Evidence Synthesis

Number 146

Screening for Obstructive Sleep Apnea in Adults: An Evidence Review for the U.S. Preventive Services Task Force

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. HHSA-290-2012-00015-I, Task Order No. 4

Prepared by:

RTI International—University of North Carolina at Chapel Hill Evidence-based Practice Center Research Triangle Park, NC

Investigators:

Daniel E. Jonas, MD, MPH
Halle R. Amick, MSPH
Cynthia Feltner, MD, MPH
Rachel Palmieri Weber, PhD
Marina Arvanitis, MD, MPH
Alexander Stine, BA
Linda Lux, MPA
Jennifer Cook Middleton, PhD
Christiane Voisin, MLS
Russell P. Harris, MD, MPH

AHRQ Publication No. 14-05216-EF-1 January 2017

This report is based on research conducted by the RTI International—University of North Carolina at Chapel Hill Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2012-00015-I, Task Order No. 4). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report.

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project and deeply appreciate their considerable support, commitment, and contributions: Tina Fan, MD, MPH, AHRQ Medical Officer; Tracy Wolff, MD, MPH, AHRQ Associate Scientific Director; current and former members of the U.S. Preventive Services Task Force who contributed to topic deliberations; expert reviewers Ethan M. Balk, MD, MPH, Brown University, Indira Gurubhagavatula, MD, University of Pennsylvania, Jon-Erik C. Holty, MD, MS, Stanford University, and VA Palo Alto Health Care System, David Hostler, MD, MPH, Walter Reed National Military Medical Center, and Paul E. Peppard, PhD, University of Wisconsin-Madison; federal partners from the National Institute on Aging, National Institute of Neurological Disorders and Stroke, and National Heart, Lung, and Blood Institute (National Institutes of Health), National Center for Health Promotion and Disease Prevention (U.S. Department of Veterans Affairs), and the Center for Devices and Radiological Health (U.S. Food and Drug Administration); Evelyn Whitlock, MD, MPH, former Kaiser Permanente Research Affiliates EPC Director; and EPC staff, Meera Viswanathan, PhD, Director, Sharon Barrell, MA, editor, and Loraine Monroe, publications specialist.

Suggested Citation

Jonas DE, Amick HR, Feltner C, Palmieri Weber RP, Arvanitis M, Stine A, Lux L, Cook Middleton J, Voisin C, Harris RP. Screening for Obstructive Sleep Apnea in Adults: An Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 146. AHRQ Publication No. 14-05216-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2017.

Structured Abstract

Purpose: To systematically review the evidence on screening and treating asymptomatic adults or those with unrecognized symptoms for obstructive sleep apnea (OSA).

Data Sources: PubMed/MEDLINE, the Cochrane Library, EMBASE, and trial registries through October 2015; reference lists of retrieved articles; outside experts; and reviewers, with surveillance of the literature through October 5, 2016.

Study Selection: Two investigators independently selected English-language studies using a priori criteria. Eligible studies included randomized, controlled trials (RCTs) of screening for or treatment of OSA, studies evaluating accuracy of screening questionnaires or clinical prediction tools in asymptomatic adults or persons with unrecognized symptoms of OSA, systematic reviews (and studies published after eligible systematic reviews) evaluating diagnostic accuracy or reliability of portable monitors (PMs), and prospective cohort studies (≥1 year) evaluating the association between apnea-hypopnea index (AHI) and health outcomes among community-based participants that adjusted for potential confounding through multivariable analyses.

Data Extraction: One investigator extracted data and a second checked accuracy. Two reviewers independently rated quality for all included studies using predefined criteria.

Data Synthesis: We included 110 studies. No RCTs compared screening with no screening. The only screening approach for which we found two eligible studies reporting accuracy was the Multivariable Apnea Prediction (MVAP) score followed by home PM testing; for detecting severe OSA syndrome (OSAS) (AHI ≥30 and Epworth Sleepiness Scale [ESS] score >10), areas under the curve were 0.799 (95% confidence interval [CI], 0.777 to 0.822) and 0.833 (95% CI, 0.765 to 0.902). However, both studies oversampled high-risk participants and those with OSA and OSAS. Studies reporting accuracy of PMs for diagnostic testing of persons with suspected OSA found wide ranges for sensitivity and specificity (Type II monitors: 85% to 94% and 77% to 95%; Type III monitors: 49% to 92% and 79% to 95%; Type IV monitors: 7% to 100% and 15% to 100%, respectively, for polysomnography AHI ≥15). Data were limited by imprecision and inconsistency for Type IV monitors. We found sparse data on reliability of PMs.

Our meta-analyses of RCTs found that continuous positive airway pressure (CPAP) effectively reduced AHI to normal or near-normal levels (weighted mean difference [WMD], -33.8 [95% CI, -42.0 to -25.6]; 13 trials; 543 participants), reduced excessive sleepiness as measured by the ESS (WMD, -2.0 [95% CI, -2.6 to -1.4]; 22 trials; 2,721 participants), reduced diurnal systolic blood pressure (WMD, -2.4 [95% CI, -3.9 to -0.9]; 15 trials; 1,190 participants), and reduced diurnal diastolic blood pressure (WMD, -1.3 [95% CI, -2.2 to -0.4]; 15 trials; 1,190 participants) compared with sham. Trial evidence for most health outcomes was too limited to make conclusions (e.g., mortality, cardiovascular events, motor vehicle accidents). However, our meta-analysis for sleep-related quality of life found a significant benefit for CPAP, albeit with a small effect size (Cohen's d, 0.28 [95% CI, 0.14 to 0.42]; 13 trials; 2,325 participants). The effect size was slightly greater among those with excessive sleepiness at baseline but still small (0.33 [95% CI, 0.17 to 0.50]). Mandibular advancement devices (MADs) and weight loss programs also reduced AHI and excessive sleepiness; effect sizes were generally smaller than those for CPAP.

Reporting of harms was suboptimal. Common adverse effects of CPAP included oral or nasal dryness, eye or skin irritation, rash, epistaxis, and pain; common adverse effects of MADs included oral dryness, excess salivation, mucosal erosions, or pain (mucosal, dental, or jaw).

Consistent evidence from prospective cohort studies supports the association between AHI and all-cause mortality; persons with severe OSA die at about twice the rate of controls (pooled hazard ratio [HR], 2.07 [95% CI, 1.48 to 2.91]; 5 studies; 11,003 participants). Risk of cardiovascular mortality was also increased (HRs from 2.9 [95% CI, 1.1 to 7.3] to 5.9 [95% CI, 2.6 to 13.3]).

Limitations: Data on screening accuracy for the MVAP followed by home PM testing were limited by risk of spectrum bias, which may substantially overestimate the accuracy that would be achieved in the general population of asymptomatic adults (or those with unrecognized symptoms). We found no studies that prospectively evaluated screening questionnaires or clinical prediction tools to report calibration or clinical utility for improving health outcomes. Treatment studies did not focus on screen-detected, asymptomatic patients (or those with unrecognized symptoms). Reporting on harms was scant; no studies evaluated overdiagnosis, overtreatment, or psychosocial harms (e.g., anxiety, labeling).

Conclusions: There is uncertainty about the clinical utility of all potential screening tools. Although screening with MVAP followed by home PM testing may have promise for distinguishing persons in the general population who are more or less likely to have OSA, current evidence is limited. Multiple treatments for OSA reduce AHI, ESS, and blood pressure. Although good evidence has established that persons with severe OSA die at twice the rate of controls, trials of CPAP and other treatments have not established whether treatment reduces mortality or improves most other health outcomes, barring evidence of some possible benefit for sleep-related quality of life.

Table of Contents

Chapter 1. Introduction	1
Scope and Purpose	1
Condition Definition	1
Etiology and Natural History	1
Risk Factors	2
Prevalence and Burden	2
Rationale for Screening	3
Screening Strategies	3
Treatment Approaches	4
Current Clinical Practice in the United States	4
Chapter 2. Methods	5
Key Questions and Analytic Framework	5
Data Sources and Searches	
Study Selection	5
Quality Assessment and Data Abstraction	6
Data Synthesis and Analysis	7
Expert Review and Public Comment	8
USPSTF Involvement	8
Chapter 3. Results	9
Literature Search	9
Results	9
KQ 1. Direct Evidence That Screening for OSA Improves Health Outcomes	9
KQ 2. Clinical Prediction Tools or Screening Questionnaires	9
KQ 3. Accuracy and Reliability of Diagnostic Tests for OSA	11
KQ 4. Benefits of Treatment for Improving AHI, Sleepiness, and Blood Pressure	15
KQ 5. Benefits of Treatment for Improving Health Outcomes	21
KQ 6. Association Between OSA and Health Outcomes	28
KQ 7. Harms of Screening or Diagnostic Testing	32
KQ 8. Harms Associated With Treatment	32
Chapter 4. Discussion	35
Summary of Evidence	35
Evidence for Benefit and Harms of Screening	35
Screening Questionnaires and Clinical Prediction Tools	35
Accuracy and Reliability of Diagnostic Tests	36
Benefits and Harms of Treatment for OSA	36
Association Between AHI and Health Outcomes	38
Limitations	38
Future Research Needs	41
Conclusion	42
Deferences	13

Figures

- Figure 1. Analytic Framework
- Figure 2. Summary of Evidence Search and Selection
- Figure 3. Association Between AHI and All-Cause Mortality, by OSA Severity
- Figure 4. Association Between AHI and Cardiovascular Mortality, by OSA Severity

Tables

- Table 1. Definitions
- Table 2. Classification of Monitors Used for Diagnosis of Obstructive Sleep Apnea
- Table 3. Characteristics of Included Studies for KQ 2
- Table 4. Results of Included Studies: Accuracy of Screening Questionnaires and Clinical Prediction Tools (KQ 2)
- Table 5. Summary of Accuracy of Diagnostic Tests for Obstructive Sleep Apnea
- Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

Appendixes

- Appendix A. Additional Background and Summary of Guidelines From Other Groups
- Appendix B. Detailed Methods
- Appendix C. Excluded Studies
- Appendix D. Quality Assessments
- Appendix E. Additional Tables of Study Results
- Appendix F. Results of Meta-Analyses
- Appendix G. Summary of Contextual Questions and Where They Are Addressed in the Report

vii

Chapter 1. Introduction

Scope and Purpose

This report will be used by the U.S. Preventive Services Task Force (USPSTF) to inform a recommendation on the topic of screening for obstructive sleep apnea (OSA) in adults. The USPSTF has not previously made a recommendation on sleep apnea. The purpose of this report is to systematically evaluate the current evidence on screening for and treatment of OSA for populations and settings relevant to primary care in the United States. In this report, we summarize the evidence on the benefits and harms of screening for and treatment of OSA and the characteristics of diagnostic tests.

Condition Definition

OSA occurs when airflow is absent or substantially reduced because of upper airway obstruction, but breathing effort persists. It can be categorized as mild, moderate, or severe based on the number of apnea and hypopnea events per hour (**Table 1**). It is different from central apnea, in which both airflow and breathing effort are absent.

OSA severity is usually categorized using the apnea-hypopnea index (AHI) as assessed by a sleep study (polysomnography [PSG]). The AHI incorporates both obstructive and central apnea and hypopnea events, and significantly elevated AHI itself is not synonymous with OSA (because it can indicate OSA, central sleep apnea, or mixed sleep apnea—both OSA and central sleep apnea). The existing literature has used a range of AHI diagnostic thresholds, from 5 to 20¹ episodes per hour for OSA. Both the Centers for Medicare & Medicaid Services and the American Academy of Sleep Medicine define OSA as an AHI or respiratory disturbance index of at least 15 events per hour, or at least 5 events per hour with documented symptoms (e.g., excessive daytime sleepiness, impaired cognition, mood disorders, or insomnia; waking up breath-holding, gasping, or choking; or documented hypertension, ischemic heart disease, or history of stroke). 2,3

Etiology and Natural History

Persons with OSA have frequent cessation or reduction of airflow during sleep that results in oxygen desaturation and arousals from sleep. Upper airway obstruction during sleep is often associated with anatomical abnormalities or obesity-related peripharyngeal fat that cause narrowing of respiratory passages, decreased pharyngeal muscle tone, and insufficient neuromuscular responses to airway obstruction. One longitudinal population-based study of nearly 700 adults (Wisconsin Sleep Cohort Study [WSCS]) found that about 6 percent of 45-year-olds with mild OSA progressed to moderate or severe OSA over 4 years; participants whose body weight increased by at least 10 percent had a 6-fold increased risk of developing moderate or severe OSA. Much variation in development of moderate to severe OSA, however, was not accounted for by weight change. Many adverse clinical outcomes have been associated with

1

sleep apnea (see Prevalence and Burden below); in particular, untreated, severe OSA (AHI >30) is associated with increased all-cause mortality.

Risk Factors

Risk factors for OSA include male sex (odds ratio [OR], 3.1 [95% (confidence interval) CI, 2.5 to 3.8]), increasing age (40 to 70 years), higher body mass index (BMI), craniofacial and upper airway abnormalities (e.g., children with retrognathia or micrognathia), and postmenopausal status (OR, 3.5 to 4.3 for AHI \geq 15). Persons with OSA (especially moderate to severe OSA) have an increased incidence of hypertension, although the presence of hypertension is not useful in detecting persons at increased risk of OSA. Smoking, alcohol use, sedative use, and nasal congestion have been suspected but have sparse or mixed evidence. 8,23-30

Prevalence and Burden

Reported estimates of prevalence vary, likely because of the variation in the definitions of OSA used (i.e., different AHI cutoffs), sampling biases, year of publication, or combinations of these factors. A 2013 systematic review estimated a prevalence range of 2 to 14 percent among four community-based studies after correcting for oversampling. The two U.S.-based studies that were included found about 10 percent with mild OSA and 3.8^{32} to 6.5^{15} percent with moderate or severe OSA when using data from the 1990s. However, prevalence is increasing due to rising rates of obesity. Extrapolation of long-term followup data (from 1988–1994 to 2007–2010) from one of the U.S. cohorts estimated a 16 percent prevalence for mild OSA and 10 percent for moderate or severe OSA (AHI \geq 15). Evidence about the prevalence of severe OSA (AHI \geq 30) is scant, although clearly this prevalence would be lower than the prevalence of combined moderate and severe OSA. The prevalence of severe OSA that would be detected by screening is unknown, including asymptomatic individuals (or individuals with unrecognized symptoms) who are unaware of their diagnosis.

Prevalence appears to increase with age through the sixth to seventh decade and then plateaus. ^{14,} OSA is approximately 2 to 3 times more common in men than in women, although the gap narrows at the age of menopause in women. ^{15-17,35} Data published in 2009 (N=1,500) and 2013 (N=1,520) estimated the prevalence around 15 percent in men and 5 percent in women when using either an AHI threshold of 15 or using a combination of AHI of at least 5 with at least one symptom of disturbed sleep. ^{33,34}

Many adverse clinical outcomes have been associated with sleep apnea. The various adverse outcomes are thought to be primarily due to chronic disturbances in gas exchange (e.g., hypercapnia and hypoxemia), sympathetic nervous system arousal (i.e., oxidative stress caused by intermittent hypoxemia leading to sympathetic activation), and fragmented sleep. Untreated, severe OSA (AHI ≥30) is associated with increased all-cause mortality.¹ However, there is controversy in the literature regarding the extent to which OSA independently contributes to various adverse outcomes beyond the contributions of age, BMI, and other potential confounders. OSA is associated with several cardiovascular risk factors, making it more difficult to establish an independent association between OSA and cardiovascular disease. The adverse

clinical outcomes of untreated OSA that have been reported in various studies include increased risk of motor vehicle and other accidents; ³⁶⁻⁴² cognitive impairment; ^{13,43} lost work days, ⁴⁴ work disability, ⁴⁵ and impaired work performance; ⁴⁶ decreased quality of life; ⁴⁷ and mortality. ^{34,39,48,49} In addition, bidirectional associations between OSA and the following have been reported: cardiovascular events, ^{48,50} coronary heart disease and heart failure, ^{49,51-55} angina, ^{56,57} atrial fibrillation, ⁵⁸ stroke, ^{49,59} hypertension, ^{7,12,34,60-63} and diabetes and metabolic syndrome. ⁶⁴⁻⁶⁷ **Appendix A** provides additional details related to prevalence and burden of OSA.

Rationale for Screening

In theory, screening to identify unrecognized OSA followed by appropriate treatment could improve sleep quality and normalize AHI and oxygen saturation levels to prevent adverse health outcomes. Potential screening strategies include formal screening questionnaires and clinical prediction tools that include various combinations of subjective and objective findings. For persons who screen positive, a diagnostic test would be used to determine whether they have OSA—either a formal PSG in a sleep facility or home-based testing with a portable monitor (PM).

Screening Strategies

The available screening questionnaires and clinical prediction tools attempt to identify persons at higher risk of sleep apnea. Many of them combine questions about symptoms with objective findings (e.g., BMI). Screening questionnaires that could be considered for use in primary care include the Epworth Sleepiness Scale (ESS), ⁶⁸ the STOP Questionnaire (Snoring, Tiredness, Observed Apnea, High Blood Pressure), ⁶⁹ STOP-Bang Questionnaire (STOP Questionnaire plus BMI, Age, Neck Circumference, and Gender), ⁷⁰ the Berlin questionnaire, ⁷¹ and the Wisconsin Sleep Questionnaire. ¹⁵ Previous reviews found that most tools were validated in referral settings (using populations with a higher prevalence of OSA) and not in the general population. ⁸ Thus, the accuracy and reliability of these tools in general primary care settings were unclear.

The current diagnostic standard for OSA is technologist-attended PSG conducted in a sleep laboratory facility. The use of PSG for diagnosis requires measurement of the following physiologic signals: electroencephalogram, electrooculogram, chin electromyelogram, airflow, oxygen saturation, respiratory effort, and electrocardiogram or heart rate. Additional recommended measurements include body position and leg movements. The frequency of events is typically reported as an AHI. In-laboratory PSG is costly and potentially inconvenient for patients. PMs have been proposed as an alternative. Sleep study monitors are generally classified by the signals recorded Is facility-based PSG; Type II monitors are portable but record the same information as facility-based monitors (perhaps with fewer channels); Type III monitors are portable and have at least two respiratory channels but do not record the channels that differentiate between sleep and wake; and Type IV includes all PMs that fail to meet Type III criteria (**Table 2**).

Treatment Approaches

Continuous positive airway pressure (CPAP) is the standard first-line treatment for OSA. CPAP devices deliver compressed air into the airway, aiming to keep the airway open. The 2013 clinical practice guideline from the American College of Physicians (ACP) recommends 1) that all overweight and obese patients with OSA be encouraged to lose weight (strong recommendation, low-quality evidence), 2) CPAP as initial therapy for patients diagnosed with OSA (strong recommendation, moderate-quality evidence), and 3) mandibular advancement devices (MADs) as an alternative therapy to CPAP for patients with OSA who prefer them or for those with adverse effects associated with CPAP (weak recommendation, low-quality evidence). The ACP concluded that evidence to ascertain the efficacy or comparative efficacy of other therapies that have been studied for OSA was insufficient. These included positional therapy, oropharyngeal exercise, palatal implants, surgical interventions, pharmacologic therapy, and atrial overdrive pacing.

Types of surgical procedures that have been studied or used for OSA include nasal and nasopharyngeal procedures, oral and oropharyngeal procedures, hypopharyngeal and laryngeal procedures, global airway procedures, and upper airway bypass. Specific procedures include uvulopalatopharyngoplasty (UPPP), in which tissue is removed from the throat and the rear of the mouth; maxillomandibular advancement, in which the jaw is surgically moved forward; soft palate implants; nasal polyp removal; tonsillectomy; and tracheostomy. Bariatric surgery for obese patients with OSA has been reported to have positive effects on AHI or sleep-related symptoms. Tr-79 Both a 2011 comparative effectiveness review for the Agency for Healthcare Research and Quality (AHRQ) and the related ACP clinical practice guideline concluded that evidence on surgical interventions was insufficient (mainly because each of the seven included studies assessed a different treatment and outcomes were inconsistent).

Published data on the frequency of use of different treatments are limited. The available data suggest that CPAP is by far the most commonly used treatment and that surgical treatments are rarely used. 80,81

Current Clinical Practice in the United States

Most primary care clinicians do not routinely screen for OSA, and most patients do not discuss their sleep-related symptoms with their primary care clinician; a practice-based research network study of 44 randomly selected practices found that only 20 percent of patients (who regularly visit primary care clinicians) with sleep-related symptoms spontaneously reported their symptoms to their primary care clinician. ⁸²⁻⁸⁶ Providers may be unsure about how to identify and diagnose OSA. ^{83,87-90} There is uncertainty regarding which type of sleep-monitoring devices are best for diagnosing OSA ⁷⁵ and how to follow patients who have been diagnosed with OSA.

Several guidelines have been issued related to screening, evaluation, and treatment of patients suspected of having OSA (**Appendix A**).

Chapter 2. Methods

Key Questions and Analytic Framework

The Evidence-based Practice Center investigators, USPSTF members, and AHRQ Medical Officers developed the scope and Key Questions (KQs). **Figure 1** shows the analytic framework and KQs that guided the review.

Data Sources and Searches

We searched PubMed/MEDLINE, the Cochrane Library, and EMBASE for English-language articles published through October 25, 2015, with surveillance of the literature through October 5, 2016. We used Medical Subject Headings as search terms when available and keywords when appropriate, focusing on terms to describe relevant populations, tests, interventions, outcomes, and study designs. Complete search terms and limits are listed in **Appendix B1**. We conducted targeted searches for unpublished literature by searching ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform. To supplement electronic searches, we reviewed the reference lists of pertinent review articles and studies that met our inclusion criteria, and added all previously unidentified relevant articles. We reviewed all literature suggested by peer reviewers or public comment respondents and incorporated eligible studies into the final review.

Study Selection

We developed inclusion and exclusion criteria for populations, interventions, comparators, outcomes, timing, settings, and study designs with input from the USPSTF (**Appendix B2**). We included English-language studies of adults age 18 years or older conducted in countries categorized as "very high" on the Human Development Index. We excluded studies of children, adolescents, pregnant women, and adults with acute stroke or other acute conditions that can trigger onset of OSA and studies focused on screening, diagnosis, or treatment of OSA among persons with rare conditions (e.g., acromegaly) for whom testing for OSA would be considered part of management for their disease (rather than screening and primary prevention).

For KQs 1 (direct evidence that screening improves health outcomes) and 2 (accuracy of clinical prediction tools or screening questionnaires), we required studies to enroll asymptomatic adults or persons with unrecognized symptoms of OSA; referral populations were not eligible. For KQ 1, randomized, controlled trials (RCTs) comparing screened with nonscreened groups were eligible. For KQ 2, prospective cohort studies and cross-sectional studies that evaluated screening questionnaires or clinical prediction tools (alone or followed by a home-based PM) compared with overnight PSG conducted in a sleep laboratory were eligible. Studies assessing single patient characteristics or risk factors were not eligible; clinical prediction tools were required to include multiple factors. We excluded studies of persons referred to sleep laboratories because of concern for OSA and excluded studies where only a subgroup (usually the highest

risk group) had PSG because of concern for verification bias.

For KQs 3 (accuracy and reliability of diagnostic tests) and 7 (harms associated with screening and diagnostic tests), referral populations were also eligible (in addition to the populations that were eligible for KQs 1 and 2). For KQ 3, good-quality, recent (within 5 years) systematic reviews comparing PMs (including Type II, III, and IV monitors) with formal, attended PSG conducted in a sleep laboratory (Type I) were eligible for inclusion (**Table 2**). Given that we identified multiple good-quality, recent, and directly relevant systematic reviews for KQ 3, our results for KQ 3 mainly describe previously published systematic reviews. We also included primary studies published after the search cutoff of the most recent systematic reviews (to look for any new studies that might change the findings of previously published systematic reviews). For KQ 7, studies eligible for KQ 1, 2, or 3 that reported false-positive results leading to unnecessary treatment, anxiety, condition-specific distress, or stigma were eligible.

For KQs on benefits (4 and 5) and harms (8) of treatment, RCTs of persons with a confirmed diagnosis of OSA were eligible; studies could include asymptomatic and/or symptomatic adults. We included studies evaluating CPAP, MADs, surgery, and weight loss programs; other treatments were not eligible (e.g., oropharyngeal exercises). For KQ 8, prospective cohort studies with at least 100 participants that reported harms of surgical interventions were also eligible.

For KQ 6 (association between OSA and health outcomes), we included prospective cohort studies that followed participants for at least 1 year and evaluated the association between AHI and health outcomes (by comparing persons with higher vs. lower AHI and following them for incident events). We excluded studies without an attempt to handle potential confounding (e.g., through multivariable analysis and/or restriction), those focused primarily on central sleep apnea, those enrolling patients hospitalized for acute events (e.g., myocardial infarction), and those enrolling patients in a periprocedural period (e.g., ablation for atrial fibrillation). Good-quality, recent (within 5 years), and directly relevant systematic reviews were eligible. However, of the three recent systematic reviews identified, none met our criteria for direct relevance and good quality; all were rated as fair quality for the information related to KQ 6, and all of them differed from our eligibility criteria (e.g., by combining community-based and referral populations). Therefore, we did not include any previously published systematic reviews for KQ 6.

Two investigators independently reviewed titles and abstracts; those marked for potential inclusion by either reviewer were retrieved for evaluation of the full text. Two investigators independently reviewed the full text to determine final inclusion or exclusion. Disagreements were resolved by discussion and consensus.

Quality Assessment and Data Abstraction

For each included study, one investigator extracted pertinent information about the methods, populations, interventions, comparators, outcomes, timing, settings, and study designs. A second team member reviewed all data extractions for completeness and accuracy.

We assessed the quality of studies as good, fair, or poor, using predefined criteria developed by the USPSTF and adapted for this topic (**Appendix B3**). Two independent reviewers assigned quality ratings for each study. Disagreements were resolved by discussion with an experienced team member. We included only studies rated as having good or fair quality.

Data Synthesis and Analysis

We qualitatively synthesized findings for each KQ by summarizing the characteristics and results of included studies in tabular and narrative format. To determine whether meta-analyses were appropriate, we assessed the clinical and methodological heterogeneity of the studies following established guidance. We qualitatively assessed the populations, tests, treatments, comparators, outcomes, and study designs, looking for similarities and differences. Eligible outcomes for this review covered a wide range of measures; key measures and questionnaires are summarized in **Appendix B4**.

For KQ 3, when qualitatively evaluating likelihood ratios, we considered positive likelihood ratios (LR+) to indicate a minimal (1–2), small (2–5), moderate (5–10), or large/high (>10) increase in the risk of OSA. We considered negative likelihood ratios (LR-) to indicate a minimal (0.5–1), small (0.2–0.5), moderate (0.1–0.2), or large (<0.1) decrease in the risk of OSA. Likelihood ratios below 0.1 or above 10 are typically thought to provide strong evidence for ruling out (LR- <0.1) or ruling in (LR+ >10) diagnoses. 95,96

For KQs 4 and 5, when multiple similar studies were available, we used random-effects models using the inverse-variance weighted method (DerSimonian and Laird) to estimate pooled effects. For continuous outcomes (e.g., AHI, blood pressure), we calculated the weighted mean difference (WMD) between intervention and control; when multiple scales were combined in one meta-analysis (for sleep-related quality of life), we used the standardized mean difference (SMD), Cohen's d. For Cohen's d, a small effect size is 0.20, medium effect size is 0.50, and large effect size is 0.80. Whenever possible, we used the number of all randomized patients as the denominator to reflect a true intention-to-treat analysis. For our meta-analyses of CPAP and MAD treatments, we stratified analyses by comparison groups, providing pooled estimates for studies using sham controls (e.g., a sham CPAP device) separately from those not using sham controls. We combined parallel trials and crossover trials but conducted subgroup analyses to explore whether findings differed by this study design feature.

For KQ 6, we conducted meta-analyses of adjusted hazard ratios (HRs) and 95 percent CIs for all-cause mortality (the only outcome for KQ 6 with a sufficient number of similar studies). We used random-effects models to estimate pooled effects. We converted HRs to a log scale and calculated standard errors of log HRs to normalize distributions and stabilize variances. We then used the metan command with the eform command in Stata (StataCorp, College Station, TX) to estimate pooled HRs. We stratified analyses by AHI thresholds corresponding to OSA severity categories. For outcomes other than all-cause mortality, we produced forest plots showing results of individual studies but did not estimate pooled effects because we found too few studies.

For all quantitative syntheses, the chi-squared statistic and the I^2 statistic were calculated to

assess statistical heterogeneity in effects between studies. 99,100 An I^2 from 0 to 40 percent might not be important, 30 to 60 percent may represent moderate heterogeneity, 50 to 90 percent may represent substantial heterogeneity, and 75 percent or greater represents considerable heterogeneity. 101

We conducted several types of subgroup analyses and sensitivity analyses to explore heterogeneity or robustness of findings. We performed subgroup analyses by OSA severity, baseline sleepiness, and baseline blood pressure.

Quantitative analyses were conducted using Comprehensive Meta-Analysis version 3.3 (Biostat, Inc., Englewood, NJ) and Stata version 14.

Expert Review and Public Comment

A draft report was reviewed by content experts, representatives of federal partners, USPSTF members, and AHRQ Medical Officers and was revised based on comments, as appropriate. It was also posted for public comment.

USPSTF Involvement

This review was funded by AHRQ. AHRQ staff and USPSTF members participated in developing the scope of the work and reviewed draft manuscripts, but the authors are solely responsible for the content.

Chapter 3. Results

Literature Search

We identified 9,841 unique records and assessed 1,443 full texts for eligibility (**Figure 2**). We excluded 1,316 articles for various reasons detailed in **Appendix C** and included 110 studies (published in 127 articles) of good or fair quality. Of the included studies, three were studies of clinical prediction tools or screening questionnaires (KQ 2), 21 were studies of diagnostic test accuracy (KQ 3) (one of which was also included for KQ 2), 76 were RCTs focused on the benefits (KQs 4 and 5) and harms (KQ 8) of treatments for OSA, and 11 provided evidence on the association between AHI and health outcomes (KQ 6). We identified no eligible studies for KQ 1 (direct evidence of screening) or KQ 7 (harms of screening). Details of quality assessments of included studies and studies excluded because of poor quality are provided in **Appendix D**.

Results

KQ 1. Direct Evidence That Screening for OSA Improves Health Outcomes

We found no eligible studies that addressed this question.

KQ 2. Clinical Prediction Tools or Screening Questionnaires

We included three fair-quality studies assessing clinical prediction tools or screening questionnaires compared with facility-based PSG (**Table 3**). One evaluated the Berlin Questionnaire and two evaluated the Multivariable Apnea Prediction (MVAP) score, alone and when followed by an in-home PM. Ve found no eligible studies of good or fair quality evaluating other clinical prediction tools or screening questionnaires, such as the ESS, the STOP Questionnaire, or the STOP-Bang Questionnaire.

Two studies that otherwise met our eligibility criteria were excluded because of high risk of bias and therefore rated as poor quality. Our main concerns were high risk of selection bias (mainly from attrition bias and spectrum bias, with oversampling of high-risk subjects) and inadequate handling of missing data (**Appendix D**). One of the studies evaluated the STOP and STOP-Bang Questionnaires in a preoperative sample (N=211). The other evaluated the MVAP score alone and when followed by an in-home PM among commercial driver's license holders (N=406).

Berlin Questionnaire

The Berlin Questionnaire classifies risk of OSA as high or low by using three categories related to snoring, tiredness, and blood pressure (at least two positive categories constitutes high risk).⁷¹ Among the 10 questions, it also gathers information on age, sex, height, and weight. The one

included study evaluating the Berlin Questionnaire randomly sampled Norwegians from the National Population Register to complete the Norwegian translation of the Berlin Questionnaire (55% response rate [16,302/29,258]). 102 Of those completing the questionnaire, 24 percent were classified as high risk and 518 had in-hospital PSG. Of those 518, the mean age was 48 years, 45 percent were female, the mean BMI was 28 kg/m^2 , and the median AHI was 6.4. Although the group receiving PSG oversampled high-risk participants (70% were high risk), their analyses adjusted for bias in the sampling procedure to report estimated screening properties for the general population. They found suboptimal screening properties (for AHI \geq 5: sensitivity of 37.2%, specificity of 84%; for AHI \geq 15: 43% and 79.7%, respectively) (**Table 4**). Of note, because it has implications for the validity of studies that oversample high-risk groups (and illustrates the impact of spectrum bias), their unadjusted analyses (reported only in online appendixes) show much better sensitivity but worse specificity (for AHI \geq 5: sensitivity of 79.4%, specificity of 40.5%; for AHI \geq 15: 82.8% and 34.9%, respectively).

MVAP Score

The MVAP score combines symptoms of snoring, choking, and witnessed apnea events with BMI, age, and sex. 106 It rates apnea risk between zero and 1, with zero representing the lowest risk and 1 representing the highest risk. Both included studies assessing the MVAP were published by the same research group from Philadelphia. 103,104 One study evaluated Medicare recipients (N=452) from the greater metropolitan area, most (74%) of whom had daytime sleepiness. 103 The percentage with OSA was not reported, but 27 percent had OSA syndrome (OSAS) (defined as AHI \geq 5 and ESS >10). The other study evaluated patients with hypertension from internal medicine practices at a Veterans Affairs (VA) Medical Center and a universitybased hypertension clinic (N=250). 104 Eighty percent of participants had OSA (AHI≥5); of those, 22 percent had moderate and 25 percent had severe OSA, and 25 percent of all participants had OSAS. Mean ages of participants were 71¹⁰³ and 53 years¹⁰⁴, 60 to 64 percent were nonwhite, and mean BMIs were 30 to 32 kg/m². The study of Medicare recipients included 70 percent women; 103 the other study included 20 percent women. 104 Key quality limitations included concern for attrition bias 104 and moderate concern for selection bias/spectrum bias (with high prevalence of OSA, OSAS, and/or sleepiness among those receiving PSG)^{103,104} (Appendix **D**).

Both studies reported operating characteristics of MVAP to predict *severe* OSAS (AHI \geq 30 and ESS >10) using MVAP cutoff scores of 0.48 to 0.49 (**Table 4**). Sensitivity was 90¹⁰³ and 91.5 percent, ¹⁰⁴ with specificity of 64.4 and 43.9 percent, respectively (95% CIs not reported). The study of Medicare recipients reported reasonable discrimination (area under the curve [AUC], 0.78 [95% CI, 0.71 to 0.85]), whereas the other study found inadequate discrimination (AUC, 0.68 [95% CI, 0.67 to 0.70]). An AUC less than 0.70 is thought to indicate inadequate discrimination. ^{107,108} Calibration, often assessed by plotting the predicted risk versus the observed rate, ¹⁰⁷ was not reported.

The study of patients with hypertension also reported operating characteristics of MVAP to predict *any* OSAS (AHI ≥5 and ESS >10) using an MVAP cutoff score of 0.559. It reported sensitivity of 69.4 percent, specificity of 56.5 percent, and AUC of 0.614.

MVAP Score Followed by an In-Home PM

The same two studies described in the previous section also reported measures of discrimination for the MVAP score followed by an in-home PM (**Table 4**). They reported characteristics to predict *severe* OSAS (AHI \geq 30 and ESS \geq 10) using different PM-based AHI cutoffs; one used 15¹⁰³ and the other used 18. Both studies found better operating characteristics when using MVAP followed by an in-home PM than when using MVAP alone (sensitivity, 88.2% to 90.9%; specificity, 71.6% to 75.7%; AUC, 0.799 to 0.833).

The study of patients with hypertension also reported operating characteristics of MVAP to predict *any* OSAS (AHI \geq 5 and ESS >10) using an in-home PM-based AHI cutoff of 13.5. It reported sensitivity of 80.5 percent, specificity of 54.0 percent, and AUC of 0.672.

KQ 3. Accuracy and Reliability of Diagnostic Tests for OSA

We included three studies evaluating Type II PMs (**Appendix E Table 1**), one systematic review and two subsequent studies evaluating Type III PMs (**Appendix E Table 2**), and one systematic review and 14 subsequent studies evaluating Type IV PMs (**Appendix E Tables 3–5**). No studies evaluated the diagnostic accuracy of Type II, III, or IV PMs among subgroups defined by age, sex, or BMI. **Table 5** summarizes the range of sensitivity, specificity, and AUC by type of PM for AHI thresholds of 5, 15, and 30. Additional information on study characteristics and results is available in **Appendix E Tables 1–10**.

Overall, many more studies have evaluated Type III and Type IV monitors than Type II. The best evidence comes from good-quality systematic reviews that reported sensitivity of 93 percent (pooled estimate from in-home studies) and 96 percent (pooled estimate from in-laboratory studies) for Type III PMs and at least 85 percent for Type IV PMs for detecting any OSA (AHI ≥5).¹ Corresponding specificity was 60 percent (in-home) and 76 percent (in-laboratory) for Type III PMs, and ranged from 50 to 100 percent for Type IV PMs.¹ Sensitivity decreased and specificity increased for detecting moderate or greater OSA (AHI ≥15) or severe OSA (AHI ≥30). The ranges of sensitivity and specificity reported across studies for Type IV monitors were wide.

Study participants were generally those referred to sleep units for suspected sleep apnea. We did not find studies that identified participants via screening to identify asymptomatic patients or those with unrecognized symptoms, although detailed reporting of why patients were referred was generally limited. Some studies were conducted in home settings and some tested PMs in laboratory settings; the latter generally reported better accuracy than the former. Reporting of PM AHI cutpoints that were compared with designated PSG AHI cutpoints was limited, with about half of the studies not reporting PM AHI cutpoints. Of those that reported PM AHI cutpoints, the cutpoints used varied across studies, and many studies reported accuracy only for the cutpoints that performed best in their studies.

Type II PMs

We included one study 109 from Spain that evaluated a Type II PM in a sleep laboratory and two

studies^{110,111} from Belgium and New Zealand that evaluated Type II PMs in home settings (**Appendix E Table 1**). All 160 participants from the three studies (68, 62, and 30 participants, respectively) had been referred to sleep units for suspected sleep apnea, and in two of the studies, ^{109,110} more than 80 percent of participants had a PSG AHI of 5 or greater. In one study, ¹¹⁰ patients had to report snoring, excessive daytime sleepiness, or "two other major symptoms of OSA." The other studies did not report information about symptoms or reasons for referral. The mean PSG AHI ranged from 22 to 35 and the mean ESS ranged from 9 to 11. A majority of participants in each of the studies were male and overweight or obese (mean BMI, 29 to 31 kg/m²).

Diagnostic Accuracy

None of the studies reported the PM AHI cutpoints that were compared with the PSG AHI cutpoints of 5, 15, and 30. To diagnose OSA, defined as a PSG AHI of 5 or greater, Type II PMs had sensitivity of 88 to 96 percent and specificity of 50 to 84 percent. There was a trend of decreasing sensitivity and increasing specificity with increasing PSG AHI cutpoints. Sensitivity was 85 to 94 percent for an AHI of 15 or greater and 64 to 86 percent for an AHI of 30 or greater. Specificity was 77 to 95 percent and 98 to 100 percent for those PSG AHI cutpoints, respectively. In general, Type II PMs were accurate in diagnosing OSA, with AUC values of 85 to 94 across multiple AHI cutpoints. Two thirds of the LR+ and LR- values reported (across multiple cutpoints) indicated a moderate to high increase (LR+) or decrease (LR-) in the risk of OSA in two studies; 109,111 LR+ ranged from 1.8 to 17.6 and LR- ranged from 0.08 to 0.37 across multiple AHI cutpoints.

Reliability

One study 109 compared two expert scorers who manually scored both the PSG and Type II PM; scorers were blind to the patient;s identity and results from the other test (i.e., PSG or PM). The mean PM AHI scores were 19 (scorer 1) and 17 (scorer 2); the kappa (κ) coefficients for PSG AHI cutpoints of 5 or greater, 15 or greater, and 30 or greater were 0.66, 0.70, and 0.85, respectively. Similarly, the mean PSG AHI scores were 22 (scorer 1) and 20 (scorer 2); the κ coefficients for PSG AHI cutpoints of 5 or greater, 15 or greater, and 30 or greater were 0.84, 0.65, and 1.00, respectively. One study 111 evaluated intrascorer reliability by rescoring a random selection of 10 sleep studies; it was not clear which of the 10 sleep studies were in-laboratory PSG or at-home PM. The intrascoring staging concordance was 94 percent and the mean variability in AHI was -0.8.

Type III PMs

We identified one systematic review from 2014¹¹² and two studies^{113,114} that evaluated Type III PMs and were published after the systematic review search cutoff (**Appendix E Table 2**). Both Type III PMs were used at home and included channels for oxygen saturation, airflow, and thoracic and abdominal movements.

Findings of the 2014 Systematic Review

The review¹¹² covered literature from 2004 through March 2013. Although the overall review included 59 studies (n=5,026 patients), the authors reported meta-analysis results from 19 studies (n=1,507 patients), stratified by setting of PM (i.e., sleep laboratory, home) and AHI cutpoint (i.e., ≥ 5 , ≥ 10 , ≥ 15 , and ≥ 30).

Patients (n=5,026) with suspected OSA had a mean age of 51 years, a mean ESS score of 12, a mean BMI of 30 kg/m², and were predominantly male (ratio of male to female was 2.9 to 1); patient characteristics were not synthesized for the 19 studies in the meta-analysis. The PM performed better in the sleep laboratory setting than at home for all AHI cutpoints. The pooled sensitivity for the home and laboratory settings for an AHI of 15 or greater were 79 and 92 percent, respectively, and generally decreased with increasing OSA severity. The pooled specificity for the home and laboratory settings for an AHI of 15 or greater were 79 and 91 percent, respectively, and generally increased with increasing OSA severity. Discriminatory accuracy of the PMs was high, with AUC for all AHI cutpoints ranging from 85 percent for an AHI of 15 or greater in the home setting to 99 percent for an AHI of 30 or greater in the laboratory setting. Pooled likelihood ratios for the home setting indicated a small to moderate increase (LR+) or decrease (LR-) in the risk of OSA; LR+ ranged from 2.3 to 8.2 and LRranged from 0.11 to 0.26 across multiple AHI cutpoints. Seventy-five percent of the pooled likelihood ratios for the laboratory setting indicated a high increase (LR+) or decrease (LR-) in the risk of OSA; LR+ ranged from 3.9 to 14.9 and LR- ranged from 0.03 to 0.09. There was moderate to substantial statistical heterogeneity of results for two AHI cutpoints in the sleep laboratory setting (I^2 =85 for AHI \geq 5; I^2 =66 for AHI \geq 15) and for two AHI cutpoints in the home setting ($I^2=53$ for AHI ≥ 10 ; $I^2=82$ for AHI ≥ 15); sensitivity analyses, whereby studies with only patients with comorbidities were excluded, did not explain the heterogeneity or substantially change the results.

Description of Type III PM Studies Published After the 2014 Systematic Review Searches

The two included studies (from Spain and Canada) had a total of 184 participants referred to sleep clinics who underwent evaluation for OSA by Type III PMs at home; one study¹¹³ required that participants 1) snored or had some observed apnea events during sleep, 2) had ESS of less than 15, or 3) had a significant comorbidity with daily symptoms (e.g., chronic obstructive pulmonary disease). More than 90 percent of the patients in both studies had a PSG AHI of 5 or greater. The mean PSG AHI in one study¹¹³ was 30 and in the other study¹¹⁴ ranged from 15 to 25 among patients with low scores and from 35 to 39 among patients with high scores on the Berlin, Sleep Apnea Clinical Score, and STOP-Bang Questionnaires. Patients were more commonly male (55% to 66%) and obese (mean BMI, 30 to 31 kg/m²); the mean age of patients was 50 to 54 years.

One study did not report the PM AHI cutpoints that were compared with PSG AHI;¹¹⁴ the other study reported the PM AHI cutpoints that were compared with PSG AHI cutpoints of 5 and 15.¹¹³ To diagnose OSA, defined as a PSG AHI of 5 or greater, Type III PMs had sensitivity of 87 to 96 percent and specificity of 60 to 76 percent. As in the review, sensitivity decreased and specificity generally increased with increasing AHI. AUC values ranged from 82 to 95 percent

across all AHI cutpoints. At a PSG AHI of 15 or greater, one study¹¹³ reported that a PM AHI of less than 7 would exclude OSA and a PM AHI of 22 or greater would confirm OSA. A majority of likelihood ratios indicated a moderate or high increase (LR+) or decrease (LR-) in the risk of OSA (LR+ ranged from 2.6 to 15.50 and LR- ranged from 0.06 to 0.50).

Type IV PMs

We identified one good-quality systematic review from 2011¹ as well as 14 studies^{104,115-127} that evaluated the diagnostic accuracy of Type IV PMs and were published after the systematic review search cutoff (**Appendix E Tables 3–5**). Four studies evaluated PMs with 1 channel,^{116,118,121,122} five studies evaluated PMs with 2 channels,^{117,120,123,124,126} and five studies evaluated PMs with 3 or more channels.^{104,115,119,125,127}

Findings of the 2011 Systematic Review

The good-quality 2011 systematic review¹ covered literature from inception of the databases through September 2010 and summarized findings from the investigators' earlier 2007 technology assessment of PMs⁷⁵ that covered literature from inception of the databases through February 2007. The systematic review authors evaluated 24 new studies (seven graded quality A, 11 graded quality B, and six graded quality C) that included 1,865 participants. Seven PMs had more than 3 channels, nine had 2 channels, and nine had a single channel. Patients in 20 of the studies had been referred for suspected sleep apnea or UPPP; the remaining studies included particular populations (e.g., commercial motor vehicle drivers, persons with diabetes, persons with heart failure). The mean ages of patients ranged from 37 to 61 years, and the percentage of male patients ranged from 32 to 100 percent. The mean ESS score ranged from 5.8 to 13.3, and the mean PSG AHI ranged from 14 to 44.

The ranges of sensitivity and specificity for Type IV PMs for the diagnosis of OSA were wide across multiple AHI cutpoints, regardless of the number of channels. Sensitivity ranges were 85 to 100 percent, 43 to 100 percent, and 18 to 100 percent for AHI cutpoints of 5, 15, and 30, respectively. Specificity ranges were 50 to 100 percent, 42 to 100 percent, and 50 to 100 percent for AHI cutpoints of 5, 15, and 30, respectively. The range of sensitivity and specificity increased further when 46 studies (5,008 participants) of Type IV PMs from the 2007 technology assessment were included. Most studies, across both the 2011 systematic review and the 2007 technology assessment, had LR- close to 0.1 for an AHI cutpoint of 5; as AHI cutpoint increased, more studies were at the intersection of an LR+ of 10 or greater or LR- of 0.1 or less, suggesting a better ability to predict elevated AHI.

Description of Studies Published After the 2011 Systematic Review Searches

We included 14 studies of Type IV PMs from Australia or North America (n=4), 104,122,123,127 South America (n=2), 117,124 Europe (n=7), 115,116,118-121,126 and Asia (n=1). Sample sizes ranged from 25 to 348 119 participants (total of 1,900 participants) who were primarily referred for suspected sleep apnea. One study referred patients after cardiorespiratory polygraphy, 121 one study referred patients after screening with the Berlin Questionnaire, 127 and one study referred a population of patients with hypertension. Multiple studies required clinical symptoms such as

snoring, excessive daytime sleepiness, or observed apneas during sleep; ^{117,119,126} one study stated that patients had been referred both with and without symptoms (but did not provide further details). ¹²⁴ In all but one study, ¹²⁷ fewer than half of the patients were female. The mean age ranged from 41 to 61 years, and the mean BMI ranged from overweight (26 kg/m²) to obese (33 kg/m²). Among the studies reporting ESS scores, the mean ranged from 10 to 12. The mean PSG AHI ranged from 16 to 38, and the percentage of participants with an AHI of 5 or greater was more than 70 percent (among 10 studies reporting).

Eleven studies administered the PMs in the laboratory or hospital setting, ^{115-118,120,121,123-127} and four studies administered the PMs in the home setting. ^{104,119,122,127} The single-channel Type IV PMs were pulse oximeters; one study ¹²² also evaluated a single-channel PM that measured snoring. The 2-channel Type IV PMs were primarily pulse oximeters that also measured snoring, ^{117,123,124} heart rate, ^{120,126} and airflow. ¹²⁴ All of the Type IV PMs with three or more channels included pulse oximeters. Some studies of 2-channel PMs evaluated manual versus automatic scoring, ¹¹⁷ different hypopnea criteria, ¹¹⁷ the use of respiratory disturbance index versus AHI, ¹²⁴ and different PM AHI cutpoints. ¹²³ Less than half (43%) of studies reported the PM AHI cutpoints that were compared with designated PSG AHI cutpoints.

There was a wide range of sensitivity and specificity for all Type IV PMs across multiple AHI cutpoints (58 to 100 and 35 to 100, respectively); most AUC values were greater than 80. One study of a 4-channel PM reported lower AUC values for a PSG AHI of 5 or greater (AUC, 0.59) when the PM AHI was 8.9, and a PSG AHI of 30 or greater (AUC, 0.73) when the PM AHI was $16.^{104}$ A majority of likelihood ratios indicated a moderate to high increase (LR+) or decrease (LR-) in the risk of OSA; the LR+ ranged from 1.6 (PSG AHI ≥ 10)¹¹⁹ to 13.7 (PSG respiratory disturbance index ≥ 10), 124 and the LR- ranged from 0.01 (PSG AHI ≥ 5)¹⁰⁴ to 0.57 (PSG AHI ≥ 5).

One study ¹¹⁷ evaluated reliability of a 2-channel PM using a manual scoring method; interrater agreement for the classification of patients with or without OSA was very good (κ =0.81).

KQ 4. Benefits of Treatment for Improving AHI, Sleepiness, and Blood Pressure

We included 76 good- or fair-quality RCTs: 56 trials (described in 60 articles) evaluated CPAP (**Appendix E Tables 11** and **12**), ¹²⁸⁻¹⁸⁷ 10 trials (12 articles) evaluated MADs (**Appendix E Table 13**), ^{173,180,188-197} six trials evaluated surgical interventions (**Appendix E Table 14**), ¹⁹⁸⁻²⁰³ and six trials (10 articles) evaluated weight loss programs (**Appendix E Table 15**). ²⁰⁴⁻²¹³

CPAP

Of the 56 included RCTs, 36 trials (39 articles) compared CPAP with sham CPAP (**Appendix E Table 11**)^{128-151,153-157,159-164,166-169} and 20 (21 articles) compared CPAP with other controls (**Appendix E Table 12**). ^{152,158,165,170-187} Most studies identified participants from sleep clinics or referrals. None of the trials focused on subjects who were screen-detected in primary care settings, but two trials identified participants by screening patients in cardiology or heart failure clinics using the Berlin Questionnaire ¹⁷⁸ or the ESS. ¹⁸⁴ Most trials were conducted in the United

States (18 trials), United Kingdom (14 trials), or Spain (11 trials); four or fewer were conducted in each of the following: Hong Kong, Australia, Canada, and New Zealand. Duration of treatment ranged from 1 week to 4 years; it was 12 weeks or less in most trials, but five treated participants for 24 weeks or longer, ^{145,171,172,174,182} including two that followed participants for 52 weeks ^{171,182} and one that did so for a median of 4 years. ¹⁷² Mean age was in the 40s to 50s in most studies and ranged from 42 to 71 years. The vast majority of participants in most trials were men, with 44 trials reporting that less than one third of participants were women. More than half of participants were women in just one trial. 167 More than three fourths of included studies did not report the percentage of minority participants. Of those that did, it ranged from 5 to 56 percent. Mean BMI was 30 to 35 kg/m² in most trials (range, 27 to 39 kg/m²). Mean or median baseline AHI (or similar measure) was in the severe OSA range (AHI ≥30) for more than 75 percent of trials; eight trials reported it in the moderate OSA range, 150,151,155,162,173,178,180,182 and four reported it in the mild OSA range. 166,174,176,183 The range of OSA severity of the enrolled participants in trials most frequently spanned the moderate to severe ranges (29 trials) or the mild to severe ranges (19 trials). Seven trials limited participants to more narrow ranges: mild only, ¹⁷⁶ mild to moderate, ^{151,166,173,183} or severe only. ^{130,165} One trial did not report sufficient data to determine the range of OSA severity of participants. ¹⁷⁴ Mean baseline ESS was 10 or greater in 33 trials, indicating excessive daytime sleepiness. Ten trials reported a mean baseline ESS of less than 10, \(^{130,134,138,147,162,171,172,174,178,181}\) and 13 trials did not report baseline ESS.

AHI

The trials reporting sufficient data for meta-analysis were all 12 weeks or less. Our meta-analyses found that CPAP reduced AHI more than sham CPAP (WMD, -33.8 [95% CI, -42.0 to -25.6]; 13 trials; 543 participants) and more than other controls (WMD, -25.8 [95% CI, -34.2 to -17.5]; 6 trials; 294 participants) (**Appendix F Figures 1** and **2**). Our meta-analyses found substantial statistical heterogeneity that may be due to variation in CPAP devices (e.g., machines, masks, humidifiers, filters, cushions), participant characteristics (e.g., studies with lower baseline mean AHI finding smaller effect sizes due to ceiling effects), apnea and hypopnea definitions, adherence, study duration, or chance. Nevertheless, all individual studies reported statistically significant improvement, and endpoint AHI values were universally 10 or less for CPAP-treated groups, and most were 5 or less.

ESS

Thirty-four trials reported sufficient ESS data to include in meta-analyses. Most were 12 weeks or less in duration; five followed participants for 24 weeks, ^{145,174} 48 to 52 weeks, ^{171,182} or longer. Our meta-analyses found that CPAP reduced ESS more than sham CPAP (WMD, -2.0 [95% CI, -2.6 to -1.4]; 22 trials; 2,721 participants) and more than other controls (WMD, -2.2 [95% CI, -2.8 to -1.6]; 12 trials; 2,488 participants) (**Appendix F Figures 9** and **10**). Our analyses found substantial statistical heterogeneity that may be due to variation in CPAP devices, participant characteristics (e.g., baseline ESS), adherence, study duration, or chance. We were unable to find a clear explanation for the heterogeneity. Among the 27 trials with mean or median baseline ESS of 10 or greater (mean baseline ESS, 12.7) or those that provided subgroup analyses for the participants with excessive sleepiness, our subgroup meta-analyses found a similar result (WMD, -2.4 [95% CI, -2.9 to -1.9]) (**Appendix F Figure 11**). Twenty-three of

those 27 trials reported mean endpoint ESS scores of less than 10 for the CPAP group (mean endpoint ESS <8). Our subgroup meta-analyses by OSA severity (3 categories: mild to moderate OSA, mild to severe OSA, and moderate to severe OSA) did not find a clear difference by OSA severity. Effect sizes were -1.7, -2.1, and -2.4, respectively, and CIs overlapped considerably; the analysis still found considerable statistical heterogeneity within the mild to severe and moderate to severe groups (**Appendix F Figure 12**).

Blood Pressure

Twenty-nine trials reported sufficient blood pressure data to include in meta-analyses. Blood pressure outcomes were reported in a variety of ways (e.g., 24-hour mean arterial blood pressure, 24-hour systolic or diastolic, diurnal mean arterial blood pressures, diurnal systolic). The most common were diurnal systolic and diurnal diastolic blood pressure. Most trials were 12 weeks or less in duration; three followed participants for 24 to 52 weeks. ^{171,174,182} Our meta-analyses found that CPAP reduced diurnal systolic blood pressure by 2 to 3 points (WMD, -2.4 [95% CI, -3.9 to -0.9]; 15 trials; 1,190 participants; I^2 =0%) and reduced diurnal diastolic blood pressure by more than 1 point (WMD, -1.3 [95% CI, -2.2 to -0.4]; 15 trials; 1,190 participants; I^2 =16%) compared with sham CPAP. Reduction in 24-hour mean arterial pressure was about 2 points with CPAP compared with sham CPAP (WMD, -2.1 [95% CI, -3.2 to -1.0]; 5 trials; 621 participants; I^2 =3%). **Appendix F** provides more detailed results of meta-analyses for all blood pressure measures reported.

Among the six studies that focused on participants with uncontrolled hypertension or that provided subgroup analyses for the participants with uncontrolled hypertension, ^{135,137,141,162,171,181} our subgroup meta-analyses found similar but slightly larger magnitudes of effect (**Appendix F Figures 34** and **35**). For example, for the three outcomes described in the previous paragraph, we found reductions of -2.5, -2.1, and -2.7, respectively.

Subgroups

None of the included trials reported data by subgroups defined by age, sex, or BMI. We conducted subgroup analyses by OSA severity as described above.

MADs

We included 10 RCTs (described in 12 publications) assessing the effect of MADs on AHI, ESS, or blood pressure (**Appendix E Table 13**). ^{173,180,188-195,197,214} Six compared MADs with sham devices that did not advance the mandible, ^{188-192,195} one compared an MAD with a placebo tablet, ¹⁷³ two compared MADs with no treatment, ^{197,214} and one compared an MAD with conservative management of OSA with weight loss. ¹⁸⁰ All studies recruited participants with known or suspected OSA from specialty clinics, such as sleep medicine or ear, nose, and throat (ENT) clinics. Most studies were conducted in Europe, two were conducted in Australia, ^{173,192} and one in Hong Kong. ¹⁸⁰ Treatment durations ranged from 4 to 12 weeks for most studies, but one study lasted only 1 week ²¹⁴ and one lasted 24 weeks. ¹⁸⁹ Mean age of participants ranged from 45 to 59 years. The vast majority of participants in all trials were men, with women comprising 17 to 25 percent of participants in the nine trials reporting sex. No studies

documented the percentage of minority participants. All studies included participants with mild to moderate OSA, and six studies also included participants with severe OSA. ^{180,188,191,192,195,214} Mean baseline ESS scores ranged from 11 to 14, indicating excessive daytime sleepiness. One study included only participants with known hypertension. ¹⁸⁸

AHI

Ten trials reported sufficient data for meta-analysis. $^{173,180,188-192,195,197,214}$ Our meta-analyses found that MADs improved AHI more than sham (-12.6 [95% CI, -15.5 to -9.7]; 6 trials; 307 participants; I^2 =0%) and more than other controls (-8.2 [95% CI, -13.9 to -2.5]; 5 trials; 358 participants; I^2 =57%) (**Appendix F Figures 4** and **5**).

ESS

Nine trials reported sufficient data for meta-analysis. $^{173,180,188,190-192,195,197,214}$ Our meta-analyses found that MADs improved ESS more than both sham (-1.5 [95% CI, -2.8 to -0.2]; 5 trials; 267 participants; I^2 =34%) and other controls (-1.7 [95% CI, -2.2 to -1.2]; 5 trials; 358 participants; I^2 =52%) (**Appendix F Figures 13** and **14**).

Blood Pressure

Five trials reported sufficient data for meta-analysis. ^{180,188,190,191,194} Blood pressure outcomes were reported in a variety of ways (i.e., 24-hour, diurnal or nocturnal, systolic or diastolic). Only one of the trials reported any statistically significant differences between an MAD and sham for some of its blood pressure measures (diurnal systolic blood pressure, -3.0 [95% CI, -5.6 to -0.4]). ¹⁹⁴ Our meta-analyses found no statistically significant differences between MADs and comparators for any of the measures (**Appendix F Figures 36–41**).

Subgroups

We found no studies that assessed whether the effect of MADs on intermediate outcomes differs for subgroups defined by age, sex, BMI, or severity of OSA.

Airway Surgery

Five included trials evaluated ENT surgeries (**Appendix E Table 14**). Each trial evaluated a different surgical technique, including radiofrequency surgery of the soft palate, ¹⁹⁸ temperature-controlled radiofrequency tissue ablation (TCRFTA), ²⁰³ UPPP, ¹⁹⁹ laser-assisted uvulopalatoplasty (LAUP), ²⁰¹ and septoplasty. ²⁰² Three of the trials had sham surgery comparison groups; ^{198,202,203} two compared surgery with no treatment. ^{199,201} Sample sizes ranged from 32 ¹⁹⁸ to 67. ¹⁹⁹ Participants were generally identified from ENT clinics, sleep clinics, or referrals. None of the trials focused on subjects who were screen-detected in primary care settings. Trials were conducted in Finland, ¹⁹⁸ United States, ²⁰³ Sweden, ¹⁹⁹ Canada, ²⁰¹ and Greece. ²⁰² Duration of followup after surgery ranged from 8 weeks ²⁰³ to around 15 months. ²⁰¹ Mean age ranged from 38 to 49 years. The majority of participants were men; four trials included 0 to 24 percent women and the trial of septoplasty included around 40 percent women. ²⁰² None

of the trials reported the percentage of nonwhite participants. Mean BMI ranged from 27 to 32 kg/m². Mean AHI was in the severe OSA range (AHI \geq 30) for trials of UPPP¹⁹⁹ and septoplasty, ²⁰² in the moderate OSA range for trials of radiofrequency surgery. ¹⁹⁸ The full range of OSA and in the mild range for one trial of soft palate radiofrequency surgery. ¹⁹⁸ The full range of OSA severity of participants was moderate to severe in the trial of UPPP, ¹⁹⁹ mild to severe in the trial of septoplasty, ²⁰² mild to moderate in trials of radiofrequency surgery. ²⁰³ and LAUP, ²⁰¹ and mild only for one trial of soft palate radiofrequency surgery. ¹⁹⁸ Mean baseline ESS was 10 or greater in four of the trials, indicating excessive daytime sleepiness; the trial of soft palate radiofrequency surgery reported mean baseline ESS of 8 for one group and 10 for the other. ¹⁹⁸

AHI

All five trials reported AHI. The trials of UPPP¹⁹⁹ and LAUP²⁰¹ found greater reductions in AHI for surgery than for no treatment of -26.4 (95% CI, -36.2 to -16.6) and -10.5 (95% CI, -16.9 to -4.1), respectively (**Appendix F Figure 8**). The other three trials (radiofrequency surgery of the soft palate, TCRFTA, or septoplasty) all had sham comparators and found no clinically or statistically significant differences between various airway surgeries and sham. ^{198,202,203}

ESS

Four of the five trials reported ESS. None of them found a statistically significant difference between participants in surgical and comparator groups (**Appendix F Figure 17**).

