Evidence Synthesis
Number 83

Screening for Hearing Loss in Adults Ages 50 Years and Older: A Review of the Evidence for the U.S. Preventive Services Task Force

Prepared for:
Agency for Health Care Research and Quality
U.S. Department of Health and Human Services
540 Gaither Road
Rockville, MD 20850
www.ahrq.gov

Contract Number: HHSA-290-2007-10057-I-EPC3, Task Order No. 3

Prepared by:
Oregon Evidence-based Practice Center
Oregon Health and Science University
3181 SW Sam Jackson Park Road, Mail Code BICC
Portland, OR 97239
www.ohsu.edu/epc

Kaiser Permanente Center for Health Research
3800 North Interstate Avenue
Portland, OR 97227

Investigators:
Roger Chou, MD
Tracy Dana, MLS
Christina Bougatsos, BS
Craig Fleming, MD
Tracy Beil, MS

AHRQ Publication No. 11-05153-EF-1
March 2011
This report is based on research conducted by the Oregon Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2007-10057-I). The investigators involved have declared no conflicts of interest with objectively conducting this research. The findings and conclusions in this document are those of the author(s), who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help clinicians, employers, policymakers, and others make informed decisions about the provision of health care services. This report is intended as a reference and not as a substitute for clinical judgment.

This report may be used, in whole or in part, as the basis for the development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

Acknowledgements: The authors acknowledge Rongwei Fu, PhD, Oregon Health & Science University, for statistical assistance; Daphne Plaut, MLS, Kaiser Permanente Center for Health Research, for conducting literature searches; the expert reviewers of the draft report; AHRQ Medical Officer Mary Barton, MD, MPP; and U.S. Preventive Services Task Force leads Rosanne Leipzig, MD, PhD, Joy Melnikow, MD, MPH, and Diana Petitti, MD, MPH, for their contributions to this report.

Structured Abstract

**Background:** Hearing loss is common in older adults. Screening could identify untreated hearing loss and lead to interventions to improve hearing-related function and quality of life.

**Purpose:** To update the 1996 U.S. Preventive Services Task Force evidence review on screening for hearing loss in primary care settings in adults ages 50 years and older.

**Data Sources:** We searched Ovid MEDLINE from 1950 to July 2010, the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials through the second quarter of 2010 to identify relevant articles. We supplemented electronic searches with reviews of reference lists of relevant articles and solicited additional citations from experts.

**Study Selection:** We selected randomized trials and controlled observational studies that directly evaluated effects of screening for hearing loss in older (ages ≥50 years) adults. To evaluate indirect evidence on screening, we also included studies on the diagnostic accuracy of screening tests for hearing loss used in primary care settings, and randomized trials and controlled observational studies that reported clinical outcomes associated with use of amplification.

**Data Extraction:** One investigator abstracted data and a second investigator checked data abstraction for accuracy. Two investigators independently assessed study quality using methods developed by the U.S. Preventive Services Task Force.

**Data Synthesis:** Evidence on benefits and harms of screening and treatments for hearing loss was synthesized qualitatively. One large (n=2305) randomized trial found that screening for hearing loss was associated with increased hearing aid use at 1 year, but screening was not associated with improvement in hearing-related function. There is good-quality evidence from 20 studies on diagnostic accuracy that common screening tests for hearing loss can help identify patients at higher risk for hearing loss. The whispered voice test at 2 feet and a single question regarding perceived hearing loss were comparable with a more detailed screening questionnaire or a hand-held audiometric device for identifying at least mild (>25 dB) hearing loss. Negative results using a hand-held audiometric device may be the most useful finding for ruling out at least moderate (>40 dB) hearing loss. One good-quality randomized trial found that immediate hearing aids were effective compared with wait-list control for improving hearing-related quality of life and function in patients with mild or moderate hearing loss and severe hearing-related handicap. We did not find direct evidence on harms of screening or treatments with hearing aids, but harms are likely to be small based on the non-invasive nature of screening and treatment, with no known serious adverse events.

**Limitations:** We excluded non-English language studies, included studies of diagnostic accuracy in high-prevalence specialty settings, and did not construct outcomes tables.

**Conclusions:** Additional research is needed to understand effects of screening compared with no screening on health outcomes, and to confirm benefits of treatment under conditions likely to be encountered in most primary care settings.
Does Adherence to Hearing Aid Use Improve Health Outcomes in Screened Asymptomatic Adults Who Are Prescribed Hearing Aids? .................................................................17
Are There Characteristics That Can Predict Adherence to Hearing Aid Use Among Screened Populations? ...............................................................................................................................18
Are There Treatments or Other Behavioral Interventions in Addition to Hearing Aid Use That Improve Health Outcomes in Adults With Hearing Loss? ........................................18
Limitations ................................................................................................................................18
Emerging Issues ................................................................................................................................18
Future Research ................................................................................................................................19
Conclusions .......................................................................................................................................19

References .........................................................................................................................................20

Figure
Figure 1. Analytic Framework and Key Questions

Tables
Table 1. Randomized Controlled Trials of Screening and Treatment
Table 2. Whispered Voice, Watch Tick, and Finger Rub Clinical Tests
Table 3. Single Screening Question
Table 4. Screening Questionnaires
Table 5. Handheld Audiometric Devices
Table 6. Diagnostic Accuracy of Screening Tests for Hearing Loss
Table 7. Summary of Evidence

Appendixes
Appendix A – Methods
Appendix A1. Literature Search Strategies
Appendix A2. Inclusion and Exclusion Criteria
Appendix A3. Literature Flow Diagram
Appendix A4. Excluded Studies
Appendix A5. U.S. Preventive Services Task Force Quality Criteria

Appendix B – Evidence and Quality Tables
Appendix B1. Randomized Controlled Trials of Screening and Treatment Evidence Table
Appendix B2. Quality Ratings for Trials of Screening and Treatment
Appendix B3. Whispered Voice, Watch Tick, and Finger Rub Clinical Tests Evidence Table
Appendix B4. Single Screening Question Evidence Table
Appendix B5. Hearing Questionnaires Evidence Table
Appendix B6. Handheld Audiometric Devices Evidence Table
Appendix B7. Quality Ratings of Diagnostic Test Studies

Appendix C – Measures of Quality of Life or Function
I. INTRODUCTION

Scope and Purpose

Hearing loss is common in older adults, increases in prevalence and severity with age, and can affect quality of life and ability to function. The U.S. Preventive Services Task Force (USPSTF) issued a recommendation on screening for hearing loss in adults ages 50 years and older in 1996. In 2009, the USPSTF commissioned a new evidence review in order to update its recommendation. The purpose of this report is to systematically evaluate the current evidence on screening for hearing loss in adults ages 50 years and older in primary care settings.

Condition Definition

A person with normal hearing perceives sounds at frequencies between 20 and 20,000 Hz. Frequencies between 500 and 4000 Hz are most important for speech processing. There is often discordance between objectively measured deficits in tonal perception at specific frequencies and intensity levels (measured as decibels) and subjective perceptions of hearing problems. One study found that 20 percent of persons reporting hearing difficulty had normal hearing tests, while 6.2 percent of those not reporting difficulty had significant hearing loss. Hearing problems despite normal hearing tests could be caused by abnormal signal processing or sound discrimination. Because treatments for hearing loss are targeted at improving tonal perception by signal amplification, we use the term “hearing loss” in this review to refer specifically to deficits found on objective testing.

The standard objective test for hearing loss is the pure-tone audiogram, in which a patient is placed in a soundproof booth and tested on ability to hear tones at a series of discrete frequencies, typically in the range of 125 to 8000 Hz, at various decibels. There is no universally accepted definition for hearing loss. Reference criteria vary with regard to the frequencies and intensity thresholds used to determine hearing loss, and whether one or both ears are affected. Many studies define mild hearing loss as inability to hear frequencies associated with speech processing <25 dB and moderate hearing loss as inability to hear those frequencies <40 dB. Commonly used reference criteria include the Ventry and Weinstein criteria (>40 dB hearing loss at either 1000 or 2000 Hz in both ears, or >40 dB hearing loss at 1000 and 2000 Hz in one ear), the speech frequency pure-tone average (SFPTA) criteria (>25 dB average hearing loss at 500, 1000, and 2000 Hz in the better ear), and the high-frequency pure-tone average (HFPTA) criteria (>25 dB average hearing loss at 1000, 2000, and 4000 Hz in the better ear).

Prevalence and Burden of Disease/Illness

In population-based studies of community-dwelling older adults (ages 50 years and older), the prevalence of hearing loss ranges from 20 to 40 percent depending on the population evaluated and the criteria used to define hearing loss. In adults ages 80 years and older, the prevalence...
increases to over 80 percent. In a prospective study of 1636 adults ages 48 to 92 years without hearing loss at baseline, the 5-year incidence of hearing loss was 21 percent. In one population-based study, about one third of older adults with hearing loss reported that they never had a hearing test.

Hearing loss can impact both quality of life and ability to function in older adults. Individuals with hearing loss may have difficulty with speech discrimination, participation in social activities, ability to enjoy music, and localization of sounds. Hearing loss is associated with increased emotional dysfunction, depression, and social isolation. Older adults with moderate to severe hearing loss are more likely to experience impaired activities of daily living and instrumental activities of daily living compared with those with mild or no hearing loss.

**Etiology and Natural History**

Age-related hearing loss (presbycusis) is the most common cause of hearing loss in older adults. It refers to a type of sensorineural hearing loss involving degeneration of the cells of the organ of Corti. The hearing loss associated with presbycusis is typically gradual, progressive, and bilateral. The disease initially affects the higher frequencies before progressing to the lower frequencies. Hearing loss in older adults is multifactorial. In addition to age-related degeneration, other contributing factors include genetic factors, exposure to loud noises, exposure to ototoxic agents, history of inner ear infections, and presence of systemic diseases such as diabetes mellitus. Conductive hearing loss accounts for about 8 percent of cases of hearing loss in older adults.

**Risk Factors**

In addition to advanced age, a number of other risk factors are associated with hearing loss in older adults, including male sex, white race, family history, service/blue-collar occupation, exposure to loud noises, lower education level, smoking, hypertension, and diabetes.

**Rationale for Screening/Screening Strategies**

While hearing loss is common in older adults, individuals may not realize that they have hearing loss because symptoms are relatively mild or slowly progressive, they may perceive hearing loss but not seek evaluation for it, or they may have difficulty recognizing or reporting hearing loss due to comorbid conditions, such as cognitive impairment. Screening could identify individuals with hearing loss who could benefit from the use of hearing aids or other therapies to address hearing loss.

Although formal audiometric testing is required to diagnose hearing loss, the equipment is expensive and testing is time intensive and requires specially trained staff. Screening in primary
care settings is therefore typically based on the use of more readily performed tests that can identify those who should undergo a full audiometric evaluation. Clinical tests used to screen for hearing impairment include testing whether a patient can hear a whispered voice, a finger rub, or a watch tick at a specific distance. Perceived hearing loss or hearing-associated problems can be assessed by asking a single question (e.g., “Do you have difficulty with your hearing?”) or with a more detailed questionnaire. The Hearing Handicap Inventory for the Elderly-Screening (HHIES), the most commonly used screening questionnaire, is a 10-item self-administered questionnaire that assesses social and emotional factors associated with hearing loss and requires about 2 minutes to complete.9, 22 The AudioScope (Welch Allyn, Inc., Skaneateles Falls, NY) is a handheld screening instrument consisting of an otoscope with a built-in audiometer. It assesses the ability of patients to hear tones of 20, 25, and 40 dB at frequencies of 500, 1000, 2000, and 4000 Hz and requires approximately 90 seconds to administer.22

Interventions/Treatment

Signal amplification is the primary treatment for hearing loss. Hearing aids vary widely in style, technology, features, and cost.12, 23 Hearing aid styles include behind-the-ear, in-the-ear, in-the-canal, and completely-in-the-canal designs. Digital signal processing has become the standard technology for hearing aids. Despite the high prevalence of hearing loss and many options for amplification, only 10 to 20 percent of those with hearing loss have ever used hearing aids, and 20 to 29 percent of patients who have used hearing aids at some point stop using them.3, 24, 25 Patients often experience dissatisfaction with hearing aids due to their appearance, background noise, discomfort, difficulty handling, and unmet expectations regarding effects on hearing impairment.12, 26 Other options for treatment of hearing loss include assistive listening devices (off-the-ear devices that amplify directional noise using a microphone or similar instrument), hearing rehabilitation, and cochlear implants for those with profound hearing loss who do not improve with hearing aids.12, 23

Current Clinical Practice

Surveys indicate that although physicians overwhelmingly (92 to 98 percent) believe that hearing loss negatively affects quality of life in older adults, many do not routinely screen patients (40 to 86 percent).27-29 Barriers to screening include lack of time, perception that there are more pressing clinical issues, and lack of reimbursement.27-29

Recommendations of Other Groups

The American Speech-Language-Hearing Association recommends that adults be screened at least every decade through age 50 and at 3-year intervals thereafter.30 Recommendations from the American Academy of Family Physicians31 and the American Academy of Audiology32 refer to prior USPSTF recommendations. In 1994, the Canadian Task Force on Preventive Health
Care found fair evidence to screen the elderly for hearing impairment (B recommendation). The American Geriatrics Society and the American Academy of Otolaryngology Head and Neck Surgery do not have recommendations.

**Previous USPSTF Recommendation**

In 1996, the USPSTF recommended “screening older adults for hearing impairment by periodically questioning them about their hearing, counseling them about the availability of hearing aid devices, and making referrals for abnormalities when appropriate (B recommendation).”
II. METHODS

Using the methods of the USPSTF that are fully described in Appendix A and with the input of members of the USPSTF, we developed an analytic framework (Figure 1) and key questions (KQs) to guide our literature search and review. We defined the target population as persons ages 50 years and older who did not have diagnosed hearing loss and were evaluated in primary care settings, including patients both with and without perceived hearing loss. For the purposes of this review, both groups are referred to as “asymptomatic,” so long as they have not sought evaluation for a perceived hearing problem. The target condition for this review was chronic sensorineural hearing loss, the most common type of hearing loss in older adults. We excluded conductive hearing loss, congenital hearing loss, and sudden hearing loss or hearing loss due to recent occupational or other exposure, as these were considered to be outside the scope of hearing screening in primary care. For treatments, we focused on hearing aids. Outcomes of interest were hearing-related function, quality of life, and adverse events related to screening or treatment (such as anxiety, labeling, or other psychosocial effects, and false-positive results).

The KQs used to guide this evidence synthesis were:

1. Does screening for hearing loss in asymptomatic adults ages 50 years and older lead to improved health outcomes?

2. How accurate are the methods for hearing loss screening in older adults, including questionnaires, clinical techniques, and handheld audiometric devices?

3. How efficacious is the treatment of screening-detected hearing loss, namely amplification, in improving health outcomes?

4. What are the adverse effects of screening for hearing loss in adults ages 50 years and older?

5. What are the adverse effects of treatment of screening-detected hearing loss in adults ages 50 years and older?

Search Strategies

We searched Ovid MEDLINE from 1950 to July 2010 and the Cochrane Database of Systematic Reviews and the Cochrane Central Register of Controlled Trials through the second quarter of 2010 to identify relevant articles (Appendix A1). We identified additional studies from citations in relevant articles and experts in hearing screening and treatment.
Study Selection

We selected studies pertaining to screening, diagnosis, and treatment of hearing loss based on predefined inclusion and exclusion criteria for each KQ (Appendix A2). Two reviewers evaluated each study at the title/abstract and full-text article stages to determine eligibility for inclusion. The flow of studies from initial identification of titles and abstracts to final inclusion or exclusion is diagrammed in Appendix A3. We also included studies of hearing screening in specialty settings, but evaluated their applicability to primary care settings. The target sample was persons ages 50 years and older who did not have diagnosed hearing loss and were evaluated in primary care settings, including those with and without self-perceived hearing problems. The target condition for this review was chronic sensorineural hearing loss, the most common type of hearing loss in older adults. Although hearing problems can occur despite normal tonal perception, hearing loss is generally defined based on pure-tone audiometric testing because the primary treatment is signal amplification. For screening tests, we focused on clinical tests (e.g., detection of a whispered voice, finger rub, or watch tick), a single question (e.g., “Do you have difficulty with your hearing?”), questionnaires (e.g., HHIE-S) and handheld audiometric devices (e.g., the AudioScope). The purpose of all screening tests was to identify individuals at higher risk for hearing loss who should be referred for formal audiometry. We excluded the Rinne and Weber tests because their main purpose is to distinguish conductive from sensorineural hearing loss, not to screen patients for hearing loss. For treatments, we focused on hearing aids and assistive listening devices (instruments with an off-ear microphone to pick up and amplify targeted sounds). Outcomes of interest were hearing-related function, quality of life, and adverse events related to screening or treatment. We used randomized controlled trials (RCTs) and controlled observational studies to assess the effectiveness and harms of screening and treatment. For diagnostic accuracy, we included studies that compared a screening test with a reference standard.

We excluded congenital hearing loss, sudden hearing loss, and hearing loss due to recent occupational or other exposure. We also excluded conductive hearing loss because it is uncommon in older adults. We restricted our review to published studies available in the English language. Studies that were excluded after review of the full-text article and reasons for exclusion are listed in Appendix A4.

Data Abstraction and Quality Rating

We abstracted details about the patient population, study design, data analysis, follow-up, and results. One author abstracted data and another author verified the abstracted data for accuracy. Two authors independently rated the internal validity of each study as “good,” “fair,” or “poor” using predefined criteria developed by the USPSTF (Appendix A5). We also evaluated the applicability of studies to primary care screening, based on whether patients were recruited from primary care or community settings, the prevalence and severity of hearing loss, the proportion of patients with perceived hearing loss, and factors related to access to hearing aids (e.g., free hearing aids provided to eligible veterans). Discrepancies in quality ratings were resolved by discussion and consensus.
For diagnostic accuracy studies, we used the `diagti` procedure in Stata (Stata Version 10, StataCorp, College Station, TX) to calculate sensitivities, specificities, and likelihood ratios. We used the `cci` procedure to calculate diagnostic odds ratios with exact confidence intervals.

**Data Synthesis**

We assessed the overall strength of the body of evidence for each KQ (“good,” “fair,” or “poor”), or part of a KQ, using methods developed by the USPSTF, based on the number, quality and size of studies, consistency of results between studies, and directness of evidence. We did not quantitatively pool results of studies on diagnostic accuracy of screening tests for hearing loss due to differences across studies in populations evaluated, definitions of hearing loss, specific screening tests evaluated, and screening cutoffs applied. Instead, we created descriptive statistics with the median sensitivity, specificity, and likelihood ratios for detecting hearing loss of >25 and >40 dB, along with associated ranges. The total range rather than the interquartile range was chosen because several findings were reported in few studies, and because the summary range highlights the greater uncertainty we have in the estimates. For studies that reported diagnostic accuracy based on more than one definition of hearing loss, we estimated median values based on the Ventry and Weinstein criteria (for >40 dB hearing loss), the SFPTA criteria (for >25 dB hearing loss), or another definition most like the ones used by other relevant studies. There were too few randomized trials of treatments for hearing loss to perform meta-analysis.

**External Review**

We distributed a draft of the report for review by four external experts not affiliated with the USPSTF (Appendix A6), and revised the report based on their comments.
III. RESULTS

Key Question 1. Does Screening for Hearing Loss in Asymptomatic Adults Ages 50 Years and Older Lead To Improved Health Outcomes?

Summary

One trial found that screening with the HHIE-S, the AudioScope, or both was associated with greater hearing aid use at 1 year compared with no screening. Effects of screening on hearing aid use appeared to be limited to patients with perceived hearing loss at baseline. Screening was not associated with any differences in hearing-related quality of life compared with no screening. Because three quarters of patients enrolled in the trial reported perceived hearing loss at baseline and all patients were eligible to receive free hearing aids, results are likely to be most generalizable to high-prevalence settings in which the cost of hearing aids is not a barrier.

