well and window sill surfaces with a trisodium phosphate (TSP) and water solution; 3) repainting window well and window sill surfaces with primer to seal any chipped or flaking paint; and 4) repairing holes in walls. 	Venous samples were obtained to determine blood lead levels at baseline and an average of 6 months after the intervention. Environmental measurements were made of dust, soil, water, and paint.
Campbell,	As part of the RCT treatment protocol, the children's homes were	For this analysis, venous blood samples

2003¹⁶⁷

As part of the RCT treatment protocol, the children's homes were professionally cleaned to minimize dust lead exposure. After completion of the treatment phase of the TLC trial, 165 families were offered a second professional dust cleaning of their home. 73 selfselected families participated in the second home cleaning 18 months after the initial cleaning and commencement of therapy.

For this analysis, venous blood samples from 15-mo, 18-mo (just prior to the second cleaning), 21-mo, and 24-mo clinical followup visits, from 73 children with homes cleaned and 86 children with homes not cleaned.

Author Vear	Posults	Adverse Effects	Comments	Quality Pating
Aschengrau, 1998 ¹⁶³	Blood level before & after intervention; mean change (ug/dL): Automatic intervention group (high risk): 17.5, 9.1; -8.4 Randomized intervention group: 17.6, 11.5; -6.2 Randomized control group: 16.3, 10.4; -5.9 Difference between mean changes (95% CI), randomized intervention vs control group: -0.3 (-3.8, +3.3) Automatic intervention vs comparison group -2.5 (-7.0, +2.1)	ND	Comments	Fair
Campbell, 2003 ¹⁶⁷	 There was no significant difference in GM blood lead levels at any clinic visit between children whose homes were cleaned and those whose homes were not cleaned. Geometric mean BLLs, adjusted for month and child, declined monotonically among 73 children whose homes were cleaned a 2nd time. BLLs of the 86 children whose homes did not receive a 2nd cleaning also declined over time, although there was an unexplained increase at the 3-mo postcleaning folow-up visit. BLLs before the cleaning were higher among children in high-exposure homes (GM 18.1 ugdL), compared with those in low-exposure homes (GM 14.5 ug/dL). Stratified by randomized treatment, there were only small differences in BLLs: 18.3 ug/dL and 17.1 ug/dL for children in chelation vs. placebo, in high exposure homes; and 14.5 vs 13.5 ug/dL for chelation vs placebo, in low-exposure homes. 	ND	Does not report the distribution of chelation vs placebo treatment among children who did or did not receive the 2nd home cleaning.	Fair

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	N	
Clark, 2004 ¹⁶⁰	Occurrence and	To examine the effect of lead hazard	Cohort study	Lead-based	869	U
	determinants of	control strategies on children's blood lead		paint and dust	children	Η
	increases in blood	levels immediately after an intervention by		hazard control		U
	lead levels in children	the US Department of Housing and Urban		program and		D
	shortly after lead	Development's (HUD) Lead-Based Paint		survey		L
	hazard control	Hazard Control Grant Program				H
	activities					G
Farrell 1998 ¹⁷⁵	Soil lead abatement	To assess the effect of soil lead abatement	RCT	Soil	Enrolled	2
1 anen, 1990	and children's blood	(1990) among Baltimore children.		••••	408	n
	lead levels in an urban	(····)			children in	B
	setting				263	
					houses;	
					187	
					completed	
					the study	
Galke, 2001 ¹⁷⁰	Evaluation of the HUD	To examine the range of interventions used	Descriptive	Dust	240	1
	lead hazard control	by grant recipients and assess the	study, no		children	d
	grant program: early	effectiveness of the HUD Lead Hazard	comparison		1212	S
	overall findings	Control Grant Program (1993-1994), based on blood and dust lead data aggregated across the various interventions.	group		dwellings	

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Clark, 2004 ¹⁶⁰	14 state and local governments included in program	Paint, dust, water, soil, home repair/ remodeling	ND	State or local government's participation in HUD's hazard control program	6 weeks
Farrell, 1998 ¹⁷⁵	Children aged 6 months to 6 years	Paint, soil	Baseline venous level: 11 ug/dL 54% of properties had soil samples >1000 ppm.	Subjects were aged 6 months to 6 years, and had been living in the same house (in the selected neighborhoods) for at least 3 months and the family was not planning to move.	1 year
Galke, 2001 ¹⁷⁰	Children aged 6 months to 6 years	Half of dwellings were built before 1910	Median 10 (range 2-48) ug/dL	HUD grantees were required to participated in the evaluation, and also attempted to recruit families residing in the dwellings. Children between age 6 months and 6 years were eligible.	12 months

Author, Year	Interventions Described	Outcomes Assessed
Clark, 2004 ¹⁶⁰	Measures blood levels, paint lead levels, dust levels, and parent fills out survey questionnaire (eg: child's age, sex, mouthing behavior, household size, education, etc. Also asked why parents thought that those with \geq 5 ug/dL increase occurred) (see Appendix for very specific details of these interventions). Intervention strategies categorized as interior, exterior, and site.	Blood tests performed at baseline (within 6 weeks of intervention), immediately after intervention, and later??? On children between 6 months and 6 years old. Some data was included from medical records. Capillary and venous sampling. Paint lead determined pre and post intervention using portable x-ray fluorescence analyzers (XRF) at preintervention on about 100 surfaces per dwelling.
Farrell, 1998 ¹⁷⁵	In summer and fall 1990, loose paint was wet scraped and then cleaned up with a HEPA vacuum. Surfaces were primed and painted twice with latex paint. Strict containment was practiced during the procedure. Contaminated soil at residences (>500 ppm) was replaced with clean soil. At 90% of the properties, all soil was abated. To prevent soil recontamination, exterior paint was stabilized in both the study and control areas before soil abatement. Children's blood lead levels were characterized before and at 3 months and at 1 year after soil abatement. Controls received no treatment.	Children's venous blood levels before and after soil abatement.
Galke, 2001 ¹⁷⁰	Data collection began in 1994. The last dwelling unit was treated in 1997, and the last 12-month data were collected in October 1998. Interior treatment levels were defined by category: spot painting/cleaning, complete painting, painting plus window treatments, plainting plus window abatement, full abatement of lead, total dwellings. Each of the 1212 dwellings had interior treatments, while 79% of the dwellings treatments to the exterior of the building, and 14% had soil treatments.	Blood lead levels (venous or capillary) and dust lead loading were gathered prior to the start of lead hazard control work, within 6 weeks after work was completed, 6 months and 12 months after work was completed.

Author, Year	Results	Adverse Effects	Comments	Quality Rating
Clark, 2004 ¹⁶⁰	Of 869 children tested after intervention, 81 (9.%) had blood lead increases of ≥ 5 ug/dL. Increases ranged from 5-25 ug/dL, average increase 8.4 ug/dL. Logistic regression analysis indicated that 4 factors were significantly associated with increases of ≥ 5 ug/dL: 1) child's age at pre-intervention (p=0.0061) 2) female caregiver's education (p=0.002) 3) general exterior building condition (p=0.0071) 4) 2nd season of blood sample collection (p< 0.001). As child's age increased, both odds ratio and probability of child showing increase of ≥ 5 ug/dL decreases sharply. In families where the female parent had < high school education, likelihood of ≥ 5 ug/dL was 2.5 times higher than families where female parent had < high school education. As number of exterior deteriorations increased, odds ratio for a ≥ 5 ug/dL was 1.5 higher for 1 deteriorations and 2.3 for 2 or more deteriorations.	ND		Fair
Farrell, 1998 ¹⁷⁵	One year postabatement, blood levels in both groups fell below baseline, but there was no significant effect of soil abatement on children's blood lead. Differences between treatment and control groups were not significant in any of the cross-sectional or longitudinal models. Two years postabatement, soil sampling showed significant lead reaccumulation.	ND		Fair
Galke, 2001 ¹⁷⁰	From preintervention to 12 months postintervention, the geometric mean blood lead level declined from 11.0 to 8.2 (-2.8) ug/dL, a 26% reduction	ND		Not rated; no comparison group

Author, Year	Title	Aims	Study Design	Type of Intervention	Ν	
Haynes, 2002 ¹⁶⁵	The effect of interior lead hazard controls on children's blood lead concentrations: a systematic evaluation	To to use meta-analysis of RCTs of low- cost lead hazard control interventions to determine whether low-cost strategies (defined as <\$2500 per housing unit or family) aimed at controlling lead- contaminated dust effectively prevent childhood lead exposure, as measured by children's blood lead concentration.	Meta-analysis of 4 studies published 1996-2000	Dust; meta- analysis	4 studies, total subjects = 533	
Jordan, 2003 ¹⁷⁷	A randomized trial of education to prevent lead burden in children at high risk for lead exposure: efficacy as measured by blood lead monitoring.	Tested blood lead levels every 4 months. Capillary sampling used until age 1, then venous sampling used unless parent objected.	RCT	Education	594 P mothers of n whom 378 N children's blood levels were tested	

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Haynes, 2002 ¹⁶⁵	NR	NR	6.7 to 16.9 ug/dL	Eligible articles for meta-analysis: a) randomized allocation of children to either a control group or intervention group; b) low-cost interventions defined as <\$2500; c) blood lead levels used as a measured outcome; and d) trial was not conducted in a community with a continual lead emission source.	6 to 48 months
Jordan, 2003 ¹⁷⁷	Inner-city, economically disadvantaged, ethnically diverse (78% non- Caucasian)	Paint, dust, water, soil, home repair/ remodeling	Before intervention, all levels were < 10 ug/dL	Pregnant women and mothers of young infants were recruited from the Phillips Nieghborhood, a large, inner- city, economically disadvantaged (71% of young children live in poverty), and ethnically diverse (78% persons of color) community. Participants were recruited via door knocking, posters, flyers, information tables at community events, and via referral from cooperating OB and pediatric clinics serving the neighborhood.	2 years

Author, Year	Interventions Described	Outcomes Assessed
Haynes,	Three studies included parental education, two studies provided the	Blood lead levels at baseline and after
2002 ¹⁶⁵	families with cleaning supplies or equipment, two provided professional	intervention, comparing intervention and
	cleaning and one made minor housing repairs.	control groups

Jordan, 2003¹⁷⁷ Mothers randomly assigned to control or intervention. Intervention offerred 20 biweekly in-home educational sessions by same-ethnicity peer educators over a one year period, and quarterly sessions for 2 years following. Sessions included information on lead sources, health consequences, and strategies to reduce exposure.