Blood Pressure

Only the trial of LAUP (N=46) reported blood pressure outcomes.²⁰¹ It reported no significant changes in systolic or diastolic blood pressure in either the LAUP or control group.

Bariatric Surgery

The one included trial randomized 60 morbidly obese (mean BMI, 45 kg/m²) Australians with moderate to severe OSA (mean AHI around 60) to bariatric surgery or a conventional weight loss program. It followed participants for 2 years. Mean age was close to 50 years. More than 40 percent were female. The trial reported a significant reduction in AHI for both groups; the between-group difference was not statistically significant (-11.5 [95% CI, -28.3 to 5.3]). Similarly, both groups had a significant reduction in ESS, but the between-group difference was not statistically significant (-3.2 [95% CI, -7.2 to 0.8]). The trial found no significant difference between groups for systolic or diastolic blood pressure (mean between-group differences, -1.4 [95% CI, -11.7 to 9] and 2.4 [95% CI, -4.6 to 9.4], respectively).

Weight Loss, Diet, and Exercise Interventions

Six included trials (described in 10 articles) evaluated weight loss programs (**Appendix E Table 15**). ²⁰⁴⁻²¹³ Each trial evaluated a different intervention and control—two interventions focused primarily on exercise, ^{204,208} two focused primarily on diet, ^{207,211} and two used multicomponent lifestyle interventions (exercise, diet, and psychoeducation). ^{205,210} One compared an inpatient

individualized exercise training with standard health education, ²⁰⁴ one compared exercise training with a stretching control, ²⁰⁸ one compared an intensive lifestyle intervention (consisted of portion-controlled diet, physical activity, and group behavioral weight loss intervention) with a diabetes support and education control, ²⁰⁵ one compared a very low energy diet with usual diet, ²⁰⁷ one compared a very low calorie diet (for 12 weeks) plus supervised lifestyle (for 52 weeks) with usual care (routine lifestyle guidance), ²¹¹ and one compared a program of supervised individualized exercise sessions, cognitive-behavioral psychoeducation, and dietary education with advice alone. Sample sizes ranged from 26²⁰⁴ to 264.²⁰⁵ Participants were generally identified from sleep clinics, referrals, and advertisements. None of the trials focused on subjects who were screen-detected in primary care settings. Trials were conducted in the United States, ²⁰⁵, ²⁰⁸ Sweden, ²⁰⁷ Finland, ²¹¹ United Kingdom, ²¹⁰ and France. ²⁰⁴ Duration of followup was 4 to 26 weeks for four of the trials; the other two trials followed participants to 4 or 5 years. 205,211 Mean age ranged from 47 to 61 years. Mean BMI ranged from 30 to 40 kg/m². Mean AHI was in the moderate to severe OSA range for four of the trials, in the mild range for the trial that evaluated very low calorie diet plus supervised lifestyle, ²¹¹ and in the moderate to severe range but controlled with CPAP use in one trial. Mean baseline ESS was 10 or greater in two trials, less than 10 in three, and not reported in one. The weight loss achieved by intervention groups was very limited in one trial (-0.3 kg)²⁰⁸ and modest in another (-2.3 kg)²¹⁰ but reached more clinically significant levels in the rest (5- to 20-kg reduction). controlled with CPAP use in one trials, and in the moderate to severe range but controlled with CPAP use in one trials. The weight loss achieved by intervention groups was very limited in one trial (-0.3 kg)²⁰⁸ and modest in another (-2.3 kg)²¹⁰ but reached more clinically significant levels in the rest (5- to 20-kg reduction).

AHI

Five trials reported AHI. 204,205,207,208,213 Four of the five found statistically significant reductions in AHI, ranging from -5.8 (95% CI, -9.7 to -1.9) to -23 (95% CI, -30.1 to -15.9) (**Appendix F Figure 6**). The trial reporting the largest reduction in AHI (a reduction nearing that achieved by CPAP) also reported a much larger weight reduction than other trials (-20 kg over 9 weeks from a very low energy diet). Our meta-analysis found a WMD of -12.4 (95% CI, -19.4 to -5.5). We found substantial statistical heterogeneity (I^2 =79%), which was no longer present after removing the one study with much larger weight reduction (and the largest reduction in AHI) (**Appendix F Figure 7**).

ESS

Four trials reported ESS. 204,207,208,213 Three of the four found statistically significant reductions in ESS, ranging from -3 to -7. Our meta-analysis found that weight loss interventions improved ESS more than controls (-3.4 [95% CI, -5.9 to -1.0]; 4 trials; 213 participants; I^2 =78%) (**Appendix F Figure 15**). The substantial statistical heterogeneity was reduced when removing the one trial that enrolled participants with mild OSA (**Appendix F Figure 16**).

Blood Pressure

Three trials reported blood pressure outcomes. ²⁰⁹⁻²¹¹ One found similar blood pressure reductions for exercise training (N=27) and a stretching control (N=16) after 12 weeks, although it reported a slightly greater magnitude of reduction for the stretching control group (systolic blood pressure, -6.7 vs. -7.3; diastolic blood pressure, 0 vs. -2.7; between-group difference, 95% CI, or p-value not reported). ²⁰⁹ Another trial (N=60) found no significant difference between a

multicomponent lifestyle intervention and advice only at 13 weeks (mean difference, 0 [95% CI, -5 to 4]) or after another 13 weeks off treatment (mean difference, -2 [95% CI, -7 to 4]). The other trial (N=81) reported no significant difference between a very low calorie diet with supervised lifestyle counseling and a routine lifestyle counseling control group at 12 months (-1.7 vs. -1.1; p=0.88; and -1.9 vs. -0.4; p=0.62) or at 2-year postintervention followup. ^{211,212}

Subgroups

We found no studies that assessed whether the effect of weight loss interventions on intermediate outcomes differs for subgroups defined by age, sex, BMI, or severity of OSA.

KQ 5. Benefits of Treatment for Improving Health Outcomes

We included 50 good- or fair-quality RCTs that reported at least one eligible health outcome (47 of these were included in KQ 4). Most of those were short-term RCTs (≤12 weeks) that reported zero or few deaths over the course of the study. The characteristics of these studies are summarized in **Appendix E Tables 13–16**, and the results are summarized in **Appendix E Tables 17–19**.

CPAP

Thirty-five RCTs comparing CPAP with sham CPAP $^{128,130,137-139,142,145,147,150,151,154,155,157,161-164,166,168,172,215}$ or another control $^{170,172-178,180,182-184,216,217}$ reported at least one eligible health outcome. Most trials identified participants from sleep clinics or referrals, and none focused on persons who were screen-detected in primary care settings. Ten trials were conducted in the United States; 139,145,147,150,155,157,166,178,183,215 others were set in Canada, 184 Australia, 140,161,173 New Zealand, 151 Hong Kong, 180 United Kingdom, $^{142,162-164,168,174-177,182,216,217}$ and Spain. 128,130,137,138,154 , 170,172 Most trials followed participants for 12 weeks or less; four trials measured outcomes over 24 weeks or longer, 145,172,174,182 including one that followed participants for a median of 4 years. 172 Most trials enrolled populations with a mean age in the 40s to 50s (range, 42 to 71 years). The vast majority of participants in most trials were men; women made up a third or less of the enrolled population in 26 trials. All eight trials that described race enrolled a majority of white participants. Mean BMI was 30 to 35 kg/m² in most trials (range, 27 to 37 kg/m²). Mean or median baseline AHI (or similar measure) was in the severe OSA range (AHI \geq 30) for more than half of trials; nine trials reported it in the moderate OSA range, 150,151,155,162,173,178,180,182,216 and five reported it in the mild OSA range. 166,174,176,183,217 The range of OSA severity of enrolled participants in trials most frequently spanned the moderate to severe range (27 trials) or the mild to severe range (15 trials). Six trials limited participants to more narrow ranges: mild only, 176 mild to moderate, 151,166,173,183 or severe only. 130 One trial did not report sufficient data to determine the range of OSA severity of participants. 174 Mean or median baseline ESS was 10 or greater in most trials (23), indicating excessive daytime

Mortality

Thirty-one RCTs reported on mortality (**Appendix E Table 17**). The vast majority (29 RCTs)

reported mortality rates at 12 weeks or less, and the vast majority (27 RCTs; 2,211 total participants) reported no deaths in any study group; ^{128,130,137,139,140,142,147,150,151,154,155,157,162-164,166, 170,173,175-178,180,183,184,216,217} two trials (462 total participants) reported one death, either in the CPAP¹⁷⁴ or sham CPAP group at 12 weeks. ¹³⁸ Two RCTs assessed mortality over a longer duration. ^{145,172} One (N=1,105) reported two deaths in each study arm over 24 weeks. ¹⁴⁵ The other (N=723) reported eight deaths in the CPAP group and three in the control group over about 4 years (incidence density ratio, 2.6 [95% CI, 0.70 to 11.8]; p=0.16). ¹⁷²

Quality of Life

Twenty-two RCTs reported quality-of-life measures (Appendix E Table 17). Fourteen measured quality of life using the Medical Outcome Short-Form (36-Item) Health Survey (SF-36). 130,138,142, 151,154,163,164,166,173,174,176,180,182,183 Only one RCT (N=179) reported changes in total SF-36 scores; at 12 weeks, participants randomized to CPAP showed greater improvement than controls in the total SF-36 score (mean change from baseline, 4.7 vs. 2.0; p<0.05). 173 Most studies using the SF-36 reported changes separately for the physical component score (PCS) and the mental component score (MCS). Some studies only reported data for all or some of the eight subscales of the SF-36. Eight trials reported sufficient data for meta-analysis of SF-36 MCS. 130,138,142,154,163, ^{164,166,174} Seven of these compared CPAP with sham CPAP and reported outcomes at 12 weeks or less; one trial compared CPAP with another control and reported outcomes at 24 weeks. 174 Our meta-analysis found no difference between CPAP and comparators in the change from baseline SF-36 MCS (WMD, 1.2 [95% CI, -0.8 to 3.2]; 8 trials; 1,039 participants) (Appendix F Figure **42**). Seven trials reported sufficient data for meta-analysis of SF-36 PCS: ^{130,138,142,154,163, 164,166} all compared CPAP with sham and reported outcomes at 12 weeks or less. Our meta-analysis found that CPAP improved scores significantly more than sham (WMD, 2.3 [95% CI, 0.2 to 4.4]; 7 trials; 648 participants) (**Appendix F Figure 43**). Both meta-analyses found moderate statistical heterogeneity.

Seven RCTs measured general quality of life using another measure (**Appendix E Table 17**). Two RCTs measured changes in quality of life using the EuroQol. ^{137,174} In one trial (N=323), there was no difference between CPAP and control groups in the change from baseline total score at 24 weeks. ¹⁷⁴ The other trial (N=340) only reported within-group changes; the CPAP group improved at 12 weeks (p<0.001 compared with baseline; effect size [standard deviation units] 0.38), but no improvement was seen in the control group. ¹³⁷ Five RCTs assessed quality of life using the Nottingham Health Profile. Three of them found no difference between groups in the change from baseline overall scores, ^{175,176,217} one reported greater improvement in the CPAP group compared with controls (4.9 vs. 7.9 [lower scores indicate greater improvement]; p=0.002), ²¹⁶ and one reported only outcomes for six subscore domains (greater improvement for CPAP than control on two of six scores) (**Appendix E Table 17**). ¹⁷⁰

Thirteen RCTs assessed sleep-related quality of life—six using the Sleep Apnea Quality of Life Index (SAQLI)^{164,168,174,180,182,218} and seven using the Functional Outcomes of Sleep Questionnaire (FOSQ). ^{130,151,154,161,166,173,177} Most trials reported outcomes at 12 weeks or less; two reported outcomes at 24 weeks (or 6 months)^{174,218} and one at 52 weeks. ¹⁸² Eight trials compared CPAP with sham, ^{130,151,154,161,164,166,168,218} and the others compared CPAP with another control. ^{173,174,177,180,182} Our meta-analysis (combining SAQLI and FOSQ scores) found that

CPAP was associated with improved sleep-related quality-of-life scores compared with controls (SMD, 0.28 [95% CI, 0.14 to 0.42]; 13 trials; 2,325 participants) (**Appendix F Figure 44**). Our sensitivity analysis including only studies with mean baseline ESS of 10 or greater found a slightly greater but similar effect size (0.33 [95% CI, 0.17 to 0.50]; 9 trials; 1,709 participants) (**Appendix F Figure 46**).

Cognitive Impairment

Twelve RCTs reported one or more measures of cognitive function. ^{130,145,147,151,170,173,175,176,182,215-217} In general, studies assessed cognitive function using heterogeneous outcome measures and reported inconsistent results (**Appendix E Table 17**).

Motor Vehicle Accidents

Three RCTs reported on the incidence of motor vehicle accidents. In one trial (N=212), there were no accidents in either group at 12 weeks. The other two reported similar rates between CPAP and comparator groups over 24 weeks (10 vs. 11 accidents out of 1,105 participants). or over 1 year (2 vs. 1 accidents out of 278 participants).

Cardiovascular Events

Eight RCTs reported on the incidence of one or more cardiovascular events. ^{138,145,151,168,172,174,178, 182} Five (1,529 total participants) reported on the incidence of myocardial infarction; a total of one myocardial infarction occurred (combined) in either group (the control group) across four of the trials over 3 weeks to 1 year. ^{151,174,178,182} The trial with the longest duration (723 participants) reported two myocardial infarctions in the CPAP group and eight in the control group over 4 years. ¹⁷²

Four RCTs reported on the incidence of angina^{138,174,182} or unstable angina;¹⁷⁸ trial durations were 52 weeks, ¹⁸² 24 weeks, ¹⁷⁴ and 12 weeks. ^{138,178} Overall, too few events occurred to draw conclusions (CPAP vs. comparators: total of 4 vs. 9 angina events among a total of 570 participants). ^{138,174,178,182}

Three RCTs reported on the incidence of atrial fibrillation; trial durations were 12 weeks, ¹⁷⁸ 24 weeks, ¹⁷⁴ and 1 year. ¹⁸² In the trial measuring outcomes at 12 weeks, one participant developed atrial fibrillation (randomized to the control group); ¹⁷⁸ in the trials assessing outcomes at 6 months and 1 year (669 total participants), there was no difference in the incidence of atrial fibrillation between groups (12 vs. 19 events). ¹⁸²

One RCT reported one event in either group for each of the following (details are provided in **Appendix E Table 17**): unspecified tachyarrhythmia requiring hospitalization, ¹⁷⁸ percutaneous coronary intervention for worsening angina, ¹⁷⁸ and emergent cardiac surgery. ¹⁶⁸ One trial reported only an overall number of cardiovascular events (as adverse events) without describing how outcomes were measured or defined (31 vs. 29 events in CPAP and control arms, respectively). ¹⁴⁵ One trial reported hospitalizations for unstable angina or arrhythmia (17 vs. 11 in CPAP and control arms, respectively, out of 723 participants). ¹⁷²

Cerebrovascular Events

Four included RCTs (1,604 total participants) reported on the incidence of transient ischemic attacks ^{172,174,182} and/or strokes. ^{172,174,178,182} Trial durations were 12 weeks, ¹⁷⁸ 24 weeks, ¹⁷⁴ 1 year, ¹⁸² and 4 years (median followup). ¹⁷² Overall, too few events were observed to draw conclusions (CPAP vs. comparators: total of 4 vs. 7 transient ischemic attacks and 3 vs. 3 strokes, combining all trials). The trial with the longest followup (723 participants with median followup of 4 years) reported the most observed events, reporting fewer transient ischemic attacks in the CPAP group than in the control group (2 vs. 5) but more nonfatal strokes (3 vs. 2). ¹⁷²

Heart Failure

In one RCT (N=723), three participants in the CPAP group developed new heart failure compared with five in the control group over a median followup of 4 years. ¹⁷²

Headaches

In one RCT (N=37), three participants in the control group developed headaches at 4 weeks compared with none in the CPAP group. 176

Subgroups

The APPLES (Apnea Positive Pressure Long-term Efficacy Study) trial found no significant overall difference between CPAP and sham CPAP for improvement in quality of life after 6 months. However, subgroup analyses stratified by OSA severity found that greater improvement in quality of life may occur for persons with severe OSA treated with CPAP who used it more than 4 hours per night (compared with those treated with sham CPAP; betweengroup difference on SAQLI, 0.2; p<0.05). We found no other studies that reported difference for the effect of CPAP on health outcomes for subgroups defined by age, sex, BMI, or severity of OSA.

MADs

We included six RCTs assessing the effect of MADs on health outcomes, including mortality, quality of life, cognitive impairment, and cardiovascular events (**Appendix E Table 13**). 173,180, 189,191,197,214 None of the included studies reported the incidence of cerebrovascular events, heart failure, or headaches. Two studies compared MADs with sham devices that did not advance the mandible, 189,191 one compared an MAD with a placebo tablet, 173 two compared MADs with no treatment, 197,214 and one compared an MAD with conservative management of OSA with weight loss. All studies recruited participants with known or suspected OSA from specialty clinics, such as sleep medicine or otolaryngology. Four studies were conducted in Europe, one in Australia, 173 and one in Hong Kong. Treatment durations ranged from 4 to 12 weeks for most studies, while one lasted for only 1 week 14 and one for 24 weeks. Mean age of participants ranged from 45 to 51 years in all studies. The vast majority of participants were men, with women comprising 18 to 27 percent in the five trials reporting sex. No studies reported

percentage of minority participants. All studies included participants with mild to moderate OSA, and three also included participants with severe OSA. ^{180,191,214}

Mortality

Among the four trials that reported on mortality over 1 to 12 weeks, ^{173,191,197,214} three of the trials reported no deaths in any participants. The other trial reported one death in the group that received no treatment. ¹⁹¹

Quality of Life

Five included trials reported at least one quality-of-life measure. ^{173,180,189,191,197} All five used the SF-36, two also used the SAQLI, ^{180,197} and two also used the FOSQ. ^{173,197} Because of heterogeneity in the reporting of SF-36 outcomes, the results were not amenable to meta-analysis. Overall, results were mixed, with some studies finding no significant benefits of MADs for improving quality of life, ^{180,189} some reporting possible benefits for some measures or subscales but not others, ^{173,191} and some reporting benefits for some overall quality-of-life scores. ¹⁹⁷ Further details and specific data are provided in **Appendix E**. Because of inconsistency, imprecision, and heterogeneity of reporting, findings are insufficient to make conclusions about the potential benefits of MADs for improving quality of life.

SF-36

The trial (N=39) that compared an MAD with a sham device for 24 weeks found no significant differences in multiple SF-36 subscores. A four-arm crossover trial (N=90) of three different types of MADs compared with no treatment found significant improvement in the SF-36 PCS for a SleepPro2 (MEDiTAS, Milton Keynes, UK) MAD only, and the SF-36 MCS for a custom MAD only. A trial (N=67) that compared an MAD with conservative management found no significant difference in SF-36 Physical Function, Mental Health, and General Health subscores. Another trial (N=93) that compared an MAD with a sham device or no treatment found no significant benefit for SF-36 PCS but reported some improvement for SF-36 MCS scores (although it was unclear if the improvement was significantly greater than that with controls because of how the findings were reported). A trial (N=197) that compared 12 weeks of an MAD with placebo tablet found a significant improvement in overall SF-36 score from baseline but not compared with placebo tablet.

Disease-Specific Quality-of-Life Measures

The trial that compared an MAD with conservative management for 10 weeks found significant improvements in Emotional and Symptoms subscores but not in total SAQLI score. The four-arm crossover trial that compared three types of MADs (each for 6 weeks) found significant improvement in total SAQLI score for all devices and nearly all subscores for all devices. The trial that compared an MAD with a placebo tablet reported significant improvement in mean FOSQ score at 12 weeks but not in subscores other than Social Outcomes. The significant improvement in mean FOSQ score at 12 weeks but not in subscores other than Social Outcomes.

Other Health Outcomes

We included one trial assessing each of the following outcomes for participants using MADs over 6 to 12 weeks: cognitive impairment, ¹⁷³ motor vehicle accidents, ¹⁹⁷ and cardiovascular events. ¹⁹⁷ Specific data are provided in **Appendix E**. Because of unknown consistency, imprecision, and very limited numbers of events, findings are insufficient to make conclusions about the potential benefits of MADs for these outcomes.

Subgroups

We found no studies that assessed whether the effect of MADs on health outcomes differs for subgroups defined by age, sex, BMI, or severity of OSA.

Airway Surgery

Four of the five included RCTs evaluating ENT surgeries described in KQ 4 reported at least one included health outcome (**Appendix E Table 18**). ^{198,201-203} Each trial evaluated a different surgical technique, including radiofrequency surgery of the soft palate, ¹⁹⁸ TCRFTA, ²⁰³ LAUP, ²⁰¹ and septoplasty. ²⁰² These studies are described in detail in KQ 4.

Mortality

Three RCTs reported no deaths in any study arms over 12 weeks to around 15 months. 198,201,202

Quality of Life

Three RCTs reported quality-of-life measures (**Appendix E Table 18**). Two trials (92 participants combining both trials) measured general quality of life using the SF-36; there were no differences between groups in change from baseline for PCS or MCS over 8 to 24 weeks. ^{198, 203} Two trials measured sleep-related quality of life. ^{201,203} The trial (N=46) comparing LAUP with no treatment found no significant difference between groups for overall SAQLI scores but reported a difference for the SAQLI Symptoms subscore. ²⁰¹ The trial (N=60) comparing TCRFTA with sham surgery reported greater improvement in overall FOSQ scores for the TCRFTA group (between-group difference, 0.9 [95% CI, -0.1 to 1.9]; one-sided p=0.04) but no difference on the Symptoms of Nocturnal Obstruction and Related Events score. ²⁰³

Cognitive Impairment

One RCT (N=60) comparing TCRFTA with sham surgery found no difference between groups in three measures of reaction times measured using the Psychomotor Vigilance Task (slowest reaction time, median reaction time, and fastest reaction time). ²⁰³

Subgroups

We found no studies that assessed whether the effect of airway surgery on health outcomes differs for subgroups defined by age, sex, BMI, or severity of OSA.

Bariatric Surgery

One RCT (N=60) compared bariatric surgery with a conventional weight loss program in persons with severe OSA (mean AHI ranged from 57 to 65 across study arms); ²⁰⁰ characteristics are described in KQ 4 and **Appendix E Table 18**. There were no deaths in either group at 2 years. At 2 years, participants randomized to bariatric surgery had greater improvement in quality of life measured by the SF-36 PCS (between-group difference, 9.3 [95% CI, 0.5 to 18.0]; p=0.04); however, there was no difference between groups in the change from baseline SF-36 MCS (between-group difference, -0.3 [95% CI, -5.3 to 4.8]; p=0.92). ²⁰⁰ One person in the bariatric surgery arm developed headaches during the study compared with no participants in the conventional weight loss group. ²⁰⁰

Weight Loss Programs

Six RCTs (described in nine articles) evaluated weight loss programs; the characteristics are described in detail in KQ 4 and **Appendix E Table 18**. ²⁰⁴⁻²¹³

Mortality

Four RCTs (45 participants combining all studies) assessed mortality; three reported no deaths in any group over 9 to 208 weeks, ^{205,207,208} and one reported one death at 52 weeks (it was not reported which study arm the person was in). ²¹¹

Quality of Life

Four RCTs assessed quality of life. 204,208,210,211 Two measured general quality of life using the SF-36: 204,208 both reported on scores across the eight domains but did not report a PCS, MCS, or overall score (detailed results are in **Appendix E Table 18**). In one trial comparing an inpatient weight loss program with a control, the authors only provide within-group changes from baseline; the control group did not improve in any of the eight SF-36 domain scores, while the weight loss program group improved significantly on most domain scores (except for vitality and emotional role limitation). 204 The trial of very low calorie diet plus supervised lifestyle compared with usual care found no difference between groups in the mean change from baseline 15dimensional measure of health-related quality-of-life scores at 52 weeks (mean change from baseline score, 0.041 vs. 0.022; p=0.167). One RCT measured changes in sleep-related quality of life using the FOSO; there was no difference between groups in change from baseline scores (p-value was not significant, per authors). ²⁰⁸ Finally, the RCT that compared a multicomponent lifestyle intervention with advice only for obese long-term CPAP users found no difference on the EuroQol EQ-5D-3L Visual Analogue Scale between groups at the end of the 13-week treatment phase (between-group mean difference, 3 [95% CI, -4 to 10]), but it reported greater improvement for the intervention group 13 weeks after the treatment phase ended (betweengroup mean difference, 9 [95% CI, 2 to 16]).²¹⁰

Cognitive Impairment

One trial comparing exercise training with a stretching control assessed for changes in cognitive

function over 12 weeks with the Psychomotor Vigilance Test, Stroop Color-Word Test, and Trail-Making Test; there were no difference between groups on any of these measures. ²⁰⁸

KQ 6. Association Between OSA and Health Outcomes

We included 11 fair- or good-quality prospective cohort studies (described in 12 articles) that assessed the association between AHI and health outcomes (**Appendix E Table 20**). 50,219-229 All focused on community-based participants; one also enrolled some participants from a sleep clinic. Three good-quality studies analyzed participants from the Sleep Heart Health Study (SHHS), 224,225,227 a cohort of men and women age 40 years or older recruited from other prospective cohort studies (e.g., Framingham Offspring and Omni Study, Atherosclerosis Risk in Communities Study) between 1995 and 1998. Two included studies evaluated the WSCS, 221,226 a community-based, random sample of state-employed adults ages 30 to 60 years. Two articles reported data from the same study (Busselton Health Study) for different durations of followup. 228,229

Six studies (described in seven articles) reported the association with all-cause mortality; ^{220,221,} three with cardiovascular mortality; ^{50,226,227} two with cardiovascular events; ^{50,224} and one each with cancer-related mortality, ²²¹ stroke, ²²⁵ cognitive decline, ²¹⁹ and cognitive impairment or dementia. ²²² We found no eligible studies reporting on the association between AHI and quality of life, motor vehicle accidents, or headaches. Two studies that evaluated the association between AHI and stroke ^{230,231} and one that evaluated the association between AHI and cognitive function were excluded because of poor quality (**Appendix D Table 11**). ²³²

Nine of 11 studies were conducted in the United States, one was conducted in Spain, ⁵⁰ and one was conducted in Australia. ²²⁸ Most studies followed patients for 8 to 14 years; followup ranged from a mean of 3.4²²⁰ to 22 years. ²²¹ Three studies included only men; half of the studies included between 45 and 56 percent women. Two studies did not report the proportion of nonwhite participants; ^{50,228} other studies reported a range from 5 to 26 percent. Mean BMI ranged from 26 to 30 kg/m² in most studies. Most studies did not report mean AHI or mean ESS at baseline. The percentage of participants with diabetes ranged from 3 to 13 percent among studies reporting it.

Participants were generally untreated for OSA or analyses excluded those who were treated. Eight of the 11 studies reported either excluding persons who received treatment from the study or running additional analyses that excluded those who were treated; the percentage of participants who were treated was low, ranging from 0 to 9.9 percent. Two of the smallest included studies (total sample sizes of 393^{229} and 289^{223}) did not report the percentage who were treated for OSA but reasoned that any potential treatment would only have resulted in their data underestimating the true HR. One study reporting the association between AHI and stroke included 1.9 percent (102/5,422) who were treated with CPAP during the study and did not report sensitivity analyses that excluded those participants.

All-Cause Mortality

Six studies (described in seven articles) evaluated AHI as a predictor of all-cause mortality. 220,221,

 $^{223,226\text{-}229}$ These included two studies reporting on WSCS participants 221,226 and two articles (one study) reporting on different lengths of followup for the Busselton Health Study. 228,229 Sample sizes ranged from 289^{223} to $6,294.^{227}$ Mean duration of followup ranged from 3.4^{220} to 20 years. 229 Mean age ranged from 48^{226} to 78 years. 223

In multivariate analyses, all included studies reported that persons with severe or moderate to severe OSA at baseline had a higher risk of death. HRs ranged from 1.46^{227} to $6.24.^{228}$ Variables included in the models are detailed in **Appendix E Table 21**. Briefly, all included age and some medical conditions in the final model; all considered BMI (although it did not remain in the final model in one study); most included smoking, sex, race, hypertension or blood pressure, and diabetes. Our meta-analysis of five studies (using one of the two publications from the WSCS to avoid double-counting and using the article reporting longer followup for the Busselton Health Study) found that persons with severe or moderate to severe OSA died at about twice the rate of controls (**Figure 3**) (HR, 2.07 [95% CI, 1.48 to 2.91]). The analysis found moderate statistical heterogeneity (I^2 =58%), likely due to variation in AHI thresholds for the study groups (e.g., using 15, 20, or 30 to define the highest risk group), duration of followup, and approach to analyses (i.e., variables included in multivariate models).

Two studies using data from the SHHS 227 or the WSCS 226 assessed whether moderate (AHI, 15 to <30) or mild (AHI, 5 to <15) OSA is associated with mortality. Neither of the individual studies nor our pooled analyses found a statistically significant association between moderate or mild OSA and all-cause mortality (**Figure 3**).

Two of the included studies reported evidence for subgroups—either by sex and age^{227} or by presence of sleepiness. The former used the SHHS data (N=6,294) and reported that the association between an AHI of 30 or greater and mortality was only statistically significant for men age 70 years or younger (adjusted HR, 2.09 [95% CI, 1.31 to 3.33]) but not for men older than age 70 years (HR, 1.27 [95% CI, 0.86 to 1.86]) or for women of any age (HR, 1.40 [95% CI, 0.89 to 2.22]). The latter found that the association between an AHI of 20 or greater and death was limited to those with excessive daytime sleepiness (determined by self-report of having a problem with feeling sleepy or struggling to stay awake during the daytime \geq 3 or \geq 4 times a week) but was not significant for those without excessive daytime sleepiness (HR, 2.28 [95% CI, 1.46 to 3.57] vs. 0.74 [95% CI, 0.39 to 1.38]) compared with a reference group with an AHI of less than 20 and no excessive daytime sleepiness.

Cardiovascular Mortality

Three studies evaluated the association between AHI and cardiovascular mortality. 50,226,227 Sample sizes ranged from $1,522^{226}$ to $6,294.^{227}$ Mean duration of followup ranged from 8.2^{227} to 13.8 years. 226 Mean age ranged from 48^{226} to 63 years. 227

In multivariate analyses, all three studies reported that persons with severe or moderate to severe OSA at baseline had a higher risk of death (**Figure 4**). We did not pool data from these three studies because of substantial heterogeneity; the SHHS only reported data for men and used different AHI thresholds than the other two studies (combining moderate and severe OSA vs. reporting data for severe OSA separately). It reported the smallest association (men only: HR,

1.69 [95% CI, 1.13 to 2.52]) and noted that an association between moderate to severe OSA and cardiovascular mortality was not identified for women.²²⁷ For the other two studies, HRs ranged from 2.9 to 5.9. The strongest association was reported by the WSCS (HR, 5.9 [95% CI, 2.6 to 13.3]; when excluding those treated with CPAP: HR, 5.2 [95% CI, 1.4 to 19.2]).²²⁶ Variables included in the models are detailed in **Appendix E Table 21**. Briefly, all included age, BMI, smoking, and multiple medical conditions or used matching for age and BMI. Two of three included alcohol use, blood pressure, and cholesterol.

Cancer-Related Mortality

One publication used a 22-year followup of the WSCS cohort (N=1,522) to evaluate the association between AHI and cancer-related mortality. Participants had a mean age of 48 years, 45 percent were female, and mean BMI was 30 kg/m². Fifty participants had cancer-related deaths (eight from lung cancer; four each from colorectal, ovarian, and endometrial cancer; three each from brain, breast, and bladder cancer; and multiple other cancers causing one or two deaths each). The study reported a significant association between an AHI of 30 or greater and cancer-related mortality (HR, 4.8 [95% CI, 1.7 to 13.2]), and results suggested a doseresponse association between AHI and cancer-related mortality (**Appendix E Table 21**) (HR for mild OSA, 1.1 [95% CI, 0.5 to 2.7]; HR for moderate OSA, 2.0 [95% CI, 0.7 to 5.5]). The model included adjustment for age, sex, BMI, and smoking; additional adjustment for alcohol use, physical activity, educational status, diabetes, waist circumference, and sleep duration did not materially change results (data not reported). Similarly, analyses stratified for sleepiness and obesity found no clinically important differences. Analyses removing those treated with CPAP resulted in slightly increased HRs (data not reported).

Cardiovascular Events

Two studies following patients for approximately 8 to 10 years evaluated the association between AHI and cardiovascular events (**Appendix E Table 20**). Sample sizes were 1,651 and 4,422. One was conducted in Spain; one was conducted in the United States and reported on participants from the SHHS. Hean ages of participants were 50 and 63 years. One evaluated men only; slightly more than half were women in the other.

The two studies reported different outcomes. The Spanish study reported 144 total nonfatal cardiovascular events (including nonfatal myocardial infarction, nonfatal stroke, coronary bypass surgery, and percutaneous transluminal coronary angiography). In multivariate analyses, those with untreated severe OSA at baseline had a higher risk of events (OR, 3.17 [95% CI, 1.12 to 7.52]), adjusted for age; hypertension; presence of cardiovascular disease (ischemic heart disease, congestive heart disease, or cerebrovascular disease); diabetes; lipid disorders; smoking status; alcohol use; systolic and diastolic blood pressure; blood glucose; total cholesterol; triglycerides; and current use of antihypertensive, lipid-lowering, and antidiabetic drugs; they also matched for age and BMI.

The SHHS study reported 473 total incident coronary heart disease events (composite of first occurrence of myocardial infarction, coronary heart disease deaths, and revascularization procedures) and 308 total incident heart failure events.²²⁴ Neither incident coronary heart disease

nor incident heart failure were associated with OSA (of any severity) for men or women when adjusting for age, race, BMI, smoking, total and high-density lipoprotein cholesterol, lipid-lowering medications, diabetes mellitus, systolic and diastolic blood pressure, and use of antihypertensive medications (**Appendix F Figure 47** and **Appendix E Table 22**). However, in the subgroup of men age 70 years or younger, participants with an AHI of 30 or greater were more likely to develop coronary heart disease than those with an AHI less than 5 (adjusted HR, 1.68 [95% CI, 1.02 to 2.76]).

Stroke

One good-quality publication from the SHHS (N=5,422) evaluated the association between AHI and ischemic stroke over a median followup of 8.7 years. Participants in the various AHI categories had median ages of 62 to 75 years, 55 percent were female, and mean BMI was 28 kg/m². All participants were untreated for OSA. Incident ischemic strokes occurred in 193 participants. The study separated results by sex (**Appendix E Table 22**). For men, moderate to severe OSA (using AHI \geq 19, the highest quartile for the study participants, vs. AHI <4) was associated with ischemic stroke (HR, 2.86 [95% CI, 1.10 to 7.39]). For women, the study did not find a statistically significant association (HR, 1.21 [95% CI, 0.65 to 2.24]). HRs for severe OSA (AHI \geq 30) were not reported. The models adjusted for age, BMI, smoking status, systolic blood pressure, use of antihypertensive medications, diabetes status, and race (secondary analyses also addressed atrial fibrillation; including it did not materially change the findings).

Cognitive Impairment or Dementia

One study evaluated the association between AHI and cognitive impairment or dementia among 298 older women (mean age, 82 years). Mean BMI was 28 kg/m². Incident mild cognitive impairment or dementia occurred in 107 participants over a mean followup of 4.7 years. Participants with an AHI of 15 or greater had an increased risk of developing cognitive impairment or dementia compared with participants with an AHI less than 15 (OR, 1.85 [95% CI, 1.11 to 3.08]) when adjusted for age, race, BMI, education level, smoking status, presence of diabetes, presence of hypertension, antidepressant use, benzodiazepine use, and use of nonbenzodiazepine anxiolytics. Additional adjustment for baseline cognitive test scores strengthened the association (OR, 2.36 [95% CI, 1.34 to 4.13]).

Although we found no studies evaluating cognitive impairment or dementia per se among men, one study evaluated the association between AHI and *cognitive decline* among 2,636 community-dwelling men age 67 years or older in the Outcomes of Sleep Disorders in Men study. Cognitive decline was assessed using the Trails B and the Modified Mini-Mental State Examination. After 3.4 (median) years of followup, participants with an AHI of 15 or greater did not have an increased risk of cognitive decline compared with participants with an AHI less than 15 using either outcome measure (OR, 1.14 [95% CI, 0.84 to 1.54] and 0.99 [95% CI, 0.79 to 1.24], respectively) when adjusted for age, site, race, BMI, education, number of depressive symptoms, history of diabetes, history of stroke or transient ischemic attack, history of hypertension, history of coronary heart disease, history of Parkinson's disease, impairment in instrumental activities of daily living, benzodiazepine use, antidepressant use, self-reported health status, physical activity, alcohol use, and smoking status.

KQ 7. Harms of Screening or Diagnostic Testing

We found no eligible studies that addressed this question.

KQ 8. Harms Associated With Treatment

Reporting of harms in the included studies was sparse. Most did not report any information about harms. Twenty-two of the RCTs included in KQ 4 reported on harms associated with treatments for OSA. These included nine trials of CPAP, ^{141,145,150,163,166,167,176,180,183} eight of MADs, ^{180,189-191, 193,195,197,214} one of a very low energy diet, ²⁰⁷ four of airway surgeries, ^{198,199,201,203} and one of bariatric surgery. ²⁰⁰ Characteristics of all 22 studies have been described in previous sections of this report. Detailed results of studies reporting harms are provided in **Appendix E Tables 23–26**.

CPAP

Of the nine included RCTs, six compared CPAP with a sham device, two compared CPAP with usual care, ^{180,183} and one compared CPAP with an oral placebo capsule. ¹⁷⁶ Most studies enrolled fewer than 100 persons; one study ¹⁶⁶ enrolled 281 participants, and the APPLES trial ¹⁴⁵ enrolled 1,098 participants. The majority of enrollees were male, mean age ranged from 42 to 61 years, and most participants were overweight or obese (mean BMI, 27 to 39 kg/m²). Most of the studies followed patients for 8 to 12 weeks. In general, the adverse events related to CPAP treatment were likely short-lived and could be alleviated with discontinuation of CPAP or additional interventions. Overall, 2 to 47 percent of participants in trials reporting any harms had specific adverse events while using CPAP. These included oral or nasal dryness, eye or skin irritation, rash, epistaxis, and pain.

Across four studies, ^{150,167,180,183} 11 percent of patients receiving therapeutic CPAP reported irritation compared with 1 percent of control patients. In one study, ¹⁴⁵ rash was reported by significantly more patients receiving therapeutic CPAP than participants receiving sham (18% vs. 11%; p=0.001). One study reported three nosebleeds: one in the CPAP group (2%) and two in the control group (4%). ¹⁸³ In two studies, 12 and 47 percent of patients reported oral or nasal dryness in the therapeutic CPAP group compared with no reports in the usual care arm. ^{176,180} Pain was reported in two trials. ^{167,176} In one, there was one report each (2%) of ear pain and noncardiac chest pain in the therapeutic CPAP arm; no control patients reported pain. ¹⁶⁷ In the other, no active CPAP patients reported pain compared with one control patient (3%) who reported chest and arm pain. ¹⁷⁶ None of the studies reported the need for additional sleep medication, excess salivation, or tooth damage or loosening.

MADs

Eight RCTs reported harms of MAD use. ^{180,189-191,193,195,197,214} Most studies lasted 4 to 6 weeks, one lasted a single week, ²¹⁴ one lasted 10 weeks, ¹⁸⁰ one lasted 12 weeks, ¹⁹⁰ and one lasted 24 weeks. ¹⁸⁹ Across three studies that reported any discontinuation because of adverse events, 7 percent of active MAD patients discontinued use due to harms compared with 1 percent of control patients. ^{180,191,197} No studies reported rashes, claustrophobia, nosebleeds, or the need for

additional sleep medications.

In four studies, rates of oral dryness ranged from 5 to 33 percent with active MADs compared with 0 to 3 percent with control. Five studies reported rates of excess salivation. Three of these reported excessive salivation rates ranging from 23 to 68 percent in the active treatment arms compared with 0 to 3 percent in the sham or no treatment groups. One reported a higher rate of excessive salivation in the sham MAD arm than in the active treatment arm (58% and 36%, respectively). The remaining study reported no significant difference in excess salivation between MAD and sham groups but did not report numbers of patients. Page 192

All eight RCTs reporting harms included some report of oral mucosal, dental, or jaw symptoms, including mucosal or dental pain, discomfort or tenderness, mucosal erosions, jaw or temporomandibular joint pain or discomfort that occurred either upon waking or persistent, jaw occlusal changes, and jaw muscle discomfort. In seven studies, adverse oral mucosal, dental, or jaw symptoms ranged from 17 to 74 percent in MAD groups compared with 0 to 17 percent in sham, no treatment, or conservative management groups. One study reported only that there was a statistically significant difference in jaw discomfort and tooth tenderness in the MAD group compared with sham. ¹⁹²

Airway Surgery

Four included studies assessed harms of surgical treatment: one each of single-session soft palate radiofrequency surgery, ¹⁹⁸ TCRFTA, ²⁰³ UPPP, ¹⁹⁹ and LAUP. ²⁰¹ Two of the trials had sham surgery comparison groups; ^{198,203} the rest compared surgery with no treatment or usual care. Sample size was fewer than 70 in all trials, and the majority of patients were male, overweight, and middle aged. No studies reported perioperative death, nerve palsy, need for additional emergency surgery, cardiovascular events, respiratory failure, or airway stenosis.

Overall, less than 1 to 81 percent of participants in trials reporting any harms had harms from surgery. These included postoperative bleeding; rehospitalization; difficulty speaking, breathing, drinking, opening the mouth, and swallowing; change in vocal quality; hematomas; ulcerations; infections; temporary nasal regurgitation; and pain. In the trial that compared LAUP with no treatment, ²⁰¹ 17 participants (81%) reported moderate to severe pain, nine (33%) reported mild to severe hemorrhaging, one (5%) reported a change in vocal quality, five (24%) reported temporary nasal regurgitation, and four (19%) reported mild infections. In the Sleep Apnoea Karolinska UPPP (SKUP³) trial, ¹⁹⁹ four UPPP patients (13%) reported pain and two (6%) reported postoperative bleeding. In the trial that compared TCRFTA with sham surgery, patients in both arms reported similar increases in pain 1 week after the procedure (up to 1.6 to 1.8 out of 10: difference was not statistically significant). Pain ratings returned to baseline by 3 weeks postprocedure. Rates of other harms did not differ between groups either. There were six reported hematomas: three in the treatment group (12%) and three in the control group (11%), and one ulceration reported in the treatment group. The trial of single-session soft palate radiofrequency surgery 198 reported that participants in the treatment group gave significantly higher ratings of pain, speaking problems, and swelling sensations (within 1 to 6 days after surgery) than sham surgery patients (data not reported, shown in figure only).

Bariatric Surgery

In the trial of bariatric surgery compared with a conventional weight loss program,²⁰⁰ one surgical patient was rehospitalized because of an acute proximal gastric pouch dilation causing obstructive symptoms and requiring elective laparoscopic replacement of the adjustable gastric banding.

Weight Loss, Diet, and Exercise Interventions

The single weight loss study that reported harms compared a very low energy diet with usual diet over 9 weeks. ²⁰⁷ In the very low energy diet group, less than 10 percent of patients reported each of the following: constipation, elevated alanine aminotransferase concentrations, dizziness, gout, and dry lips.

Chapter 4. Discussion

Summary of Evidence

Table 6 provides a summary of findings in this evidence review. This table is organized by KQ, then by questionnaire, prediction tool, test, or intervention and provides a summary of outcomes along with a description of precision, quality, and applicability.

Evidence for Benefit and Harms of Screening

We did not identify any eligible studies directly evaluating the effectiveness or adverse outcomes of screening for OSA compared with no screening. Potential harms include overdiagnosis and overtreatment for asymptomatic persons (with AHI ≥5) who would never have had symptoms of or problems from OSA and costs and additional testing (e.g., future PSG to follow patients over time). Furthermore, we found no studies evaluating the effect of OSA screening on psychological outcomes such as distress due to labeling or stigma.

Screening Questionnaires and Clinical Prediction Tools

We found very few eligible studies evaluating the accuracy of questionnaires or prediction tools for distinguishing persons in the general population who are more or less likely to have OSA. The only screening approach with at least two included studies suggesting possible accuracy was the MVAP score followed by an in-home PM for detecting severe OSAS (AHI≥30 and ESS >10). AUC was approximately 0.8, with sensitivity around 90 percent and specificity ranging from 72 to 76 percent. 103,104 Although this approach may have promise for screening, the evidence was limited by potential spectrum bias, ²³³⁻²³⁷ with oversampling of high-risk participants and those with OSA and OSAS, which may substantially overestimate the accuracy that would be achieved in the general population. Such overestimation was illustrated by a study evaluating the Berlin Questionnaire, which reported a reduction in sensitivity from 79 to 37 percent after adjusting for bias in the sampling procedure to report estimated screening properties for the general population. ¹⁰² The included studies evaluating MVAP had a high prevalence of OSAS ($\ge 25\%$), 103,104 OSA (AHI ≥ 5 for 80% and mean AHI of 22.5), 104 and sleepiness (74%). 103 In addition, none prospectively measured calibration, often assessed by plotting the predicted risk versus an observed event rate, ¹⁰⁷ and none assessed clinical utility for improving health outcomes.

We included fewer studies evaluating questionnaires or clinical prediction tools than some previously published reviews and guidelines, ^{1,8,238} primarily because of our requirement that studies enroll asymptomatic adults or persons with unrecognized symptoms of OSA; referral populations (e.g., to sleep clinics) were not eligible. The focus of previous reviews and guidelines was generally on diagnostic testing (of adults with symptoms suggestive of disordered sleep) rather than on screening (of asymptomatic persons or those with unrecognized symptoms). Nevertheless, those reviews and guidelines generally reported low overall quality/strength of evidence for questionnaires and prediction tools.

Accuracy and Reliability of Diagnostic Tests

We found limited evidence evaluating Type II PMs (3 studies; total of 160 participants). For Type III and IV monitors, existing literature reveals some inconsistency, with wide ranges of sensitivity and specificity (**Table 5**), especially for single-channel Type IV monitors for detecting moderate to severe OSA. Nevertheless, many studies reported moderate to high LR+ (>5) and moderate to low LR- (<0.2), and previous reviews and guidelines concluded that moderate-quality evidence shows that Type III and IV monitors are "generally accurate to diagnose OSA, but have a wide and variable bias in estimating the actual AHI." Studies published more recently for Type IV PMs have resulted in greater heterogeneity of methods and findings (than found by prior reviews) and wider ranges of sensitivity and specificity. Evidence for Type IV PMs is limited by inconsistency and imprecision. In addition, unlike other types of PMs, Type IV monitors are limited by their inability to differentiate obstructive and central events. We found scant data addressing reliability of PMs of any type.

Barriers to undergoing diagnostic testing for OSA include limited availability of PSG, ability to tolerate testing, inconvenience, and costs. ²³⁹ It is unclear how often those barriers prevent completion of testing. Mean time from referral to sleep clinic evaluation in the United States has wide variation, ranging from a few weeks to more than a year, with longer wait times for university, state, and federal government sleep laboratory facilities. ²³⁹ That time may not include the time from clinic evaluation to completion of diagnostic testing, which may occur at a subsequent visit. The majority of diagnostic evaluations are split-night PSG. ²³⁹

Benefits and Harms of Treatment for OSA

Our review found consistent evidence from good- and fair-quality RCTs that CPAP effectively reduces AHI to normal (<5) or near-normal (<10) levels, reduces excessive sleepiness, and reduces blood pressure. However, the clinical significance of mean reductions of 2 points on the ESS and 2 to 3 points for blood pressure measures is somewhat uncertain. For sleepiness, our data suggest a clinically significant reduction in most included trials because 85 percent of the trials in our meta-analysis for ESS that had mean baseline ESS scores of 10 or greater (indicating excessive daytime sleepiness) reported mean endpoint ESS scores in the normal range of less than $10^{240,241}$ for the CPAP groups (mean endpoint ESS <8). However, the threshold for a clinically significant change in ESS is somewhat uncertain. Although recent systematic reviews noted that experts consider a 1-point change in ESS clinically significant, other sources suggest that a greater change, of at least 3 or 4 points, should be the clinically significant threshold. For example, some trials that use ESS as an outcome have considered a 4-point or greater change in ESS as clinically significant for their sample size calculations or interpretation of findings. 242-244 Also, the American College of Chest Physicians' outcome experts evaluating the ESS informally stated that a clinically significant change in the ESS is probably at least 3 points; a specific example cited was that a reduction of 1 point (e.g., from 3 [high] to 2 [moderate]) on two out of seven ESS domains was unlikely clinically relevant. ²⁴⁵ Regardless of what constitutes a clinically significant change, potential bias from the subjective nature of the ESS remains (potential overreporting of improvements in sleepiness after receiving treatment), and some authors have raised concerns about its construct validity (i.e., uncertainty regarding whether it is an accurate measure of sleepiness). 246-248 Multiple studies have reported associations between

sleepiness and health outcomes, although many of them did not use the ESS to measure sleepiness. One study that used the nationwide population-based SHHS²⁴⁹ (5,816 participants; mean age, 63 years; 52.5% women) reported that excessive daytime sleepiness was strongly associated with reduced quality of life after adjusting for confounding variables (e.g., age, ethnicity) for both sexes. Sleepiness has also been linked to motor vehicle crashes in multiple observational studies. 37,39,250 A cross-sectional study of 913 employed adults from the general U.S. population (enrolled in the WSCS) found that men and women with an AHI greater than 15 were significantly more likely to have multiple accidents over the past 5 years (OR, 7.3 [95% CI, 1.8 to >25], adjusted for age, miles driven, and sex) using state records for motor vehicle accident history (retrospectively).³⁷ The study was limited by the retrospective design and potential confounding. Considering education and usual alcohol consumption did not alter the OR. However, none of their measures of perceived sleepiness (including those derived from ESS) were significantly related to accident occurrence. A cross-sectional study of 2,342 Australian commercial vehicle drivers found that the sleepiest 5 percent of drivers (based on ESS) had about twice the odds of a self-reported motor vehicle accident over the previous 3 years (OR, 1.91 [95% CI, 1.09 to 3.35]) and even greater odds of multiple accidents over the previous 3 years (OR, 2.67 [95% CI, 1.29 to 5.52]). 250

For blood pressure reduction, some authors suggest that a difference of more than 9/10 mm Hg (systolic/diastolic) is clinically meaningful for individuals. However, across a population, guidelines have suggested that much smaller reductions of 2 to 3 mm Hg for systolic blood pressure could result in a clinically significant reduction in cardiovascular mortality (by 4% to 5% for coronary heart disease and 6% to 8% for stroke). ²⁵⁴

We found that MADs and weight loss programs also reduce AHI and excessive sleepiness, although the magnitudes of effects were generally less than with CPAP, and blood pressure reduction was not established. Although we did not evaluate head-to-head studies (e.g., directly comparing MADs with CPAP), previous comparative effectiveness reviews examining head-to-head trials reported smaller effect sizes for MADs than for CPAP for reducing AHI. Evidence on surgical treatments was limited by unknown consistency and imprecision, because only a single RCT evaluated each surgical technique studied.

Evidence on most health outcomes was limited (i.e., too few RCTs reported or too few events occurred to make conclusions about the effectiveness for reducing mortality, cardiovascular events, or motor vehicle accidents). However, our meta-analysis for sleep-related quality of life found a significant benefit for CPAP, albeit with a small effect size (SMD, 0.28 [95% CI, 0.14 to 0.42]). The effect size was slightly greater among those with excessive daytime sleepiness at baseline but still small (0.33 [95% CI, 0.17 to 0.50]).

Reporting of harms from treatment in the included studies was sparse. Most did not report any information about harms. In general, the adverse events related to CPAP treatment were likely short-lived and could be alleviated with discontinuation of CPAP or additional interventions. Common adverse effects included oral or nasal dryness, eye or skin irritation, rash, epistaxis, and pain. Common adverse effects from MADs included oral or nasal dryness, excessive salivation, and jaw discomfort. No included studies reported on psychosocial harms of treatment, such as marital stress due to disruption of partner sleeping (e.g., because of the noise of CPAP).

Such adverse effects may limit adherence to treatment. A wide range of adherence to CPAP usage recommendations has been reported, from about 30 to 85 percent. A systematic review for AHRQ's Effective Healthcare Program reported that cohort studies with multivariable analyses for predictors of nonadherence show that 14 to 32 percent of patients discontinue CPAP over 4 years and patients use CPAP for an average of 5 hours per night; data were too limited to provide adherence rates for MADs. The review also found that AHI and ESS are independent predictors of CPAP adherence. A recent Cochrane systematic review of 33 studies (2,047 participants) found low- to moderate-quality evidence that three types of interventions can increase CPAP machine usage in CPAP-naive participants with moderate to severe OSAS. These included supportive interventions that encourage persons to continue to use their CPAP machines, short-term educational interventions, and behavioral therapy. However, they noted that trials did not assess persons who have struggled to adhere to treatment, and the impact of improved CPAP usage on daytime sleepiness, quality of life, and long-term cardiovascular risks remains unclear.

Association Between AHI and Health Outcomes

Consistent, precise evidence from prospective cohort studies that focused on community-based participants supports the association between AHI and all-cause mortality. Although the cohort studies controlled for many potential confounders, residual confounding due to health-related factors that are associated with OSA (e.g., physical activity, diet) and that were generally not accounted for is possible. We found that persons with severe (AHI \geq 30) or moderate to severe OSA (AHI \geq 15) die at about twice the rate of controls when pooling data from multivariate analyses. We also found consistent evidence showing that persons with severe or moderate to severe OSA have increased cardiovascular mortality. The only studies reporting subgroup analyses suggested that the association may only be present for men age 70 years or younger (but not for women or for men older than age 70 years)²²⁷ and for those with excessive daytime sleepiness. These data do not prove causality, and residual confounding is a possibility, but the included studies were well designed and incorporated many potential confounders in their multivariate analyses.

Limitations

This review is limited in the ability to describe the direct evidence on the effectiveness or harms of screening for OSA because we identified no studies comparing screened and unscreened populations. Therefore, we attempted to review literature that might establish an indirect chain of evidence from multiple questions that link screening to health outcomes (KQs 2 through 8). For the first question in that indirect pathway, we found limited evidence that one screening approach (MVAP followed by an in-home PM) might be useful to screen for severe OSAS, but the evidence was limited by potential spectrum bias, and no studies prospectively assessed calibration or clinical utility for improving health outcomes.

We required studies to use in-laboratory PSG as the reference standard for KQs 2 and 3. This is similar to the approach used in previous systematic reviews. For KQ 2, this resulted in exclusion of a large study from the SHHS that included 4,770 community participants and reported on the

STOP, STOP-Bang, and ESS questionnaires. It reported sensitivity from 39 percent (ESS \geq 11) to 87 percent (STOP-Bang) and specificity from 43 percent (STOP-Bang) to 71 percent (ESS) for predicting moderate to severe OSA (respiratory disturbance index \geq 15). LR- ranged from 0.3 to 0.85, indicating minimal to small decreases in the likelihood of disease, and LR+ ranged from 1.4 to 1.5, indicating a minimal increase in the likelihood of disease.

We did not evaluate the accuracy of individual physical examination findings. We required questionnaires or clinical prediction tools to have multiple factors because previous systematic reviews have found limited utility of individual findings. A recent review of clinical examination accuracy, which was not limited to asymptomatic patients or those with unrecognized symptoms, found that (among individual symptoms or signs) the most useful observation for identifying patients with OSA was nocturnal choking or gasping, imparting a small increase in the likelihood of disease (summary likelihood ratio, 3.3 [95% CI, 2.1 to 4.6], when the diagnosis was established by AHI ≥10). The review found that many symptoms and signs provide limited information in determining the likelihood of OSA.

We did not evaluate every possible outcome. We chose the outcomes that are most commonly reported and most potentially clinically meaningful. We did not include the Multiple Sleep Latency Test, for example, which was reported by a relatively small number of trials and did not show a clear benefit of CPAP, according to a prior systematic review. For KQ 6, we did not evaluate the association between AHI and incident diabetes. A 2011 systematic review concluded that there may be an association but the strength of evidence was low and the association may be confounded by obesity. A more recent (2014) systematic review concluded that the association between OSA and incident diabetes is uncertain. 92

Our review was limited to the evaluation of the most common treatments for OSA. We did not evaluate some treatments that may have potential benefits, such as oropharyngeal exercises, ^{257,258} playing the didgeridoo, or using nasal steroids for treating allergic rhinitis (or similar treatments that might secondarily improve OSA by treating another condition). ²⁵⁹⁻²⁶¹ Nevertheless, previous reviews and clinical practice guidelines suggest that the potential benefits of such treatments are limited or uncertain. ^{1,76}

We limited eligible study designs to RCTs for evaluating treatment benefits. It is possible that this approach excluded some studies that might provide useful evidence for certain treatments, although such evidence has a higher risk of bias because of potential selection bias and confounding. For example, the Swedish Obesity Study was a nonrandomized study that included almost 3,500 participants.²⁶² Over 2-year followup after bariatric surgery, it found marked improvement in sleep apnea symptoms for patients treated with bariatric surgery than for a conservatively treated control group. Other examples include observational studies focused on motor vehicle accidents. A meta-analysis of such observational studies that evaluated the association between CPAP and motor vehicle accidents identified nine retrospective before-after studies, all without control groups (and all studies we consider to have a high risk of bias mainly because of the risk of selection bias and confounding), and reported a reduction in crash risk following treatment (risk ratio, 0.28 [95% CI, 0.22 to 0.35]).²⁶³ A recent observational study that used the Swedish Traffic Accident Registry reported that CPAP use for 4 or more hours per night was associated with a reduction of accident incidence (from 7.6 to 2.5 accidents/1,000

drivers/year).²⁶⁴

Some of our meta-analyses of RCTs evaluating benefits of CPAP (KQ 4) found substantial statistical heterogeneity. We did not find a clear explanation for the statistical heterogeneity, but possible explanations include variation in CPAP devices (e.g., machines, masks, humidifiers, filters, cushions), participant characteristics (e.g., studies with lower baseline mean AHI finding smaller effect sizes because of ceiling effects), apnea and hypopnea definitions, adherence, study duration, study methods, or chance. Definitions of apnea and hypopnea vary in published studies. For example, various cutpoints for oxygen desaturation are used to define hypopnea; some studies define hypopnea as requiring either oxygen desaturation or an electroencephalogram arousal, and some studies do not clearly define hypopnea. A publication from the SHHS demonstrated the potential impact of variation in hypopnea definitions on prevalence of OSA, reporting that varying the definition in an otherwise healthy older population resulted in the prevalence increasing from roughly 50 percent (using the Centers for Medicare & Medicaid Services definition of 4% oxygen desaturation) to greater than 80 percent (using the American Academy of Sleep Medicine 2012 definition of either a 3% oxygen desaturation or an electroencephalogram arousal). 265,266 We did not abstract detailed information about apnea and hypopnea definitions from each study and did not conduct subgroup analyses or meta-regression to explore the specific contribution of every possible factor that may explain some of the statistical heterogeneity identified by our meta-analyses. Regardless of the cause of the statistical heterogeneity, all trials reported statistically significant improvement for AHI (with endpoint AHI values universally ≤10 for CPAP-treated groups), and the vast majority of trials that included participants with excessive daytime sleepiness at baseline (ESS ≥10) reported mean endpoint ESS scores well into the normal range (<8) for the CPAP-treated groups.

For the association between AHI and health outcomes, it is unclear whether some of the studies excluded central apnea from their analyses, and it is possible that central apnea may account for some small portion of the reported associations between AHI and health outcomes. Of note, one publication from the SHHS reported that the association between AHI and incidental myocardial infarction was due to increases in both obstructive and central apnea events. ²⁶⁷ However, predominant central apnea is relatively rare, seen in less than 10 percent of patients presenting for PSG and in less than 1 percent of the general population. ^{16,17} Among the studies in our meta-analysis analyzing the relationship between AHI and all-cause mortality, two studies reported no information about central events (and it is unclear whether central events were included in their analyses), ^{220,229} one reported just that there were few central events, ²²⁶ and two provided more detailed results. ^{223,227} Among those that provided more detailed results, one reported data from the SHHS and found that the central apnea index was not associated with mortality in men or women, ²²⁷ and the other reported that a sensitivity analysis excluding the 4 percent of patients with predominately central apnea resulted in no meaningful change in findings. ²²³

For harms of treatment (KQ 8), we required studies to have a control group to be eligible. This resulted in the exclusion of large uncontrolled observational studies, which may be useful for determining rates of harms from surgical procedures. For example, a large study of patients who underwent UPPP reported a 0.2 percent (7/3,130) perioperative mortality rate and a serious complication rate of 1.6 percent (51/3,130), including reintubation, pneumonia, hemorrhage, cardiovascular complication, emergency tracheotomy, and mechanical ventilation for more than

Future Research Needs

To better understand the potential effectiveness of screening for OSA, randomized trials of asymptomatic persons (or those with unrecognized symptoms) that directly compare screening with no screening and assess health outcomes are needed (i.e., trials that address KQ 1, the overarching question). To better determine the accuracy of screening questionnaires and clinical prediction tools when used in the general population (related to our KQ 2), additional studies are needed; such studies should aim to include a representative community population, to avoid spectrum bias, and to further evaluate promising screening approaches (e.g., MVAP followed by in-home PM) as well as other approaches for which we found limited or no eligible studies, such as the STOP-Bang Questionnaire. A recently published systematic review and meta-analysis concluded that the STOP-Bang Questionnaire has good performance for screening for OSA in sleep clinic and surgical populations. ²⁶⁹ However, it did not identify studies with representative community populations that compared STOP-Bang with PSG. Of the 17 included studies, 11 were from sleep clinic populations (not eligible for our review), three were from surgical populations, and three were from other populations. Of the three from surgical populations, we excluded one because of poor quality,⁶⁹ one because of ineligible comparator⁷⁰ as it compared STOP-Bang findings with a PM (rather than PSG), and one because of ineligible country²⁷⁰ (a small study of 40 patients undergoing coronary artery bypass graft or abdominal surgery in Brazil). Of the three studies from other populations, one was from the general population, one from bus drivers, and one from patients with renal failure. These were excluded from our review for the following reasons: ineligible comparator (it compared findings with a PM), ²⁵⁶ ineligible country (study of 85 Turkish bus drivers), ²⁷¹ and ineligible comparison (it compared findings with a PM among 172 patients with renal failure). 272

More studies are needed that assess the reliability of PMs for home use, particularly studies that enroll patients representative of the general population. Trials are needed that evaluate whether CPAP and other common treatments improve health outcomes (except for sleep-related quality of life), such as cardiovascular events. Studies are needed that determine whether findings (for diagnostic test accuracy and treatment benefits) differ for subgroups defined by age, sex, BMI, or OSA severity.