Evidence

We identified one randomized trial of screening for hearing loss (Table 1, Appendixes B1 and B2). Aspects of this trial were also described in a preliminary abstract and in an article describing its study design, baseline characteristics, and rates of positive screening results. We rated the Screening for Auditory Impairment—Which Hearing Assessment Test (SAI-WHAT) trial as fair quality primarily because of high loss to follow-up and unclear blinding status of outcomes assessors. The trial compared three different screening strategies (the AudioScope, based on inability to hear a 40 dB tone at 2000 Hz in either ear; the HHIE-S, based on a score ≥10; or the AudioScope plus the HHIE-S) versus usual care without screening in 2305 predominantly (94 percent) male patients ages 50 years and older (mean age, 61 years) at a Department of Veteran Affairs (VA) Medical Center. Some study design factors could limit the applicability of the SAI-WHAT trial to screening in other primary care settings. Specifically, all participants in the trial were eligible to receive free VA-issued hearing aids. In addition, about three quarters of patients reported perceived hearing loss at enrollment (based on the question, “Do you think you have hearing loss?”).

Rates of positive screening results were 19 percent in the AudioScope arm, 59 percent in the HHIE-S arm, and 64 percent in the combined arm. Hearing aid use at 1 year, the primary outcome, was 6.3 percent in the AudioScope arm, 4.1 percent in the HHIE-S arm, 7.4 percent in the combined arm, and 3.3 percent in the control arm (p=0.03). In a post-hoc stratified analysis, hearing aid use was greater among patients with perceived hearing loss (5.7 to 9.6 percent in screened arms vs. 4.4 percent in control arm), but among those without perceived hearing loss, hearing aid use was minimal regardless of screening status (0 to 1.6 percent).

There was no difference in the proportion of patients that experienced a minimum clinically important difference (>6 points of improvement on a 0 to 100 scale) on the Inner Effectiveness of Aural Rehabilitation scale (a measure of hearing-related function), a secondary outcome of the
trial, at 1 year (36 to 40 percent in the screened arms vs. 36 percent in the control arm; p=0.39). In post-hoc analyses, there were also no differences in the proportion that experienced improvement in hearing-related function when patients were stratified according to whether they had perceived hearing loss at baseline, except in a subgroup that was also ages 65 years and older (54 percent in the AudioScope arm, 34 percent in the HHIE-S arm, 40 percent in the combined arm, and 34 percent in the control arm).

Key Question 2. How Accurate Are the Methods for Screening for Hearing Loss in Older Adults?

Summary

Twenty studies evaluated the diagnostic accuracy of clinical tests, a single question, a questionnaire, or a handheld audiometric device for identification of hearing loss in older adults. For detection of >25 or >30 dB hearing loss, four studies (one good-quality) found that the whispered voice test at 2 feet was associated with a median positive likelihood ratio (PLR) of 5.1 (range, 2.3 to 7.4) and median negative likelihood ratio (NLR) of 0.03 (range, 0.007 to 0.73). For detection of >25 dB hearing loss, six studies (four good-quality) found that a single question was associated with a median PLR of 3.0 (range, 2.4 to 3.8) and median NLR of 0.40 (range, 0.33 to 0.82). And four good-quality studies found that the HHIE-S (based on a cutoff score of 8) was associated with a median PLR of 3.5 (range, 2.4 to 11) and median NLR of 0.52 (range, 0.43 to 0.70). Likelihood ratio estimates were similar for detection of >40 dB hearing loss. For detection of >40 dB hearing loss, three studies (two good-quality) found that the AudioScope (based on ability to hear tones between 500 and 4000 Hz at 40 dB) was associated with a median PLR of 3.4 (range, 1.7 to 4.9) and median NLR of 0.05 (range, 0.03 to 0.08).

In direct comparisons, one good-quality study found that the watch tick and finger rub tests were associated with similar NLRs but substantially stronger PLRs compared with the whispered voice test or a single screening question. Three studies showed a consistent trade-off between lower sensitivity and higher specificity for the HHIE-S compared with a single screening question, resulting in somewhat stronger PLRs and weaker NLRs. Two studies found that the AudioScope was associated with stronger NLRs compared with the HHIE-S, with relatively small differences in PLR estimates.

Evidence

Twenty studies evaluated the diagnostic accuracy of various screening tests against a reference standard (usually pure-tone audiometry) for identification of hearing loss in older adults. Four studies evaluated clinical tests (Table 2, Appendix B3), eight evaluated a single question (Table 3, Appendix B4), nine evaluated a hearing questionnaire (Table 4, Appendix B5), and six evaluated a handheld audiometric device (Table 5, Appendix B6). Four studies were population-based and four recruited patients from primary care or community-based settings. The remainder recruited...
patients from specialty (usually an audiology or otolaryngology clinic) or other high-prevalence settings, or evaluated older adults dwelling in nursing homes.49, 55

We rated seven studies as good quality22, 39, 43-47 and the remainder as fair quality (Appendix B7). The most common methodological shortcomings were failure to describe enrollment of a representative spectrum of patients (nine studies met this criterion), failure to report interpretation of the reference standard blinded to results of the screening test (five studies met this criterion), and failure to describe enrollment of a random or consecutive series of patients (11 studies met this criterion). All studies except for one used pure-tone audiometry as the reference standard for hearing loss, though four studies used a portable (bedside) audiometer instead of standard audiometry.49, 52, 54, 55 The exception was one study that performed an audiometric examination but used an audiologist as its reference standard.56

Table 6 summarizes the main results on diagnostic accuracy. Results for each screening test are described in more detail below.

**Whispered voice, finger rub, and watch tick tests.** One good-quality39 and three fair-quality40-42 studies evaluated the diagnostic accuracy of a whispered voice at 2 feet for identification of >25 or >30 dB hearing loss (Table 2, Appendix B3). Likelihood ratio estimates varied, with a median PLR of 5.1 (range, 2.3 to 7.4) and median NLR of 0.03 (range, 0.007 to 0.73). The good-quality study reported the weakest likelihood ratios.39 Based on a sensitivity of 0.40 (range, 0.32 to 0.49) and specificity of 0.82 (range, 0.72 to 0.90), the PLR was 2.3 (95% CI, 1.3 to 3.8) and the NLR was 0.73 (95% CI, 0.61 to 0.87). In the three fair-quality studies, sensitivity was higher (range, 0.90 to 1.0), with similar specificity (range, 0.80 to 0.87), resulting in stronger likelihood ratios (PLR range, 4.6 to 7.4; NLR range, 0.007 to 0.12).40-42 One fair-quality study found that inability to hear a whispered voice at 6 inches (PLR, 72 [95% CI, 4.6 to 1140]) or a conversation at 2 feet (PLR, 46 [95% CI, 2.9 to 740]) was more useful than inability to hear a whispered voice at 2 feet (PLR, 5.7 [95% CI, 3.1 to 11]), but estimates were imprecise and the confidence intervals overlapped.41 On the other hand, normal results on the first two tests were less useful than the whispered voice test at 2 feet for identifying those without hearing loss (NLR, 0.27 [95% CI, 0.19 to 0.39] and 0.53 [95% CI, 0.43 to 0.66], respectively, vs. 0.008 [95% CI, 0.0005 to 0.13]), primarily due to lower sensitivities.

The one good-quality study also evaluated the accuracy of the finger rub and watch tick tests at 6 inches for detecting >25 dB hearing loss (Table 2, Appendix B3).39 Compared with the whispered voice test, inability to hear a finger rub or watch tick was more useful for identifying hearing loss (PLR, 10 [95% CI, 2.6 to 43] and 70 [95% CI, 4.4 to 1120], respectively), with normal results similarly useful for identifying individuals without hearing loss (NLR, 0.75 [95% CI, 0.68 to 0.84] and 0.57 [95% CI, 0.46 to 0.66], respectively), based on similar sensitivities (0.27 [95% CI, 0.19 to 0.35] and 0.44 [95% CI, 0.35 to 0.53], respectively) and higher specificities (0.98 [95% CI, 0.91 to 1.0] and 1.0 [95% CI, 0.95 to 1.0], respectively).

**Single-question screening.** Five good-quality39, 43-45, 47 and three fair-quality52, 54, 55 studies evaluated the diagnostic accuracy of a single question regarding perceived hearing difficulties (e.g., “Do you have difficulty with your hearing?”) for detection of hearing loss (Table 3, Appendix B4). For detection of >25 dB hearing loss, six studies reported a median sensitivity of 0.67 (range, 0.27 to 0.78) and median specificity of 0.80 (range, 0.67 to 0.89).39, 43-45, 52, 54 A
positive response to a single question increased the likelihood of hearing loss (median PLR, 3.0 [range, 2.4 to 3.8]), though the usefulness of a negative response was variable (median NLR, 0.40 [range, 0.33 to 0.82]). For detection of >40 dB hearing loss, three good-quality studies reported a median sensitivity of 0.81 (range, 0.71 to 0.93) and median specificity of 0.72 (range, 0.56 to 0.74), resulting in a median PLR of 2.5 (range, 2.1 to 3.1) and median NLR of 0.26 (range, 0.13 to 0.41).

One fair-quality study of nursing home residents reported a weaker PLR (1.4 [95% CI, 1.1 to 1.8]) and similar NLR (0.61 [95% CI, 0.43 to 0.87]) compared with the other studies, which evaluated community-dwelling older adults.45

**Screening questionnaires.** Five good-quality22, 44-47 and three fair-quality9, 53, 56 studies evaluated the diagnostic accuracy of the HHIE-S screening questionnaire, and one fair-quality study evaluated the diagnostic accuracy of the 5-Minute Hearing Test51 (Table 4, Appendix B5).

For detection of >25 dB hearing loss, four good-quality studies reported a median sensitivity for the HHIE-S (based on a cutoff score >8) of 0.58 (range, 0.32 to 0.66) and median specificity of 0.82 (range, 0.76 to 0.97), resulting in a median PLR of 3.5 (range, 2.4 to 11) and NLR of 0.52 (range, 0.43 to 0.70).22, 44-46 One fair-quality study reported a somewhat lower PLR and similar NLR (2.3 and 0.38, respectively), but the reference standard was an audiologist recommendation for evaluation, rather than strictly results of pure-tone audiometry.56 Studies on the accuracy of HHIE-S cutoff scores >8 for identification of >40 dB hearing loss reported slightly better sensitivity and slightly worse specificity compared with identification of >25 dB hearing loss, resulting in similar likelihood ratios (Table 4).9, 22, 45-47 Changing the HHIE-S threshold from >8 to >24 increased the PLR for identification of >40 dB hearing loss (based on Ventry and Weinstein criteria) from 3.1 to 10 and increased the NLR from 0.37 to 0.77 in one good-quality study (due to decreased sensitivity but higher specificity),46 but had little effect on likelihood ratio estimates for either >25 dB or >40 dB hearing loss in another good-quality study.22

One fair-quality study evaluated the accuracy of the 5-Minute Hearing Test for identification of >25 dB hearing loss at various cutoff scores.51 Sensitivity ranged from 0.90 at a cutoff score of 10 to 0.26 at a cutoff score of 40, with specificities of 0.20 and 0.97, respectively, resulting in PLRs of 1.1 to 9.9 and NLRs of 0.47 to 0.76, depending on the cutoff score evaluated.

**Handheld audiometric devices.** Two good-quality22, 46 and four fair-quality40, 48-50 studies evaluated the diagnostic accuracy of the AudioScope handheld audiometric device for identification of hearing loss (Table 5, Appendix B6). The frequencies and intensities of the tones tested with the AudioScope varied across studies. For detection of >25 dB hearing loss, one good-quality study found that the AudioScope (based on ability to hear a 2000 Hz tone at 40 dB) was associated with a sensitivity of 0.64 (95% CI, 0.52 to 0.77) based on SFPTA criteria and 0.71 (95% CI, 0.63 to 0.80) based on HFPTA criteria, with specificities of 0.89 (95% CI, 0.83 to 0.94) and 0.91 (0.84 to 0.97), respectively.22 Corresponding PLRs were 5.8 (95% CI, 3.4 to 9.8) and 7.5 (95% CI, 3.7 to 15), and NLRs were 0.40 and 0.32 (CIs not calculable).22 For detection of >30 dB hearing loss, a fair-quality study found that the AudioScope (based on ability to hear 500, 1000, 2000, and 4000 Hz at 25 dB) was associated with a sensitivity of 0.93, specificity of 0.70, PLR of 3.1, and NLR of 0.10 (CIs not calculable).48 For detection of >40 dB hearing loss, three studies of community-dwelling older adults found that the AudioScope (based on ability to hear tones between 500 and 4000 Hz at 40 dB) was associated with a median sensitivity of 0.96 (range, 0.94 to 1.0), median specificity of 0.72 (range, 0.42 to 0.80), median PLR of 3.4 (range,
1.7 to 4.9), and median NLR of 0.05 (range, 0.03 to 0.08). A fair-quality study of older adult nursing home residents reported a very high sensitivity (0.98 [95% CI, 0.91 to 1.0]) but very low specificity (0.21 [95% CI, 0.08 to 0.41]) for identification of >40 dB hearing loss using the AudioScope (based on failure to hear 1000 or 2000 Hz in both ears), resulting in a much weaker PLR (1.3 [95% CI, 1.0 to 1.5]) but similar NLR (0.08 [95% CI, 0.01 to 0.61]) compared with results from the studies of community-dwelling older adults.

Direct comparisons of different types of screening tests. Six good-quality studies directly compared the diagnostic accuracy of different screening tests for hearing loss in older adults. One study found that the whispered voice test and single question screening were associated with similar PLRs (2.3 [95% CI, 1.3 to 3.8] and 2.5 [95% CI, 1.0 to 5.9], respectively) and NLRs (0.73 [95% CI, 0.61 to 0.87] and 0.82 [95% CI, 0.68 to 0.99], respectively), but the watch tick and finger rub tests were associated with substantially stronger PLRs (70 [range, 4.4 to 1120] and 10 [range, 2.6 to 43], respectively) and comparable NLRs (0.57 [95% CI, 0.49 to 0.66] and 0.75 [95% CI, 0.68 to 0.84], respectively). Three studies showed a consistent trade-off between lower sensitivity and higher specificity for the HHIE-S compared with a single screening question, resulting in somewhat stronger PLRs and weaker NLRs. Two studies found that normal results on the AudioScope were generally associated with stronger NLRs (0.05 and 0.24) compared with the HHIE-S (0.37 and 0.76), with relatively small differences in PLR estimates, though likelihood ratio estimates varied depending on the HHIE-S cutoff score evaluated and the criteria used to define hearing loss.

Key Question 3. How Efficacious Is the Treatment of Screening-Detected Hearing Loss in Improving Health Outcomes?

Summary

Four RCTs evaluated benefits of amplification compared with no amplification for treatment of screening-detected hearing loss. One good-quality RCT found that immediate hearing aids were associated with near normalization of hearing-specific quality of life and communication difficulties in veterans with primarily screening-detected moderate to severe hearing loss, compared with essentially no changes in these outcomes in wait-list controls. A smaller, fair-quality RCT found no clear difference between an assistive listening device and no treatment in veterans ineligible for free hearing aids with less severe hearing loss. Another fair-quality RCT found no difference between a hearing aid, an assistive listening device, or both compared with no amplification in a subgroup of patients not using hearing aids at enrollment with mild baseline hearing loss and hearing-related handicap. A fourth RCT of hearing aids versus no hearing aids-reported outcomes very poorly.

Evidence

We identified four RCTs on treatment for hearing loss in older adults (Table 1, Appendixes B1 and B2). Two trials evaluated older male veterans and two evaluated community-
dwelling older adults. Numerous measures were used to assess both hearing-related and general quality of life and function (Appendix C).

One trial was rated good quality,13 two were rated fair quality,57, 58 and one was rated poor quality59 (Appendix B2). Shortcomings of the fair-quality trials included potentially important baseline differences between groups and failure to describe intention-to-treat analysis,57 and failure to describe randomization or allocation concealment methods or loss to follow-up.58 The poor-quality trial did not describe allocation concealment, use of intention-to-treat analysis, or loss to follow-up, and reported outcomes incompletely.59 All of the trials had characteristics which could limit generalizability to screening in typical primary care settings, including recruitment of mostly white male veterans,13, 57 restriction to patients eligible for free hearing aids,57 inclusion of patients referred for suspected hearing problems,13 and inclusion of patients already using hearing aids.58

The good-quality RCT (n=194) randomly assigned veterans (mean age, 72 years) to immediate hearing aids or wait-list control for 4 months.13 About two thirds of patients were recruited from a primary care setting based on a positive AudioScope screening for >40 dB hearing loss. The others were referred into the trial due to suspected hearing problems. The mean pure-tone threshold was 52 dB and similar among screening-detected and referred patients. The mean baseline HHIE score was about 50 (standard deviation [SD], 28), indicating severe (HHIE score >42) effects on hearing-related quality of life and function.60 Hearing-related quality of life outcomes were measured using the HHIE and the Quantified Denver Scale of Communication Function (QDS). General quality of life was assessed with the Geriatric Depression Scale (GDS), a 0 to 15 scale, the Short Portable Mental Status Questionnaire (SPMSQ), a 0 to 10 scale, and the Self-Evaluation of Life Function (SELF), a 54 to 216 scale.

At 4 months there was no change from baseline in HHIE or QDS scores in the control group, but the hearing aid group HHIE score improved from a mean of 49 at baseline to 15 at 4 months, and the QDS score improved from 59 to 36. The mean between-group difference in change from baseline was 34 (95% CI, 27 to 41) on the HHIE and 24 (95% CI, 17 to 31) on the QDS. Results were similar in the subgroup of screening-detected patients. Greater improvements in HHIE scores were associated with increased hearing aid use (p=0.05), but not with changes in QDS scores. Statistically significant but small (<1 point) effects on GDS and SPMSQ scores were also observed in the hearing aid group compared with the control group. However, the potential for improvement may have been limited because the baseline scores indicated only mild baseline depression or cognitive dysfunction. In both groups, there were no significant differences from baseline in SELF scores. A follow-up study found that improvements in HHIE and QDS scores were sustained in the hearing aid group through 12 months, even though the proportion of patients that reported 4 hours or more of daily hearing aid use decreased from 90 to 76 percent between 4 and 12 months.61

A second, fair-quality trial (n=64) enrolled veterans (mean age, 68 years) with less severe (mean pure-tone threshold, 32 dB) hearing loss.57 Patients eligible for free VA-issued hearing aids (n=30) were randomly assigned to a standard non-directional or programmable directional digital hearing aid. Patients ineligible for free hearing aids (n=30) were randomly assigned to an assistive listening device (an instrument used to pick up and amplify targeted sounds while
At 3-month follow-up, there were trivial improvements from baseline on HHIE scores in the assistive listening device and no treatment groups (mean change of 4.4 and 2.2 points, respectively), but both types of hearing aids were associated with clinically significant improvements (mean change of 17 and 31 points in the standard and programmable hearing aid groups, respectively). Changes in APHAB scores were small in the assistive listening device and no treatment groups (mean change of 6.4 and 2.7 points, respectively), with no change in RQDS scores. Improvements in the APHAB score were larger in both hearing aid groups (mean change of 7.7 and 16 for standard and programmable hearing aids, respectively). Although both hearing aid groups experienced greater improvements in hearing-related outcomes compared with the no treatment and assistive listening device groups, there were baseline differences between groups. In addition, statistical significance was only reported for differences across all four groups, but such results are subject to additional confounding because patients were separately randomly assigned based on eligibility for free hearing aids.

In another fair-quality crossover trial (n=80), a subgroup of patients not using hearing aids at enrollment (mean pure-tone threshold hearing loss, 37 dB; mean HHIE score, 30) found no clear differences between hearing aids, an assistive listening device, or both compared with no amplification on HHIE scores and other measures of function or quality of life. Improvements in HHIE scores for all four intervention groups were small and not clinically significant, ranging from 2.2 points in the no amplification group to 5.2 points in the hearing aid only group. A poor-quality trial (n=133) found that older adults randomly assigned to hearing aids did not experience improvement in GDS scores at 6 months, and did not report results in those randomly assigned to no hearing aids.

**Key Question 4. What Are the Adverse Effects of Screening for Hearing Loss in Adults Ages 50 Years and Older?**

**Summary**

We identified no studies on harms associated with screening for hearing loss in older adults. Harms are unlikely to be greater than minimal because screening and confirmatory testing are non-invasive and treatment with hearing aids is not associated with significant harms.
Evidence

No randomized trials or controlled observational studies evaluated harms associated with screening for hearing loss in older adults. Because screening and confirmatory testing are non-invasive and hearing aid treatment is not known to be associated with major harms, it is unlikely that adverse effects of screening for hearing loss would be greater than minimal. It is possible that screening could be associated with anxiety, labeling, or other psychosocial effects, but no studies are available to estimate these outcomes.