Tested blood lead levels every 4 months. Capillary sampling used until age 1, then venous sampling used unless parent objected.

Author. Year	Results	Adverse Effects	Comments	Quality Rating
Haynes, 2002 ¹⁶⁵	The weighted mean change in blood lead in all studies was -0.62 ug/dL (95% CI - 1.55 to 0.32). No significant difference between the intervention and control groups for either the educational dust control trials (-0.33 ug/dL, 95% CI -1.4 to 0.74) or the professional dust control trials (-1.52 ug/dL, 95% CI -3.41 to 0.37). Intervention and Control Groups were similar in the % of children >=10 ug/dL, but there were significantly fewer children with >=15 ug/dL and >=20 ug/dL in the treatment group than the control group: 6 vs 14% (p=0.008), and 2 vs 6% (p=0.024) respectively.	ND	Author's conclusion: although low-cost, interior lead hazard control was associated with 50% or greater reduction in the proportion of children who had blood lead concentrations exceeding 15 ug/dL and 20 ug/dL, there was no substantial effect on mean blood lead concentration.	Good
Jordan, 2003 ^{17;}	 ⁷ A greater percentage of children in intervention group (81%) maintained levels < 10 ug/dL, compared with the control group (73%), although the effect was of borderline significance (p=0.08). 15% of intervention group and 24% of control group had levels between 10-19.99 ug/dL (ns). 4% of intervention group and 2% of control group had levels > 20 ug/dL (ns). Statistical models show that intervention reduced risk of blood lead ≥ 10 ug/dL by approximately 34% ("borderline significance"). >90% completed 19 or 20 sessions. 50% completed 1st year of followup sessions; <5% completed 2nd year of followup sessions. 	ND	Received cash incentives for participation. Possible confounder of mother's education level that was adjusted for. Authors say education alone is not sufficient to lower exposure.	Fair

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	Ν	
Lanphear, 1999 ¹⁷⁸ ; Lanphear, 2000 ⁵⁹ ; Lanphear, 2002 ¹⁹⁵	Primary prevention of childhood lead exposure: a randomized trial of dust control; Long-term effect of dust control on blood lead concentrations; Environmental lead exposure during early childhood	To assess the effectiveness of a dust control education intervention in preventing children's exposure to lead, as measured by blood lead levels up to 24 months and at 48 months. Interveiews were conducted to estimate nutritional, behavioral, and demographic factors linked with lead exposure.	RCT	Education	275	C s R Y
Lanphear, 2003 ¹⁸⁴	The effect of soil abatement on blood lead levels in children living near a former smelting and milling operation	To determine the effect of soil abatement for residential soil with mean soil lead concentrations >500 ppm ug/g on blood lead levels in children aged 6-72 months	Two cross- sectional surveys before and after soil abatement	Soil	198 in 1st survey; 215 in 2nd survey	P ir

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Lanphear, 1999 ¹⁷⁸ ; Lanphear, 2000 ⁵⁹ ; Lanphear, 2002 ¹⁹⁵	Children aged 6 months	NR	2.9 ug/dL (95% Cl 2.7-3.1) at age 6 months	Children and their families were eligible if: they lived in Rochester, NY; they denied having plans to relocate in the next 3 months; and they were between ages 5 to 7 months at the baseline visit. Participants were identified and recruited by using sequential lists of live births from three urban hospitals.	48 months

Lanphear, 2003 ¹⁸⁴	Children	Midvale is a former site of a smelting and milling operation	Baseline mean in children with soil >500 ppm: 5.6 ug/dL, with 11% >=10 ug/dL Baseline mean in children with soil <500 ppm: 3.0 ug/dL, with 3% >=10 ug/dL	Children aged 6-72 months who lived in Midvale, Utah for at least 2 months; excluded children who had taken a prescribed iron supplement in the past 2 months or if there had been a major renovation of their residence during the past 12 months.	N/A
----------------------------------	----------	--	---	---	-----
Author, Year	Interventions Described	Outcomes Assessed			
---	--	--			
Lanphear, 1999 ¹⁷⁸ ; Lanphear, 2000 ⁵⁹ ; Lanphear, 2002 ¹⁹⁵	After baseline sampling, familes were randomly assigned to an intervention group or a control group. Intervention families received up to 8 visits by a dust control advisor, cleaning equipment and supplies, a detergent containing trisodium phosphate. Control families did not receive any education or interventions. (Calendar years of intervention not reported)	Venous blood lead levels measured at baseline (age 6 months), and at ages 12, 8, and 24, 36, and 48 months of age.			

Lanphear, 2003¹⁸⁴

Soil abatement occurred from 1993 to 1996 as follows: a clay cap was constructed over the tailings at the former mining and milling site adjacent to Midvale; yards with soil lead 500 ppm were excavated to 18 inches and backfilled with clean soil.

Surveys in 1989 and 1998 collected venous blood samples from eligibile children, and environmental samples from each residence (dust, paint, soil, water). Intervention group consisted of children whose yards (>500 ppm) were treated; control group were children whose yards (<500 ppm) were not treated.

Author, Year	Results	Adverse Effects	Comments	Quality Rating
Lanphear, 1999 ¹⁷⁸ ; Lanphear, 2000 ⁵⁹ ; Lanphear, 2002 ¹⁹⁵	There was no significant difference in blood lead levels by intervention status at 24 months or 48 months. The geometric mean blood lead levels at 24 months of age in the intervention and control groups were 7.3 ug/dL (95% CI 6.6, 8.2) and 7.8 ug/dL (CI 6.9, 8.7) respectively. At 48 months the g.means were 5.9 ug/dL (95% CI 5.3, 6.7) and 6.1 ug/dL (95% CI 5.5, 6.9) There was no significant effect of the intervention on the mean increase in blood lead levels from 6 to 24 months of age (+5.6 ug/dL in the intervention group vs +6.3 ug/dL in the control group p=0.42). Dust lead levels declined sharply in both the treatment and control groups. There was no significant difference in dust lead levels at 24 months by group, nor a difference in change in dust lead levels from 6 to 24 months by group. Other results (Lanphear, 2002): Dietary iron intake, but not calcium intake, was inversely associated with blood lead levels (p<0.05). Blood lead concentration was over 50% higher in black than in white children (p=0.0001).	ND	Author's conclusion: dust control through education is not effective in the primary prevention of childhood lead exposure	Fair
Lanphear, 2003 ¹⁸⁴	Change in blood lead (ug/dL) before and after soil abatement: Intervention group: 5.6 to 3.0 (-3.6), p=0.0001 Control group: 3.0 to 2.6 (-1.4), p=0.06 Stratifying by age, adjusting for mouthing behavior score and socioeconomic status: Age 36-72 months: 2.3 ug/dL decline (p=ns) Age 6-36 months: 2.5 ug/dL decline (p=0.03)	ND	Soil abatement was associated with a significantly greater reduction in blood lead levels than expected among children ages 6- 36 months who had not been exposed to lead- contaminated yards in early childhood. A significant reduction was not seen in children aged	Not rated: not a true cohort study - different children in cross- sectional surveys before & after soil abatement

36-72 months.

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	Ν	
Leighton, 2003 ¹⁶⁴	The effect of lead- based paint hazard remediation on blood lead levels of lead poisoned children in New York City	To examine the effects of lead hazard remediation and its timing on the blood lead levels of lead-poisoned children.	Retrospective cohort study	Lead paint hazard remediation	221	N b 1 C
Rhoads, 1999 ¹⁶¹	The effect of dust lead control on blood lead in toddlers: a randomized trial	To evaluate the effect of an intervention consisting of maternal education and household dust control measures on blood lead in young children at risk of excessive lead exposure	RCT	Dust	113 enrolled; final blood levels obtained from 99	N h

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Leighton, 2003 ¹⁶⁴	Lead-poisoned children	Paint, dust, water, soil, home repair/ remodeling	20-44 ug/dL	Identified with levels between 20-44 ug/dL in New York City's blood lead registry; had follow-up blood lead test between 10-14 months after initial test; had lead-based paint hazard identified in primary dwelling unit prior to 10-14 month follow-up; only resided at address with hazard; and were not chelated.	10-14 months
Rhoads, 1999 ¹⁶¹	Mean age of child: 1.7	Dust	Baseline mean, ug/dL: Intervention: 12.4 (SD 5.7) Control 11.6 (SD 6.2)	Families were recruited by posters and door hangers, or referred by municipal lead program, health care providers, or word of mouth. Those with a child aged 6 months to 3 years were eligible. Homes were evaluated for lead paint. The child's mother had to speak Spanish or English to be eligible. Families were excluded if 1) no lead paint was found in the home, 2) the home was in such structural disrepair or was so disorganized that it could not be cleaned effectively, 3) there was evidence of illicit drug use, firearms, or other major staff safety concerns, 4) the indiex cihld was in regular day care, 5) the family was not interested in participating, or 6) the family could not be recontacted or refused to allow a baseline blood lead sample to be drawn.	1 year

Interventions Described	Outcomes Assessed
Compared blood levels from baseline to 10-14 month follow-up in homes with remediation and homes without remediation during the follow-up period. To investigate timing effect of remediation, children were classified into 3 groups depending on time of diagnosis and date of time of remediation as follows: < 3 months, \geq 3 - \leq 6 months, > 6 months. Assessed interior components in houses of children < 18 years old identified with blood leadl level \geq 20 ug/dL.	Blood lead levels tested at baseline and followup. Interior dwellings tested using x-ray fluorescence (XRF) analyer. Readings $\geq 0.7 \text{ mg/cm}^2$ classified as positive and in violation of New York City's Health Code.
(h f - (r / i	Interventions Described Compared blood levels from baseline to 10-14 month follow-up in nomes with remediation and homes without remediation during the follow-up period. To investigate timing effect of remediation, children were classified into 8 groups depending on time of diagnosis and date of time of remediation as follows: < 3 months, \geq 3 - \leq 6 months, > 6 months. Assessed interior components in houses of children < 18 years old dentified with blood leadl level \geq 20 ug/dL.