Two documents produced for AHRQ's Effective Healthcare Program specifically address future research needs related to diagnosis²⁷³ and treatment²⁷⁴ of OSA. To determine priorities, the authors engaged 21 to 22 panel members representing patients and the public, providers, purchasers of health care, payers, policymakers, and principal investigators. Some of the high-priority future research needs that are relevant to our review included determination of the prognostic accuracy of clinical prediction rules to predict clinical outcomes; assessment of the impact of treatment on major long-term clinical outcomes, including mortality, cardiovascular disease, and diabetes; and trials of different sleep apnea treatments based on patient characteristics (trials of CPAP and non-CPAP treatments stratified by disease severity).

Conclusion

There is uncertainty about the clinical utility of all potential screening tools. Although screening with MVAP followed by an in-home PM may have promise for accurately distinguishing persons in the general population who are more or less likely to have OSA, current data are limited by potential spectrum bias, with oversampling of high-risk participants and those with OSA and OSAS. Further, we found no studies that prospectively evaluated screening questionnaires or clinical prediction tools to report calibration or clinical utility for improving health outcomes. Multiple treatments for OSA improve intermediate outcomes—CPAP effectively reduces AHI to normal or near-normal levels, reduces excessive sleepiness, and reduces blood pressure; MADs and weight loss programs also reduce AHI and excessive sleepiness, although the magnitudes of effects were generally less than with CPAP. Although good evidence has established that persons with severe or moderate to severe OSA die at twice the rate of controls, trials of CPAP and other treatments have not satisfactorily evaluated whether treatment reduces mortality or improves most other health outcomes, barring evidence of some possible benefit for sleep-related quality of life.

RTI-UNC EPC

References

- 1. Balk EM, Moorthy D, Obadan NO, et al. Diagnosis and Treatment of Obstructive Sleep Apnea in Adults. Comparative Effectiveness Review No. 32. (Prepared by Tufts Evidence-based Practice Center under Contract No. 290-2007-10055-1). AHRQ Publication No. 11-EHC052-EF. July 2011.
- 2. Centers for Medicare & Medicaid Services. National Coverage Determination (NCD) for Continuous Positive Airway Pressure (CPAP) Therapy for Obstructive Sleep Apnea (OSA) (240.4). August 4, 2008 13 April 2016.
- 3. American Academy of Sleep Medicine. Diagnostic and Coding Manual. 2nd Edition., Westchester, IL: American Academy of Sleep Medicine; 2005.
- 4. Lowe AA, Ono T, Ferguson KA, et al. Cephalometric comparisons of craniofacial and upper airway structure by skeletal subtype and gender in patients with obstructive sleep apnea. Am J Orthod Dentofacial Orthop. 1996 Dec;110(6):653-64. PMID: 8972813.
- 5. Victor LD. Obstructive sleep apnea. Am Fam Physician. 1999 Nov 15;60(8):2279-86. PMID: 10593319.
- 6. Horner RL, Mohiaddin RH, Lowell DG, et al. Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur Respir J. 1989 Jul;2(7):613-22. PMID: 2776867.
- 7. Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000 Dec 20;284(23):3015-21. Epub: 2000/12/21. PMID: 11122588.
- 8. Myers KA, Mrkobrada M, Simel DL. Does this patient have obstructive sleep apnea? The Rational Clinical Examination systematic review (Structured abstract). JAMA. 2013;310(7):731-41. PMID: DARE-12013049250.
- 9. Duran J, Esnaola S, Rubio R, et al. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med. 2001 Mar;163(3 Pt 1):685-9. PMID: 11254524.
- 10. Newman AB, Foster G, Givelber R, et al. Progression and regression of sleep-disordered breathing with changes in weight: the Sleep Heart Health Study. Arch Intern Med. 2005 Nov 14;165(20):2408-13. PMID: 16287771.
- 11. Young T, Peppard PE, Taheri S. Excess weight and sleep-disordered breathing. J Appl Physiol (1985). 2005 Oct;99(4):1592-9. PMID: 16160020.
- 12. Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008 Sep 2;118(10):1080-111. PMID: 18725495.
- 13. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002 May 1;165(9):1217-39. PMID: 11991871.

- 14. Young T, Shahar E, Nieto FJ, et al. Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study. Arch Intern Med. 2002 Apr 22;162(8):893-900. PMID: 11966340.
- 15. Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993 Apr 29;328(17):1230-5. PMID: 8464434.
- 16. Bixler EO, Vgontzas AN, Ten Have T, et al. Effects of age on sleep apnea in men: I. Prevalence and severity. Am J Respir Crit Care Med. 1998 Jan;157(1):144-8. PMID: 9445292.
- 17. Bixler EO, Vgontzas AN, Lin HM, et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med. 2001 Mar;163(3 Pt 1):608-13. PMID: 11254512.
- 18. Tishler PV, Larkin EK, Schluchter MD, et al. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA. 2003 May 7;289(17):2230-7. Epub: 2003/05/08. PMID: 12734134.
- 19. Banhiran W, Junlapan A, Assanasen P, et al. Physical predictors for moderate to severe obstructive sleep apnea in snoring patients. Sleep Breath. 2014 Mar;18(1):151-8. PMID: 23703693.
- 20. White DP, Younes MK. Obstructive sleep apnea. Compr Physiol. 2012 Oct;2(4):2541-94. PMID: 23720258.
- 21. Gungor AY, Turkkahraman H, Yilmaz HH, et al. Cephalometric comparison of obstructive sleep apnea patients and healthy controls. Eur J Dent. 2013 Jan;7(1):48-54. PMID: 23408768.
- 22. Young T, Finn L, Austin D, et al. Menopausal status and sleep-disordered breathing in the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2003 May 1;167(9):1181-5. PMID: 12615621.
- 23. Wetter DW, Young TB, Bidwell TR, et al. Smoking as a risk factor for sleep-disordered breathing. Arch Intern Med. 1994 Oct 10;154(19):2219-24. PMID: 7944843.
- 24. Kashyap R, Hock LM, Bowman TJ. Higher prevalence of smoking in patients diagnosed as having obstructive sleep apnea. Sleep Breath. 2001 Dec;5(4):167-72. PMID: 11868156.
- 25. Hoflstein V. Relationship between smoking and sleep apnea in clinic population. Sleep. 2002 Aug 1;25(5):519-24. Epub: 2002/08/02. PMID: 12150318.
- 26. Conway SG, Roizenblatt SS, Palombini L, et al. Effect of smoking habits on sleep. Braz J Med Biol Res. 2008 Aug;41(8):722-7. Epub: 2008/09/18. PMID: 18797708.
- 27. Peppard PE, Austin D, Brown RL. Association of alcohol consumption and sleep disordered breathing in men and women. J Clin Sleep Med. 2007 Apr 15;3(3):265-70. Epub: 2007/06/15. PMID: 17561593.
- 28. Kang K, Seo JG, Seo SH, et al. Prevalence and related factors for high-risk of obstructive sleep apnea in a large korean population: results of a questionnaire-based study. J Clin Neurol. 2014 Jan;10(1):42-9. Epub: 2014/01/28. PMID: 24465262.
- 29. Scanlan MF, Roebuck T, Little PJ, et al. Effect of moderate alcohol upon obstructive sleep apnoea. Eur Respir J. 2000 Nov;16(5):909-13. Epub: 2001/01/12. PMID: 11153591.
- 30. Lofaso F, Coste A, d'Ortho MP, et al. Nasal obstruction as a risk factor for sleep apnoea syndrome. Eur Respir J. 2000 Oct;16(4):639-43. Epub: 2000/12/06. PMID: 11106205.

- 31. Caples SM, Gami AS, Somers VK. Obstructive sleep apnea. Ann Intern Med. 2005 Feb 1;142(3):187-97. Epub: 2005/02/03. PMID: 15684207.
- 32. Bixler EO, Vgontzas AN, Lin HM, et al. Association of hypertension and sleep-disordered breathing. Arch Intern Med. 2000 Aug 14-28;160(15):2289-95. Epub: 2000/08/06. PMID: 10927725.
- 33. Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013 May 1;177(9):1006-14. Epub: 2013/04/17. PMID: 23589584.
- 34. Young T, Palta M, Dempsey J, et al. Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ. 2009 Aug;108(5):246-9. Epub: 2009/09/12. PMID: 19743755.
- 35. Young T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. JAMA. 2004 Apr 28;291(16):2013-6. Epub: 2004/04/29. PMID: 15113821.
- 36. Horstmann S, Hess CW, Bassetti C, et al. Sleepiness-related accidents in sleep apnea patients. Sleep. 2000 May 1;23(3):383-9. Epub: 2000/05/16. PMID: 10811382.
- 37. Young T, Blustein J, Finn L, et al. Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep. 1997 Aug;20(8):608-13. Epub: 1997/08/01. PMID: 9351127.
- 38. Wu H, Yan-Go F. Self-reported automobile accidents involving patients with obstructive sleep apnea. Neurology. 1996 May;46(5):1254-7. Epub: 1996/05/01. PMID: 8628462.
- 39. Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J. The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med. 1999 Mar 18;340(11):847-51. PMID: 10080847.
- 40. George CF, Nickerson PW, Hanly PJ, et al. Sleep apnoea patients have more automobile accidents. Lancet. 1987 Aug 22;2(8556):447. Epub: 1987/08/22. PMID: 2887740.
- 41. Findley LJ, Unverzagt ME, Suratt PM. Automobile accidents involving patients with obstructive sleep apnea. Am Rev Respir Dis. 1988 Aug;138(2):337-40. Epub: 1988/08/01. PMID: 3195832.
- 42. George CF, Smiley A. Sleep apnea and automobile crashes. Sleep. 1999 Sep 15;22(6):790-5. Epub: 1999/10/03. PMID: 10505825.
- 43. Quan SF, Wright R, Baldwin CM, et al. Obstructive sleep apnea-hypopnea and neurocognitive functioning in the Sleep Heart Health Study. Sleep Med. 2006 Sep;7(6):498-507. Epub: 2006/07/04. PMID: 16815753.
- 44. Sjosten N, Vahtera J, Salo P, et al. Increased risk of lost workdays prior to the diagnosis of sleep apnea. Chest. 2009 Jul;136(1):130-6. Epub: 2009/03/26. PMID: 19318680.
- 45. Omachi TA, Claman DM, Blanc PD, et al. Obstructive sleep apnea: a risk factor for work disability. Sleep. 2009 Jun;32(6):791-8. Epub: 2009/06/24. PMID: 19544756.
- 46. Accattoli MP, Muzi G, dell'Omo M, et al. [Occupational accidents, work performance and obstructive sleep apnea syndrome (OSAS)]. G Ital Med Lav Ergon. 2008 Jul-Sep;30(3):297-303. Epub: 2008/12/17. PMID: 19069234.
- 47. Moyer CA, Sonnad SS, Garetz SL, et al. Quality of life in obstructive sleep apnea: a systematic review of the literature. Sleep Med. 2001 Nov;2(6):477-91. Epub: 2003/11/01. PMID: 14592263.
- 48. Yeboah J, Redline S, Johnson C, et al. Association between sleep apnea, snoring, incident cardiovascular events and all-cause mortality in an adult population: MESA. Atherosclerosis. 2011 Dec;219(2):963-8. Epub: 2011/11/15. PMID: 22078131.

- 49. Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001 Jan;163(1):19-25. Epub: 2001/02/24. PMID: 11208620.
- 50. Marin JM, Carrizo SJ, Vicente E, et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005 Mar 19-25;365(9464):1046-53. PMID: 15781100.
- 51. Javaheri S, Parker TJ, Liming JD, et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation. 1998 Jun 2;97(21):2154-9. Epub: 1998/06/17. PMID: 9626176.
- 52. Le Jemtel TH, Jelic S. Seek and treat obstructive sleep apnea in heart failure. J Am Coll Cardiol. 2007 Apr 17;49(15):1632-3. Epub: 2007/04/17. PMID: 17433954.
- 53. Sin DD, Fitzgerald F, Parker JD, et al. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med. 1999 Oct;160(4):1101-6. Epub: 1999/10/06. PMID: 10508793.
- 54. Ferrier K, Campbell A, Yee B, et al. Sleep-disordered breathing occurs frequently in stable outpatients with congestive heart failure. Chest. 2005 Oct;128(4):2116-22. Epub: 2005/10/21. PMID: 16236863.
- 55. Schafer H, Koehler U, Ewig S, et al. Obstructive sleep apnea as a risk marker in coronary artery disease. Cardiology. 1999;92(2):79-84. Epub: 2000/03/07. PMID: 10702648.
- 56. Phillips BG, Somers VK. Sleep disordered breathing and risk factors for cardiovascular disease. Curr Opin Pulm Med. 2002 Nov;8(6):516-20. Epub: 2002/10/24. PMID: 12394160.
- 57. Sanner BM, Konermann M, Doberauer C, et al. Sleep-Disordered breathing in patients referred for angina evaluation--association with left ventricular dysfunction. Clin Cardiol. 2001 Feb;24(2):146-50. Epub: 2001/02/24. PMID: 11214745.
- 58. Gami AS, Pressman G, Caples SM, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004 Jul 27;110(4):364-7. Epub: 2004/07/14. PMID: 15249509.
- 59. Yaggi HK, Concato J, Kernan WN, et al. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005 Nov 10;353(19):2034-41. Epub: 2005/11/12. PMID: 16282178.
- 60. Sjostrom C, Lindberg E, Elmasry A, et al. Prevalence of sleep apnoea and snoring in hypertensive men: a population based study. Thorax. 2002 Jul;57(7):602-7. Epub: 2002/07/04. PMID: 12096203.
- 61. Ruttanaumpawan P, Nopmaneejumruslers C, Logan AG, et al. Association between refractory hypertension and obstructive sleep apnea. J Hypertens. 2009 Jul;27(7):1439-45. Epub: 2009/05/08. PMID: 19421073.
- 62. Nieto FJ, Young TB, Lind BK, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA. 2000 Apr 12;283(14):1829-36. Epub: 2000/04/19. PMID: 10770144.
- 63. Richert A, Ansarin K, Baran AS. Sleep apnea and hypertension: pathophysiologic mechanisms. Semin Nephrol. 2002 Jan;22(1):71-7. Epub: 2002/01/11. PMID: 11785071.
- 64. Punjabi NM, Shahar E, Redline S, et al. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol. 2004 Sep 15;160(6):521-30. Epub: 2004/09/09. PMID: 15353412.

- 65. Vgontzas AN, Bixler EO, Chrousos GP. Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance. J Intern Med. 2003 Jul;254(1):32-44. Epub: 2003/06/26. PMID: 12823641.
- 66. Shaw JE, Punjabi NM, Wilding JP, et al. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract. 2008 Jul;81(1):2-12. Epub: 2008/06/12. PMID: 18544448.
- 67. Einhorn D, Stewart DA, Erman MK, et al. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr Pract. 2007 Jul-Aug;13(4):355-62. Epub: 2007/08/03. PMID: 17669711.
- 68. Johns MW. A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep. 1991 Dec;14(6):540-5. Epub: 1991/12/01. PMID: 1798888.
- 69. Chung F, Yegneswaran B, Liao P, et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology. 2008 May;108(5):812-21. PMID: 18431116.
- 70. Chung F, Subramanyam R, Liao P, et al. High STOP-Bang score indicates a high probability of obstructive sleep apnoea. Br J Anaesth. 2012 May;108(5):768-75. Epub: 2012/03/10. PMID: 22401881.
- 71. Netzer NC, Stoohs RA, Netzer CM, et al. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999 Oct 5;131(7):485-91. Epub: 1999/10/03. PMID: 10507956.
- 72. Kushida CA, Littner MR, Morgenthaler T, et al. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep. 2005 Apr;28(4):499-521. Epub: 2005/09/21. PMID: 16171294.
- 73. Iber C, Ancoli-Israel S, Chesson AL, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications., Westchester, IL: American Academy of Sleep Medicine; 2007.
- 74. Collop NA, Anderson WM, Boehlecke B, et al. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable Monitoring Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2007 Dec 15;3(7):737-47. Epub: 2008/01/18. PMID: 18198809.
- 75. Trikalinos TA, Ip S, Raman G, et al. Home Diagnosis of Obstructive Sleep Apnea-Hypopnea Syndrome. Rockville, MD: Agency for Healthcare Research and Quality; 2007 http://www.cms.gov/Medicare/Coverage/DeterminationProcess/downloads/id48TA. pdf. Accessed April 4 2014.
- 76. Qaseem A, Holty JE, Owens DK, et al. Management of obstructive sleep apnea in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2013 Oct 1;159(7):471-83. PMID: 24061345.
- 77. Lettieri CJ, Eliasson AH, Greenburg DL. Persistence of obstructive sleep apnea after surgical weight loss. J Clin Sleep Med. 2008 Aug 15;4(4):333-8. Epub: 2008/09/04. PMID: 18763424.
- 78. Randerath WJ, Verbraecken J, Andreas S, et al. Non-CPAP therapies in obstructive sleep apnoea. Eur Respir J. 2011 May;37(5):1000-28. Epub: 2011/03/17. PMID: 21406515.
- 79. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004 Oct 13;292(14):1724-37. Epub: 2004/10/14. PMID: 15479938.

- 80. Javaheri S, Caref EB, Chen E, et al. Sleep apnea testing and outcomes in a large cohort of Medicare beneficiaries with newly diagnosed heart failure. Am J Respir Crit Care Med. 2011 Feb 15;183(4):539-46. Epub: 2010/07/27. PMID: 20656940.
- 81. Kezirian EJ, Maselli J, Vittinghoff E, et al. Obstructive sleep apnea surgery practice patterns in the United States: 2000 to 2006. Otolaryngol Head Neck Surg. 2010 Sep;143(3):441-7. Epub: 2010/08/21. PMID: 20723785.
- 82. Mold JW, Quattlebaum C, Schinnerer E, et al. Identification by primary care clinicians of patients with obstructive sleep apnea: a practice-based research network (PBRN) study. J Am Board Fam Med. 2011 Mar-Apr;24(2):138-45. Epub: 2011/03/09. PMID: 21383212.
- 83. Kramer NR, Cook TE, Carlisle CC, et al. The role of the primary care physician in recognizing obstructive sleep apnea. Arch Intern Med. 1999 May 10;159(9):965-8. Epub: 1999/05/18. PMID: 10326938.
- 84. Palmer EL, Wingfield D, Jamrozik K, et al. A pilot study to assess the possible methods of determining the burden of obstructive sleep apnoea syndrome in primary care. Prim Care Respir J. 2005 Jun;14(3):131-42. Epub: 2006/05/17. PMID: 16701712.
- 85. Senthilvel E, Auckley D, Dasarathy J. Evaluation of sleep disorders in the primary care setting: history taking compared to questionnaires. J Clin Sleep Med. 2011 Feb 15;7(1):41-8. Epub: 2011/02/24. PMID: 21344054.
- 86. Grover M, Mookadam M, Armas D, et al. Identifying patients at risk for obstructive sleep apnea in a primary care practice. J Am Board Fam Med. 2011 Mar-Apr;24(2):152-60. Epub: 2011/03/09. PMID: 21383214.
- 87. Chung SA, Jairam S, Hussain MR, et al. Knowledge of sleep apnea in a sample grouping of primary care physicians. Sleep Breath. 2001 Sep;5(3):115-21. Epub: 2002/02/28. PMID: 11868150.
- 88. Reuveni H, Tarasiuk A, Wainstock T, et al. Awareness level of obstructive sleep apnea syndrome during routine unstructured interviews of a standardized patient by primary care physicians. Sleep. 2004 Dec 15;27(8):1518-25. Epub: 2005/02/03. PMID: 15683143.
- 89. Papp KK, Penrod CE, Strohl KP. Knowledge and attitudes of primary care physicians toward sleep and sleep disorders. Sleep Breath. 2002 Sep;6(3):103-9. Epub: 2002/09/24. PMID: 12244489.
- 90. Hayes SM, Murray S, Castriotta RJ, et al. (Mis) perceptions and interactions of sleep specialists and generalists: obstacles to referrals to sleep specialists and the multidisciplinary team management of sleep disorders. J Clin Sleep Med. 2012 Dec 15;8(6):633-42. Epub: 2012/12/18. PMID: 23243396.
- 91. Ge X, Han F, Huang Y, et al. Is obstructive sleep apnea associated with cardiovascular and all-cause mortality? PLoS One. 2013;8(7):e69432. Epub: 2013/08/13. PMID: 23936014.
- 92. Kendzerska T, Mollayeva T, Gershon AS, et al. Untreated obstructive sleep apnea and the risk for serious long-term adverse outcomes: a systematic review. Sleep Med Rev. 2014 Feb;18(1):49-59. Epub: 2013/05/07. PMID: 23642349.
- 93. Harris RP, Helfand M, Woolf SH, et al. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001 Apr;20(3 Suppl):21-35. PMID: 11306229.
- 94. West SL, Gartlehner G, Mansfield AJ, et al. Comparative Effectiveness Review Methods: Clinical Heterogeneity. Report No.: 10-EHC070-EF. Rockville, MD: Agency for Healthcare Research and Quality; Sep 2010.

- 95. Deeks JJ, Altman DG. Statistics notes Diagnostic tests 4: likelihood ratios. Brit Med J. 2004 Jul 17;329(7458):168-9. PMID: WOS:000222832300031.
- 96. Guyatt G, Rennie D, Jaeschke R, et al. Diagnostic tests. In: Guyatt G, Rennie D, eds. Users' guides to the medical literature. Chicago: AMA Press; 2002:121-40.
- 97. Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72(1):39. PMID: 25810908.
- 98. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates; 1988.
- 99. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002 Jun 15;21(11):1539-58. PMID: 12111919.
- 100. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003 Sep 6;327(7414):557-60. PMID: 12958120.
- 101. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration. London: The Cochrane Collaboration; March 2011.
- 102. Hrubos-Strom H, Randby A, Namtvedt SK, et al. A Norwegian population-based study on the risk and prevalence of obstructive sleep apnea. The Akershus Sleep Apnea Project (ASAP). J Sleep Res. 2011 Mar;20(1 Pt 2):162-70. Epub: 2010/06/22. PMID: 20561172.
- 103. Morales CR, Hurley S, Wick LC, et al. In-home, self-assembled sleep studies are useful in diagnosing sleep apnea in the elderly. Sleep. 2012 Nov;35(11):1491-501. Epub: 2012/11/02. PMID: 23115398.
- 104. Gurubhagavatula I, Fields BG, Morales CR, et al. Screening for severe obstructive sleep apnea syndrome in hypertensive outpatients. J Clin Hypertens (Greenwich). 2013 Apr;15(4):279-88. Epub: 2013/04/05. PMID: 23551728.
- 105. Gurubhagavatula I, Maislin G, Nkwuo JE, et al. Occupational screening for obstructive sleep apnea in commercial drivers. Am J Respir Crit Care Med. 2004 Aug 15;170(4):371-6. Epub: 2004/05/15. PMID: 15142866.
- 106. Maislin G, Pack AI, Kribbs NB, et al. A survey screen for prediction of apnea. Sleep. 1995 Apr;18(3):158-66. Epub: 1995/04/01. PMID: 7610311.
- 107. Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010 Apr 20;121(15):1768-77. PMID: 20404268.
- 108. Hosmer DW, Lemeshow S. Applied Logistic Regression. New York, NY: John Wiley & Sons; 2000.
- 109. Ferre A, Sampol G, Jurado MJ, et al. Neurophysiological two-channel polysomnographic device in the diagnosis of sleep apnea. J Clin Sleep Med. 2012 Apr 15;8(2):163-8. Epub: 2012/04/17. PMID: 22505861.
- 110. Bruyneel M, Sanida C, Art G, et al. Sleep efficiency during sleep studies: results of a prospective study comparing home-based and in-hospital polysomnography. J Sleep Res. 2011 Mar;20(1 Pt 2):201-6. Epub: 2010/06/22. PMID: 20561176.
- 111. Campbell AJ, Neill AM. Home set-up polysomnography in the assessment of suspected obstructive sleep apnea. J Sleep Res. 2011 Mar;20(1 Pt 2):207-13. Epub: 2010/06/22. PMID: 20561173.
- 112. El Shayeb M, Topfer LA, Stafinski T, et al. Diagnostic accuracy of level 3 portable sleep tests versus level 1 polysomnography for sleep-disordered breathing: a systematic review and meta-analysis. CMAJ. 2014 Jan 7;186(1):E25-51. Epub: 2013/11/13. PMID: 24218531.

- 113. Guerrero A, Embid C, Isetta V, et al. Management of sleep apnea without high pretest probability or with comorbidities by three nights of portable sleep monitoring. Sleep. 2014;37(8):1363-73. PMID: CN-00998748.
- 114. Pereira EJ, Driver HS, Stewart SC, et al. Comparing a combination of validated questionnaires and level III portable monitor with polysomnography to diagnose and exclude sleep apnea. J Clin Sleep Med. 2013;9(12):1259-66.
- 115. Barak-Shinar D, Amos Y, Bogan RK. Sleep disordered breathing analysis in a general population using standard pulse oximeter signals. Sleep Breath. 2013 Sep;17(3):1109-15. Epub: 2013/02/07. PMID: 23386370.
- 116. Morillo DS, Gross N. Probabilistic neural network approach for the detection of SAHS from overnight pulse oximetry. Med Biol Eng Comput. 2013 Mar;51(3):305-15. Epub: 2012/11/20. PMID: 23160897.
- 117. Nigro CA, Dibur E, Malnis S, et al. Validation of ApneaLink Ox for the diagnosis of obstructive sleep apnea. Sleep Breath. 2013 Mar;17(1):259-66. Epub: 2012/03/27. PMID: 22447171.
- 118. Alvarez D, Hornero R, Marcos JV, et al. Feature selection from nocturnal oximetry using genetic algorithms to assist in obstructive sleep apnoea diagnosis. Med Eng Phys. 2012 Oct;34(8):1049-57. Epub: 2011/12/14. PMID: 22154238.
- 119. Masa JF, Corral J, Pereira R, et al. Effectiveness of home respiratory polygraphy for the diagnosis of sleep apnoea and hypopnoea syndrome. Thorax. 2011 Jul;66(7):567-73. Epub: 2011/05/24. PMID: 21602541.
- 120. Poupard L, Philippe C, Goldman MD, et al. Novel mathematical processing method of nocturnal oximetry for screening patients with suspected sleep apnoea syndrome. Sleep Breath. 2012 Jun;16(2):419-25. Epub: 2011/04/16. PMID: 21494850.
- 121. Bohning N, Zucchini W, Horstmeier O, et al. Sensitivity and specificity of telemedicine-based long-term pulse-oximetry in comparison with cardiorespiratory polygraphy and polysomnography in patients with obstructive sleep apnoea syndrome. J Telemed Telecare. 2011;17(1):15-9. Epub: 2010/10/21. PMID: 20959395.
- 122. Rofail LM, Wong KK, Unger G, et al. Comparison between a single-channel nasal airflow device and oximetry for the diagnosis of obstructive sleep apnea. Sleep. 2010 Aug;33(8):1106-14. Epub: 2010/09/08. PMID: 20815194.
- 123. Yadollahi A, Giannouli E, Moussavi Z. Sleep apnea monitoring and diagnosis based on pulse oximetry and tracheal sound signals. Med Biol Eng Comput. 2010 Nov;48(11):1087-97. Epub: 2010/08/25. PMID: 20734154.
- 124. Nigro CA, Serrano F, Aimaretti S, et al. Utility of ApneaLink for the diagnosis of sleep apnea-hypopnea syndrome. Medicina (B Aires). 2010;70(1):53-9. Epub: 2010/03/17. PMID: 20228025.
- 125. Choi JH, Kim EJ, Kim YS, et al. Validation study of portable device for the diagnosis of obstructive sleep apnea according to the new AASM scoring criteria: Watch-PAT 100. Acta Otolaryngol. 2010 Jul;130(7):838-43. Epub: 2010/01/20. PMID: 20082567.
- 126. Alvarez D, Hornero R, Abasolo D, et al. Nonlinear measure of synchrony between blood oxygen saturation and heart rate from nocturnal pulse oximetry in obstructive sleep apnoea syndrome. Physiol Meas. 2009 Sep;30(9):967-82. Epub: 2009/08/22. PMID: 19696463.
- 127. Garg N, Rolle AJ, Lee TA, et al. Home-based diagnosis of obstructive sleep apnea in an urban population. J Clin Sleep Med. 2014 Aug 15;10(8):879-85. PMID: 25126034.

- 128. Arias MA, Garcia-Rio F, Alonso-Fernandez A, et al. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. Circulation. 2005 Jul 19;112(3):375-83. Epub: 2005/07/13. PMID: 16009798.
- 129. Arias MA, García-Río F, Alonso-Fernández A, et al. CPAP decreases plasma levels of soluble tumour necrosis factor-alpha receptor 1 in obstructive sleep apnoea. Eur Respir J. 2008;32(4):1009-15. PMID: CN-00688001.
- 130. Barbe F, Mayoralas LR, Duran J, et al. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial. Ann Intern Med. 2001 Jun 5;134(11):1015-23. Epub: 2001/06/05. PMID: 11388814.
- 131. Bardwell WA, Norman D, Ancoli-Israel S, et al. Effects of 2-week nocturnal oxygen supplementation and continuous positive airway pressure treatment on psychological symptoms in patients with obstructive sleep apnea: a randomized placebo-controlled study. Behav Sleep Med. 2007;5(1):21-38. Epub: 2007/02/23. PMID: 17313322.
- 132. Campos-Rodriguez F, Grilo-Reina A, Perez-Ronchel J, et al. Effect of continuous positive airway pressure on ambulatory BP in patients with sleep apnea and hypertension: a placebo-controlled trial. Chest. 2006;129(6):1459-67. PMID: CN-00556993.
- 133. Chasens ER, Korytkowski M, Sereika SM, et al. Improving activity in adults with diabetes and coexisting obstructive sleep apnea. West J Nurs Res. 2014;36(3):294-311. PMID: CN-00991441.
- 134. Chong MS, Ayalon L, Marler M, et al. Continuous positive airway pressure reduces subjective daytime sleepiness in patients with mild to moderate Alzheimer's disease with sleep disordered breathing. J Am Geriatr Soc. 2006 May;54(5):777-81. Epub: 2006/05/16. PMID: 16696743.
- 135. Coughlin SR, Mawdsley L, Mugarza JA, et al. Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur Respir J. 2007 Apr;29(4):720-7. Epub: 2007/01/26. PMID: 17251237.
- 136. Cross MD, Mills NL, Al-Abri M, et al. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial. Thorax. 2008;63(7):578-83. PMID: CN-00638724.
- 137. Duran-Cantolla J, Aizpuru F, Montserrat JM, et al. Continuous positive airway pressure as treatment for systemic hypertension in people with obstructive sleep apnoea: randomised controlled trial. BMJ. 2010;341:c5991. Epub: 2010/11/26. PMID: 21106625.
- 138. Egea CJ, Aizpuru F, Pinto JA, et al. Cardiac function after CPAP therapy in patients with chronic heart failure and sleep apnea: a multicenter study. Sleep Med. 2008 Aug;9(6):660-6. Epub: 2007/10/02. PMID: 17904420.
- 139. Haensel A, Norman D, Natarajan L, et al. Effect of a 2 week CPAP treatment on mood states in patients with obstructive sleep apnea: a double-blind trial. Sleep Breath. 2007 Dec;11(4):239-44. Epub: 2007/05/16. PMID: 17503102.
- 140. Hoyos CM, Killick R, Yee BJ, et al. Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. Thorax. 2012 Dec;67(12):1081-9. Epub: 2012/05/09. PMID: 22561530.
- 141. Hui DS, To KW, Ko FW, et al. Nasal CPAP reduces systemic blood pressure in patients with obstructive sleep apnoea and mild sleepiness. Thorax. 2006 Dec;61(12):1083-90. Epub: 2006/08/25. PMID: 16928705.

- 142. Jenkinson C, Davies RJ, Mullins R, et al. Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial. Lancet. 1999;353(9170):2100-5. PMID: CN-00164605.
- 143. Hack M, Davies RJ, Mullins R, et al. Randomised prospective parallel trial of therapeutic versus subtherapeutic nasal continuous positive airway pressure on simulated steering performance in patients with obstructive sleep apnoea. Thorax. 2000;55(3):224-31. PMID: CN-00275265.
- 144. Jones A, Vennelle M, Connell M, et al. The effect of continuous positive airway pressure therapy on arterial stiffness and endothelial function in obstructive sleep apnea: a randomized controlled trial in patients without cardiovascular disease. Sleep Med. 2013 Dec;14(12):1260-5. Epub: 2013/11/12. PMID: 24210600.
- 145. Kushida CA, Nichols DA, Holmes TH, et al. Effects of continuous positive airway pressure on neurocognitive function in obstructive sleep apnea patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep. 2012 Dec;35(12):1593-602. Epub: 2012/12/04. PMID: 23204602.
- 146. Lam JC, Lam B, Yao TJ, et al. A randomised controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. Eur Respir J. 2010 Jan;35(1):138-45. Epub: 2009/07/18. PMID: 19608589.
- 147. Lee IS, Bardwell WA, Kamat R, et al. A model for studying neuropsychological effects of sleep intervention: the effect of 3-week continuous positive airway pressure treatment. Drug Discov Today Dis Models. 2011 Winter;8(4):147-54. PMID: 22140396.
- 148. Loredo JS, Ancoli-Israel S, Dimsdale JE. Effect of continuous positive airway pressure vs placebo continuous positive airway pressure on sleep quality in obstructive sleep apnea. Chest. 1999;116(6):1545-9. PMID: CN-00264964.
- 149. Loredo JS, Ancoli-Israel S, Kim EJ, et al. Effect of continuous positive airway pressure versus supplemental oxygen on sleep quality in obstructive sleep apnea: a placebo-CPAP-controlled study. Sleep. 2006;29(4):564-71. PMID: CN-00565082.
- 150. Malow BA, Foldvary-Schaefer N, Vaughn BV, et al. Treating obstructive sleep apnea in adults with epilepsy: a randomized pilot trial. Neurology. 2008 Aug 19;71(8):572-7. Epub: 2008/08/20. PMID: 18711110.
- 151. Marshall NS, Neill AM, Campbell AJ, et al. Randomised controlled crossover trial of humidified continuous positive airway pressure in mild obstructive sleep apnoea. Thorax. 2005 May;60(5):427-32. Epub: 2005/04/30. PMID: 15860720.
- 152. McArdle N, Douglas NJ. Effect of continuous positive airway pressure on sleep architecture in the sleep apnea-hypopnea syndrome: a randomized controlled trial. Am J Respir Crit Care Med. 2001 Oct 15;164(8 Pt 1):1459-63. Epub: 2001/11/13. PMID: 11704596.
- 153. Mills PJ, Kennedy BP, Loredo JS, et al. Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea. J Appl Physiol (1985). 2006;100(1):343-8. PMID: CN-00532481.
- 154. Montserrat JM, Ferrer M, Hernandez L, et al. Effectiveness of CPAP treatment in daytime function in sleep apnea syndrome: a randomized controlled study with an optimized placebo. Am J Respir Crit Care Med. 2001 Aug 15;164(4):608-13. Epub: 2001/08/25. PMID: 11520724.

- 155. Neikrug AB, Liu L, Avanzino JA, et al. Continuous positive airway pressure improves sleep and daytime sleepiness in patients with Parkinson disease and sleep apnea. Sleep. 2014;37(1):177-85. PMID: CN-00959888.
- 156. Norman D, Loredo JS, Nelesen RA, et al. Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure. Hypertension. 2006;47(5):840-5. PMID: CN-00556027.
- 157. Nguyen PK, Katikireddy CK, McConnell MV, et al. Nasal continuous positive airway pressure improves myocardial perfusion reserve and endothelial-dependent vasodilation in patients with obstructive sleep apnea. J Cardiovasc Magn Reson. 2010;12:50. Epub: 2010/09/08. PMID: 20815898.
- 158. Pamidi S, Wroblewski K, Stepien M, et al. Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. a randomized controlled trial. Am J Respir Crit Care Med. 2015 Jul 1;192(1):96-105. Epub: 2015/04/22. PMID: 25897569.
- 159. Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet. 2002 Jan 19;359(9302):204-10. Epub: 2002/01/29. PMID: 11812555.
- 160. Kohler M, Pepperell JC, Casadei B, et al. CPAP and measures of cardiovascular risk in males with OSAS. Eur Resp J. 2008;32(6):1488-96. PMID: CN-00683314.
- 161. Phillips CL, Yee BJ, Marshall NS, et al. Continuous positive airway pressure reduces postprandial lipidemia in obstructive sleep apnea: a randomized, placebo-controlled crossover trial. Am J Respir Crit Care Med. 2011 Aug 1;184(3):355-61. Epub: 2011/04/30. PMID: 21527567.
- 162. Robinson GV, Smith DM, Langford BA, et al. Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients. Eur Respir J. 2006 Jun;27(6):1229-35. Epub: 2006/02/04. PMID: 16455835.
- 163. Smith LA, Vennelle M, Gardner RS, et al. Auto-titrating continuous positive airway pressure therapy in patients with chronic heart failure and obstructive sleep apnoea: a randomized placebo-controlled trial. Eur Heart J. 2007 May;28(10):1221-7. Epub: 2007/05/02. PMID: 17470670.
- 164. Siccoli MM, Pepperell JC, Kohler M, et al. Effects of continuous positive airway pressure on quality of life in patients with moderate to severe obstructive sleep apnea: data from a randomized controlled trial. Sleep. 2008 Nov;31(11):1551-8. Epub: 2008/11/19. PMID: 19014075.
- 165. Toukh M, Pereira EJ, Falcon BJ, et al. CPAP reduces hypercoagulability, as assessed by thromboelastography, in severe obstructive sleep apnoea. Respir Physiol Neurobiol. 2012 Sep 30;183(3):218-23. Epub: 2012/07/10. PMID: 22771782.
- 166. Weaver TE, Mancini C, Maislin G, et al. Continuous positive airway pressure treatment of sleepy patients with milder obstructive sleep apnea: results of the CPAP Apnea Trial North American Program (CATNAP) randomized clinical trial. Am J Respir Crit Care Med. 2012 Oct 1;186(7):677-83. Epub: 2012/07/28. PMID: 22837377.
- 167. Weinstock TG, Wang X, Rueschman M, et al. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep. 2012 May;35(5):617-25b. Epub: 2012/05/02. PMID: 22547887.

- 168. West SD, Nicoll DJ, Wallace TM, et al. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007 Nov;62(11):969-74. Epub: 2007/06/15. PMID: 17557769.
- 169. West SD, Kohler M, Nicoll DJ, et al. The effect of continuous positive airway pressure treatment on physical activity in patients with obstructive sleep apnoea: A randomised controlled trial. Sleep Med. 2009 Oct;10(9):1056-8. Epub: 2009/05/12. PMID: 19427263.
- 170. Ballester E, Badia JR, Hernandez L, et al. Evidence of the effectiveness of continuous positive airway pressure in the treatment of sleep apnea/hypopnea syndrome. Am J Respir Crit Care Med. 1999 Feb;159(2):495-501. Epub: 1999/02/02. PMID: 9927363.
- 171. Barbe F, Duran-Cantolla J, Capote F, et al. Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea. Am J Respir Crit Care Med. 2010 Apr 1;181(7):718-26. Epub: 2009/12/17. PMID: 20007932.
- 172. Barbe F, Duran-Cantolla J, Sanchez-de-la-Torre M, et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA. 2012 May 23;307(20):2161-8. Epub: 2012/05/24. PMID: 22618923.
- 173. Barnes M, McEvoy RD, Banks S, et al. Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea. Am J Respir Crit Care Med. 2004 Sep 15;170(6):656-64. Epub: 2004/06/18. PMID: 15201136.
- 174. Craig SE, Kohler M, Nicoll D, et al. Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial. Thorax. 2012 Dec;67(12):1090-6. Epub: 2012/11/01. PMID: 23111478.
- 175. Engleman HM, Martin SE, Kingshott RN, et al. Randomised placebo controlled trial of daytime function after continuous positive airway pressure (CPAP) therapy for the sleep apnoea/hypopnoea syndrome. Thorax. 1998;53(5):341-5. PMID: CN-00153988.
- 176. Engleman HM, Kingshott RN, Wraith PK, et al. Randomized placebo-controlled crossover trial of continuous positive airway pressure for mild sleep Apnea/Hypopnea syndrome. Am J Respir Crit Care Med. 1999 Feb;159(2):461-7. Epub: 1999/02/02. PMID: 9927358.
- 177. Faccenda JF, Mackay TW, Boon NA, et al. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome. Am J Respir Crit Care Med. 2001 Feb;163(2):344-8. Epub: 2001/02/17. PMID: 11179104.
- 178. Gottlieb DJ, Punjabi NM, Mehra R, et al. CPAP versus oxygen in obstructive sleep apnea. N Engl J Med. 2014 Jun 12;370(24):2276-85. Epub: 2014/06/12. PMID: 24918372.
- 179. Ip MS, Tse HF, Lam B, et al. Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med. 2004;169(3):348-53. PMID: CN-00458185.
- 180. Lam B, Sam K, Mok WY, et al. Randomised study of three non-surgical treatments in mild to moderate obstructive sleep apnoea. Thorax. 2007 Apr;62(4):354-9. Epub: 2006/11/24. PMID: 17121868.
- 181. Martinez-Garcia MA, Capote F, Campos-Rodriguez F, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the

- HIPARCO randomized clinical trial. JAMA. 2013 Dec 11;310(22):2407-15. Epub: 2013/12/12. PMID: 24327037.
- 182. McMillan A, Bratton DJ, Faria R, et al. Continuous positive airway pressure in older people with obstructive sleep apnoea syndrome (PREDICT): a 12-month, multicentre, randomised trial. Lancet Respir Med. 2014 Oct;2(10):804-12. PMID: 25172769.
- 183. Redline S, Adams N, Strauss ME, et al. Improvement of mild sleep-disordered breathing with CPAP compared with conservative therapy. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):858-65. Epub: 1998/03/28. PMID: 9517603.
- 184. Ruttanaumpawan P, Gilman MP, Usui K, et al. Sustained effect of continuous positive airway pressure on baroreflex sensitivity in congestive heart failure patients with obstructive sleep apnea. J Hypertens. 2008;26(6):1163-8. PMID: CN-00639599.
- 185. Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348(13):1233-41. PMID: CN-00423138.
- 186. Tomfohr LM, Ancoli-Israel S, Loredo JS, et al. Effects of continuous positive airway pressure on fatigue and sleepiness in patients with obstructive sleep apnea: data from a randomized controlled trial. Sleep. 2011 Jan;34(1):121-6. Epub: 2011/01/05. PMID: 21203367.
- 187. Usui K, Bradley TD, Spaak J, et al. Inhibition of awake sympathetic nerve activity of heart failure patients with obstructive sleep apnea by nocturnal continuous positive airway pressure. J Am Coll Cardiol. 2005;45(12):2008-11. PMID: CN-00513436.
- 188. Andren A, Hedberg P, Walker-Engstrom ML, et al. Effects of treatment with oral appliance on 24-h blood pressure in patients with obstructive sleep apnea and hypertension: a randomized clinical trial. Sleep Breath. 2013 May;17(2):705-12. Epub: 2012/07/24. PMID: 22821223.
- 189. Aarab G, Lobbezoo F, Hamburger HL, et al. Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnea: a randomized, placebo-controlled trial. Respiration. 2011;81(5):411-9. Epub: 2010/10/22. PMID: 20962502.
- 190. Durán-Cantolla J, Crovetto-Martínez R, Alkhraisat MH, et al. Efficacy of mandibular advancement device in the treatment of obstructive sleep apnea syndrome: a randomized controlled crossover clinical trial. Med Oral Patol Oral Cir Bucal. 2015;20(5):e605-e15.
- 191. Petri N, Svanholt P, Solow B, et al. Mandibular advancement appliance for obstructive sleep apnoea: results of a randomised placebo controlled trial using parallel group design. J Sleep Res. 2008 Jun;17(2):221-9. Epub: 2008/05/17. PMID: 18482111.
- 192. Naismith SL, Winter VR, Hickie IB, et al. Effect of oral appliance therapy on neurobehavioral functioning in obstructive sleep apnea: a randomized controlled trial. J Clin Sleep Med. 2005 Oct 15;1(4):374-80. Epub: 2007/06/15. PMID: 17564405.
- 193. Gotsopoulos H, Chen C, Qian J, et al. Oral appliance therapy improves symptoms in obstructive sleep apnea: a randomized, controlled trial. Am J Respir Crit Care Med. 2002 Sep 1;166(5):743-8. Epub: 2002/09/03. PMID: 12204875.
- 194. Gotsopoulos H, Kelly JJ, Cistulli PA. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial. Sleep. 2004 Aug 1;27(5):934-41. Epub: 2004/09/30. PMID: 15453552.
- 195. Johnston CD, Gleadhill IC, Cinnamond MJ, et al. Mandibular advancement appliances and obstructive sleep apnoea: a randomized clinical trial. Eur J Orthod. 2002 Jun;24(3):251-62. Epub: 2002/07/30. PMID: 12143089.

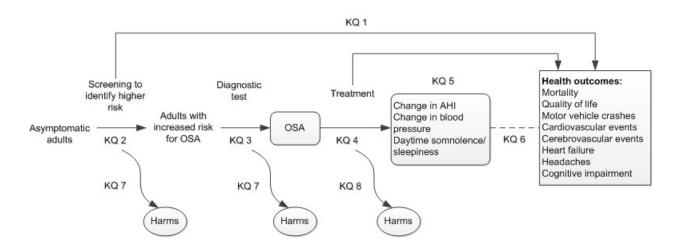
- 196. Bloch KE, Schoch OD, Zhang JN, et al. German version of the Epworth Sleepiness Scale. Respiration. 1999;66(5):440-7. Epub: 1999/10/12. PMID: 10516541.
- 197. Quinnell TG, Bennett M, Jordan J, et al. A crossover randomised controlled trial of oral mandibular advancement devices for obstructive sleep apnoea-hypopnoea (TOMADO). Thorax. 2014 Oct;69(10):938-45. PMID: 25035126.
- 198. Back LJ, Liukko T, Rantanen I, et al. Radiofrequency surgery of the soft palate in the treatment of mild obstructive sleep apnea is not effective as a single-stage procedure: a randomized single-blinded placebo-controlled trial. Laryngoscope. 2009
 Aug;119(8):1621-7. Epub: 2009/06/09. PMID: 19504550.
- 199. Browaldh N, Nerfeldt P, Lysdahl M, et al. SKUP3 randomised controlled trial: polysomnographic results after uvulopalatopharyngoplasty in selected patients with obstructive sleep apnoea. Thorax. 2013 Sep;68(9):846-53. Epub: 2013/05/07. PMID: 23644225.
- 200. Dixon JB, Schachter LM, O'Brien PE, et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012 Sep 19;308(11):1142-9. Epub: 2012/09/20. PMID: 22990273.
- 201. Ferguson KA, Heighway K, Ruby RR. A randomized trial of laser-assisted uvulopalatoplasty in the treatment of mild obstructive sleep apnea. Am J Respir Crit Care Med. 2003;167(1):15-9. PMID: CN-00412435.
- 202. Koutsourelakis I, Georgoulopoulos G, Perraki E, et al. Randomised trial of nasal surgery for fixed nasal obstruction in obstructive sleep apnoea. Eur Respir J. 2008 Jan;31(1):110-7. Epub: 2007/09/28. PMID: 17898015.
- 203. Woodson BT, Steward DL, Weaver EM, et al. A randomized trial of temperature-controlled radiofrequency, continuous positive airway pressure, and placebo for obstructive sleep apnea syndrome. Otolaryngol Head Neck Surg. 2003 Jun;128(6):848-61. Epub: 2003/06/26. PMID: 12825037.
- 204. Desplan M, Mercier J, Sabate M, et al. A comprehensive rehabilitation program improves disease severity in patients with obstructive sleep apnea syndrome: a pilot randomized controlled study. Sleep Med. 2014;15(8):906-12. PMID: CN-00999216.
- 205. Foster GD, Borradaile KE, Sanders MH, et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: the Sleep AHEAD study. Arch Intern Med. 2009 Sep 28;169(17):1619-26. Epub: 2009/09/30. PMID: 19786682.
- 206. Kuna ST, Reboussin DM, Borradaile KE, et al. Long-term effect of weight loss on obstructive sleep apnea severity in obese patients with type 2 diabetes. Sleep. 2013 May;36(5):641-9a. Epub: 2013/05/02. PMID: 23633746.
- 207. Johansson K, Neovius M, Lagerros YT, et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. BMJ. 2009;339:b4609. Epub: 2009/12/05. PMID: 19959590.
- 208. Kline CE, Ewing GB, Burch JB, et al. Exercise training improves selected aspects of daytime functioning in adults with obstructive sleep apnea. J Clin Sleep Med. 2012;8(4):357-65. Epub: 2012/08/16. PMID: 22893765.
- 209. Kline CE, Crowley EP, Ewing GB, et al. Blunted heart rate recovery is improved following exercise training in overweight adults with obstructive sleep apnea. Int J Cardiol. 2013 Aug 20;167(4):1610-5. Epub: 2012/05/11. PMID: 22572632.

- 210. Moss J, Tew GA, Copeland RJ, et al. Effects of a pragmatic lifestyle intervention for reducing body mass in obese adults with obstructive sleep apnoea: a randomised controlled trial. Biomed Res Int. 2014;2014:102164. Epub: 2014/08/22. PMID: 25136550.
- 211. Tuomilehto HP, Seppa JM, Partinen MM, et al. Lifestyle intervention with weight reduction: first-line treatment in mild obstructive sleep apnea. Am J Respir Crit Care Med. 2009 Feb 15;179(4):320-7. Epub: 2008/11/18. PMID: 19011153.
- 212. Tuomilehto H, Gylling H, Peltonen M, et al. Sustained improvement in mild obstructive sleep apnea after a diet- and physical activity-based lifestyle intervention: postinterventional follow-up. Am J Clin Nutr. 2010 Oct;92(4):688-96. Epub: 2010/08/13. PMID: 20702607.
- 213. Tuomilehto H, Seppa J, Uusitupa M, et al. Weight reduction and increased physical activity to prevent the progression of obstructive sleep apnea: a 4-year observational postintervention follow-up of a randomized clinical trial. [corrected]. JAMA Intern Med. 2013 May 27;173(10):929-30. Epub: 2013/04/17. PMID: 23589169.
- 214. Bloch KE, Iseli A, Zhang JN, et al. A randomized, controlled crossover trial of two oral appliances for sleep apnea treatment. Am J Respir Crit Care Med. 2000;162(1):246-51. PMID: CN-00298420.
- 215. Lim W, Bardwell WA, Loredo JS, et al. Neuropsychological effects of 2-week continuous positive airway pressure treatment and supplemental oxygen in patients with obstructive sleep apnea: a randomized placebo-controlled study. J Clin Sleep Med. 2007 Jun 15;3(4):380-6. Epub: 2007/08/19. PMID: 17694727.
- 216. Engleman HM, Martin SE, Deary IJ, et al. Effect of continuous positive airway pressure treatment on daytime function in sleep apnoea/hypopnoea syndrome. Lancet. 1994;343(8897):572-5. PMID: CN-00099156.
- 217. Engleman HM, Martin SE, Deary IJ, et al. Effect of CPAP therapy on daytime function in patients with mild sleep apnoea/hypopnoea syndrome. Thorax. 1997;52(2):114-9. PMID: CN-00137387.
- 218. Batool-Anwar S, Goodwin JL, Kushida CA, et al. Impact of continuous positive airway pressure (CPAP) on quality of life in patients with obstructive sleep apnea (OSA). J Sleep Res. 2016 May 30. PMID: 27242272.
- 219. Blackwell T, Yaffe K, Laffan A, et al. Associations between sleep-disordered breathing, nocturnal hypoxemia, and subsequent cognitive decline in older community-dwelling men: the Osteoporotic Fractures in Men Sleep Study. J Am Geriatr Soc. 2015 Mar;63(3):453-61. Epub: 2015/03/25. PMID: 25803785.
- 220. Ensrud KE, Blackwell TL, Ancoli-Israel S, et al. Sleep disturbances and risk of frailty and mortality in older men. Sleep Med. 2012 Dec;13(10):1217-25. Epub: 2012/06/19. PMID: 22705247.
- 221. Nieto FJ, Peppard PE, Young T, et al. Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2012 Jul 15;186(2):190-4. Epub: 2012/05/23. PMID: 22610391.
- 222. Yaffe K, Laffan AM, Harrison SL, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011 Aug 10;306(6):613-9. Epub: 2011/08/11. PMID: 21828324.

- 223. Gooneratne NS, Richards KC, Joffe M, et al. Sleep disordered breathing with excessive daytime sleepiness is a risk factor for mortality in older adults. Sleep. 2011 Apr;34(4):435-42. Epub: 2011/04/05. PMID: 21461321.
- 224. Gottlieb DJ, Yenokyan G, Newman AB, et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation. 2010 Jul 27;122(4):352-60. Epub: 2010/07/14. PMID: 20625114.
- 225. Redline S, Yenokyan G, Gottlieb DJ, et al. Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med. 2010 Jul 15;182(2):269-77. Epub: 2010/03/27. PMID: 20339144.
- 226. Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008 Aug;31(8):1071-8. Epub: 2008/08/22. PMID: 18714778.
- 227. Punjabi NM, Caffo BS, Goodwin JL, et al. Sleep-disordered breathing and mortality: a prospective cohort study. PLoS Med. 2009 Aug;6(8):e1000132. PMID: 19688045.
- 228. Marshall NS, Wong KK, Liu PY, et al. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep. 2008 Aug;31(8):1079-85. PMID: 18714779.
- 229. Marshall NS, Wong KK, Cullen SR, et al. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014 Apr 15;10(4):355-62. PMID: 24733978.
- 230. Arzt M, Young T, Finn L, et al. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med. 2005 Dec 1;172(11):1447-51. PMID: 16141444.
- 231. Munoz R, Duran-Cantolla J, Martinez-Vila E, et al. Severe sleep apnea and risk of ischemic stroke in the elderly. Stroke. 2006 Sep;37(9):2317-21. PMID: 16888274.
- 232. Saint Martin M, Sforza E, Roche F, et al. Sleep breathing disorders and cognitive function in the elderly: an 8-year follow-up study. the proof-synapse cohort. Sleep. 2015;38(2):179-87. Epub: 2014/10/18. PMID: 25325480.
- 233. Goehring C, Perrier A, Morabia A. Spectrum bias: a quantitative and graphical analysis of the variability of medical diagnostic test performance. Stat Med. 2004 Jan 15;23(1):125-35. PMID: 14695644.
- 234. Mulherin SA, Miller WC. Spectrum bias or spectrum effect? Subgroup variation in diagnostic test evaluation. Ann Intern Med. 2002 Oct 1;137(7):598-602. PMID: 12353947.
- 235. Jelinek M. Spectrum bias: why generalists and specialists do not connect. Evid Based Med. 2008 Oct;13(5):132-3. PMID: 18836102.
- 236. Lachs MS, Nachamkin I, Edelstein PH, et al. Spectrum bias in the evaluation of diagnostic tests: lessons from the rapid dipstick test for urinary tract infection. Ann Intern Med. 1992 Jul 15;117(2):135-40. PMID: 1605428.
- 237. Willis BH. Spectrum bias-why clinicians need to be cautious when applying diagnostic test studies. Fam Pract. 2008 Oct;25(5):390-6. PMID: WOS:000260151700012.
- 238. Qaseem A, Dallas P, Owens DK, et al. Diagnosis of obstructive sleep apnea in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2014 Aug 5;161(3):210-20. Epub: 2014/08/05. PMID: 25089864.

- 239. Flemons WW, Douglas NJ, Kuna ST, et al. Access to diagnosis and treatment of patients with suspected sleep apnea. Am J Respir Crit Care Med. 2004 Mar 15;169(6):668-72. PMID: 15003950.
- 240. Johns M, Hocking B. Daytime sleepiness and sleep habits of Australian workers. Sleep. 1997 Oct;20(10):844-9. PMID: 9415943.
- 241. Johns MW. Sensitivity and specificity of the multiple sleep latency test (MSLT), the maintenance of wakefulness test and the Epworth Sleepiness Scale: failure of the MSLT as a gold standard. J Sleep Res. 2000;9:5-11.
- 242. Randomized trial of modafinil for the treatment of pathological somnolence in narcolepsy. US Modafinil in Narcolepsy Multicenter Study Group. Ann Neurol. 1998 Jan;43(1):88-97. PMID: 9450772.
- 243. Kingshott RN, Vennelle M, Coleman EL, et al. Randomized, double-blind, placebo-controlled crossover trial of modafinil in the treatment of residual excessive daytime sleepiness in the sleep apnea/hypopnea syndrome. Am J Respir Crit Care Med. 2001 Mar;163(4):918-23. PMID: 11282766.
- 244. Puhan MA, Suarez A, Lo Cascio C, et al. Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial. BMJ. 2006 Feb 4;332(7536):266-70. PMID: 16377643.
- 245. Holty JE. External expert review of screening for obstructive sleep apnea in adults draft report; discussion section. Electronic correspondence with USPSTF and RTI UNC-EPC. 2015.
- 246. Medical Advisory Secretariat. Oral appliances for obstructive sleep apnea: an evidence-based analysis. Ontario Health Technology Assessment Series. 2009;9(5).
- 247. Miletin MS, Hanly PJ. Measurement properties of the Epworth Sleepiness Scale. Sleep Med. 2003 May;4(3):195-9. PMID: 14592321.
- 248. Smith SS, Oei TP, Douglas JA, et al. Confirmatory factor analysis of the Epworth Sleepiness Scale (ESS) in patients with obstructive sleep apnoea. Sleep Med. 2008 Oct;9(7):739-44. Epub: 2007/10/09. PMID: 17921053.
- 249. Baldwin CM, Griffith KA, Nieto FJ, et al. The association of sleep-disordered breathing and sleep symptoms with quality of life in the Sleep Heart Health Study. Sleep. 2001 Feb 1;24(1):96-105. PMID: 11204058.
- 250. Howard ME, Desai AV, Grunstein RR, et al. Sleepiness, sleep-disordered breathing, and accident risk factors in commercial vehicle drivers. Am J Respir Crit Care Med. 2004 Nov 1;170(9):1014-21. PMID: 15317672.
- 251. Vongpatanasin W. Resistant hypertension: a review of diagnosis and management. JAMA. 2014 Jun 4;311(21):2216-24. PMID: 24893089.
- 252. Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011 Aug 9;58(7):765-73. PMID: 21816315.
- 253. Esler MD, Krum H, Sobotka PA, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010 Dec 4;376(9756):1903-9. PMID: 21093036.
- 254. Chobanian AV, Bakris GL, Black HR, et al. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating

- Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560-72.
- 255. Wozniak DR, Lasserson TJ, Smith I. Educational, supportive and behavioural interventions to improve usage of continuous positive airway pressure machines in adults with obstructive sleep apnoea. Cochrane Database Syst Rev. 2014;1:CD007736. PMID: 24399660.
- 256. Silva GE, Vana KD, Goodwin JL, et al. Identification of patients with sleep disordered breathing: comparing the four-variable screening tool, STOP, STOP-Bang, and Epworth Sleepiness Scales. J Clin Sleep Med. 2011 Oct 15;7(5):467-72. Epub: 2011/10/18. PMID: 22003341.
- 257. Villa MP, Brasili L, Ferretti A, et al. Oropharyngeal exercises to reduce symptoms of OSA after AT. Sleep Breath. 2015 Mar;19(1):281-9. PMID: 24859614.
- 258. Guimaraes KC, Drager LF, Genta PR, et al. Effects of oropharyngeal exercises on patients with moderate obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2009 May 15;179(10):962-6. Epub: 2009/02/24. PMID: 19234106.
- 259. Kohler M, Bloch KE, Stradling JR. The role of the nose in the pathogenesis of obstructive sleep apnoea and snoring. Eur Respir J. 2007 Dec;30(6):1208-15. PMID: 18055705.
- 260. Koutsourelakis I, Minaritzoglou A, Zakynthinos G, et al. The effect of nasal tramazoline with dexamethasone in obstructive sleep apnoea patients. Eur Respir J. 2013 Oct;42(4):1055-63. Epub: 2013/02/12. PMID: 23397296.
- 261. Acar M, Cingi C, Sakallioglu O, et al. The effects of mometasone furoate and desloratedine in obstructive sleep apnea syndrome patients with allergic rhinitis. Am J Rhinol Allergy. 2013 Jul-Aug;27(4):e113-6. PMID: 23883803.
- 262. Grunstein RR, Stenlof K, Hedner JA, et al. Two year reduction in sleep apnea symptoms and associated diabetes incidence after weight loss in severe obesity. Sleep. 2007 Jun;30(6):703-10. Epub: 2007/06/22. PMID: 17580591.
- 263. Tregear S, Reston J, Schoelles K, et al. Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis (Structured abstract). Sleep. 2010;33(10):1373-80. PMID: DARE-12011000149.
- 264. Karimi M, Hedner J, Habel H, et al. Sleep apnea-related risk of motor vehicle accidents is reduced by continuous positive airway pressure: Swedish Traffic Accident Registry data. Sleep. 2015 Mar;38(3):341-9. Epub: 2014/10/18. PMID: 25325460.
- 265. Ho V, Crainiceanu CM, Punjabi NM, et al. Calibration model for apnea-hypopnea indices: impact of alternative criteria for hypopneas. Sleep. 2015;38(12):1887-92. PMID: 26564122.
- 266. Redline S, Kapur VK, Sanders MH, et al. Effects of varying approaches for identifying respiratory disturbances on sleep apnea assessment. Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 1):369-74. PMID: 10673173.
- 267. Chami HA, Resnick HE, Quan SF, et al. Association of incident cardiovascular disease with progression of sleep-disordered breathing. Circulation. 2011 Mar 29;123(12):1280-6. Epub: 2011/03/16. PMID: 21403097.
- 268. Kezirian EJ, Weaver EM, Yueh B, et al. Incidence of serious complications after uvulopalatopharyngoplasty. Laryngoscope. 2004 Mar;114(3):450-3. PMID: 15091217.