Key Question 5. What Are the Adverse Effects of Treatment of Screening-Detected Hearing Loss in Adults Ages 50 Years and Older?

Summary

No randomized trials of hearing aids evaluated harms, and we identified no relevant controlled observational studies. However, serious harms appear to be rare.

Evidence

Hearing aids are non-invasive and generally believed to be safe, although potential harms include dermatitis, accidental retention of molds, cerumen impaction, otitis externa, or associated middle ear problems, as well as psychosocial effects. Harms were not reported in any trials of hearing aids, and we identified no controlled observational studies on adverse effects associated with hearing aid use. Although it has been postulated that the amplification from hearing aids might lead to further deterioration in hearing, particularly in those with severe hearing loss because they require marked amplification, no study has addressed this issue.
IV. DISCUSSION

Summary of Review Findings

Results of this evidence synthesis organized by KQ are summarized in Table 7.

SAI-WHAT is the only study that compared screening with no screening. Although hearing aid use was higher after 1 year with screening, there was no difference in the likelihood of experiencing a clinically important improvement in hearing-related function. Interpretation of SAI-WHAT is critically dependent on whether hearing aid use is an acceptable surrogate marker for hearing-related quality of life and functional outcomes. Hearing aid use at 1 year was less than 10 percent in all arms of SAI-WHAT, and the trial was not powered to assess improvements in hearing-related function. Nonetheless, over one third of patients (screened or unscreened) in SAI-WHAT experienced a clinically significant improvement in hearing-related function, suggesting that factors other than hearing aid use may affect functional outcomes. SAI-WHAT also restricted enrollment to veterans eligible for free hearing aids, three quarters of whom reported perceived hearing loss. Therefore, results are likely to be most applicable to populations with a high prevalence of perceived hearing loss, in settings where treatment cost is not a barrier.

There is good evidence from 20 studies of diagnostic accuracy that common screening tests for hearing loss are useful for identifying patients at higher risk for hearing loss. One challenge in interpreting studies of diagnostic accuracy is that studies used different thresholds and criteria to define hearing loss. The clinical relevance of detection of mild (25 to 40 dB) hearing loss as it pertains to effectiveness of screening is also uncertain, as the only trial showing benefits of hearing aids enrolled patients with screening-detected >40 dB hearing loss. Relatively simple tests, such as the whispered voice at 2 feet and a single question regarding perceived hearing loss, appear to be nearly as accurate compared with a more detailed hearing loss questionnaire or a handheld audiometric device for detecting hearing loss. A negative screening result based on a handheld audiometric device may be particularly useful for ruling out >40 dB hearing loss. Choices regarding which screening test to use may also depend in part on factors other than diagnostic accuracy, such as cost or convenience. For the whisper test, an important consideration is the need for clinicians to administer the test in a standardized and consistent fashion (such as the method described in published studies of diagnostic accuracy). Although the finger rub and watch tick tests may be easier to standardize, more studies are needed to clarify their diagnostic accuracy, as both were only evaluated in one study.

Our conclusions regarding diagnostic accuracy are generally in accord with another recently published systematic review. That systematic review estimated stronger likelihood ratios for the whispered voice test, largely because it was conducted before the publication of a recent, good-quality study that reported substantially weaker estimates. The other review also pooled likelihood ratio estimates, included studies that analyzed the same populations reported in other studies, included studies less applicable to U.S. primary care settings (e.g., studies of nursing home patients in Lebanon or Singapore), and did not include studies that we deemed relevant. For the whispered voice test, the other review calculated a pooled PLR of 6.1 (95% CI, 4.5 to 8.4) and NLR of 0.03 (95% CI, 0 to 0.24); for the single question screening, a pooled...
PLR of 2.5 (95% CI, 1.7 to 3.6) and NLR of 0.13 (95% CI, 0.09 to 0.19); for the HHIE-S (with a cutoff score >8), a pooled PLR of 3.8 (95% CI, 3.0 to 4.8) and NLR of 0.38 (95% CI, 0.29 to 0.51); and for the AudioScope, a pooled PLR of 2.4 (95% CI, 1.4 to 4.1) and NLR of 0.07 (95% CI, 0.03 to 0.17).8

Evidence on the efficacy of treatments for screening-detected hearing loss is limited. One good-quality RCT found that hearing aids resulted in near normalization of hearing-related quality of life and function in a subgroup of patients identified by screening, based on >40 dB hearing loss using a handheld audiometric device.13, 61 Because this trial was conducted in a VA center and almost exclusively enrolled white males, its generalizability to other settings may be limited. Two fair-quality RCTs found no clear differences in hearing-related quality of life or function between amplification and no treatment in patients with milder baseline hearing loss.57, 58

We did not find direct evidence on harms of screening or treatments with hearing aids. In community-based and primary care populations, rates of false-positive results from screening for >25 dB hearing loss ranged from 5 to 41 percent,43-47 depending on the screening test and population evaluated. However, harms of screening are likely to be minimal because screening is non-invasive, the reference standard (audiometric testing) is also non-invasive, and treatment with hearing aids is not known to be associated with serious adverse events. No study has validated the hypothesis that hearing aid use might lead to further hearing deterioration in those with severe to profound hearing loss because of the increased amplification required (the intensity level of sound rises by a factor of 10 for each additional decibel of amplification).67

**Contextual Issues**

Several contextual issues could help inform the interpretation of the findings of this evidence review.

**Does Adherence to Hearing Aid Use Improve Health Outcomes in Screened Asymptomatic Adults Who Are Prescribed Hearing Aids?**

Older adults with hearing loss may not adhere to hearing aid use for cosmetic or psychosocial reasons, because of difficulty using the hearing aids, discomfort, cost, or perceived lack of benefit. In large population-based cohort studies, among the approximately one-third of older adults with hearing loss who had ever used hearing aids, 20 to 30 percent were no longer using them.1, 3 Despite the high rate of non-use or non-adherence to hearing aids, evidence showing that increased adherence improves health outcomes is limited. In one randomized trial, more hours per day of hearing aid use was positively correlated with greater improvements in HHIE (but not QDS) scores.13
Are There Characteristics That Can Predict Adherence to Hearing Aid Use Among Screened Populations?

Several observational studies have attempted to identify factors that predict adherence to hearing aid use. The large (n=1629) Beaver Dam population-based cohort study probably provides the best evidence. It found that among older adults (84 percent ages 60–92 years) who had ever had a hearing aid, factors associated with adherence were older age (age vs. age plus 5 years: adjusted OR, 1.2 [95% CI, 1.1 to 1.3]), more severe hearing loss (moderate loss vs. mild loss: adjusted OR, 5.0 [95% CI, 3.0 to 8.6]), better education (≥16 years of education vs. <12 years of education: adjusted OR, 3.2 [95% CI, 1.7 to 6.1]), lower word recognition scores (<80 vs. ≥90 percent: adjusted OR, 2.7 [95% CI, 1.6 to 4.4]), worse HHIE scores (>26 vs. 0: adjusted OR, 7.8 [95% CI, 3.1 to 19]), and self-reported hearing loss (presence vs. absence of self-reported loss: adjusted OR, 4.9 [95% CI, 2.0 to 12]). A smaller (n=131) observational study found non-statistically significant trends toward greater adherence among college-educated women with a higher income (>40,000 per year) compared with women without a college education and/or lower income, though these factors did not predict adherence in men. A long-term retrospective cohort study found that among 116 participants who received hearing aids, 43 percent were still using their hearing aids 12 years later. Presence of hearing loss in the better ear (dB vs. dB plus 10: OR, 2.4 [95% CI, 1.4 to 3.8]) and presence of moderately severe tinnitus (presence vs. absence of moderately severe tinnitus: OR, 4.6 [95% CI, 1.6 to 13]) predicted adherence.

Are There Treatments or Other Behavioral Interventions in Addition to Hearing Aid Use That Improve Health Outcomes in Adults With Hearing Loss?

We identified no studies on the effectiveness of behavioral interventions in addition to or instead of hearing aids to help patients cope with or manage hearing loss.

Limitations

Our evidence review has some potential limitations. First, evidence was very limited for benefits and harms of screening and treatments for hearing loss, making it difficult to reach strong conclusions. Second, we excluded non-English language studies, which could introduce language bias, though we identified no relevant non-English language studies in literature searches or when searching reference lists. Third, a number of studies evaluated diagnostic accuracy of screening tests or programs in high-prevalence populations recruited from specialty settings, which could limit the generalizability to primary care settings. Finally, we did not attempt to construct outcomes tables due to the lack of sufficient direct or indirect evidence to reliably estimate benefits and harms.
Emerging Issues

We found no ongoing trials of screening for hearing loss or trials of hearing aids versus no treatment in searches of www.clinicaltrials.gov or the Computer Retrieval of Information on Scientific Projects database of federally funded research. One trial on effectiveness of group versus individual fitting of hearing aids and group versus individualized follow-up has completed recruitment and reported baseline characteristics of participants, but results are not yet available.75

Future Research

Further research is needed to understand the potential benefits of screening and treatment for hearing loss in older individuals. Additional research is needed on the effectiveness of screening in typical primary care settings, the optimal age at which to start screening, and the severity of hearing loss that is likely to benefit from hearing aids, in order to help define optimal screening test thresholds and methods. In addition, RCTs to test the efficacy of hearing aids (including more effective or usable designs) or other interventions in improving health, function, and quality of life outcomes should be carried out in patients with screening-detected hearing loss who are representative of those seen in typical primary care settings. Particular efforts should be made to enroll patients with comorbid clinical conditions such as depression or cognitive dysfunction that may be associated with or exacerbated by hearing loss.13 Because effectiveness of any hearing screening strategy will depend on how likely those who might benefit from hearing aids are to actually use them, research is needed on effective methods for enhancing follow-up rates and uptake of recommended treatment following screening.

Conclusions

Additional research is needed to understand effects on health outcomes of screening adults ages 50 years and older for hearing loss compared with no screening, and to confirm benefits of treatment under conditions likely to be encountered in most primary care settings.
References


Figure 1. Analytic Framework and Key Questions

*In primary care applicable settings.
**Such as emotional and social function, communication, and cognitive function. Does not include outcomes related to hearing aid performance and efficacy, such as speech intelligibility and quality of the listening experience.

**Key Questions**

KQ 1. Does screening for hearing loss in asymptomatic adults ages 50 years and older lead to improved health outcomes?

KQ 2. How accurate are the methods for hearing loss screening in older adults?

KQ 3. How efficacious is the treatment of screening-detected hearing loss in improving health outcomes?

KQ 4. What are the adverse effects of screening for hearing loss in adults ages 50 years and older?

KQ 5. What are the adverse effects of treatment of screening-detected hearing loss in adults ages 50 years and older?

**Contextual Questions**

1. Does adherence to hearing aid use improve health outcomes in screened asymptomatic adults who are prescribed hearing aids?

2. Are there characteristics that can predict adherence to hearing aid use among screened populations?

3. Are there treatments or other behavioral interventions in addition to hearing aid use that improve health outcomes in adults with hearing loss?
### Table 1. Randomized Controlled Trials of Screening and Treatment

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Country &amp; Setting</th>
<th>Population</th>
<th>Main outcomes</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Screening</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yueh et al, 2010</td>
<td>US VA primary care clinics</td>
<td>Mean age: 61 years Sex: 94% male Mean baseline hearing loss: NR</td>
<td>Screening with AudioScope vs. HHIE-S questionnaire vs. both vs. no screening, results at 1 year Hearing aid use: 6.3% vs. 4.1% vs. 7.4% vs. 3.3% (p=0.003) &gt;6-point improvement on the Inner Effectiveness of Aural Rehabilitation Scale: 40% vs. 36% vs. 40% vs. 36% (p=0.39)</td>
<td>Fair</td>
</tr>
<tr>
<td>Jerger et al, 1996</td>
<td>US Setting not reported</td>
<td>Mean age: 74 years Sex: 63% male Mean pure-tone threshold: 37 dB* Mean baseline HHIE-S score: 30</td>
<td>Hearing aid vs. assistive listening device vs. both vs. no amplification, mean score at 6 weeks HHIE-S: 25 vs. 27 vs. 26 vs. 28 (p&gt;0.05 for any intervention vs. no amplification) Speech perception in noise: 53% vs. 75% vs. 71% vs. 42% (p&lt;0.05 for any intervention vs. no amplification) Brief Symptom Inventory, Activity Scale, Life Satisfaction in the Elderly Scale, Affect Balance Scale: no differences between interventions (data NR)</td>
<td>Fair</td>
</tr>
<tr>
<td>Mulrow et al, 1990</td>
<td>US VA primary care clinic</td>
<td>Mean age: 72 years Sex: 99% male Race: 97% white Mean pure-tone threshold, better ear: 52 dB* Mean baseline HHIE-S score: 50</td>
<td>Immediate hearing aid vs. wait list, mean score at 4 months (mean difference in change from baseline) HHIE-S: 15 vs. 51 (34 [95% CI, 27 to 41]; p&lt;0.001) Quantified Denver Scale: 36 vs. 62 (24 [95% CI, 17 to 31]; p&lt;0.001) Short Portable Mental Status Questionnaire: 0.29 vs. 0.28 (0.28 [95% CI, 0.08 to 0.48]; p=0.008) Geriatric Depression Scale: 2.6 vs. 3.8 (0.80 [95% CI, 0.09 to 1.5]; p=0.03) Self Evaluation of Life Function: 92 vs. 97 (1.9 [95% CI, -1.6 to 5.4]; p=0.27)</td>
<td>Good</td>
</tr>
<tr>
<td>Tolson et al, 2002</td>
<td>UK General practice clinic attendees</td>
<td>Mean age: 77 years Sex: 23% male Other baseline characteristics: NR</td>
<td>Hearing aid vs. no hearing aid, results at 6 months Data for Mini Mental State Examination, Geriatric Depression Scale, Malaise Inventory (caregiver), Family Relationship Index, and 14-item caregiver's assessment of hearing difficulties NR; authors state “depression scores were unchanged at 6-month follow-up” in the intervention group</td>
<td>Poor</td>
</tr>
<tr>
<td>Yueh et al, 2001</td>
<td>US VA audiology clinic</td>
<td>Mean age: 68 years Sex: 100% male Race: NR Mean pure-tone threshold, right ear: 33 dB Mean pure-tone threshold, left ear: 32 dB Mean baseline HHIE-S score: 28 vs. 35 (assistive listening device vs. no treatment); 50 vs. 36 (programmable vs. standard hearing aid)</td>
<td>Assistive listening device vs. no treatment, mean change from baseline at 3 months HHIE-S: 4.4 vs. 2.2 Abbreviated Profile of Hearing Aid Benefit: 6.4 vs. 2.7 Revised Quantified Denver Scale: 0.03 vs. -0.05 Proportion reporting less social isolation: 0/15 (0%) vs. 0/15 (0%) Programmable hearing aid vs. standard hearing aid, mean change from baseline at 3 months HHIE-S: 31 vs. 17 (p&lt;0.05) Abbreviated Profile of Hearing Aid Benefit: 16 vs. 7.7 Revised Quantified Denver Scale: 0.84 vs. 0.70 Proportion reporting less social isolation: 10/16 (62%) vs 2/14 (14%)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

* Average of 1000, 2000, and 4000 Hz hearing levels.

**Abbreviations:** CI = confidence interval; HHIE-S = Hearing Handicap Inventory for the Elderly-Screening; NR = not reported; UK = United Kingdom; US = United States; VA = Veterans Administration.
### Table 2. Whispered Voice, Watch Tick, and Finger Rub Clinical Tests

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening test, Definition of a positive screening exam</th>
<th>Definition of a case</th>
<th>Sensitivity (range)</th>
<th>Specificity (range)</th>
<th>Positive likelihood ratio (95% CI)</th>
<th>Negative likelihood ratio (95% CI)</th>
<th>Diagnostic odds ratio (95% CI)</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boatman et al, 2007&lt;sup&gt;39&lt;/sup&gt;</td>
<td>Whispered voice at 2 feet</td>
<td>Inability to repeat two or more words from two 3-word combinations</td>
<td>&gt;25 dB hearing loss at 500, 1000, and 2000 Hz</td>
<td>0.40 (0.32-0.49)</td>
<td>0.82 (0.72-0.90)</td>
<td>2.3 (1.3-3.8)</td>
<td>0.73 (0.61-0.87)</td>
<td>3.1 (1.5-6.6)</td>
</tr>
<tr>
<td>Eekhof et al, 1996&lt;sup&gt;40&lt;/sup&gt;</td>
<td>Whispered voice at 2 feet</td>
<td>Inability to repeat two or more combinations correctly</td>
<td>&gt;30 dB hearing loss in either ear (frequency NR)</td>
<td>0.90 (0.81-0.96)</td>
<td>0.80 (0.67-0.90)</td>
<td>4.6 (2.6-8.1)</td>
<td>0.12 (0.06-0.24)</td>
<td>39 (12-130)</td>
</tr>
<tr>
<td>Macphee et al, 1988&lt;sup&gt;41&lt;/sup&gt;</td>
<td>Whispered voice at 2 feet</td>
<td>Inability to repeat one triplet set of numbers correctly or 50% of four sets of triplet numbers</td>
<td>&gt;30 dB hearing loss at 500, 1000, and 2000 Hz</td>
<td>1.0 (0.95-1.0)</td>
<td>0.83 (0.70-0.93)</td>
<td>5.7 (3.1-11)</td>
<td>0.008 (0.0005-0.13)</td>
<td>730 (41-12,950)</td>
</tr>
<tr>
<td>Swan et al, 1985&lt;sup&gt;42&lt;/sup&gt;</td>
<td>Whispered voice at 2 feet</td>
<td>Unable to repeat at least three out of six letters or numerals correctly</td>
<td>&gt;30 dB hearing loss at 500, 1000, and 2000 Hz</td>
<td>1.0 (0.96-1.0)</td>
<td>0.87 (0.79-0.93)</td>
<td>7.4 (4.7-12)</td>
<td>0.007 (0.0005-0.10)</td>
<td>1140 (70-19,240)</td>
</tr>
</tbody>
</table>

#### Total

<table>
<thead>
<tr>
<th>Sensitivity (range)</th>
<th>Specificity (range)</th>
<th>Positive likelihood ratio (95% CI)</th>
<th>Negative likelihood ratio (95% CI)</th>
<th>Diagnostic odds ratio (95% CI)</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95 (0.40-1.0)</td>
<td>0.82 (0.80-0.87)</td>
<td>5.1 (2.3-7.4)</td>
<td>0.03 (0.007-0.73)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Macphee et al, 1988<sup>41</sup> | Whispered voice at 6 inches | Inability to repeat one triplet set of numbers correctly or 50% of four sets of triplet numbers | >30 dB hearing loss at 500, 1000, and 2000 Hz | 0.74 (0.62-0.83) | 1.0 (0.93-1.0) | 72 (4.6-1140) | 0.27 (0.19-0.39) | 270 (16-4540) | Fair |

Macphee et al, 1988<sup>41</sup> | Conversation voice at 2 feet | Inability to repeat one triplet set of numbers correctly or 50% of four sets of triplet numbers | >30 dB hearing loss at 500, 1000, and 2000 Hz | 0.47 (0.36-0.59) | 1.0 (0.93-1.0) | 46 (2.9-740) | 0.53 (0.43-0.66) | 87 (5.2-1470) | Fair |

Boatman et al, 2007<sup>39</sup> | Watch tick at 6 inches | No response to two or more of six presentations of watch tick | >25 dB hearing loss at 500, 1000, and 2000 Hz | 0.44 (0.35-0.53) | 1.0 (0.95-1.0) | 70 (4.4-1120) | 0.57 (0.49-0.66) | 120 (7.5-2040) | Good |

Boatman et al, 2007<sup>39</sup> | Finger rub at 6 inches | No response to two or more of six finger rubs | >25 dB hearing loss at 500, 1000, and 2000 Hz | 0.27 (0.19-0.35) | 0.98 (0.91-1.0) | 10 (2.6-43) | 0.75 (0.68-0.84) | 14 (3.4-120) | Good |