Rhoads,	Consenting families were randomly assigned to a lead exposure	Initial				
1999 ¹⁶¹	reduction group (n=56) or to an accident prevention control group	1 yea				
	(n=57). Families in the lead intervention were asked to cooperate with	loadin				
	a cleaning program in which two study staff members visited every 2					
	weeks to clean up potentially lead-contaminated dust. These visits					
	typically lasted 2 hours. Floors and carpets were vacuumed with a					
	HEPA vacuum cleaner, and walls, horizontal surfaces, and uncarpeted					
	areas of floor were wet-wiped or mopped with a low-phosphate					
	detergent solution.					
	Controls were informed about identified lead paint hazards in their					
	homes and received routine information about lead exposure at the					
	time of enrollment. Controls were given home safety items such as fire					
	extinguishers, smoke detectors, safety latches for cupboards, and first					
	aid kits. They did not receive biweekly visits.					
	Caretakers in both groups were invited to attend 4 to 5 educational					
	sessions during the 1-year intervention					

Initial and and final blood lead levels (after 1 year); baseline and % decline in sill lead loading

Author, Year	Results	Adverse Effects	Comments	Quality Rating
Leighton, 2003 ¹⁶⁴	Regardless of remediation, mean blood levels declined significantly from 24.3 ug/dL at initial diagnosis to 12.3 ug/dL at follow-up, 50% decline (p<0.01). For 146 children whose homes were remediated, mean blood lead levels declined 53% compared with 41% for the 75 children whose homes were not remediated by the follow-up, a remediation effect of approximately 20% (p<0.01). After adjusting for confounders, remediation effect was 11% (ns). Race was the only factor that confounded the relationship. African American children had higher lead levels in follow-up after remediation. White and Asian children has an adjusted mean follow-up blood lead level that was 30% lower than African American children (p<0.01).Effect of remediation appeared to be stronger in younger children (10 - <36 months) than in older children (36-72 months) (p=0.06). Timing of remediation did not have a significant effect on blood lead levels.	ND	Modest decline in remediation versus no remediation groups. Both group's mean blood lead levels decline. Authors think it is due to aging.	Fair
Rhoads, 1999 ¹⁶¹	Children's blood lead levels (ug/dL) at baseline / follow-up / change / % change Intervention: pre 12.4 / post 10.3 / change -2.1 / -17% Control: pre 11.6 / post 11.6 / change +0.1 / +1% Adjustment for baseline blood lead in a regression model provided an estimated intervention effect of 1.9 ug/dL (p<0.05). Mother's final knowledge score was not a highly significant predictor of blood lead change, adjusted for intial blood lead (p<0.01) and number of cleanings (p<0.01). The contribution of the educational intervention could not be clearly distinguished from the effects of cleaning.	ND		Fair

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	Ν	
Schultz,	A retrospective	To examine the changes in blood lead	Retrospective	Education	187	Ν
1999 ¹⁷⁹	examination of in-	levels of children receiving an in-house	cohort study,			V
	home educational	education visit and those not receiving an	with reference			D
	visits to reduce childhood lead levels.	educational visit.	group			re
Strauss,	Evaluation of lead	1) To determine whether there are	Retrospective	Paint	1179	4
2005 ¹⁷¹	hazard control	significant differences between dwellings	cohort study,			H
	treatments in four	treated under the HUD program and similar	with untreated			g
	Massachusetts	untreated dwellings by comparing	reference			N
	communities through	preintervention to postintervention changes	group			В
	analysis of blood-lead	in the distribution of children's BLLs, and 2)				C
	surveillance data	to determine whether it is possible to use				N
		existing electronic data resources to make such a determination.				S

		Source of			
	Population/ Risk	Exposure/			Duration of
Author, Year	Factors	Risk Factors	Lead Levels	Main Eligibility Criteria	Follow-up
Schultz, 1999 ¹⁷⁹	African American, Caucasian, Native American, Asian, other races	Paint, dust, water, soil, home repair/ remodeling	20-24 ug/dL	Identified with levels between 20-24 ug/dL in Milwaukee Health Department records	6 months
Strauss, 2005 ¹⁷¹	Children <=36 months	Paint	Preintervention means (ug/dl) Untreated 4.5 Treated 7.0	Data from 3 sources (local housing programs, local tax assessor offices, and the Massachusetts Childhood Lead Poisoning Prevention Program) was used to identified children that resided in treated and untreated housing units, and their full longitudinal blood-lead history. Children with BLLs > 5 ug/dL before moving into the study housing were excluded. Three sets of matched controls were selected: housing only (based solely upon similar housing characteristics between treated and untreated unitis), Housing-BLL (selected using a balanced weighting of similar preintervention BLLS and similar housing characteristics), and BLL- Only (selected based upon smilar preintervention BLLS, with housing characteristics having relatively little weight). The MA CLPPP provided blood-lead data obtianed between 1993 and 2002.	From 1 year pre- intervention to 3 years post- intervention

Author, Year	Interventions Described	Outcomes Assessed
Schultz, 1999 ¹⁷⁹	One in-home educational visit lasting about an hour by a Milwaukee Health Department paraprofessional. Visit stressed importance of reducing lead exposure, nutritional suggestions, and dust clean-up practices, and behavioral changes that can reduce lead exposure.	Blood lead levels tested at baseline and 6 months by capillary and venous sampling.
Strauss, 2005 ¹⁷¹	Varied by region: Boston & Cambridge: interior treatments included cleaning, complete stabilization, floor treatments, window replacements, and wall enclosure/encapsulation. Exterior treatments included complete paint stabilization plus some enclosre, encapsulation, or removal. Malden, interior: Removing all lead-based paint and enclosing or encapsulating all lead-based paint. Springfield, interior: Removing all lead-based paint on mouthable and movable impacted (both friction and friction and impact) surfaces and loose leaded surfaces. Malden & Springfield, exterior: Enclose, encapsulate or remove all lead-based paint.	Geometric mean BLLs from before and after treatment were compared for the two sets of housing (treated and untreated dwellings). Blood lead levels were tested 1 year pre-intervention, and 1-3 years post- intervention.

Author, Year	Results	Adverse Effects	Comments	Quality Rating
Schultz, 1999 ¹⁷⁹	Intervention group blood lead levels declined by 4.2 micro g/dL or about 21%. Reference group levels declined by 1.2 ug/dL (6%). Intervention group decline was 3.1 ug/dL (15%) greater than the reference group (between groups difference statistically significant, p<0.001).	ND	Cost of educational intervention approximately \$100 per household visit.	Fair
Strauss, 2005 ¹⁷¹	Pre vs. post geometric mean BLLs (% BLL >=10 ug/dL); P-value for change in geometric mean BLL comparing 1 year pre-intervention versus 3 years post, adjusted for time, seasonality, age, and gender, HUD versus untreated:	ND	There were fewer children measured postintervention in both treated and untreated homes: 66% and 37% in	Fair
	With controls matched on housing criteria only: HUD-treated: 7.04 (42.7%) vs.3.54 (13.2%)		the analysis matching on preintervention BLL.	
	Untreated control: 4.57 (19.7%) vs 3.45 (10.0%) P<0.001		Per author: Results indicate a 50% decline in BLLs in treated homes, a	
	With controls matched on a combination of preintervention BLL and housing information:		significantly larger decline than in untreated	
	HUD-treated: 7.07 (42.8%) vs. 3.57 (12.5%) Untreated control: 5.76 (29.1%) vs 3.96 (15.9%)		homes, after adjusting for the general	
	F=0.110		observed in the general	
	HUD-treated: 7.07 (42.9%) vs 3.59 (12.6%)		several years.	
	Untreated control: 6.62 (36.9%) vs. 4.28 (16.0%) P=0.015			

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	Ν	
Swindell, 1994 ¹⁶⁸	Home abatement and blood lead changes in children with class III lead poisoning	To study the effect of home abatement on blood lead levels in children from central Massachusetts who had not undergone chelation therapy and whose homes were abated between 1987 and 1990, before and after abatement policies became more stringent in 1988	Retrospective chart review; no comparison group	Paint; dust	132	V C N
Taha. 1999 ¹⁶²	Low-cost household	To examine the effectiveness of low-cost	Retrospective	Paint; dust	42 eligible;	N

Taha, 1999 ¹⁶²	Low-cost household	I o examine the effectiveness of low-cost	Retrospective	Paint; dust	42 eligible; N
	paint abatement to	lead household paint abatements, which	cohort study		data
	reduce children's	treated deteriorated surfaces instead of the			analyzed
	blood lead levels	entire house, on the blood lead levels of			for 37
		young, urban children: an evaluation of			
		environmental and educational			
		interventions in 1994.			