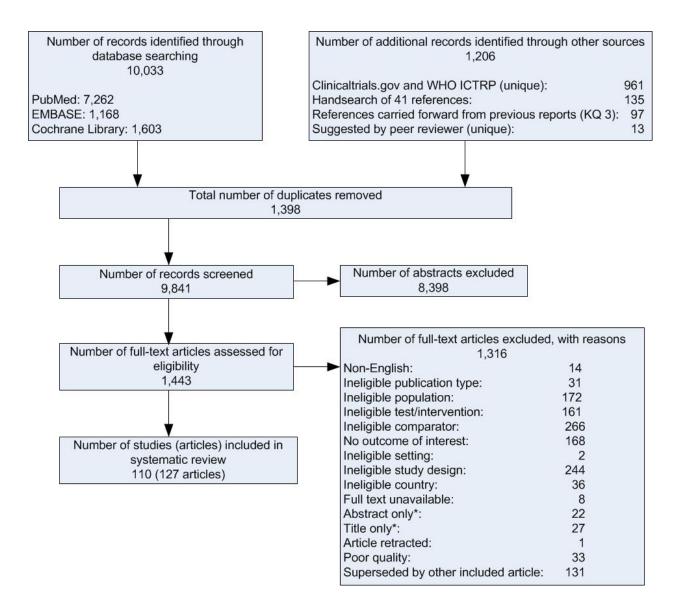

- 269. Nagappa M, Liao P, Wong J, et al. Validation of the STOP-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea among Different Populations: A Systematic Review and Meta-Analysis. PLoS One. 2015 Dec 14;10(12):e0143697. PMID: 26658438.
- 270. Nunes FS, Danzi-Soares NJ, Genta PR, et al. Critical evaluation of screening questionnaires for obstructive sleep apnea in patients undergoing coronary artery bypass grafting and abdominal surgery. Sleep Breath. 2015 Mar;19(1):115-22. PMID: 24668213.
- 271. Firat H, Yuceege M, Demir A, et al. Comparison of four established questionnaires to identify highway bus drivers at risk for obstructive sleep apnea in Turkey. Sleep Biol Rhythms. 2012;10(3):231-6.
- 272. Nicholl DD, Ahmed SB, Loewen AH, et al. Diagnostic value of screening instruments for identifying obstructive sleep apnea in kidney failure. J Clin Sleep Med. 2013 Jan 15;9(1):31-8. Epub: 2013/01/16. PMID: 23319902.
- 273. Balk EM, Chung M, Moorthy D, et al. Future Research Needs for Diagnosis of Obstructive Sleep Apnea. Future Research Needs Paper No. 11. (Prepared by the Tufts Evidence-based Practice Center under Contract No. 290-2007-10055 I.) AHRQ Publication No. 12-EHC031-EF. Rockville, MD: Agency for Healthcare Research and Quality; February 2012. www.effectivehealthcare.gov/reports/final.cfm
- 274. Balk EM, Chung M, Chan JA, et al. Future Research Needs for Treatment of Obstructive Sleep Apnea. Future Research Needs Paper No. 12. (Prepared by the Tufts Evidence-based Practice Center under Contract No. 290-2007-10055 I.) AHRQ Publication No. 12-EHC033-EF. Rockville, MD: Agency for Healthcare Research and Quality; February 2012. www.effectivehealthcare.gov/reports/final.cfm
- 275. Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012 Oct 15;8(5):597-619. Epub: 2012/10/16. PMID: 23066376.
- 276. Continuous positive airway pressure (CPAP) in sleep apnea syndrome primary research (Structured abstract). Health Technology Assessment Database. 1999(3)PMID: HTA-32000000072.
- 277. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008 Feb 15;5(2):136-43. PMID: 18250205.
- 278. Wright J, Johns R, Watt I, et al. Health effects of obstructive sleep apnoea and the effectiveness of continuous positive airways pressure: a systematic review of the research evidence. BMJ. 1997 Mar 22;314(7084):851-60. PMID: 9093094.
- 279. Tregear S, Reston J, Schoelles K, et al. Obstructive sleep apnea and risk of motor vehicle crash: systematic review and meta-analysis. J Clin Sleep Med. 2009 Dec 15;5(6):573-81. PMID: 20465027.
- 280. Loke YK, Brown JW, Kwok CS, et al. Association of obstructive sleep apnea with risk of serious cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2012 Sep 1;5(5):720-8. Epub: 2012/07/26. PMID: 22828826.
- 281. Dong JY, Zhang YH, Qin LQ. Obstructive sleep apnea and cardiovascular risk: meta-analysis of prospective cohort studies. Atherosclerosis. 2013 Aug;229(2):489-95. PMID: 23684511.

- 282. Epstein LJ, Kristo D, Strollo PJ, Jr., et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009 Jun 15;5(3):263-76. PMID: 19960649.
- 283. Institute for Clinical Systems Improvement. Health Care Guideline: Diagnosis and Treatment of Obstructive Sleep Apnea. Bloomington, MN: Institute for Clinical Systems Improvement; 2008 June. www.etsad.fr/etsad/afficher lien.php?id=4496. Accessed April 14, 2016.
- 284. NICE technology appraisal guidance 139: Continuous positive airway pressure for the treatment of obstructive sleep apnoea/hypopnoea syndrome. London: National Institute for Health and Clinical Excellence; 2008 www.nice.org.uk/TA139.
- 285. Harris RP, Helfand M, Woolf SH, et al. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001 Apr;20(3 Suppl):21-35. PMID: 11306229.
- 286. Crawford-Achour E, Dauphinot V, Martin MS, et al. Protective effect of long-term CPAP therapy on cognitive performance in elderly patients with severe OSA: The PROOF study. J Clin Sleep Med. 2015;11(5):519-24.
- 287. Muxfeldt ES, Margallo V, Costa LM, et al. Effects of continuous positive airway pressure treatment on clinic and ambulatory blood pressures in patients with obstructive sleep apnea and resistant hypertension: a randomized controlled trial. Hypertension. 2015 Apr;65(4):736-42. Epub: 2015/01/21. PMID: 25601933.
- 288. U.S. Preventive Services Task Force. Procedure Manual, Appendix VI Rockville, MD: U.S. Preventive Services Task Force; 2015

 December. http://www.uspreventiveservicestaskforce.org/Home/GetFile/6/7/procedure-manual_2016/pdf. Accessed 17 August 2016.
- 289. Redline S. Effects of Treatment of Sleep Apnea on Metabolic Syndrome. National Institutes of Health, National Center for Research Resources, Beth Israel Deaconess Medical Center and Case Western Reserve University; 2014 http://ClinicalTrials.gov/show/NCT01385995.
- 290. Mesarwi OA, Shin MK, Drager LF, et al. Lysyl oxidase as a serum biomarker of liver fibrosis in patients with severe obesity and obstructive sleep Apnea. Sleep. 2015;38(10):1583-91B.
- 291. Masa JF, Corral J, Pereira R, et al. Effectiveness of sequential automatic-manual home respiratory polygraphy scoring. Eur Respir J. 2013 Apr;41(4):879-87. Epub: 2012/08/11. PMID: 22878873.
- 292. Bardwell WA, Ancoli-Israel S, Berry CC, et al. Neuropsychological effects of one-week continuous positive airway pressure treatment in patients with obstructive sleep apnea: a placebo-controlled study. Psychosom Med. 2001 Jul-Aug;63(4):579-84. Epub: 2001/08/04. PMID: 11485111.
- 293. Profant J, Ancoli-Israel S, Dimsdale JE. A randomized, controlled trial of 1 week of continuous positive airway pressure treatment on quality of life. Heart Lung. 2003;32(1):52-8. PMID: CN-00430989.
- 294. Blanco J, Zamarron C, Abeleira Pazos MT, et al. Prospective evaluation of an oral appliance in the treatment of obstructive sleep apnea syndrome. Sleep Breath. 2005 Mar;9(1):20-5. Epub: 2005/03/24. PMID: 15785917.

- 295. Mehta A, Qian J, Petocz P, et al. A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea. Am J Respir Crit Care Med. 2001 May;163(6):1457-61. Epub: 2001/05/24. PMID: 11371418.
- 296. Lemacks J, Wells BA, Ilich JZ, et al. Interventions for improving nutrition and physical activity behaviors in adult African American populations: a systematic review, January 2000 through December 2011. Prev Chronic Dis. 2013;10:E99. PMID: 23786910.
- 297. Lin JS, O'Connor E, Whitlock EP, et al. Behavioral Counseling to Promote Physical Activity and a Healthful Diet to Prevent Cardiovascular Disease in Adults: Update of the Evidence for the U.S. Preventive Services Task Force. Evidence Synthesis No. 79 AHRQ Publication No. 11-05149-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; Dec 2010.
- 298. Lin JS, O'Connor EA, Evans CV, et al. Behavioral Counseling to Promote a Healthy Lifestyle for Cardiovascular Disease Prevention in Persons With Cardiovascular Risk Factors: An Evidence Update for the U.S. Preventive Services Task Force. Evidence Report No. 113 AHRQ Publication No. 13-05179-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2014.
- 299. Burke LE, Wang J, Sevick MA. Self-monitoring in weight loss: a systematic review of the literature. J Am Diet Assoc. 2011 Jan;111(1):92-102. PMID: 21185970.

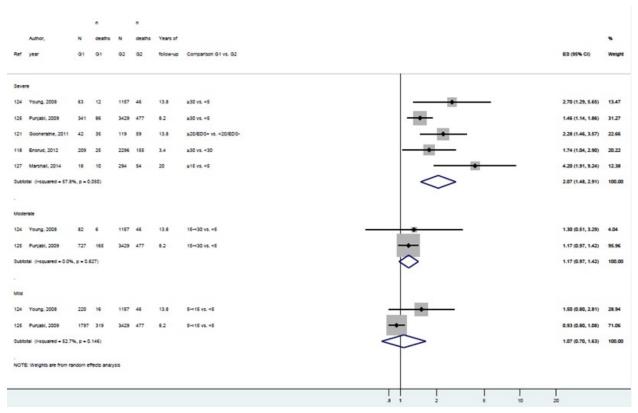
Figure 1. Analytic Framework



Abbreviations: AHI=apnea-hypopnea index; KQ=Key Question; OSA=obstructive sleep apnea.

Key Questions to Be Systematically Reviewed

- 1a. Does screening for obstructive sleep apnea (OSA) in adults improve health outcomes?
- 1b. Does the evidence on screening for OSA in adults differ for subgroups defined by age, sex, body mass index (BMI), or OSA severity?
- 2a. What is the accuracy of currently existing clinical prediction tools or screening questionnaires in identifying persons in the general population who are more or less likely to have OSA?
- 2b. What is the accuracy of multistep screening approaches, such as using a questionnaire or prediction tool followed by overnight home-based testing, in identifying persons in the general population who are more or less likely to have OSA?
- 3a. What is the accuracy and reliability of diagnostic tests for OSA?
- 3b. Do the accuracy and reliability of diagnostic tests for OSA differ for subgroups defined by age, sex, or BMI?
- 4a. How much does treatment with continuous positive airway pressure (CPAP), mandibular advancement devices, surgery, or weight loss programs improve intermediate outcomes (i.e., the apnea-hypopnea index [AHI], blood pressure, or sleepiness) in persons with OSA?
- 4b. Do the benefits of treatment (for intermediate outcomes) differ for subgroups defined by age, sex, BMI, or OSA severity?
- 5a. Does treatment with CPAP, mandibular advancement devices, surgery, or weight loss programs improve health outcomes in persons with OSA?
- 5b. Do the benefits of treatment (for health outcomes) differ for subgroups defined by age, sex, BMI, or OSA severity?
- 6. Is there an association between AHI and health outcomes?
- 7a. Are there harms associated with screening or diagnostic testing for OSA?
- 7b. Do the harms of screening or diagnostic testing differ for subgroups defined by age, sex, or BMI?
- 8a. Are there harms associated with treatment of OSA?
- 8b. Do the harms of treatment differ for subgroups defined by age, sex, BMI, or OSA severity?


Figure 2. Summary of Evidence Search and Selection

^{*} Insufficient information to assess risk of bias.

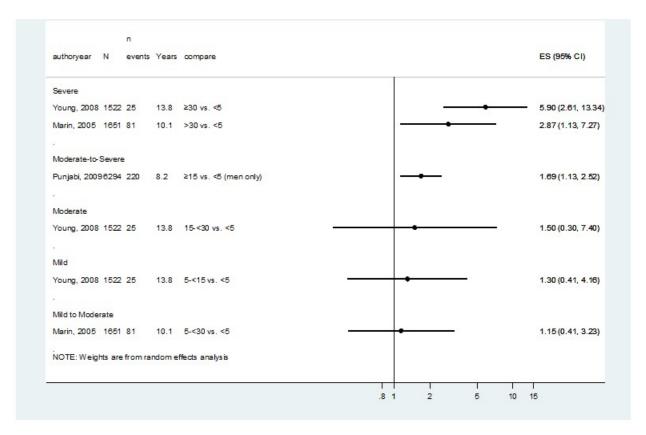

Abbreviations: KQ=Key Question; WHO ICTRP=World Health Organization International Clinical Trials Registry Platform.

Figure 3. Association Between AHI and All-Cause Mortality, by OSA Severity

Abbreviations: AHI=apnea-hypopnea index; OSA=obstructive sleep apnea.

Figure 4. Association Between AHI and Cardiovascular Mortality, by OSA Severity

Abbreviations: AHI=apnea-hypopnea index; OSA=obstructive sleep apnea.

Table 1. Definitions

Term	Definition
Apnea	Cessation of airflow for at least 10 seconds ^{8,275}
Hypopnea	Reduction in airflow by at least 30% for at least 10 seconds with decrease in oxygen saturation
Apnea-hypopnea index (AHI)*	Number of apnea and hypopnea events per hour of sleep
Obstructive sleep apnea (OSA)	
Mild ^{8,73}	AHI ≥5 to <15
Moderate ^{8,73}	AHI ≥15 to <30
Severe ^{8,73}	AHI ≥30
Obstructive sleep apnea syndrome	AHI ≥5 with evidence of daytime sleepiness ^{3,8,276}

^{*}The respiratory disturbance index (RDI) is a similar measure to AHI, but it also includes the number of respiratory effort–related arousals per hour of sleep (in addition to apnea and hypopnea events). **Abbreviations:** AHI=apnea-hypopnea index; OSA=obstructive sleep apnea; RDI=respiratory disturbance index.

Table 2. Classification of Monitors Used for Diagnosis of Obstructive Sleep Apnea*

Туре	Portability	Number of Channels	Typical Parameters	≥2 Airflow or Effort Channels	Measures AHI
I	Facility-based	≥7 (Usually 12–16)	EEG, EOG, EMG, ECG/HR, airflow (nasal and/or oral), respiratory effort (thoracic or abdominal movement), SaO ₂ , body position, leg movement, snoring	Yes	Yes
II	Portable	≥7	EEG, EOG, EMG, ECG or HR [†] , airflow, respiratory effort (thoracic or abdominal movement), SaO ₂	Yes	Yes
III	Portable	≥4 (Usually 4–7)	Ventilation and/or airflow, respiratory effort (thoracic or abdominal movement), ECG or HR, SaO ₂	Yes	No
IV	Portable	≥1 (Usually 1–3)	Usually SaO ₂ [‡] ; may include additional channels provided the monitor doesn't qualify as Type III [§]	No	No

^{*} Modified with permission from a previous systematic review¹; personal communication with Dr. Ethan Balk, October 5, 2015.

Abbreviations: AHI=apnea-hypopnea index; ECG=electrocardiogram; EEG=electroencephalogram; EMG=electromyogram; EOG=electrococulogram; HR=heart rate; SaO₂=arterial O₂ saturation.

^{5, 2015. &}lt;sup>†</sup> Heart rate is allowed in place of electrocardiogram in Type II portable monitors. Type II monitors usually measure the same channels as Type I monitors but are portable.

[‡] Unlike other monitor types that measure SaO₂ by oximetry, Type IV monitors may measure SaO₂ by oximetry and/or airflow.

[§] Parameters that are more commonly measured by Type IV portable monitors include but are not limited to snoring, body position, leg movement, peripheral arterial tone, and plethysmograph.

Table 3. Characteristics of Included Studies for KQ 2

First Author, Year					Mean		%			%		
Country			Questionnaire/	Questionnaire/	Age	%	Non-	Mean	Mean	HTN		
Study Design	N	Participants	Tool Name	Tool Components		F	white	BMI	AHI	% HF	% With OSA	Quality
Gurubhagavatula, 2013 ¹⁰⁴ United States Cross-sectional	250	internal medicine practices and	Single-stage models used the MVAP score; two- stage models used MVAP plus AHI from home test	MVAP combined symptoms of snoring, choking, and witnessed apnea with BMI, age, and sex	53 (NR)	20	60	32.1	22.5	100 NR	Of the 79% who had inlab PSG: Any: 80 Mild: 34 Moderate: 22 Severe: 25 % OSAS: Mild: 25 (AHI ≥5 and ESS >10) Severe: 7.6 (AHI ≥30	Fair
Morales, 2012 ¹⁰³ United States Cross-sectional	452	the greater Philadelphia metro region,	MVAP score; two-	MVAP combined symptoms of snoring, choking, and witnessed apnea with BMI, age, and sex	71 (NR)	70	64	30		NR 0	and ESS >10) Any OSAS (AHI ≥5 and ESS >10): 27 Mild (AHI 5–15 and ESS >10): 9 At least moderate (AHI ≥15 and ESS >10): 17 Moderate (AHI 15–30 and ESS >10): 8 Severe (AHI ≥30 and ESS >10): 8	Fair
,	the BQ; 518 had PSG		BQ (Norwegian translation)	10 questions on snoring, witnessed apnea, fatigue or sleepiness, and blood pressure; and height, weight, age, and sex	48 (NR)		NR NR	26 28	Median, 6.4	14 27 NR NR	NR	Fair

^{*} Required to have blood pressure ≥140/90 mm Hg or to be on antihypertensive medications.

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; BQ=Berlin Questionnaire; ESS=Epworth Sleepiness Scale; F=female; HF=heart failure; HTN=hypertension; KQ=Key Question; MVAP=Multivariable Apnea Prediction; N=sample size; NR=not reported; OSA=obstructive sleep apnea; PSG=polysomnography.

[†] From personal communication with Indira Gurubhagavatula (July 2015), 74% met their definition of daytime sleepiness (frequency of sleepiness, based on whether they had a problem staying awake, of every day or several [≥3] days per week); 32% had ESS >10.

Table 4. Results of Included Studies: Accuracy of Screening Questionnaires and Clinical Prediction Tools (KQ 2)

First Author, Year	Questionnaire/Tool Name Cutoff Value	Sensitivity (95% CI)	Specificity (95% CI)	AUROC (95% CI)	Calibration	Others
Gurubhagavatula, 2013 ¹⁰⁴	MVAP to predict severe OSAS (AHI ≥30 and ESS >10) 0.483	91.5 (NR)	43.9 (NR)	0.684 (0.668 to 0.700)	NR	Neg LR, 0.190 NPTP=0.015
Gurubhagavatula, 2013 ¹⁰⁴	MVAP to predict any OSAS (AHI ≥5 and ESS >10)	69.4 (NR)	56.5 (NR)	0.614 (NR)	NR	Neg LR, 0.524 NPTP=0.148
Gurubhagavatula, 2013 ¹⁰⁴	MVAP + uAHI* to predict severe OSAS (AHI ≥30 and ESS >10)	88.2 (NR)	71.6 (NR)	0.799 (0.777 to 0.822)	NR	Neg LR, 0.162 NPTP=0.015
Gurubhagavatula, 2013 ¹⁰⁴	MVAP + uAHI* to predict any OSAS (AHI ≥5 and ESS >10)	80.5 (NR)	54.0 (NR)	0.672 (NR)	NR	Neg LR, 0.349 NPTP=0.104
Morales, 2012 ¹⁰³	MVAP to predict severe OSAS (AHI ≥30 and ESS >10) 0.49	90.0 (NR)	64.4 (NR)	0.776 (0.710 to 0.846)	NR	Neg LR, 0.141 NPTP=1.1%
Morales, 2012 ¹⁰³	MVAP + uAHI* to predict severe OSAS (AHI ≥30 and ESS >10) uAHI 15	90.9 (NR)	75.7 (NR)	0.833 (0.765 to 0.902)	NR	Neg LR, 0.120 NPTP=1.0%
Hrubos-Strom, 2011 ¹⁰²	BQ to predict AHI ≥5 [†] BQ high risk vs. low risk	37.2 (36.0 to 38.4)	84.0 (83.2 to 84.7)	NR	NR	PPV (95% CI), 61.3 (59.7 to 62.9) NPV (95% CI), 66.2 (65.3 to 67.1) Pos LR (95% CI), 2.3 (2.2 to 2.5) Neg LR (95% CI), 0.8 (0.7 to 0.8)
Hrubos-Strom, 2011 ¹⁰²	BQ to predict AHI ≥15 [†] BQ high risk vs. low risk	43.0 (41.2 to 44.8)	79.7 (79.0 to 80.5)	NR	NR	PPV (95% CI), 33.5 (32.0 to 35.0) NPV (95% CI), 85.5 (84.8 to 86.1) Pos LR (95% CI), 2.1 (2.0 to 2.3) Neg LR (95% CI), 0.7 (0.7 to 0.7)

^{* 2-}stage process using MVAP for everyone, and then home testing to determine AHI for those with an intermediate MVAP score.

Abbreviations: AHI=apnea-hypopnea index; AUROC=area under the receiver operating characteristic curve; BMI=body mass index; BQ=Berlin Questionnaire; CI=confidence interval; ESS=Epworth Sleepiness Scale; KQ=key question; MVAP=Multivariable Apnea Prediction; N=sample size; Neg LR=negative likelihood ratio; NPTP=negative posttest probability; NPV=negative predictor value; NR=not reported; OSA=obstructive sleep apnea; OSAS=obstructive sleep apnea syndrome; Pos LR=positive likelihood ratio; PPV=positive predictive value; uAHI=unattended AHI from home sleep test.

[†] Estimates were based on a simulated model that adjusted for oversampling of BQ high-risk subjects (not just based on findings for the 518 in the clinical sample).

Table 5. Summary of Accuracy of Diagnostic Tests for Obstructive Sleep Apnea

	PSG AHI ≥5			F	SG AHI ≥	:15	PSG AHI ≥30		
Portable Monitor	Sn (%)	Sp (%)	AUC (%)	Sn (%)	Sp (%)	AUC (%)	Sn (%)	Sp (%)	AUC (%)
Type II	88-96	50-84	86-90	85-94	77-95	89-94	64-86	98-100	85
Type III	87-96	60-76	89-96	49-92	79-95	85-97	50-97	90-93	86-99
Type IV	65-100	35-100	NR*	7-100	15-100	NR^{\dagger}	NR [‡]	NR [§]	NR"

^{*} The 2011 systematic review did not report the range of AUC values for the 2007 technology assessment and articles newly included in the 2011 review. The AUC values among the 13 studies newly identified since the 2011 review ranged from 59 to 94.

Abbreviations: AHI=apnea-hypopnea index; AUC=area under the curve; NR=not reported; PSG=polysomnography; Sn=sensitivity; Sp=specificity.

[†] The 2011 systematic review did not report the range of AUC values for the 2007 technology assessment and articles newly included in the 2011 review. The AUC values among the 13 studies newly identified since the 2011 review ranged from 89 to 96.

[‡] The 2011 systematic review did not report the range of Sn values for the 2007 technology assessment and articles newly included in the 2011 review. The Sn values among the 13 studies newly identified since the 2011 review ranged from 59 to 100.

ranged from 59 to 100. § The 2011 systematic review did not report the range of Sp values for the 2007 technology assessment and articles newly included in the 2011 review. The Sp values among the 13 studies newly identified since the 2011 review ranged from 71 to 100.

The 2011 systematic review did not report the range of AUC values for the 2007 technology assessment and articles newly included in the 2011 review. The AUC values among the 13 studies newly identified since the 2011 review ranged from 73 to 95.

Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

Questionnaire/Tool (KQ 2), Test (KQ 3), Intervention (KQs	No. of Studies and Design (Total Sample					Body of	
4, 5, 8), or Outcome	Size) by Test	Summary of Findings	Consistency	Reporting		Evidence	Amaliaabilitu
(KQ 6)	or Outcome	by Test or Outcome dults improve health outcomes?	Precision	Bias	Quality	Limitations	Applicability
No studies identified	Ig IOI OSA III a						
	ccuracy of cur	rently existing clinical prediction tools	or screening au	lestionnaire	s in iden	tifving persons i	in the general population
who are more or les			o. co.cog q			mymg percent	and general population
Berlin Questionnaire	1 cross- sectional (16,302 completed Berlin; 518 had PSG)	Sn and Sp (95% CI), estimated for the general population (adjusted for oversampling high-risk participants): AHI ≥5: 37.2% (36.0 to 38.4); 84% (83.2 to 84.7) AHI ≥15: 43% (41.2 to 44.8); 79.7% (79.0 to 80.5)	Unknown, single study Precise	Undetected		Single study that has not been externally validated; moderate risk of bias due to missing data, attrition bias, spectrum bias	
MVAP score	2 cross- sectional (702)	For severe OSAS (AHI ≥30 and ESS >10) using MVAP cutoff 0.48 to 0.49: Sn (95% CI): 90% (NR) to 91.5% (NR) Sp (95% CI): 43.9% (NR) to 64.4% (NR) AUC (95% CI): 0.68 (0.67 to 0.70) to 0.78 (0.71 to 0.85)	Inconsistent (one with inadequate discrimination; one with reasonable discrimination) Imprecise	Undetected	Fair	Concern for spectrum bias in both studies; risk of attrition bias in one	Populations with high prevalence of OSAS (≥25%); only one of the studies reported % with any OSA (80%); studies included Medicare recipients and adults with hypertension
MVAP score	1 cross- sectional (250)	For <i>any</i> OSAS (AHI ≥5 and ESS >10) Sn (95% CI): 69.4% (NR) Sp (95% CI): 56.5% (NR) AUC (95% CI): 0.614 (NR)	Unknown Imprecise	Undetected	Fair	Concern for spectrum bias; risk of attrition bias	Populations with high prevalence of OSAS; studies included Medicare recipients and adults with hypertension
		Itistep screening approaches, such as			ediction	tool followed by	overnight home-based
		ne general population who are more or	i -			I a	<u> </u>
home PM	2 cross- sectional (702)	For severe OSAS (AHI ≥30 and ESS >10) using home-based AHI of 15 or 18: Sn (95% CI): 88.2% to 90.9% (NR) Sp (95% CI): 71.6% to 75.7% (NR) AUCs: 0.799 (0.777 to 0.822) and 0.833 (0.765 to 0.902)	Consistent Precise	Undetected	Fair	Concern for spectrum bias; risk of attrition bias in one	Populations with high prevalence of OSAS; studies included Medicare recipients and adults with hypertension
MVAP followed by home PM	1 cross- sectional (250)	For <i>any</i> OSAS (AHI ≥5 and ESS >10) Sn (95% CI): 80.5% (NR) Sp (95% CI): 54.0% (NR) AUC (95% CI): 0.672 (NR)	Unknown Imprecise	Undetected	Fair	Concern for spectrum bias; risk of attrition bias	Populations with high prevalence of OSAS; studies included Medicare recipients and adults with hypertension

Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

4, 5, 8), or Outcome (KQ 6)	and Design (Total Sample Size) by Test or Outcome		Consistency Precision	Reporting Bias	Overall Quality		Applicability
Type II PMs	3 (160)	Sn/Sp: Some wide ranges across	Reasonably	Undetected	Fair	Small sample	Those suspected of
		multiple AHI cutpoints, with a majority being moderate to high AUC: High discriminatory accuracy (85% to 94%) across multiple AHI cutpoints LR: Majority were moderate to high across AHI cutpoints	consistent Imprecise			size; missing data (complete cases only); not all reported independent scoring	having OSA; referral populations
Type III PMs	1 SR of 19 studies (1,507); 2 newer studies (184)	Sn/Sp: Some wide ranges across multiple AHI cutpoints; majority being moderate to high AUC: 85% to 99% across multiple AHI cutpoints LR: High for in-lab evaluations but lower and more varied for at-home evaluations	Reasonably consistent Imprecise	Undetected	Good		Those suspected of having OSA; referral population
Type IV PMs	1 SR of 70 studies (6,873*); 14 newer studies (1,900)	Sn/Sp: Wide range across multiple AHI cutpoints AUC: High discriminatory accuracy in diagnosing OSA (most >80%) across multiple AHI cutpoints, regardless of number of PM channels LR: Majority were moderate to high across AHI cutpoints	Inconsistent Imprecise	Undetected	Fair	Heterogeneity of scoring methods and criteria, PM AHI cutpoints; handling of missing data; not all reported independent scoring	Those suspected of having OSA; referral population
KQ 3. What is the re	liability of diag	nostic tests for OSA?			•	•	
Type II PMs	2 (78)	Good to very good kappas for dual scoring of PM and PSG data; high OSA staging concordance and low AHI variability between scorers	Reasonably consistent Imprecise	Undetected	Fair	Small sample size; not all scoring was blinded	Those suspected of having OSA; referral population
Type III PMs	No studies identified						
Type IV PMs	1 (15)	Very good interobserver agreement for manual scoring of PM results	Unknown Imprecise	Undetected	Fair	Single study; small sample size	Those suspected of having OSA; referral population

Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

	and Design (Total Sample					Body of	
4, 5, 8), or Outcome (KQ 6)	Size) by Test or Outcome	Summary of Findings by Test or Outcome	Consistency Precision	Reporting Bias	Overall Quality	Evidence Limitations	Applicability
		prove intermediate outcomes in perso					7.56
CPAP [†]	AHI: 19 RCTs (837) ESS: 34 RCTs (5,209) BP: 29 RCTs reported any measure	AHI CPAP vs. Sham: WMD, -33.8 (95% CI, -42.0 to -25.6; 13 trials; N=543)	Consistent for AHI and BP; inconsistent for ESS Precise	Undetected	Fair to good		Referral population with known OSA
Mandibular advancement devices [†]	(616) ESS: 9 RCTs (562) BP: 5 RCTs reported any	AHI MAD vs. Sham: WMD, -12.6, (95% CI, -15.5 to -9.7; 6 trials, N=307) ESS MAD vs. Sham: WMD -1.5 (95% CI, -2.8 to -0.2; 5 trials; N=267) BP No significant reduction in any BP measures	Consistent Precise for AHI, imprecise for ESS and BP			Heterogeneity of BP measures and analyses; low or NR rates of HTN at baseline for those analyses	Referral population with known OSA
Airway surgery	ESS: 4 RCTs (187) BP: 1 RCT (46)	AHI: trials of UPPP and LAUP found benefit ESS: no benefit BP: no significant change in either group	Unknown Imprecise	Undetected		32 to 67)	Potentially limited; OSA patients from ENT clinics, sleep clinics, or referrals; those deemed good candidates for surgery
Bariatric surgery	AHI: 1 RCT (60) ESS: 1 RCT (60) BP: 1 RCT (60)		Imprecise	Undetected			Potentially limited; morbidly obese candidates for bariatric surgery
Weight loss programs	AHI: 5 RCTs (477) ESS: 4 RCTs (213) BP: 3 RCTs (184)	ESS: WMD, -3.4 (95% CI, -5.9 to -1.0); 3/4 trials found reductions, ranging from -3 to -7	Some inconsistency Precise for AHI and ESS; imprecise for BP	Undetected	Fair to good	For BP: 3 different interventions studied; very wide qualitative CI	Obese men and women, generally with moderate to severe OSA

Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

Questionnaire/Tool	No. of Studies						
(KQ 2), Test (KQ 3),	and Design						
	(Total Sample					Body of	
4, 5, 8), or Outcome		Summary of Findings	Consistency	Reporting	Overall	Evidence	
(KQ 6)	or Outcome	by Test or Outcome	Precision	Bias	Quality	Limitations	Applicability
		nprove health outcomes in persons wit			quanty		7.66.000
CPAP [‡]	Mortality: 31	Mortality: No events (27 RCTs) or 1	Mortality, CBV	Detected	Fair	Study duration	Referral population with
0.7.	RCTs (2,673)		and CV events:		. u		known OSA
		benefit at 24 weeks (1 RCT: 2 vs. 2) or 4	Consistent for	outcomes		insufficient to	iniowii GG/ (
	RCTs (616)	years (1 RCT: 8 vs. 3)	studies of	(5 RCTs		determine	
		SF-36 PCS: CPAP vs. any comparator:	relatively short	only		benefit for many	
	RCTs (978)	WMD, 2.3 (95% CI, 0.2 to 4.4); 7 trials;	duration (≤12 to	,		health	
	EQ-5D: 2	N=648	24 weeks);	individual		outcomes; small	
	RCTs (663)	SF-36 MCS: CPAP vs. any comparator:	unknown for	SF-36		number of total	
	Sleep-related	WMD, 1.2 (95% CI, -0.8 to 3.2); 8 trials;	longer duration	domains		events	
	QOL (SAQLI	N=1,039	iongor daranon	but not		observed	
	or FOSQ): 13	EQ-5D: No benefit (1 RCT); insufficient	SF-36 PCS,	overall,		across studies	
		data provided to determine between	MCS, and NHP:			(for mortality,	
		group differences (1 RCT)	Inconsistent	MCS		MVA, CBV, and	
	(1,595)	SAQLI or FOSQ: CPAP vs. any		scores)		CV events)	
			EQ-5D, heart	,		,	
		0.42); 13 trials; N=2,325	failure:	Undetected			
		MVA: No benefit across 3 RCTs	unknown	for all other			
		CBV events: Overall, too few events		outcomes			
	HF: 1 RCT	were observed to draw conclusions§	Sleep-related				
	(723)	CV events: Overall, too few events were	QOL, MVA,				
	,	observed to draw conclusions, but trend	TIA: Consistent				
		in direction favoring CPAP					
		Ğ	Precise for				
			sleep-related				
			QOL (SAQLI				
			and FOSQ);				
			imprecise for all				
			other outcomes				
Mandibular	Mortality: 4	One total death in no-treatment group in	Inconsistent or	Undetected	Fair to	Short study	Referral population with
advancement	RCTs (245)	one 4-week RCT (N=93); mixed results	unknown	for most;	poor	durations (1 to	known OSA
devices	SF-36 total: 1	for QOL measures; 5 total MVA events	consistency	suspected		12 weeks),	
	RCT (97)	(3 in MAD groups and 2 in no treatment		for QOL		small number of	
		groups)	Imprecise	measures		studies	
	RCTs (183)					reporting the	
	SF-36 MCS: 2					outcomes and	
	RCTs (183)					too few events	
	Sleep-related					(for mortality	
	QOL: 3 RCTs					and MVAs)	
	(256)						
	MVA: 1 RCT						

Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

Questionnaire/Tool (KQ 2), Test (KQ 3), Intervention (KQs 4, 5, 8), or Outcome (KQ 6)	No. of Studies and Design (Total Sample Size) by Test or Outcome (90)	Summary of Findings by Test or Outcome	Consistency Precision	Reporting Bias	Overall Quality	Body of Evidence Limitations	Applicability
	Mortality: 3 RCTs (127) QOL (SF-36 PCS, MCS): 2 RCTs (92) Sleep-related QOL: 1 RCT (60) Cognitive impairment: 1 RCT (60)	Mortality: No deaths in any study (12 weeks to 15 months) QOL (SF-36): No benefit found over 8 to 24 weeks Sleep-related QOL: No benefit measured on SAQLI; possible benefit with TCRFTA compared with sham surgery on FOSQ but not SNORE25 Cognitive impairment: No benefit on multiple measures of reaction time	·	Undetected	fair	of 5 different surgeries (N=32 to 67); some study durations limited for assessing health outcomes; few total events	Potentially limited; OSA patients from ENT clinics, sleep clinics, or referrals; those deemed good candidates for surgery
Bariatric surgery	Mortality, QOL (SF-36),	SF-36 MCS score: -0.3 (95% CI,	Unknown consistency [¶] Imprecise	Undetected	Fair	of total events	Potentially limited; morbidly obese candidates for bariatric surgery
programs	RCT (60) Sleep-related QOL (FOSQ): 1 RCT (45) Cognitive impairment: 1 RCT (45)	Mortality: 1 total death over 9 to 208 weeks General QOL: No benefit in 1 RCT measured by the 15D; 2 trials provide ≥1 scores on individual SF-36 domains EQ-5D-VAS: No difference after 13 weeks of treatment, but greater improvement for the treatment group after 13 additional weeks of followup (between-group difference, 9 [95% CI, 2 to 16]) FOSQ: 1 RCT found no benefit Cognitive impairment: 1 RCT found no benefit on multiple measures of cognitive function at 12 weeks	Unknown Imprecise	Undetected	Good to fair	Small numbers of total events (for mortality); heterogeneity of reporting for QOL; single small study for some outcomes	Obese men and women, generally with moderate to severe OSA
		een AHI and health outcomes?					
All-cause mortality	6 prospective cohorts (11,003)#	(95% CI, 1.48 to 2.91)	Consistent Precise	Undetected		confounding	General population
Cardiovascular mortality	2 prospective cohorts (3,173)	(95% CI, 1.1 to 7.3) to 5.9 (95% CI, 2.6	Consistent Imprecise	Undetected	Fair to good	Risk of residual confounding	General population

Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

Questionnaire/Tool	No. of Studies						
(KQ 2), Test (KQ 3),	and Design						
Intervention (KQs	(Total Sample					Body of	
4, 5, 8), or Outcome		Summary of Findings	Consistency	Reporting			
(KQ 6)	or Outcome	by Test or Outcome	Precision	Bias	Quality	Limitations	Applicability
Cancer-related	1 prospective	For AHI ≥30: adjusted HR, 4.8 (95% CI,	Unknown	Undetected	Fair	Single study;	General population
mortality	cohort (1,522)	1.7 to 13.2)				risk of residual	
			Imprecise			confounding;	
						lack of precise	
						information for some risk	
						factors (e.g.,	
						smoking)	
Cardiovascular	1 prospective	Nonfatal CV events for AHI ≥30: OR,	Unknown	Undetected	Fair to		General population
events	cohort for	3.17 (95% CI, 1.12 to 7.52)	OTIKITOWIT	Onacicoloa	good	each outcome;	Ceneral population
Overno	each:	Neither CHD nor incident HF were	Imprecise		good	potential	
	nonfatal CV	associated with OSA (of any severity) for				measurement	
	events (1,651)	men or for women in adjusted analyses**				bias, risk of	
	HF (4,422)					residual	
	CHD (4,422)					confounding	
Stroke	1 prospective	For men, AHI ≥19: adjusted HR, 2.86	Unknown	Undetected		Single study;	General population
	cohort (5,422)	(95% CI, 1.10 to 7.39)			good	masking of	
		For women: HR, 1.21 (95% CI, 0.65 to	Imprecise			outcomes	
		2.24)				assessors NR,	
						risk of residual	
Cognitive	1 prospective	For AHI ≥15: adjusted OR, 1.85 (95% CI,	Linknown	Undetected	Foir	confounding Single study,	Older women
impairment or	cohort (298)	1.11 to 3.08)	UTIKITOWIT	Ondetected	ган	risk of residual	Older women
dementia	COHOIT (290)	1.11 (0 3.00)	Imprecise			confounding	
Cognitive decline	1 prospective	For AHI ≥15: adjusted OR, 1.14 (95% CI,		Undetected	Fair	Single study,	Older men
Cognitive decime		0.84 to 1.54) on Trails B and OR, 0.99	OTIKITOWIT	Onaciccica	ı alı	risk of residual	Older men
	(2,000)	(95% CI, 0.79 to 1.24) on 3MS	Imprecise			confounding	
KQ 7. Are there harr	ns associated	with screening or diagnostic testing for					
No studies identified							
L.	ns associated	with treatment of OSA?				•	•
CPAP	9 RCTs	Overall, 2% to 47% had specific adverse	Consistent	Undetected	Fair		Referral population with
	(1,759)	events while using CPAP. Commonly				heterogeneity in	known OSA
		reported harms were oral or nasal	Imprecise			reporting and	
		dryness, eye or skin irritation, rash,				findings	
		epistaxis, and pain					
	8 RCTs (443)	17% to 74% had any harms while using	Inconsistent	Undetected	Fair		Referral population with
advancement		MADs. Common were oral or nasal	lana a un nic -			heterogeneity	known OSA
devices		dryness, excess salivation, oral	Imprecise				
		mucosal/dental/jaw symptoms					

Table 6. Summary of Evidence for Screening and Treatment of Obstructive Sleep Apnea

Questionnaire/Tool (KQ 2), Test (KQ 3), Intervention (KQs 4, 5, 8), or Outcome	and Design (Total Sample		Consistency	Reporting	Overall	Body of Evidence	
(KQ 6)	or Outcome	by Test or Outcome	Precision		Quality		Applicability
	4 RCTs (205)	1% to 81% of participants had harms from surgery. Most common were pain,	Unknown Imprecise	Undetected	Fair	Small sample sizes; just 1 trial	General population of patients with OSA deemed suitable for surgery
Bariatric surgery	1 RCT (60)	in treatment arm	Unknown Imprecise	Undetected	Fair	Single study with small sample	Morbidly obese
Weight loss, diet and exercise	very low- calorie diet	patients and included constipation,	Unknown	Undetected	Fair	,	Obese men and women, generally with moderate to severe OSA

^{*} This includes 24 studies (n=1,865) from the 2011 SR and 46 studies (n=5,008) from the 2007 Technology Assessment that were summarized by the 2011 SR. In this table, the total number of RCTs and participants reporting each outcome for CPAP or MADs are more than the number that contributed to the data in column 3 because we did not enter the CPAP or MAD "vs. control" data. Rather, we focused on the CPAP or MAD vs. sham data. We did, however, consider evidence from both comparator groupings in our assessments.

Abbreviations: 3MS=Modified Mini-Mental State Examination; AHI=apnea hypopnea index; AUC=area under the curve; BP=blood pressure; CBV=cerebrovascular; CHD=coronary heart disease; CI=confidence interval; CPAP=continuous positive airway pressure; CV=cardiovascular; DBP=diastolic blood pressure; ENT=ear, nose, and throat (otolaryngology); ESS=Epworth Sleepiness Scale; EQ-5D=European Quality of Life Scale; FOSQ=Functional Outcomes of Sleep Questionnaire; HF=heart failure; HR=hazard ratio; KQ=key question; LAUP=laser-assisted uvulopalatoplasty; LR=likelihood ratio; MAD=mandibular advancement device; MCS=mental component summary score; MVA=motor vehicle accident; MVAP=Multivariable Apnea Prediction; N=number; NHP=Nottingham Health Profile; NR=not reported; OR=odds ratio; OSA=obstructive sleep apnea; OSAS=obstructive sleep apnea syndrome; PCS=physical component summary score; PSG=polysomnography; PM=portable monitor; QOL=quality of life; RCT=randomized, controlled trial; SAQLI=Sleep Apnea Quality of Life Index; SBP=systolic blood pressure; SF-36=Medical Outcome Short-Form (36-Item) Health Survey; Sn=sensitivity; Sp=specificity; SR=systematic review; TIA=transient ischemic attack; UPPP=uvulopalatopharyngoplasty; WMD=weighted mean difference; WSCS=Wisconsin Sleep Cohort Study.

^{*} Selected results for the most commonly reported outcomes are included in this table. Details on additional measures (e.g., Nottingham Health Profile) with few studies and insufficient evidence to draw conclusions are provided in the text and Appendixes.

[§] TIA: few events across 3 RCTs (CPAP vs. comparators: total of 4 vs. 7 combining all trials); stroke: few events across 4 RCTs (CPAP vs. comparators: 3 vs. 3 combining all trials). Trial durations were 12 weeks, 24 weeks, 1 year, and 4 years (median followup).

MI: few events across 5 RCTs (5 vs. 8 combining all trials); incident or unstable angina: few events across 4 RCTs (4 vs. 9 combining all trials); incident atrial fibrillation: 3 RCTs (12 vs. 20 events combined).

[¶] For SF-36 PCS, improvement is consistent with that expected from a large weight loss.

[#] Two of the publications used data from the same cohort (WSCS) and we did not double-count those participants here (we just used one of the publications in the meta-analysis).

^{**} For the subgroup of men age ≤70 years, participants with AHI ≥30 were more likely to develop CHD than those with AHI <5 (adjusted HR, 1.68 [95% CI, 1.02 to 2.76]).

Prevalence

Reported estimates of the prevalence vary, likely because of variation in the definitions of obstructive sleep apnea (OSA) used (i.e., different apnea-hypopnea index [AHI] cutoffs), sampling biases, year of publication, or combinations of these factors.³¹ A recent systematic review estimated a prevalence range of 2 to 14 percent among four community-based studies⁸ after correcting for oversampling. Pooled estimates from the systematic review indicated a prevalence of 6 percent (95% confidence interval [CI], 3.7 to 8.3) for an AHI threshold of 15 and a prevalence of 14 percent (95% CI, 8.3 to 20) for an AHI threshold of 5. Sample sizes of the four included studies ranged from 360 to 1,741. Two of the four studies were conducted in the United States: 15,32 the others were conducted in India and Norway. For the largest U.S.-based study (N=1,741),³² the estimated prevalence was 3.8 percent (95% CI, 2.9 to 9.8) using an AHI threshold of 15. The prevalence was higher among the subsample with obesity (almost 10%), was higher for men than women (6.6% vs. 1.8%), and increased with age (0.7% for ages 20 to 44, 5.6% for ages 45 to 64, and 8% for ages 65 to 100). For the other U.S.-based study (N=602, Wisconsin Sleep Cohort Study¹⁵ data published in 1993), the estimated prevalence was 6.5 percent (95% CI, 4.5 to 8.5) using an AHI threshold of 15 and 17 percent (95% CI, 14 to 21) using an AHI threshold of 5. The prevalence was higher for men than women (9.1% vs. 4.0%) using an AHI threshold of 15 and 24% vs. 9% using an AHI threshold of 5). From the same study, the estimated prevalence for an OSA syndrome (AHI of at least 5 plus excessive daytime sleepiness) was 4 percent for men (95% CI, 2 to 6) and 2 percent for women (95% CI, 0.3 to 3.7).

We searched for estimates of how many people with mild, moderate, or severe OSA would be detected by screening, and we were only able to find some of the information. Specifically, estimates for those with mild OSA (AHI of at least 5 but <15) and those with moderate/severe (combining the two categories, with AHI of at least 15) are available. The systematic review described in the previous paragraph⁸ indicated that 8 percent of the population would have mild OSA and that 6 percent would have moderate or severe OSA. The two U.S.-based studies that were included found about 10 percent¹⁵ with mild OSA and 3.8³² to 6.5¹⁵ percent with moderate or severe OSA when using data from the 1990s; long-term followup from one of them estimated a 16 percent prevalence for mild OSA and 10 percent for moderate or severe OSA.

Longitudinal epidemiological studies and modeling studies estimate that the prevalence of OSA is increasing, perhaps due to rising rates of obesity. Recent publications use data from the Wisconsin Sleep Cohort Study and statistical modeling to estimate current OSA prevalence. This approach found that the prevalence of OSA has increased over the last two decades. Data published in 2009 (N=1,500) and 2013 (N=1,520) reported a prevalence around 20 to 30 percent for men and 10 to 15 percent for women ages 30 to 70 years when using an AHI threshold of 5.33,34 When more stringent definitions are used, either combining an AHI of at least 5 with report of at least one symptom of disturbed sleep or using an AHI threshold of 15, the estimated prevalence was approximately 15 percent in men and 5 percent in women.

Multiple cohort studies have found that OSA is approximately 2 to 3 times more common in men than women, although the gap narrows at the age of menopause in women. ^{15-17,35} The prevalence of OSA appears to increase with age through the sixth to seventh decade and then plateaus. ^{14,16,17} In both males and females, multiple epidemiological studies have found that the prevalence of OSA progressively increases as body mass index (BMI) increases. Using data from the Wisconsin Sleep Cohort Study, a prospective study of nearly 700 adults with 4-year longitudinal

Appendix A. Additional Background

followup, the authors reported that a 10 percent increase in weight was associated with a six-fold increase in risk of incident OSA. In another study that used age- and BMI-specific OSA prevalence data from the Wisconsin Sleep Cohort Study combined with BMI population distributions from the U.S. National Health and Nutrition Examination Survey database, the estimated prevalence of OSA increased from 1990 to 2010 in every age group and BMI category studied, in some cases by as much as 50 percent. It is unclear whether the prevalence of OSA differs by race or ethnicity; most population-based studies in the United States have been conducted in select populations and have not sought to describe this relationship. 31,277

Burden

Patients with untreated, severe OSA have an increased risk of all-cause mortality. A 2011 comparative effectiveness review for the Agency for Healthcare Research and Quality (AHRQ) found high strength of evidence from four studies indicating that an AHI greater than 30 is an independent predictor of all-cause mortality. The review found two studies with some evidence of an association between AHI and incident diabetes but concluded that the association may be confounded by obesity, which may result in both OSA and diabetes. The authors concluded that evidence was insufficient for the association between AHI and other clinical outcomes.

OSA has been associated with a wide range of other adverse health outcomes in various publications. However, there is some controversy in the literature regarding the extent to which OSA directly contributes to various adverse outcomes—above and beyond the contributions of age, BMI, and other potential confounders. One systematic review from the 1990s (including 54 epidemiological studies) examined the association between sleep apnea and health-related outcomes and concluded that most studies were poorly designed and found only weak or contradictory evidence for an association with cardiac arrhythmias, ischemic heart disease, cardiac failure, systemic or pulmonary hypertension, and stroke.²⁷⁸ In a systematic review of case-control and matched cohort studies, drivers with OSA had an increased risk of motor vehicle accidents (relative risk, 2.43; 95% CI, 1.21 to 4.89).²⁷⁹ However, the authors noted that most included studies were rated as low quality because of retrospective design, lack of adjustment for important confounders, and self-reported outcome or lack of independent outcome assessment and that there was significant statistical heterogeneity in results.²⁷⁹ Two recent systematic reviews of cohort studies found that people with OSA have increased risk of stroke, but the relationship between OSA and risk of ischemic heart disease is uncertain.^{280,281}

Appendix A Table 1. Summary of Guidelines From Other Groups

	Screening or	
Group, Year	Treatment?	Recommendations
American College of Physicians	Treatment	All overweight and obese patients diagnosed with OSA should be encouraged to lose weight. (strong recommendation; low-quality evidence)
(ACP), 2013 ⁷⁶		CPAP treatment as initial therapy for patients diagnosed with OSA. (strong recommendation; moderate-quality evidence)
		Mandibular advancement devices as an alternative therapy to CPAP treatment for patients diagnosed with OSA who prefer mandibular advancement devices or for those with adverse effects associated with CPAP treatment. (weak recommendation; low-quality evidence)
American Academy of Sleep Medicine (AASM),	Screening	Routine health maintenance evaluations should include questions about OSA (e.g., history of snoring and daytime sleepiness), as well as an evaluation for the presence of obesity, retrognathia, and hypertension. Positive findings should trigger a comprehensive sleep evaluation.
2009 ²⁸²		The diagnostic strategy includes a sleep-oriented history and physical examination, objective testing, and education of the patient. The presence or absence and severity of OSA must be determined before initiating treatment to identify those patients at risk of developing the complications of sleep apnea, guide selection of appropriate treatment, and provide a baseline to establish the effectiveness of subsequent treatment.
	Treatment	Once the diagnosis is established, the patient should be included in deciding an appropriate treatment strategy that may include CPAP devices, oral appliances, behavioral treatments, surgery, and adjunctive treatments. OSA should be approached as a chronic disease requiring long-term, multidisciplinary management.
Institute for Clinical Systems Improvement	Screening	Appropriately sensitive overnight oximetry (when combined with history and physical) can be a useful tool in screening patients with a high pretest probability of OSA and excluding patients with a low pretest probability of OSA. (Conclusion Grade II)
(ICSI), 2008 ²⁸³		Unattended sleep studies can be valuable tools in the diagnosis of OSA, providing an accurate and reliable AHI in patients with a high pretest probability, but they carry the following limitations: absence of trained technician means no one can enlist patient cooperation, they cannot make continuous patient observations, they cannot intervene for the medically unstable patient, and they cannot provide therapeutic intervention (i.e., CPAP, oxygen, supine positioning, resuscitation). (Conclusion Grade III)
National Institute for Health and Clinical Excellence	Screening	Moderate to severe obstructive sleep apnea hypopnea syndrome (OSAHS) can be diagnosed from patient history and a sleep study using oximetry or other monitoring devices carried out in the person's home. In some cases, further studies that monitor additional physiological variables in a sleep laboratory or at home may be required, especially when alternative diagnoses are being considered.
(NICE), 2008 ²⁸⁴	Treatment	CPAP is recommended as a treatment option for adults with moderate or severe symptomatic OSAHS. CPAP is only recommended as a treatment option for adults with mild OSAHS if: they have symptoms that affect their quality of life and ability to go about their daily activities, and
		lifestyle advice and any other relevant treatment options have been unsuccessful or are considered inappropriate. The diagnosis and treatment of OSAHS, and the monitoring of the response, should be carried out by a specialist service with appropriately trained medical and support staff.

Abbreviations: AASM=American Academy of Sleep Medicine; ACP=American College of Physicians; AHI=apnea-hypopnea index; CPAP=continuous positive airway pressure; ICSI=Institute for Clinical Systems Improvement; NICE=National Institute for Health and Clinical Excellence; OSA=obstructive sleep apnea; OSAHS=obstructive sleep apnea-hypopnea syndrome.