**Abbreviations:** CI = confidence interval; NR = not reported.
Table 3. Single Screening Question

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening question</th>
<th>Definition of a case</th>
<th>Sensitivity (range)</th>
<th>Specificity (range)</th>
<th>Positive likelihood ratio (95% CI)</th>
<th>Negative likelihood ratio (95% CI)</th>
<th>Diagnostic odds ratio (95% CI)</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community-dwelling older adults</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boatman et al, 2007</td>
<td>Do you think you have difficulty hearing?</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, or 4000 Hz in either ear</td>
<td>0.27 (0.16-0.41)</td>
<td>0.89 (0.76-0.96)</td>
<td>2.5 (1.0-5.9)</td>
<td>0.82 (0.68-0.99)</td>
<td>3.0 (0.96-10)</td>
<td>Good</td>
</tr>
<tr>
<td>Clark et al, 1991</td>
<td>Would you say that you have any difficulty hearing?</td>
<td>≥25 dB hearing loss at 1000 and 2000 Hz in better ear</td>
<td>0.66 (0.55-0.75)*</td>
<td>0.80 (0.74-0.86)*</td>
<td>3.3 (2.4-4.6)*</td>
<td>0.43 (0.32-0.58)*</td>
<td>7.7 (4.2-14)*</td>
<td>Good</td>
</tr>
<tr>
<td>Clark et al, 2001</td>
<td>Would you say that you have any difficulty hearing?</td>
<td>≥25 dB hearing loss at 1000, 2000, 3000, and 4000 Hz in better ear</td>
<td>0.56 (0.47-0.65)</td>
<td>0.82 (0.75-0.88)</td>
<td>3.1 (2.1-4.5)</td>
<td>0.53 (0.43-0.67)</td>
<td>5.8 (3.2-10)</td>
<td>Good</td>
</tr>
<tr>
<td>Nondahl et al, 1991</td>
<td>Do you feel you have hearing loss?</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, and 4000 Hz in either ear</td>
<td>0.67 (0.64-0.70)</td>
<td>0.80 (0.77-0.83)</td>
<td>3.4 (2.8-4.0)</td>
<td>0.41 (0.38-0.45)</td>
<td>8.1 (6.4-10)</td>
<td>Good</td>
</tr>
<tr>
<td>Rawool et al, 2008</td>
<td>Do you think you have hearing loss?</td>
<td>≥25 dB hearing loss at 500, 1000, 2000, 3000, and 4000 Hz in either ear</td>
<td>0.68 (0.43-0.87)</td>
<td>0.81 (0.48-0.98)</td>
<td>3.8 (1.0-13.7)</td>
<td>0.39 (0.19-0.79)</td>
<td>9.8 (1.3-110)</td>
<td>Fair</td>
</tr>
<tr>
<td>Sindhusake et al, 2001</td>
<td>Do you feel you have hearing loss?</td>
<td>&gt;25 dB hearing loss at 500-4000 Hz</td>
<td>0.78 (0.75-0.81)</td>
<td>0.67 (0.64-0.70)</td>
<td>2.4 (2.2-2.6)</td>
<td>0.33 (0.29-0.38)</td>
<td>7.2 (5.8-8.9)</td>
<td>Good</td>
</tr>
<tr>
<td>Torre et al, 2006</td>
<td>Do you feel you have hearing loss? (English and Spanish)</td>
<td>≥25 dB hearing loss at 500, 1000, 2000, and 4000 Hz in worse ear</td>
<td>0.76 (0.59-0.88)</td>
<td>0.73 (0.50-0.89)</td>
<td>2.8 (1.4-5.6)</td>
<td>0.33 (0.18-0.62)</td>
<td>8.3 (2.2-33)</td>
<td>Fair</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td>0.67 (0.27-0.78)</td>
<td>0.80 (0.67-0.89)</td>
<td>3.0 (2.4-3.8)</td>
<td>0.40 (0.33-0.82)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td><strong>Nursing home-dwelling older adults</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark et al, 1991</td>
<td>Would you say that you have any difficulty hearing?</td>
<td>&gt;40 dB hearing loss at 1000 and 2000 Hz in worse ear</td>
<td>0.81 (0.67-0.91)</td>
<td>0.74 (0.66-0.80)</td>
<td>3.1 (2.4-4.1)</td>
<td>0.26 (0.14-0.47)</td>
<td>12 (5.3-30)</td>
<td>Good</td>
</tr>
<tr>
<td>Gates et al, 2003</td>
<td>Do you have a hearing problem now?</td>
<td>&gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or &gt;40 dB hearing loss at 1000 and 2000 Hz in one ear</td>
<td>0.71 (0.63-0.78)</td>
<td>0.72 (0.67-0.76)</td>
<td>2.5 (2.1-3.0)</td>
<td>0.41 (0.31-0.53)</td>
<td>6.2 (4.0-9.6)</td>
<td>Good</td>
</tr>
<tr>
<td>Sindhusake et al, 2001</td>
<td>Do you feel you have hearing loss?</td>
<td>&gt;40 dB hearing loss at 500-4000 Hz</td>
<td>0.93 (0.89-0.96)</td>
<td>0.56 (0.54-0.58)</td>
<td>2.1 (2.0-2.3)</td>
<td>0.13 (0.08-0.20)</td>
<td>17 (10-28)</td>
<td>Good</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td>0.81 (0.71-0.93)</td>
<td>0.72 (0.56-0.74)</td>
<td>2.5 (2.1-3.1)</td>
<td>0.26 (0.13-0.41)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sindhusake et al, 2001</td>
<td>Do you feel you have hearing loss?</td>
<td>≥60 dB hearing loss at 500-4000 Hz</td>
<td>1.0 (0.92-1.0)</td>
<td>0.50 (0.48-0.52)</td>
<td>2.0 (1.9-2.1)</td>
<td>0.02 (0.001-0.34)</td>
<td>91 (5.6-1480)</td>
<td>Good</td>
</tr>
</tbody>
</table>

*Not included in the total estimate in order to avoid double counting a sample.
<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening test, Definition of a positive screening exam</th>
<th>Definition of a case</th>
<th>Sensitivity (range)</th>
<th>Specificity (range)</th>
<th>Positive likelihood ratio (95% CI)</th>
<th>Negative likelihood ratio (95% CI)</th>
<th>Diagnostic odds ratio (95% CI)</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichtenstein et al, 1988&lt;sup&gt;46&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.66 (0.54-0.77)</td>
<td>0.79 (0.70-0.86)</td>
<td>3.2 (2.1-4.7)</td>
<td>0.43 (0.30-0.60)</td>
<td>7.4 (3.6-16)</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;42&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.58 (0.45-0.70)</td>
<td>0.76 (0.69-0.84)</td>
<td>2.4 (1.6-3.5)</td>
<td>0.55* (0.44-0.70)</td>
<td>4.4* (2.8-14)</td>
<td>Good</td>
</tr>
<tr>
<td>Sever et al, 1989&lt;sup&gt;53&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.71 (0.48-0.89)</td>
<td>NR</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>Fair</td>
</tr>
<tr>
<td>Lichtenstein et al, 1988&lt;sup&gt;46&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>HFPTA: ≥25 dB hearing loss at 1000, 2000, and 4000 Hz in better ear</td>
<td>0.53 (0.43-0.63)†</td>
<td>0.84 (0.74-0.91)†</td>
<td>3.3 (1.9-5.8)†</td>
<td>0.56 (0.44-0.70)†</td>
<td>6.0 (2.8-14)</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;42&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>HFPTA: ≥25 dB hearing loss at 1000, 2000, and 4000 Hz in better ear</td>
<td>0.48 (0.39-0.58)†</td>
<td>0.86 (0.79-0.94)†</td>
<td>3.6 (2.0-6.6)†</td>
<td>0.60*† (0.44-0.89)</td>
<td>5.7* (3.0-9.2)</td>
<td>Good</td>
</tr>
<tr>
<td>Nondahl et al, 1998&lt;sup&gt;44&lt;/sup&gt;; Wiley et al, 2000&lt;sup&gt;59&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, and 4000 Hz in either ear</td>
<td>0.32 (0.29-0.35)</td>
<td>0.97 (0.95-0.98)</td>
<td>10.7 (6.8-17)</td>
<td>0.70 (0.67-0.73)</td>
<td>15 (9.4-26)</td>
<td>Good</td>
</tr>
<tr>
<td>Sindhusake et al, 2001&lt;sup&gt;45&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>0.58 (0.54-0.62)</td>
<td>0.85 (0.83-0.87)</td>
<td>3.9 (3.3-4.5)</td>
<td>0.49 (0.45-0.54)</td>
<td>7.8 (6.2-10)</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td></td>
<td><strong>0.58 (0.32-0.66)</strong></td>
<td><strong>0.82 (0.76-0.97)</strong></td>
<td><strong>3.5 (2.4-11)</strong></td>
<td><strong>0.52 (0.43-0.70)</strong></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Weinstein, 1986&lt;sup&gt;50&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>Audiologist recommendation for evaluation</td>
<td>0.74*</td>
<td>0.68*</td>
<td>2.3*</td>
<td>0.38*</td>
<td>6.1*</td>
<td>Fair</td>
</tr>
<tr>
<td>Gates et al, 2003&lt;sup&gt;47&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.36 (0.28-0.44)</td>
<td>0.92 (0.89-0.94)</td>
<td>4.5 (3.0-6.7)</td>
<td>0.70 (0.61-0.79)</td>
<td>6.5 (3.8-11)</td>
<td>Good</td>
</tr>
<tr>
<td>Lichtenstein et al, 1988&lt;sup&gt;46&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.72 (0.58-0.83)</td>
<td>0.77 (0.68-0.84)</td>
<td>3.1 (2.2-4.4)</td>
<td>0.37 (0.24-0.57)</td>
<td>8.4 (3.8-19)</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;42&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.63 (0.49-0.76)</td>
<td>0.75 (0.68-0.82)</td>
<td>2.5 (1.8-3.6)</td>
<td>0.49*</td>
<td>5.1*</td>
<td>Good</td>
</tr>
<tr>
<td>Sever et al, 1989&lt;sup&gt;53&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.81 (0.54-0.96)</td>
<td>NR</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>Fair</td>
</tr>
<tr>
<td>Sindhusake et al, 2001&lt;sup&gt;45&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>&gt;40 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>0.80 (0.74-0.85)</td>
<td>0.76 (0.74-0.78)</td>
<td>3.3 (3.0-3.7)</td>
<td>0.26 (0.20-0.34)</td>
<td>13 (8.9-18)</td>
<td>Good</td>
</tr>
<tr>
<td>Ventry &amp; Weinstein, 1983&lt;sup&gt;5&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>&gt;40 dB hearing loss at 1000 or 2000 Hz in both ears</td>
<td>0.72 (0.56-0.85)</td>
<td>0.66 (0.52-0.77)</td>
<td>2.1 (1.4-3.1)</td>
<td>0.43 (0.26-0.71)</td>
<td>4.9 (1.9-13)</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td></td>
<td><strong>0.72 (0.36-0.81)</strong></td>
<td><strong>0.76 (0.66-0.92)</strong></td>
<td><strong>3.1 (2.1-4.5)</strong></td>
<td><strong>0.43 (0.26-0.70)</strong></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Study, Year</td>
<td>Screening test, Definition of a positive screening exam</td>
<td>Definition of a case</td>
<td>Sensitivity (range)</td>
<td>Specificity (range)</td>
<td>Positive likelihood ratio (95% CI)</td>
<td>Negative likelihood ratio (95% CI)</td>
<td>Diagnostic odds ratio (95% CI)</td>
<td>Quality score</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------------------------------</td>
<td>---------------------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
<td>--------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;22&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;24</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.36 (0.23-0.48)</td>
<td>0.87</td>
<td>2.8 (1.6-5.0)</td>
<td>0.74*</td>
<td>3.8*</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;22&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;24</td>
<td>HFPTA: ≥25 dB hearing loss at 1000, 2000, and 4000 Hz in better ear</td>
<td>0.29 (0.20-0.37)</td>
<td>0.93</td>
<td>4.3 (1.7-10)</td>
<td>0.76*</td>
<td>5.4*</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>0.32 (0.29-0.36)</td>
<td>0.90 (0.87-0.93)</td>
<td>3.5 (2.8-4.3)</td>
<td>0.75 (0.74-0.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichtenstein et al, 1988&lt;sup&gt;46&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;24</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.25 (0.14-0.38)</td>
<td>0.98 (0.93-1.0)</td>
<td>10.2 (3.0-34.0)</td>
<td>0.77 (0.66-0.90)</td>
<td>13 (3.3-75)</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;22&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;24</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.42 (0.28-0.56)</td>
<td>0.88 (0.82-0.93)</td>
<td>3.4 (1.9-5.9)</td>
<td>0.66*</td>
<td>5.3*</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>0.32 (0.25-0.42)</td>
<td>0.93 (0.88-0.98)</td>
<td>5.9 (3.4-10.2)</td>
<td>0.71 (0.66-0.77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sindhusake et al, 2001&lt;sup&gt;45&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;8</td>
<td>&gt;60 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>1.0 (0.90-1.0)</td>
<td>0.70 (0.68-0.72)</td>
<td>3.3 (3.0-3.6)</td>
<td>0.02 (0.001-0.31)</td>
<td>165 (10-2700)</td>
<td>Good</td>
</tr>
<tr>
<td>Weinstein, 1986&lt;sup&gt;56&lt;/sup&gt;</td>
<td>HHIE-S Score &gt;10</td>
<td>Audiologist recommendation for evaluation</td>
<td>0.65*</td>
<td>0.83*</td>
<td>3.8*</td>
<td>0.42*</td>
<td>9.0*</td>
<td>Fair</td>
</tr>
<tr>
<td>Koike et al, 1994&lt;sup&gt;51&lt;/sup&gt;</td>
<td>5-Minute Hearing Test Various cutoffs</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>10: 0.90*</td>
<td>10: 0.20*</td>
<td>10: 1.1*</td>
<td>10: 0.47*</td>
<td>10: 2.3*</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15: 0.80*</td>
<td>15: 0.55*</td>
<td>15: 1.8*</td>
<td>15: 0.36*</td>
<td>15: 5.0*</td>
<td>15: 11*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25: 0.90*</td>
<td>25: 0.54*</td>
<td>25: 2.0*</td>
<td>25: 0.18*</td>
<td>25: 11*</td>
<td>30: 7.2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30: 0.74*</td>
<td>30: 0.72*</td>
<td>30: 2.6*</td>
<td>30: 0.36*</td>
<td>30: 7.2*</td>
<td>35: 7.1*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35: 0.51*</td>
<td>35: 0.87*</td>
<td>35: 4.0*</td>
<td>35: 0.56*</td>
<td>35: 7.1*</td>
<td>40: 13*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40: 0.26*</td>
<td>40: 0.97*</td>
<td>40: 9.9*</td>
<td>40: 0.76*</td>
<td>40: 13*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Confidence interval not calculable.
†Not included in total estimates in order to avoid double counting a sample.

**Abbreviations:** HFPTA = High Frequency Pure-Tone Average; HHIE-S = Hearing Handicap Inventory for the Elderly-Screening; NC = not calculable; ND = not dichotomized; NR = not reported; SFPTA = Speech Frequency Pure-Tone Average; V&W = Ventry and Weinstein criteria.
### Table 5. Handheld Audiometric Devices

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Definition of a positive screening exam</th>
<th>Definition of a case</th>
<th>Sensitivity (range)</th>
<th>Specificity (range)</th>
<th>Positive likelihood ratio (95% CI)</th>
<th>Negative likelihood ratio (95% CI)</th>
<th>Diagnostic odds ratio (95% CI)</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community-dwelling older adults</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eekhof et al, 1996</td>
<td>Failure to hear 40 dB at 500, 1000, 2000, or 4000 Hz using AudioScope</td>
<td>&gt;40 dB hearing loss</td>
<td>1.0 (0.91-1.0)</td>
<td>0.42 (0.31-0.54)</td>
<td>1.7 (1.4-2.1)</td>
<td>0.03 (0.002-0.45)</td>
<td>61 (3.6-102)</td>
<td>Fair</td>
</tr>
<tr>
<td>Lichtenstein et al, 1983</td>
<td>Failure to hear 40 dB at 500, 1000, 2000, or 4000 Hz using AudioScope</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.94 (0.84-0.99)</td>
<td>0.72 (0.63-0.80)</td>
<td>3.4 (2.5-4.5)</td>
<td>0.08 (0.03-0.24)</td>
<td>43 (12-220)</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994</td>
<td>Failure to hear 40 dB at 2000 Hz in better ear using AudioScope</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears or 1000 and 2000 Hz in one ear</td>
<td>0.96 (0.90-1.00)</td>
<td>0.80 (0.74-0.87)</td>
<td>4.9 (3.4-6.8)</td>
<td>0.05*</td>
<td>98*</td>
<td>Good</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td>0.96 (0.94-1.0)</td>
<td>0.72 (0.42-0.89)</td>
<td>3.4 (1.7-4.9)</td>
<td>0.05 (0.03-0.08)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>McBride et al, 1994</td>
<td>Failure to hear 40 dB at 2000 Hz in better ear using AudioScope</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.64 (0.52-0.77)</td>
<td>0.89 (0.83-0.94)</td>
<td>5.8 (3.4-9.8)</td>
<td>0.40*</td>
<td>14*</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994</td>
<td>Failure to hear 40 dB at 2000 Hz in better ear using AudioScope</td>
<td>HFPTA: ≥25 dB hearing loss at 1000, 2000, and 4000 Hz in better ear</td>
<td>0.71 (0.63-0.80)†</td>
<td>0.91 (0.84-0.97)†</td>
<td>7.5 (3.7-15)†</td>
<td>0.32*†</td>
<td>23*</td>
<td>Good</td>
</tr>
<tr>
<td>Bienvenue et al, 1985</td>
<td>Failure to hear 25 dB at 500, 1000, 2000, or 4000 Hz using AudioScope</td>
<td>≥30 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>0.93*</td>
<td>0.70*</td>
<td>3.1*</td>
<td>0.10*</td>
<td>31*</td>
<td>Fair</td>
</tr>
<tr>
<td>Frank and Petersen, 1987</td>
<td>Failure to hear 40 dB at 500, 1000, 2000, 4000 Hz</td>
<td>≥45 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Chronic care facility-dwelling older adults</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciurlia-Guy et al, 1993</td>
<td>Failure to hear 40 dB at 1000 or 2000 Hz in either ear</td>
<td>&gt;40 dB hearing loss at 1000 or 2000 Hz in either ear</td>
<td>0.98 (0.91-1.0)</td>
<td>0.21 (0.08-0.41)</td>
<td>1.3 (1.0-1.5)</td>
<td>0.08 (0.01-0.61)</td>
<td>16 (1.8-76)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

*Confidence interval not calculable.
†Not included in total estimates in order to avoid double counting a sample.

**Abbreviations:** HFPTA = High Frequency Pure-Tone Average; SFPTA = Speech Frequency Pure-Tone Average; V&W = Ventry and Weinstein criteria.
Table 6. Diagnostic Accuracy of Screening Tests for Hearing Loss

<table>
<thead>
<tr>
<th>Screening test</th>
<th>Number of studies, References</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median: 5.1</td>
<td>Median: 0.03</td>
</tr>
<tr>
<td>&gt;25 or &gt;30 dB hearing loss</td>
<td></td>
<td>Range: 2.3-7.4</td>
<td>Range: 0.007-0.73</td>
</tr>
<tr>
<td>Whispered voice test</td>
<td>Four39-42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finger rub test</td>
<td>One39</td>
<td>10 (95% CI, 2.6-43)</td>
<td>0.75 (95% CI, 0.68-0.84)</td>
</tr>
<tr>
<td>Watch tick test</td>
<td>One39</td>
<td>70 (95% CI, 4.4-1120)</td>
<td>0.57 (95% CI, 0.49-0.66)</td>
</tr>
<tr>
<td>Single-question screening</td>
<td>Six39, 43-45, 52, 54</td>
<td>Median: 3.0</td>
<td>Median: 0.40</td>
</tr>
<tr>
<td>Screening questionnaire (Hearing Handicap in the Elderly-Screening*)</td>
<td>Four22, 44-46</td>
<td>Median: 3.5</td>
<td>Median: 0.52</td>
</tr>
<tr>
<td>Handheld audiometric devices</td>
<td>Two22, 48</td>
<td>3.1 (95% CI not calculable)</td>
<td>0.10 (95% CI not calculable)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.8 (95% CI, 3.4-9.8)</td>
<td>0.40 (95% CI not calculable)</td>
</tr>
<tr>
<td>&gt;40 dB hearing loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-question screening</td>
<td>Three43, 45, 47</td>
<td>Median: 2.5</td>
<td>Median: 0.26</td>
</tr>
<tr>
<td>Screening questionnaire (Hearing Handicap in the Elderly-Screening*)</td>
<td>Five9, 22, 45-47</td>
<td>Median: 3.1</td>
<td>Median: 0.43</td>
</tr>
<tr>
<td>Handheld audiometric devices</td>
<td>Three22, 40, 48</td>
<td>Median: 3.4</td>
<td>Median: 0.05</td>
</tr>
</tbody>
</table>

*Based on cutoff score of >8.