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Swindell, 1994 ¹⁶⁸	Children with high lead levels, mean age 35 months, range 12-91 months 52% boys	Lead paint shed from deteriorating surfaces	Preabatement level = 26.0 (+- 6.5) ug/dL	Massachusetts Dept of Public Health records were reviewed of all children from central MA with confirmed venous blood lead levels >=25 ug/dL from 1987 through 1990. Eligibility criteria: 1) the child's principal dwelling must have been abated during they years 1987-1990; 2) the child must have had at least one venous blood lead determination within 6 months prior to the abatement; 3) the child must have had at least one venous blood lead determination 2 weeks to 6 months following abatement; 4) the child must not have received chelation therapy during that time period; and 5) the child must have lived in the same dwelling throughout the study period.	2 weeks to 6 months following abatement
Taha, 1999 ¹⁶²	Intervention: 86.4% aged 1-3 64.9% male 75.7% black 5.4% white Control: 63.1% aged 1-3 41.5% male 92.3% black 4.6% white	household paint	: 28.8 ug/dL	Milwaukee households that met the following criteria: 1) a child between the ages of 6 months and 6 years was a resident during initial and folow-up blood lead tests, 2) the child's initial blood lead level was between 25 and 44 ug/dL inclusive and the child was not chelated, 3) a low-cost abatement was performed, and 4) the child had a follow-up blood lead taken at least 28 days after the abatement was completed. Controls: 65 children selected retrospectively from the Milwaukee Health Department who resided in the same area as the intervention children per zip code, were aged 6 months to 6 years, lived in the same unabated home in 1994 during which 2 blood lead tests were taken, and had an initial blood lead of 25-44 ug/dL with a follow-up blood lead taken at least 28 days later.	Mean 69 days after abatement

Author, Year	Interventions Described	Outcomes Assessed
Swindell, 1994 ¹⁶⁸	Abatement policies in Massachusetts from 1987-1990. In 1988, there were no regulations regarding the abatement process itself: paint removal could occur by sanding, scraping, or torching, with no formal dust-control methods or clean procedures mandated. Since 1988, more stringent regulations were enacted to control dust exposure from abatement.	Venous blood lead levels measured 2 weeks to 6 months following abatement.

Taha, 1999¹⁶²Education: A public health nurse visited the household and educated
the family about lead poisoning and risk reduction activities that would
protect the child, such as advising on nutrition, frequent handwashing,
and strict cleaning procedures to reduce dust and paint chips.
Environmental: An inspector conducted a risk assessment.
Necessary treatments to deteriorated painted surfaces were performed
by a certified lead abatement contractor. All households had chipping,
deteriorating, flaking, or peeling lead paint. Deteriorated window wells
were enclosed with aluminum or vinyl. other painted surfaces were
were wet-scraped and repainted with latex paint.

The analysis used 1990-1994 data on 13,476 children to perform statistical adjustment for seasonal fluctuations.

Control children (n=65): 31.1 / 29.5 / -1.6 (p=ns) / -1.8%

Author, Year	Results	Adverse Effects	Comments	Quality Rating
Swindell, 1994 ¹⁶⁸	Mean blood lead levels changed from 26.0 ug/dL at baseline to 21.2 ug/dL (p<0.001). The % of children with reduced blood lead levels varied with baseline blood lead levels. 97% of children with baseline blood lead levels >=30 ug/dL had reductions within 1 year; 81% of those with baseline blood lead levels from 20-29 ug/dL had reductions, but only 35% of subjects with baseline blood lead levels <20 ug/dL had decreases. In this group, mean blood lead levels increased following abatement, from 16.7 to 19.2 ug/dL (p=0.053) There was no meaningful change in pre- to postabatement levels by calendar year of abatement.	ND	The effect of intervention was absent in children with initial blood lead levels of less than 20 ug/dL. No control group.	Not rated; no comparison group
Taha, 1999 ¹⁶²	Initial unadjusted mean blood lead level was 31.8 ug/dL. Follow-up blood lead was taken on average 69 days after abatement, and 172 days after the initial sample. After treatment, the average blood lead levels were 24.6 ug/dL, representing a decrease of 6.2 ug/dL or 22%. After adjusting for season and age of child, the average decrease was 6.0 ug/dL, an 18% reduction.	ND		Fair
	Adjusted blood lead levels, ug/dL: initial / follow-up / change / percentage change Intervention children (n=37): 28.8 / 22.8 / -6.0 (p=0.05) / -18.0%			

32

				Type of		
Author, Year	Title	Aims	Study Design	Intervention	Ν	
Yiin, 2003 ¹⁶⁶ Parent study: Rhoads, 1999 ¹⁶¹	Impact of home carpets on childhood lead intervention study (CLEARS)	To examine the reduction in children's blood lead level achieved in homes with and without substantial carpeting on floors.	RCT	Dust	39	N h

Abbreviations

ND =Failure to describe NR =Absence RCT = Randomized controlled trial SD = Standard deviation

Author, Year	Population/ Risk Factors	Source of Exposure/ Risk Factors	Lead Levels	Main Eligibility Criteria	Duration of Follow-up
Yiin, 2003 ¹⁶⁶ Parent study: Rhoads, 1999 ¹⁶¹	Children aged 6- 36 months	NR	10.61 ug/dL	Children aged 6-36 months enrolled in Childhood Lead Exposure and Assessment Reduction Study (CLEARS).	12 months

 Abbroviations			
ND =Failure to describe			

NR =Absence

RCT = Randomized controlled trial

SD = Standard deviation

Author, Year	Interventions Described	Outcomes Assessed
Yiin, 2003 ¹⁶⁶ Parent study: Rhoads, 1999 ¹⁶¹	Participating families were randomized to receive intervention or control. Intervention group: offered home cleaning services every 2 weeks over a 12-month period. Control group was assisted with home safety and accident prevention	Wipe and vacuum samples of household dust were obtained, and blood lead specimens were collected, at baseline and again after 12 (+-3) months of participation. Families were categorized by carpet status: having carpets in >50% (n=16) vs not (n=23).

Abbreviations

ND =Failure to describe

NR =Absence

RCT = Randomized controlled trial

SD = Standard deviation

Author. Year	Results	Adverse Effects	Comments	Quality Rating
Yiin, 2003 ¹⁶⁶ Parent study: Rhoads, 1999 ¹⁶¹	Mean baseline blood lead level (ug/dL): 10.53 in carpeted group, 10.66 in uncarpeted group Reduction in intervention group: Carpeted: -8% (p=ns), final blood lead level 9.69 ug/dL Uncarpeted: -26% (p=0.004), final blood lead level 7.90 ug/dL The blood lead reductions were linearly related to the number of cleaning visits in the uncarpeted homes (r=0.67, p<0.001), whereas no significant relation was found in the carpeted homes (r=0.04, p=0.885)	ND	Cleaning resulted in a significant reduction in blood lead level in uncarpeted households, but not in carpeted households.	Fair

Abbreviations

ND =Failure to describe NR =Absence RCT = Randomized controlled trial SD = Standard deviation

Author, Year (Quality)	Study Design	Type of Intervention	Years cond- ucted	N	Age	Duration of Follow-up	Baseline blood lead level
Aschengrau, 1994 ¹⁸² ; Aschengrau, 1997 ¹⁸³ (N/A)	Randomized environmental intervention; no untreated comparison group	Soil	1989-1990	152	<=4	2 years	7 to 24 ug/dL
Aschengrau, 1998 ¹⁶³ (Fair)	RCT	Dust, paint	1993-1995	63	<=4	6 months	16.9 ug/dL
Campbell, 2003 ¹⁶⁷ (Fair)	Non-randomized controlled trial; followup at the Philadelphia site of TLC, a chelation RCT	Dust	NR	73	12-34 months	3-6 months posttreatment	20-44 ug/dL
Clark, 2004 ¹⁶⁰ (N/A)	Observational, no untreated comparison group	Dust, paint	NR	869 children	6 months to 6 years	6 weeks	ND

	Blood lead level (ug/dL) by group	
Author, Year (Quality)	(Treatment vs. Control): Initial / final / change	Summary of effect (+ indicates benefit)
Aschengrau, 1994 ¹⁸² ; Aschengrau, 1997 ¹⁸³ (N/A)	T1: 13.10 / 10.65 / -2.44 (95% CI -3.32, -1.57) T2: 12.94 / 7.69 / -5.25 (95% CI -6.51, -3.99) T3: 10.54 / 9.15 / -1.30 (95% CI -4.03. +1.26) All Ts combined: 12.66 / 9.77 / -2.89 (95% CI - 3.642.13) C: None	N/A
Aschengrau, 1998 ¹⁶³ (Fair)	T1 (high blood lead level, not randomized): 17.5 / 9.1 / -8.4 T2 (rand.): 17.6 / 11.5 / -6.2 C (rand.): 16.3 / 10.4 / -5.9 T1 vs C: -0.3 (95% CI -3.8, +3.3) T2 vs C: -2.5 (95% CI -7.0, +2.1)	No effect
Campbell, 2003 ¹⁶⁷ (Fair)	No significant difference in geo.mean BLLs at any clinic visit between children whose homes were cleaned vs. those whose homes were not cleaned. BLLs declined among both groups.	No effect
Clark, 2004 ¹⁶⁰ (N/A)	Mean change after intervention +8.4 ug/dL Predictors of blood lead level increase of >5 ug/dL: Child's age at baseline (p=0.0061) Mother's education (p=0.002) Exterior building condition (p=0.0071) Season of sample collection (p<0.001)	N/A

Author, Year (Quality)	Study Design	Type of Intervention	Years cond- ucted	N	Age	Duration of Follow-up	Baseline blood lead level
Farrell, 1998 ¹⁷⁵ (Fair)	RCT	Soil	1990	Enrolled 408 children in 263 houses; 187 completed the study	6 months to 6 years	1 year	11 ug/dL
Galke, 2001 ¹⁷⁰ (N/A)	Descriptive study, no comparison group	Dust	1994-1997	240 children 1212 dwellings	6 months to 6 years	12 months	Median 10 ug/dL
Haynes, 2002 ¹⁶⁵ (Good)	Meta-analysis	Dust, paint; meta-analysis of RCTs	NR	4 studies, total subjects = 533	NR	6 to 48 months	6.7 to 16.9 ug/dL
Jordan, 2003 ¹⁷⁷ (Fair)	RCT	Education	NR	594 mothers of whom 378 children's blood levels were tested	Birth to 36 months	2 years	< 10 ug/dL