Original Search Strategies

PubMed intervention/treatment search, 9/30/2014

Search	Query	Items
		Found
<u>#1</u>	Search ("Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR "Obstructive	<u>28401</u>
	Sleep Apneas"[tw] OR "Obstructive Sleep Apnea"[tw] OR "Obstructive Sleep Apnea Syndrome"[tw]	
	OR "Obstructive Sleep Apnoeas" [tw] OR "Obstructive Sleep Apnoea" [tw] OR OSAHS[tw] OR	
	("sleep apnea" AND hypopnea) OR "sleep disordered breathing"[tw])	
<u>#2</u>	Search "Positive-Pressure Respiration"[Mesh:NoExp]	<u>14880</u>
#3	Search "Continuous Positive Airway Pressure"[Mesh]	<u>3985</u>
#4	Search ("Continuous Positive Airway Pressure"[tw] OR CPAP[tw])	9222
<u>#5</u>	Search "Intermittent Positive-Pressure Ventilation"[MeSH]	2004
#6	Search ("Intermittent Positive Pressure Ventilation"[tw] OR "IPPV"[tw] OR "Inspiratory Positive-	3260
	Pressure Ventilation"[tw] OR "Inspiratory Positive Pressure Ventilation"[tw] OR "Biphasic	
	Intermittent Positive Airway Pressure"[tw] OR BiPAP[tw])	
#7	Search "Mandibular Prosthesis"[MeSH Terms]	<u>798</u>
#8	Search ("mandibular advancement device"[tw] OR "mandibular advancement devices"[tw])	<u>180</u>
#9	Search "Mandibular Advancement/instrumentation"[Mesh]	516
#10	Search ("oral appliance"[tw] OR "oral appliances"[tw])	641
#11	Search ("General Surgery"[MeSH] OR "general surgery"[tw])	39479
#12	Search ("otolaryngology"[MeSH] OR "otolaryngology"[tw] OR "Otorhinolaryngology"[tw] OR	17942
	"Laryngology"[fw])	
#13	Search ("surgery, plastic"[MeSH] OR "Plastic Surgery"[tw])	29779
#14	Search ("Surgical Procedures, Operative" [MeSH] OR "Operative Surgical Procedure" [tw] OR	2394551
	"Operative Surgical Procedures" [tw] OR "Operative Procedures" [tw] OR "Operative Procedure" [tw])	
#15	Search "Bariatric Surgery"[Mesh]	14577
#16	Search (UPPP[tw] OR uvulopalatopharyngoplasty[tw])	921
#17	Search (septoplasty[tw] AND "turbinate reduction"[tw])	39
#18	Search ("Pillar Procedure"[tw] OR "soft palate implants"[tw])	0
#19	Search "Hyoid advancement"[tw]	11
#20	Search "Orthognathic Surgical Procedures"[Mesh]	1136
#21	Search "Osteotomy, Le Fort"[Mesh]	1482
#22	Search "Osteotomy, Sagittal Split Ramus"[Mesh]	284
#23	Search ("tonsillectomy"[MeSH] OR tonsillectomy[tw]) Search ("Exercise Therapy"[MeSH] OR exercise[MeSH] OR "exercise therapy"[tw] OR "exercise	9651
#24	therapies"[tw])	142239
#25	Search ("weight loss"[MeSH] OR "weight loss"[tw] OR "weight reduction"[tw])	72130
#26	Search ("Body Mass Index"[Mesh] OR "body mass index"[tw] OR BMI[tw])	164639
#27	Search ("Obesity"[Mesh] OR obesity[tw])	201780
#28	Search "Diet, Reducing" [Mesh]	9355
#29	Search (#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or	2904782
1120	#16 or #17 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 or #28)	2001102
#30	Search (#1 and #29)	15311
#31	Search ((randomized[title/abstract] AND controlled[title/abstract] AND trial[title/abstract]) OR	579517
<i>1101</i>	(controlled[title/abstract] AND trial[title/abstract]) OR "controlled clinical trial"[publication type] OR	010011
	"Randomized Controlled Trial"[Publication Type] OR "Single-Blind Method"[MeSH] OR "Double-	
	Blind Method"[MeSH] OR "Random Allocation"[MeSH])	
#32	Search (#30 and #31)	1051
#33	Search (#30 and #31) Filters: Humans	1007
#34	Search (#30 and #31) Filters: Humans; Adult: 19+ years	862
#35	Search (#30 and #31) Filters: Publication date from 2010/01/01; Humans; Adult: 19+ years	301
#36	Search (#30 and #31) Filters: Publication date from 2010/01/01; Humans; English; Adult: 19+	290
#30	years	<u>290</u>
#37	Search (#35 not #36)	<u>11</u>
#38	Search ("Cohort Studies"[Mesh] OR "Epidemiologic Studies"[Mesh] OR "Follow-up Studies"[Mesh]	<u>1664863</u>
	OR "prospective cohort" OR "prospective studies" [MeSH] OR (prospective*[All Fields] AND cohort[All Fields] AND (study[All Fields] OR studies[All Fields]))	
	pomortinii neluaj ziniu (aluuyjzii neluaj ON aluuleajzii neluaj))	Ī
#39	Search (#30 and #38)	4240

Search	Query	Items
		Found
#41	Search (#30 and #38) Filters: Humans; Adult: 19+ years	3247
#42	Search (#30 and #38) Filters: Publication date from 2010/01/01; Humans; Adult: 19+ years	<u>1256</u>
#42 #43	Search (#30 and #38) Filters: Publication date from 2010/01/01; Humans; English; Adult: 19+	1182
	years	
#44	Search (#42 not #43)	<u>74</u>

PubMed screening search, 9/29/2014

Search	Query	Items
11.4		Found
<u>#1</u>	Search ("Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR	<u>28390</u>
	"Obstructive Sleep Apneas"[tw] OR "Obstructive Sleep Apneas"[tw] OR "Obstructive Sleep	
	Apnea Syndrome"[tw] OR "Obstructive Sleep Apnoeas"[tw] OR "Obstructive Sleep Apnoea"[tw] OR OSAHS[tw] OR ("sleep apnea" AND hypopnea) OR "sleep disordered	
	breathing"[tw])	
#2	Search "Questionnaires"[Mesh]	309519
#3	Search Question laires [Mesti]	2137
#3 #4	Search "STOP Questionnaire"[All Fields]	21
# 4 #5	Search "STOP-Bang Questionnaire"[All Fields]	41
# <u>5</u>	Search "Berlin Questionnaire" [All Fields]	250
#0 #7	Search "Wisconsin Sleep Questionnaire"[All Fields]	3
#8	Search "Decision Support Techniques" [Mesh]	60053
# <u>0</u>	Search ("Clinical prediction tool" OR "Clinical prediction rule" OR "Clinical prediction score")	<u>497</u>
# <u>3</u> #10	Search "Multivariable Apnea Prediction Index"[All Fields]	
#10 #11	Search "Multivariable Apnoea Prediction Index"[All Fields]	<u>9</u>
#12	Search "Snoring Scale" [All Fields]	22
#13	Search "NAMES"[All Fields]	14085
#14	Search "Sleep Apnea Clinical Score"[All Fields]	10
#15	Search "Neck circumference"[All Fields]	621
#15 #16	Search Mallampati[All Fields]	511
#17	Search "Craniofacial structure"[All Fields]	121
#18	Search "Nocturnal choking"[All Fields]	21
#19	Search "Nocturnal gasping"[All Fields]	3
#21	Search ("Body Mass Index"[Mesh]) OR "Body Weight"[Mesh] OR "Obesity"[Mesh])	386293
#22	Search ("Snoring" [Mesh] OR snoring)	5547
#23	Search Sleepiness	30048
#24	Search (#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #12 or #13 or #14 or #15 or	782859
1121	#16 or #17 or #18 or #19 or #21 or #22 or #23)	102000
#25	Search (#1 and #24)	12584
#26	Search ("Mass Screening"[Mesh] OR screening[tiab])	378755
#27	Search "Predictive Value of Tests"[Mesh]	142093
#28	Search ("Diagnostic Tests, Routine" [Mesh] OR "Sensitivity and Specificity" [Mesh] OR	8792662
	"Predictive Value of Tests"[Mesh] OR "ROC Curve"[Mesh] OR "Diagnosis"[Mesh] OR	
	"Reproducibility of Results" [Mesh] OR "False Negative Reactions" [Mesh] OR "False Positive	
	Reactions"[Mesh] OR "predictive value"[tw] OR sensitivity[tw] OR specificity[tw] OR	
	accuracy[tw] OR screen[tw] OR diagno*[tw] OR ROC[tw] OR reproducib*[tw] OR "false	
	positive"[tw] OR "false negative"[tw] OR "likelihood ratio"[tw])	
#29	Search (#26 or #27 or #28)	8900912
#30	Search (#25 and #29)	10585
#31	Search (Autobiography[Publication Type] OR Bibliography[Publication Type] OR	3692864
	Biography[Publication Type] OR Case Reports[Publication Type] OR Classical	
	Article[Publication Type] OR comment[Publication Type] OR Congresses[Publication Type]	
	OR Consensus Development Conference[Publication Type] OR Dictionary[Publication Type]	
	OR Directory[Publication Type] OR Editorial[Publication Type] OR Electronic supplementary	
	materials[Publication Type] OR Festschrift[Publication Type] OR In Vitro[Publication Type] OR	
	Interactive Tutorial[Publication Type] OR Interview[Publication Type] OR Lectures[Publication	
	Type] OR Legal Cases[Publication Type] OR Legislation[Publication Type] OR	
	Letter[Publication Type] OR News[Publication Type] OR Newspaper article[Publication Type]	
	OR Patient Education Handout[Publication Type] OR Personal Narratives[Publication Type]	

Search	Query	Items
		Found
	OR Periodical Index[Publication Type] OR Pictorial works[Publication Type] OR Popular	
	works[Publication Type] OR Portraits[Publication Type] OR Scientific Integrity	
	Review[Publication Type] OR Video Audio Media[Publication Type] OR Webcasts[Publication	
	Type])	
#32	Search (#30 not #31)	<u>9359</u>
#33	Search (#30 not #31) Filters: Adult: 19+ years	6029
#34 #35	Search (#30 not #31) Filters: Humans; Adult: 19+ years	6029
#35	Search (#30 not #31) Filters: Humans; English; Adult: 19+ years	<u>5279</u>
#36	Search (#34 NOT #35)	750

PubMed KQ6 search, 9/29/2014

Search	Query	Items
11.4	0 1 (101 A 0 1 100 601 A 0 1 1 100 601 A	Found
<u>#1</u>	Search ("Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR	<u>28401</u>
	"Obstructive Sleep Apneas"[tw] OR "Obstructive Sleep Apnea"[tw] OR "Obstructive Sleep Apnea	
	Syndrome"[tw] OR "Obstructive Sleep Apnoeas"[tw] OR "Obstructive Sleep Apnoea"[tw] OR	
110	OSAHS[tw] OR ("sleep apnea" AND hypopnea) OR "sleep disordered breathing"[tw])	4705
#2	Search ("Apnea hypopnea Index"[All Fields] OR "Apnea/hypopnea index"[All Fields] OR "Apnea	<u>4725</u>
	hypopnea index"[All Fields] OR "Apnoea hypopnoea index"[All Fields] OR "Apnoea/hypopnoea	
110	index"[All Fields])	4570
#3	Search (#1 and #2)	4573
<u>#4</u>	Search ("Patient Outcome Assessment"[Mesh] OR "Outcome Assessment (Health Care)"[Mesh]	<u>749768</u>
"=	OR "Fatal Outcome"[Mesh])	004400
<u>#5</u>	Search outcome*[tiab]	961492
<u>#6</u>	Search ("Mortality" [Mesh] OR "mortality" [Subheading] OR mortality[tiab])	864162
<u>#7</u>	Search ("Quality of Life"[Mesh] OR "quality of life"[tiab])	195341
#8	Search ("Motor Vehicles"[Mesh] OR "motor vehicle"[tiab] OR "motor vehicles"[tiab])	<u>24728</u>
<u>#9</u>	Search ("Cardiovascular Diseases"[Mesh]) OR "Myocardial Infarction"[Mesh] OR	2008239
	cardiovascular*[tiab])	
<u>#10</u>	Search ("Stroke"[Mesh]) OR "Cerebrovascular Disorders"[Mesh] OR stroke[tiab] OR	<u>361286</u>
	cerebrovasc*[tiab])	
<u>#11</u>	Search "heart failure"[tiab]	110169
<u>#12</u>	Search ("Headache"[Mesh] OR headache[tiab])	<u>61110</u>
#13	Search ("Mild Cognitive Impairment"[Mesh]) OR "Cognition Disorders"[Mesh] OR cognit*[tiab])	247674
<u>#14</u>	Search (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13)	4056320
#1 <u>5</u>	Search (#3 and #14)	<u>2370</u>
#1 <u>6</u>	Search (Autobiography[Publication Type] OR Bibliography[Publication Type] OR	3694043
	Biography[Publication Type] OR Case Reports[Publication Type] OR Classical Article[Publication	
	Type] OR comment[Publication Type] OR Congresses[Publication Type] OR Consensus	
	Development Conference[Publication Type] OR Dictionary[Publication Type] OR	
	Directory[Publication Type] OR Editorial[Publication Type] OR Electronic supplementary	
	materials[Publication Type] OR Festschrift[Publication Type] OR In Vitro[Publication Type] OR	
	Interactive Tutorial[Publication Type] OR Interview[Publication Type] OR Lectures[Publication	
	Type] OR Legal Cases[Publication Type] OR Legislation[Publication Type] OR Letter[Publication	
	Type] OR News[Publication Type] OR Newspaper article[Publication Type] OR Patient Education	
	Handout[Publication Type] OR Personal Narratives[Publication Type] OR Periodical	
	Index[Publication Type] OR Pictorial works[Publication Type] OR Popular works[Publication Type]	
	OR Portraits[Publication Type] OR Scientific Integrity Review[Publication Type] OR Video Audio	
	Media[Publication Type] OR Webcasts[Publication Type] OR Twin Studies[Publication Type])	
<u>#17</u>	Search (#15 not #16)	2327
#18	Search (#15 not #16) Filters: Adult: 19+ years	1826
<u>#19</u>	Search (#15 not #16) Filters: Humans; Adult: 19+ years	<u>1826</u>
<u>#20</u>	Search (#15 not #16) Filters: Publication date from 2010/01/01; Humans; Adult: 19+ years	<u>781</u>
#21	Search (#15 not #16) Filters: Publication date from 2010/01/01; Humans; English; Adult: 19+	<u>743</u>
	years	<u> </u>
#22	Search (#20 not #21)	38

PubMed Diagnosis Search, 9-29-14

Search	Query	Items
II A	O	Found
<u>#1</u>	Search ("Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR "Obstructive Sleep Apneas" [tw] OR "Obstructive Sleep Apnea" [tw] OR "Obstructive Sleep Apnea Syndrome" [tw]	<u> 28390</u>
	OR "Obstructive Sleep Aprileas" [tw] OR "Obstructive Sleep Aprilea Syndrome [tw] OR "Obstructive Sleep Aprilea Syndrome [tw] OR "Obstructive Sleep Aprilea Syndrome [tw] OR	
	("sleep apnea" AND hypopnea) OR "sleep disordered breathing"[tw]))	
#2	Search "Sleep Apnea Syndromes/diagnosis"[Majr]	4408
#3	Search "Sleep Apnea, Obstructive/diagnosis"[Majr]	2256
#4	Search "Monitoring, Ambulatory/instrumentation"[Majr]	2980
#5	Search (Polysomnography[Mesh] OR Polysomnographies[tw])	14079
#6	Search (oximetry[MeSH] OR oximetry[tw] OR "Oximetries"[tw])	14957
#7	Search "Diagnostic Tests, Routine"[Mesh]	7019
#8	Search "sleep monitoring"[All Fields]	245
#9	Search PSG	3498
#10	Search polygraphy	496
#11	Search Actigraphy	2620
#12	Search Apnoescreen	4
#13	Search ((home AND monitor*))	13099
#14	Search Monitoring system*	8700
#15	Search "portable respiratory monitoring"	4
#16	Search Portable monitor*	308
#17	Search ("diagnosis" [MeSH] OR "diagnosis" [tw] OR "diagnoses" [tw] OR "Reproducibility of	8743832
	Results"[MeSH] OR "Reproducibility of Results"[tw] OR "Reproducibility of Findings"[tw] OR	00002
	"Predictive Value of Tests"[Mesh] OR "Predictive Value"[tw] OR "ROC Curve"[Mesh] OR	
	"ROC"[tw] OR "Validity of Results"[tw] OR reliab*[tw] OR valid*[tw] OR "False Negative	
	Reactions"[MeSH] OR "false negative"[tw] OR "False Positive Reactions"[MeSH] OR "false	
	positive"[tw] OR "accuracy"[tw] OR reproducib*[tw] OR "likelihood ratio"[tw] OR "accuracy"[tw] OR	
	"sensitivity"[tw] OR "specificity"[tw])	
#18	Search (#1 AND (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or	<u>20457</u>
"10	#16 or #17))	10100
<u>#19</u>	Search (#1 AND (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or	<u>19169</u>
	#16 or #17)) Filters: Humans	E 400
#20	Search (#1 AND (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or	<u>5426</u>
404	#16 or #17)) Filters: Publication date from 2010/01/01; Humans	2002004
<u>#21</u>	Search (Autobiography[Publication Type] OR Bibliography[Publication Type] OR	3692864
	Biography[Publication Type] OR Case Reports[Publication Type] OR Classical Article[Publication Type] OR Case Reports[Publication Type] OR Case	
	Type] OR comment[Publication Type] OR Congresses[Publication Type] OR Consensus Development Conference[Publication Type] OR Dictionary[Publication Type] OR	
	Directory[Publication Type] OR Editorial[Publication Type] OR Electronic supplementary	
	materials[Publication Type] OR Festschrift[Publication Type] OR In Vitro[Publication Type] OR	
	Interactive Tutorial[Publication Type] OR Interview[Publication Type] OR Lectures[Publication	
	Type] OR Legal Cases[Publication Type] OR Legislation[Publication Type] OR Letter[Publication	
	Type] OR Legal Cases[Publication Type] OR Legislation[Publication Type] OR Patient Education Type] OR News[Publication Type] OR Newspaper article[Publication Type] OR Patient Education	
	Handout[Publication Type] OR Personal Narratives[Publication Type] OR Periodical	
	Index[Publication Type] OR Pictorial works[Publication Type] OR Popular works[Publication Type]	
	OR Portraits[Publication Type] OR Scientific Integrity Review[Publication Type] OR Video Audio	
	Media[Publication Type] OR Webcasts[Publication Type])	
#22	Search (#20 NOT #21)	4647
	Search (#20 NOT #21) Filters: Adult: 19+ years	3035
#23	COGNOTI TO THE TIT INCIDE AGAIN, TO FYOUR	
#23 #24	Search (#20 NOT #21) Filters: English; Adult: 19+ years	2806

Cochrane Interventions/Treatment search, 9-30-14

ID	Search	Hits
#1	[mh "Sleep Apnea Syndromes"] or [mh "Sleep Apnea, Obstructive"] or [mh "Obstructive Sleep	1966
	Apneas"] or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apnea Syndrome"] or	
	"Obstructive Sleep Apnoeas" or "Obstructive Sleep Apnoea" or OSAHS or ("sleep apnea" and	
	hypopnea) or "sleep disordered breathing"	
#2	[mh ^"Positive-Pressure Respiration"]	1249
#3	[mh "Continuous Positive Airway Pressure"]	650
#4	"Continuous Positive Airway Pressure" or CPAP	2344
#5	[mh "Intermittent Positive-Pressure Ventilation"]	194
#6	"Intermittent Positive Pressure Ventilation" or "IPPV" or "Inspiratory Positive-Pressure	592
	Ventilation" or "Inspiratory Positive Pressure Ventilation" or "Biphasic Intermittent Positive	
	Airway Pressure" or BiPAP	
#7	[mh "Mandibular Prosthesis"]	6
#8	"mandibular advancement device" or "mandibular advancement devices"	46
#9	[mh "Mandibular Advancement"]	125
#10	[mh "General Surgery"] or "general surgery"	2042
#11	[mh otolaryngology] or otolaryngology or Otorhinolaryngology or Laryngology	5993
#12	[mh "Surgery, Plastic"] or "Plastic Surgery"	1236
#13	[mh "Surgical Procedures, Operative"] or "Operative Surgical Procedure" or "Operative	99826
	Surgical Procedures" or "Operative Procedures" or "Operative Procedure"	
#14	[mh "Bariatric Surgery"]	764
#15	UPPP or uvulopalatopharyngoplasty	103
#16	(septoplasty and "turbinate reduction")	3
#17	"Pillar Procedure" or "soft palate implants"	1
#18	"Hyoid advancement"	0
#19	[mh "Orthognathic Surgical Procedures"]	61
#20	[mh "Osteotomy, Le Fort"]	63
#21	[mh "Osteotomy, Sagittal Split Ramus"]	14
#22	[mh tonsillectomy] or tonsillectomy	1716
#23	[mh "Exercise Therapy"] or [mh exercise] or "exercise therapy" or "exercise therapies"	19323
#24	[mh "weight loss"] or "weight loss" or "weight reduction"	8842
#25	[mh "Body Mass Index"] or "body mass index" or BMI	17317
#26	[mh Obesity] or obesity	13520
#27	[mh "Diet, Reducing"]	1581
#28	#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16	149515
"00	or #17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27	4000
#29	#1 and #28	1362

Cochrane Screening search, 9-30-14

ID	Search	Hits
#1	[mh "Sleep Apnea Syndromes"] or [mh "Sleep Apnea, Obstructive"] or [mh "Obstructive Sleep	1966
ı	Apneas"] or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apnea Syndrome"] or	
ı	"Obstructive Sleep Apnoeas" or "Obstructive Sleep Apnoea" or OSAHS or ("sleep apnea" and	
	hypopnea) or "sleep disordered breathing"	
#2	[mh Questionnaires]	17241
#3	"Epworth Sleepiness Scale"	420
#4	"STOP Questionnaire"	2
#5	"STOP-Bang Questionnaire"	2
#6	"Berlin Questionnaire"	13
#7	"Wisconsin Sleep Questionnaire"	0
#8	[mh "Decision Support Techniques"]	3166
#9	"Clinical prediction tool" or "Clinical prediction rule" or "Clinical prediction score"	73
#10	"Multivariable Apnea Prediction Index"	0
#11	"Multivariable Apnoea Prediction Index"	0
#12	"Snoring Scale"	4
#13	"NAMES"	1745
#14	"Sleep Apnea Clinical Score"	2
#15	"Neck circumference"	40
#16	Mallampati	111

ID	Search	Hits
#17	"Craniofacial structure"	2
#18	"Nocturnal choking"	1
#19	"Nocturnal gasping"	1
#20	[mh "Body Mass Index"] or [mh "Body Weight"] or [mh Obesity]	19124
#21	[mh Snoring] or snoring	419
#22	Sleepiness	1768
#23	#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or	23969
	#19 or #21 or #22	
#24	#1 and #23	664
#25	[mh "Mass Screening"] or screening	28803
#26	[mh "Predictive Value of Tests"]	6169
	[mh "Diagnostic Tests, Routine"] or [mh "Sensitivity and Specificity"] or [mh "Predictive Value of Tests"] or [mh "ROC Curve"] or [mh Diagnosis] or [mh "Reproducibility of Results"] or [mh "False Negative Reactions"] or [mh "False Positive Reactions"] or "predictive value" or sensitivity or specificity or accuracy or screen* or diagno* or ROC or reproducib* or "false positive" or "false negative" or "likelihood ratio"	331387
#28	#25 or #26 or #27	331467
#29	#24 and #28 in Cochrane Reviews (Reviews and Protocols), Other Reviews, Trials and Technology Assessments	529

Cochrane KQ6 search, 10-01-14

ID	Search	Hits
#1	[mh "Sleep Apnea Syndromes"] or [mh "Sleep Apnea, Obstructive"] or [mh "Obstructive Sleep Apneas"] or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apnea"] or	1986
	"Obstructive Sleep Apnoeas" or "Obstructive Sleep Apnoea" or OSAHS or ("sleep apnea" and	
	hypopnea) or "sleep disordered breathing"	
#2	"Apnea hypopnea Index" or "Apnea/hypopnea index" or "Apnoea hypopnea index" or "Apnoea	654
	hypopnoea index" or "Apnoea/hypopnoea index"	
#3	#1 and #2	607
#4	[mh "Patient Outcome Assessment"] or [mh "Outcome Assessment (Health Care)"] or [mh "Fatal	99822
	Outcome"]	
#5	outcome*	208437
#6	[mh Mortality] or mortality	50240
#7	[mh "Quality of Life"] or "quality of life"	37654
#8	[mh "Motor Vehicles"] or "motor vehicle" or "motor vehicles"	620
#9	[mh "Cardiovascular Diseases"] or [mh "Myocardial Infarction"] or cardiovascular*	97515
#10	[mh Stroke] or [mh "Cerebrovascular Disorders"] or stroke or cerebrovasc*	41189
#11	"heart failure"	12771
#12	[mh Headache] or headache	14079
#13	[mh "Mild Cognitive Impairment"] or [mh "Cognition Disorders"] or cognit*	31052
#14	#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13	340683
#15	#3 and #14 Publication Year from 2010 to 2014, in Cochrane Reviews (Reviews and Protocols), Other	177
	Reviews, Trials and Technology Assessments	

Cochrane Diagnosis search, 10-01-14

ID	Search	Hits
#1	[mh "Sleep Apnea Syndromes"] or [mh "Sleep Apnea, Obstructive"] or [mh "Obstructive Sleep Apneas"] or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apnea Syndrome"] or "Obstructive Sleep Apneas" or "Obstructive Sleep Apneas" or "Sleep Apneas" and hypopnea) or "sleep disordered breathing"	1986
#2	[mh ^"Monitoring, Ambulatory"/IS]	125
#3	[mh Polysomnography] or Polysomnographies	1330
#4	[mh oximetry] or oximetry or Oximetries	1696
#5	[mh "Diagnostic Tests, Routine"]	311
#6	"sleep monitoring"	27
#7	PSG	384
#8	polygraphy	42
#9	Actigraphy	387
#10	Apnoescreen	1

#11	home and monitor*	3144
#12	Monitoring system*	11395
	"portable respiratory monitoring"	3
#14	Portable monitor*	375
	[mh diagnosis] or diagnosis or diagnoses or [mh "Reproducibility of Results"] or "Reproducibility of Results" or "Reproducibility of Findings" or [mh "Predictive Value of Tests"] or "Predictive Value" or [mh "ROC Curve"] or ROC or "Validity of Results" or reliab* or valid* or [mh "False Negative Reactions"] or "false negative" or [mh "False Positive Reactions"] or "false positive" or accuracy or reproducib* or "likelihood ratio" or "accuracy" or "sensitivity" or "specificity"	334889
#16	#1 and (#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15)	1391
	#16 Publication Year from 2010 to 2014, in Cochrane Reviews (Reviews and Protocols), Other Reviews, Trials and Technology Assessments	479

EMBASE Intervention Search, 10-6-14

No.	Query	Results
#43	#41 NOT #37	5
#42	#40 NOT #36	137
#41	#39 NOT #40	6
#40	#33 AND #38 AND [english]/lim	272
#39	#33 AND #38	278
#38	'cohort analysis'/exp OR 'epidemiological study' OR (cohort AND (study OR studies))	624,021
	OR 'prospective study'/exp OR (prospective* AND cohort)	, ,
#37	#35 NOT #36	6
#36	#35 AND [english]/lim	562
#35	#33 AND #34	568
#34	'randomized controlled trial'/exp OR 'single blind procedure'/exp OR 'double blind	4,685,658
	procedure/exp OR 'random allocation'/exp OR 'controlled trial'/exp OR 'control trial' OR	' '
	('control':ab,ti OR 'controlled':ab,ti AND 'trial':ab,ti)	
#33	#4 AND #29 AND [humans]/lim AND [2010-2014]/py AND ([adult]/lim OR [middle aged]/lim OR	1,448
	[aged]/lim OR [very elderly]/lim)	
#32	#4 AND #29 AND [humans]/lim AND [2010-2014]/py	4,392
#30	#4 AND #29	9,611
#29	#5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #15 OR #17 OR #18	176,391
	OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #28	
#28	'weight reduction'/exp	103,035
#25	'tonsillectomy'/exp	11,569
#24	'sagittal split ramal osteotomy'/exp	165
#23	'maxilla osteotomy'/exp	2,083
#22	'orthognathic surgery'/exp	1,621
#21	'hyoid advancement'	20
#20	'pillar procedure' OR 'soft palate implants'	8
#19	'nose septum reconstruction'/exp AND 'turbinate reduction'	38
#18	'uvulopalatopharyngoplasty'/exp	1,194
#17	'bariatric surgery'/exp	19,692
#15	'otorhinolaryngology'/exp	19,509
#13	'general surgery'/exp	8,891
#12	'mandible reconstruction'/exp	3,870
#11	'mandibular advancement device' OR 'mandibular advancement devices'	254
#10	'mandible prosthesis'/exp	656
#9	'intermittent positive pressure ventilation' OR 'ippv' OR 'inspiratory positive-pressure ventilation'	4,895
	OR 'inspiratory positive pressure ventilation' OR 'biphasic intermittent positive airway pressure'	
	OR bipap	
#8	'intermittent positive pressure ventilation'/exp	2,792
#7	'positive end expiratory pressure'/exp/mj	11,754
#6	'cpap device'/exp	151
#5	'positive end expiratory pressure'/exp/mj	11,754
#4	#1 OR #2 OR #3	43,859
#3	'sleep apnea' AND hypopnea	7,727
#2	'obstructive sleep apnoeas' OR 'obstructive sleep apnoea'	4,530
#1	'sleep disordered breathing'/exp	43,459

EMBASE screening search, 10-07-14

No.	Query	Results
#21	#19 NOT #20	32
#20	#16 NOT #17 AND ([adult]/lim OR [middle aged]/lim OR [aged]/lim OR [very elderly]/lim) AND [humans]/lim AND [english]/lim	318
#19	#16 NOT #17 AND ([adult]/lim OR [middle aged]/lim OR [aged]/lim OR [very elderly]/lim) AND [humans]/lim	350
#18	#16 NOT #17	596
#17	#8 AND #15 AND ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim OR [editorial]/lim OR [letter]/lim OR [note]/lim)	706
#16	#8 AND #15	1,302
#15	#9 OR #10 OR #11 OR #12 OR #13 OR #14	5,021,470
#14	'diagnosis'/exp	4,846,516
#13	'receiver operating characteristic'/exp	48,005
#12	'sensitivity and specificity'/exp	201,366
#11	'diagnostic test'/exp	721,811
#10	'predictive value'/exp	58,047
#9	'mass screening'/exp	159,522
#8	#4 AND #7	3,876
#7	#5 OR #6	412,992
#6	'clinical prediction tool' OR 'clinical prediction rule' OR 'clinical prediction score'	740
#5	'questionnaire'/exp	412,296
#4	#1 OR #2 OR #3	44,485
#3	'sleep apnea' AND hypopnea	7,733
#2	'obstructive sleep apnoeas' OR 'obstructive sleep apnoea'	4,530
#1	'sleep disordered breathing'/exp OR 'sleep disordered breathing'	44,124

Gray Literature Searches, June 18-24, 2015

ClinicalTrials.gov Expert Searches (484 in EndNote):

SCREENING AND DIAGNOSIS (on 6/12 yield was N=303. On 6/18 increased to 304)

INFLECT EXACT ("Adult" OR "Senior") [AGE-GROUP] AND (Ambulatory monitoring OR Polysomnograph* OR oximetr* OR diagnos* OR sleep monitoring OR PSG OR polygraphy OR Actigraphy OR Apnoescreen OR home monitor* OR Monitoring system* OR portable respiratory monitoring OR Portable monitor* OR screen* OR diagno* OR sensitivity OR specificity OR accuracy OR reliab* OR valid* OR reproducib* OR "false positive" OR "false negative") AND ("Sleep Apnea, Obstructive") [DISEASE] (N=304)

TREATMENT AND HARMS (180 of 296 imported to the screening/diag search results; 116 were duplicates with the Screening and Diag. Search – imported to Duplicates Library)

INFLECT EXACT "Interventional" [STUDY-TYPES] AND INFLECT EXACT ("Adult" OR "Senior") [AGE-GROUP] AND NOT "single group assignment" AND "Sleep Apnea, Obstructive" [DISEASE] AND (Positive-Pressure Respiration OR Continuous Positive Airway Pressure OR CPAP OR Intermittent Positive Pressure Ventilation OR IPPV OR Inspiratory Positive-Pressure Ventilation OR Inspiratory Positive Pressure Ventilation OR Biphasic Intermittent Positive Airway Pressure OR BiPAP OR Mandibular Prosthesis OR mandibular advancement device OR mandibular advancement devices OR Mandibular Advancement OR surgery OR surgical OR UPPP or uvulopalatopharyngoplasty OR septoplasty OR Pillar Procedure OR Hyoid advancement OR Osteotomy OR tonsillectomy OR exercise OR weight loss OR weight reduction OR diet) [TREATMENT] (N=296)

WHO ICTRP Advanced searches translated from the above, 6-18-15 through 6-24-15

Total from ICTRP in EndNote =422

Recruitment status: ALL

Condition box:

Obstructive sleep apnea

SCREENING AND DIAGNOSIS (N=85; all imported but I see a lot of CT.gov results)

Title box:

Ambulatory monitoring OR Polysomnograph* OR oximetr* OR diagnos* OR sleep monitoring OR PSG OR polygraphy OR Actigraphy OR Apnoescreen OR home monitor* OR Monitoring system* OR portable respiratory

monitoring OR Portable monitor* OR screen* OR diagno* OR sensitivity OR specificity OR accuracy OR reliab* OR valid* OR reproducib* OR "false positive" OR "false negative"

TREATMENT AND HARMS (N=229-289)

Must run 2 iterations to be able to search all of the terms that go into the Intervention box. When String 1 (321) and String 2 (68) were imported to previous results, 337 total were imported

Condition box:

Obstructive sleep apnea

Intervention box:

String 1:

Positive-Pressure Respiration OR Continuous Positive Airway Pressure OR CPAP OR Mandibular Prosthesis OR mandibular advancement device OR mandibular advancement devices OR Mandibular Advancement OR surgery (N=321, 302 imported)

String 2:

surgical OR UPPP or uvulopalatopharyngoplasty OR septoplasty OR Pillar Procedure OR Hyoid advancement OR Osteotomy OR tonsillectomy OR exercise OR weight loss OR weight reduction OR diet (N= 68, 35 imported)

Update Search Strategies

PubMed searches 10/26/15

PubMed Intervention/Treatment Search

Search	Query	Items Found
#1	Search "Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR "Obstructive Sleep Apneas" [tw] OR "Obstructive Sleep Apnea Syndrome" [tw] OR "Obstructive Sleep Apneas" [tw] OR "Obstructive Sleep Apnoeas" [tw] OR "Obstructive Sleep Apnoea" [tw] OR OSAHS [tw] OR ("sleep apnea" AND hypopnea) OR "sleep disordered breathing" [tw]	31091
#2	Search "Positive-Pressure Respiration"[Mesh:NoExp]	15320
#3	Search "Continuous Positive Airway Pressure"[Mesh]	4528
#4	Search ("Continuous Positive Airway Pressure"[tw] OR CPAP[tw])	10108
#5	Search "Intermittent Positive-Pressure Ventilation"[MeSH]	2041
#6	Search ("Intermittent Positive Pressure Ventilation"[tw] OR "IPPV"[tw] OR "Inspiratory Positive-Pressure Ventilation"[tw] OR "Inspiratory Positive Pressure Ventilation"[tw] OR "Biphasic Intermittent Positive Airway Pressure"[tw] OR BiPAP[tw])	3351
#7	Search "Mandibular Prosthesis"[MeSH Terms]	809
#8	Search ("mandibular advancement device"[tw] OR "mandibular advancement devices"[tw])	224
#9	Search "Mandibular Advancement/instrumentation"[Mesh]	563
#10	Search ("oral appliance"[tw] OR "oral appliances"[tw])	701
#11	Search ("General Surgery"[MeSH] OR "general surgery"[tw])	40999
#12	Search ("otolaryngology"[MeSH] OR "otolaryngology"[tw] OR "Otorhinolaryngology"[tw] OR "Laryngology"[tw])	18827
#13	Search ("surgery, plastic"[MeSH] OR "Plastic Surgery"[tw])	30637
#14	Search ("Surgical Procedures, Operative"[MeSH] OR "Operative Surgical Procedure"[tw] OR "Operative Surgical Procedures"[tw] OR "Operative Procedures"[tw] OPERATIVE Procedures Proc	2507349
#15	Search "Bariatric Surgery"[Mesh]	16383
#16	Search (UPPP[tw] OR uvulopalatopharyngoplasty[tw])	969
#17	Search (septoplasty[tw] AND "turbinate reduction"[tw])	44
#18	Search ("Pillar Procedure"[tw] OR "soft palate implants"[tw])	0
#19	Search "Hyoid advancement"[tw]	11
#20	Search "Orthognathic Surgical Procedures"[Mesh]	1554
#21	Search "Osteotomy, Le Fort"[Mesh]	1646
#22	Search "Osteotomy, Sagittal Split Ramus"[Mesh]	405
#23	Search ("tonsillectomy"[MeSH] OR tonsillectomy[tw])	10083
#24	Search ("Exercise Therapy"[MeSH] OR exercise[MeSH] OR "exercise therapy"[tw] OR "exercise therapies"[tw])	153553
#25	Search ("weight loss"[MeSH] OR "weight loss"[tw] OR "weight reduction"[tw])	78219
#26	Search ("Body Mass Index"[Mesh] OR "body mass index"[tw] OR BMI[tw])	184751

Search	Query	Items
		Found
#27	Search ("Obesity"[Mesh] OR obesity[tw])	222785
#28	Search "Diet, Reducing" [Mesh]	9720
#29	Search (#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or	3061634
	#16 or #17 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 or #28)	
#30	Search (#1 and #29)	16809
#31	Search ((randomized[title/abstract] AND controlled[title/abstract] AND trial[title/abstract]) OR (controlled[title/abstract] AND trial[title/abstract]) OR "controlled clinical trial"[publication type] OR "Randomized Controlled Trial"[Publication Type] OR "Single-Blind Method"[MeSH] OR "Double-Blind Method"[MeSH] OR "Random Allocation"[MeSH])	616366
#32	Search (#30 and #31)	1163
#33	Search (#30 and #31) Filters: Humans	1111
#34	Search (#30 and #31) Filters: Humans; Adult: 19+ years	948
#35	Search (#30 and #31) Filters: Publication date from 2014/03/30 to 2015/10/26; Humans; Adult: 19+ years	74
#36	Search ("Cohort Studies"[Mesh] OR "Epidemiologic Studies"[Mesh] OR "Follow-up Studies"[Mesh] OR "prospective cohort" OR "prospective studies"[MeSH] OR (prospective*[All Fields] AND cohort[All Fields] AND (study[All Fields] OR studies[All Fields]))	1799790
#37	Search (#30 and #36)	4805
#38	Search (#30 and #36) Filters: Humans	4770
#39	Search (#30 and #36) Filters: Humans; Adult: 19+ years	3683
#40	Search (#30 and #36) Filters: Publication date from 2014/03/30 to 2015/10/26; Humans; Adult: 19+ years	375

PubMed Screening Search, 10-26-15

Search	Query	Items Found
#1	Search ("Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR "Obstructive Sleep Apneas" [tw] OR "Obstructive Sleep Apnea" [tw] OR "Obstructive Sleep Apnea Syndrome" [tw] OR "Obstructive Sleep Apnoeas" [tw] OR "Obstructive Sleep Apnoea" [tw] OR OSAHS[tw] OR ("sleep apnea" AND hypopnea) OR "sleep disordered breathing [tw]))	31091
#2	Search "Questionnaires"[Mesh]	336040
#3	Search "Epworth Sleepiness Scale"[All Fields]	2465
#4	Search "STOP Questionnaire"[All Fields]	24
#5	Search "STOP-Bang Questionnaire"[All Fields]	65
#6	Search "Berlin Questionnaire"[All Fields]	295
#7	Search "Wisconsin Sleep Questionnaire"[All Fields]	5
#8	Search "Decision Support Techniques"[Mesh]	63509
#9	Search ("Clinical prediction tool" OR "Clinical prediction rule" OR "Clinical prediction score")	575
#10	Search "Multivariable Apnea Prediction Index"[All Fields]	9
#11	Search "Multivariable Apnoea Prediction Index"[All Fields]	0
#12	Search "Snoring Scale"[All Fields]	24
#13	Search "NAMES"[All Fields]	15214
#14	Search "Sleep Apnea Clinical Score"[All Fields]	12
#15	Search "Neck circumference"[All Fields]	726
#16	Search Mallampati[All Fields]	577
#17	Search "Craniofacial structure"[All Fields]	128
#18	Search "Nocturnal choking"[All Fields]	22
#19	Search "Nocturnal gasping"[All Fields]	3
#20	Search ("Body Mass Index"[Mesh]) OR "Body Weight"[Mesh] OR "Obesity"[Mesh])	410281
#21	Search ("Snoring"[Mesh] OR snoring)	5921
#22	Search Sleepiness	31499
#23	Search (#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22)	837425
#24	Search (#1 and #23)	13656
#25	Search ("Mass Screening"[Mesh] OR screening[tiab])	410872
#26	Search "Predictive Value of Tests"[Mesh]	153814
#27	Search ("Diagnostic Tests, Routine"[Mesh] OR "Sensitivity and Specificity"[Mesh] OR "Predictive Value of Tests"[Mesh] OR "ROC Curve"[Mesh] OR "Diagnosis"[Mesh] OR "Reproducibility of	9240601

Search	Query	Items Found
	Results"[Mesh] OR "False Negative Reactions"[Mesh] OR "False Positive Reactions"[Mesh] OR "predictive value"[tw] OR sensitivity[tw] OR specificity[tw] OR accuracy[tw] OR screen[tw] OR diagno*[tw] OR ROC[tw] OR reproducib*[tw] OR "false positive"[tw] OR "false negative"[tw] OR "likelihood ratio"[tw])	
#28	Search (#25 or #26 or #27)	9360197
#29	Search (#24 and #28)	11490
#30	Search (Autobiography[Publication Type] OR Bibliography[Publication Type] OR Biography[Publication Type] OR Case Reports[Publication Type] OR Classical Article[Publication Type] OR comment[Publication Type] OR Congresses[Publication Type] OR Consensus Development Conference[Publication Type] OR Dictionary[Publication Type] OR Directory[Publication Type] OR Editorial[Publication Type] OR Electronic supplementary materials[Publication Type] OR Festschrift[Publication Type] OR In Vitro[Publication Type] OR Interactive Tutorial[Publication Type] OR Interview[Publication Type] OR Lectures[Publication Type] OR Legal Cases[Publication Type] OR Legislation[Publication Type] OR Letter[Publication Type] OR News[Publication Type] OR Newspaper article[Publication Type] OR Patient Education Handout[Publication Type] OR Personal Narratives[Publication Type] OR Periodical Index[Publication Type] OR Pictorial works[Publication Type] OR Popular works[Publication Type] OR Portraits[Publication Type] OR Scientific Integrity Review[Publication Type] OR Video Audio Media[Publication Type] OR Webcasts[Publication Type])	3475802
#31	Search (#29 NOT #30)	10194
#32	Search (#29 NOT #30) Filters: Adult: 19+ years	6552
#33	Search (#29 NOT #30) Filters: Humans; Adult: 19+ years	6552
#34	Search (#29 NOT #30) Filters: Publication date from 2014/03/29 to 2015/10/26; Humans; Adult: 19+ years	407
#35	Search (#29 NOT #30) Filters: Publication date from 2014/03/29 to 2015/10/26; Humans; English; Adult: 19+ years	389
#36	Search (#34 NOT #35) Non-English	18

PubMed KQ6 (AHI) search update, 10-26-15

Search	Query	Items Found
#1	Search ("Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR	31091
	"Obstructive Sleep Apneas"[tw] OR "Obstructive Sleep Apnea"[tw] OR "Obstructive Sleep Apnea"	
	Syndrome"[tw] OR "Obstructive Sleep Apnoeas"[tw] OR "Obstructive Sleep Apnoea"[tw] OR	
#2	OSAHS[tw] OR ("sleep apnea" AND hypopnea) OR "sleep disordered breathing"[tw])) Search ("Apnea hypopnea Index"[All Fields] OR "Apnea/hypopnea index"[All Fields] OR "Apnoea	5420
#2	hypopnea index [All Fields] OR "Apnoea hypopnoea index"[All Fields] OR "Apnoea/hypopnoea	3420
	index"[All Fields])	
#3	Search (#1 and #2)	5228
#4	Search ("Patient Outcome Assessment"[Mesh] OR "Outcome Assessment (Health Care)"[Mesh]	815297
	OR "Fatal Outcome"[Mesh])	
#5	Search outcome*[tiab]	1078898
#6	Search ("Mortality"[Mesh] OR "mortality" [Subheading] OR mortality[tiab]))	929218
#7	Search ("Quality of Life"[Mesh] OR "quality of life"[tiab])	216756
#8	Search ("Motor Vehicles"[Mesh] OR "motor vehicle"[tiab] OR "motor vehicles"[tiab])	26220
#9	Search ("Cardiovascular Diseases"[Mesh]) OR "Myocardial Infarction"[Mesh] OR	2105237
	cardiovascular*[tiab])	
#10	Search ("Stroke"[Mesh]) OR "Cerebrovascular Disorders"[Mesh] OR stroke[tiab] OR	385822
	cerebrovasc*[tiab]))	
#11	Search "heart failure"[tiab]	123422
#12	Search ("Headache"[Mesh] OR headache[tiab]))	65056
#13	Search ("Mild Cognitive Impairment"[Mesh]) OR "Cognition Disorders"[Mesh] OR cognit*[tiab])	278023
#14	Search (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13)	4353340
#15	Search (#3 and #14)	2740
#16	Search (Autobiography[Publication Type] OR Bibliography[Publication Type] OR	3475802
	Biography[Publication Type] OR Case Reports[Publication Type] OR Classical Article[Publication	
	Type] OR comment[Publication Type] OR Congresses[Publication Type] OR Consensus	
	Development Conference[Publication Type] OR Dictionary[Publication Type] OR	
	Directory[Publication Type] OR Editorial[Publication Type] OR Electronic supplementary	

Search	Query	Items Found
	materials[Publication Type] OR Festschrift[Publication Type] OR In Vitro[Publication Type] OR Interactive Tutorial[Publication Type] OR Interview[Publication Type] OR Lectures[Publication Type] OR Legal Cases[Publication Type] OR Legislation[Publication Type] OR Letter[Publication Type] OR News[Publication Type] OR Newspaper article[Publication Type] OR Patient Education Handout[Publication Type] OR Personal Narratives[Publication Type] OR Periodical Index[Publication Type] OR Pictorial works[Publication Type] OR Popular works[Publication Type] OR Portraits[Publication Type] OR Scientific Integrity Review[Publication Type] OR Video Audio Media[Publication Type] OR Webcasts[Publication Type] OR Twin Studies[Publication Type])	
#17	Search (#15 NOT #16)	2690
#18	Search (#15 NOT #16) Filters: Adult: 19+ years	2052
#19	Search (#15 NOT #16) Filters: Humans; Adult: 19+ years	2052
#20	Search (#15 NOT #16) Filters: Publication date from 2014/03/30 to 2015/10/26; Humans; Adult: 19+ years	201

	ed Diagnosis search update, 10-26-15	1-
Search		Items Found
#1	Search ("Sleep Apnea Syndromes" [MeSH] OR "Sleep Apnea, Obstructive" [MeSH] OR "Obstructive Sleep Apneas" [tw] OR "Obstructive Sleep Apnea Syndrome" [tw] OR "Obstructive Sleep Apneas" [tw] OR "Obstructive Sleep Apneas" [tw] OR "Obstructive Sleep Apneas" [tw] OR OSAHS [tw] OR ("sleep apnea" AND hypopnea) OR "sleep disordered breathing" [tw]))	31091
#2	Search "Sleep Apnea Syndromes/diagnosis"[Majr]	4804
#3	Search "Sleep Apnea, Obstructive/diagnosis"[Majr]	2550
#4	Search "Monitoring, Ambulatory/instrumentation"[Majr]	3293
#5	Search (Polysomnography[Mesh] OR Polysomnographies[tw])	15308
#6	Search (oximetry[MeSH] OR oximetry[tw] OR "Oximetries"[tw])	15759
#7	Search "Diagnostic Tests, Routine"[Mesh]	7624
#8	Search "sleep monitoring"[All Fields]	286
#9	Search PSG	3975
#10	Search polygraphy	547
#11	Search Actigraphy	3170
#12	Search Apnoescreen	4
#13	Search (home AND monitor*)	14258
#14	Search Monitoring system*	9502
#15	Search "portable respiratory monitoring"	4
#16	Search Portable monitor*	344
#17	Search ("diagnosis" [MeSH] OR "diagnosis" [tw] OR "diagnoses" [tw] OR "Reproducibility of Results" [MeSH] OR "Reproducibility of Results" [tw] OR "Reproducibility of Findings" [tw] OR "Predictive Value of Tests" [Mesh] OR "Predictive Value" [tw] OR "ROC Curve" [Mesh] OR "ROC" [tw] OR "Validity of Results" [tw] OR reliab* [tw] OR valid* [tw] OR "False Negative Reactions" [MeSH] OR "false negative" [tw] OR "False Positive Reactions" [MeSH] OR "false positive" [tw] OR "accuracy" [tw] OR "sensitivity" [tw] OR "specificity" [tw])	9196706
#18	Search (#1 AND (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17))	22367
#19	Search (#1 AND (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17)) Filters: Humans	
#20	Search (#1 AND (#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17)) Filters: Publication date from 2014/03/29 to 2015/10/26; Humans	
#21	Search (Autobiography[Publication Type] OR Bibliography[Publication Type] OR Biography[Publication Type] OR Case Reports[Publication Type] OR Classical Article[Publication Type] OR comment[Publication Type] OR Congresses[Publication Type] OR Consensus Development Conference[Publication Type] OR Dictionary[Publication Type] OR Directory[Publication Type] OR Editorial[Publication Type] OR Electronic supplementary materials[Publication Type] OR Festschrift[Publication Type] OR In Vitro[Publication Type] OR Interactive Tutorial[Publication Type] OR Interview[Publication Type] OR Lectures[Publication Type] OR Legal Cases[Publication Type] OR Legislation[Publication Type] OR Letter[Publication Type] OR News[Publication Type] OR Newspaper article[Publication Type] OR Patient Education Handout[Publication Type] OR Personal Narratives[Publication Type] OR Periodical	3475802

Search	Query	Items
		Found
	Index[Publication Type] OR Pictorial works[Publication Type] OR Popular works[Publication Type]	
	OR Portraits[Publication Type] OR Scientific Integrity Review[Publication Type] OR Video Audio	
	Media[Publication Type] OR Webcasts[Publication Type])	
#22	Search (#20 NOT #21)	1192
#23	Search (#20 NOT #21) Filters: Adult: 19+ years	769

Cochrane Library Interventions/Tx search update, 10-26-15

	Search	Hits
#1	[mh "Sleep Apnea Syndromes"] or [mh "Sleep Apnea, Obstructive"] or [mh "Obstructive Sleep Apneas"]	2386
	or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apnea Syndrome"] or "Obstructive Sleep	
	Apnoeas" or "Obstructive Sleep Apnoea" or OSAHS or ("sleep apnea" and hypopnea) or "sleep	
	disordered breathing"	
#2	[mh ^"Positive-Pressure Respiration"]	1266
#3	[mh "Continuous Positive Airway Pressure"]	696
#4	"Continuous Positive Airway Pressure" or CPAP	2810
#5	[mh "Intermittent Positive-Pressure Ventilation"]	195
#6	"Intermittent Positive Pressure Ventilation" or "IPPV" or "Inspiratory Positive-Pressure Ventilation" or	662
	"Inspiratory Positive Pressure Ventilation" or "Biphasic Intermittent Positive Airway Pressure" or BiPAP	
#7	[mh "Mandibular Prosthesis"]	6
#8	"mandibular advancement device" or "mandibular advancement devices"	56
#9	[mh "Mandibular Advancement"]	130
#10	[mh "General Surgery"] or "general surgery"	2312
	[mh otolaryngology] or otolaryngology or Otorhinolaryngology or Laryngology	6541
	[mh "Surgery, Plastic"] or "Plastic Surgery"	1400
#13	[mh "Surgical Procedures, Operative"] or "Operative Surgical Procedure" or "Operative Surgical	102778
	Procedures" or "Operative Procedures" or "Operative Procedure"	
	[mh "Bariatric Surgery"]	823
	UPPP or uvulopalatopharyngoplasty	115
	(septoplasty and "turbinate reduction")	3
	"Pillar Procedure" or "soft palate implants"	1
	"Hyoid advancement"	0
	[mh "Orthognathic Surgical Procedures"]	67
#20	[mh "Osteotomy, Le Fort"]	67
	[mh "Osteotomy, Sagittal Split Ramus"]	18
#22	[mh tonsillectomy] or tonsillectomy	1890
#23	[mh "Exercise Therapy"] or [mh exercise] or "exercise therapy" or "exercise therapies"	20172
#24	[mh "weight loss"] or "weight loss" or "weight reduction"	11104
#25	[mh "Body Mass Index"] or "body mass index" or BMI	22489
#26	[mh Obesity] or obesity	16993
	[mh "Diet, Reducing"]	1627
#28	#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or	161973
	#18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27	
#29	#1 and #28	1642
#30	#29 Publication Year from 2014 to 2015, in in Cochrane Reviews, Other Reviews, Trials and Technology	253
1	Assessments	1

Cochrane Library Screening update, 10-26-15

ID	Search	Hits
		2386
	or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apnea Syndrome"] or "Obstructive Sleep	
	Apnoeas" or "Obstructive Sleep Apnoea" or OSAHS or ("sleep apnea" and hypopnea) or "sleep	
	disordered breathing"	
#2	[mh Questionnaires]	17769
#3	"Epworth Sleepiness Scale"	573
#4	"STOP Questionnaire"	2
#5	"STOP-Bang Questionnaire"	2
#6	"Berlin Questionnaire"	18
#7	"Wisconsin Sleep Questionnaire"	1

ID	Search	Hits
#8	[mh "Decision Support Techniques"]	3255
#9	"Clinical prediction tool" or "Clinical prediction rule" or "Clinical prediction score"	81
#10	"Multivariable Apnea Prediction Index"	0
#11	"Multivariable Apnoea Prediction Index"	0
#12	"Snoring Scale"	4
#13	"NAMES"	1844
#14	"Sleep Apnea Clinical Score"	2
#15	"Neck circumference"	68
#16	Mallampati	128
#17	"Craniofacial structure"	3
	"Nocturnal choking"	1
#19	"Nocturnal gasping"	1
#20	[mh "Body Mass Index"] or [mh "Body Weight"] or [mh Obesity]	19723
#21	[mh Snoring] or snoring	458
#22	Sleepiness	2207
#23	#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or	25182
	#19 or #21 or #22	
	#1 and #23	801
	[mh "Mass Screening"] or screening	24181
	[mh "Predictive Value of Tests"]	6376
#27	[mh "Diagnostic Tests, Routine"] or [mh "Sensitivity and Specificity"] or [mh "Predictive Value of Tests"]	355349
	or [mh "ROC Curve"] or [mh Diagnosis] or [mh "Reproducibility of Results"] or [mh "False Negative	
	Reactions"] or [mh "False Positive Reactions"] or "predictive value" or sensitivity or specificity or	
	accuracy or screen* or diagno* or ROC or reproducib* or "false positive" or "false negative" or "likelihood	
	ratio"	
	#25 or #26 or #27	355433
#29	#24 and #28 Publication Year from 2014 to 2015, in Cochrane Reviews, Other Reviews, Trials and	75
	Technology Assessments	

Cochrane Library KQ6 (AHI) search update, 10-26-15

ID	Search	Hits
	[mh "Sleep Apnea Syndromes"] or [mh "Sleep Apnea, Obstructive"] or [mh "Obstructive Sleep Apneas"] or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apneas"] or "Obstructive Sleep Apnoeas" or "Obstructive Sleep Apnoea" or OSAHS or ("sleep apnea" and hypopnea) or "sleep disordered breathing"	2386
#2	"Apnea hypopnea Index" or "Apnea/hypopnea index" or "Apnoea hypopnea index" or "Apnoea hypopnoea index" or "Apnoea/hypopnoea index"	797
#3	#1 and #2	742
#4	[mh "Patient Outcome Assessment"] or [mh "Outcome Assessment (Health Care)"] or [mh "Fatal Outcome"]	102609
#5	outcome*	240219
#6	[mh Mortality] or mortality	56244
#7	[mh "Quality of Life"] or "quality of life"	44998
#8	[mh "Motor Vehicles"] or "motor vehicle" or "motor vehicles"	679
#9	[mh "Cardiovascular Diseases"] or [mh "Myocardial Infarction"] or cardiovascular*	106030
#10	[mh Stroke] or [mh "Cerebrovascular Disorders"] or stroke or cerebrovasc*	45504
#11	"heart failure"	15167
#12	[mh Headache] or headache	18758
#13	[mh "Mild Cognitive Impairment"] or [mh "Cognition Disorders"] or cognit*	36402
#14	#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13	388817
#15	#3 and #14 Publication Year from 2014 to 2015, in Cochrane Reviews, Other Reviews, Trials and Technology Assessments	67

Cochrane Library Diagnosis search update, 10-26-15

ID	Search	Hits
#1	[mh "Sleep Apnea Syndromes"] or [mh "Sleep Apnea, Obstructive"] or [mh "Obstructive Sleep Apneas"] or [mh "Obstructive Sleep Apnea"] or [mh "Obstructive Sleep Apnea"] or "Obstructive Sleep Apnoeas" or "Obstructive Sleep Apnoea" or OSAHS or ("sleep apnea" and hypopnea) or "sleep	2386
	disordered breathing"	
#2	[mh ^"Monitoring, Ambulatory"/IS]	128
#3	[mh Polysomnography] or Polysomnographies	1371
#4	[mh oximetry] or oximetry or Oximetries	1927
#5	[mh "Diagnostic Tests, Routine"]	331
#6	"sleep monitoring"	42
#7	PSG	566
#8	polygraphy	50
#9	Actigraphy	572
#10	Apnoescreen	1
#11	home and monitor*	3574
#12	Monitoring system*	9320
#13	"portable respiratory monitoring"	3
#14	Portable monitor*	443
#15	[mh diagnosis] or diagnosis or diagnoses or [mh "Reproducibility of Results"] or "Reproducibility of Results" or "Reproducibility of Findings" or [mh "Predictive Value of Tests"] or "Predictive Value" or [mh "ROC Curve"] or ROC or "Validity of Results" or reliab* or valid* or [mh "False Negative Reactions"] or "false negative" or [mh "False Positive Reactions"] or "false positive" or accuracy or reproducib* or "likelihood ratio" or "accuracy" or "sensitivity" or "specificity"	350315
#16	#1 and (#2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15)	1529
#17	#16 Publication Year from 2014 to 2015, in Cochrane Reviews, Other Reviews, Trials and Technology Assessments	165

EMBASE searches 10-26-15 (Intervention & Harms) and 10-27-15 (Screening)

Intervention search

Benefits – 217, 169 imported Harms – 151, 75 imported

	ns – 151, 75 imported	In 1:
No.	Query	Results
#32	#28 AND #31	151
#31	'cohort analysis'/exp OR 'epidemiological study' OR (cohort AND (study OR studies)) OR	736,749
"00	'prospective study'/exp OR (prospective* AND cohort)	0.47
#30	#28 AND #29	217
#29	'randomized controlled trial'/exp OR 'single blind procedure'/exp OR 'double blind procedure'/exp OR 'random allocation'/exp OR 'controlled trial'/exp OR 'control trial' OR ('control':ab,ti OR 'controlled':ab,ti AND 'trial':ab,ti)	5,048,338
#28	#27 AND ([adult]/lim OR [middle aged]/lim OR [aged]/lim OR [very elderly]/lim)	656
#27	#26 AND [humans]/lim AND [6-4-2014]/sd NOT [26-10-2015]/sd	2,405
#26	#4 AND #25	11,198
#25	#5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24	200,411
#24	'weight reduction'/exp	117,483
#23	'tonsillectomy'/exp	12,449
#22	'sagittal split ramal osteotomy'/exp	236
#21	'maxilla osteotomy'/exp	2,282
#20	'orthognathic surgery'/exp	2,019
#19	'hyoid advancement'	20
#18	'pillar procedure' OR 'soft palate implants'	8
#17	'nose septum reconstruction'/exp AND 'turbinate reduction'	41
#16	'uvulopalatopharyngoplasty'/exp	1,276
#15	'bariatric surgery'/exp	23,670
#14	'otorhinolaryngology'/exp	22,128
#13	'general surgery'/exp	10,791
#12	'mandible reconstruction'/exp	4,303
#11	'mandibular advancement device' OR 'mandibular advancement devices'	315
#10	'mandible prosthesis'/exp	676

#9		5,180
	'inspiratory positive pressure ventilation' OR 'biphasic intermittent positive airway pressure' OR	
	bipap	
#8	'intermittent positive pressure ventilation'/exp	2,895
#7	'positive end expiratory pressure'/exp/mj	12,783
#6	'cpap device'/exp	289
#5	'positive end expiratory pressure'/exp/mj	12,783
#4	#1 OR #2 OR #3	50,880
#3	'sleep apnea' AND hypopnea	9,473
#2	'obstructive sleep apnoeas' OR 'obstructive sleep apnoea'	5,288
#1	'sleep disordered breathing'/exp	50,425

EMBASE Screening search, 10-27-15

37 results, 28 imported

_	results, 26 imported			
No.	Query	Results		
#21	#16 NOT #17 AND ([adult]/lim OR [middle aged]/lim OR [aged]/lim OR [very elderly]/lim) AND	37		
	[humans]/lim AND [english]/lim AND [7-10-2014]/sd NOT [27-10-2015]/sd			
#20	#16 NOT #17 AND ([adult]/lim OR [middle aged]/lim OR [aged]/lim OR [very elderly]/lim) AND	355		
	[humans]/lim AND [english]/lim			
#19	#16 NOT #17 AND ([adult]/lim OR [middle aged]/lim OR [aged]/lim OR [very elderly]/lim) AND	389		
	[humans]/lim			
#18	#16 NOT #17	675		
#17	#8 AND #15 AND ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim	930		
	OR [editorial]/lim OR [letter]/lim OR [note]/lim)			
#16	#8 AND #15	1,605		
#15	#9 OR #10 OR #11 OR #12 OR #13 OR #14	5,416,056		
#14	'diagnosis'/exp	5,218,583		
#13	'receiver operating characteristic'/exp	59,873		
#12	'sensitivity and specificity'/exp	228,199		
#11	'diagnostic test'/exp	760,098		
#10	'predictive value'/exp	78,645		
#9	'mass screening'/exp	174,071		
#8	#4 AND #7	4,672		
#7	#5 OR #6	463,378		
#6	'clinical prediction tool' OR 'clinical prediction rule' OR 'clinical prediction score'	866		
#5	'questionnaire'/exp	462,559		
#4	#1 OR #2 OR #3	51,523		
#3	'sleep apnea' AND hypopnea	9,473		
#2	'obstructive sleep apnoeas' OR 'obstructive sleep apnoea'	5,288		
#1	'sleep disordered breathing'/exp OR 'sleep disordered breathing'	51,108		

CT.gov and ICTRP searches for OSA Oct 2015

All searches done Oct. 28, 2015 Total number in EndNote = 120 Duplicates library = 22

ClinicalTrials.gov Expert searches

Screening/Diagnosis combined search:

67 results, all imported

INFLECT EXACT ("Adult" OR "Senior") [AGE-GROUP] AND (Ambulatory monitoring OR Polysomnograph* OR oximetr* OR diagnos* OR sleep monitoring OR PSG OR polygraphy OR Actigraphy OR Apnoescreen OR home monitor* OR Monitoring system* OR portable respiratory monitoring OR Portable monitor* OR screen* OR diagno* OR sensitivity OR specificity OR accuracy OR reliab* OR valid* OR reproducib* OR "false positive" OR "false negative") AND "Sleep Apnea, Obstructive" | updated from 06/18/2015 to 10/28/2015

Treatment and Harms combined search:

62 results, 40 imported and 22 went to Duplicates Library

INFLECT EXACT "Interventional" [STUDY-TYPES] AND INFLECT EXACT ("Adult" OR "Senior") [AGE-GROUP] AND NOT "single group assignment" | "Sleep Apnea, Obstructive" | Positive-Pressure Respiration OR Continuous Positive Airway Pressure OR CPAP OR Intermittent Positive Pressure Ventilation OR IPPV OR Inspiratory Positive-Pressure Ventilation OR Inspiratory Positive Pressure Ventilation OR Biphasic Intermittent Positive Airway Pressure OR BiPAP OR Mandibular Prosthesis OR mandibular advancement device OR mandibular advancement devices OR Mandibular Advancement OR surgery OR surgical OR UPPP or uvulopalatopharyngoplasty OR septoplasty OR Pillar Procedure OR Hyoid advancement OR Osteotomy OR tonsillectomy OR exercise OR weight loss OR weight reduction OR diet | updated from 06/18/2015 to 10/28/2015

WHO ICTRP Advanced Searches

Limited to ALL trials and dates 6-18-15 - 10-28-15

SCREENING AND DIAGNOSIS (N=0)

Condition box:

Obstructive sleep apnea

Title box:

Ambulatory monitoring OR Polysomnograph* OR oximetr* OR diagnos* OR sleep monitoring OR PSG OR polygraphy OR Actigraphy OR Apnoescreen OR home monitor* OR Monitoring system* OR portable respiratory monitoring OR Portable monitor* OR screen* OR diagno* OR sensitivity OR specificity OR accuracy OR reliab* OR valid* OR reproducib* OR "false positive" OR "false negative"

Treatment and Harms search: (13 total, all imported)

Terms do not all fit in the intervention box so they were broken into two searches Condition box:

Obstructive sleep apnea

Intervention box:

String 1:

Positive-Pressure Respiration OR Continuous Positive Airway Pressure OR CPAP OR Mandibular Prosthesis OR mandibular advancement device OR mandibular advancement devices OR Mandibular Advancement OR surgery

(N=11, all imported)

String 2:

surgical OR UPPP or uvulopalatopharyngoplasty OR septoplasty OR Pillar Procedure OR Hyoid advancement OR Osteotomy OR tonsillectomy OR exercise OR weight loss OR weight reduction OR diet (N= 2, all imported)

Appendix B2. Eligibility Criteria

	Include	Exclude
Populations	Adults ages 18 years or older KQs 1, 2: Asymptomatic adults and persons with unrecognized symptoms of OSA KQs 3, 7: Asymptomatic adults, persons with unrecognized symptoms of OSA, and referral populations KQs 4–6, 8: Persons with a confirmed diagnosis of OSA; population may include asymptomatic and/or symptomatic adults OSA severity will be defined as mild if the AHI (or RDI) is ≥5 to <15, moderate if the AHI (or RDI) is ≥30	Children and adolescents, pregnant women, studies of adults with acute stroke or other acute conditions that can trigger onset of OSA Studies focused on screening, diagnosis, or treatment of OSA among persons with a rare condition (e.g., acromegaly) KQs 4–6, 8: Studies of persons with suspected but unconfirmed OSA
Setting	Studies conducted in countries categorized as "Very High" on the Human Development Index, as defined by the United Nations Development Programme KQs 4, 5, 8: For nonsurgical interventions, studies must evaluate use at home rather than in a laboratory or facility (although the testing and outcome assessments may occur in sleep laboratories or other settings)	KQs 4, 5, 8: For nonsurgical treatments, interventions studied only in laboratories (e.g., studies of CPAP conducted in sleep laboratories)
Screening	Screening with the Epworth Sleepiness Scale, STOP Questionnaire, Berlin Questionnaire, Wisconsin Sleep Questionnaire, or STOP-BANG Questionnaire Risk stratification or clinical prediction tools that include multiple factors (e.g., the Multivariable Apnea Prediction Index); may include findings from physical examination (e.g., neck circumference, Mallampati classification) KQ 2b: Combined screening approaches, which may use a questionnaire or clinical prediction tool followed by home-based testing for persons who score above a defined threshold on the questionnaire or clinical prediction tool	Studies assessing single patient characteristics or risk factors
Diagnostic testing	Polysomnography conducted in a sleep laboratory, reviewed and interpreted by a qualified physician (the reference standard) Portable monitors used for home-based testing (including Type II, III, and IV monitors) Home-based testing followed by polysomnography	
Treatment/ management interventions	CPAP, mandibular advancement devices, surgery, and weight loss programs Variations of fixed oral CPAP are eligible, including autotitrating CPAP, nasal CPAP, bilevel CPAP, and humidification with CPAP	Atrial overdrive pacing, medications, palatal implants, oropharyngeal exercises, tongue-retaining devices, positional alarms, nasal dilator strips, acupuncture, auricular plaster, and all other interventions not listed as included Medications to treat sleepiness, sleep quality, or bruxism (rather than used to treat OSA), such as armodafinil, bromocriptine, donepezil, eszopiclone, and modafinil Nasal steroids for treatment of allergic rhinitis or similar treatments that might secondarily improve OSA by treating another condition Studies focusing on potential worsening of OSA caused by treatment for another condition (e.g., use of testosterone for hypogonadism, use of medications that may cause weight gain)

	Include	Exclude
Comparisons	KQ 1: Screened vs. nonscreened groups KQ 2: Overnight polysomnography conducted in a sleep laboratory; studies may also determine or compare	No comparison; nonconcordant historical controls; comparative studies of various interventions (e.g.,
	persons at increased, average, or decreased risk or persons at higher and lower risk for OSA	comparing CPAP with mandibular advancement devices or comparing
	KQ 3: Studies on accuracy of screening must include a comparison with polysomnography; studies on reliability of	different types of CPAP) KQs 2, 3: Studies with verification bias
	screening must include measures of reproducibility (e.g., test-retest, comparison between different laboratories or readers)	in which only a subgroup had polysomnography as the comparator
	KQs 4, 5, 8: CPAP vs. control or sham CPAP; mandibular	
	advancement devices vs. no treatment or inactive mandibular advancement devices; surgery vs. sham,	
	conservative treatment, or no treatment; and weight loss interventions vs. control	
	KQ 6: Persons with a higher or lower AHI KQ 7: Screened vs. nonscreened groups or groups	
	undergoing screening and/or diagnostic testing vs. groups not undergoing screening and/or diagnostic testing	
Outcomes	KQs 1, 5, 6: Mortality, quality of life (both disease-specific	
	measures, such as the Functional Outcomes of Sleep Questionnaire, and general measures, such as the 36-Item	
	Short-Form Health Survey), motor vehicle crashes, cardiovascular events (including ischemic events and	
	rhythm disturbances, such as atrial fibrillation),	
	cerebrovascular events, incidence of heart failure, headaches, cognitive impairment	
	KQ 2: Sensitivity, specificity, discrimination, calibration	
	KQ 3: Sensitivity and specificity; measures of	
	reproducibility (e.g., test-retest, comparison between different laboratories or readers)	
	KQ 4: Change in AHI, blood pressure, and daytime	
	somnolence or sleepiness (e.g., as measured by the Epworth Sleepiness Scale or other validated measures)	
	KQ 7: False-positive results leading to unnecessary	
	treatment, anxiety, condition-specific distress, or stigma KQ 8: Rash, irritation, need for additional sleep	
	medications (e.g., to tolerate CPAP), claustrophobia, oral	
	or nasal dryness, epistaxis, pain, excess salivation, tooth damage or loosening, complications of surgery (e.g.,	
	perioperative death, hemorrhage, nerve palsy, additional	
	emergency surgery, cardiovascular events, respiratory	
	failure, rehospitalization, speech or voice changes, difficulty swallowing, airway stenosis)	
Study designs	KQ 1: RCTs comparing screened vs. nonscreened groups	All other designs
	KQ 2: Prospective cohort studies and cross-sectional studies that develop or evaluate screening questionnaires	KQs 2, 3: Questionnaires, tools, and tests not validated in a group of
	or clinical prediction tools	participants separate from the sample
	Previously published systematic reviews (only for the	used to develop the test
	purposes of identifying existing studies) Clinical prediction tools and screening questionnaires must	
	be externally validated	
	KQ 3: Good-quality, recent (within 5 years) systematic reviews comparing diagnostic tests with formal, attended	
	polysomnography conducted in a sleep laboratory	
	Primary studies published after the search cutoff of the	
	most recent systematic review will be included (i.e., bridge searches will be performed to determine whether there is	
	new evidence since the review and whether it is consistent	
	with the review) KQs 4, 5: RCTs; previously published systematic reviews	
	provided the state of the state	<u> </u>

Appendix B2. Eligibility Criteria

	Include	Exclude
	(only for the purposes of identifying existing studies) KQ 6: Good-quality, recent (within 5 years) systematic reviews; bridge searches will be performed to determine whether there is new evidence since the review and whether it is consistent with the review Prospective cohort studies that follow participants for at least 1 year and are published after the search cutoff of the most recent systematic review will be included Treatment studies included in KQ 4 or 5 that report both change in AHI and change in a health outcome KQ 7: Studies eligible for KQ 1, 2, or 3 that report harms of screening or diagnostic tests KQ 8: RCTs for all interventions; prospective cohort studies with at least 100 participants that report harms of surgical interventions	
Language	English	Languages other than English

AHI = apnea-hypopnea index; CPAP = continuous positive airway pressure; KQ = Key Question; OSA = obstructive sleep apnea; RCT = randomized, controlled trial; RDI = respiratory disturbance index.