Abbreviation: CI = confidence interval.
### Table 7. Summary of Evidence

| KQ 1. Does screening for hearing loss in asymptomatic adults ages 50 years and older lead to improved health outcomes? |
|---|---|---|---|---|
| **Number of studies, Overall quality rating** | **Limitations** | **Consistency** | **Primary care applicability** | **Summary of findings** |
| 1 RCT | One large (n=2305), fair-quality trial of screening versus no screening in a VA setting in patients with a high prevalence of perceived hearing loss. High loss to follow-up. | N/A (1 study) | Low-moderate | One trial found that screening with HHIE-S, AudioScope, or both was associated with greater hearing aid use at 1 year compared with no screening. Effects of screening on hearing aid use appeared to be limited to patients with perceived hearing loss at baseline. Screening was not associated with any differences in hearing-related quality of life compared with no screening. Because 3/4 of patients enrolled in the trial reported perceived hearing loss and all patients were eligible to receive free hearing aids, results are likely to be most generalizable to high-prevalence settings in which the cost of hearing aids is not a barrier. |

| KQ 2. How accurate are the methods for hearing loss screening in older adults? |
|---|---|---|---|
| **Number of studies total** | **Overall quality: Good** | **Limitations** | **Consistency** | **Summary of findings** |
| 20 studies total | Most studies conducted in specialty or other high-prevalence settings. Differences between studies in how hearing loss was defined and in screening cutoffs used. | Consistent | Moderate | For detection of >25 or >30 dB hearing loss, four studies (one good-quality) found that the whispered voice test at 2 feet was associated with a median PLR of 5.1 (range, 2.3 to 7.4) and median NLR of 0.03 (range, 0.007 to 0.73). For detection of >25 dB hearing loss, six studies (four good-quality) found that a single question screening was associated with a median PLR of 3.0 (range, 2.4 to 3.8) and median NLR of 0.40 (range, 0.33 to 0.82), and four good-quality studies found that the HHIE-S (based on a cutoff score of 8) was associated with a median PLR of 3.5 (range, 2.4 to 11) and median NLR of 0.52 (range, 0.43 to 0.70). For detection of >40 dB hearing loss, three studies (two good-quality) found that the AudioScope (based on ability to hear tones between 500 and 4000 Hz at 40 dB) was associated with a median PLR of 3.4 (range, 1.7 to 4.9) and median NLR of 0.05 (range, 0.03 to 0.08). |

| KQ 3. How efficacious is the treatment of screening-detected hearing loss in improving health outcomes? |
|---|---|---|---|
| **Number of studies total** | **Overall quality: Fair** | **Limitations** | **Consistency** | **Summary of findings** |
| 4 RCTs | Only one good-quality trial of hearing aids versus no hearing aids, conducted in a VA setting in patients eligible for free hearing aids. | Consistent | Low-moderate | One good-quality RCT found that immediate hearing aid use was associated with moderate improvements in hearing-specific quality of life and communication difficulties compared with wait-list control in veterans with hearing loss >40 dB who are eligible for free hearing aids. A smaller, fair-quality RCT found no clear difference between an assistive listening device and no treatment in veterans ineligible for free hearing aids. Another fair-quality RCT found no difference between a hearing aid, an assistive listening device, or both compared with no amplification in a subgroup of patients not using hearing aids at enrollment with mild baseline hearing loss and hearing-related handicap. A fourth RCT of hearing aids versus no hearing aids reported outcomes very poorly. |

| KQ 4. What are the adverse effects of screening for hearing loss in adults ages 50 years and older? |
|---|---|---|---|
| **Number of studies** | **Overall quality: Fair** | **Limitations** | **Consistency** |
| No studies | No studies | N/A | No RCTs or controlled observational studies were found. Harms of hearing loss screening are unlikely to be greater than small or minimal due to the non-invasive nature of screening, confirmatory testing, and treatments. |
Table 7. Summary of Evidence

<table>
<thead>
<tr>
<th>Number of studies, Overall quality rating</th>
<th>Limitations</th>
<th>Consistency</th>
<th>Primary care applicability</th>
<th>Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 5. What are the adverse effects of treatment of screening-detected hearing loss in adults ages 50 years and older?</td>
<td>No studies</td>
<td>N/A</td>
<td>N/A</td>
<td>No RCTs or controlled observational studies were found. Hearing aids are unlikely to be associated with serious harms, though there are reports of dermatitis, otitis externa, cerumen impaction, and other complications associated with their use.</td>
</tr>
</tbody>
</table>

**Abbreviations:** HHIE-S = Hearing Handicap Inventory for the Elderly-Screening; KQ = key question; N/A = not applicable; NLR = negative likelihood ratio; PLR = positive likelihood ratio; RCT = randomized controlled trial; VA = U.S. Department of Veteran Affairs.
Appendix A1. Literature Search Strategies

Overall
*Database: Cochrane Database of Systematic Reviews*
1. (hearing and adult$).mp. [mp=title, short title, abstract, full text, keywords, caption text]
2. 1 not (neonat$ or pregnan$ or infant or child or pediatri$).mp. [mp=title, short title, abstract, full text, keywords, caption text]
3. limit 2 to full systematic reviews

**Key Question 1. Screening and Outcomes**
*Databases: Ovid MEDLINE; Cochrane Central Register of Controlled Trials*
1. Hearing Disorders/
2. Hearing Loss/
3. Hearing Loss, Mixed Conductive-Sensorineural/
4. Hearing Loss, Sensorineural/
5. PRESBYCUSIS/
6. or/1-5
7. mass screening/
8. screen$.mp.
9. 7 or 8
10. 6 and 9
11. (clinical trial or controlled clinical trial or multicenter study or randomized controlled trial).pt.
12. Comparative Study/
13. Follow-Up Studies/
14. (prospectiv$ or retrospectiv$ or baseline or cohort or consecutive$ or compar$).tw.
15. 10 and (or/11-14)
16. limit 15 to ("adult (19 to 44 years)" or "middle age (45 to 64 years)" or "all aged (65 and over")

**Key Question 2. Accuracy of Screening**
*Databases: Ovid MEDLINE; Cochrane Central Register of Controlled Trials*
1. Hearing Disorders/
2. Hearing Loss/
3. Hearing Loss, Mixed Conductive-Sensorineural/
4. Hearing Loss, Sensorineural/
5. PRESBYCUSIS/
6. presbyacusis.mp.
7. or/1-6
8. Mass Screening/
9. screen$.ti,ab,hw.
10. 8 or 9
11. 7 and 10
12. Hearing Tests/
13. Audiometry/ or Audiometry, Pure-Tone/
14. 12 or 13
15. "Sensitivity and Specificity"/
17. ROC Curve/
Appendix A1. Literature Search Strategies

18 accuracy.ti,ab.
19 specificit$.ti,ab.
20 predictive value.ti,ab.
21 or/15-20
22 (11 or 14) and 21
23 audioscop$.ti,ab.
24 hhie$.mp. or hearing handicap inventory.ti,ab. [mp=title, original title, abstract, name of
substance word, subject heading word]
25 23 or 24
26 22 or 25
27 limit 26 to humans
28 limit 27 to ("adult (19 to 44 years)" or "middle age (45 to 64 years)" or "all aged (65 and
over)")

Key Question 3. Overall Treatment
Databases: Ovid MEDLINE; Cochrane Central Register of Controlled Trials

1 Hearing Aids/
2 hearing aid$.ti,ab.
3 1 or 2
4 treatment outcome/
5 Treatment Failure/
6 health outcome$.ti,ab.
7 "Outcome Assessment (Health Care)"/
8 functional status.ti,ab.
9 Health Status/
10 Health Status Indicators/
11 health status.ti,ab.
12 "Quality of Life"/
13 quality of life.ti,ab.
14 qol.ti,ab.
15 depression/
16 Depressive Disorder/
17 Mood Disorders/
18 depression.ti,ab.
19 Social Isolation/
20 Loneliness/
21 Social Alienation/
22 social$ isolat$.ti,ab.
23 Communication/
24 (improv$ adj4 communicat$).ti,ab.
25 Cognition/
26 cognitive function$.ti,ab.
27 or/4-26
28 3 and 27
29 limit 28 to ("adult (19 to 44 years)" or "middle age (45 to 64 years)" or "all aged (65 and
over)")
Appendix A1. Literature Search Strategies

Key Question 4. Adverse Effects of Screening
Database: Ovid MEDLINE
1 Hearing Disorders/
2 Hearing Loss/
3 Hearing Loss, Mixed Conductive-Sensorineural/
4 Hearing Loss, Sensorineural/
5 Presbycusis/
6 presbyacusis.mp.
7 age related hearing loss.mp.
8 Hearing Loss, Noise-Induced/
9 or/1-8
10 Mass Screening/
11 screen$.ti,ab.
12 10 or 11
13 9 and 12
14 ((advers$ adj3 effect$) or harm$ or contraindicat$).mp.
15 ae.fs.
16 exp Diagnostic Errors/
17 (overtest$ or overdiagnos$ or over-test$ or over-diagnos$).mp.
18 (false$ adj2 (result$ or positiv$ or negativ$)).mp.
19 (observer$ adj3 bias$).mp.
20 (diagnos$ adj3 (error$ or mistak$ or incorrect$)).mp.
21 or/14-20
22 13 and 21
23 limit 22 to ("middle aged (45 plus years)" or "all aged (65 and over)" or "aged (80 and
over")

Key Question 5. Adverse Effects of Treatment
Database: Ovid MEDLINE
1 Hearing Aids/ or hearing aid$.mp.
2 Cochlear Implants/
3 1 not 2
4 Hearing Loss/th [Therapy]
5 3 or 4
6 adverse effect$.mp.
7 (ae or co).fs.
8 (safety or harm$).mp.
9 or/6-8
10 5 and 9
11 limit 10 to ("middle age (45 to 64 years)" or "all aged (65 and over)"")
Appendix A1. Literature Search Strategies

KEYWORD SEARCHES

Tuning Fork
Databases: Cochrane Central Register of Controlled Trials; Cochrane Database of Systematic Reviews
1 (whisper$ adj5 (test$ or screen$ or measur$)).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword]
2 (tuning adj3 fork$).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword]

Tuning Fork
Database: Ovid MEDLINE
1 (whisper$ adj5 (test$ or screen$ or measur$)).mp. [mp=title, original title, abstract, name of substance word, subject heading word]
2 (tuning adj3 fork$).mp. [mp=title, original title, abstract, name of substance word, subject heading word]
3 exp Hearing/
4 exp Hearing Disorders/
5 exp Hearing Tests/
6 or/3-5
7 2 and 6
8 1 and 7

Whisper Test
Databases: Cochrane Central Register of Controlled Trials; Cochrane Database of Systematic Reviews
1 (whisper$ adj5 (test$ or screen$ or measur$)).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword]
2 (tuning adj3 fork$).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword]

Whisper Test
Database: Ovid MEDLINE
1 (whisper$ adj5 (test$ or screen$ or measur$)).mp. [mp=title, original title, abstract, name of substance word, subject heading word]
2 (tuning adj3 fork$).mp. [mp=title, original title, abstract, name of substance word, subject heading word]
3 exp Hearing/
4 exp Hearing Disorders/
5 exp Hearing Tests/
6 or/3-5
7 2 and 6
8 1 and 7
Appendix A2. Inclusion and Exclusion Criteria

All Key Questions

**Ages/population:**

*Include:* Adults ages 50 years or older without diagnosed hearing loss; comorbid conditions of depression and cognitive dysfunction. Also include nursing home populations

*Exclude:* Adults younger than age 50 years; previously diagnosed hearing loss; current hearing aid users (within the last 6 months)

**Disease:**

*Include:* Sensorineural hearing loss, presbycusis

*Exclude:* Conductive hearing loss, congenital hearing loss, sudden hearing loss, hearing loss due to recent noise or occupational exposure

**Languages:**

*Include:* Full text published in English

**Settings:**

*Include:* Studies performed in settings generalizable to primary care

*Exclude:* Countries with populations not similar to the United States

**Key Question 1 (Screening and Outcomes)**

**Interventions/diagnostic tests:**

*Include:* Screening tests used, available, or feasible in primary care settings, including whispered voice, finger rub, watch tick, single question regarding perceived hearing loss, hearing loss questionnaire, and portable audiometer

*Exclude:* Screening tests not used or available in primary care settings (e.g., audiometric testing), Rinne and Weber tests (used to distinguish sensorineural from conductive hearing loss, not to screen persons for hearing loss)

**Outcomes:**

*Include:* Hearing-related quality of life and function (e.g., emotional and social function, communication, and cognitive function)

*Exclude:* Outcomes related to hearing aid performance and efficacy (e.g., speech intelligibility and quality of the listening experience)

**Study designs:**

*Include:* Randomized controlled trials and controlled observational studies
Appendix A2. Inclusion and Exclusion Criteria

Key Question 2 (Accuracy of Screening Methods and Testing)

Interventions/diagnostic tests:

Include: See Key Question 1

Exclude: Audiometric testing, except as reference standard

Outcomes:

Include: Sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, diagnostic odds ratios

Study designs:

Include: Cross-sectional or cohort studies of primary care, community-based, or specialty settings

Exclude: Case control studies (e.g., 50 selected patients with hearing loss vs. 50 selected patients without hearing loss)

Key Question 3 (Effectiveness of Amplification Treatment)

Interventions/treatments:

Include: Amplification with hearing aids or assistive listening devices

Exclude: Nutritional pharmaceuticals, hearing rehabilitation

Outcomes:

Include: Health-related quality of life (e.g., emotional and social function, communication, and cognitive function)

Exclude: Outcomes related to hearing aid performance and efficacy (e.g., speech intelligibility and quality of the listening experience)

Study designs:

Include: Randomized controlled trials and controlled observational studies

Key Question 4 (Harms of Screening) and 5 (Harms of Treatment)

Interventions/diagnostic tests:

See Key Question 1

Outcomes:

Include: False-positives, labeling, anxiety, any other significant harms

Study designs:

Include: Randomized controlled trials and controlled observational studies
Abstracts* of potentially relevant articles reviewed: 3,343

Excluded abstracts and background papers: 3,140

Full-text articles reviewed for relevance to Key Questions: 203

Total articles excluded: 177
Wrong population (including high risk): 31
Wrong intervention: 19
Wrong outcome: 52
Wrong study design or publication type: 73
Diagnostic test accuracy not reported: 2

Included Articles†

Key Question 1. Screening and outcomes
1 RCT
20 studies:
4 clinical tests
8 single-question clinical tests
9 questionnaires
6 AudioScope devices

Key Question 2. Accuracy of screening
20 studies:
4 clinical tests
8 single-question clinical tests
9 questionnaires
6 AudioScope devices

Key Question 3. Efficacy of treatment
4 RCTs
(5 publications)

Key Question 4. Adverse effects of screening
No studies

Key Question 5. Adverse effects of treatment
No studies

*Abstracts were identified through the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, Ovid MEDLINE, and other sources, including reference lists and suggestions by experts.
†Some articles are included for more than one Key Question.

Abbreviation: RCT = randomized controlled trial.
Appendix A4. Excluded Studies

Wrong Population:


Appendix A4. Excluded Studies


Wrong Intervention:


Appendix A4. Excluded Studies


Wrong Outcome:


Appendix A4. Excluded Studies


Appendix A4. Excluded Studies


Wrong Study Design or Publication Type:


Appendix A4. Excluded Studies


Hickson L. Rehabilitation approaches to promote successful unilateral and bilateral fittings and avoid inappropriate prescription. *Int J Audiol.* 2006;45(Suppl 1):S72-S77.


Appendix A4. Excluded Studies


Appendix A4. Excluded Studies


Diagnostic Test Accuracy Not Reported:


Appendix A5. U.S. Preventive Services Task Force Quality Rating Criteria

Diagnostic Accuracy Studies

Criteria:

- Screening test relevant, available for primary care, adequately described
- Study uses a credible reference standard, performed regardless of test results
- Reference standard interpreted independently of screening test
- Handles indeterminate results in a reasonable manner
- Spectrum of patients included in study
- Sample size
- Administration of reliable screening test
- Random or consecutive selection of patients
- Screening cutoff pre-determined
- All patients undergo the reference standard

Definition of ratings based on above criteria:

Good: Evaluates relevant available screening test; uses a credible reference standard; interprets reference standard independently of screening test; reliability of test assessed; has few or handles indeterminate results in a reasonable manner; includes large number (more than 100) of broad-spectrum patients with and without disease; study attempts to enroll a random or consecutive sample of patients who meet inclusion criteria; screening cutoffs are pre-stated.

Fair: Evaluates relevant available screening test; uses reasonable although not best standard; interprets reference standard independent of screening test; moderate sample size (50 to 100 subjects) and a “medium” spectrum of patients (i.e., applicable to most screening settings).

Poor: Has important limitations, such as uses inappropriate reference standard; screening test improperly administered; biased ascertainment of reference standard; very small sample size of very narrow selected spectrum of patients.

Randomized Controlled Trials (RCTs) and Cohort Studies

Criteria:

- Initial assembly of comparable groups: RCTs—adequate randomization, including concealment and whether potential confounders were distributed equally among groups; cohort studies—consideration of potential confounders with either restriction or measurement for adjustment in the analysis; consideration of inception cohorts
- Maintenance of comparable groups (includes attrition, cross-over, adherence, contamination)
- Important differential loss to follow-up or overall high loss to follow-up
- Measurements are equal, reliable, and valid (includes masking of outcome assessment)
- Clear definition of interventions
- Important outcomes considered
- Analysis: adjustment for potential confounders for cohort studies, or intention-to-treat analysis for RCTs; for cluster RCTs, correction for correlation coefficient
Appendix A5. U.S. Preventive Services Task Force Quality Rating Criteria

**Definition of ratings based on above criteria:**

**Good:** Meets all criteria; comparable groups are assembled initially and maintained throughout the study (follow-up at least 80 percent); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; important outcomes are considered; appropriate attention to confounders in analysis.

**Fair:** Studies are graded “fair” if any or all of the following problems occur, without the important limitations noted in the “poor” category below: generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred in follow-up; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; some but not all potential confounders are accounted for.

**Poor:** Studies are graded “poor” if any of the following major limitations exists: groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied at all equally among groups (including not masking outcome assessment); key confounders are given little or no attention.

**Case Control Studies**

**Criteria:**
- Accurate ascertainment of cases
- Non-biased selection of cases/controls with exclusion criteria applied equally to both
- Response rate
- Diagnostic testing procedures applied equally to each group
- Measurement of exposure accurate and applied equally to each group
- Appropriate attention to potential confounding variable

**Definition of ratings based on criteria above:**

**Good:** Appropriate ascertainment of cases and non-biased selection of case and control participants; exclusion criteria applied equally to cases and controls; response rate equal to or greater than 80 percent; diagnostic procedures and measurements accurate and applied equally to cases and controls; appropriate attention to confounding variables.

**Fair:** Recent; relevant; without major apparent selection or diagnostic work-up bias but with response rate less than 80 percent or attention to some but not all important confounding variables.

**Poor:** Major selection or diagnostic work-up biases; response rates less than 50 percent or inattention to confounding variables.