Author, Year (Quality)	Blood lead level (ug/dL) by group (Treatment vs. Control): Initial / final / change	Summary of effect (+ indicates benefit)
Farrell, 1998 ¹⁷⁵ (Fair)	T: 12.1 (1988) / 9.7 (1991) C: 10.9 (1988) / 8.4 (1991) Treatment effect, adjusted for effects of time, seasonality, SES, age, and mouthing behavior T (pre - post): 0.030 (SE 0.034) C (pre - post): 0.075 (SE 0.036) T vs C: -0.045 (SE 0.037)	No effect
Galke, 2001 ¹⁷⁰ (N/A)	T: 11.0 / 8.2 / -2.8 C: none	N/A
Haynes, 2002 ¹⁶⁵ (Good)	Weighted mean change, T vs C (95%Cl): 2 educational dust control trials: -0.33 (-1.4, 0.74) 2 professional dust control trials: -1.52 -3.41, 0.37 All trials: $\% \ge 10 \text{ ug/dL}$ in T vs C: similar $\% \ge 15 \text{ ug/dL}$ in T vs C: 6 vs 14% (p=0.008) $\% \ge 20 \text{ ug/dL}$ in T vs C: 2 vs 6% (p=0.024)	No effect overall; tx effects seen at higher lead levels
Jordan, 2003 ¹⁷⁷ (Fair)	T vs C % who maintained blood lead level < 10 ug/dL: 81 vs 73% (p=ns) % with blood lead level 10-19.99: 15 vs 24% (p=ns) % with blood lead level >20 ug/dL: 4 vs 2% (p=ns)	No effect

Author, Year (Quality)	Study Design	Type of Intervention	Years cond- ucted	N	Age	Duration of Follow-up	Baseline blood lead level
Lanphear, 1999 ¹⁷⁸ ; Lanphear, 2000 ⁵⁹ ; Lanphear, 2002 ¹⁹⁵ (Fair)	RCT	Education	NR	275	6 months at baseline, followed to age 48 months	48 months	2.9 ug/dL
Lanphear, 2003 ¹⁸⁴ (N/A)	Two cross- sectional surveys before and after soil abatement	Soil	1993-1996	198 in 1st survey; 215 in 2nd survey	6-72 months	N/A (cross- sectional)	5.6 ug/dL
Leighton, 2003 ¹⁶⁴ (Good)	Retrospective cohort study	Dust, paint	1994-1997	221	6 months to 6 years	10-14 months	20-44 ug/dL
Rhoads, 1999 ¹⁶¹ (Fair)	RCT	Dust	NR	113; final blood lead level obtained from 99	6 to 36 months	1 year	12 ug/dL
Schultz, 1999 ¹⁷⁹ (Fair)	Retrospective cohort study	Education	1994	187	Mean age 3.35	6 months	20-24 ug/dL

Author, Year (Quality)	(Treatment vs. Control): Initial / final / change	Summary of effect (+ indicates benefit)
Lanphear, 1999 ¹⁷⁸ ; Lanphear, 2000 ⁵⁹ ; Lanphear, 2002 ¹⁹⁵ (Fair)	Change from age 6 to 24 months: T: 2.8 / 7.3 / +5.6 (sic) C: 2.9 / 7.8 / +6.3 (sic) T vs C: (p=ns)	No effect
Lanphear, 2003 ¹⁸⁴ (N/A)	T: 5.6 / 3.0 / -3.6, p=0.0001 C: 3.0 / 2.6 / -1.4, p=0.06 Stratifying by age, adjusted for mouthing behavior score and socioeconomic status: Age 36-72 months: 2.3 ug/dL decline (p=ns) Age 6-36 months: 2.5 ug/dL decline (p=0.03)	Effect seen only in young children who had not been exposed
Leighton, 2003 ¹⁶⁴ (Good)	Decline occurred regardless of remediation: 24.3 / 12.3 / -12 (p<0.01) T: 24.6 / 11.6 -53% C: 23.8 / 13.9 -41% Remediation effect adjusted for race: 11% (p=ns) Effect of remediation tended to be stronger in younger children (10 to <36 months) vs 36-72 months (p=0.06)	No effect
Rhoads, 1999 ¹⁶¹ (Fair)	T: 12.4 / 10.3 / -2.1 C: 11.6 / 11.6 / +0.1 T vs C: -1.9 ug/dL (p<0.05) Adjustment for baseline blood lead level	+
Schultz, 1999 ¹⁷⁹ (Fair)	Change in blood lead level, T vs C: -4.2 vs -1.2 (p<0.001)	+

Author, Year (Quality)	Study Design	Type of Intervention	Years cond- ucted	Ν	Age	Duration of Follow-up	Baseline blood lead level
Strauss, 2005 ¹⁷¹ (Fair)	Retrospective cohort study	Dust, paint	1993-2002	1179	<=36 months	3 years	4.5-7.0 ug/dL
Swindell, 1994 ¹⁶⁸ (N/A)	Retrospective chart review; no comparison group	Dust, paint	1987-1990	132	mean 35 months, range 12-91 months	2 weeks to 6 months following abatement	26 ug/dL
Taha, 1999 ¹⁶² (Fair)	Retrospective cohort study	Dust, paint	1994	42 eligible; data analyzed for 37	6 months and 6 years	Mean 69 days after abatement	28.8 ug/dL
Yiin, 2003 ¹⁶⁶ Parent study: Rhoads, 1999 ¹⁶¹ (Fair)	Observational study, part of RCT (Rhoads, 1999)	Dust, carpeted vs uncarpeted	NR	39	6 to 36 months	12 months	10.61 ug/dL
	Abbreviations N/A=Not applicat	ole; NR=Not repo	rted; RCT=F	Randomized contro	olled trial		

Author, Year	Blood lead level (ug/dL) by group (Treatment vs. Control): Initial / final / change	Summary of effect
Strauss, 2005 ¹⁷¹ (Fair)	Geometric mean BLLs; P-value for treated vs control, adjusted for time, seasonality, age, and gender, Matched on preintervention BLL: T: 7.07 / 3.59 / -3.48 C: 6.62 / 4.28 / -2.34 P = 0.015 Matched on preintervention BLL and housing criteria combined: T: 7.07 / 3.57 / -3.50 C: 5.76 / 3.96 / -1.80 P = 0.116	+
Swindell, 1994 ¹⁶⁸ (N/A)	T: 26.0 / 21.2 / -4.8 (p<0.001) T group with baseline <20 ug/dL: 16.7 / 19.2 / +2.5 (p=0.053) C: none Stratified by baseline blood lead level, reductions within 1 year occurred in 97% with baseline >=30 81% with baseline 20-29 35% with baseline <20	+ only if baseline blood lead level >=20
Taha, 1999 ¹⁶² (Fair)	Adjusted for season and age of child: T: 28.8 / 22.8 / -6.0 (p=0.05) C: 31.1 / 29.5 / -1.6 (p=ns)	+
Yiin, 2003 ¹⁶⁶ Parent study: Rhoads, 1999 ¹⁶¹ (Fair)	Carpeted: 10.53 / 9.69 / -0.84 Uncarpeted: 10.66 / 7.90 / -2.76 Significance wrt # cleaning visits: Carpeted: p=ns Uncarpeted: p<0.001	N/A

Author Voor	Nutritional	Study	Population	N	Initial Blood	Intervention Described
Dalton, 1997 ¹⁸⁵	Calcium Iron Phorphorus	Design Randomized controlled trial	Population Infants aged 3.6 - 6 months in Lawrence, MA. High proportion of low income families. Data collected 1991- 1993. Majority Latino (> 90%).	<u> </u>	0.12 micro mol/dL - 0.07 micro mol/dL	Infants randomized to receive iror infant formula (465 mg Ca and 31 P/L) or the same formula with adc calcium glycerophosphate (1800 i and 1390 mg P/L) for 9 months. Ir analyzed every month. Blood sar were taken at baseline, 4 and 9 m measure BPbs, serum ferritin, tota binding capacity, erythrocyte protoporphyrin, and hematocrit. C treatment group was 4 times grea control group.
Gallicchio, 2002 ¹⁸⁶	Calories Carbohydrates Fat Vitamin C	Prospective cohort study	Children, age 1 (approximately), from low income families, living in urban houses built prior to 1950. 85% African American.	205	mean 4.0 micro g/dL (range 1-19 micro g/dL) 4.9% ≥ 10 micro g/dL	Measured children's venous BPbs nutritional status including total ca intake, total fat intake, protein, carbohydrates, saturated fat, monounsaturated fat, polyunsatur cholesterol, animal fat, vegetable calcium, iron, magnesium, phospł zinc, vitamin D, and vitamin C (us Children's Nutrition Questionnaire designed by Harvard University's Public Health), and amount of lea exposure (from dust samples) with followup measurements after a ye

		Adverse Effects (NR for absence; ND for failure to		Quality
Author, Year	Results (Significance levels)	describe)	Comments	Rating
Dalton, 1997 ¹⁸⁵	There were no significant differences by treatment group in mean or median change from baseline of serum ferritin, total iron binding capacity, erthrocyte protoporphyrin, or hematocrit at 4 and 9 months after enrollment. Incidence of iron deficiency was similar for both groups and no infant developed iron deficiency anemia during the trial.	ND	Healthy, full term infants fed iron- fortified formula do not need to worry about the inhibitory effect of calcium and phosphorus on iron absorption.	Good
Gallicchio, 2002 ¹⁸⁶	Statistically significant positive associations (p <0.05) were found between blood lead and calories, total fat, saturated fat, and monounsaturated fat. Statistically significant negative associations (p <0.05) were found between blood lead and carbohydrates and vitamin C. After multiple linear regression analyses, statistically significant positive associations were found between blood lead and total fat (p =0.03) as well as blood lead and saturated fat (p =0.02), independent of lead exposure and age of the child. Total caloric intake was found to be a marginally significant effect modifier of the association between lead exposure and blood lead (p =0.06).	ND		Fair