Randomized Controlled Trials

Criteria

- Initial assembly of comparable groups: Randomized controlled trials (RCTs)—adequate randomization, including concealment and whether potential confounders were distributed equally among groups; cohort studies—consideration of potential confounders with either restriction or measurement for adjustment in the analysis; consideration of inception cohorts
- Maintenance of comparable groups (includes attrition, crossovers, adherence, and contamination)
- Important differential loss to followup or overall high loss to followup
- Measurements: Equal, reliable, and valid (includes masking of outcome assessment)
- Clear definition of interventions
- Important outcomes considered
- Analysis: Adjustment for potential confounders for cohort studies or intention-to-treat analysis for RCTs; for cluster RCTs, correction for correlation coefficient

Definition of Ratings Based on Above Criteria

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (followup ≥80 percent); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; important outcomes are considered; and appropriate attention is given to confounders in analysis.

Fair: Studies will be graded "fair" if any or all of the following problems occur, without the important limitations noted in the "poor" category below: Generally comparable groups are assembled initially but some question remains on whether some (although not major) differences occurred in followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for.

Poor: Studies will be graded "poor" if any of the following major limitations exist: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention.

Sources: U.S. Preventive Services Task Force, Procedure Manual, Appendix VII http://www.uspreventiveservicestaskforce.org/Page/Name/procedure-manual---appendix-vii Harris et al., 2001²⁸⁵

Studies of Screening Tests

Criteria

- Screening test relevant, available for primary care, adequately described.
- Study uses a credible reference standard, performed regardless of test results.
- Reference standard interpreted independently of screening test.
- Handles indeterminate results in a reasonable manner.
- Spectrum of patients included in study.
- Sample size: Although this is one of the criteria listed in the current procedures manual, we did not consider sample size when assessing study quality, as sample size affects precision of the estimate.
- Administration of reliable screening test.

In addition to the criteria listed in the USPSTF procedures manual, we also considered the criteria described in our Appendix D (which details quality assessments of individual studies).

Definition of Ratings Based on Above Criteria

Good: Relevant and adequately described study populations for the outcome of interest (i.e., Sensitivity, Specificity), screening test well described in terms of test procedures followed and threshold used for a "positive" or "negative" test, credible reference standard used for outcome of interest (i.e., Sensitivity or Specificity), generally interprets reference standard independently of screening test, outcomes clearly reported and valid, handles indeterminate results in a reasonable manner.

Fair: Mostly includes a relevant and adequately described study population for the outcome of interest (i.e., Sensitivity, Specificity), screening test described although may include some ambiguity about test procedures followed or threshold for a "positive" or "negative" test, credible reference standard mostly used for outcome of interest (i.e., Sensitivity or specificity), interpretation of reference standard may or may not be independent of screening test, outcomes mostly clearly reported although may have some ambiguity regarding how indeterminate results were handled.

Poor: Has fatal flaw such as study population not appropriate for outcome of interest (i.e., Sensitivity, Specificity), screening test improperly administered or not at all described, use of noncredible reference standard, reference and screening test not independently assessed, outcomes not clearly or accurately reported with no information about how indeterminate tests were handled.

Criteria Adapted from: U.S. Preventive Services Task Force, Procedure Manual Appendix VII http://www.uspreventiveservicestaskforce.org/Page/Name/procedure-manual---appendix-vii Harris et al., 2001. ²⁸⁵

Abbreviated			Range/Meaning of	Improvement
Name	Complete Name	Description	Possible Scores	Indicated by
BQ	Berlin Questionnaire	Questionnaire consists of 3 categories (10 questions total) related to the risk of having sleep apnea.	Patients can be classified into High Risk or Low Risk	NA (screening instrument)
ESS	Epworth Sleepiness Scale	8-question measure of general level of daytime sleepiness or average sleep propensity in daily life	0 to 24	Decrease
EQ-5D	Index	Assesses 5 dimensions of health status: mobility, self-care, usual activities, pain/discomfort and anxiety/depression; yields a single index value for health status	-0.1 to 1.0	Increase
FOSQ and FOSQ-10	Sleep Questionnaire	Assesses the impact of disorders of excessive sleepiness on multiple activities of everyday living and the extent to which these abilities are improved by effective treatment (30- and 10-item versions)	5 to 20 (both versions) ^a	Increase
MCS	Mental Health Component Score of the SF-36	Summary measure that aggregates 4 mental/emotional health domains	0 to 100 (mean)	Increase
MVAP Score	Multivariable Apnea Prediction Score	Screening tool for sleep apnea based on the reporting of the frequency of various symptoms plus age, body mass index and gender	0 to 1; risk increases as score increases	NA (screening instrument)
NHP	Nottingham health profile	38-item instrument that measures subjective health status across the following domains: sleep, mobility, energy, pain, emotional reactions, social isolation	0 to 100	Decrease
PCS	Physical Health Component Score of the SF-36	Summary measure that aggregates 4 physical health domains	0 to 100 (mean)	Increase
SAQLI	Calgary Sleep Apnea Quality of Life Index	35-item tool to assess OSA-related quality of life across 4 domains: daily functioning, social interactions, emotional functioning, symptoms. An optional 5 th domain assesses treatment-related symptoms	1 to 7	Increase
SF-36	Medical Outcome Short Form (36) Health Survey	36-item scale of patient health status. Administration time less than 15 minutes	0 to 100 (mean)	Increase

^a Most published studies determine the total score by calculating the mean of the 5 subscale scores (each subscale score ranges from 1 to 4) and multiplying by 5, giving a total score range of 5 to 20. However, some published studies report the mean of the subscale scores without multiplying by 5 (resulting in a total score range of 1 to 4) and others report the sum of all the individual responses (resulting in a total score range of 0 to 120).

Berlin Questionnaire

1. Complete the following:	7. How often do you feel tired or fatigued after you sleep?		
Height: Weight:	Nearly every day		
	3-4 times a week		
Age: Gender: M F	1-2 times a week		
6 · · · · · · · · · · · · · · · · · · ·	1-2 times a month		
2. Do you snore?	never or nearly never		
Yes			
No	8. During your wake time, do you feel tired,		
Don't know	fatigued, or not up to par?		
	Nearly every day		
If you snore:	3-4 times a week		
•	1-2 times a week		
3. Your snoring is	1-2 times a month		
Slightly louder than breathing	never or nearly never		
As loud as talking			
Louder than talking	9. Have you ever nodded off or fallen asleep while		
Very loud, can be heard in adjacent rooms	driving a vehicle?		
	Yes		
4. How often do you snore?	No		
Nearly every day	If yes, how often does it occur?		
3-4 times a week	Nearly every day.		
1-2 times a week	3-4 times a week		
1-2 times a month	1-2 times a week		
never or nearly never	1-2 times a month		
	never or nearly never		
5. Has your snoring ever bothered other people?			
Yes	10. Do you have high blood pressure?		
No	Yes		
	No		
6. Has anyone noticed that you quit breathing	Don't know		
during your sleep?			
Nearly every day.	BMI (Body mass index) =		
3-4 times a week			
1-2 times a week			
1-2 times a month			
never or nearly never			

(see next page for scoring instructions)

Scoring the Berlin Questionnaire

The questionnaire consists of 3 categories related to the risk of having sleep apnea. Patients can be classified into High Risk or Low Risk based on their responses to the individual items and their overall scores in the symptom categories.

Categories and Scoring:

Category 1: items 2, 3, 4, 5, and 6;

Item 2: if 'Yes', assign 1 point

Item 3: if either of the last two options is the response, assign **1 point**

Item 4: if either of the first two options is the response, assign 1 point

Item 5: if 'Yes' is the response, assign 1 point

Item 6: if either of the first two options is the response, assign 2 points

Add points. Category 1 is positive if the total score is 2 or more points.

Category 2: items 7, 8, and 9.

Item 7: if either of the first two options is the response, assign 1 point

Item 8: if either of the first two options is the response, assign 1 point

Item 9: if 'Yes' is the response, assign 1 point

Add points. Category 2 is positive if the total score is 2 or more points.

Category 3 is positive if the answer to item 10 is 'Yes' or if the BMI of the patient is greater than 30kg/m2. (BMI is defined as weight (kg) divided by height (m) squared, i.e., kg/m2).

High Risk: if there are 2 or more categories where the score is positive. **Low Risk:** if there is only 1 or no categories where the score is positive.

Additional Question: item 9 should be noted separately.

Epworth Sleepiness Scale

How likely are you to doze off or fall asleep in the following situations? Choose the most appropriate number for each situation:

- 0= would never fall asleep
- 1= slight chance of falling asleep
- 2= moderate chance of falling asleep
- 3= high chance of falling asleep

<u>Activity</u>	Score
Sitting and reading	
Watching TV	
Sitting, inactive in a public place (theater, meeting, etc.)	
As a passenger in a car for an hour without a break	
Lying down to rest in the afternoon when circumstances permit	
Sitting quietly after lunch without alcohol	
Sitting and talking to someone	
In a car, while stopped for a few minutes in traffic	
Total	

The normal range is generally accepted to be zero to 10.

Multivariable Apnea Prediction (MVAP) Index

"During the last month, have you had, or have been told about the following symptom"

- (0) Never;
- (1) Rarely, Less Than Once a Week;
- (2) 1-2 Times Per Week;
- (3) 3-4 Times Per Week;
- (4) 5-7 Time Per Week
- (.) Don't Know

Symptoms:

Loud snoring Breathing cessation Snorting or gasping

Index 1 is the average of the 3 symptom scores.

The estimated probability that a patient will have an RDI ≥10 is:

Probability = ex/(1 + ex)

where

x = -8.160 + 1.299-Index I + 0.163-BMI - 0.028-Index I-BMI + 0.032-Age + 1.278-Male, and Male = 1 if male and 0 if female.

- X1: Non-English
- X2: Ineligible publication type
- X3: Ineligible study design
- X4: No relevant outcome reported
- X5: Poor quality
- X6: Superseded by other included article
- X7: Abstract only
- X8: Ineligible population
- X9: Ineligible test or intervention
- X10: Ineligible or no comparator
- X11: Title
- X12: Ineligible country
- X13: Full reference inaccessible
- X14: Non-surgical intervention in lab setting
- X15: Article retracted
- 1. Continuous positive airway pressure (CPAP) in sleep apnea syndrome primary research (Structured abstract). Health Technology Assessment Database. 1999(3)PMID: HTA-32000000072. Exclusion Code: X1
- 2. Summaries for patients. Treatment for sleep apnea in people without symptoms. Ann Intern Med. 2001;134(11):S-8. PMID: CN-00348449. Exclusion Code: X2
- 3. Polysomnography in patients with obstructive sleep apnea: an evidence-based analysis (Structured abstract). Health Technology Assessment Database. 2006(3):37. PMID: HTA-32006000879. Exclusion Code: X2
- Value of mandibular advancement devices in cases of obstructive sleep apneasyndrome (Structured abstract). Health Technology Assessment Database. 2007(3)PMID: HTA-32007000211. Exclusion Code: X1
- 5. Continuous positive airway pressure for the treatment of obstructive sleep apnoea/hypopnoea syndrome (Structured abstract). Health Technology Assessment Database. 2008(3)PMID: HTA-32011000399. Exclusion Code: X3
- 6. Continuous positive airways pressure for the treatment of obstructive sleep apnoea/hypopnoea syndrome (Structured abstract). Health Technology Assessment Database. 2008(3)PMID: HTA-32008100157. Exclusion Code: X3

- 7. A randomised controlled trial of continuous positive airway pressure treatment in older people with obstructive sleep apnoea hypopnoea syndrome (PREDICT) (Project record). Health Technology Assessment Database. 2010(3)PMID: HTA-32010000363. Exclusion Code: X2
- 8. Pre-operative screening and post-operative monitoring in adult patients with obstructive sleep apnea: clinical effectiveness and guidelines (Structured abstract). Health Technology Assessment Database. 2010(3)PMID: HTA-32011001187. Exclusion Code: X3
- 9. An assessment of sleep disordered breathing diagnosis using Level I versus Level III sleep studies (Structured abstract). Health Technology Assessment Database. 2010(3)PMID: HTA-32013000161. Exclusion Code: X3
- Rehabilitation Program as an Alternative
 Therapy for Moderate to Severe Obstructive
 Sleep Apnea Syndrome. 2011. Exclusion
 Code: X4
- 11. Level I and level III sleep studies for the diagnosis of Sleep Disordered Breathing (SDB) in adults (Project record). Health Technology Assessment Database. 2013(3)PMID: HTA-32013000133. Exclusion Code: X3
- 12. GLYCOSA Study:Effect of PAP Treatment on Glycemic Control in Patients With Type 2 Diabetes, 2013. Exclusion Code: X5
- 13. Continuous Positive Airway Pressure (CPAP) in Patients With Acute Coronary Syndrome and Obstructive Sleep Apnea (OSA). 2014. Exclusion Code: X4

- 14. RCT of the Effect of
 Uvulopalatopharyngoplasty Compared to
 Expectancy in Patients With Obstructive
 Sleep Apnea. 2014. Exclusion Code: X4
- 15. Corrections to Continuous positive airway pressure in older people with obstructive sleep apnoea syndrome (PREDICT): Aa 12-month, multicentre, randomised trial [Lancet Respir Med, 2, (2014), 804-812]. Lancet Respiratory Medicine. 2014;2(11):e22. PMID: CN-01038283. Exclusion Code: X2
- 16. Comparative Effectiveness Research to Enhance Outcomes in African-Americans With Obstructive Sleep Apnea. 2014. Exclusion Code: X4
- 17. Obstructive Sleep Apnea (OSA), Sleepiness, and Activity in Diabetes Management. 2014. Exclusion Code: X4
- 18. Effects of Treating Obstructive Sleep Apnea in Epilepsy. 2014. Exclusion Code: X6
- Lifestyle Modification Program to Treat Obstructive Sleep Apnea Patients. 2015. Exclusion Code: X5
- 20. Diagnosis, Cost and Therapeutic Decision-Making of Home Respiratory Polygraphy for Patients Without High Suspicion of OSA or With Comorbidity - Hospital Polysomnography in Comparison With Three Nights of Home Respiratory Polygraphy. 2015. Exclusion Code: X8
- 21. Aaronson JA, Nachtegaal J, van Bezeij T, et al. Can a prediction model combining self-reported symptoms, sociodemographic and clinical features serve as a reliable first screening method for sleep apnea syndrome in patients with stroke? Arch Phys Med Rehabil. 2014 Apr;95(4):747-52. Epub: 2014/01/01. PMID: 24378806. Exclusion Code: X3
- 22. Abbey NC, Block AJ, Green D, et al. A method for measuring pharyngeal volumes using magnetic resonance imaging in subjects who snore with and without nasal CPAP. Prog Clin Biol Res. 1990;345:283-8; discussion 9-90. Epub: 1990/01/01. PMID: 2198592. Exclusion Code: X9
- 23. Abdullah H, Maddage NC, Cosic I, et al. Cross-correlation of EEG frequency bands and heart rate variability for sleep apnoea classification. Med Biol Eng Comput. 2010 Dec;48(12):1261-9. Epub: 2010/11/04. PMID: 21046273. Exclusion Code: X4

- 24. Abraham WT, Trupp RJ, Phillilps B, et al. Validation and clinical utility of a simple inhome testing tool for sleep-disordered breathing and arrhythmias in heart failure: results of the Sleep Events, Arrhythmias, and Respiratory Analysis in Congestive Heart Failure (SEARCH) study. Congest Heart Fail. 2006 Sep-Oct;12(5):241-7; quiz 8-9. Epub: 2006/10/13. PMID: 17033271. Exclusion Code: X6
- 25. Acar M, Firat H, Acar U, et al. Ocular surface assessment in patients with obstructive sleep apnea-hypopnea syndrome. Sleep Breath. 2013 May;17(2):583-8. Epub: 2012/06/06. PMID: 22664770. Exclusion Code: X9
- 26. Acharya UR, Chua EC, Faust O, et al. Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters. Physiol Meas. 2011 Mar;32(3):287-303. Epub: 2011/02/03. PMID: 21285482. Exclusion Code: X4
- 27. ACTRN12605000066684. The effect of Obstructive Sleep Apnoea (OSA) and its treatment with Continuous Positive Airways Pressure (CPAP) on lipid metabolism. 2015. Exclusion Code: X4
- 28. ACTRN12608000301369. Metabolic and Neurobiological changes after Continuous Positive Airway Pressure treatment for Obstructive Sleep Apnea. 2015. Exclusion Code: X4
- 29. Adachi H, Mikami A, Kumano-go T, et al. Clinical significance of pulse rate rise during sleep as a screening marker for the assessment of sleep fragmentation in sleep-disordered breathing. Sleep Med. 2003
 Nov;4(6):537-42. PMID: 14607348.
 Exclusion Code: X6
- 30. Adesanya AO, Lee W, Greilich NB, et al. Perioperative management of obstructive sleep apnea. Chest. 2010 Dec;138(6):1489-98. Epub: 2010/12/09. PMID: 21138886. Exclusion Code: X3
- 31. Aggarwal S, Nadeem R, Loomba RS, et al. The effects of continuous positive airways pressure therapy on cardiovascular end points in patients with sleep-disordered breathing and heart failure: a meta-analysis of randomized controlled trials (Provisional abstract). Clin Cardiol. 2014;37(1):57-65. PMID: DARE-12014010960. Exclusion Code: X3

- 32. Ahmadi N, Chung SA, Gibbs A, et al. The Berlin questionnaire for sleep apnea in a sleep clinic population: relationship to polysomnographic measurement of respiratory disturbance. Sleep Breath. 2008 Mar;12(1):39-45. Epub: 2007/08/09. PMID: 17684781. Exclusion Code: X8
- 33. Aihara K, Oga T, Yoshimura C, et al. Measurement of dyspnea in patients with obstructive sleep apnea. Sleep Breath. 2013 May;17(2):753-61. Epub: 2012/08/07. PMID: 22864690. Exclusion Code: X4
- 34. Akita Y, Kawakatsu K, Hattori C, et al. Posture of patients with sleep apnea during sleep. Acta Otolaryngol Suppl. 2003(550):41-5. Epub: 2003/05/10. PMID: 12737341. Exclusion Code: X10
- 35. Akpinar ME, Celikoyar MM, Altundag A, et al. The comparison of cephalometric characteristics in nonobese obstructive sleep apnea subjects and primary snorers cephalometric measures in nonobese OSA and primary snorers. Eur Arch Otorhinolaryngol. 2011 Jul;268(7):1053-9. Epub: 2010/12/07. PMID: 21132318. Exclusion Code: X3
- 36. Al-Abed MA, Antich P, Watenpaugh DE, et al. In vivo characterization of ultrasonic transducers for the detection of airway occlusion in Sleep Disordered Breathing. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7687-90. Epub: 2012/01/19. PMID: 22256119. Exclusion Code: X3
- 37. Alajmi M, Mulgrew AT, Fox J, et al. Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials (Provisional abstract). Lung. 2007;185(2):67-72. PMID: DARE-12007001365. Exclusion Code: X3
- 38. Al-Angari HM, Sahakian AV. Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier. IEEE Trans Inf Technol Biomed. 2012 May;16(3):463-8. Epub: 2012/01/31. PMID: 22287247. Exclusion Code: X2
- 39. Albuquerque FN, Calvin AD, Sert Kuniyoshi FH, et al. Sleep-disordered breathing and excessive daytime sleepiness in patients with atrial fibrillation. Chest. 2012 Apr;141(4):967-73. Epub: 2011/09/10. PMID: 21903736. Exclusion Code: X8

- 40. Alchanatis M, Zias N, Deligiorgis N, et al. Sleep apnea-related cognitive deficits and intelligence: an implication of cognitive reserve theory. J Sleep Res. 2005

 Mar;14(1):69-75. Epub: 2005/03/04. PMID: 15743336. Exclusion Code: X10
- 41. Alfonso-Fernandez A, Arias MA, Garcia-Rio F, et al. Impaired left ventricular performance during exercise in patients with obstructive sleep apnea-hypopnea syndrome improves with continuous positive airway pressure [Abstract]. American Thoracic Society 2005 International Conference; May 20-25; San Diego, California. 2005:[D27] [Poster: 523]. PMID: CN-00524362. Exclusion Code: X4
- 42. Alonso-Fernández A, García-Río F, Arias MA, et al. Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax. 2009;64(7):581-6. PMID: CN-00697697. Exclusion Code: X4
- 43. Alonso-Fernández A, García-Río F, Arias MA, et al. Obstructive sleep apnoeahypoapnoea syndrome reversibly depresses cardiac response to exercise. Eur Heart J. 2006;27(2):207-15. PMID: CN-00561418. Exclusion Code: X4
- 44. Alshaer H, Fernie GR, Maki E, et al. Validation of an automated algorithm for detecting apneas and hypopneas by acoustic analysis of breath sounds. Sleep Med. 2013 Jun;14(6):562-71. Epub: 2013/03/05. PMID: 23453251. Exclusion Code: X9
- 45. Altekin RE, Yanikoglu A, Baktir AO, et al. Assessment of subclinical left ventricular dysfunction in obstructive sleep apnea patients with speckle tracking echocardiography. Int J Cardiovasc Imaging. 2012 Dec;28(8):1917-30. Epub: 2012/02/14. PMID: 22327942. Exclusion Code: X3
- 46. Altekin RE, Yanikoglu A, Karakas MS, et al. Assessment of left atrial dysfunction in obstructive sleep apnea patients with the two dimensional speckle-tracking echocardiography. Clin Res Cardiol. 2012 Jun;101(6):403-13. Epub: 2012/01/10. PMID: 22222546. Exclusion Code: X3
- 47. Alvarez D, Gutierrez GC, Marcos JV, et al. Spectral analysis of single-channel airflow and oxygen saturation recordings in obstructive sleep apnea detection. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:847-50. Epub: 2010/11/26. PMID: 21096316. Exclusion Code: X6

- 48. Alvarez D, Hornero R, Abasolo D, et al. Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection. Physiol Meas. 2006 Apr;27(4):399-412. Epub: 2006/03/16. PMID: 16537981. Exclusion Code: X6
- 49. Alvarez D, Hornero R, Marcos JV, et al.
 Obstructive sleep apnea detection using
 clustering classification of nonlinear features
 from nocturnal oximetry. Conf Proc IEEE
 Eng Med Biol Soc. 2007;2007:1937-40.
 Epub: 2007/11/16. PMID: 18002362.
 Exclusion Code: X3
- 50. Alvarez D, Hornero R, Marcos JV, et al. Assessment of feature selection and classification approaches to enhance information from overnight oximetry in the context of apnea diagnosis. Int J Neural Syst. 2013 Oct;23(5):1350020. Epub: 2013/08/09. PMID: 23924411. Exclusion Code: X9
- 51. Amaro AC, Duarte FH, Jallad RS, et al. The use of nasal dilator strips as a placebo for trials evaluating continuous positive airway pressure. Clinics (Sao Paulo). 2012;67(5):469-74. Epub: 2012/06/06. PMID: 22666791. Exclusion Code: X8
- 52. Amin MM, Gold MS, Broderick JE, et al. The effect of nasal continuous positive airway pressure on the symptoms of Gulf War illness. Sleep Breath. 2011 Sep;15(3):579-87. Epub: 2010/08/19. PMID: 20717848. Exclusion Code: X8
- 53. Amir O, Barak-Shinar D, Henry A, et al. Photoplethysmography as a single source for analysis of sleep-disordered breathing in patients with severe cardiovascular disease. J Sleep Res. 2012 Feb;21(1):94-100. Epub: 2011/06/16. PMID: 21672069. Exclusion Code: X8
- 54. Anandam A, Akinnusi M, Kufel T, et al. Effects of dietary weight loss on obstructive sleep apnea: a meta-analysis (Provisional abstract). Sleep and Breathing. 2013;17(1):227-34. PMID: DARE-12013016302. Exclusion Code: X3
- 55. Ancoli-Israel S, Kripke DF, Klauber MR, et al. Sleep-disordered breathing in community-dwelling elderly. Sleep. 1991 Dec;14(6):486-95. Epub: 1991/12/01. PMID: 1798880. Exclusion Code: X10

- 56. Ancoli-Israel S, Mason W, Coy TV, et al. Evaluation of sleep disordered breathing with unattended recording: the Nightwatch System. J Med Eng Technol. 1997 Jan-Feb;21(1):10-4. PMID: 9080356. Exclusion Code: X6
- 57. Ancoli-Israel S, Palmer BW, Cooke JR, et al. Cognitive effects of treating obstructive sleep apnea in Alzheimer's disease: a randomized controlled study. J Am Geriatr Soc. 2008;56(11):2076-81. PMID: CN-00667784. Exclusion Code: X5
- 58. Andreas S, Schulz R, Werner GS, et al. Prevalence of obstructive sleep apnoea in patients with coronary artery disease. Coron Artery Dis. 1996 Jul;7(7):541-5. Epub: 1996/07/01. PMID: 8913673. Exclusion Code: X10
- 59. Andreas S, von Breska B, Magnusson K, et al. Validation of automated sleep stage and apnoea analysis in suspected obstructive sleep apnoea. Eur Respir J. 1993
 Jan;6(1):48-52. Epub: 1993/01/01. PMID: 8425594. Exclusion Code: X6
- 60. Andreu AL, Chiner E, Sancho-Chust JN, et al. Effect of an ambulatory diagnostic and treatment programme in patients with sleep apnoea. Eur Respir J. 2012 Feb;39(2):305-12. Epub: 2011/07/02. PMID: 21719490. Exclusion Code: X10
- 61. Andries D, Haba-Rubio J, Bastardot F, et al. Berlin and STOP-BANG questionnaires for detecting sleep apnoea in the general population. Respiration. 2011;82(1):88-9. Exclusion Code: X10
- 62. Antonopoulos CN, Sergentanis TN,
 Daskalopoulou SS, et al. Nasal continuous
 positive airway pressure (nCPAP) treatment
 for obstructive sleep apnea, road traffic
 accidents and driving simulator
 performance: a meta-analysis (Structured
 abstract). Sleep Med Rev. 2011;15(5):30110. PMID: DARE-12011005384. Exclusion
 Code: X3
- 63. Appleton SL, Vakulin A, McEvoy RD, et al. Undiagnosed obstructive sleep apnea is independently associated with reductions in quality of life in middle-aged, but not elderly men of a population cohort. Sleep and Breathing. 2015. Exclusion Code: X3
- 64. Argod J, Pepin JL, Levy P. Differentiating obstructive and central sleep respiratory events through pulse transit time. Am J Respir Crit Care Med. 1998

 Dec;158(6):1778-83. Epub: 1998/12/16.
 PMID: 9847267. Exclusion Code: X9

- 65. Arias MA, García-Río F, Alonso-Fernández A, et al. Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: a randomized, controlled cross-over study. Eur Heart J. 2006;27(9):1106-13. PMID: CN-00562879. Exclusion Code: X6
- 66. Armistead JP, Bateman P, Chan CS, et al. Study of an auto-adjusting CPAP algorithm for the treatment of obstructive sleep apnoea [Abstract]. American Thoracic Society International Conference, May 15-20, 2009, San Diego. 2009:A3570 [Poster #A1]. PMID: CN-00735422. Exclusion Code: X8
- 67. Arroll B, Fernando A, 3rd, Falloon K, et al. Development, validation (diagnostic accuracy) and audit of the Auckland Sleep Questionnaire: a new tool for diagnosing causes of sleep disorders in primary care. J Prim Health Care. 2011 Jun;3(2):107-13. Epub: 2011/06/01. PMID: 21625658. Exclusion Code: X10
- 68. Arzt M, Schroll S, Series F, et al. Autoservoventilation in heart failure with sleep apnoea: a randomised controlled trial. Eur Respir J. 2013 Nov;42(5):1244-54. Epub: 2012/12/12. PMID: 23222879. Exclusion Code: X8
- 69. Arzt M, Young T, Finn L, et al. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med. 2005 Dec 1;172(11):1447-51. PMID: 16141444. Exclusion Code: X5
- 70. Asghari A, Mohammadi F, Kamrava SK, et al. Evaluation of quality of life in patients with obstructive sleep apnea. Eur Arch Otorhinolaryngol. 2013 Mar;270(3):1131-6. Epub: 2012/08/21. PMID: 22903757. Exclusion Code: X9
- 71. Asghari A, Mohammadi F, Kamrava SK, et al. Severity of depression and anxiety in obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol. 2012 Dec;269(12):2549-53. Epub: 2012/02/03. PMID: 22298252. Exclusion Code: X3
- 72. Assoumou HG, Gaspoz JM, Sforza E, et al. Obstructive sleep apnea and the metabolic syndrome in an elderly healthy population: the SYNAPSE cohort. Sleep Breath. 2012 Sep;16(3):895-902. Epub: 2011/09/20. PMID: 21927990. Exclusion Code: X10

- 73. Aubert-Tulkens G, Culee C, Harmant-Van Rijckevorsel K, et al. Ambulatory evaluation of sleep disturbance and therapeutic effects in sleep apnea syndrome by wrist activity monitoring. Am Rev Respir Dis. 1987 Oct;136(4):851-6. Epub: 1987/10/01. PMID: 3662239. Exclusion Code: X10
- 74. Aurora RN, Casey KR, Kristo D, et al. Practice parameters for the surgical modifications of the upper airway for obstructive sleep apnea in adults. Sleep. 2010 Oct;33(10):1408-13. Epub: 2010/11/11. PMID: 21061864. Exclusion Code: X3
- 75. Australian S, Efficacy Register of New Interventional Procedures S. Rapid Review Upper airway surgery for the treatment of adult obstructive sleep apnoea. Report No. 67 (Structured abstract). Health Technology Assessment Database. 2008(3):119. PMID: HTA-32009100041. Exclusion Code: X3
- 76. Avidan AY. The development of central sleep apnea with an oral appliance. Sleep Med. 2006 Jan;7(1):85-6. Epub: 2005/10/01. PMID: 16194621. Exclusion Code: X2
- 77. Ayalon L, Ancoli-Israel S, Stepnowsky C, et al. Adherence to continuous positive airway pressure treatment in patients with Alzheimer's disease and obstructive sleep apnea. Am J Geriatr Psychiatry. 2006 Feb;14(2):176-80. PMID: 16473983. Exclusion Code: X4
- 78. Ayappa I, Norman RG, Seelall V, et al. Validation of a self-applied unattended monitor for sleep disordered breathing. J Clin Sleep Med. 2008 Feb 15;4(1):26-37. PMID: 18350959. Exclusion Code: X6
- 79. Ayappa I, Norman RG, Suryadevara M, et al. Comparison of limited monitoring using a nasal-cannula flow signal to full polysomnography in sleep-disordered breathing. Sleep. 2004 Sep 15;27(6):1171-9. Epub: 2004/11/10. PMID: 15532212. Exclusion Code: X6
- 80. Ayas NT, FitzGerald JM, Fleetham JA, et al. Cost-effectiveness of continuous positive airway pressure therapy for moderate to severe obstructive sleep apnea/hypopnea. Arch Intern Med. 2006 May 8;166(9):977-84. PMID: 16682570. Exclusion Code: X4
- 81. Ayas NT, Pittman S, MacDonald M, et al. Assessment of a wrist-worn device in the detection of obstructive sleep apnea. Sleep Med. 2003 Sep;4(5):435-42. PMID: 14592285. Exclusion Code: X6

- 82. Babaeizadeh S, Zhou SH, Pittman SD, et al. Electrocardiogram-derived respiration in screening of sleep-disordered breathing. J Electrocardiol. 2011 Nov-Dec;44(6):700-6. Epub: 2011/09/13. PMID: 21908002. Exclusion Code: X9
- 83. Badia JR, Hernandez L, Leon C, et al. Efficacy of CPAP treatment in moderate to severe sleep apnea hypopnea syndrome (SAHS). European Respiratory Journal Supplement. 1997;10(Suppl 25):310s. PMID: CN-00392949. Exclusion Code: X11
- 84. Bagnato MC, Nery LE, Moura SM, et al. Comparison of AutoSet and polysomnography for the detection of apnea-hypopnea events. Braz J Med Biol Res. 2000 May;33(5):515-9. PMID: 10775882. Exclusion Code: X12
- 85. BaHammam AS, Obeidat A, Barataman K, et al. A comparison between the AASM 2012 and 2007 definitions for detecting hypopnea. Sleep Breath. 2014
 Dec;18(4):767-73. Epub: 2014/02/05.
 PMID: 24493077. Exclusion Code: X10
- 86. BaHammam AS, Sharif M, Gacuan DE, et al. Evaluation of the accuracy of manual and automatic scoring of a single airflow channel in patients with a high probability of obstructive sleep apnea. Med Sci Monit. 2011 Feb;17(2):Mt13-9. Epub: 2011/02/01. PMID: 21278698. Exclusion Code: X9
- 87. Bailes S, Baltzan M, Rizzo D, et al. A diagnostic symptom profile for sleep disorder in primary care patients. J Psychosom Res. 2008 Apr;64(4):427-33. Epub: 2008/04/01. PMID: 18374743. Exclusion Code: X10
- 88. Baisch A, Maurer JT, Hormann K. The effect of hyoid suspension in a multilevel surgery concept for obstructive sleep apnea. Otolaryngol Head Neck Surg. 2006
 May;134(5):856-61. Epub: 2006/05/02.
 PMID: 16647548. Exclusion Code: X3
- 89. Bakker JP, Campbell AJ, Neill AM.
 Increased mortality risk in congestive heart
 failure patients with comorbid sleep apnoea:
 10-year follow up. Intern Med J. 2012
 Nov;42(11):1264-8. Epub: 2012/11/20.
 PMID: 23157523. Exclusion Code: X10
- 90. Bakker JP, Edwards BA, Gautam SP, et al. Blood pressure improvement with continuous positive airway pressure is independent of obstructive sleep apnea severity. J Clin Sleep Med. 2014;10(4):365-9. Exclusion Code: X3

- 91. Balachandran JS, Bakker JP, Rahangdale S, et al. Effect of mild, asymptomatic obstructive sleep apnea on daytime heart rate variability and impedance cardiography measurements. Am J Cardiol. 2012 Jan 1;109(1):140-5. Epub: 2011/09/29. PMID: 21945139. Exclusion Code: X3
- 92. Balakrishnan K, James KT, Weaver EM.
 Composite severity indices reflect sleep
 apnea disease burden more comprehensively
 than the apnea-hypopnea index. Otolaryngol
 Head Neck Surg. 2013 Feb;148(2):324-30.
 Epub: 2012/10/19. PMID: 23077154.
 Exclusion Code: X3
- 93. Ballester E, Solans M, Vila X, et al. Evaluation of a portable respiratory recording device for detecting apnoeas and hypopnoeas in subjects from a general population. Eur Respir J. 2000 Jul;16(1):123-7. Epub: 2000/08/10. PMID: 10933097. Exclusion Code: X6
- 94. Baltzan MA, Verschelden P, Al-Jahdali H, et al. Accuracy of oximetry with thermistor (OxiFlow) for diagnosis of obstructive sleep apnea and hypopnea. Sleep. 2000 Feb 1;23(1):61-9. PMID: 10678466. Exclusion Code: X6
- 95. Banerjee D, Leong WB, Arora T, et al. The potential association between obstructive sleep apnea and diabetic retinopathy in severe obesity-the role of hypoxemia. PLoS One. 2013;8(11):e79521. Epub: 2013/11/22. PMID: 24260240. Exclusion Code: X3
- 96. Banhiran W, Assanasen P,
 Nopmaneejumruslers C, et al. Epworth
 sleepiness scale in obstructive sleep
 disordered breathing: the reliability and
 validity of the Thai version. Sleep Breath.
 2011 Sep;15(3):571-7. Epub: 2010/09/14.
 PMID: 20835769. Exclusion Code: X4
- 97. Banhiran W, Chotinaiwattarakul W, Chongkolwatana C, et al. Home-based diagnosis of obstructive sleep apnea by polysomnography type 2: accuracy, reliability, and feasibility. Sleep and Breathing. 2014:1-7. Exclusion Code: X12
- 98. Bao X, Nelesen RA, Loredo JS, et al. Blood pressure variability in obstructive sleep apnea: role of sympathetic nervous activity and effect of continuous positive airway pressure. Blood Press Monit. 2002;7(6):301-7. PMID: CN-00430996. Exclusion Code: X6

- 99. Bar A, Pillar G, Dvir I, et al. Evaluation of a portable device based on peripheral arterial tone for unattended home sleep studies. Chest. 2003;123(3):695-703. PMID: CN-00422957. Exclusion Code: X6
- Barbe F, Duran-Cantolla J, Sanchez-De-La-Torre M, et al. CPAP and hypertension in nonsleepy patients. J Clin Sleep Med.
 2013;9(2):181-2. Exclusion Code: X2
- 101. Barbé F, Sunyer J, Peña A, et al. Effect of continuous positive airway pressure on the risk of road accidents in sleep apnea patients. Respiration. 2007;74(1):44-9. PMID: CN-00570937. Exclusion Code: X3
- 102. Barbé F, Torrente E, Esquinas C, et al.
 Impact of day care centres in monitoring
 patients with Obstructive Sleep Apnea
 Syndrome (OSAS) (Structured abstract).
 Health Technology Assessment Database.
 2012(3)PMID: HTA-32013000018.
 Exclusion Code: X1
- 103. Barcelo X, Mirapeix RM, Buges J, et al.
 Oropharyngeal examination to predict sleep
 apnea severity. Arch Otolaryngol Head
 Neck Surg. 2011 Oct;137(10):990-6. Epub:
 2011/10/19. PMID: 22006776. Exclusion
 Code: X3
- 104. Bardwell WA, Ancoli-Israel S, Berry CC, et al. Neuropsychological effects of one-week continuous positive airway pressure treatment in patients with obstructive sleep apnea: a placebo-controlled study. Psychosom Med. 2001 Jul-Aug;63(4):579-84. Epub: 2001/08/04. PMID: 11485111. Exclusion Code: X5
- 105. Barger LK, O'Brien CS, Rajaratnam SM, et al. Implementing a Sleep Health Education and Sleep Disorders Screening Program in Fire Departments: A Comparison of Methodology. J Occup Environ Med. 2016 Jun;58(6):601-9. PMID: 27035103. Exclusion Code: X3
- Barger LK, Rajaratnam SM, Wang W, et al. Common sleep disorders increase risk of motor vehicle crashes and adverse health outcomes in firefighters. J Clin Sleep Med. 2015 Mar 15;11(3):233-40. PMID: 25580602. Exclusion Code: X3
- 107. Barnes M, Collins AL, Smart K, et al. Short term outcomes for obstructive sleep apnoea patients treated with hypoglossal nerve stimulation. J Sleep Res. 2014;23:66. PMID: CN-01040896. Exclusion Code: X8

- 108. Barnes M, Houston D, Worsnop CJ, et al. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea. Am J Respir Crit Care Med. 2002 Mar 15;165(6):773-80. Epub: 2002/03/19. PMID: 11897643. Exclusion Code: X5
- 109. Barrera F, Hillyer P, Ascanio G, et al. The distribution of ventilation, diffusion, and blood flow in obese patients with normal and abnormal blood gases. Am Rev Respir Dis. 1973 Oct;108(4):819-30. Epub: 1973/10/01. PMID: 4741876. Exclusion Code: X4
- 110. Basner RC. Continuous positive airway pressure for obstructive sleep apnea. N Engl J Med. 2007 Apr 26;356(17):1751-8. Epub: 2007/04/27. PMID: 17460229. Exclusion Code: X2
- 111. Basta M, Lin HM, Pejovic S, et al. Lack of regular exercise, depression, and degree of apnea are predictors of excessive daytime sleepiness in patients with sleep apnea: sex differences. J Clin Sleep Med. 2008 Feb 15;4(1):19-25. Epub: 2008/03/21. PMID: 18350958. Exclusion Code: X4
- 112. Batchelder KA, Mannheimer PD, Mecca RS, et al. Pulse oximetry saturation patterns detect repetitive reductions in airflow. J Clin Monit Comput. 2011 Dec;25(6):411-8. Epub: 2011/11/22. PMID: 22101501. Exclusion Code: X3
- 113. Batool-Anwar S, Goodwin JL, Drescher AA, et al. Impact of CPAP on activity patterns and diet in patients with Obstructive Sleep Apnea (OSA). J Clin Sleep Med. 2014;10(5):465-72. Exclusion Code: X11
- 114. Bausmer U, Gouveris H, Selivanova O, et al. Correlation of the Epworth Sleepiness Scale with respiratory sleep parameters in patients with sleep-related breathing disorders and upper airway pathology. Eur Arch Otorhinolaryngol. 2010 Oct;267(10):1645-8. Epub: 2010/06/22. PMID: 20563592. Exclusion Code: X8
- 115. Bearpark H, Elliott L, Grunstein R, et al.
 Occurrence and correlates of sleep
 disordered breathing in the Australian town
 of Busselton: a preliminary analysis. Sleep.
 1993 Dec;16(8 Suppl):S3-5. Epub:
 1993/12/01. PMID: 8178018. Exclusion
 Code: X10

- 116. Beattie ZT, Hayes TL, Guilleminault C, et al. Accurate scoring of the apnea-hypopnea index using a simple non-contact breathing sensor. J Sleep Res. 2013 Jun;22(3):356-62. Epub: 2013/02/01. PMID: 23363404. Exclusion Code: X9
- 117. Becker HF, Jerrentrup A, Ploch T, et al. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea.

 Circulation. 2003;107(1):68-73. PMID: CN-00412601. Exclusion Code: X5
- 118. Beiske KK, Kjelsberg FN, Ruud EA, et al. Reliability and validity of a Norwegian version of the Epworth sleepiness scale. Sleep Breath. 2009 Mar;13(1):65-72. Epub: 2008/06/19. PMID: 18560916. Exclusion Code: X9
- 119. Benz RL, Pressman MR, Wu X. Periodic limb movements in sleep revealed by treatment of sleep apnea with continuous positive airway pressure in the advanced chronic kidney disease population. Clin Nephrol. 2011 Dec;76(6):470-4. Epub: 2011/11/23. PMID: 22105450. Exclusion Code: X10
- 120. Berger M, Varvarigou V, Rielly A, et al. Employer-mandated sleep apnea screening and diagnosis in commercial drivers. J Occup Environ Med. 2012 Aug;54(8):1017-25. Epub: 2012/08/02. PMID: 22850349. Exclusion Code: X10
- 121. Berlowitz DJ, Shafazand S. CPAP and cognition in OSA (APPLES). J Clin Sleep Med. 2013;9(5):515-6. Exclusion Code: X2
- 122. Berry DT, Phillips BA, Cook YR, et al. Sleep-disordered breathing in healthy aged persons: possible daytime sequelae. J Gerontol. 1987 Nov;42(6):620-6. Epub: 1987/11/01. PMID: 3680881. Exclusion Code: X4
- 123. Berry DT, Phillips BA, Cook YR, et al. Sleep-disordered breathing in healthy aged persons: one-year follow-up of daytime sequelae. Sleep. 1989 Jun;12(3):211-5. Epub: 1989/06/01. PMID: 2740692. Exclusion Code: X4
- 124. Berry DT, Webb WB, Block AJ, et al. Sleep-disordered breathing and its concomitants in a subclinical population. Sleep. 1986 Dec;9(4):478-83. Epub: 1986/12/01. PMID: 3809861. Exclusion Code: X4

- 125. Berry RB, Block AJ. Positive nasal airway pressure eliminates snoring as well as obstructive sleep apnea. Chest. 1984
 Jan;85(1):15-20. Epub: 1984/01/01. PMID: 6360571. Exclusion Code: X8
- 126. Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012 Oct 15;8(5):597-619. Epub: 2012/10/16. PMID: 23066376. Exclusion Code: X2.
- 127. Berry RB, Kryger MH, Massie CA. A novel nasal expiratory positive airway pressure (EPAP) device for the treatment of obstructive sleep apnea: a randomized controlled trial. Sleep. 2011 Apr;34(4):479-85. Epub: 2011/04/05. PMID: 21461326. Exclusion Code: X3
- 128. Berry RB, Parish JM, Hartse KM. The use of auto-titrating continuous positive airway pressure for treatment of adult obstructive sleep apnea. An American Academy of Sleep Medicine review. Sleep. 2002 Mar 15;25(2):148-73. Epub: 2002/03/21. PMID: 11902425. Exclusion Code: X3
- 129. Berry S, Roblin G, Williams A, et al. Validity of sleep nasendoscopy in the investigation of sleep related breathing disorders. Laryngoscope. 2005

 Mar;115(3):538-40. Epub: 2005/03/04.

 PMID: 15744173. Exclusion Code: X3
- 130. Bertolazi AN, Fagondes SC, Hoff LS, et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med. 2011 Jan;12(1):70-5. Epub: 2010/12/15. PMID: 21145786. Exclusion Code: X9
- 131. Bertolazi AN, Fagondes SC, Hoff LS, et al. Portuguese-language version of the Epworth sleepiness scale: validation for use in Brazil. J Bras Pneumol. 2009 Sep;35(9):877-83. Epub: 2009/10/13. PMID: 19820814. Exclusion Code: X8
- 132. Bhalla V, Georgiopoulou VV,
 Kalogeropoulos AP, et al. Contemporary
 outcomes of optimally treated heart failure
 patients with sleep apnea. Case for urgency
 in evaluation of newer interventions? From
 the Atlanta Cardiomyopathy Consortium. Int
 J Cardiol. 2013 May 10;165(2):366-8. Epub:
 2012/09/26. PMID: 23006610. Exclusion
 Code: X9

- 133. Bianchi A, Betti E, Tarsitano A, et al. Volumetric three-dimensional computed tomographic evaluation of the upper airway in patients with obstructive sleep apnoea syndrome treated by maxillomandibular advancement. Br J Oral Maxillofac Surg. 2014 Nov;52(9):831-7. Epub: 2014/08/19. PMID: 25129655. Exclusion Code: X3
- 134. Bianchi MT, Lipoma T, Darling C, et al. Automated sleep apnea quantification based on respiratory movement. Int J Med Sci. 2014;11(8):796-802. Epub: 2014/06/18. PMID: 24936142. Exclusion Code: X3
- 135. Billings ME, Rosen CL, Auckley D, et al. Psychometric performance and responsiveness of the functional outcomes of sleep questionnaire and sleep apnea quality of life instrument in a randomized trial: the HomePAP study. Sleep. 2014 Dec;37(12):2017-24. Epub: 2014/10/18. PMID: 25325491. Exclusion Code: X3
- 136. Bitter T, Nolker G, Vogt J, et al. Predictors of recurrence in patients undergoing cryoballoon ablation for treatment of atrial fibrillation: the independent role of sleep-disordered breathing. J Cardiovasc Electrophysiol. 2012 Jan;23(1):18-25. Epub: 2011/09/08. PMID: 21895831. Exclusion Code: X8
- 137. Bitter T, Westerheide N, Hossain SM, et al. Symptoms of sleep apnoea in chronic heart failure--results from a prospective cohort study in 1,500 patients. Sleep Breath. 2012 Sep;16(3):781-91. Epub: 2011/08/30. PMID: 21874604. Exclusion Code: X3
- 138. Bitter T, Westerheide N, Prinz C, et al. Cheyne-Stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur Heart J. 2011 Jan;32(1):61-74. Epub: 2010/09/18. PMID: 20846992. Exclusion Code: X8
- 139. Bjornsdottir E, Keenan BT, Eysteinsdottir B, et al. Quality of life among untreated sleep apnea patients compared with the general population and changes after treatment with positive airway pressure. J Sleep Res. 2015 Jun;24(3):328-38. Epub: 2014/11/29. PMID: 25431105. Exclusion Code: X10

- 140. Blackman A, McGregor C, Dales R, et al. Canadian Sleep Society/Canadian Thoracic Society position paper on the use of portable monitoring for the diagnosis of obstructive sleep apnea/hypopnea in adults. Can Respir J. 2010 Sep-Oct;17(5):229-32. Epub: 2010/11/03. PMID: 21037998. Exclusion Code: X3
- 141. Blanco J, Zamarron C, Abeleira Pazos MT, et al. Prospective evaluation of an oral appliance in the treatment of obstructive sleep apnea syndrome. Sleep Breath. 2005 Mar;9(1):20-5. Epub: 2005/03/24. PMID: 15785917. Exclusion Code: X5
- 142. Bliwise DL, Carey E, Dement WC. Nightly variation in sleep-related respiratory disturbance in older adults. Exp Aging Res. 1983 Summer;9(2):77-81. Epub: 1983/01/01. PMID: 6628492. Exclusion Code: X6
- 143. Bliwise DL, Feldman DE, Bliwise NG, et al. Risk factors for sleep disordered breathing in heterogeneous geriatric populations. J Am Geriatr Soc. 1987 Feb;35(2):132-41. Epub: 1987/02/01. PMID: 3805555. Exclusion Code: X8
- Bliwise DL, King AC. Sleepiness in clinical and nonclinical populations.
 Neuroepidemiology. 1996;15(3):161-5.
 Epub: 1996/01/01. PMID: 8700308.
 Exclusion Code: X8
- 145. Bliwise DL, Nekich JC, Dement WC.
 Relative validity of self-reported snoring as
 a symptom of sleep apnea in a sleep clinic
 population. Chest. 1991 Mar;99(3):600-8.
 Epub: 1991/03/01. PMID: 1995215.
 Exclusion Code: X8
- 146. Bloch KE, Schoch OD, Zhang JN, et al. German version of the Epworth Sleepiness Scale. Respiration. 1999;66(5):440-7. Epub: 1999/10/12. PMID: 10516541. Exclusion Code: X9
- 147. Blomster H, Laitinen T, Lyyra-Laitinen T, et al. Endothelial function is well preserved in obese patients with mild obstructive sleep apnea. Sleep and Breathing. 2014;18(1):177-86. Exclusion Code: X6
- 148. Blomster HM, Tuomilehto H, Kemppainen T, et al. The association between weight reduction, nasal resistance and sleep-disordered breathing in overweight patients with obstructive sleep apnoea [Abstract]. J Sleep Res. 2010;19(Suppl s2):299. PMID: CN-00776452. Exclusion Code: X3

- 149. Boehning N, Blau A, Kujumdshieva B, et al. Preliminary results from a telemedicine referral network for early diagnosis of sleep apnoea in sleep laboratories. J Telemed Telecare. 2009;15(4):203-7. Epub: 2009/05/28. PMID: 19471033. Exclusion Code: X10
- 150. Boese ML, Ransom RK, Roadfuss RJ, et al. Utility of the Berlin Questionnaire to screen for obstructive sleep apnea among patients receiving intravenous sedation for colonoscopy. AANA J. 2014 Feb;82(1):38-45. Epub: 2014/03/25. PMID: 24654351. Exclusion Code: X9
- 151. Boland LL, Shahar E, Iber C, et al.
 Measures of cognitive function in persons
 with varying degrees of sleep-disordered
 breathing: the Sleep Heart Health Study. J
 Sleep Res. 2002 Sep;11(3):265-72. Epub:
 2002/09/11. PMID: 12220323. Exclusion
 Code: X3
- 152. Bonsignore G, Marrone O, Macaluso C, et al. Validation of oximetry as a screening test for obstructive sleep apnoea syndrome. Eur Respir J Suppl. 1990 Oct;11:542s-4s. PMID: 2278624. Exclusion Code: X6
- 153. Boot H, van Wegen R, Poublon RM, et al. Long-term results of uvulopalatopharyngoplasty for obstructive sleep apnea syndrome. Laryngoscope. 2000 Mar;110(3 Pt 1):469-75. Epub: 2000/03/16. PMID: 10718440. Exclusion Code: X3
- 154. Borel JC, Tamisier R, Gonzalez-Bermejo J, et al. Noninvasive ventilation in mild obesity hypoventilation syndrome: a randomized controlled trial. Chest. 2012 Mar;141(3):692-702. Epub: 2011/09/03. PMID: 21885724. Exclusion Code: X8
- 155. Borges JG, Ginani GE, Hachul H, et al. Executive functioning in obstructive sleep apnea syndrome patients without comorbidities: focus on the fractionation of executive functions. J Clin Exp Neuropsychol. 2013;35(10):1094-107. Epub: 2013/12/04. PMID: 24295424. Exclusion Code: X3
- 156. Bossenbroek L, Kosse N, Ten Hacken N, et al. Validation of the DynaPort MiniMod during sleep: a pilot study. Percept Mot Skills. 2010 Dec;111(3):936-46. Epub: 2011/02/16. PMID: 21319630. Exclusion Code: X4

- 157. Boudewyns A, Willemen M, De Cock W, et al. Does socially disturbing snoring and/or excessive daytime sleepiness warrant polysomnography? Clin Otolaryngol Allied Sci. 1997 Oct;22(5):403-7. Epub: 1998/01/07. PMID: 9372249. Exclusion Code: X3
- 158. Bouloukaki I, Komninos ID, Mermigkis C, et al. Translation and validation of Berlin questionnaire in primary health care in Greece. BMC Pulm Med. 2013;13:6. Epub: 2013/01/26. PMID: 23347772. Exclusion Code: X9
- 159. Bozkurt NC, Karbek B, Cakal E, et al. The association between severity of obstructive sleep apnea and prevalence of Hashimoto's thyroiditis. Endocr J. 2012;59(11):981-8. Epub: 2012/07/13. PMID: 22785371. Exclusion Code: X10
- 160. Bradley PA, Mortimore IL, Douglas NJ.
 Comparison of polysomnography with
 ResCare Autoset in the diagnosis of the
 sleep apnoea/hypopnoea syndrome. Thorax.
 1995 Nov;50(11):1201-3. PMID: 8553279.
 Exclusion Code: X6
- 161. Bradshaw DA, Ruff GA, Murphy DP. An oral hypnotic medication does not improve continuous positive airway pressure compliance in men with obstructive sleep apnea. Chest. 2006 Nov;130(5):1369-76. Epub: 2006/11/14. PMID: 17099012. Exclusion Code: X9
- 162. Bratton DJ, Stradling JR, Barbe F, et al. Effect of CPAP on blood pressure in patients with minimally symptomatic obstructive sleep apnoea: a meta-analysis using individual patient data from four randomised controlled trials (Provisional abstract). Database of Abstracts of Reviews of Effects. 2014(2):epub. PMID: DARE-12014040721. Exclusion Code: X3
- 163. Brette C, Ramanantsoa H, Renouardiere J, et al. A mandibular advancement device for the treatment of obstructive sleep apnea: long-term use and tolerance. Int Orthod. 2012 Dec;10(4):363-76. Epub: 2012/11/06. PMID: 23122735. Exclusion Code: X10
- 164. Brevi BC, Toma L, Magri AS, et al. Use of the mandibular distraction technique to treat obstructive sleep apnea syndrome. J Oral Maxillofac Surg. 2011 Feb;69(2):566-71. Epub: 2010/12/15. PMID: 21145639. Exclusion Code: X10

- 165. Brevi BC, Toma L, Pau M, et al.
 Counterclockwise rotation of the occlusal plane in the treatment of obstructive sleep apnea syndrome. J Oral Maxillofac Surg.
 2011 Mar;69(3):917-23. Epub: 2011/01/11.
 PMID: 21216064. Exclusion Code: X10
- Brostrom A, Johansson P. Sleep disturbances in patients with chronic heart failure and their holistic consequences-what different care actions can be implemented?
 Eur J Cardiovasc Nurs. 2005 Sep;4(3):183-97. Epub: 2005/06/07. PMID: 15935732.
 Exclusion Code: X9
- 167. Brostrom A, Sunnergren O, Nilsen P, et al. Gender differences in respiratory disturbance, sleep and daytime sleepiness in hypertensive patients with different degrees of obesity. Eur J Cardiovasc Nurs. 2013 Apr;12(2):140-9. Epub: 2012/03/30. PMID: 22457375. Exclusion Code: X3
- 168. Brown TT, Patil SP, Jacobson LP, et al. Anthropometry in the prediction of sleep disordered breathing in HIV-positive and HIV-negative men. Antivir Ther. 2010;15(4):651-9. Epub: 2010/07/01. PMID: 20587858. Exclusion Code: X9
- 169. Bruhova S, Nevsimal O, Ourednik A, et al. "Pickwickian syndrome" and the influence of weight reduction on the clinical state and polygraphic picture. Act Nerv Super (Praha). 1969;11(3):216-22. Epub: 1969/01/01. PMID: 4307957. Exclusion Code: X3
- 170. Bruyneel M, Van den Broecke S, Libert W, et al. Real-time attended home-polysomnography with telematic data transmission. Int J Med Inform. 2013
 Aug;82(8):696-701. Epub: 2013/03/27.
 PMID: 23529100. Exclusion Code: X5
- 171. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004 Oct 13;292(14):1724-37. Epub: 2004/10/14. PMID: 15479938. Exclusion Code: X3
- 172. Burgess KR, Havryk A, Newton S, et al.
 Targeted case finding for OSA within the
 primary care setting. J Clin Sleep Med. 2013
 Jul 15;9(7):681-6. Epub: 2013/07/16. PMID:
 23853562. Exclusion Code: X2
- 173. Burks SV, Anderson JE, Bombyk M, et al.
 Nonadherence with Employer-Mandated
 Sleep Apnea Treatment and Increased Risk
 of Serious Truck Crashes. Sleep.
 2016;39(5):967-75. PMID: 27070139.
 Exclusion Code: X10