Karen J. Cruickshanks, PhD
Professor, University of Wisconsin-Madison School of Medicine and Public Health, Ophthalmology and Visual Sciences and Population Health Sciences

Linda Kinsinger, MD, MPH
Chief Consultant, Preventive Medicine, Veterans Health Administration, National Center for Health Promotion and Disease Prevention

Paul Shekelle, MD, PhD
Director, Southern California Evidence-Based Practice Center, RAND Corporation; Professor of Medicine, University of California, Los Angeles School of Medicine; Staff physician, Veterans Affairs Medical Center

Daniel A. Sklare, PhD
Research Training Officer, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Division of Scientific Programs
## Appendix B1. Randomized Controlled Trials of Screening and Treatment Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Purpose of study</th>
<th>Study design</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th># Screened/ eligible/enrolled</th>
<th>Subject age, Sex, Diagnosis</th>
<th>Country &amp; Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Screening</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yueh et al, 2010&lt;sup&gt;36&lt;/sup&gt;</td>
<td>To evaluate effect of hearing screening on long-term hearing outcomes in a population of older veterans</td>
<td>Unblinded randomized trial</td>
<td>Outpatients seeking general medical care from VA Puget Sound Health Care System (Seattle and Tacoma) between Jan 2002 and Dec 2003; age ≥50 yrs; eligible to receive audiology services (must have 10-100% disability rating for any medical condition or any disability rating for a hearing-related condition)</td>
<td>Previous use of hearing aid; hearing evaluation in prior 6 months; unable to complete questionnaire; unwilling to follow-up by mail 1 year after screening</td>
<td>NR/NR/2314 2305 after post-randomization exclusions</td>
<td>Mean age: 61 yrs Sex: 94% male Mean baseline hearing loss: NR</td>
<td>US VA primary care clinic</td>
</tr>
<tr>
<td></td>
<td><strong>Treatment</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerger et al, 1996&lt;sup&gt;58&lt;/sup&gt;</td>
<td>To assess impact of personal amplification systems on quality of life in elderly persons and compare conventional hearing aids with assistive listening devices</td>
<td>Cross-over</td>
<td>Age &gt;60 yrs; hearing loss &gt;15 dB in both ears; normal middle ear status; average score ≤3 on self-report physical health scale; score ≥24 on Mini Mental State Exam; no history of neurologic or psychiatric disorder</td>
<td>NR</td>
<td>NR/NR/180</td>
<td>Mean age: 74.3 yrs (range, 60-96 yrs) Sex: 63% male Mean pre-tone threshold: 37 dB Mean baseline HHIE-S score: 30 (New users only)</td>
<td>US Setting NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Sponsor</th>
<th>Measures</th>
<th>Intervention Type</th>
<th>Results</th>
<th>Duration of follow-up</th>
<th>Loss to follow-up</th>
<th>Adverse events &amp; withdrawals</th>
<th>Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yueh et al, 2010&lt;sup&gt;36&lt;/sup&gt;</td>
<td>VHA</td>
<td>Screening</td>
<td>4 screening arms: Otoscope only (n=463) Questionnaire only (n=462) Otoscope and questionnaire (n=460) No screening (n=929)</td>
<td>Hearing aid use: 29/462 (6.3%) vs. 19/461 (4.1%) vs. 34/459 (7.4%) vs. 30/923 (3.3%); p=0.003 &gt;6 point improvement on the Inner Effectiveness of Aural Rehabilitation scale: 146/361 (40%) vs. 125/346 (36%) vs. 141/355 (40%) vs. 252/700 (36%); p=0.39 Screening was not associated with any statistically significant differences in hearing-related quality of life compared with no screening (reported in text; no data)</td>
<td>1 year</td>
<td>High overall loss to follow-up (23.1%)</td>
<td>NR</td>
<td>Fair</td>
</tr>
<tr>
<td>Jerger et al, 1996&lt;sup&gt;58&lt;/sup&gt;</td>
<td>National Institute on Aging</td>
<td>HHIE-S; Speech Perception in Noise Test; Brief Symptom Inventory; Social Activity Scale, Life Satisfaction in the Elderly Scale, Affect Balance Scale</td>
<td>n=80 for each intervention (cross-over) Hearing aid vs. assistive listening device vs. both vs. none</td>
<td>Hearing aid vs. assistive listening device vs. both vs. none, mean scores at 6 weeks HHIE-S: 25 vs. 27 vs. 26 vs. 28 (p&gt;0.05) Speech Perception in Noise: 53% vs. 75% vs. 71% vs. 42% (p&lt;0.05) Brief Symptom Inventory: no differences between interventions (data NR)</td>
<td>6 weeks</td>
<td>NR</td>
<td>NR</td>
<td>Fair</td>
</tr>
</tbody>
</table>
### Appendix B1. Randomized Controlled Trials of Screening and Treatment Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Purpose of study</th>
<th>Study design</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th># Screened/eligible/enrolled</th>
<th>Subject age, Sex, Diagnosis</th>
<th>Country &amp; Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulrow et al, 1990&lt;sup&gt;13&lt;/sup&gt;</td>
<td>To assess whether hearing aids improve quality of life in elderly persons with hearing loss</td>
<td>Unblinded RCT</td>
<td>Age &gt;64 yrs; attending general medicine clinic between June 1987 and June 1988</td>
<td>Already using a hearing aid; severe comorbidity including terminal cancer, hepatic encephalopathy, and end-stage pulmonary disease; requiring home oxygen therapy; residence &gt;100 miles from clinic</td>
<td>771/587/194*</td>
<td>Mean age: 72 yrs Sex: 99% male Race: 97% white</td>
<td>US VA primary care clinic</td>
</tr>
<tr>
<td>Tolson et al, 2002&lt;sup&gt;29&lt;/sup&gt;</td>
<td>To determine if hearing aid use makes a difference in mood, perception of wellbeing in patients and caregivers, caregiver stress, and familial relationships</td>
<td>Unblinded RCT</td>
<td>NR</td>
<td>NR</td>
<td>356/NR/133</td>
<td>Mean age: 76.6 yrs Sex: 23% male Other baseline characteristics: NR</td>
<td>UK General practice clinic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Sponsor</th>
<th>Measures</th>
<th>Intervention Type</th>
<th>Results</th>
<th>Duration of follow-up</th>
<th>Loss to follow-up</th>
<th>Adverse events &amp; withdrawals</th>
<th>Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulrow et al, 1990&lt;sup&gt;13&lt;/sup&gt;</td>
<td>Robert Wood Johnson Foundation; Milbank Scholar Program; ACP Teaching and Research Scholar Award</td>
<td>HHIE-S; Quantified Denver Scale; Short Portable Mental Status Questionnaire; Geriatric Depression Scale; Self Evaluation of Life Function</td>
<td>Immediate hearing aid use (n=95) vs. wait list (n=99)</td>
<td>Immediate hearing aid use vs. wait list, mean scores at 4 months (mean difference in change from baseline) HHIE-S: 15 vs. 51 (34 [95% CI, 27 to 41]; p&lt;0.001) Quantified Denver Scale: 36 vs. 62 (24 [95% CI, 17 to 31]; p&lt;0.001) Short Portable Mental Status Questionnaire: 0.29 vs. 0.28 (0.28 [95% CI, 0.08 to 0.48]; p=0.008) Geriatric Depression Scale: 2.6 vs. 3.8 (0.80 [95% CI, 0.09 to 1.5]; p=0.03) Self Evaluation of Life Function: 92 vs. 97 (1.9 [95% CI, -1.6 to 5.4]; p=0.27)</td>
<td>4 months</td>
<td>At 4 months: 6/194 (3%)</td>
<td>NR</td>
<td>Good</td>
</tr>
<tr>
<td>Tolson et al, 2002&lt;sup&gt;29&lt;/sup&gt;</td>
<td>NR</td>
<td>Mini Mental Status Examination; Geriatric Depression Scale, Malaise Inventory (caregiver); Family Relationship Index; 14-item caregiver's assessment of hearing difficulties</td>
<td>Hearing aid (n=63) vs. no hearing aid (n=70)</td>
<td>NR; authors state “depression scores were unchanged at the 6-month follow-up” in the intervention group</td>
<td>6 months</td>
<td>NR</td>
<td>NR</td>
<td>Poor</td>
</tr>
</tbody>
</table>
## Appendix B1. Randomized Controlled Trials of Screening and Treatment Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Purpose of study</th>
<th>Study design</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th># Screened/eligible/enrolled</th>
<th>Subject age, Sex, Diagnosis</th>
<th>Country &amp; Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yueh et al, 2001</td>
<td>To compare the effectiveness of a non-programmable hearing aid with a programmable hearing aid</td>
<td>Unblinded RCT</td>
<td>Age &gt;50 yrs; seeking diagnostic or hearing aid evaluation</td>
<td>Asymmetric or conductive hearing loss; loss other than mild to moderately severe; upsloping hearing loss of ≥5 dB per octave between 500 and 3000 Hz; poor word recognition scores; atypical cause of sensorineural hearing loss; prior hearing aid use; poor cognitive function; poor manual dexterity</td>
<td>NR/NR/64</td>
<td>Mean age: 68.5 yrs Sex: 100% male Race: NR Mean pure-tone threshold, right ear: 33 dB Mean pure-tone threshold, left ear: 32 dB Mean baseline HHIE-S score: 28 vs. 35 (assistive listening device vs. no treatment); 50 vs. 36 (programmable vs. standard hearing aid)</td>
<td>US VA audiology clinic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Sponsor</th>
<th>Measures</th>
<th>Intervention Type</th>
<th>Results</th>
<th>Duration of follow-up</th>
<th>Loss to follow-up</th>
<th>Adverse events &amp; withdrawals</th>
<th>Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yueh et al, 2001</td>
<td>Career Development Award; VA</td>
<td>HHIE-S; Abbreviated Profile of Hearing Aid Benefit; Revised Quantified Denver Scale; social isolation</td>
<td>Programmable hearing aid (n=16) vs. standard (non-programmable) hearing aid (n=14) and assistive listening device (n=15) vs. no treatment (n=15)</td>
<td>Assistive listening device vs. no treatment, mean scores at 3 months HHIE-S: 4.4 vs. 2.2 Abbreviated Profile of Hearing Aid Benefit: 6.4 vs. 2.7 Revised Quantified Denver Scale: 0.03 vs. -0.05 Proportion reporting less social isolation: 0/15 (0%) vs. 0/15 (0%) Programmable hearing aid vs. standard hearing aid, results at 3 months HHIE-S: 31 vs. 17 (p&lt;0.05) Abbreviated Profile of Hearing Aid Benefit: 16 vs. 7.7 Revised Quantified Denver Scale: 0.84 vs. 0.70 Proportion reporting less social isolation: 10/16 (62%) vs. 2/14 (14%)</td>
<td>3 months</td>
<td>4/64 (6%)</td>
<td>NR</td>
<td>Fair</td>
</tr>
</tbody>
</table>

*Includes 72 subjects referred from other clinics.
†Average at 1000, 2000, and 4000 Hz.
‡p=0.05.

**Abbreviations:** # = number; ACP = American College of Physicians; CI = confidence interval; HHIE-S = Hearing Handicap Inventory In the Elderly-Screening; NR = not reported; RCT = randomized controlled trial; UK = United Kingdom; US = United States; VA = Department of Veterans Affairs; VHA = Veterans Health Administration.
# Appendix B2. Quality Ratings for Trials of Screening and Treatment

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Random assignment</th>
<th>Allocation concealed</th>
<th>Groups similar at baseline</th>
<th>Eligibility criteria specified</th>
<th>Patient blinding</th>
<th>Provider blinding</th>
<th>Outcome assessor or data analyst blinding</th>
<th>Intention-to-treat analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yueh et al, 2010</td>
<td>Described as randomized, method NR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>Cannot tell</td>
<td>Yes</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerger et al, 1996</td>
<td>Described as randomized, method NR</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>Cannot tell</td>
<td>Yes</td>
</tr>
<tr>
<td>Mulrow et al, 1990</td>
<td>Described as randomized, method NR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>Cannot tell</td>
<td>Yes</td>
</tr>
<tr>
<td>Tolson et al, 2002</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
</tr>
<tr>
<td>Yueh et al, 2001</td>
<td>Described as randomized, method NR</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Reporting of attrition, contamination</th>
<th>Differential loss to follow-up, overall high loss to follow-up, or incomplete follow-up</th>
<th>Funding source</th>
<th>External validity</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td></td>
<td>High overall loss to follow-up</td>
<td>Veterans Health Administration</td>
<td>Mean age: 61 years (SD, 9) Sex: 94% male Race: 75% white Mean hearing loss: NR</td>
<td>Fair</td>
</tr>
<tr>
<td>Yueh et al, 2010</td>
<td>Yes</td>
<td>High overall loss to follow-up</td>
<td>Veterans Health Administration</td>
<td>Mean age: 61 years (SD, 9) Sex: 94% male Race: 75% white Mean hearing loss: NR</td>
<td>Fair</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td>National Institute on Aging</td>
<td>Mean age: 74.3 years (range, 60-96) Sex: 63% male Mean pure-tone threshold: 37 dB**</td>
<td>Fair</td>
</tr>
<tr>
<td>Jerger et al, 1996</td>
<td>No</td>
<td>Cannot tell</td>
<td>Robert Wood Johnson Foundation; Milbank Scholar Program; ACP Teaching and Research Scholar Award</td>
<td>Mean age: 72 years (SD, 6) Sex: 99% male Race: 97% white Mean pure-tone threshold, better ear: 52 dB (SD, 8)*</td>
<td>Good</td>
</tr>
<tr>
<td>Mulrow et al, 1990</td>
<td>Yes</td>
<td>No</td>
<td>Career Development Award, Department of Veterans Affairs</td>
<td>Mean age: 68.5 years (range, 50-86) Sex: 100% male Race: NR Mean pure-tone threshold, right ear: 32.8 dB (SD, 5.6) Mean pure-tone threshold, left ear: 32.3 (SD, 5.7)</td>
<td>Fair</td>
</tr>
<tr>
<td>Tolson et al, 2002</td>
<td>No</td>
<td>Cannot tell</td>
<td>Not reported</td>
<td>Mean age: 76.6 years Sex: 77% female Other baseline characteristics: NR</td>
<td>Poor</td>
</tr>
<tr>
<td>Yueh et al, 2001</td>
<td>No</td>
<td>No</td>
<td>Career Development Award, Department of Veterans Affairs</td>
<td>Mean age: 68.5 years (range, 50-86) Sex: 100% male Race: NR Mean pure-tone threshold, right ear: 32.8 dB (SD, 5.6) Mean pure-tone threshold, left ear: 32.3 (SD, 5.7)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

*Average of 1000, 2000, and 4000 Hz hearing levels.
**New users group only.

**Abbreviations:** ACP = American College of Physicians; N/A = not applicable; NR = not reported; SD = standard deviation.
### Appendix B3. Whispered Voice, Watch Tick, and Finger Rub Clinical Tests Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening test</th>
<th>Reference standard</th>
<th>Type of study</th>
<th>Setting</th>
<th>Screener</th>
<th>Age of enrollees</th>
<th>N</th>
<th>Proportion with hearing loss</th>
<th>Definition of a positive screening exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boatman et al, 2007(^{39})</td>
<td>Whispered voice at 2 feet</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Movement disorders clinic (patients or family)</td>
<td>Neurologist</td>
<td>50-88 years</td>
<td>107 (214 ears)</td>
<td>Hearing loss &gt;25 dB: 63% (135/214)</td>
<td>Inability to repeat 2 or more words from two 3-word combinations</td>
</tr>
<tr>
<td></td>
<td>Watch tick at 6 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No response to 2 or more of 6 presentations of watch tick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finger rub at 6 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No response to 2 or more of 6 finger rubs</td>
<td></td>
</tr>
<tr>
<td>Eekhof et al, 1996(^{40})</td>
<td>Whispered voice at 2 feet</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Otolaryngology clinic</td>
<td>NR</td>
<td>≥55 years (mean age NR)</td>
<td>62 (124 ears)</td>
<td>Hearing loss &gt;30 dB: 59% (73/124) Hearing loss &gt;40 dB: 33% (41/124)</td>
<td>Inability to repeat 2 or more combinations correctly</td>
</tr>
<tr>
<td>Macphee et al, 1988(^{41})</td>
<td>Whispered voice at 2 feet</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Acute rehabilitation wards</td>
<td>Geriatrician and otolaryngologist</td>
<td>Mean age 81 years (range, 66 to 96)</td>
<td>62 (124 ears)</td>
<td>Hearing loss &gt;30 dB: 61% (38/62)</td>
<td>Inability to repeat 1 triplet set of numbers correctly or 50% of 4 sets of triplet numbers</td>
</tr>
<tr>
<td></td>
<td>Whispered voice at 6 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inability to repeat 1 triplet set of numbers correctly or 50% of 4 sets of triplet numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conversation voice at 2 feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inability to repeat 1 triplet set of numbers correctly or 50% of 4 sets of triplet numbers</td>
<td></td>
</tr>
<tr>
<td>Swan et al, 1985(^{42})</td>
<td>Whispered voice at 2 feet</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Audiology clinic</td>
<td>NR</td>
<td>Mean age 57 years</td>
<td>101 (202 ears)</td>
<td>Hearing loss &gt;30 dB: 43% (87/202)</td>
<td>Unable to repeat at least 3 out of 6 letters or numerals correctly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Definition of a case</th>
<th>Subjects</th>
<th>Proportion unexaminable by screening test</th>
<th>Analysis of screening failures</th>
<th>Proportion who underwent reference standard</th>
<th>Sensitivity (range)</th>
<th>Specificity (range)</th>
<th>Positive likelihood ratio (95% CI)</th>
<th>Negative likelihood ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boatman et al, 2007(^{39})</td>
<td>&gt;25 dB hearing loss at 500 Hz</td>
<td>Age: 66 years Sex: 51% female</td>
<td>Appears to be none</td>
<td>NA</td>
<td>100% (214/214 ears)</td>
<td>0.40 (0.32-0.49)</td>
<td>0.82 (0.72-0.90)</td>
<td>2.3 (1.3-3.8)</td>
<td>0.73 (0.61-0.87)</td>
</tr>
<tr>
<td></td>
<td>&gt;25 dB hearing loss at 1000 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.44 (0.35-0.53)</td>
<td>1.0 (0.95-1.0)</td>
<td>70 (4.4-1120)</td>
<td>0.57 (0.49-0.66)</td>
</tr>
<tr>
<td></td>
<td>&gt;25 dB hearing loss at 2000 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.27 (0.19-0.35)</td>
<td>0.98 (0.91-1.0)</td>
<td>10 (2.6-43)</td>
<td>0.75 (0.68-0.84)</td>
</tr>
<tr>
<td>Eekhof et al, 1996(^{40})</td>
<td>&gt;30 dB hearing loss in either ear (frequency NR)</td>
<td>Age: ≥55 years (mean NR) Sex: NR</td>
<td>Appears to be none</td>
<td>NA</td>
<td>100% (124/124 ears)</td>
<td>0.90 (0.81-0.96)</td>
<td>0.80 (0.67-0.90)</td>
<td>4.8 (2.6-8.1)</td>
<td>0.12 (0.06-0.24)</td>
</tr>
<tr>
<td>Macphee et al, 1988(^{41})</td>
<td>&gt;30 dB hearing loss at 500 Hz</td>
<td>Mean age: 81 years Sex: 69% female</td>
<td>Appears to be none</td>
<td>NA</td>
<td>100% (124/124 ears)</td>
<td>1.0 (0.95-1.0)</td>
<td>0.83 (0.70-0.93)</td>
<td>5.7 (3.1-10.6)</td>
<td>0.008 (0.0005-0.13)</td>
</tr>
<tr>
<td></td>
<td>&gt;30 dB hearing loss at 1000 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.74 (0.62-0.83)</td>
<td>1.0 (0.93-1.0)</td>
<td>72 (4.6-1140)</td>
<td>0.27 (0.19-0.39)</td>
</tr>
<tr>
<td></td>
<td>&gt;30 dB hearing loss at 2000 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.47 (0.36-0.59)</td>
<td>1.0 (0.93-1.0)</td>
<td>46 (2.9-740)</td>
<td>0.53 (0.42-0.66)</td>
</tr>
<tr>
<td>Swan et al, 1985(^{42})</td>
<td>&gt;30 dB hearing loss at 500, 1000, and 2000 Hz</td>
<td>Mean age: 57 years Sex: NR</td>
<td>Appears to be none</td>
<td>NA</td>
<td>100% (202/202 ears)</td>
<td>1.0 (0.96-1.0)</td>
<td>0.87 (0.79-0.93)</td>
<td>7.4 (4.7-12)</td>
<td>0.007 (0.0005-0.10)</td>
</tr>
</tbody>
</table>
### Appendix B3. Whispered Voice, Watch Tick, and Finger Rub Clinical Tests Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Diagnostic odds ratio</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boatman et al, 2007&lt;sup&gt;39&lt;/sup&gt;</td>
<td>0.79 (0.68-0.88)</td>
<td>0.45 (0.36-0.53)</td>
<td>3.1 (1.5-6.6)</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>1.0 (0.94-1.0)</td>
<td>0.51 (0.43-0.59)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95 (0.82-0.99)</td>
<td>0.44 (0.36-0.51)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Eekhof et al, 1996&lt;sup&gt;40&lt;/sup&gt;</td>
<td>0.87 (0.77-0.94)</td>
<td>0.85 (0.72-0.94)</td>
<td>39 (12-130)</td>
<td>Fair</td>
</tr>
<tr>
<td>Macphee et al, 1988&lt;sup&gt;41&lt;/sup&gt;</td>
<td>0.91 (0.82-0.96)</td>
<td>1.0 (0.91-1.0)</td>
<td>730 (41-12,950)</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>1.0 (0.94-1.0)</td>
<td>0.71 (0.58-0.81)</td>
<td>270 (16-4540)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 (0.90-1.0)</td>
<td>0.55 (0.44-0.65)</td>
<td>87 (5.2-1470)</td>
<td></td>
</tr>
<tr>
<td>Swan et al, 1985&lt;sup&gt;42&lt;/sup&gt;</td>
<td>0.85 (0.77-0.92)</td>
<td>1.0 (0.96-1.0)</td>
<td>1140 (70-19,240)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