	Nutritional	Study	Initial Blood					
Author, Year	Category	Design	Population	Ν	Levels	Intervention Described		
Hammad, 1996 ¹⁸⁷	Iron	Cross- sectional study	Children from 9 months - 5 years old cared for at University of Maryland at Baltimore Pediatric Ambulatory Center. Low income, inner- city families.	299	NA	Nutritional status (using modified, unvalidated for children, but valida adults, Gladys Block food frequen questionnaire), socioeconomic as medical history, and potential sou lead exposure were assessed. Bl samples were evaluated for BPbs iron (ferritin), free erythrocyte photoporhyrin, calcium, and hema		
Haynes, 2003 ¹⁹⁶	Calcium Iron	Prospective cohort study	Children living in Rochester, NY and were 5-7 months old at baseline visit. Low income families. (same participants in Lanphear, 2002)	275 (245 at 24 month followup; 239 with adequate blood samples)	NA	Assessed BPbs of children at 6, and 24 months of age. Nutritiona was also measured at these same timepoints by a trained interviewe the caretaker questions about chil dietary intake using a food freque checklist (Willet, 1990). Breast m incorporated into checklist.		

Author, Year	Results (Significance levels)	Adverse Effects (NR for absence; ND for failure to describe)	Comments	Quality Rating
Hammad, 1996 ¹⁸⁷	Average blood lead was 11.4 micro g/dL. After adjusting for confounders using multiple linear regression models, a negative association between blood lead and dietary iron intake was found (p=0.03). No association was found between blood lead and serum iron.	ND		NA
Haynes, 2003 ¹⁹⁶	Calcium intake was inversely associated with children's blood lead (p=0.03) in a multivariate model that included VDR Fok 1 genotype as an independent variable.	ND	No significant association was observed when the polymorphism was not included (Lanphear BP, et al. Environmental lead exposure during early childhood. Journal of Pediatrics 2002;140:40-47). No significant effect modification of calcium intake on blood lead by genotype was found (p=0.49), therefore intepretation of the results is uncertain.	Fair

Author, Year	Nutritional Category	Study Design	Population	Ν	Initial Blood Levels	Intervention Described
Lanphear, 2002 ¹⁹⁵	Iron Calcium Vitamin C Vitamin D	Prospective cohort study	Children living in Rochester, NY and were 5-7 months old at baseline visit. Low income families. (same participants in Haynes, 2003)	249	2.9 micro-g/dL (95% CI, 2.7- 3.1)	Assessed BPbs of children at 6, and 24 months of age. Nutritiona was also measured at these same timepoints by a trained interviewe the caretaker questions about chil dietary intake using a food freque checklist (Willet, 1990). Breast m incorporated into checklist.
Lee, 2005 ¹²	Calories Fat Thiamine Pyridoxine Vitamin E Ascorbic acid Folate Calcium Phosphorus Iron	Cross- sectional study	Women 20-49 years old from National Healh and Nutritional Survey (NHANES III)	4,394 (3,716 had complete data for all variables in study)	NA	NHANES III data retrieved throug interviews, questionnaires, and examinations. Survey contained consumption measurements for 1 hour recall) along with dietary, nut and health status measurements.
Lucas, 1996 ¹⁸⁸	Calories Fat	Cross- sectional study	Children ages 9- 6 years, cared for at University of Maryland at Baltimore Pediatric Ambulatory Center. Low income, inner- city families.	296	NA	Nutritional status (using modified, unvalidated for children, but valida adults Gladys Block food frequend questionnaire), socioeconomic as medical history, and potential sou lead exposure were assessed. Bl samples were evaluated for BPbs iron (ferritin), free erythrocyte photoporhyrin, calcium, and hema

Author, Year	Results (Significance levels)	Adverse Effects (NR for absence; ND for failure to describe)	Comments	Quality Rating
Lanphear, 2002 ¹⁹⁵	At 24 months of age, BPbs were 7.5 micro-g/dL. 82 (33%) had BPb levels \geq 10 micro-g/dL; 32 (13%) has levels \geq 15 micro-g/dL; 14 (6%) had levels \geq 20 micro-g/dL. Dietary iron intake was inversely associated with BPb levels (p = 0.03) during the first year of life. Calcium intake was not associated with BPb concentration.	ND	In adjusted analysis, lead- contaminated floor dust, soil, and water contributed to lead intake in first 2 years of life ($p < 0.05$). BPb concentration was > 50% higher in African American children than Caucasian children.	Good/ Fair
Lee, 2005 ¹²	Average blood lead level of reproductive age woman was 1.78 micro g/dL. Inverse associations (p<0.05) between blood lead level and thiamine and serum folate. Positive associations (p< 0.05) between blood lead level and iron, pyridoxine intake, and folate.	ND		NA
Lucas, 1996 ¹⁸⁸	Average blood lead was 11.4 micro g/dL. After adjusting for confounders using multiple linear regression models, significant positive associations with blood lead were found independently for total caloric intake (p =0.01) and dietary fat (p =0.05).	ND		NA

	Nutritional	Study			Initial Blood	
Author, Year	Category	Design	Population	Ν	Levels	Intervention Described
Markowitz, 1996 ¹⁵⁷	Iron	Prospective cohort study	Moderately lead poisoned children referred to Montefiore Medical Lead Clinic from 1986- 1992 with BPbs 25-55 micro g/dL. Low income, inner- city families, living in pre-1960 housing. 2/3 Hispanic, 1/3 African American.	79	NA	Assessed BPbs repeated over a 6 time period. Mixed interventions (chelation because of negative lea mobilization effects to the chelatir including iron therapy forr childrer ferritin levels < 16 micro g/L.
Markowitz, 2004 ¹⁸⁹	Calcium	Randomized controlled trial	Children ages 1- 6 referred to Montefiore Medical Center with BPbs between 10-44 micro g/dL	88	10-44 micro g/dL	1800 mg Ca per day between sup and diet for treatment group.Stratified children into 2 groups: 1 months and 36-72 months, based epidemiology of lead absorption.BPbs measured at enrollment, 3 r and 6 months.

	Adverse Effects (NR for absence; ND for failure to					
Author, Year	Results (Significance levels)	describe)	Comments	Rating		
Markowitz, 1996 ¹⁵⁷	BPbs declined 27% on average over 6 months. Two thirds < 25 micro g/dL, 7% < 15 micro g/dL. However, iron status did not account for change in BPb levels.	ND	Mixed interventions. Describes home assessment tool HES (home environmental score).	Fair		

Markowitz, 2004 ¹⁸⁹	No significant differences between BPb levels in either group. Ca supplementation of 1800 mg/day for 3 months or 6 months did not reduce BPb levels.	Abdominal pain complaints occurred infrequently in both groups.	BPb boundaries chosen because 10 micro g/dL is current definition of lead poisoning, and BPb \geq 45 micro g/dL required chelation therapy. Also measured hand-to-mouth behavior and dust samples also	Good/ Fair
			measured.	

Nutritional Study					Initial Blood		
Author, Year	Category	Design	Population	Ν	Levels	Intervention Described	
Sargent, 1999 ¹⁹⁰	Calcium Iron Phorphorus	RCT	Infants aged 3.6 - 6 months in Lawrence, MA. High proportion of low income families. Data collected 1991- 1993. Majority Latino (> 90%).	103; complete lab data collected for 81 (78.6%) of original random assign- ment	< 25 micro g/dL	Infants randomized to receive iror infant formula (465 mg Ca and 31 P/L) or the same formula with adc calcium glycerophosphate (1800 r and 1390 mg P/L) for 9 months. Ir were assessed monthly for tolerar formula, adverse effects, and size measurements. Urine samples we analyzed at baseline and 1,2,4,6,9 to measure excretion of calcium a creatinine. Blood samples were ta baseline, 4 and 9 months to meas BPbs, serum calcium serum phos serum ferritin, total iron binding ca erythrocyte protoporphyrin, and hematocrit. Dust and water sampl taken at 1 month after randomizat	

Author, Year	Results (Significance levels)	Adverse Effects (NR for absence; ND for failure to describe)	Comments	Quality Rating		
Sargent, 1999 ¹⁹⁰	There was no significant difference between groups in the mean ratio of urinary calcium to creatinine, serum calcium and phosphorus, or change in iron status (serum ferritin, total iron binding capacity). At month 4, the median increase from baseline BPbs in the treatment group was 57% of the increase for the control group (p=0.039), but this effect weakened after month 4 through the final 9th month of the trial. Because the effect did not last, cannot conclude that calcium glycerohosphate supplement prevented lead absorption.	10 children distributed evenly between groups has at least one urine sample with a ratio of urinary calcium to creatinine above the age-related norm. 2 had repeat elevated levels (one in each group). 1 child in the control group had an elevated serum calcium level.13 children had low serum ferritin concentrations (5 in control and 8 in treatment group).		Good/ Fair		
	Category	Design	Population	N	l evels	Intervention Described
-----------------------------	--	-----------------------------	---	-----	---------------------------------	--
Schell, 2004 ¹⁹¹	Calcium Ferritin Iron Protein Supplements Vitamin D Zinc	Prospective cohort study	Mother/Infant pairs of low socioeconomic status in Albany County, NY from APILS (Albany pregnancy infancy lead study) 1992- 1998	169	1.6 - 10 micro g/dL at birth	Diets assessed at 3 month interva 24 hour diet recall reported by prin caregiver. Potential impact of pro zinc, calcium, vitamin D, fat, serur D, ferrtin at 6 and 12 months of aç examined. Nutritional intakes are compared to the 1989 Recommer Dietary Allowances (RDA) amoun first 6 months, few were below the amounts for calcium, vitamin D, o 15.4% fell below for protein, 25% for calories, adn 37.9% fell below At 9 and 12 months, > 20% fell be RDAs for calcium, vitamin D, iron, zinc, and two thirds fell below for 'D.