- 174. Cadth. CPAP treatment for adults with obstructive sleep apnea: review of the clinical and cost-effectiveness and guidelines (Structured abstract). Health Technology Assessment Database. 2013(3)PMID: HTA-32014000883. Exclusion Code: X3
- 175. Cadth. Retesting patients with sleep apnea: guidelines and recommendations (Structured abstract). Health Technology Assessment Database. 2013(3)PMID: HTA-32014000159. Exclusion Code: X9
- 176. Caffo B, Diener-West M, Punjabi NM, et al. A novel approach to prediction of mild obstructive sleep disordered breathing in a population-based sample: the Sleep Heart Health Study. Sleep. 2010 Dec;33(12):1641-8. Epub: 2010/12/02. PMID: 21120126. Exclusion Code: X10
- 177. Cahali MB, Formigoni GG, Gebrim EM, et al. Lateral pharyngoplasty versus uvulopalatopharyngoplasty: a clinical, polysomnographic and computed tomography measurement comparison. Sleep. 2004;27(5):942-50. PMID: CN-00491778. Exclusion Code: X3
- 178. Cai SJ, Chen R, Zhang YL, et al. Correlation of Epworth Sleepiness Scale with multiple sleep latency test and its diagnostic accuracy in assessing excessive daytime sleepiness in patients with obstructive sleep apnea hypopnea syndrome. Chin Med J (Engl). 2013;126(17):3245-50. Epub: 2013/09/17. PMID: 24033944. Exclusion Code: X8
- 179. Cairns A, Wickwire E, Schaefer E, et al. A pilot validation study for the NOX T3(TM) portable monitor for the detection of OSA. Sleep Breath. 2014 Sep;18(3):609-14. Epub: 2014/01/21. PMID: 24442914. Exclusion Code: X5
- 180. Calleja JM, Esnaola S, Rubio R, et al.
 Comparison of a cardiorespiratory device
 versus polysomnography for diagnosis of
 sleep apnoea. Eur Respir J. 2002
 Dec;20(6):1505-10. PMID: 12503711.
 Exclusion Code: X6
- 181. Campbell AJ, Marshall NS, Sheppard DS, et al. Randomised placebo controlled trial of humidified CPAP in mild obstructive sleep apnoea (OSA) [Abstract]. Respirology (Carlton, Vic.). 2004;9(2 Suppl):A17. PMID: CN-00475254. Exclusion Code: X8

- 182. Campos-Rodriguez F, Martinez-Garcia MA, de la Cruz-Moron I, et al. Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatment: a cohort study. Ann Intern Med. 2012 Jan 17;156(2):115-22. Epub: 2012/01/18. PMID: 22250142. Exclusion Code: X3
- 183. Campos-Rodriguez F, Martinez-Garcia MA, Reyes-Nunez N, et al. Role of sleep apnea and continuous positive airway pressure therapy in the incidence of stroke or coronary heart disease in women. Am J Respir Crit Care Med. 2014 Jun 15;189(12):1544-50. Epub: 2014/03/29. PMID: 24673616. Exclusion Code: X8
- 184. Canessa N, Castronovo V, Cappa SF, et al. Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment. Am J Respir Crit Care Med. 2011 May 15;183(10):1419-26. Epub: 2010/11/03. PMID: 21037021. Exclusion Code: X3
- 185. Canessa N, Ferini-Strambi L. Sleep-disordered breathing and cognitive decline in older adults. JAMA. 2011 Aug 10;306(6):654-5. Epub: 2011/08/11. PMID: 21828331. Exclusion Code: X2
- 186. Cano-Pumarega I, Duran-Cantolla J,
 Aizpuru F, et al. Obstructive sleep apnea
 and systemic hypertension: longitudinal
 study in the general population: the Vitoria
 Sleep Cohort. Am J Respir Crit Care Med.
 2011 Dec 1;184(11):1299-304. Epub:
 2011/08/27. PMID: 21868499. Exclusion
 Code: X4
- 187. Capampangan DJ, Wellik KE, Parish JM, et al. Is obstructive sleep apnea an independent risk factor for stroke? A critically appraised topic. Neurologist. 2010 Jul;16(4):269-73. Epub: 2010/07/02. PMID: 20592572. Exclusion Code: X3
- 188. Capasso R, Kezirian E, Jacobowitz O, et al. Management of obstructive sleep apnea in adults. Ann Intern Med. 2014;160(5):367. Exclusion Code: X2
- 189. Caples SM, Rowley JA, Prinsell JR, et al. Surgical modifications of the upper airway for obstructive sleep apnea in adults: a systematic review and meta-analysis. Sleep. 2010 Oct;33(10):1396-407. Epub: 2010/11/11. PMID: 21061863. Exclusion Code: X3

- 190. Capobianco DM, Batilana A, Gandhi M, et al. Surgical treatment of sleep apnea: association between surgeon/hospital volume with outcomes. Laryngoscope. 2014 Jan;124(1):320-8. Epub: 2013/05/29. PMID: 23712497. Exclusion Code: X3
- 191. Carmelli D, Swan GE, Bliwise DL.
 Relationship of 30-year changes in obesity
 to sleep-disordered breathing in the Western
 Collaborative Group Study. Obes Res. 2000
 Dec;8(9):632-7. Epub: 2001/02/28. PMID:
 11225711. Exclusion Code: X4
- 192. Carmona Bernal C, Capote Gil F, Botebol Benhamou G, et al. Assessment of excessive day-time sleepiness in professional drivers with suspected obstructive sleep apnea syndrome. Arch Bronconeumol. 2000;36(8):436-40. PMID: CN-00361710. Exclusion Code: X1
- 193. Carrasco O, Montserrat JM, Lloberes P, et al. Visual and different automatic scoring profiles of respiratory variables in the diagnosis of sleep apnoea-hypopnoea syndrome. Eur Respir J. 1996 Jan;9(1):125-30. PMID: 8834345. Exclusion Code: X6
- 194. Carratu P, Karageorgiou G, Bonfitto P, et al. Long-term evaluation of mental fatigue by Maastricht Questionnaire in patients with OSAS treated with CPAP. Monaldi Arch Chest Dis. 2007 Mar;67(1):6-9. Epub: 2007/06/15. PMID: 17564278. Exclusion Code: X3
- 195. Carrera M, Barbe F, Sauleda J, et al. Effects of obesity upon genioglossus structure and function in obstructive sleep apnoea. Eur Respir J. 2004 Mar;23(3):425-9. Epub: 2004/04/07. PMID: 15065833. Exclusion Code: X9
- 196. Carroll D. Sleep, periodic breathing and snoring in the aged: control of ventilation in the aging and diseased respiratory system. J Am Geriatr Soc. 1974 Jul;22(7):307-15. Epub: 1974/07/01. PMID: 4601720. Exclusion Code: X2
- 197. Cartwright R, Ristanovic R, Diaz F, et al. A comparative study of treatments for positional sleep apnea. Sleep. 1991
 Dec;14(6):546-52. Epub: 1991/12/01.
 PMID: 1798889. Exclusion Code: X10
- 198. Casale M, Rinaldi V, Bressi F, et al. A suitable test for identifying high risk adult patients of moderate-severe obstructive sleep apnea syndrome. Eur Rev Med Pharmacol Sci. 2008 Jul-Aug;12(4):275-80. Epub: 2008/08/30. PMID: 18727462. Exclusion Code: X10

- 199. Catalan-Serra P, Martinez-Garcia MA, Campos-Rodriguez F, et al. Effect of continuous positive airway pressure on the incidence of nonfatal cardiovascular events in elderly with obstructive sleep apnea. Am J Respir Crit Care Med. 2013;187. Exclusion Code: X8
- 200. Catheline JM, Bihan H, Le Quang T, et al. Preoperative cardiac and pulmonary assessment in bariatric surgery. Obes Surg. 2008 Mar;18(3):271-7. Epub: 2008/01/22. PMID: 18204992. Exclusion Code: X4
- 201. Cauley JA, Blackwell TL, Redline S, et al. Hypoxia during sleep and the risk of falls and fractures in older men: the Osteoporotic Fractures in Men Sleep Study. J Am Geriatr Soc. 2014 Oct;62(10):1853-9. Epub: 2014/10/07. PMID: 25283237. Exclusion Code: X3
- 202. Cayanan EA, Marshall NS, Hoyos CM, et al. Effectiveness of two maintenance diets following a very low energy diet to reduce cardiometabolic risk in obese sleep apnea patients: A randomised controlled trial. J Sleep Res. 2014;23:68. Exclusion Code: X11
- 203. Chai-Coetzer CL, Antic N, Eckermann S, et al. Cost-effectiveness analysis of a simplified model of care for obstructive sleep apnea in general practice. Sleep and Biological Rhythms. Conference: 24th ASM of Australasian Sleep Association and Australasian Sleep Technologists Association: Sleep up Top, Sleep DownUnder 2012 Darwin, North. Territ. Australia. Conference Start: 20121011 Conference End: 20121013. Conference Publication: (var.pagings). 2012;10:42. PMID: CN-00839971. Exclusion Code: X3
- 204. Chai-Coetzer CL, Antic NA, Rowland LS, et al. A simplified model of screening questionnaire and home monitoring for obstructive sleep apnoea in primary care. Thorax. 2011 Mar;66(3):213-9. Epub: 2011/01/22. PMID: 21252389. Exclusion Code: X10
- 205. Chaidas KS, Kaditis AG, Papadakis CE, et al. Tonsilloplasty versus tonsillectomy in children with sleep-disordered breathing: short- and long-term outcomes. Laryngoscope. 2013;123(5):1294-9. PMID: CN-00866907. Exclusion Code: X8

- 206. Chakhtoura M, Azar ST. Continuous positive airway pressure and type 2 diabetes mellitus. Diabetes Metab Syndr. 2012 Jul-Sep;6(3):176-9. Epub: 2012/11/20. PMID: 23158985. Exclusion Code: X2
- 207. Chakravorty I, Cayton RM, Szczepura A. Cost effectiveness analysis of nasal CPAP and lifestyle intervention in obstructive sleep apnoea. Thorax. 2001;56(Suppl 3):iii27. PMID: CN-00400518. Exclusion Code: X5
- 208. Chami HA, Resnick HE, Quan SF, et al. Association of incident cardiovascular disease with progression of sleep-disordered breathing. Circulation. 2011 Mar 29;123(12):1280-6. Epub: 2011/03/16. PMID: 21403097. Exclusion Code: X10
- 209. Chan K, Cossa G, Birring S, et al. Impact of continuous positive airway pressure (CPAP) on chronic cough in obstructive sleep apnoea (OSA)-A randomized controlled trial. Sleep Med. 2013;14:e95. PMID: CN-00985696. Exclusion Code: X4
- 210. Chan K, Cossa G, Laks L, et al. Impact on objective cough severity by continuous positive airway pressure (CPAP) in subjects with chronic cough and obstructive sleep apnoea A randomized controlled trial [Abstract]. European Respiratory Society Annual Congress, Amsterdam, The Netherlands, September 24-28. 2011;38(55):65s [P484]. PMID: CN-00833457. Exclusion Code: X4
- 211. Chan K, Cossa G, Laks L, et al. Impact of continuous positive airway pressure (CPAP) on chronic cough in obstructive sleep apnoea (OSA)? a randomized controlled trial [Abstract]. Respirology (Carlton, Vic.). 2014;19(Suppl 2):51 [to 104]. PMID: CN-00991457. Exclusion Code: X4
- 212. Chan K, Laks L, Cossa G, et al. Impact of continuous positive airway pressure (CPAP) on chronic cough in obstructive sleep apnoea (OSA) A randomized controlled trial [Abstract]. European Respiratory Society Annual Congress, Barcelona, Spain, September 18-22. 2010:[P4415]. PMID: CN-00775129. Exclusion Code: X4
- 213. Chang CC, Chuang HC, Lin CL, et al. High incidence of stroke in young women with sleep apnea syndrome. Sleep Med. 2014
 Apr;15(4):410-4. Epub: 2014/04/02. PMID: 24684976. Exclusion Code: X3

- 214. Chang ET, Shiao GM. Craniofacial abnormalities in Chinese patients with obstructive and positional sleep apnea. Sleep Med. 2008 May;9(4):403-10. Epub: 2007/07/31. PMID: 17658296. Exclusion Code: X9
- 215. Chang ET, Yang MC, Wang HM, et al.
 Snoring in a sitting position and neck
 circumference are predictors of sleep apnea
 in Chinese patients. Sleep and Breathing.
 2014;18(1):133-6. PMID: CN-00984944.
 Exclusion Code: X9
- 216. Chao TF, Liu CJ, Chen SJ, et al. Incidence and risk of atrial fibrillation in sleep-disordered breathing without coexistent systemic disease. Circ J. 2014;78(9):2182-7. Epub: 2014/07/25. PMID: 25056423. Exclusion Code: X3
- 217. Charuzi I, Fraser D, Peiser J, et al. Sleep apnea syndrome in the morbidly obese undergoing bariatric surgery. Gastroenterol Clin North Am. 1987 Sep;16(3):517-9. Epub: 1987/09/01. PMID: 3436659. Exclusion Code: X10
- 218. Chasens ER, Burke LE, Korytkowski M, et al. Use of sham-continuous positive airway pressure (CPAP) in a pilot study of treatment of obstructive sleep apnea in adults with diabetes. Am J Respir Crit Care Med. 2012;185. Exclusion Code: X4
- 219. Chasens ER, Burke LE, Korytkowski M, et al. Effect of continuous positive airway pressure (CPAP) treatment of obstructive sleep apnea on physical activity and glucose control in adults with type 2 diabetes:

 Results of a pilot study. Am J Respir Crit Care Med. 2012;185. Exclusion Code: X8
- 220. Chasens ER, Drumheller OJ, Strollo PJ, Jr. Success in blinding to group assignment with sham-CPAP. Biol Res Nurs. 2013 Oct;15(4):465-9. Epub: 2012/10/05. PMID: 23034539. Exclusion Code: X4
- 221. Chatsis V, Spry C. Diagnosis of snoring and obstructive sleep apnea: a review of the accuracy (Structured abstract). Health Technology Assessment Database. 2009(3)PMID: HTA-32011001275. Exclusion Code: X2
- 222. Chediak AD, Acevedo-Crespo JC, Seiden DJ, et al. Nightly variability in the indices of sleep-disordered breathing in men being evaluated for impotence with consecutive night polysomnograms. Sleep. 1996 Sep;19(7):589-92. Epub: 1996/09/01. PMID: 8899939. Exclusion Code: X3

- 223. Cheliout-Heraut F, Senny F, Djouadi F, et al. Obstructive sleep apnoea syndrome: comparison between polysomnography and portable sleep monitoring based on jaw recordings. Neurophysiol Clin. 2011
 Oct;41(4):191-8. Epub: 2011/11/15. PMID: 22078731. Exclusion Code: X6
- 224. Chen CY, Hsu CC, Pei YC, et al. Nocturia is an independent predictor of severe obstructive sleep apnea in patients with ischemic stroke. J Neurol. 2011 Feb;258(2):189-94. Epub: 2010/08/21. PMID: 20725736. Exclusion Code: X8
- 225. Chen H, Lowe AA, Bai Y, et al. Evaluation of a portable recording device (ApneaLink) for case selection of obstructive sleep apnea. Sleep Breath. 2009 Aug;13(3):213-9. PMID: 19052790. Exclusion Code: X6
- 226. Chen JC, Hwang JH. Sleep apnea increased incidence of primary central nervous system cancers: a nationwide cohort study. Sleep Med. 2014 Jul;15(7):749-54. Epub: 2014/06/04. PMID: 24891080. Exclusion Code: X3
- 227. Chen NH, Chen MC, Li HY, et al. A twotier screening model using quality-of-life measures and pulse oximetry to screen adults with sleep-disordered breathing. Sleep Breath. 2011 Sep;15(3):447-54. Epub: 2010/05/08. PMID: 20449670. Exclusion Code: X8
- 228. Chen NH, Johns MW, Li HY, et al. Validation of a Chinese version of the Epworth sleepiness scale. Qual Life Res. 2002 Dec;11(8):817-21. Epub: 2002/12/17. PMID: 12482165. Exclusion Code: X9
- 229. Chen NH, Li HY, Gliklich RE, et al.
 Validation assessment of the Chinese
 version of the Snore Outcomes Survey. Qual
 Life Res. 2002 Sep;11(6):601-7. Epub:
 2002/09/11. PMID: 12206581. Exclusion
 Code: X9
- 230. Chen R, Xiong KP, Huang JY, et al.
 Neurocognitive impairment in Chinese patients with obstructive sleep apnoea hypopnoea syndrome. Respirology. 2011
 Jul;16(5):842-8. Epub: 2011/04/22. PMID: 21507144. Exclusion Code: X3
- 231. Chen YH, Keller JK, Kang JH, et al.
 Obstructive sleep apnea and the subsequent risk of depressive disorder: a population-based follow-up study. J Clin Sleep Med.
 2013 May 15;9(5):417-23. Epub:
 2013/05/16. PMID: 23674930. Exclusion Code: X3

- 232. Cherkassky T, Oksenberg A, Froom P, et al. Sleep-related breathing disorders and rehabilitation outcome of stroke patients: a prospective study. Am J Phys Med Rehabil. 2003 Jun;82(6):452-5. Epub: 2003/06/25. PMID: 12820788. Exclusion Code: X3
- 233. Cherniack NS. Respiratory dysrhythmias during sleep. N Engl J Med. 1981 Aug 6;305(6):325-30. Epub: 1981/08/06. PMID: 7017417. Exclusion Code: X2
- 234. Chervin RD, Aldrich MS. The Epworth Sleepiness Scale may not reflect objective measures of sleepiness or sleep apnea.

 Neurology. 1999 Jan 1;52(1):125-31. Epub: 1999/01/28. PMID: 9921859. Exclusion Code: X3
- 235. Chilukuri K, Dalal D, Marine JE, et al. Predictive value of obstructive sleep apnoea assessed by the Berlin Questionnaire for outcomes after the catheter ablation of atrial fibrillation. Europace. 2009 Jul;11(7):896-901. Epub: 2009/03/20. PMID: 19297363. Exclusion Code: X10
- 236. Chin K, Fukuhara S, Takahashi K, et al. Response shift in perception of sleepiness in obstructive sleep apnea-hypopnea syndrome before and after treatment with nasal CPAP. Sleep. 2004 May 1;27(3):490-3. Epub: 2004/05/29. PMID: 15164904. Exclusion Code: X3
- 237. Chin K, Nakamura T, Takahashi K, et al. Falls in blood pressure in patients with obstructive sleep apnoea after long-term nasal continuous positive airway pressure treatment. J Hypertens. 2006
 Oct;24(10):2091-9. Epub: 2006/09/08.
 PMID: 16957571. Exclusion Code: X10
- 238. Chiner E, Signes-Costa J, Arriero JM, et al. Nocturnal oximetry for the diagnosis of the sleep apnoea hypopnoea syndrome: a method to reduce the number of polysomnographies? Thorax. 1999
 Nov;54(11):968-71. PMID: 10525553.
 Exclusion Code: X6
- 239. Cho YW, Lee JH, Son HK, et al. The reliability and validity of the Korean version of the Epworth sleepiness scale. Sleep Breath. 2011 Sep;15(3):377-84. Epub: 2010/04/02. PMID: 20358406. Exclusion Code: X9
- 240. Choi S, Mullins R, Crosby JH, et al. Is (re)titration of nasal continuous positive airway pressure for obstructive sleep apnoea necessary? Sleep Med. 2001;2(5):431-5. PMID: CN-00425066. Exclusion Code: X4

- 241. Chokroverty S, Bhat S, Donnelly D, et al. Sleep spindle density increases after continuous positive airway pressure titration in severe obstructive sleep apnea: A preliminary study. Sleep Med. 2015;16(8):1029. Exclusion Code: X4
- 242. Chouchou F, Poupard L, Philippe C, et al. Thoracic impedance, in association with oximetry, in a multi-modal ECG Holter system is useful for screening sleep disordered breathing. Int J Cardiol. 2013;163(1):100-2. PMID: CN-00917331. Exclusion Code: X9
- 243. Chouchou F, Sforza E, Celle S, et al. Pulse transit time in screening sleep disordered breathing in an elderly population: the PROOF-SYNAPSE study. Sleep. 2011 Aug;34(8):1051-9. Epub: 2011/08/02. PMID: 21804667. Exclusion Code: X9
- 244. Christensen AS, Clark A, Salo P, et al. Symptoms of sleep disordered breathing and risk of cancer: a prospective cohort study. Sleep. 2013 Oct;36(10):1429-35. Epub: 2013/10/02. PMID: 24082302. Exclusion Code: X3
- 245. Christou K, Markoulis N, Moulas AN, et al. Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath. 2003 Sep;7(3):105-10. Epub: 2003/10/22. PMID: 14569521. Exclusion Code: X4
- 246. Chung F, Chau E, Yang Y, et al. Serum bicarbonate level improves specificity of STOP-Bang screening for obstructive sleep apnea. Chest. 2013 May;143(5):1284-93. Epub: 2012/12/15. PMID: 23238577. Exclusion Code: X10
- 247. Chung F, Liao P, Elsaid H, et al. Oxygen desaturation index from nocturnal oximetry: a sensitive and specific tool to detect sleep-disordered breathing in surgical patients. Anesth Analg. 2012 May;114(5):993-1000. Epub: 2012/03/01. PMID: 22366847. Exclusion Code: X10
- 248. Chung F, Liao P, Sun Y, et al. Perioperative practical experiences in using a level 2 portable polysomnography. Sleep Breath. 2011 Sep;15(3):367-75. Epub: 2010/03/17. PMID: 20232260. Exclusion Code: X4
- 249. Chung F, Subramanyam R, Liao P, et al. High STOP-Bang score indicates a high probability of obstructive sleep apnoea. Br J Anaesth. 2012 May;108(5):768-75. Epub: 2012/03/10. PMID: 22401881. Exclusion Code: X10

- 250. Chung F, Ward B, Ho J, et al. Preoperative identification of sleep apnea risk in elective surgical patients, using the Berlin questionnaire. J Clin Anesth. 2007
 Mar;19(2):130-4. Epub: 2007/03/24. PMID: 17379126. Exclusion Code: X3
- 251. Chung F, Yang Y, Liao P. Predictive performance of the STOP-Bang score for identifying obstructive sleep apnea in obese patients. Obes Surg. 2013 Dec;23(12):2050-7. Epub: 2013/06/19. PMID: 23771818. Exclusion Code: X10
- 252. Chung F, Yegneswaran B, Liao P, et al. Validation of the Berlin questionnaire and American Society of Anesthesiologists checklist as screening tools for obstructive sleep apnea in surgical patients.
 Anesthesiology. 2008 May;108(5):822-30.
 Epub: 2008/04/24. PMID: 18431117.
 Exclusion Code: X10
- 253. Chung F, Yegneswaran B, Liao P, et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea.

 Anesthesiology. 2008 May;108(5):812-21.
 PMID: 18431116. Exclusion Code: X5
- 254. Chung SA, Jairam S, Hussain MR, et al. How, what, and why of sleep apnea.
 Perspectives for primary care physicians.
 Can Fam Physician. 2002 Jun;48:1073-80.
 Epub: 2002/07/13. PMID: 12113194.
 Exclusion Code: X3
- 255. Ciancio N, Maria A, Bivona L, et al. Effect of short-term treatment with CPAP on cardiopulmonary exercise test (CPX) in patients with severe obstructive sleep apnea syndrome (OSAS). Eur Respir J. 2014;44PMID: CN-01081219. Exclusion Code: X4
- 256. Cicek D, Lakadamyali H, Gokay S, et al. Effect of obstructive sleep apnea on heart rate, heart rate recovery and QTc and P-wave dispersion in newly diagnosed untreated patients. Am J Med Sci. 2012 Sep;344(3):180-5. Epub: 2011/11/23. PMID: 22104432. Exclusion Code: X4
- 257. Cicek D, Lakadamyali H, Yagbasan BD, et al. Obstructive sleep apnoea and its association with left ventricular function and aortic root parameters in newly diagnosed, untreated patients: a prospective study. J Int Med Res. 2011;39(6):2228-38. Epub: 2012/02/01. PMID: 22289538. Exclusion Code: X3

- 258. Cilli A, Uzun R, Bilge U. The accuracy of autotitrating CPAP-determined residual apnea-hypopnea index. Sleep Breath. 2013 Mar;17(1):189-93. Epub: 2012/03/01. PMID: 22371206. Exclusion Code: X9
- 259. Cillo JE, Jr., Finn R, Dasheiff RM. Combined open rhinoplasty with spreader grafts and laser-assisted uvuloplasty for sleep-disordered breathing: long-term subjective outcomes. J Oral Maxillofac Surg. 2006 Aug;64(8):1241-7. Epub: 2006/07/25. PMID: 16860217. Exclusion Code: X10
- 260. Cillo JE, Jr., Thayer S, Dasheiff RM, et al. Relations between obstructive sleep apnea syndrome and specific cephalometric measurements, body mass index, and apnea-hypopnea index. J Oral Maxillofac Surg. 2012 Apr;70(4):e278-83. Epub: 2012/03/28. PMID: 22449433. Exclusion Code: X3
- 261. Cintra F, Bittencourt LR, Santos-Silva R, et al. The association between the Framingham risk score and sleep: a Sao Paulo epidemiological sleep study. Sleep Med. 2012 Jun;13(6):577-82. Epub: 2012/04/21. PMID: 22516609. Exclusion Code: X3
- 262. Cizza G, Jonge L, Piaggi P, et al. Neck circumference is a predictor of metabolic syndrome and obstructive sleep apnea in short-sleeping obese men and women.

 Metab Syndr Relat Disord. 2014;12(4):231-41. PMID: CN-00988431. Exclusion Code: X9
- 263. Claman D, Murr A, Trotter K. Clinical validation of the Bedbugg in detection of obstructive sleep apnea. Otolaryngol Head Neck Surg. 2001 Sep;125(3):227-30. PMID: 11555758. Exclusion Code: X6
- 264. Clark AL, Crabbe S, Aziz A, et al. Use of a screening tool for detection of sleep-disordered breathing. J Laryngol Otol. 2009 Jul;123(7):746-9. Epub: 2009/02/19. PMID: 19222876. Exclusion Code: X10
- 265. ClinicalTrials.gov. NCT01988129. Fire Fighter Fatigue Management Program: Operation Healthy Sleep. Bethesda, MD: National Institutes of Health; 2015 https://clinicaltrials.gov/ct2/show/record/NC T01988129. Accessed August 1 2016. Exclusion Code: X9

- 266. Cohen R, Pinheiro JS, Correa JL, et al. Laparoscopic Roux-en-Y gastric bypass for BMI < 35 kg/m(2): a tailored approach. Surg Obes Relat Dis. 2006 May-Jun;2(3):401-4, discussion 4. Epub: 2006/08/24. PMID: 16925363. Exclusion Code: X10
- 267. Cohen-Zion M, Stepnowsky C, Marler, et al. Changes in cognitive function associated with sleep disordered breathing in older people. J Am Geriatr Soc. 2001 Dec;49(12):1622-7. Epub: 2002/02/15. PMID: 11843994. Exclusion Code: X3
- 268. Colish J, Walker JR, Elmayergi N, et al.
 Obstructive sleep apnea: effects of
 continuous positive airway pressure on
 cardiac remodeling as assessed by cardiac
 biomarkers, echocardiography, and cardiac
 MRI. Chest. 2012 Mar;141(3):674-81.
 Epub: 2011/08/13. PMID: 21835901.
 Exclusion Code: X10
- 269. Coma-Del-Corral MJ, Alonso-Alvarez ML, Allende M, et al. Reliability of telemedicine in the diagnosis and treatment of sleep apnea syndrome. Telemed J E Health. 2013
 Jan;19(1):7-12. Epub: 2012/11/29. PMID: 23186084. Exclusion Code: X10
- 270. Comondore VR, Cheema R, Fox J, et al. The impact of CPAP on cardiovascular biomarkers in minimally symptomatic patients with obstructive sleep apnea: a pilot feasibility randomized crossover trial. Lung. 2009 Jan-Feb;187(1):17-22. Epub: 2008/09/17. PMID: 18795367. Exclusion Code: X5
- 271. Cooke JR, Ancoli-Israel S, Liu L, et al. Continuous positive airway pressure deepens sleep in patients with Alzheimer's disease and obstructive sleep apnea. Sleep Med. 2009 Dec;10(10):1101-6. Epub: 2009/08/25. PMID: 19699148. Exclusion Code: X4
- 272. Cooke JR, Ayalon L, Palmer BW, et al. Sustained use of CPAP slows deterioration of cognition, sleep, and mood in patients with Alzheimer's disease and obstructive sleep apnea: a preliminary study. J Clin Sleep Med. 2009;5(4):305-9. PMID: CN-00733145. Exclusion Code: X9
- 273. Cooper B, Rowland C, Berend N, et al. Does sleep disordered breathing contribute to uncontrolled hypertension? results of treatment with CPAP [abstract no: 157]. Nephrology (Carlton, Vic.). 2005;10(Suppl 3):A421. PMID: CN-00583228. Exclusion Code: X8

- 274. Cooper BG, Veale D, Griffiths CJ, et al. Value of nocturnal oxygen saturation as a screening test for sleep apnoea. Thorax. 1991 Aug;46(8):586-8. PMID: 1926029. Exclusion Code: X6
- 275. Costa LE, Uchôa CHG, Harmon RR, et al. Potential underdiagnosis of obstructive sleep apnoea in the cardiology outpatient setting. Heart. 2015;101(16):1288-92. Exclusion Code: X11
- 276. Coughlin SR, Mugarza JA, Mawdsley L, et al. Continuous positive airways pressure treatment reduces the cardiovascular risk factors associated with obstructive sleep apnoea [Abstract]. American Thoracic Society 100th International Conference, May 21-26, 2004, Orlando. 2004:C99 Poster 111. PMID: CN-00493340. Exclusion Code: X4
- 277. Craig S, Kylintireas I, Kohler M, et al. Effect of CPAP on cardiac function in minimally symptomatic patients with OSA: Results from a subset of the MOSAIC randomized trial. J Clin Sleep Med. 2015;11(9):967-73. Exclusion Code: X4
- 278. Craig S, Pepperell JC, Kohler M, et al.
 Continuous positive airway pressure
 treatment for obstructive sleep apnoea
 reduces resting heart rate but does not affect
 dysrhythmias: a randomised controlled trial.
 J Sleep Res. 2009;18(3):329-36. PMID: CN00722316. Exclusion Code: X4
- 279. Craig SE, Kohler M, Nicoll D, et al. Does Continuous Positive Airways Pressure (CPAP) For Minimally Symptomatic Obstructive Sleep Apnoea (OSA) Reduce Calculated Cardiovascular Risk? Primary Results From Mosaic, A Randomized Controlled Trial [Abstract]. Am J Respir Crit Care Med. 2011;183(Meeting Abstracts):A2201. PMID: CN-00797304. Exclusion Code: X4
- 280. Crawford MR, Bartlett DJ, Coughlin SR, et al. The effect of continuous positive airway pressure usage on sleepiness in obstructive sleep apnoea: Real effects or expectation of benefit? Thorax. 2012;67(10):920-4. Exclusion Code: X3
- 281. Crawford-Achour E, Dauphinot V, Martin MS, et al. Protective effect of long-term CPAP therapy on cognitive performance in elderly patients with severe OSA: The PROOF study. J Clin Sleep Med. 2015;11(5):519-24. Exclusion Code: X11

- 282. Crocker BD, Olson LG, Saunders NA, et al. Estimation of the probability of disturbed breathing during sleep before a sleep study. Am Rev Respir Dis. 1990 Jul;142(1):14-8. Epub: 1990/07/01. PMID: 2368960. Exclusion Code: X8
- 283. Cross MD, Al-Abri M, Newby DE, et al.
 Randomised controlled trial evidence that
 continuous positive airway pressure
 improves vascular function in obstructive in
 obstructive sleep apnoea syndrome
 [Abstract]. Thorax. 2005;2(Suppl II):ii41.
 PMID: CN-00592339. Exclusion Code: X4
- 284. Cross MD, Al-Abri M, Newby DE, et al. RCT evidence that CPAP improves endothelial function in obstructive sleep apnea hypopnea syndrome (OSAHS)
 [Abstract]. American Thoracic Society 2005
 International Conference; 2005 May 20-25; San Diego, CA. Exclusion Code: X4
- 285. Cross MD, Vennelle M, Engleman HM, et al. Predictors of poor titration and outcome in patients with obstructive sleep apnea/hypopnea syndrome 9OSAHS) after home or hospital automated CPAP titration [Abstract]. American Thoracic Society 2005 International Conference; 2005 May 20-25; San Diego, CA. Exclusion Code: X4
- 286. Crowley KE, Rajaratnam SM, Shea SA, et al. Evaluation of a single-channel nasal pressure device to assess obstructive sleep apnea risk in laboratory and home environments. J Clin Sleep Med. 2013 Feb 1;9(2):109-16. Epub: 2013/02/02. PMID: 23372462. Exclusion Code: X3
- 287. DÃ-az-Cambriles T, DÃ-az-Atauri MJ, Pérez-Rojo R, et al. CPAP treatment for obstructive sleep apnoea syndrome after CPAP training term. Eur Respir J. 2002;20(Suppl 38):102s. PMID: CN-00460637. Exclusion Code: X4
- 288. D'Addio G, De Felice A, Balzano G, et al. Diagnostic decision support of heart rate turbulence in sleep apnea syndrome. Stud Health Technol Inform. 2013;186:150-4. Epub: 2013/04/02. PMID: 23542987. Exclusion Code: X9
- 289. Dahlqvist J, Dahlqvist A, Marklund M, et al. Physical findings in the upper airways related to obstructive sleep apnea in men and women. Acta Otolaryngol. 2007
 Jun;127(6):623-30. Epub: 2007/05/16.
 PMID: 17503232. Exclusion Code: X8

- Dal-Fabbro C, Garbuio S, D'Almeida V, et al. Mandibular advancement device and CPAP upon cardiovascular parameters in OSA. Sleep and Breathing. 2014:1-11.
 Exclusion Code: X12
- 291. Dalmases M, Sole-Padulles C, Bartres-Faz D, et al. Obstructive sleep apnea in elderly patients: Neuroimage and cognitive function before and after treatment. Eur Respir J. 2014;44PMID: CN-01081216. Exclusion Code: X8
- Damiani MF, Quaranta VN, Falcone VA, et al. The Epworth Sleepiness Scale: conventional self vs physician administration. Chest. 2013
 Jun;143(6):1569-75. Epub: 2013/03/02.
 PMID: 23450315. Exclusion Code: X4
- 293. Damy T, Margarit L, Noroc A, et al. Prognostic impact of sleep-disordered breathing and its treatment with nocturnal ventilation for chronic heart failure. Eur J Heart Fail. 2012 Sep;14(9):1009-19. Epub: 2012/06/26. PMID: 22730336. Exclusion Code: X8
- 294. Danzi-Soares NJ, Genta PR, Nerbass FB, et al. Obstructive sleep apnea is common among patients referred for coronary artery bypass grafting and can be diagnosed by portable monitoring. Coron Artery Dis. 2012 Jan;23(1):31-8. Epub: 2011/11/24. PMID: 22107804. Exclusion Code: X12
- 295. Davidson TM, Patel MR. Waist circumference and sleep disordered breathing. Laryngoscope. 2008 Feb;118(2):339-47. Epub: 2007/12/20. PMID: 18091340. Exclusion Code: X3
- 296. Davies RJ, Harrington KJ, Ormerod OJ, et al. Nasal continuous positive airway pressure in chronic heart failure with sleepdisordered breathing. Am Rev Respir Dis. 1993;147(3):630-4. PMID: CN-00091346. Exclusion Code: X9
- 297. Davies RJ, Vardi-Visy K, Clarke M, et al. Identification of sleep disruption and sleep disordered breathing from the systolic blood pressure profile. Thorax. 1993

 Dec;48(12):1242-7. Epub: 1993/12/01.

 PMID: 8303631. Exclusion Code: X9
- 298. de Almeida FR, Ayas NT, Otsuka R, et al. Nasal pressure recordings to detect obstructive sleep apnea. Sleep Breath. 2006 Jun;10(2):62-9. PMID: 16502297. Exclusion Code: X6

- 299. De Araujo MTM, Bissoli NS, Gouvea SA, et al. CPAP therapy prevents increase in blood pressure after upper airway surgery for obstructive sleep apnoea. Sleep and Breathing. 2013;17(4):1289-99. Exclusion Code: X10
- 300. De Jesus Danzi-Soares N, Genta PR,
 Nerbass FB, et al. Obstructive sleep apnea is
 common among patients referred for
 coronary artery bypass grafting and can be
 diagnosed by portable monitoring. Coron
 Artery Dis. 2012;23(1):31-8. Exclusion
 Code: X11
- 301. de la Hoz RE, Aurora RN, Landsbergis P, et al. Snoring and obstructive sleep apnea among former World Trade Center rescue workers and volunteers. J Occup Environ Med. 2010 Jan;52(1):29-32. Epub: 2010/01/01. PMID: 20042888. Exclusion Code: X10
- 302. de Oliveira AC, Martinez D, Massierer D, et al. The antihypertensive effect of positive airway pressure on resistant hypertension of patients with obstructive sleep apnea: a randomized, double-blind, clinical trial. Am J Respir Crit Care Med. 2014 Aug 1;190(3):345-7. Epub: 2014/08/02. PMID: 25084263. Exclusion Code: X12
- 303. de Silva S, Abeyratne UR, Hukins C. A method to screen obstructive sleep apnea using multi-variable non-intrusive measurements. Physiol Meas. 2011 Apr;32(4):445-65. Epub: 2011/03/09. PMID: 21383492. Exclusion Code: X8
- 304. Deegan PC, McNicholas WT. Predictive value of clinical features for the obstructive sleep apnoea syndrome. Eur Respir J. 1996 Jan;9(1):117-24. Epub: 1996/01/01. PMID: 8834344. Exclusion Code: X8
- 305. Dehkordi P, Marzencki M, Tavakolian K, et al. Validation of respiratory signal derived from suprasternal notch acceleration for sleep apnea detection. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:3824-7. Epub: 2012/01/19. PMID: 22255173. Exclusion Code: X9
- 306. Dehkordi P, Marzencki M, Tavakolian K, et al. Monitoring torso acceleration for estimating the respiratory flow and efforts for sleep apnea detection. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6345-8. Epub: 2013/02/01. PMID: 23367380. Exclusion Code: X10

- 307. Delko T, Kostler T, Peev M, et al. Influence of additional resection of the gastric fundus on excessive weight loss in laparoscopic very very long limb Roux-en-Y gastric bypass. Obes Surg. 2013 Mar;23(3):279-86. Epub: 2012/11/09. PMID: 23135881. Exclusion Code: X3
- 308. Della Marca G, Pantanali F, Frusciante R, et al. Cephalometric findings in facioscapulohumeral muscular dystrophy patients with obstructive sleep apneas. Sleep Breath. 2011 Jan;15(1):99-106. Epub: 2010/02/23. PMID: 20174877. Exclusion Code: X8
- 309. DeMolles DA, Sparrow D, Gottlieb DJ, et al. A pilot trial of a telecommunications system in sleep apnea management. Med Care. 2004 Aug;42(8):764-9. Epub: 2004/07/20. PMID: 15258478. Exclusion Code: X3
- 310. Denotti AL, Wong KK, Dungan GC, 2nd, et al. Residual sleep-disordered breathing during autotitrating continuous positive airway pressure therapy. Eur Respir J. 2012 Jun;39(6):1391-7. Epub: 2011/11/15. PMID: 22075478. Exclusion Code: X10
- 311. Dette FG, Hildebrandt O, Arntz W, et al. [Is daytime sleepiness a sufficient predictor of sleep-disordered breathing during preanesthesia consultation?]. Dtsch Med Wochenschr. 2015 Apr;140(9):e89-93. Epub: 2015/04/30. PMID: 25924053. Exclusion Code: X1
- 312. Devouassoux G, Lévy P, Rossini E, et al. Sleep apnea is associated with bronchial inflammation and continuous positive airway pressure-induced airway hyperresponsiveness. J Allergy Clin Immunol. 2007;119(3):597-603. PMID: CN-00578037. Exclusion Code: X4
- 313. Deyoung PN, Bakker JP, Sands SA, et al. Acoustic pharyngometry measurement of minimal cross-sectional airway area is a significant independent predictor of moderate-to-severe obstructive sleep apnea. J Clin Sleep Med. 2013;9(11):1161-4. Epub: 2013/11/16. PMID: 24235897. Exclusion Code: X8
- 314. Diaferia G, Badke L, Santos-Silva R, et al. Effect of speech therapy as adjunct treatment to continuous positive airway pressure on the quality of life of patients with obstructive sleep apnea. Sleep Med. 2013 Jul;14(7):628-35. Epub: 2013/05/25. PMID: 23702236. Exclusion Code: X12

- 315. Dick R, Penzel T, Fietze I, et al. AASM standards of practice compliant validation of actigraphic sleep analysis from SOMNOwatch versus polysomnographic sleep diagnostics shows high conformity also among subjects with sleep disordered breathing. Physiol Meas. 2010

 Dec;31(12):1623-33. Epub: 2010/11/13.

 PMID: 21071830. Exclusion Code: X4
- 316. Dickel MJ, Mosko SS. Morbidity cut-offs for sleep apnea and periodic leg movements in predicting subjective complaints in seniors. Sleep. 1990 Apr;13(2):155-66. Epub: 1990/04/01. PMID: 2330474. Exclusion Code: X9
- 317. Dimsdale JE, Loredo JS, Profant J. Effect of continuous positive airway pressure on blood pressure : a placebo trial.

 Hypertension. 2000;35(1 Pt 1):144-7.

 PMID: CN-00266060. Exclusion Code: X6
- 318. Dinc AE, Yilmaz M, Tutar H, et al. Reliability of SleepStrip as a screening test in obstructive sleep apnea patients. Eur Arch Otorhinolaryngol. 2014 Oct;271(10):2813-8. Epub: 2014/05/28. PMID: 24861563. Exclusion Code: X3
- 319. Ding X, Zhang J, Bian Q, et al. [Value of pulse oximetry in evaluating the severity of obstructive sleep apnea syndrome].

 Zhonghua Yi Xue Za Zhi. 2014 Dec 30;94(48):3801-4. Epub: 2015/01/28.

 PMID: 25623309. Exclusion Code: X1
- 320. Dingli K, Coleman EL, Vennelle M, et al. Evaluation of a portable device for diagnosing the sleep apnoea/hypopnoea syndrome. Eur Respir J. 2003 Feb;21(2):253-9. PMID: 12608438. Exclusion Code: X6
- Dixon J, Schachter L, O'Brien P, et al. Surgical versus conventional therapy for weight loss treatment of obstructive sleep apnea: A randomized controlled trial. Obesity Research and Clinical Practice. Conference: 2012 Annual Scientific Meeting of the Australian and New Zealand Obesity Society, ANZOS 2012 Auckland New Zealand. Conference Start: 20121018
 Conference End: 20121020. Conference Publication: (var.pagings). 2012;6(Suppl 1):29. PMID: CN-00837494. Exclusion Code: X8

- 322. Dixon JB, Dixon ME, Anderson ML, et al. Daytime sleepiness in the obese: not as simple as obstructive sleep apnea. Obesity (Silver Spring). 2007 Oct;15(10):2504-11. Epub: 2007/10/11. PMID: 17925477. Exclusion Code: X10
- 323. Dixon JB, Schachter LM, O'Brien PE.
 Predicting sleep apnea and excessive day
 sleepiness in the severely obese: indicators
 for polysomnography. Chest. 2003
 Apr;123(4):1134-41. Epub: 2003/04/10.
 PMID: 12684304. Exclusion Code: X3
- 324. Doff MH, Veldhuis SK, Hoekema A, et al. Long-term oral appliance therapy in obstructive sleep apnea syndrome: a controlled study on temporomandibular side effects. Clin Oral Investig. 2012
 Jun;16(3):689-97. Epub: 2011/05/04. PMID: 21538074. Exclusion Code: X10
- 325. Dorman RB, Miller CJ, Leslie DB, et al. Risk for hospital readmission following bariatric surgery. PLoS One. 2012;7(3):e32506. Epub: 2012/03/14. PMID: 22412881. Exclusion Code: X10
- 326. Dort L, Brant R. A randomized, controlled, crossover study of a noncustomized tongue retaining device for sleep disordered breathing. Schlaf & Atmung [Sleep & breathing]. 2008;12(4):369-73. PMID: CN-00668422. Exclusion Code: X3
- 327. Dosman JA, Hagel L, Skomro R, et al. Loud snoring is a risk factor for occupational injury in farmers. Can Respir J. 2013 Jan-Feb;20(1):42-6. Epub: 2013/03/05. PMID: 23457674. Exclusion Code: X9
- 328. Douglas NJ, Engleman HM. Effects of CPAP on vigilance and related functions in patients with the sleep apnea/hypopnea syndrome. Sleep. 2000 Jun 15;23 Suppl 4:S147-9. Epub: 2000/07/13. PMID: 10893090. Exclusion Code: X2
- 329. Douglas NJ, Thomas S, Jan MA. Clinical value of polysomnography. Lancet. 1992 Feb 8;339(8789):347-50. PMID: 1346422. Exclusion Code: X6
- 330. Drager LF, Bortolotto LA, Figueiredo AC, et al. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2007;176(7):706-12. PMID: CN-00610052. Exclusion Code: X12

- 331. Drager LF, Genta PR, Pedrosa RP, et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol. 2010 Apr 15;105(8):1135-9. Epub: 2010/04/13. PMID: 20381666. Exclusion Code: X12
- 332. Drager LF, Pedrosa RP, Diniz PM, et al. The effects of continuous positive airway pressure on prehypertension and masked hypertension in men with severe obstructive sleep apnea. Hypertension. 2011 Mar;57(3):549-55. Epub: 2011/01/19. PMID: 21242462. Exclusion Code: X12
- 333. Dreher A, de la Chaux R, Klemens C, et al. Correlation between otorhinolaryngologic evaluation and severity of obstructive sleep apnea syndrome in snorers. Arch Otolaryngol Head Neck Surg. 2005 Feb;131(2):95-8. Epub: 2005/02/23. PMID: 15723938. Exclusion Code: X9
- 334. Driver HS, Pereira EJ, Bjerring K, et al. Validation of the MediByte(R) type 3 portable monitor compared with polysomnography for screening of obstructive sleep apnea. Can Respir J. 2011 May-Jun;18(3):137-43. Epub: 2011/07/19. PMID: 21766076. Exclusion Code: X6
- 335. Duarte FH, Jallad RS, Amaro AC, et al. The impact of sleep apnea treatment on carbohydrate metabolism in patients with acromegaly. Pituitary. 2013 Sep;16(3):341-50. Epub: 2012/09/18. PMID: 22983689. Exclusion Code: X4
- 336. Duong L, Jayaram L, Camferman D, et al.
 Does heated humidification during initial
 nasal CPAP titration in obstructive sleep
 apnoea (OSA) reduce morning nasal airway
 resistance (NAR) and nasal symptoms or
 improve subjective response to therapy?
 [abstract]. Internal medicine journal.
 2004;34(3):A30. PMID: CN-00591897.
 Exclusion Code: X4
- 337. Duong M, Jayaram L, Camfferman D, et al. Use of heated humidification during nasal CPAP titration in obstructive sleep apnoea syndrome. Eur Respir J. 2005
 Oct;26(4):679-85. Epub: 2005/10/06. PMID: 16204601. Exclusion Code: X4
- 338. Duran CJ, Aizpuru F, Egea C, et al.
 Diagnosis Supersimplified of Patients With
 Suspected Obstructive Sleep Apnoeahypopnoea (OSAH) [Abstract]. Am J Respir
 Crit Care Med. 2010;181(Meeting
 Abstracts):A6748. PMID: CN-00756149.
 Exclusion Code: X8

- 339. Duran J, Esnaola S, Rubio R, et al.
 Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr.
 Am J Respir Crit Care Med. 2001
 Mar;163(3 Pt 1):685-9. PMID: 11254524.
 Exclusion Code: X4
- 340. Duran J, Torre G, Martinez Null C, et al. Efficacy of continuous positive pressure (CPAP) on de novo hypertension with sleep apnea hypopnea syndrome (SAHS) [Abstract]. American Thoracic Society International Conference, May 18-23, 2007, San Francisco, California, USA. 2007:[A296]. PMID: CN-00651803. Exclusion Code: X8
- 341. Duran JJ, Esnaola S, Ubio R, et al. A randomised, double blind, crossover, placebo-controlled trial of mandibular advancement device for the treatment of snoring and mild obstructive sleep apnoea-hypopnoea syndrome. Eur Respir J. 2002;20(Suppl 38):102s. PMID: CN-00460673. Exclusion Code: X11
- 342. Duran-Cantolla J, Aizpuru F, Martinez C, et al. Efficacy of continuous positive pressure (CPAP) on patients with recently diagnosed systemic hypertension (SH) and obstructive sleep apnea-hypopnea (OSAH) [Abstract]. American Thoracic Society International Conference, May 16-21, 2008, Toronto. 2008:Poster #216. PMID: CN-00675372. Exclusion Code: X8
- 343. Duran-Cantolla J, Aizpuru F, Martinez-Nulll C, et al. CPAP treatment reduce blood pressure in patients with recent diagnosis of systemic hypertension and obstructive sleep apnoea hypopnoea (OSAH) A controlled study [Abstract]. European Respiratory Society Annual Congress, Berlin, Germany, October 4-8. 2008:[P780]. PMID: CN-00689768. Exclusion Code: X8
- 344. Dursunoglu N, Ozkurt S, Sarikaya S. Is the clinical presentation different between men and women admitting to the sleep laboratory? Sleep Breath. 2009
 Aug;13(3):295-8. Epub: 2009/01/27. PMID: 19169724. Exclusion Code: X10
- 345. Dyugovskaya L, Lavie P, Hirsh M, et al. Activated CD8+ T-lymphocytes in obstructive sleep apnoea. The European respiratory journal. 2005;25(5):820-8. PMID: CN-00521691. Exclusion Code: X4

- 346. Ecri. Mandibular advancement devices for obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2002(3):31. PMID: HTA-32006000543. Exclusion Code: X13
- 347. Eiseman NA, Westover MB, Mietus JE, et al. Classification algorithms for predicting sleepiness and sleep apnea severity. J Sleep Res. 2012 Feb;21(1):101-12. Epub: 2011/07/15. PMID: 21752133. Exclusion Code: X10
- 348. Ekinci M, Huseyinoglu N, Cagatay HH, et al. Is there a relationship between sleep apnea and central corneal thickness? Curr Eye Res. 2013 Nov;38(11):1104-9. Epub: 2013/06/01. PMID: 23721251. Exclusion Code: X3
- 349. ElKholy SH, Amer HA, Nada MM, et al. Sleep-related breathing disorders in cerebrovascular stroke and transient ischemic attacks: a comparative study. J Clin Neurophysiol. 2012 Apr;29(2):194-8. Epub: 2012/04/04. PMID: 22469687. Exclusion Code: X2
- 350. el-Solh AA, Mador MJ, Ten-Brock E, et al. Validity of neural network in sleep apnea. Sleep. 1999 Feb 1;22(1):105-11. Epub: 1999/02/16. PMID: 9989371. Exclusion Code: X8
- 351. Emsellem HA, Corson WA, Rappaport BA, et al. Verification of sleep apnea using a portable sleep apnea screening device. South Med J. 1990 Jul;83(7):748-52. PMID: 2371595. Exclusion Code: X6
- 352. Enciso R, Clark GT. Comparing the Berlin and the ARES questionnaire to identify patients with obstructive sleep apnea in a dental setting. Sleep Breath. 2011
 Jan;15(1):83-9. Epub: 2010/02/04. PMID: 20127186. Exclusion Code: X3
- 353. Endeshaw Y. Clinical characteristics of obstructive sleep apnea in community-dwelling older adults. J Am Geriatr Soc. 2006 Nov;54(11):1740-4. Epub: 2006/11/08. PMID: 17087702. Exclusion Code: X3
- 354. Engleman HM, Gough K, Martin SE, et al. Ambulatory blood pressure on and off continuous positive airway pressure therapy for the sleep apnea/hypopnea syndrome: effects in "non-dippers". Sleep. 1996;19(5):378-81. PMID: CN-00131170. Exclusion Code: X5

- 355. Epstein LJ, Strollo PJ, Jr., Donegan RB, et al. Obstructive sleep apnea in patients with human immunodeficiency virus (HIV) disease. Sleep. 1995 Jun;18(5):368-76. Epub: 1995/06/01. PMID: 7676171. Exclusion Code: X3
- 356. Erman MK, Stewart D, Einhorn D, et al. Validation of the ApneaLink for the screening of sleep apnea: a novel and simple single-channel recording device. J Clin Sleep Med. 2007 Jun 15;3(4):387-92. PMID: 17694728. Exclusion Code: X6
- 357. Esilva LO, Luz GP, Guimaraes TD, et al. Effectiveness of continuous positive airway pressure (CPAP) and oral appliance (OA) over mild obstructive sleep apnea syndrome (OSAS): A randomised, parallel, simple, blind, controlled study. Sleep. 2014;37:A148. PMID: CN-01059623. Exclusion Code: X9
- 358. Eskandari D, Zou D, Karimi M, et al. Zonisamide reduces obstructive sleep apnoea: a randomised placebo-controlled study. Eur Respir J. 2014 Jul;44(1):140-9. Epub: 2014/03/15. PMID: 24627538. Exclusion Code: X10
- 359. Esnaola S, Duran J, Infante-Rivard C, et al. Diagnostic accuracy of a portable recording device (MESAM IV) in suspected obstructive sleep apnoea. Eur Respir J. 1996 Dec;9(12):2597-605. Epub: 1996/12/01. PMID: 8980975. Exclusion Code: X6
- 360. Esquinas C, Sanchez-de-la Torre M,
 Aldoma A, et al. Rationale and methodology
 of the impact of continuous positive airway
 pressure on patients with ACS and
 nonsleepy OSA: the ISAACC Trial. Clin
 Cardiol. 2013 Sep;36(9):495-501. Epub:
 2013/07/12. PMID: 23843147. Exclusion
 Code: X4
- 361. Eun YG, Kwon KH, Shin SY, et al. Multilevel surgery in patients with rapid eye movement-related obstructive sleep apnea. Otolaryngol Head Neck Surg. 2009 Apr;140(4):536-41. Epub: 2009/03/31. PMID: 19328343. Exclusion Code: X3
- 362. Faccenda JF, Boon NA, Mackay TW, et al. CPAP effects on blood pressure in the sleep apnea/hypopnea syndrome (SAHS) during a randomized controlled trial. Am J Respir Crit Care Med. 2000;161(3 Suppl):A213. PMID: CN-00428922. Exclusion Code: X11

- 363. Faccenda JF, Boon NA, Mackay TW, et al. Quality of life on and off CPAP in patients with sleep apnea/hypopnea syndrome. Am J Respir Crit Care Med. 2000;161(3 Suppl):A714. PMID: CN-00429109. Exclusion Code: X3
- 364. Falcone VA, Damiani MF, Quaranta VN, et al. Polysomnograph Chart View by Patients: A New Educational Strategy to Improve CPAP Adherence in Sleep Apnea Therapy. Respir Care. 2014;59(2):193-8. PMID: CN-00983835. Exclusion Code: X9
- 365. Faria AC, da Costa CH, Rufino R. Sleep apnea clinical score, Berlin questionnaire, or Epworth sleepiness scale: Which is the best obstructive sleep apnea predictor in patients with COPD? Int J Gen Med. 2015;8:275-81. Exclusion Code: X10
- 366. Farney RJ, Walker BS, Farney RM, et al. The STOP-Bang equivalent model and prediction of severity of obstructive sleep apnea: relation to polysomnographic measurements of the apnea/hypopnea index. J Clin Sleep Med. 2011 Oct 15;7(5):459-65b. Epub: 2011/10/18. PMID: 22003340. Exclusion Code: X8
- 367. Farney RJ, Walker LE, Jensen RL, et al. Ear oximetry to detect apnea and differentiate rapid eye movement (REM) and non-REM (NREM) sleep. Screening for the sleep apnea syndrome. Chest. 1986
 Apr;89(4):533-9. Epub: 1986/04/01. PMID: 3956278. Exclusion Code: X4
- 368. Farré R, Hernández L, Montserrat JM, et al. Sham continuous positive airway pressure for placebo-controlled studies in sleep apnoea. Lancet. 1999;353(9159):1154. PMID: CN-00162113. Exclusion Code: X9
- 369. Fava C, Dorigoni S, Dalle Vedove F, et al. Effect of continuous positive airway pressure (CPAP) on blood pressure in patients with obstructive sleep apnea/hypopnea. a systematic review and meta-analysis (Provisional abstract). Chest. 2013(3):epub. PMID: DARE-12013058660. Exclusion Code: X3
- 370. Feigel-Guiller B, Drui D, Dimet J, et al. Laparoscopic Gastric Banding in Obese Patients with Sleep Apnea: A 3-Year Controlled Study and Follow-up After 10 Years. Obes Surg. 2015;25(10):1886-92. Exclusion Code: X10

- 371. Feng J, He QY, Zhang XL, et al. Epworth Sleepiness Scale may be an indicator for blood pressure profile and prevalence of coronary artery disease and cerebrovascular disease in patients with obstructive sleep apnea. Sleep Breath. 2012 Mar;16(1):31-40. Epub: 2011/01/19. PMID: 21243439. Exclusion Code: X4
- 372. Fenton ME, Heathcote K, Bryce R, et al. The utility of the elbow sign in the diagnosis of OSA. Chest. 2014 Mar 1;145(3):518-24. Epub: 2013/10/19. PMID: 24135738. Exclusion Code: X8
- 373. Feres MC, Fonseca FAH, Cintra FD, et al. An assessment of oxidized LDL in the lipid profiles of patients with obstructive sleep apnea and its association with both hypertension and dyslipidemia, and the impact of treatment with CPAP. Atherosclerosis. 2015;241(2):342-9. Exclusion Code: X11
- 374. Ferrier K, Neill A, Campbell A, et al. Nasal continuous positive airway pressure (NCPAP) in obstructive sleep apnoea (OSA) and heart failure (HF) [abstract]. Internal medicine journal. 2004;34(3):A18. PMID: CN-00591953. Exclusion Code: X8
- 375. Ferrier KA, Neill AM, O'Meeghan T, et al. Continuous positive airway pressure in heart failure patients with obstructive sleep apnoea. Intern Med J. 2008 Nov;38(11):829-36. Epub: 2008/02/21. PMID: 18284461. Exclusion Code: X3
- 376. Ficker JH, Clarenbach CF, Neukirchner C, et al. Auto-CPAP therapy based on the forced oscillation technique. Biomed Tech (Berl). 2003 Mar;48(3):68-72. Epub: 2003/04/19. PMID: 12701337. Exclusion Code: X10
- 377. Ficker JH, Fischer C, Wiest GM, et al. Efficacy of auto-CPAP in the treatment of obstructive sleep apnoea syndrome (OSA). European Respiratory Journal Supplement. 1997;10(Suppl 25):189s. PMID: CN-00382814. Exclusion Code: X11
- 378. Ficker JH, Wiest GH, Wilpert J, et al. Evaluation of a portable recording device (Somnocheck) for use in patients with suspected obstructive sleep apnoea. Respiration. 2001;68(3):307-12. PMID: 11416253. Exclusion Code: X6

- 379. Fietze I, Glos M, Rottig J, et al. Automated analysis of data is inferior to visual analysis of ambulatory sleep apnea monitoring. Respiration. 2002;69(3):235-41. Epub: 2002/07/05. PMID: 12097767. Exclusion Code: X6
- 380. Filtness AJ, Reyner LA, Horne JA. One night's CPAP withdrawal in otherwise compliant OSA patients: marked driving impairment but good awareness of increased sleepiness. Sleep Breath. 2012 Sep;16(3):865-71. Epub: 2011/09/08. PMID: 21898097. Exclusion Code: X3
- 381. Finkel KJ, Searleman AC, Tymkew H, et al. Prevalence of undiagnosed obstructive sleep apnea among adult surgical patients in an academic medical center. Sleep Med. 2009 Aug;10(7):753-8. Epub: 2009/02/03. PMID: 19186102. Exclusion Code: X9
- 382. Firat H, Yuceege M, Demir A, et al.
 Comparison of four established
 questionnaires to identify highway bus
 drivers at risk for obstructive sleep apnea in
 Turkey. Sleep Biol Rhythms.
 2012:10(3):231-6. Exclusion Code: X12
- 383. Fischer MK, Martinez D, Cassol CM, et al. Immediate and overnight recumbence-dependent changes of neck circumference: relationship with OSA severity in obese and nonobese subjects. Sleep Med. 2012
 Jun;13(6):650-5. Epub: 2012/03/20. PMID: 22425575. Exclusion Code: X8
- 384. Fisher D, Pillar G, Malhotra A, et al. Long-term follow-up of untreated patients with sleep apnoea syndrome. Respir Med. 2002 May;96(5):337-43. Epub: 2002/07/13. PMID: 12113384. Exclusion Code: X3
- 385. Fisher JG, de la Pena AM. Sleep apnea: a clinical perspective. South Med J. 1981 Aug;74(8):950-3. Epub: 1981/08/01. PMID: 7268498. Exclusion Code: X2
- 386. Fleetham J, Ayas N, Bradley D, et al. Canadian Thoracic Society 2011 guideline update: diagnosis and treatment of sleep disordered breathing. Can Respir J. 2011 Jan-Feb;18(1):25-47. Epub: 2011/03/04. PMID: 21369547. Exclusion Code: X3
- 387. Flemons WW, Whitelaw WA, Brant R, et al. Likelihood ratios for a sleep apnea clinical prediction rule. Am J Respir Crit Care Med. 1994 Nov;150(5 Pt 1):1279-85. Epub: 1994/11/01. PMID: 7952553. Exclusion Code: X8

- 388. Fleury B, Rakotonanahary D, Hausser-Hauw C, et al. A laboratory validation study of the diagnostic mode of the Autoset system for sleep-related respiratory disorders. Sleep. 1996 Jul;19(6):502-5. PMID: 8865509. Exclusion Code: X6
- 389. Flick K, Umlauf F, Igel J, et al. Auto-CPAP in the therapy of obstructive sleep apnoea syndrome. Pneumologie (Stuttgart, Germany). 1998;52(Sh1):S59. PMID: CN-00400929. Exclusion Code: X11
- 390. Foldvary-Schaefer N, Andrews ND, Pornsriniyom D, et al. Sleep apnea and epilepsy: who's at risk? Epilepsy Behav. 2012 Nov;25(3):363-7. Epub: 2012/10/30. PMID: 23103311. Exclusion Code: X4
- 391. Franceschi M, Zamproni P, Crippa D, et al. Excessive daytime sleepiness: a 1-year study in an unselected inpatient population. Sleep. 1982;5(3):239-47. Epub: 1982/01/01. PMID: 7134730. Exclusion Code: X10
- 392. Franklin KA, Haglund B, Axelsson S, et al. Frequency of serious complications after surgery for snoring and sleep apnea. Acta Otolaryngol. 2011 Mar;131(3):298-302. Epub: 2010/12/08. PMID: 21133830. Exclusion Code: X3
- 393. Fraser CL, Bliwise DL, Newman NJ, et al. A prospective photographic study of the ocular fundus in obstructive sleep apnea. J Neuroophthalmol. 2013 Sep;33(3):241-6. Epub: 2013/06/06. PMID: 23736744. Exclusion Code: X3
- 394. Fredheim JM, Roislien J, Hjelmesaeth J. Validation of a portable monitor for the diagnosis of obstructive sleep apnea in morbidly obese patients. J Clin Sleep Med. 2014 Jul 15;10(7):751-7, 7a. Epub: 2014/07/16. PMID: 25024652. Exclusion Code: X2
- 395. Fredheim JM, Rollheim J, Hjelmesaeth J. Effect of bariatric surgery and intensive lifestyle intervention on obstructive sleep apnea: A controlled clinical trial. Obesity Reviews. Conference: 18th European Congress on Obesity, ECO 2011 Istanbul Turkey. Conference Start: 20110525 Conference End: 20110528. Conference Publication: (var.pagings). 2011;12:207. PMID: CN-00833985. Exclusion Code: X8

- 396. Fredheim JM, Rollheim J, Sandbu R, et al. Obstructive sleep apnea after weight loss: a clinical trial comparing gastric bypass and intensive lifestyle intervention. J Clin Sleep Med. 2013 May 15;9(5):427-32. Epub: 2013/05/16. PMID: 23674932. Exclusion Code: X3
- 397. Freire AO, Sugai GC, Chrispin FS, et al. Treatment of moderate obstructive sleep apnea syndrome with acupuncture: a randomised, placebo-controlled pilot trial. Sleep Med. 2007 Jan;8(1):43-50. Epub: 2006/10/07. PMID: 17023212. Exclusion Code: X9
- 398. Freire AO, Sugai GC, Togeiro SM, et al. Immediate effect of acupuncture on the sleep pattern of patients with obstructive sleep apnoea. Acupunct Med. 2010 Sep;28(3):115-9. Epub: 2010/07/10. PMID: 20615853. Exclusion Code: X9
- 399. Friedman M, Ibrahim H, Joseph NJ. Staging of obstructive sleep apnea/hypopnea syndrome: a guide to appropriate treatment. Laryngoscope. 2004;114(3):454-9. PMID: CN-00476956. Exclusion Code: X3
- 400. Friedman M, Maley A, Taylor D, et al.
 Treatment of pediatric obstructive sleep
 apnea beyond tonsillectomy and
 adenoidectomy. Otolaryngology Head and
 Neck Surgery. Conference: Annual Meeting
 of the American Academy of
 Otolaryngology-Head and Neck Surgery
 Foundation 2011 San Francisco, CA United
 States. Conference Start: 20110911
 Conference End: 20110914. Conference
 Publication: (var.pagings). 2011;145(2
 Suppl):114. PMID: CN-00833823.
 Exclusion Code: X8
- 401. Friedman M, Schalch P, Joseph NJ. Palatal implant for the treatment of OSAHS and snoring. Otolaryngology Head and Neck Surgery. 2006;135(2 (Suppl 1)):P211-2. PMID: CN-00597381. Exclusion Code: X9
- 402. Friedman M, Schalch P, Lin HC, et al. Palatal implants for the treatment of snoring and obstructive sleep apnea/hypopnea syndrome. Otolaryngol Head Neck Surg. 2008 Feb;138(2):209-16. Epub: 2008/02/05. PMID: 18241718. Exclusion Code: X3
- 403. Friedman M, Tanyeri H, La Rosa M, et al. Clinical predictors of obstructive sleep apnea. Laryngoscope. 1999
 Dec;109(12):1901-7. Epub: 1999/12/11.
 PMID: 10591345. Exclusion Code: X3

- 404. Friedman M, Wilson MN, Pulver T, et al. Screening for obstructive sleep apnea/hypopnea syndrome: subjective and objective factors. Otolaryngol Head Neck Surg. 2010 Apr;142(4):531-5. Epub: 2010/03/23. PMID: 20304273. Exclusion Code: X3
- 405. Fry JM, DiPhillipo MA, Curran K, et al. Full polysomnography in the home. Sleep. 1998 Sep 15;21(6):635-42. Epub: 1998/10/21. PMID: 9779523. Exclusion Code: X4
- 406. Fuller JM, Wong KK, Grunstein R, et al. A comparison of screening methods for sleep disorders in Australian community pharmacies: A randomized controlled trial. PLoS One. 2014;9(6)PMID: CN-00995140. Exclusion Code: X9
- 407. Fung CH, Martin JL, Dzierzewski JM, et al. Prevalence and symptoms of occult sleep disordered breathing among older veterans with insomnia. J Clin Sleep Med. 2013;9(11):1173-8. Epub: 2013/11/16. PMID: 24235899. Exclusion Code: X2
- Fung MM, Peters K, Redline S, et al.
 Decreased slow wave sleep increases risk of developing hypertension in elderly men.
 Hypertension. 2011 Oct;58(4):596-603.
 Epub: 2011/08/31. PMID: 21876072.
 Exclusion Code: X8
- 409. Furukawa T, Suzuki M, Funatogawa I, et al. Screening method for severe sleep-disordered breathing in hypertensive patients without daytime sleepiness. J Cardiol. 2009 Feb;53(1):79-85. Epub: 2009/01/27. PMID: 19167642. Exclusion Code: X10
- 410. Gabbay IE, Lavie P. Age- and genderrelated characteristics of obstructive sleep apnea. Sleep Breath. 2012 Jun;16(2):453-60. Epub: 2011/04/19. PMID: 21499842. Exclusion Code: X9
- 411. Gagnadoux F, Le Vaillant M, Goupil F, et al. Depressive symptoms before and after long-term CPAP therapy in patients with sleep apnea. Chest. 2014 May;145(5):1025-31. Epub: 2014/01/18. PMID: 24435294. Exclusion Code: X5
- 412. Gagnadoux F, Pelletier-Fleury N, Philippe C, et al. Home unattended vs hospital telemonitored polysomnography in suspected obstructive sleep apnea syndrome: A randomized crossover trial. Chest. 2002;121(3 SUPPL.):753-8. Exclusion Code: X11

- 413. Gali B, Whalen FX, Schroeder DR, et al. Identification of patients at risk for postoperative respiratory complications using a preoperative obstructive sleep apnea screening tool and postanesthesia care assessment. Anesthesiology. 2009

 Apr;110(4):869-77. Epub: 2009/03/19.
 PMID: 19293694. Exclusion Code: X3
- 414. Gami AS, Hodge DO, Herges RM, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007 Feb 6;49(5):565-71. Epub: 2007/02/06. PMID: 17276180. Exclusion Code: X3
- 415. Gami AS, Olson EJ, Shen WK, et al.
 Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol. 2013 Aug 13;62(7):610-6. Epub: 2013/06/19. PMID: 23770166. Exclusion Code: X3
- 416. Gami AS, Pressman G, Caples SM, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004 Jul 27;110(4):364-7. Epub: 2004/07/14. PMID: 15249509. Exclusion Code: X10
- 417. Gantner D, Ge JY, Li LH, et al. Diagnostic accuracy of a questionnaire and simple home monitoring device in detecting obstructive sleep apnoea in a Chinese population at high cardiovascular risk. Respirology. 2010 Aug;15(6):952-60. Epub: 2010/07/14. PMID: 20624255. Exclusion Code: X10
- 418. Garbarino S, Guglielmi O, Sanna A, et al. Risk of occupational accidents in workers with obstructive sleep apnea: Systematic review and meta-analysis. Sleep. 2016;39(6):1211-8. PMID: 26951401. Exclusion Code: X3
- 419. Garbarino S, Magnavita N. Obstructive Sleep Apnea Syndrome (OSAS), metabolic syndrome and mental health in small enterprise workers. feasibility of an Action for Health. PLoS One. 2014;9(5):e97188. Epub: 2014/05/09. PMID: 24810290. Exclusion Code: X10
- 420. Garcia-Campos EP, Labra A, Galicia-Polo L, et al. Decrease of respiratory events in patients with OSAS, using a mandibular advancement device (MAD), assessed with split night polysomnography, in a Mexican population. J Sleep Res. 2014;23:275. PMID: CN-01040891. Exclusion Code: X10

- 421. Garcia-Diaz E, Quintana-Gallego E, Ruiz A, et al. Respiratory polygraphy with actigraphy in the diagnosis of sleep apneahypopnea syndrome. Chest. 2007

 Mar;131(3):725-32. PMID: 17356086.