**Abbreviations:** CI = confidence interval; N = number of enrollees; NA = not applicable; NR = not reported.
### Appendix B4. Single Screening Question Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening question</th>
<th>Reference standard</th>
<th>Type of study</th>
<th>Setting</th>
<th>Screener</th>
<th>Age of enrollees</th>
<th>N</th>
<th>Proportion with hearing loss</th>
<th>Subjects</th>
<th>Proportion unexaminable by screening test</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community-Dwelling Older Adults</strong></td>
<td></td>
</tr>
<tr>
<td>Boatman et al, 2007&lt;sup&gt;39&lt;/sup&gt;</td>
<td>Do you think you have difficulty hearing?</td>
<td>None</td>
<td>Cross-sectional</td>
<td>Patients and family from movement disorders clinic</td>
<td>Neurologist</td>
<td>50-88 years</td>
<td>107</td>
<td>Hearing loss &gt;25 dB: 24%</td>
<td>Ages 50-64: 37% Ages 65-74: 49% Ages &gt;74: 14%</td>
<td>Sex: 40% male</td>
</tr>
<tr>
<td>Clark et al, 1991&lt;sup&gt;43&lt;/sup&gt;</td>
<td>Would you say that you have any difficulty hearing?</td>
<td>None</td>
<td>Cross-sectional</td>
<td>Population from an osteoporosis study</td>
<td>NR</td>
<td>60-85 years</td>
<td>267</td>
<td>Hearing loss &gt;40 dB: 18% Hearing loss &gt;25 dB: 45%</td>
<td>Age: NR Sex: 100% female</td>
<td>NR</td>
</tr>
<tr>
<td>Gates et al, 2003&lt;sup&gt;47&lt;/sup&gt;</td>
<td>Do you have a hearing problem now?</td>
<td>None</td>
<td>Cross-sectional</td>
<td>Subset of Framingham cohort</td>
<td>Self-administered questionnaire with audiologist review</td>
<td>&gt;70 years</td>
<td>546</td>
<td>Hearing loss &gt;40 dB (V&amp;W): 27%</td>
<td>Mean age: 78.3 (±4.1) Sex: 36% male</td>
<td>7% (due to time, fatigue, malaise)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Analysis of screening failures</th>
<th>Proportion who underwent reference standard</th>
<th>Definition of a case</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Diagnostic odds ratio</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community-Dwelling Older Adults</strong></td>
<td></td>
</tr>
<tr>
<td>Boatman et al, 2007&lt;sup&gt;39&lt;/sup&gt;</td>
<td>None</td>
<td>100%</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, or 4000 Hz in either ear</td>
<td>0.27 (0.16-0.41)</td>
<td>0.89 (0.78-0.96)</td>
<td>2.5 (1.0-5.9)</td>
<td>0.82 (0.68-0.99)</td>
<td>0.70 (0.46-0.88)</td>
<td>0.56 (0.45-0.67)</td>
<td>3.0 (0.96-10)</td>
<td>Good</td>
</tr>
<tr>
<td>Clark et al, 1991&lt;sup&gt;43&lt;/sup&gt;</td>
<td>None</td>
<td>99% (267/290)</td>
<td>&gt;25 dB hearing loss at 1000 and 2000 Hz in better ear</td>
<td>0.66 (0.55-0.75)</td>
<td>0.80 (0.74-0.86)</td>
<td>3.3 (2.4-4.6)</td>
<td>0.43 (0.32-0.58)</td>
<td>0.63 (0.52-0.73)</td>
<td>0.82 (0.76-0.88)</td>
<td>7.7 (4.2-14)</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥25 dB hearing loss at 1000, 2000, 3000, and 4000 Hz in better ear</td>
<td>0.56 (0.47-0.65)</td>
<td>0.82 (0.75-0.88)</td>
<td>3.1 (2.1-4.5)</td>
<td>0.53 (0.43-0.67)</td>
<td>0.71 (0.61-0.80)</td>
<td>0.70 (0.63-0.77)</td>
<td>5.8 (3.2-10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&gt;40 dB hearing loss at 1000 and 2000 Hz in worse ear</td>
<td>0.81 (0.67-0.91)</td>
<td>0.74 (0.68-0.80)</td>
<td>3.1 (2.4-4.1)</td>
<td>0.28 (0.14-0.47)</td>
<td>0.40 (0.30-0.51)</td>
<td>0.95 (0.90-0.98)</td>
<td>12 (5.3-30)</td>
<td></td>
</tr>
<tr>
<td>Gates et al, 2003&lt;sup&gt;47&lt;/sup&gt;</td>
<td>None</td>
<td>93% (672/723)</td>
<td>V&amp;W: &gt;40 dB hearing loss at 100 or 2000 Hz in both ears or &gt;40 dB hearing loss at 1000 and 2000 Hz in one ear</td>
<td>0.71 (0.63-0.78)</td>
<td>0.72 (0.67-0.76)</td>
<td>2.5 (2.1-3.0)</td>
<td>0.41 (0.31-0.53)</td>
<td>0.48 (0.41-0.55)</td>
<td>0.87 (0.83-0.90)</td>
<td>6.2 (4.0-9.6)</td>
<td>Good</td>
</tr>
<tr>
<td>Study, Year</td>
<td>Screening question</td>
<td>Reference standard</td>
<td>Type of study</td>
<td>Setting</td>
<td>Age of enrollees</td>
<td>N</td>
<td>Proportion with hearing loss</td>
<td>Subjects</td>
<td>Proportion unexaminable by screening test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------------</td>
<td>---</td>
<td>---------------------------</td>
<td>----------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nondahl et al, 1998&lt;sup&gt;54&lt;/sup&gt; Wiley et al, 2000&lt;sup&gt;99&lt;/sup&gt;</td>
<td>Do you feel you have hearing loss?</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Subset of Beaver Dam Eye Study</td>
<td>NR</td>
<td>48-92 years</td>
<td>3342</td>
<td>Hearing loss &gt;25 dB: 32%</td>
<td>Age: 65.8 years Sex: 42.3% male</td>
<td>6.0% did not respond or answered &quot;I don't know&quot;</td>
<td></td>
</tr>
<tr>
<td>Rawool et al, 2008&lt;sup&gt;82&lt;/sup&gt;</td>
<td>Do you think you have hearing loss?</td>
<td>Pure-tone audiometry (portable audiometer)</td>
<td>Cross-sectional</td>
<td>Volunteer active community dwelling</td>
<td>Researcher</td>
<td>≥65 years</td>
<td>30</td>
<td>Hearing loss &gt;25 dB: 63%</td>
<td>Age: 77.5 years Sex: 26.7% male</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Sindhusake et al, 2001&lt;sup&gt;45&lt;/sup&gt;</td>
<td>Do you feel you have hearing loss?</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Subset of Blue Mountain Eye Study</td>
<td>NR</td>
<td>Reference test: audiologist</td>
<td>55-99 years</td>
<td>1931</td>
<td>Hearing loss &gt;25 dB: 39%</td>
<td>Age 55-64: 29.8% Age 65-74: 41.1% Age 75-84: 24% Age ≥85: 5.1% Sex: 42.6% male</td>
<td>None</td>
</tr>
<tr>
<td>Torre et al, 2006&lt;sup&gt;44&lt;/sup&gt;</td>
<td>Do you feel you have hearing loss? English and Spanish</td>
<td>Pure-tone audiometry (portable audiometer)</td>
<td>Cross-sectional</td>
<td>Referred from physicians or medical staff</td>
<td>NR</td>
<td>42-88 years</td>
<td>59</td>
<td>Hearing loss &gt;25 dB: 63%</td>
<td>Mean age: 62.3 years Sex: 45.8% male</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Analysis of screening failures</th>
<th>Proportion who underwent reference standard</th>
<th>Definition of a case</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Diagnostic odds ratio</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondahl et al, 1998&lt;sup&gt;54&lt;/sup&gt; Wiley et al, 2000&lt;sup&gt;99&lt;/sup&gt;</td>
<td>None</td>
<td>89% (3342/3753); 1701 were ages 65-92 years</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, and 4000 Hz in either ear</td>
<td>0.67 (0.64-0.70)</td>
<td>0.80 (0.77-0.83)</td>
<td>3.4 (2.8-4.0)</td>
<td>0.41 (0.36-0.45)</td>
<td>0.86 (0.84-0.88)</td>
<td>0.57 (0.53-0.60)</td>
<td>8.1 (6.4-10)</td>
<td>Good</td>
</tr>
<tr>
<td>Rawool et al, 2008&lt;sup&gt;82&lt;/sup&gt;</td>
<td>None</td>
<td>100%</td>
<td>≥25 dB hearing loss at 500, 1000, 2000, 3000, and 4000 Hz in better ear</td>
<td>0.68 (0.43-0.87)</td>
<td>0.81 (0.48-0.98)</td>
<td>3.8 (1.0-13.7)</td>
<td>0.39 (0.19-0.79)</td>
<td>0.87 (0.60-0.98)</td>
<td>0.60 (0.32-0.84)</td>
<td>9.8 (1.3-110)</td>
<td>Fair</td>
</tr>
<tr>
<td>Sindhusake et al, 2001&lt;sup&gt;45&lt;/sup&gt;</td>
<td>None</td>
<td>96% (1931/2015)</td>
<td>&gt;25 dB hearing loss at 500-4000 Hz</td>
<td>0.78 (0.75-0.81)</td>
<td>0.67 (0.64-0.70)</td>
<td>2.4 (2.2-2.6)</td>
<td>0.33 (0.29-0.38)</td>
<td>0.61 (0.58-0.64)</td>
<td>0.82 (0.80-0.85)</td>
<td>7.2 (5.8-8.9)</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&gt;40 dB hearing loss at 500-4000 Hz</td>
<td>0.93 (0.89-0.96)</td>
<td>0.56 (0.54-0.58)</td>
<td>2.1 (2.0-2.3)</td>
<td>0.13 (0.08-0.20)</td>
<td>0.25 (0.23-0.28)</td>
<td>0.98 (0.97-0.99)</td>
<td>17 (10-28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&gt;60 dB hearing loss at 500-4000 Hz</td>
<td>1.0 (0.92-1.0)</td>
<td>0.50 (0.48-0.52)</td>
<td>2.0 (1.9-2.1)</td>
<td>0.02 (0.001-0.34)</td>
<td>0.05 (0.03-0.06)</td>
<td>1.0 (1.0-1.0)</td>
<td>91 (5.6-1480)</td>
<td></td>
</tr>
<tr>
<td>Torre et al, 2006&lt;sup&gt;44&lt;/sup&gt;</td>
<td>NA</td>
<td>100% (32/32) all were ages 60 and older</td>
<td>≥25 dB hearing loss at 500, 1000, 2000, and 4000 Hz in worse ear</td>
<td>0.76 (0.59-0.88)</td>
<td>0.73 (0.50-0.89)</td>
<td>2.8 (1.4-5.6)</td>
<td>0.33 (0.18-0.62)</td>
<td>0.82 (0.66-0.93)</td>
<td>0.64 (0.43-0.82)</td>
<td>8.3 (2.2-33)</td>
<td>Fair</td>
</tr>
</tbody>
</table>
### Appendix B4. Single Screening Question Evidence Table

#### Nursing Home-Dwelling Older Adults

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening question</th>
<th>Reference standard</th>
<th>Type of study</th>
<th>Setting</th>
<th>Screener</th>
<th>Age of enrollees</th>
<th>N</th>
<th>Proportion with hearing loss</th>
<th>Subjects</th>
<th>Proportion unexaminable by screening test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voeks et al, 1993&lt;sup&gt;55&lt;/sup&gt;</td>
<td>Do you have trouble hearing?</td>
<td>Pure-tone audiometry (portable audiometer)</td>
<td>Cross-sectional</td>
<td>New admissions to nursing home</td>
<td>NR</td>
<td>NR</td>
<td>198</td>
<td>Hearing loss &gt;25 dB: 54%</td>
<td>Mean age: 72.4 years (±11.4) Sex: 80% male</td>
<td>17% (41/239) did not have reliable audiometric responses</td>
</tr>
</tbody>
</table>

#### Analysis of screening failures

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Proportion who underwent reference standard</th>
<th>Definition of a case</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Diagnostic odds ratio</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voeks et al, 1993&lt;sup&gt;55&lt;/sup&gt;</td>
<td>&gt;50% of those with unreliable results gave verbal indication of some hearing dysfunction</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, and 4000 Hz in better ear</td>
<td>0.69 (0.60-0.78)</td>
<td>0.51 (0.40-0.61)</td>
<td>1.4 (1.1-1.8)</td>
<td>0.61 (0.43-0.87)</td>
<td>0.62 (0.53-0.71)</td>
<td>0.58 (0.47-0.69)</td>
<td>2.3 (1.2-4.3)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

**Abbreviations:** N = number of enrollees; NR = not reported; V&W = Ventry & Weinstein criteria.
## Appendix B5. Hearing Questionnaires Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening test</th>
<th>Reference standard</th>
<th>Type of study</th>
<th>Setting</th>
<th>Screener</th>
<th>Age of enrollees</th>
<th>N</th>
<th>Proportion with hearing loss</th>
<th>Definition of a positive screening exam</th>
<th>Subjects</th>
<th>Proportion unexaminable by screening test</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community-Dwelling</strong></td>
<td></td>
</tr>
<tr>
<td>Gates et al, 2003</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Subset of Framingham cohort</td>
<td>Self-administered questionnaire with audiologist review</td>
<td>&gt;70 years</td>
<td>546</td>
<td>Hearing loss &gt;40 dB (V&amp;W criteria): 27%</td>
<td>Score &gt;8 on HHIE-S</td>
<td>Mean age: 78.3 yrs ±4.1 Sex: 36% male</td>
<td>7% (51/723) due to time, fatigue, malaise</td>
</tr>
<tr>
<td>Lichtenstein et al, 1988</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Internal medicine clinic</td>
<td>Reference test: unknown</td>
<td>&gt;65 years</td>
<td>178</td>
<td>Hearing loss &gt;40 dB (V&amp;W criteria): 30%</td>
<td>Score &gt;8 on HHIE-S</td>
<td>Age: 74.2 yrs ±8.4 Sex: 37.1% male Race: 77.5% white</td>
<td>13% (36/264)</td>
</tr>
<tr>
<td>McBride et al, 1994</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Community health clinic; VA Medical Center</td>
<td>Trained researcher</td>
<td>&gt;60 years</td>
<td>185</td>
<td>Hearing loss &gt;25 dB (SFPTA criteria): 36% Hearing loss &gt;40 dB (V&amp;W criteria): 30%</td>
<td>Score &gt;8 on HHIE-S; Score &gt;24 on HHIE-S</td>
<td>Mean age: 70 yrs ±5.8; Sex: 69% male SES: 8 mean yrs of school</td>
<td>6.1% (13/212)</td>
</tr>
<tr>
<td>Nondahl et al, 1998 &amp; Wiley et al, 2000</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Subset of Beaver Dam Eye Study</td>
<td>Unknown</td>
<td>48-92 years</td>
<td>3471</td>
<td>Hearing loss &gt;25 dB: 32%</td>
<td>Score &gt;8 on HHIE-S</td>
<td>Age: 65.8 years Sex: 42.3% male</td>
<td>2.4% did not complete all questions and were excluded</td>
</tr>
<tr>
<td>Sever et al, 1989</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Audiology clinic</td>
<td>Unknown</td>
<td>60-84 years</td>
<td>59</td>
<td>Hearing loss &gt;25 dB (SFPTA criteria): 36% Hearing loss &gt;40 dB (V&amp;W criteria): 27%</td>
<td>Score 0-8, 10-24, or 26-40 on HHIE-S</td>
<td>Age: Not reported Sex: Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Sindhusake et al, 2001</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Subset of Blue Mountain Eye Study</td>
<td>Screening test: unknown Reference test: audiologist</td>
<td>55-99 years</td>
<td>1807</td>
<td>Hearing loss &gt;25 dB: 39% Hearing loss &gt;40 dB: 13% Hearing loss &gt;60 dB: 2%</td>
<td>Score &gt;8 on HHIE-S</td>
<td>Age 55-64: 29.8% Age 65-74: 41.1% Age 75-84: 24.0% Age ≥85: 5.1% Sex: 42.6% male</td>
<td>9.8% did not complete all questions and were excluded</td>
</tr>
<tr>
<td>Ventry &amp; Weinstein, 1983</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Community volunteers</td>
<td>Unknown</td>
<td>≥65 years</td>
<td>104</td>
<td>Hearing loss &gt;40 dB: 51%</td>
<td>Score &gt;8 on HHIE-S</td>
<td>Age: Not reported Sex: Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Weinstein, 1986</td>
<td>HHIE-S</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Senior citizen centers</td>
<td>Unknown</td>
<td>62-91 years</td>
<td>106</td>
<td>Not reported</td>
<td>Score &gt;8 on HHIE-S; Score &gt;10 on HHIE-S</td>
<td>Age: 76 yrs ±6.9 Sex: 42.3% male</td>
<td>Not reported</td>
</tr>
<tr>
<td>Koike et al, 1994</td>
<td>FMHT</td>
<td>Pure-tone thresholds</td>
<td>Cross-sectional</td>
<td>Audiology clinic</td>
<td>Unknown</td>
<td>&gt;55 years</td>
<td>70</td>
<td>Not reported</td>
<td>Various cutoff scores on the FMHT</td>
<td>Age: 69.1 yrs ±8.39 Sex: 56% male</td>
<td>Not reported</td>
</tr>
</tbody>
</table>
## Appendix B5. Hearing Questionnaires Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Analysis of screening failures</th>
<th>Proportion who underwent reference test</th>
<th>Definition of a case</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Diagnostic odds ratio</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-Dwelling</td>
<td></td>
<td></td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears; or 1000 and 2000 Hz in one ear</td>
<td>0.36</td>
<td>0.92</td>
<td>4.5 (3.0-6.7)</td>
<td>0.70</td>
<td>0.62</td>
<td>0.80 (0.76-0.83)</td>
<td>6.5</td>
<td>3.8-11</td>
</tr>
<tr>
<td>Gates et al, 2003[34]</td>
<td>None</td>
<td>100% (672/672)</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears; or 1000 and 2000 Hz in one ear</td>
<td>0.72</td>
<td>0.77</td>
<td>3.1 (2.2-4.4)</td>
<td>0.37</td>
<td>0.57</td>
<td>0.87 (0.79-0.92)</td>
<td>8.4</td>
<td>3.8-19</td>
</tr>
<tr>
<td>Lichtenstein et al, 1988[46]</td>
<td>None</td>
<td>100% (178/178)</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.53</td>
<td>0.84</td>
<td>3.3 (1.9-5.8)</td>
<td>0.56</td>
<td>0.82</td>
<td>0.57 (0.47-0.66)</td>
<td>6.0</td>
<td>2.8-14</td>
</tr>
<tr>
<td>McBride et al, 1994[22]</td>
<td>Not applicable</td>
<td>100%</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.58</td>
<td>0.76</td>
<td>2.4 (1.6-3.5)*</td>
<td>0.55</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>4.4*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFPTA: ≥25 dB hearing loss at 1000, 2000, and 4000 Hz in better ear</td>
<td>0.48</td>
<td>0.86</td>
<td>3.6 (2.0-6.6)*</td>
<td>0.60</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>5.7*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears; or 1000 and 2000 Hz in one ear</td>
<td>0.63</td>
<td>0.75</td>
<td>2.5 (1.8-3.6)*</td>
<td>0.49</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>5.1*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in one ear</td>
<td>0.36</td>
<td>0.87</td>
<td>2.8 (1.6-5.0)*</td>
<td>0.74</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>3.8*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HFPTA: ≥25 dB hearing loss at 1000, 2000, and 4000 Hz in better ear</td>
<td>0.29</td>
<td>0.93</td>
<td>4.3 (1.7-10)*</td>
<td>0.76</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>5.4*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears; or 1000 and 2000 Hz in one ear</td>
<td>0.42</td>
<td>0.88</td>
<td>3.4 (1.9-5.9)*</td>
<td>0.66</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>5.3*</td>
<td></td>
</tr>
<tr>
<td>Nondahl et al, 1998[44]</td>
<td>None</td>
<td>100% (1725/1725 for ages 65-92 yrs)</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, and 4000 Hz in either ear</td>
<td>0.32</td>
<td>0.97</td>
<td>10.7 (6.8-17.1)</td>
<td>0.70</td>
<td>0.95</td>
<td>0.44 (0.41-0.46)</td>
<td>15</td>
<td>9.4-26</td>
</tr>
</tbody>
</table>