Author, Year	Results (Significance levels)	Adverse Effects (NR for absence; ND for failure to describe)	Comments	Quality Rating
Schell, 2004 ¹⁹¹	By 6 months, mean BPbs significantly increased from birth to 2.3 micro g/dL (p<0.001); none were \geq 10 micro g/dL. By 12 months, mean BPbs significantly increased from 6 months to 5.1 micro g/dL (p<0.001) and 18% were \geq 10 micro g/dL.	ND		Fair
	Observed significant inverse relationships between infant's 6 month lead level and intake of zinc (p = 0.003), iron (p =0.015), and calcium (p <0.001). At 12 months, low iron intake continued to be associated with higher lead levels (p =0.041), although zinc and calcium did not. Protein had a paradoxal effect (associated with lower lead at 6 months (p =0.001), but higher lead at 12 months. Serum vitamin D and ferritin were not associated with lead levels, nor was vitamin supplement use			

Nutritional	Study			Initial Blood	
Category	Design	Population	Ν	Levels	Intervention Described
Calcium Ferritin Iron Supplements Vitamin D Zinc	Prospective cohort study	Mother/Infant pairs of low socioeconomic status in Albany County, NY from APILS (Albany pregnancy infancy lead study) 1992- 1998	220	1.58 micro g/dL neonates	Maternal BPbs, anthropometry (w s arm circumference, triceps skinfol thickness, etc.), and diet were ass each trimester and compared with neonates (cord or venous blood). More than 50% of the mothers ha nutritional intakes below the recor dietary allowances for zinc, calciu vitamin D, and kilocalories, detern modified version of National Canc Institute Food Questionnaire
	Nutritional Category Calcium Ferritin Iron Supplements Vitamin D Zinc	Nutritional CategoryStudy DesignCalcium FerritinProspective cohort study IronSupplements Vitamin D ZincZinc	Nutritional CategoryStudy DesignPopulationCalcium FerritinProspective cohort studyMother/Infant pairs of low socioeconomicSupplements Vitamin D ZincStatus in Albany County, NY from APILS (Albany pregnancy infancy lead study) 1992- 1998	Nutritional CategoryStudy DesignPopulationNCalcium FerritinProspective cohort studyMother/Infant pairs of low socioeconomic220IronsocioeconomicSupplements Vitamin D Zincstatus in Albany County, NY from pregnancy infancy lead study) 1992- 1998	Nutritional CategoryStudyInitial BloodCalcium FerritinProspective cohort studyMother/Infant pairs of low2201.58 micro g/dL neonatesIronsocioeconomicsocioeconomicSupplementsstatus in AlbanyVitamin D pregnancy infancy lead study) 1992- 1998County, NY from pairs

Author, Year	Results (Significance levels)	Adverse Effects (NR for absence; ND for failure to describe)	Comments	Quality Rating
Schnell, 2003 ¹⁹²	Mother's BPbs were strongly and positively related to neonates BPbs (p<0.001). For the anthropometric measures of maternal nutritional status, variables measuring gain in weight and arm circumference were negatively related to neonate BPbs (p<0.001). Dietary intakes in iron (p=0.003) and vitamin D (p=0.038) were negatively related to neonates BPbs. The effects of zinc varied substantially. Calcium was negatively related to BPbs before controlling for age, education index, etc. (p=0.042), but not after controlling for these variables. Serum ferritin, serum vitamin D, and supplements were not significantly related to BPbs of neonates. African	ND		Fair

American mothers and newborns have significantly higher BPbs than Caucasians (p<0.001), except in the 2nd trimester.

	Nutritional	Study			Initial Blood	1
Author, Year	Category	Design	Population	Ν	Levels	Intervention Described
Simon, 1999 ¹⁹³	Ascorbic acid	Cross- sectional study	Probability sample of US population from the Third National Health and Nutrition Examination Survey (NHANES III), 1988-1994 without a history of lead poisoning. Adults and youths.	4,213 youths aged 6-16 and 15, 365 adults aged \geq 17	NA	Measured BPbs and serum ascor levels (by high-performance liquid chromatography). Quantative nut data were collected using 24 hour

Author, Year	Results (Significance levels)	Adverse Effects (NR for absence; ND for failure to describe)	Comments	Quality Rating
Simon, 1999 ¹⁹³	 22 (0.5%) youths had elevated BPbs. 57 (0.4%) adults had elevated BPbs. Serum ascorbic levels ranged from 0-170 micro mol/L, with the mean for the youths 55 micro mol/L and mean for the adults 43 micro mol/L. After controlling for the effects of age, race, sex, income level, and dietary energy, fat, calcium, iron, and zinc intake, youths in the highest serum ascorbic acid tertile had an 89% decreased prevalence of elevated BPbs compared with youths in the lowest serum ascorbic acid tertile (p=0.002). Adults in the highest 2 serum ascorbic acid tertiles had a 65% to 68% decreased prevalence of elevated BPbs compared with adults in the lowest serum ascorbic acid tertile (p=0.03). As a continuous predictor, serum ascorbic acid level was independently associated with decreased BPbs among adults (p<0.001), but not among youths. 	ND	Could not include children age 1-5 years because ascorbic acid levels were not measured in NHANES III. No relationship observed between dietary ascorbic acid levels and BPbs, only serum ascorbic acid levels.	NA

	Nutritional	Study			Initial Blood	
Author, Year	Category	Design	Population	Ν	Levels	Intervention Described
Zierold, 2004 ¹⁹⁴	Many, not described	Retrospectiv e Cohort Study with comparison	Data from Wisc onsin Childhood Lead Poisoning Prevention Program from 1996-2000. Children ages 0- 6.	111,196	mean 5.29 micro g/dL	52,407 children ages 0-6 enrolled Wisconsin Childhood Lead Poisor Prevention Program's Special Nut Program with venous BPbs meas compared with 58,789 all other ch ages 0-6 with venous BPbs meas the Wisconsin Prevention Prograr enrolled in the Special Nutrition P

Abbreviations: BPbs, Blood lead levels; Ca, Calcium; NA, Not applicable; ND, Not described.

Author, Year	Results (Significance levels)	Adverse Effects (NR for absence; ND for failure to describe)	Comments	Quality Rating
Zierold, 2004 ¹⁹⁴	For those in the Special Nutrition Program, mean BPbs declined over the 4 year time period from 7.89 micro g/dL to 5.29 micro g/dL. Average BPb decline of 0.64 micro g/dL per year. For the comparision group, mean BPbs declined over the 4 year time period from 5.51 micro g/dL to 3.70 micro g/dL. Average BPb decline of 0.42 micro g/dL per year. The difference between the groups was not statistically significant (p=0.25). African American children in the Special Nutrition Program BPbs had a significantly quicker decline compared with Caucasian children (p=0.03).	ND		Fair

Abbreviations: BPbs, Blood lead levels; Ca, Calcium; NA, Not applicable; ND, Not described.

	Accertic			Carba				Foloto		Multiple,	Dhaa
Studies	Ascorbic	Calcium	Calories	Carbo- bydrates	Fat	Ferritin	Folate	Folate (serum)	Iron	NOT Described	Phos-
Randomized Controlle	d Trials	Galolulli	Guiories	nyarates	T dt	i ciritari	1 olute	(Seruni)		Described	priorus
Dalton 1997 ¹⁸⁵		NS							NS		NS
Markowitz 2004 ¹⁸⁹		NS									
Sargent 1999 ¹⁹⁰		NS							NS		NS
Prospective Cohort Stu	udies										
Gallicchio 2002 ¹⁸⁶			Р	N	Р						
Haynes, 2003 ¹⁹⁶		N*									
Lanphear, 2002 ¹⁹⁵		NS							N		
Markowitz 1996 ¹⁵⁷									NS		
Schell 2003 ¹⁹²		NS				NS			N		
Schell 2004 ¹⁹¹		NS				NS			Ν		
Retrospective Cohort S	Study (with c	omparision	group)								
Zierold 2004 ¹⁹⁴										NS	
Cross Sectional Studie	es										
Hammad 1996 ¹⁸⁷									Ν		
Lee, 2005 ¹²							Р	Ν	Р		
Lucas 1996 ¹⁸⁸			Р		Р						
Simon 1999 ¹⁹³	N										

Abbreviations: P, positive relationship: N, negative/inverse relationship; NS, not significant/no relationship

*Calcium intake was inversely associated with children's blood lead (p=0.03) in a multivariate model that included VDR Fok 1 genotype as an independent variable. No significant effect modification of calcium intake on blood lead by genotype was found (p=0.49). No significant association was observed when the polymorphism was not included (Lanphear, 2002).

			Supple-				
Studies	Protein	Pyrido-xine	ments	Thiamine	Vitamin C	Vitamin D	Zinc
Randomized Controlled	l Trials						
Dalton 1997 ¹⁸⁵							
Markowitz 2004 ¹⁸⁹							
Sargent 1999 ¹⁹⁰							
Prospective Cohort Stu	idies						
Gallicchio 2002 ¹⁸⁶					N		
Haynes, 2003 ¹⁹⁶							
Lanphear, 2002 ¹⁹⁵							
Markowitz 1996 ¹⁵⁷							
Schell 2003 ¹⁹²			NS			N (dietary) NS (serum)	Varied
Schell 2004 ¹⁹¹	Varied		NS			NS (serum)	NS
Retrospective Cohort S	Study (with o	comparision ç	group)				
Zierold 2004 ¹⁹⁴							
Cross Sectional Studie	s						
Hammad 1996 ¹⁸⁷							
Lee, 2005 ¹²		Р		Ν			
Lucas 1996 ¹⁸⁸							
Simon 1999 ¹⁹³							

Abbreviations: P, positive relationship: N, negative/inverse relationship; NS, not significant/no relationship

*Calcium intake was inversely associated with children's blood lead (p=0.03) in a multivariate model that included VDR Fok 1 genotype as an independent variable. No significant effect modification of calcium intake on blood lead by genotype was found (p=0.49). No significant association was observed when the polymorphism was not included (Lanphear, 2002).