Screening for Hearing Loss in Older Adults 61 Oregon Evidence-based Practice Center
<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Analysis of screening failures</th>
<th>Proportion who underwent reference test</th>
<th>Definition of a case</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Positive odds ratio</th>
<th>Negative odds ratio</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sever et al, 1989(^{53})</td>
<td>None</td>
<td>100%</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.71 (0.48-0.89)</td>
<td>Not reported</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>HHIE-S 0-8: 0.43*</td>
<td>HHIE-S 10-24: 1.81*</td>
<td>HHIE-S 26-40: 3.02*</td>
<td>HHIE-S 0-8: 0.29*</td>
<td>HHIE-S 10-24: 1.80*</td>
</tr>
<tr>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears; or 1000 and 2000 Hz in one ear</td>
<td>0.81 (0.54-0.96)</td>
<td>Not reported</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>HHIE-S 0-8: 0.43*</td>
<td>HHIE-S 10-24: 1.81*</td>
<td>HHIE-S 26-40: 5.37*</td>
<td>Not dichotomized</td>
<td>Not dichotomized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sindhusake et al, 2001(^{45})</td>
<td>None</td>
<td>100% (1807/1807)</td>
<td>&gt;25 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>0.58 (0.54-0.62)</td>
<td>0.85 (0.83-0.87)</td>
<td>3.9 (3.3-4.5)</td>
<td>0.49 (0.45-0.54)</td>
<td>0.71 (0.67-0.75)</td>
<td>0.76 (0.74-0.78)</td>
<td>7.8 (6.2-10)</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>&gt;40 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>0.80 (0.74-0.85)</td>
<td>0.78 (0.74-0.78)</td>
<td>3.3 (3.0-3.7)</td>
<td>0.26 (0.20-0.34)</td>
<td>0.33 (0.29-0.37)</td>
<td>0.96 (0.95-0.97)</td>
<td>13 (6.9-18)</td>
<td>Not dichotomized</td>
<td>Not dichotomized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;60 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>1.0 (0.90-1.0)</td>
<td>0.70 (0.68-0.72)</td>
<td>3.3 (3.0-3.6)</td>
<td>0.02 (0.001-0.31)</td>
<td>0.06 (0.04-0.08)</td>
<td>1.0 (1.0-1.0)</td>
<td>165 (10-2700)</td>
<td>Not dichotomized</td>
<td>Not dichotomized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventry &amp; Weinstein, 1983(^{3})</td>
<td>None</td>
<td>100%</td>
<td>&gt;40 dB hearing loss at 1000 or 2000 Hz in both ears</td>
<td>0.72 (0.56-0.85)</td>
<td>0.66 (0.52-0.77)</td>
<td>2.1 (1.4-3.1)</td>
<td>0.43 (0.26-0.71)</td>
<td>0.60 (0.45-0.73)</td>
<td>0.77 (0.63-0.88)</td>
<td>4.9 (1.9-13)</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>Weinstein, 1986(^{3})</td>
<td>None</td>
<td>100%</td>
<td>Audiologist recommendation for evaluation</td>
<td>0.74*</td>
<td>0.68*</td>
<td>2.3*</td>
<td>0.38*</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>6.1*</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>Koike et al, 1994(^{51})</td>
<td>None</td>
<td>100%</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>10: 0.90*</td>
<td>15: 0.80*</td>
<td>25: 0.90*</td>
<td>30: 0.74*</td>
<td>35: 0.51*</td>
<td>40: 0.26*</td>
<td>10: 0.20*</td>
<td>15: 0.55*</td>
<td>25: 0.54*</td>
</tr>
</tbody>
</table>

*Confidence interval not calculable.

**Abbreviations:** FMHT = Five-Minute Hearing Test; HFPTA = High Frequency Pure-Tone Average; HHIE-S = Hearing Handicap Inventory for the Elderly-Screening; SES = socioeconomic status; SFPTA = Speech Frequency Pure-Tone Average; V&W = Ventry & Weinstein criteria.
### Appendix B6. Handheld Audiometric Devices Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Screening test</th>
<th>Reference standard</th>
<th>Type of study</th>
<th>Setting</th>
<th>Screener</th>
<th>Age of enrollees</th>
<th>N</th>
<th>Proportion with hearing loss</th>
<th>Definition of a positive screening exam</th>
<th>Subjects</th>
<th>Recruitment sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienvenue et al, 1985&lt;sup&gt;48&lt;/sup&gt;</td>
<td>AudioScope</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Speech and hearing clinics</td>
<td>NR</td>
<td>51-81 yrs</td>
<td>30</td>
<td>NR</td>
<td>Failure to hear 25 dB at 500, 1000, 2000, and 4000 Hz</td>
<td>Age: 51-81 yrs Sex: NR</td>
<td>Speech and hearing clinics</td>
</tr>
<tr>
<td>Eekhof et al, 1996&lt;sup&gt;40&lt;/sup&gt;</td>
<td>AudioScope</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Otolaryngology clinic</td>
<td>NR</td>
<td>≥55 yrs</td>
<td>62 (124 ears)</td>
<td>Hearing loss &gt;30 dB: 59% (73/124) Hearing loss &gt;40 dB: 33% (41/124) using AudioScope</td>
<td>Failure to hear 40 dB at 500, 1000, 2000, and 4000 Hz using AudioScope</td>
<td>Age: ≥55 yrs Sex: NR</td>
<td>Outpatient ENT clinic</td>
</tr>
<tr>
<td>Frank and Petersen, 1987&lt;sup&gt;50&lt;/sup&gt;</td>
<td>AudioScope</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Speech and hearing clinic; Rehab center</td>
<td>AudioScope: audiologist or speech pathologist; Reference test: audiologist</td>
<td>50-96 yrs</td>
<td>405 (688 ears)</td>
<td>NR</td>
<td>Failure to hear 40 dB at 500, 1000, 2000, and 4000 Hz</td>
<td>Age: 50-96 yrs Sex: NR</td>
<td>Speech and hearing clinics; rehab center; senior citizen groups</td>
</tr>
<tr>
<td>Lichtenstein et al, 1988&lt;sup&gt;46&lt;/sup&gt;</td>
<td>AudioScope</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Internal medicine clinic</td>
<td>AudioScope: internist; Reference test: NR</td>
<td>&gt;65 yrs</td>
<td>178</td>
<td>Hearing loss &gt;40 dB: 30% at 40 dB</td>
<td>Failure to hear 40 dB at 500, 1000, 2000, or 4000 Hz</td>
<td>Age: 74.2 yrs Sex: 37.1% male Race: 77.5% white</td>
<td>6 internal medicine clinics</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;22&lt;/sup&gt;</td>
<td>AudioScope</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>Community health clinic; VA Medical Center</td>
<td>Trained researcher</td>
<td>&gt;60 yrs</td>
<td>185</td>
<td>NR</td>
<td>Failure to hear 40 dB at 2000 Hz in better ear</td>
<td>Mean age: 70 yrs (±5.0) Sex: 69% male SES: 8 mean yrs of school</td>
<td>Community health clinic; VA Medical Center</td>
</tr>
<tr>
<td>Chronic Care Facility-Dwelling Older Adults</td>
<td></td>
</tr>
<tr>
<td>Ciurlia-Guy et al, 1993&lt;sup&gt;49&lt;/sup&gt;</td>
<td>AudioScope</td>
<td>Pure-tone audiometry</td>
<td>Cross-sectional</td>
<td>VA chronic care facilities</td>
<td>AudioScope: research assistant; Reference test: audiologist</td>
<td>60-99 yrs</td>
<td>99</td>
<td>Hearing loss &gt;40 dB: 69%</td>
<td>Failure to hear 40 dB at 1000 or 2000 Hz in either ear</td>
<td>Age: 79 yrs (±9.98) Sex: 88% male</td>
<td>VA chronic care facility</td>
</tr>
</tbody>
</table>
### Appendix B6. Handheld Audiometric Devices Evidence Table

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>Proportion un-examinable by screening test</th>
<th>Analysis of screening failures</th>
<th>Proportion screened who underwent reference standard</th>
<th>Definition of a case</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Diagnostic odds ratio</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Community-Dwelling</strong></td>
<td></td>
</tr>
<tr>
<td>Bienvenu et al, 1985&lt;sup&gt;48&lt;/sup&gt;</td>
<td>Appears to be none</td>
<td>NA</td>
<td>100%</td>
<td>≥30 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td>0.93&lt;sup&gt;*&lt;/sup&gt;</td>
<td>0.7&lt;sup&gt;*&lt;/sup&gt;</td>
<td>3.1&lt;sup&gt;*&lt;/sup&gt;</td>
<td>0.10&lt;sup&gt;*&lt;/sup&gt;</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>31&lt;sup&gt;*&lt;/sup&gt;</td>
<td>Fair</td>
</tr>
<tr>
<td>Eekhof et al, 1996&lt;sup&gt;49&lt;/sup&gt;</td>
<td>Appears to be none</td>
<td>NA</td>
<td>100%</td>
<td>&gt;40 dB hearing loss</td>
<td>1.0 (0.91-1.0)</td>
<td>0.42 (0.31-0.54)</td>
<td>1.7 (1.4-2.1)</td>
<td>0.03 (0.002-0.45)</td>
<td>0.46 (0.35-0.57)</td>
<td>1.0 (0.90-1.0)</td>
<td>61 (3.6-102)</td>
<td></td>
</tr>
<tr>
<td>Frank and Petersen, 1987&lt;sup&gt;50&lt;/sup&gt;</td>
<td>10% ears were not able to be screened</td>
<td>NA</td>
<td>100%</td>
<td>≥45 dB hearing loss at 500, 1000, 2000, and 4000 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichtenstein et al, 1988&lt;sup&gt;46&lt;/sup&gt;</td>
<td>(25+7+16)/284 17% (due to stroke, dementia, or severe illness)</td>
<td>Not screened due to severe health conditions</td>
<td>100%</td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears; or 1000 and 2000 Hz in 1 ear</td>
<td>0.94 (0.84-0.99)</td>
<td>0.72 (0.63-0.80)</td>
<td>3.4 (2.5-4.5)</td>
<td>0.08 (0.03-0.24)</td>
<td>0.59 (0.48-0.69)</td>
<td>0.97 (0.91-0.99)</td>
<td>43 (12-220)</td>
<td>Good</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;51&lt;/sup&gt;</td>
<td>6.1% (13/212)</td>
<td>NA</td>
<td>100%</td>
<td>SFPTA: ≥25 dB hearing loss at 500, 1000, and 2000 Hz in better ear</td>
<td>0.64 (0.52-0.77)</td>
<td>0.89 (0.83-0.94)</td>
<td>5.8 (3.4-9.8)</td>
<td>0.40&lt;sup&gt;*&lt;/sup&gt;</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>14&lt;sup&gt;*&lt;/sup&gt;</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HFPTA: ≥25 dB hearing loss at 1000, 2000 and 4000 Hz in better ear</td>
<td>0.71 (0.63-0.80)</td>
<td>0.91 (0.84-0.97)</td>
<td>7.5 (3.7-15)</td>
<td>0.32&lt;sup&gt;*&lt;/sup&gt;</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>23&lt;sup&gt;*&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V&amp;W: &gt;40 dB hearing loss at 1000 or 2000 Hz in both ears; or 1000 and 2000 Hz in 1 ear</td>
<td>0.96 (0.90-1.00)</td>
<td>0.80 (0.74-0.87)</td>
<td>4.9 (3.4-6.8)</td>
<td>0.05&lt;sup&gt;*&lt;/sup&gt;</td>
<td>Not calculable</td>
<td>Not calculable</td>
<td>98&lt;sup&gt;*&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td><strong>Chronic Care Facility-Dwelling Older Adults</strong></td>
<td></td>
</tr>
<tr>
<td>Ciurlia-Guy et al, 1993&lt;sup&gt;49&lt;/sup&gt;</td>
<td>3.8% (4/104) didn't complete AudioScope screening</td>
<td>None</td>
<td>100% of those included</td>
<td>≥40 dB hearing loss at 1000 or 2000 Hz in either ear</td>
<td>0.98 (0.91-1.0)</td>
<td>0.21 (0.08-0.41)</td>
<td>1.3 (1.0-1.5)</td>
<td>0.08 (0.01-0.61)</td>
<td>0.73 (0.62-0.82)</td>
<td>0.86 (0.42-1.0)</td>
<td>16 (1.8-76)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

<sup>*</sup>Confidence interval not calculable.

**Abbreviations:** HFPTA = Hearing Frequency Pure-Tone Average; NA = not applicable; NR = not reported; SES = socioeconomic status; SFPTA = Speech Frequency Pure-Tone Average; V&W = Ventry & Weinstein criteria.
### Appendix B7. Quality Ratings of Diagnostic Test Studies

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Representative spectrum</th>
<th>Random or consecutive sample</th>
<th>Screening test adequately described</th>
<th>Screening cutoffs predefined</th>
<th>Credible reference standard</th>
<th>Reference standard applied to all patients or a random subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienvenue et al, 1985</td>
<td>No</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Boatman et al, 2007</td>
<td>High prevalence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ciurlia-Guy et al, 1993</td>
<td>High prevalence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, portable audiometer</td>
<td>No (5/104)</td>
</tr>
<tr>
<td>Clark et al, 1991</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Eekhof et al, 1996</td>
<td>High prevalence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Frank and Petersen, 1987</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Gates et al, 2003</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Koike et al, 1994</td>
<td>No</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lichtenstein et al, 1988</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Macphee et al, 1988</td>
<td>High prevalence</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>McBride et al, 1992</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nondahl et al, 1994</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rawool et al, 2008</td>
<td>High prevalence</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, portable audiometer</td>
<td>Yes</td>
</tr>
<tr>
<td>Sever et al, 1989</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sindhusake et al, 2001</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Swan et al, 1985</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Torre et al, 2006</td>
<td>High prevalence (63%)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, portable audiometer</td>
<td>Yes</td>
</tr>
<tr>
<td>Ventry and Weinstein, 1983</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Voeks et al, 1993</td>
<td>High prevalence (54%)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, portable audiometer</td>
<td>Yes</td>
</tr>
<tr>
<td>Weinstein, 1986</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
## Appendix B7. Quality Ratings of Diagnostic Test Studies

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Same reference standard applied to all patients</th>
<th>Reference standard and screening examination interpreted independently</th>
<th>High rate of uninterpretable results or non-compliance with screening</th>
<th>Analysis includes patients with uninterpretable results or non-compliance</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienvenue et al, 1985&lt;sup&gt;48&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>Not applicable</td>
<td>Fair</td>
</tr>
<tr>
<td>Boatman et al, 2007&lt;sup&gt;29&lt;/sup&gt;</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Not applicable</td>
<td>Good</td>
</tr>
<tr>
<td>Ciurlia-Guy et al, 1993&lt;sup&gt;49&lt;/sup&gt;</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>Clark et al, 1991&lt;sup&gt;43&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Eekhof et al, 1996&lt;sup&gt;40&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>Not applicable</td>
<td>Fair</td>
</tr>
<tr>
<td>Frank and Petersen, 1987&lt;sup&gt;50&lt;/sup&gt;</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>Gates et al, 2003&lt;sup&gt;47&lt;/sup&gt;</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Koike et al, 1994&lt;sup&gt;51&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Fair</td>
</tr>
<tr>
<td>Lichtenstein et al, 1988&lt;sup&gt;46&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Macphee et al, 1988&lt;sup&gt;41&lt;/sup&gt;</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Not applicable</td>
<td>Fair</td>
</tr>
<tr>
<td>McBride et al, 1994&lt;sup&gt;22&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>NA</td>
<td>Good</td>
</tr>
<tr>
<td>Nordahl et al, 1988&lt;sup&gt;44&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Rawool et al, 2008&lt;sup&gt;52&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Fair</td>
</tr>
<tr>
<td>Sever et al, 1989&lt;sup&gt;53&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Fair</td>
</tr>
<tr>
<td>Sindhusake et al, 2001&lt;sup&gt;45&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Swan et al, 1985&lt;sup&gt;44&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>Not applicable</td>
<td>Fair</td>
</tr>
<tr>
<td>Torre et al, 2006&lt;sup&gt;54&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>Not applicable</td>
<td>Fair</td>
</tr>
<tr>
<td>Ventry and Weinstein, 1983&lt;sup&gt;9&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Fair</td>
</tr>
<tr>
<td>Voeks et al, 1993&lt;sup&gt;55&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Yes</td>
<td>Yes</td>
<td>Fair</td>
</tr>
<tr>
<td>Weinstein, 1986&lt;sup&gt;56&lt;/sup&gt;</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Cannot tell</td>
<td>Fair</td>
</tr>
</tbody>
</table>
## Appendix C. Measures of Quality of Life or Function

### Hearing-Related Quality of Life or Function\(^{13,57}\)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviated Profile of Hearing Aid Benefit (APHAB)</td>
<td>24-item questionnaire&lt;br&gt;Measures self-rated communication function&lt;br&gt;Score 0-100; 4 subscales</td>
</tr>
<tr>
<td>Hearing Handicap Inventory for the Elderly-Screening Version (HHIE-S)</td>
<td>25-item questionnaire&lt;br&gt;Measures emotional/social impact of hearing loss&lt;br&gt;Score 0-100</td>
</tr>
<tr>
<td>Quantified Denver Scale of Communication Function (QDS)</td>
<td>25-item questionnaire&lt;br&gt;Measures self-reported communication function&lt;br&gt;Score 0-100; 4 subscales</td>
</tr>
<tr>
<td>Revised Quantified Denver Scale of Communication Function (RQDS)</td>
<td>5-item questionnaire&lt;br&gt;Measures self-rated communication function&lt;br&gt;Score 1-5</td>
</tr>
</tbody>
</table>

### General Quality of Life or Function

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geriatric Depression Scale (GDS)</td>
<td>30-item questionnaire&lt;br&gt;Measures self-perceived depression in the elderly&lt;br&gt;Score 0-30</td>
</tr>
<tr>
<td>Self-Evaluation of Life Function (SELF)</td>
<td>54-item questionnaire&lt;br&gt;Measures self-reported physical, emotional, and social function&lt;br&gt;Score 54-216</td>
</tr>
<tr>
<td>Short Portable Mental Status Questionnaire (SPMSQ)</td>
<td>10-item questionnaire&lt;br&gt;Measures function related to psychiatric issues&lt;br&gt;Score 0-10</td>
</tr>
</tbody>
</table>