TABLE 6. SUMMARY OF THE EVIDENCE

Key Question	Findings
Children	
KQ 1. Is there direct evidence that screening for lead results	There is no direct evidence from controlled studies of
in improved health outcomes (i.e. cognitive changes,	screening.
behavioral problems, learning disorders)?	
KQ 2. What is the prevalence of elevated lead in children?	The prevalence of blood lead ≥ 10 micro-g/dL among
	children aged 1-5 years in the U.S. has declined from 9%
	in 1988-1991 to 1.6% 1999-2002.
Are there population-level risk factors that identify	Population-level risk factors among children include age <
children at higher risk for elevated lead levels?	5 years; urban residence; low income; low parental
	educational attainment; pre-1950 housing; and recent
	immigration. Mean blood levels among African-American
	children remain significantly higher than Mexican
	American children and non-Hispanic whites.
KQ 3. Can screening tests accurately detect elevated blood	Blood lead concentration is more sensitive and specific
lead levels?	than free erythrocyte proptoporphyrin (EP) levels, but can
	be affected by environmental lead contamination and
	laboratory analytic variation. In one study of 47,230
	suburban and rural children, 4.7% had an elevated EP
	level, while only 0.6% had elevated BLL. Capillary
	sampling has false-positive rates of 3-9%, and false-
	negative rates of 1-8%, compared with venous blood lead
	levels.
How accurate are questionnaires (or other tools) for	The sensitivity and specificity of questionnaires vary
risk factor assessment at various blood lead levels?	considerably with the prevalence of EBLL in the
	population surveyed and the cutoff BLL (10 vs. 15 micro-
	g/dL). One study found that rental status, lead-
	contaminated floor dust, and poor housing condition were
	associated with EBLL, suggesting that housing
	characteristics can be used to identify homes where a lead
	hazard may exist before or during occupancy.

TABLE 6. SUMMARY OF THE EVIDENCE (continued)

Key Question	Findings
Children	
What is the optimal frequency for screening? What is the optimal frequency for repeat testing?	Not addressed in this review.
KQ5: Do interventions for elevated lead levels result in improved health outcomes or lead levels?	We identified no evidence that treatment, lead abatement, or education improved neurocognitive outcome in asymptomatic children with mildly-moderately increased lead levels. In one trial of succimer there was no benefit or slight harm. Some interventions have small, inconsistent, or unsustained effects on lead levels in high-risk children.
KQ4, KQ6 What are the adverse effects of screening and treatment?	See text.
KQ7: What are cost effectiveness issues?	Not addressed in this review.

TABLE 6. SUMMARY OF THE EVIDENCE (continued)

Key Question	Findings
Pregnant Women	
KQ 1. Is there direct evidence that screening in asymptomatic pregnant women for lead results in improved health outcomes?	There is no direct evidence from controlled studies of screening that screening improves maternal hypertension, cognitive changes in offspring or perinatal outcomes.
KQ 2. What is the prevalence of elevated lead in pregnant women?	In 1992, two large surveys of low-income pregnant women found 0% and 6% with blood levels >15 micro-g/dL. A longitudinal study of pregnant women in Boston found that umbilical cord blood levels declined 82% between 1980 and 1990.
Are there population-level risk factors that identify pregnant women at higher risk for elevated lead levels (i.e., geography, racial/ethnicity, SES, age)?	Ethnic background, country of origin, and immigrant status of birth mothers have been shown to be associated with prenatal lead exposure in newborns. Cigarette smoking, maternal age, and alcohol intake have been found to increase umbilical cord blood lead levels.
KQ 3. Can screening tests accurately detect elevated blood lead levels?	See KQ 3. in Children, above.
How accurate are questionnaires (or other tools) for risk factor assessment at various blood lead levels?	We found one study of a 4-question prenatal survey developed by the CDC that had a sensitivity of 75.7%, and a negative predictive value of 93.1%.
What is the optimal frequency for screening? What is the optimal frequency for repeat testing?	Not addressed in this review.
KQ5: Do interventions for elevated lead levels result in improved health outcomes?	We identified no evidence that treatment, lead abatement, or education improved neurocognitive outcome in asymptomatic children with mildly-moderately increased lead levels. In one trial of succimer there was no benefit or slight harm.
KQ4, KQ6 What are the adverse effects of screening and treatment?	See text.

APPENDIX 1: CRITERIA FOR GRADING THE INTERNAL VALIDITY OF INDIVIDUAL STUDIES

The Methods Work Group for the Third U.S. Preventive Services Task Force (USPSTF) developed a set of criteria by which the quality of individual studies could be evaluated. At its September 1999 quarterly meetings, the USPSTF accepted the criteria and definitions of quality categories relating to internal validity.

Presented below are a set of minimal criteria for each study design and a general definition of three categories— "good," "fair," and "poor". These specifications are not meant to be rigid rules but rather are intended to be general guidelines, and individual exceptions, when explicitly explained and justified, can be made. In general, a "good" study is one that meets all criteria well. A "fair" study is one that does not meet (or it is not clear that it meets) at least one criterion but has no major limitations. "Poor" studies have at least one major limitation.

Systematic Reviews

Criteria:

- Comprehensiveness of sources considered/search strategy used
- Standard appraisal of included studies
- Validity of conclusions
- Recency and relevance are especially important for systematic reviews

Definition of ratings from above criteria:

Good: Recent, relevant review with comprehensive sources and search strategies; explicit and relevant selection criteria; standard appraisal of included studies; and valid conclusions.

Fair: Recent, relevant review that is not clearly biased but lacks comprehensive sources and search strategies.

Poor: Outdated, irrelevant, or biased review without systematic search for studies, explicit selection criteria, or standard appraisal of studies.

APPENDIX 1: CRITERIA FOR GRADING THE INTERNAL VALIDITY OF INDIVIDUAL STUDIES (continued)

Case Control Studies

Criteria:

- Accurate ascertainment of cases
- Nonbiased selection of cases/controls with exclusion criteria applied equally to both
- Response rate
- Diagnostic testing procedures applied equally to each group
- Measurement of exposure accurate and applied equally to each group
- Appropriate attention to potential confounding variable

Definition of ratings based on criteria above:

- **Good:** Appropriate ascertainment of cases and nonbiased selection of case and control participants; exclusion criteria applied equally to cases and controls; response rate equal to or greater than 80 percent; diagnostic procedures and measurements accurate and applied equally to cases and controls; and appropriate attention to confounding variables.
- **Fair:** Recent, relevant, without major apparent selection or diagnostic work-up bias but with response rate less than 80 percent or attention to some but not all important confounding variables.
- **Poor:** Major selection or diagnostic work-up biases, response rates less than 50 percent, or inattention to confounding variables.

Randomized Controlled Trials and Cohort Studies

Criteria:

- Initial assembly of comparable groups

 for RCTs: adequate randomization, including first concealment and whether
 potential confounders were distributed equally among groups
 -for cohort studies: consideration of potential confounders with either restriction
 or measurement for adjustment in the analysis; consideration of inception cohorts
- Maintenance of comparable groups (includes attrition, cross-overs, adherence, contamination)
- Important differential loss to followup or overall high loss to follow-up
- Measurements: equal, reliable, and valid (includes masking of outcome assessment)
- Clear definition of interventions
- Important outcomes considered

APPENDIX 1: CRITERIA FOR GRADING THE INTERNAL VALIDITY OF INDIVIDUAL STUDIES (continued)

• Analysis: adjustment for potential confounders for cohort studies, or intention to treat analysis for RCTs.

Definition of ratings based on above criteria:

- **Good:** Meets all criteria: comparable groups are assembled initially and maintained throughout the study (followup at least 80 percent); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; important outcomes are considered; and appropriate attention to confounders in analysis. In addition, for RCTs, intention to treat analysis is used.
- **Fair:** Studies will be graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: Generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred in followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for. Intention-to-treat analysis is done for RCTS.
- **Poor:** Studies will be graded "poor" if any of the following fatal flaws exists: groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied at all equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention-to-treat analysis is lacking.

Diagnostic Accuracy Studies

Criteria:

- Screening test relevant, available for primary care, adequately described
- Study uses a credible reference standard, performed regardless of test results
- Reference standard interpreted independently of screening test
- Handles indeterminate results in a reasonable manner
- Spectrum of patients included in study
- Sample size
- Administration of reliable screening test

Definition of ratings based on above criteria:

Good: Evaluates relevant available screening test; uses a credible reference standard; interprets reference standard independently of screening test; reliability of test assessed; has few or handles indeterminate results in a reasonable manner;

APPENDIX 1: CRITERIA FOR GRADING THE INTERNAL VALIDITY OF INDIVIDUAL STUDIES (continued)

includes large number (more than 100) broad-spectrum patients with and without disease.

- **Fair:** Evaluates relevant available screening test; uses reasonable although not best standard; interprets reference standard independent of screening test; moderate sample size (50 to 100 subjects) and a "medium" spectrum of patients.
- **Poor:** Has fatal flaw such as: uses inappropriate reference standard; screening test improperly administered; biased ascertainment of reference standard; very small sample size of very narrow selected spectrum of patients.