 Exclusion Code: X6
- 422. Garcia-Rio F, Alonso-Fernandez A, Armada E, et al. CPAP effect on recurrent episodes in patients with sleep apnea and myocardial infarction. Int J Cardiol. 2013 Sep 30;168(2):1328-35. Epub: 2013/01/11. PMID: 23302113. Exclusion Code: X4
- 423. Gasa M, Salord N, Fortuna AM, et al.
 Optimizing screening of severe obstructive sleep apnea in patients undergoing bariatric surgery. Surg Obes Relat Dis. 2013 Jul-Aug;9(4):539-46. Epub: 2012/03/27. PMID: 22445650. Exclusion Code: X8
- 424. Gasa M, Tamisier R, Launois SH, et al. Residual sleepiness in sleep apnea patients treated by continuous positive airway pressure. J Sleep Res. 2013 Aug;22(4):389-97. Epub: 2013/02/16. PMID: 23409736. Exclusion Code: X10
- 425. Gast H, Schwalen S, Ringendahl H, et al. Sleep-related breathing disorders and continuous positive airway pressure-related changes in cognition. Sleep Med Clin. 2006;1:499-511. Exclusion Code: X5
- 426. Gauthier L, Laberge L, Beaudry M, et al. Efficacy of two mandibular advancement appliances in the management of snoring and mild-moderate sleep apnea: a cross-over randomized study. Sleep Med. 2009
 Mar;10(3):329-36. Epub: 2008/06/28.
 PMID: 18583187. Exclusion Code: X10
- 427. Ge X, Han F, Huang Y, et al. Is obstructive sleep apnea associated with cardiovascular and all-cause mortality? PLoS One. 2013;8(7):e69432. Epub: 2013/08/13. PMID: 23936014. Exclusion Code: X3
- 428. Geiger-Brown J, Rogers VE, Han K, et al. Occupational screening for sleep disorders in 12-h shift nurses using the Berlin Questionnaire. Sleep Breath. 2013

 Mar;17(1):381-8. Epub: 2012/04/27. PMID: 22535196. Exclusion Code: X10
- 429. Gelir E, Budak MT, Ardic S. The relationship between CPAP usage and corneal thickness. PLoS One. 2014;9(1). Exclusion Code: X4

- 430. Ghiciuc CM, Dima Cozma LC, Bercea RM, et al. Restoring the salivary cortisol awakening response through nasal continuous positive airway pressure therapy in obstructive sleep apnea. Chronobiol Int. 2013 Oct;30(8):1024-31. Epub: 2013/07/19. PMID: 23859257. Exclusion Code: X3
- 431. Ghuman M, Ludwig MJ, Anna LS. FPIN's clinical inquiries. Clinical indicators of obstructive sleep apnea. Am Fam Physician. 2011 May 1;83(9):3-4. Epub: 2011/06/21. PMID: 21682058. Exclusion Code: X3
- 432. Gilat H, Vinker S, Buda I, et al. Obstructive sleep apnea and cardiovascular comorbidities: a large epidemiologic study. Medicine (Baltimore). 2014 Aug;93(9):e45. Epub: 2014/08/22. PMID: 25144324. Exclusion Code: X3
- 433. Gillespie MB, Wylie PE, Lee-Chiong T, et al. Effect of palatal implants on continuous positive airway pressure and compliance.
 Otolaryngol Head Neck Surg. 2011
 Feb;144(2):230-6. Epub: 2011/04/16.
 PMID: 21493422. Exclusion Code: X3
- 434. Gilman MP, Floras JS, Usui K, et al.
 Continuous positive airway pressure
 increases heart rate variability in heart
 failure patients with obstructive sleep
 apnoea. Clinical science (London, England:
 1979). 2008;114(3):243-9. PMID: CN00619226. Exclusion Code: X6
- 435. Giordani I, Malandrucco I, Picconi F, et al. Preliminary evidence that obese patients with obstructive sleep apnea/hypopnea syndrome are refractory to the acute beneficial metabolic effects of a very low calorie diet. Acta Diabetol. 2013 Aug;50(4):639-43. Epub: 2013/06/07. PMID: 23740164. Exclusion Code: X10
- 436. Gislason T, Almqvist M, Eriksson G, et al. Prevalence of sleep apnea syndrome among Swedish men--an epidemiological study. J Clin Epidemiol. 1988;41(6):571-6. Epub: 1988/01/01. PMID: 3385458. Exclusion Code: X10
- 437. Gjevre JA, Taylor-Gjevre RM, Nair BV, et al. Do sleepy rheumatoid arthritis patients have a sleep disorder? Musculoskeletal Care. 2012 Dec;10(4):187-95. Epub: 2012/05/12. PMID: 22577060. Exclusion Code: X3

- 438. Gjevre JA, Taylor-Gjevre RM, Skomro R, et al. Comparison of polysomnographic and portable home monitoring assessments of obstructive sleep apnea in Saskatchewan women. Can Respir J. 2011 Sep-Oct;18(5):271-4. Epub: 2011/10/05. PMID: 21969928. Exclusion Code: X6
- 439. Glebocka A, Kossowska A, Bednarek M. Obstructive sleep apnea and the quality of life. J Physiol Pharmacol. 2006 Sep;57 Suppl 4:111-7. Epub: 2006/10/31. PMID: 17072037. Exclusion Code: X3
- 440. Glidewell RN, Roby EK, Orr WC. Is insomnia an independent predictor of obstructive sleep apnea? J Am Board Fam Med. 2012 Jan-Feb;25(1):104-10. Epub: 2012/01/06. PMID: 22218631. Exclusion Code: X10
- 441. Gold AR, Schwartz AR, Bleecker ER, et al. The effect of chronic nocturnal oxygen administration upon sleep apnea. Am Rev Respir Dis. 1986 Nov;134(5):925-9. Epub: 1986/11/01. PMID: 3096178. Exclusion Code: X9
- 442. Golding-Wood DG, Brockbank MJ, Swanston AR, et al. Assessment of chronic snorers. J R Soc Med. 1990 Jun;83(6):363-7. Epub: 1990/06/01. PMID: 2380965. Exclusion Code: X8
- 443. Golpe R, Jiménez A, Carpizo R. Home sleep studies in the assessment of sleep apnea/hypopnea syndrome. Chest. 2002;122(4):1156-61. PMID: CN-00444035. Exclusion Code: X6
- 444. Gondim LM, Matumoto LM, Melo Junior MA, et al. Comparative study between clinical history and polysomnogram in the obstructive sleep apnea/ hypopnea syndrome. Braz J Otorhinolaryngol. 2007 Nov-Dec;73(6):733-7. Epub: 2008/02/19. PMID: 18278218. Exclusion Code: X8
- 445. González-Muniesa P, Lopez-Pascual A, de Andrés J, et al. Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea-hypopnea syndrome. J Physiol Biochem. 2015;71(3):589-99. Exclusion Code: X3
- 446. Gonzalez-Rothi RJ, Foresman GE, Block AJ. Do patients with sleep apnea die in their sleep? Chest. 1988 Sep;94(3):531-8. Epub: 1988/09/01. PMID: 3409732. Exclusion Code: X3

- 447. Goodrich S, Orr WC. An investigation of the validity of the Lifeshirt in comparison to standard polysomnography in the detection of obstructive sleep apnea. Sleep Med. 2009 Jan;10(1):118-22. PMID: 18083629. Exclusion Code: X6
- 448. Gottlieb DJ, Whitney CW, Bonekat WH, et al. Relation of sleepiness to respiratory disturbance index: the Sleep Heart Health Study. Am J Respir Crit Care Med. 1999 Feb;159(2):502-7. Epub: 1999/02/02. PMID: 9927364. Exclusion Code: X10
- 449. Green BT, Broughton WA, O'Connor JB.

 Marked improvement in nocturnal
 gastroesophageal reflux in a large cohort of
 patients with obstructive sleep apnea treated
 with continuous positive airway pressure.
 Arch Intern Med. 2003 Jan 13;163(1):41-5.
 Epub: 2003/01/14. PMID: 12523915.
 Exclusion Code: X4
- 450. Greenburg DL, Lettieri CJ, Eliasson AH. Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis (Structured abstract). Am J Med. 2009;122(6):535-42. PMID: DARE-12009106442. Exclusion Code: X3
- 451. Grimm W, Apelt S, Timmesfeld N, et al. Sleep-disordered breathing in patients with implantable cardioverter-defibrillator. Europace. 2013 Apr;15(4):515-22. Epub: 2012/11/07. PMID: 23129543. Exclusion Code: X8
- 452. Grote L, Hedner J, Peter JH. Sleep-related breathing disorder is an independent risk factor for uncontrolled hypertension. J Hypertens. 2000 Jun;18(6):679-85. Epub: 2000/06/29. PMID: 10872551. Exclusion Code: X3
- 453. Gruber A, Horwood F, Sithole J, et al.
 Obstructive sleep apnoea is independently associated with the metabolic syndrome but not insulin resistance state. Cardiovasc Diabetol. 2006;5:22. Epub: 2006/11/03.
 PMID: 17078884. Exclusion Code: X3
- 454. Grunstein R, Wilcox I, Yang TS, et al. Snoring and sleep apnoea in men: association with central obesity and hypertension. Int J Obes Relat Metab Disord. 1993 Sep;17(9):533-40. Epub: 1993/09/01. PMID: 8220656. Exclusion Code: X8

- 455. Grunstein RR, Stenlof K, Hedner JA, et al. Two year reduction in sleep apnea symptoms and associated diabetes incidence after weight loss in severe obesity. Sleep. 2007 Jun;30(6):703-10. Epub: 2007/06/22. PMID: 17580591. Exclusion Code: X3
- 456. Grunstein RR, Stenlof K, Hedner JA, et al. Impact of self-reported sleep-breathing disturbances on psychosocial performance in the Swedish Obese Subjects (SOS) Study. Sleep. 1995 Oct;18(8):635-43. Epub: 1995/10/01. PMID: 8560128. Exclusion Code: X10
- 457. Gubbi J, Khandoker A, Palaniswami M. Classification of sleep apnea types using wavelet packet analysis of short-term ECG signals. J Clin Monit Comput. 2012 Feb;26(1):1-11. Epub: 2011/12/23. PMID: 22190269. Exclusion Code: X9
- 458. Guest JF, Panca M, Sladkevicius E, et al. Clinical outcomes and cost-effectiveness of continuous positive airway pressure to manage obstructive sleep apnea in patients with type 2 diabetes in the U.K. Diabetes Care. 2014;37(5):1263-71. Exclusion Code: X3
- 459. Gugger M. Comparison of ResMed AutoSet (version 3.03) with polysomnography in the diagnosis of the sleep apnoea/hypopnoea syndrome. Eur Respir J. 1997
 Mar;10(3):587-91. Epub: 1997/03/01.
 PMID: 9072989. Exclusion Code: X6
- Gugger M, Mathis J, Bassetti C. Accuracy of an intelligent CPAP machine with in-built diagnostic abilities in detecting apnoeas: a comparison with polysomnography. Thorax. 1995 Nov;50(11):1199-201. PMID: 8553278. Exclusion Code: X5
- 461. Guilleminault C, Davis K, Huynh NT. Prospective randomized study of patients with insomnia and mild sleep disordered breathing. Sleep. 2008 Nov;31(11):1527-33. Epub: 2008/11/19. PMID: 19014072. Exclusion Code: X3
- 462. Guilleminault C, Stoohs R, Clerk A, et al. Excessive daytime somnolence in women with abnormal respiratory efforts during sleep. Sleep. 1993 Dec;16(8 Suppl):S137-8. Epub: 1993/12/01. PMID: 8011017. Exclusion Code: X3

- 463. Guimaraes KC, Drager LF, Genta PR, et al. Effects of oropharyngeal exercises on patients with moderate obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2009 May 15;179(10):962-6. Epub: 2009/02/24. PMID: 19234106. Exclusion Code: X9
- 464. Gulati A, Chate RA, Howes TQ. Can a single cephalometric measurement predict obstructive sleep apnea severity? J Clin Sleep Med. 2010 Feb 15;6(1):64-8. Epub: 2010/03/03. PMID: 20191940. Exclusion Code: X3
- 465. Gupta S. Caarcio-pulmonary mainfestations in obesity. J Assoc Physicians India. 1974 Apr;22(4):335-9. Epub: 1974/04/01. PMID: 4412273. Exclusion Code: X3
- 466. Guralnick AS, Pant M, Minhaj M, et al. CPAP adherence in patients with newly diagnosed obstructive sleep apnea prior to elective surgery. J Clin Sleep Med. 2012 Oct 15;8(5):501-6. Epub: 2012/10/16. PMID: 23066360. Exclusion Code: X9
- 467. Gurubhagavatula I, Maislin G, Nkwuo JE, et al. Occupational screening for obstructive sleep apnea in commercial drivers. Am J Respir Crit Care Med. 2004 Aug 15;170(4):371-6. Epub: 2004/05/15. PMID: 15142866. Exclusion Code: X5
- 468. Gutierrez Iglesias B, Jacas Escarceller C, Bardes Robles I, et al. Effectiveness of 6-months continuous positive airway pressure treactment in OSAS-related cognitive deficit in older adults. Behav Neurol.
 2013;26(3):191-4. Epub: 2012/06/21.
 PMID: 22713425. Exclusion Code: X10
- 469. Gutierrez-Tobal GC, Alvarez D, Marcos JV, et al. Pattern recognition in airflow recordings to assist in the sleep apnoeahypopnoea syndrome diagnosis. Med Biol Eng Comput. 2013 Dec;51(12):1367-80. Epub: 2013/09/24. PMID: 24057145. Exclusion Code: X9
- 470. Gutierrez-Tobal GC, Hornero R, Alvarez D, et al. Linear and nonlinear analysis of airflow recordings to help in sleep apnoeahypopnoea syndrome diagnosis. Physiol Meas. 2012 Jul;33(7):1261-75. Epub: 2012/06/28. PMID: 22735551. Exclusion Code: X10
- 471. Gylling H. The impact of weight reduction in the prevention of the progression of obstructive sleep apnea: an explanatory analysis of a 5-year observational follow-up trial. Sleep Med. 2014;15(3):329-35. PMID: CN-01049089. Exclusion Code: X9

- 472. Gyulay S, Gould D, Sawyer B, et al. Evaluation of a microprocessor-based portable home monitoring system to measure breathing during sleep. Sleep. 1987 Apr;10(2):130-42. PMID: 3589326. Exclusion Code: X6
- 473. Gyulay S, Olson LG, Hensley MJ, et al. A comparison of clinical assessment and home oximetry in the diagnosis of obstructive sleep apnea. Am Rev Respir Dis. 1993
 Jan;147(1):50-3. Epub: 1993/01/01. PMID: 8420431. Exclusion Code: X6
- 474. Hack M, Choi R, Mullins R, et al.
 Performance of patients with obstructive
 sleep apnoea (OSA) on a steering simulation
 after six months treatment with nasal
 continuous positive airway pressure
 (NCPAP). Thorax. 1999(54 Suppl 3):A9
 s36. PMID: CN-00268056. Exclusion Code:
- 475. Hack MA, Davies RJO, Stradling JR.
 Randomised, sham placebo, parallel study of
 the effect of nasal continuous positive
 airway pressure (NCPAP) on steering
 performance in patients with obstructive
 sleep apnoea (OSA) interim analysis.
 Thorax. 1998;53(Suppl 4):A44, 81. PMID:
 CN-00267984. Exclusion Code: X3
- 476. Hader C, Hinz M, Welz-Barth A, et al. Sleep disordered breathing in the elderly: a three year longitudinal cohort study. J Physiol Pharmacol. 2006 Sep;57 Suppl 4:119-29. Epub: 2006/10/31. PMID: 17072038. Exclusion Code: X8
- 477. Hailey D, Jacobs P, Mayers I, et al. Autotitrating nasal continuous positive airway pressure systems in the management of obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2003(3)PMID: HTA-32003001201. Exclusion Code: X3
- 478. Hall AB, Ziadi MC, Leech J, et al. Does short term continuous positive airway pressure alter myocardial energetics and presynaptic sympathetic nerve function in patients with heart failure and obstructive sleep apnea? A randomized study. Canadian Journal of Cardiology. Conference: 65th Annual Meeting of the Canadian Cardiovascular Society Toronto, ON Canada. Conference Start: 20121027 Conference End: 20121031. Conference Publication: (var.pagings). 2012;28(5 suppl. 1):S179. PMID: CN-00839950. Exclusion Code: X4

- 479. Hall AB, Ziadi MC, Leech J, et al.
 Determination of the impact of short term continuous positive airway pressure on myocardial energetics in a randomized study of patients with chronic stable heart failure and obstructive sleep apnea. Circulation. 2011;124(21 Suppl 1):A14320. PMID: CN-00834096. Exclusion Code: X4
- 480. Hall AB, Ziadi MC, Leech JA, et al. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study. Circulation. 2014 Sep 9;130(11):892-901. Epub: 2014/07/06. PMID: 24993098. Exclusion Code: X4
- 481. Hallikainen M, Tuomilehto H, Martikainen T, et al. Cholesterol metabolism and weight reduction in subjects with mild obstructive sleep apnoea: A randomised, controlled study. Cholesterol. 2013:Epub. PMID: CN-00863814. Exclusion Code: X6
- 482. Hammerstingl C, Schueler R, Wiesen M, et al. Effects of untreated obstructive sleep apnea on left and right ventricular myocardial function. Int J Cardiol. 2012 Mar 22;155(3):465-9. Epub: 2012/01/10. PMID: 22227255. Exclusion Code: X9
- 483. Hans MG, Nelson S, Luks VG, et al.
 Comparison of two dental devices for treatment of obstructive sleep apnea syndrome (OSAS). Am J Orthod
 Dentofacial Orthop. 1997 May;111(5):562-70. Epub: 1997/05/01. PMID: 9155816.
 Exclusion Code: X5
- 484. Hans MG, Nelson S, Pracharktam N, et al. Subgrouping persons with snoring and/or apnea by using anthropometric and cephalometric measures. Sleep Breath. 2001 Jun;5(2):79-91. Epub: 2002/02/28. PMID: 11868145. Exclusion Code: X4
- 485. Haponik EF, Bleecker ER, Allen RP, et al. Abnormal inspiratory flow-volume curves in patients with sleep-disordered breathing.

 Am Rev Respir Dis. 1981 Nov;124(5):571-4. Epub: 1981/11/01. PMID: 7305112.

 Exclusion Code: X9
- 486. Haraldsson PO, Carenfelt C, Diderichsen F, et al. Clinical symptoms of sleep apnea syndrome and automobile accidents. ORL J Otorhinolaryngol Relat Spec. 1990;52(1):57-62. Epub: 1990/01/01. PMID: 2304760. Exclusion Code: X10

- 487. Hashizume Y, Kuwahara H, Uchimura N, et al. Examination of accuracy of sleep stages by means of an automatic sleep analysis system 'Sleep Ukiha'. Psychiatry Clin Neurosci. 2001 Jun;55(3):199-200. Epub: 2001/06/26. PMID: 11422840. Exclusion Code: X9
- 488. Hayano J, Carney RM, Watanabe E, et al. Interactive associations of depression and sleep apnea with adverse clinical outcomes after acute myocardial infarction.

 Psychosom Med. 2012 Oct;74(8):832-9.

 Epub: 2012/10/02. PMID: 23023681.

 Exclusion Code: X10
- 489. Hayano J, Tsukahara T, Watanabe E, et al. Accuracy of ECG-based screening for sleep-disordered breathing: a survey of all male workers in a transport company. Sleep Breath. 2013 Mar;17(1):243-51. Epub: 2012/03/21. PMID: 22430527. Exclusion Code: X10
- 490. Hayano J, Watanabe E, Saito Y, et al. Diagnosis of sleep apnea by the analysis of heart rate variation: a mini review. Conf Proc IEEE Eng Med Biol Soc.
 2011;2011:7731-4. Epub: 2012/01/19. PMID: 22256130. Exclusion Code: X9
- 491. Hayashida K, Inoue Y, Chiba S, et al. Factors influencing subjective sleepiness in patients with obstructive sleep apnea syndrome. Psychiatry Clin Neurosci. 2007 Oct;61(5):558-63. Epub: 2007/09/19. PMID: 17875036. Exclusion Code: X4
- 492. Hayes, Inc. Powered intracapsular tonsillectomy and adenoidectomy (PITA) for treatment of obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2007(3)PMID: HTA-32009100522. Exclusion Code: X13
- 493. Hayes, Inc. Repose Tongue and Hyoid Suspension (THS) system (Medtronic Xomed Inc.) for obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2010(3)PMID: HTA-32010000980. Exclusion Code: X13
- 494. Hayes, Inc. Provent sleep apnea therapy (Ventus Medical Inc.) for obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2011(3)PMID: HTA-32012000163. Exclusion Code: X13
- 495. Hayes, Inc. Provent sleep apnea therapy (Ventus Medical Inc.) (Structured abstract). Health Technology Assessment Database. 2012(3)PMID: HTA-32013000268. Exclusion Code: X13

- 496. Hayes, Inc. Bilevel positive airway pressure for the treatment of obstructive sleep apnea in adults (Structured abstract). Health Technology Assessment Database. 2013(3)PMID: HTA-32014000356. Exclusion Code: X13
- 497. Hayes, Inc. Provent sleep apnea therapy (Ventus Medical Inc.) for obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2013(3)PMID: HTA-32013000840. Exclusion Code: X13
- 498. Hayes, Inc. Apnea Risk Evaluation System (ARES; Watermark Medical Inc.) for diagnosis of obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2014(3)PMID: HTA-32014000485. Exclusion Code: X13
- 499. He J, Kryger MH, Zorick FJ, et al. Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients. Chest. 1988 Jul;94(1):9-14. PMID: 3289839. Exclusion Code: X3
- 500. He QY, Feng J, Zhang XL, et al.
 Relationship of daytime blood pressure and severity of obstructive sleep apnea among Chinese: a multi-center investigation in China. Chin Med J (Engl). 2010 Jan 5;123(1):18-22. Epub: 2010/02/09. PMID: 20137569. Exclusion Code: X3
- 501. Hecht L, Mohler R, Meyer G. Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci. 2011;9:Doc20. Epub: 2011/08/25. PMID: 21863134. Exclusion Code: X4
- 502. Hedner J, White DP, Malhotra A, et al. Sleep staging based on autonomic signals: a multi-center validation study. J Clin Sleep Med. 2011 Jun 15;7(3):301-6. Epub: 2011/06/17. PMID: 21677901. Exclusion Code: X4
- 503. Henderson MJ, Sadlier K, Currie BG. Obesity in older adults. A major contributor to chronicity. Adv Nurse Pract. 2006 May;14(5):63-6. Epub: 2006/09/16. PMID: 16972429. Exclusion Code: X2
- 504. Heneghan C, de Chazal P, Ryan S, et al. Electrocardiogram recording as a screening tool for sleep disordered breathing. J Clin Sleep Med. 2008 Jun 15;4(3):223-8. PMID: 18595434. Exclusion Code: X6

- 505. Henke KG, Grady JJ, Kuna ST. Effect of nasal continuous positive airway pressure on neuropsychological function in sleep apneahypopnea syndrome. A randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2001 Mar;163(4):911-7. Epub: 2001/04/03. PMID: 11282765. Exclusion Code: X5
- Herer B, Roche N, Carton M, et al. Value of clinical, functional, and oximetric data for the prediction of obstructive sleep apnea in obese patients. Chest. 1999
 Dec;116(6):1537-44. Epub: 1999/12/14.
 PMID: 10593773. Exclusion Code: X6
- 507. Hermans MP, Ahn SA, Mahadeb YP, et al. Sleep apnoea syndrome and 10-year cardiovascular risk in females with type 2 diabetes: relationship with insulin secretion and insulin resistance. Diabetes Metab Res Rev. 2013 Mar;29(3):227-34. Epub: 2013/01/04. PMID: 23283827. Exclusion Code: X3
- 508. Hermida RC, Zamarrón C, Ayala DE, et al. Effect of continuous positive airway pressure on ambulatory blood pressure in patients with obstructive sleep apnoea. Blood Press Monit. 2004;9(4):193-202. PMID: CN-00496684. Exclusion Code: X3
- 509. Hernandez L, Torrella M, Roger N, et al. Management of sleep apnea: concordance between nonreference and reference centers. Chest. 2007 Dec;132(6):1853-7. Epub: 2007/10/11. PMID: 17925431. Exclusion Code: X6
- 510. Hernández-Vásquez A, López A, Pichon-Riviere A, et al. Temperature-controlled radiofrequency tissue ablation in obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2015(3)PMID: HTA-32015000882. Exclusion Code: X3
- 511. Herzog M, Metz T, Schmidt A, et al. The prognostic value of simulated snoring in awake patients with suspected sleep-disordered breathing: introduction of a new technique of examination. Sleep. 2006
 Nov;29(11):1456-62. Epub: 2006/12/14.
 PMID: 17162993. Exclusion Code: X3
- 512. Hida W, Okabe S, Tatsumi K, et al. Nasal continuous positive airway pressure improves quality of life in obesity hypoventilation syndrome. Sleep Breath. 2003 Mar;7(1):3-12. Epub: 2003/04/25. PMID: 12712392. Exclusion Code: X3

- 513. Hida W, Shindoh C, Miki H, et al.
 Prevalence of sleep apnea among Japanese industrial workers determined by a portable sleep monitoring system. Respiration.
 1993;60(6):332-7. Exclusion Code: X10
- 514. Hillerdal G, Hetta J, Lindholm CE, et al. Symptoms in heavy snorers with and without obstructive sleep apnea. Acta Otolaryngol. 1991;111(3):574-81. Epub: 1991/01/01. PMID: 1887783. Exclusion Code: X5
- 515. Hilton MF, Bates RA, Godfrey KR, et al. Evaluation of frequency and time-frequency spectral analysis of heart rate variability as a diagnostic marker of the sleep apnoea syndrome. Med Biol Eng Comput. 1999
 Nov;37(6):760-9. Epub: 2000/03/21. PMID: 10723884. Exclusion Code: X6
- 516. Hira HS. Obstructive sleep apnea syndrome: evaluation of subcritical continuous positive airway pressure. J Assoc Physicians India. 1998;46(9):796-7. PMID: CN-00328675. Exclusion Code: X12
- 517. Hishikawa Y, Furuya E, Wakamatsu H, et al. A polygraphic study of hypersomnia with periodic breathing and primary alveolar hypoventilation. Bull Physiopathol Respir (Nancy). 1972 Sep-Oct;8(5):1139-51. Epub: 1972/09/01. PMID: 4657864. Exclusion Code: X3
- 518. Hla KM, Young T, Finn L, et al.
 Longitudinal association of sleep-disordered breathing and nondipping of nocturnal blood pressure in the Wisconsin Sleep Cohort Study. Sleep. 2008 Jun;31(6):795-800.
 Epub: 2008/06/14. PMID: 18548823.
 Exclusion Code: X4
- 519. Hla KM, Young TB, Bidwell T, et al. Sleep apnea and hypertension. A population-based study. Ann Intern Med. 1994 Mar 1;120(5):382-8. Epub: 1994/03/01. PMID: 8304655. Exclusion Code: X3
- 520. Hnin K, Antic NA, Anderson CS, et al. Predictors of obstructive sleep apnoea severity in patients enrolled in the sleep apnoea cardiovascular endpoint "save" trial. Sleep Biol Rhythms. 2014;12:47-8. PMID: CN-01049799. Exclusion Code: X3
- 521. Hoekema A, Stegenga B, Bakker M, et al. Simulated driving in obstructive sleep apnoea-hypopnoea; effects of oral appliances and continuous positive airway pressure. Schlaf & Atmung [Sleep & breathing]. 2007;11(3):129-38. PMID: CN-00617640. Exclusion Code: X4

- 522. Hoekema A, Stel AL, Stegenga B, et al. Sexual function and obstructive sleep apneahypopnea: a randomized clinical trial evaluating the effects of oral-appliance and continuous positive airway pressure therapy. J Sex Med. 2007 Jul;4(4 Pt 2):1153-62. Epub: 2006/11/04. PMID: 17081222. Exclusion Code: X3
- 523. Hoekema A, Voors AA, Wijkstra PJ, et al. Effects of oral appliances and CPAP on the left ventricle and natriuretic peptides. Int J Cardiol. 2008;128(2):232-9. PMID: CN-00647170. Exclusion Code: X10
- 524. Hoffstein V, Mateika S. Differences in abdominal and neck circumferences in patients with and without obstructive sleep apnoea. Eur Respir J. 1992 Apr;5(4):377-81. Epub: 1992/04/01. PMID: 1563498. Exclusion Code: X8
- 525. Holmdahl C, Schollin IL, Alton M, et al. Erratum to "CPAP treatment in obstructive sleep apnoea: A randomised, controlled trial of follow-up with a focus on patient satisfaction" [Sleep Medicine 10 (2009) 869-874]

 (DOI:10.1016/j.sleep.2008.08.008). Sleep Med. 2010;11(1):112. PMID: CN-00789445. Exclusion Code: X9
- 526. Holmlund T, Levring-Jaghagen E, Franklin KA, et al. Effects of Radiofrequency versus sham surgery of the soft palate on daytime sleepiness. Laryngoscope. 2014
 Oct;124(10):2422-6. Epub: 2014/01/07.
 PMID: 24390800. Exclusion Code: X3
- 527. Holmqvist F, Guan N, Zhu Z, et al. Impact of obstructive sleep apnea and continuous positive airway pressure therapy on outcomes in patients with atrial fibrillation-Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am Heart J. 2015 May;169(5):647-54.e2. Epub: 2015/05/13. PMID: 25965712. Exclusion Code: X10
- 528. Hood MM, Corsica J, Cvengros J, et al. Impact of a brief dietary self-monitoring intervention on weight change and CPAP adherence in patients with obstructive sleep apnea. J Psychosom Res. 2013
 Feb;74(2):170-4. Epub: 2013/01/22. PMID: 23332533. Exclusion Code: X4
- Hossen A, Jaju D, Al-Ghunaimi B, et al. Classification of sleep apnea using wavelet-based spectral analysis of heart rate variability. Technol Health Care.
 2013;21(4):291-303. Epub: 2013/08/21.
 PMID: 23949174. Exclusion Code: X9

- 530. Hoth KF, Zimmerman ME, Meschede KA, et al. Obstructive sleep apnea: impact of hypoxemia on memory. Sleep Breath. 2013 May;17(2):811-7. Epub: 2012/10/16. PMID: 23065547. Exclusion Code: X3
- 531. Hou HM, Hagg U, Sam K, et al. Dentofacial characteristics of Chinese obstructive sleep apnea patients in relation to obesity and severity. Angle Orthod. 2006
 Nov;76(6):962-9. Epub: 2006/11/09. PMID: 17090158. Exclusion Code: X9
- 532. Hoyos C, Killick R, Yee B, et al. Cardiometabolic and neurobehavioural changes after continuous positive airway pressure (CPAP) treatment for obstructive sleep apnea (OSA): A 12-week randomised sham-controlled study. Journal of Sleep Research. Conference: 23rd Annual Scientific Meeting of the Australasian Sleep Association and Australasian Sleep Technologists Association: Sleep and the City, Sleep DownUnder 2011 Sydney, NSW Australia. Conference Start: 20111027 Conference End: 20111029. Conference Publication: (var.pagings), 2011;20:15. PMID: CN-00836910. Exclusion Code: X8
- 533. Hoyos C, Sullivan D, Liu P. Effect of CPAP on the metabolic syndrome: a randomised sham-controlled study. Thorax. 2013;68(6):588-9. PMID: CN-00872762. Exclusion Code: X4
- 534. Hoyos CM, Killick R, Keenan DM, et al. Continuous positive airway pressure increases pulsatile growth hormone secretion and circulating insulin-like growth factor-1 in a time-dependent manner in men with obstructive sleep apnea: A randomized sham-controlled study. Sleep. 2014;37(4):733-41. PMID: CN-00984593. Exclusion Code: X4
- 535. Hrubos-Strom H, Einvik G, Nordhus IH, et al. Sleep apnoea, anxiety, depression and somatoform pain: a community-based highrisk sample. Eur Respir J. 2012
 Aug;40(2):400-7. Epub: 2012/03/24. PMID: 22441739. Exclusion Code: X3
- 536. Hsieh SW, Lai CL, Liu CK, et al.
 Obstructive sleep apnea linked to wake-up strokes. J Neurol. 2012 Jul;259(7):1433-9.
 Epub: 2012/01/05. PMID: 22215237.
 Exclusion Code: X8

- 537. Hsieh YJ, Liao YF. Effects of maxillomandibular advancement on the upper airway and surrounding structures in patients with obstructive sleep apnoea: a systematic review (Provisional abstract). Br J Oral Maxillofac Surg. 2013;51(8):834-40. PMID: DARE-12014003362. Exclusion Code: X3
- 538. Hsu CY, Vennelle M, Li HY, et al. Sleep-disordered breathing after stroke: a randomised controlled trial of continuous positive airway pressure. J Neurol Neurosurg Psychiatry. 2006 Oct;77(10):1143-9. Epub: 2006/06/15. PMID: 16772358. Exclusion Code: X8
- 539. Hsu K, Tyler L, Lambert S, et al. CPAP therapy used to treat obstructive sleep apnoea (OSA) during the multiple sleep latency test (MSLT) does not consistently change the sleep latency [Abstract]. Sleep Biol Rhythms. 2010;8(Suppl 1):A77 [p135]. PMID: CN-00782801. Exclusion Code: X9
- 540. Huang Z, Liu Z, Luo Q, et al. Long-term effects of continuous positive airway pressure on blood pressure and prognosis in hypertensive patients with coronary heart disease and obstructive sleep apnea: A randomized controlled trial. Am J Hypertens. 2015;28(3):300-6. PMID: CN-01086208. Exclusion Code: X12
- 541. Hudgel DW, Lamerato LE, Jacobsen GR, et al. Assessment of multiple health risks in a single obstructive sleep apnea population. J Clin Sleep Med. 2012 Feb 15;8(1):9-18. Epub: 2012/02/16. PMID: 22334803. Exclusion Code: X3
- 542. Hui DS, Ko FW, Chan JK, et al. Sleep-disordered breathing and continuous positive airway pressure compliance in a group of commercial bus drivers in Hong Kong.
 Respirology. 2006 Nov;11(6):723-30. Epub: 2006/10/21. PMID: 17052300. Exclusion Code: X10
- 543. Hui DS, Shang Q, Ko FW, et al. A prospective cohort study of the long-term effects of CPAP on carotid artery intimamedia thickness in obstructive sleep apnea syndrome. Respir Res. 2012;13:22. Epub: 2012/03/20. PMID: 22424053. Exclusion Code: X3

- 544. Hui DS, To KW, Ko FW, et al. A randomized subtherapeutic CPAP controlled study of the effects of nasal CPAP on 24-hour systemic blood pressure in obstructive sleep apnoea syndrome [Abstract]. Proc Am Thorac Soc. 2006:A870 [Poster 20]. PMID: CN-00592198. Exclusion Code: X8
- 545. Hussain SF, Fleetham JA. Overnight home oximetry: can it identify patients with obstructive sleep apnea-hypopnea who have minimal daytime sleepiness? Respir Med. 2003 May;97(5):537-40. Epub: 2003/05/09. PMID: 12735672. Exclusion Code: X10
- 546. Huupponen E, Himanen SL, Hasan J, et al. Automatic analysis of electroencephalogram sleep spindle frequency throughout the night. Med Biol Eng Comput. 2003 Nov;41(6):727-32. Epub: 2003/12/23. PMID: 14686599. Exclusion Code: X10
- 547. Huynh NT, Prilipko O, Kushida CA, et al. Volumetric brain morphometry changes in patients with obstructive sleep apnea syndrome: Effects of CPAP treatment and literature review. Front Neurol. 2014;5 APR. Exclusion Code: X4
- 548. Hwang SH, Lee HJ, Yoon HN, et al.
 Unconstrained sleep apnea monitoring using polyvinylidene fluoride film-based sensor.
 IEEE Trans Biomed Eng. 2014
 Jul;61(7):2125-34. Epub: 2014/04/11.
 PMID: 24718565. Exclusion Code: X3
- 549. Iber C, Redline S, Kaplan Gilpin AM, et al. Polysomnography performed in the unattended home versus the attended laboratory setting--Sleep Heart Health Study methodology. Sleep. 2004 May 1;27(3):536-40. Epub: 2004/05/29. PMID: 15164911. Exclusion Code: X4
- 550. Ibrahim AS, Almohammed AA, Allangawi MH, et al. Predictors of obstructive sleep apnea in snorers. Ann Saudi Med. 2007 Nov-Dec;27(6):421-6. Epub: 2007/12/07. PMID: 18059121. Exclusion Code: X8
- 551. Iftikhar IH, Blankfield RP. Effect of continuous positive airway pressure on hemoglobin A1c in patients with obstructive sleep apnea: a systematic review and meta-analysis (Provisional abstract). Lung. 2012;190(6):605-11. PMID: DARE-12013016465. Exclusion Code: X3
- 552. Iftikhar IH, Kline CE, Youngstedt SD.
 Effects of exercise training on sleep apnea: a
 meta-analysis (Provisional abstract). Lung.
 2013(3)PMID: DARE-12013058641.
 Exclusion Code: X9

- 553. Igelstrom H, Emtner M, Lindberg E, et al. Tailored behavioral medicine intervention for enhanced physical activity and healthy eating in patients with obstructive sleep apnea syndrome and overweight. Sleep Breath. 2014 Sep;18(3):655-68. Epub: 2014/01/01. PMID: 24379169. Exclusion Code: X10
- 554. Ikeda Y, Kasai T, Kawana F, et al.
 Comparison between the apnea-hypopnea indices determined by the REMstar Auto M series and those determined by standard inlaboratory polysomnography in patients with obstructive sleep apnea. Intern Med. 2012;51(20):2877-85. Epub: 2012/10/16. PMID: 23064561. Exclusion Code: X4
- 555. Imadojemu VA, Mawji Z, Kunselman A, et al. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy. Chest. 2007;131(5):1406-13. PMID: CN-00588752. Exclusion Code: X3
- 556. Issa FG, Morrison D, Hadjuk E, et al.
 Digital monitoring of sleep-disordered
 breathing using snoring sound and arterial
 oxygen saturation. Am Rev Respir Dis. 1993
 Oct;148(4 Pt 1):1023-9. Epub: 1993/10/01.
 PMID: 8214920. Exclusion Code: X6
- 557. Izci B, Ardic S, Firat H, et al. Reliability and validity studies of the Turkish version of the Epworth Sleepiness Scale. Sleep Breath. 2008 May;12(2):161-8. Epub: 2007/10/09. PMID: 17922157. Exclusion Code: X9
- 558. Izci B, Firat H, Ardic S, et al. Adaptation of functional outcomes of sleep questionnaire (FOSQ) to Turkish population. Tuberk Toraks. 2004;52(3):224-30. Epub: 2004/09/08. PMID: 15351934. Exclusion Code: X9
- 559. Jager L, Gunther E, Gauger J, et al. Fluoroscopic MR of the pharynx in patients with obstructive sleep apnea. AJNR Am J Neuroradiol. 1998 Aug;19(7):1205-14. Epub: 1998/09/03. PMID: 9726454. Exclusion Code: X9
- 560. Jaspers GW, Booij A, de Graaf J, et al. Long-term results of maxillomandibular advancement surgery in patients with obstructive sleep apnoea syndrome. Br J Oral Maxillofac Surg. 2013 Apr;51(3):e37-9. Epub: 2012/05/09. PMID: 22560785. Exclusion Code: X3

- 561. Jauhar S, Orchardson R, Banham SW, et al. The Kushida Index as a screening tool for obstructive sleep apnoea-hypopnoea syndrome. Br Dent J. 2012 Jan;212(1):E2. Epub: 2012/01/14. PMID: 22240714. Exclusion Code: X10
- 562. Javadi HR, Jalilolghadr S, Yazdi Z, et al. Correlation between obstructive sleep apnea syndrome and cardiac disease severity. Cardiovasc Psychiatry Neurol. 2014;2014. Exclusion Code: X3
- 563. Jenkinson C, Davies RJ, Mullins R, et al. Long-term benefits in self-reported health status of nasal continuous positive airway pressure therapy for obstructive sleep apnoea. QJM. 2001 Feb;94(2):95-9. Epub: 2001/02/22. PMID: 11181985. Exclusion Code: X6
- 564. Jennum P, Sjol A. Snoring, sleep apnoea and cardiovascular risk factors: the MONICA II Study. Int J Epidemiol. 1993 Jun;22(3):439-44. Epub: 1993/06/01. PMID: 8359959. Exclusion Code: X3
- 565. Jilek C, Krenn M, Sebah D, et al. Prognostic impact of sleep disordered breathing and its treatment in heart failure: an observational study. Eur J Heart Fail. 2011 Jan;13(1):68-75. Epub: 2010/10/22. PMID: 20961913. Exclusion Code: X8
- 566. Jimenez Caballero PE, Coloma Navarro R, Ayo Martin O, et al. Cerebral hemodynamic changes in obstructive sleep apnea syndrome after continuous positive airway pressure treatment. Sleep Breath. 2013 Sep;17(3):1103-8. Epub: 2013/02/07. PMID: 23386369. Exclusion Code: X10
- 567. Jin J, Sanchez-Sinencio E. A home sleep apnea screening device with time-domain signal processing and autonomous scoring capability. IEEE Trans Biomed Circuits Syst. 2015 Feb;9(1):96-104. Epub: 2014/12/09. PMID: 25486649. Exclusion Code: X9
- 568. Jniene A, el Ftouh M, Fihry MT. Sleep apnea syndrome: experience of the pulmonology department in Ibn Sina Hospital, Rabat, Morocco. Pan Afr Med J. 2012;13:28. Epub: 2013/01/12. PMID: 23308333. Exclusion Code: X4
- 569. Johal A, Battagel J, Hector M. Controlled, prospective trial of psychosocial function before and after mandibular advancement splint therapy. Am J Orthod Dentofacial Orthop. 2011 May;139(5):581-7. Epub: 2011/05/04. PMID: 21536199. Exclusion Code: X3

- 570. Johansson K, Neovius M, Lagerros YT, et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: A randomised controlled trial. Clin Otolaryngol. 2010;35(3):219. Exclusion Code: X3
- 571. Johansson P, Alehagen U, Svanborg E, et al. Clinical characteristics and mortality risk in relation to obstructive and central sleep apnoea in community-dwelling elderly individuals: a 7-year follow-up. Age Ageing. 2012 Jul;41(4):468-74. Epub: 2012/03/24. PMID: 22440587. Exclusion Code: X10
- 572. Johns MW. A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep. 1991 Dec;14(6):540-5. Epub: 1991/12/01. PMID: 1798888. Exclusion Code: X8
- 573. Johns MW. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep. 1992
 Aug;15(4):376-81. Epub: 1992/08/01.
 PMID: 1519015. Exclusion Code: X8
- 574. Johns MW. Daytime sleepiness, snoring, and obstructive sleep apnea. The Epworth Sleepiness Scale. Chest. 1993
 Jan;103(1):30-6. Epub: 1993/01/01. PMID: 8417909. Exclusion Code: X8
- 575. Joshi GP, Ankichetty SP, Gan TJ, et al. Society for Ambulatory Anesthesia consensus statement on preoperative selection of adult patients with obstructive sleep apnea scheduled for ambulatory surgery. Anesth Analg. 2012
 Nov;115(5):1060-8. Epub: 2012/08/14.
 PMID: 22886843. Exclusion Code: X3
- 576. Julia-Serda G, Perez-Penate G, Saavedra-Santana P, et al. Usefulness of cephalometry in sparing polysomnography of patients with suspected obstructive sleep apnea. Sleep Breath. 2006 Dec;10(4):181-7. Epub: 2006/10/21. PMID: 17053929. Exclusion Code: X9
- 577. Jung HH, Lee JH, Baek HJ, et al. Nocturnal hypoxemia and periodic limb movement predict mortality in patients on maintenance hemodialysis. Clin J Am Soc Nephrol. 2010 Sep;5(9):1607-13. Epub: 2010/05/29. PMID: 20507958. Exclusion Code: X3
- 578. Jung K, Ayalon L, Loredo JS, et al.
 Influence of treating alzheimer's patients
 sleep disordered breathing on the quality of
 caregivers sleep [Abstract]. Sleep.
 2006;29(Suppl):A184. PMID: CN00592021. Exclusion Code: X4

- 579. Kajaste S, Brander PE, Telakivi T, et al. A cognitive-behavioral weight reduction program in the treatment of obstructive sleep apnea syndrome with or without initial nasal CPAP: a randomized study. Sleep Med. 2004 Mar;5(2):125-31. Epub: 2004/03/23. PMID: 15033131. Exclusion Code: X10
- 580. Kallweit U, Hidalgo H, Uhl V, et al.
 Continuous positive airway pressure therapy
 is effective for migraines in sleep apnea
 syndrome. Neurology. 2011;76(13):118991. Exclusion Code: X10
- 581. Känel R, Loredo JS, Ancoli-Israel S, et al. Association between sleep apnea severity and blood coagulability: Treatment effects of nasal continuous positive airway pressure. Schlaf & Atmung [Sleep & breathing]. 2006;10(3):139-46. PMID: CN-00570349. Exclusion Code: X4
- 582. Kang JH, Lin HC. Obstructive sleep apnea and the risk of autoimmune diseases: a longitudinal population-based study. Sleep Med. 2012 Jun;13(6):583-8. Epub: 2012/04/24. PMID: 22521311. Exclusion Code: X3
- 583. Kang K, Park KS, Kim JE, et al. Usefulness of the Berlin Questionnaire to identify patients at high risk for obstructive sleep apnea: a population-based door-to-door study. Sleep Breath. 2013 May;17(2):803-10. Epub: 2012/10/12. PMID: 23054593. Exclusion Code: X9
- 584. Karaca S, Fidan F, Erkan F, et al. Might psoriasis be a risk factor for obstructive sleep apnea syndrome? Sleep Breath. 2013 Mar;17(1):275-80. Epub: 2012/03/16. PMID: 22418840. Exclusion Code: X3
- 585. Karakoc O, Akcam T, Genc H, et al. Use of the Berlin Questionnaire to screen at-risk patients for obstructive sleep apnea. B-ent. 2014;10(1):21-5. Epub: 2014/04/29. PMID: 24765825. Exclusion Code: X12
- 586. Karakoc O, Akcam T, Gerek M, et al. The upper airway evaluation of habitual snorers and obstructive sleep apnea patients. ORL J Otorhinolaryngol Relat Spec. 2012;74(3):136-40. Epub: 2012/04/11. PMID: 22488156. Exclusion Code: X8
- 587. Karatayli-Ozgursoy S, Demireller A. Hyoid suspension surgery with UPPP for the treatment of hypopharyngeal airway obstruction in obstructive sleep apnea. Ear Nose Throat J. 2012 Aug;91(8):358-64. Epub: 2012/08/30. PMID: 22930085. Exclusion Code: X10

- 588. Karimi M, Hedner J, Habel H, et al. Sleep apnea-related risk of motor vehicle accidents is reduced by continuous positive airway pressure: Swedish Traffic Accident Registry data. Sleep. 2015 Mar;38(3):341-9. Epub: 2014/10/18. PMID: 25325460. Exclusion Code: X3
- 589. Karimi M, Hedner J, Lombardi C, et al.
 Driving habits and risk factors for traffic accidents among sleep apnea patients--a
 European multi-centre cohort study. J Sleep
 Res. 2014 Dec;23(6):689-99. Epub:
 2014/07/22. PMID: 25040185. Exclusion
 Code: X8
- 590. Karunajeewa AS, Abeyratne UR, Hukins C. Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome. Physiol Meas. 2011 Jan;32(1):83-97. Epub: 2010/12/02. PMID: 21119221. Exclusion Code: X9
- 591. Kasiakogias A, Tsioufis C, Thomopoulos C, et al. Effects of continuous positive airway pressure on blood pressure in hypertensive patients with obstructive sleep apnea: a 3-year follow-up. J Hypertens. 2013 Feb;31(2):352-60. Epub: 2012/12/14. PMID: 23235356. Exclusion Code: X10
- 592. Katz I, Stradling J, Slutsky AS, et al. Do patients with obstructive sleep apnea have thick necks? Am Rev Respir Dis. 1990 May;141(5 Pt 1):1228-31. Epub: 1990/05/01. PMID: 2339843. Exclusion Code: X8
- 593. Kaw R, Chung F, Pasupuleti V, et al. Metaanalysis of the association between obstructive sleep apnoea and postoperative outcome. Br J Anaesth. 2012 Dec;109(6):897-906. Epub: 2012/09/08. PMID: 22956642. Exclusion Code: X4
- 594. Kawaguchi Y, Fukumoto S, Inaba M, et al. Different impacts of neck circumference and visceral obesity on the severity of obstructive sleep apnea syndrome. Obesity (Silver Spring). 2011 Feb;19(2):276-82. Epub: 2010/08/14. PMID: 20706203. Exclusion Code: X8
- 595. Keenan SP, Anderson B, Wiggs B, et al. The predictive accuracy of home oximetry in patients with suspected obstructive sleep apnea. Sleep. 1993 Dec;16(8 Suppl):S133-4. Epub: 1993/12/01. PMID: 8178005. Exclusion Code: X8

- 596. Kemppainen T, Ruoppi P, Seppa J, et al. Effect of weight reduction on rhinometric measurements in overweight patients with obstructive sleep apnea. Am J Rhinol. 2008 Jul-Aug;22(4):410-5. Epub: 2008/08/16. PMID: 18702908. Exclusion Code: X6
- 597. Kendzerska T, Gershon AS, Hawker G, et al. Obstructive sleep apnea and risk of cardiovascular events and all-cause mortality: a decade-long historical cohort study. PLoS Med. 2014
 Feb;11(2):e1001599. Epub: 2014/02/08.
 PMID: 24503600. Exclusion Code: X4
- 598. Kendzerska T, Leung RS, Hawker G, et al. Obstructive sleep apnea and the prevalence and incidence of cancer. CMAJ. 2014 Sep 16;186(13):985-92. Epub: 2014/08/07. PMID: 25096668. Exclusion Code: X8
- 599. Kendzerska T, Mollayeva T, Gershon AS, et al. Untreated obstructive sleep apnea and the risk for serious long-term adverse outcomes: a systematic review. Sleep Med Rev. 2014 Feb;18(1):49-59. Epub: 2013/05/07. PMID: 23642349. Exclusion Code: X3
- 600. Kesper K, Canisius S, Penzel T, et al. ECG signal analysis for the assessment of sleep-disordered breathing and sleep pattern. Med Biol Eng Comput. 2012 Feb;50(2):135-44. Epub: 2011/12/24. PMID: 22194020. Exclusion Code: X9
- 601. Kezirian EJ, Harrison SL, Ancoli-Israel S, et al. Behavioral correlates of sleep-disordered breathing in older women. Sleep. 2007 Sep;30(9):1181-8. Epub: 2007/10/04. PMID: 17910390. Exclusion Code: X3
- 602. Khan A, King WC, Patterson EJ, et al. Assessment of obstructive sleep apnea in adults undergoing bariatric surgery in the longitudinal assessment of bariatric surgery-2 (LABS-2) study. J Clin Sleep Med. 2013 Jan 15;9(1):21-9. Epub: 2013/01/16. PMID: 23319901. Exclusion Code: X3
- 603. Khan A, King WC, Patterson EJ, et al.
 Obstructive sleep apnea prior to bariatric surgery: Diagnostic testing, prevalence and predictive value of the berlin sleep questionnaire in the longitudinal assessment of bariatric surgery-2 (LABS-2) cohort. Am J Respir Crit Care Med. 2011;183(1).
 Exclusion Code: X9

- 604. Khandoker AH, Palaniswami M, Karmakar CK. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans Inf Technol Biomed. 2009

 Jan;13(1):37-48. Epub: 2009/01/09. PMID: 19129022. Exclusion Code: X5
- 605. Khoo SM, Poh HK, Chan YH, et al.
 Diagnostic characteristics of clinical
 prediction models for obstructive sleep
 apnea in different clinic populations. Sleep
 Breath. 2011 Sep;15(3):431-7. Epub:
 2010/05/05. PMID: 20440569. Exclusion
 Code: X8
- 606. Kiely JL, Delahunty C, Matthews S, et al. Comparison of a limited computerized diagnostic system (ResCare Autoset) with polysomnography in the diagnosis of obstructive sleep apnoea syndrome. Eur Respir J. 1996 Nov;9(11):2360-4. PMID: 8947086. Exclusion Code: X6
- 607. Kim H, Kim MS, Lee JE, et al. Treatment outcomes and compliance according to obesity in patients with obstructive sleep apnea. Eur Arch Otorhinolaryngol. 2013 Nov;270(11):2885-90. Epub: 2013/03/05. PMID: 23455579. Exclusion Code: X3
- 608. Kim MJ, Kim BY, Lee DC, et al. A modified uvulopalatal flap with lateral pharyngoplasty for treatment in 92 adults with obstructive sleep apnoea syndrome. Clin Otolaryngol. 2013 Oct;38(5):415-9. Epub: 2013/06/05. PMID: 23731664. Exclusion Code: X10
- 609. Kimoff RJ, Sforza E, Champagne V, et al. Upper airway sensation in snoring and obstructive sleep apnea. Am J Respir Crit Care Med. 2001;164(2):250-5. PMID: CN-00557984. Exclusion Code: X3
- 610. Kingshott RN, Douglas NJ. The effect of inlaboratory polysomnography on sleep and objective daytime sleepiness. Sleep. 2000 Dec 15;23(8):1109-13. Epub: 2001/01/06. PMID: 11145325. Exclusion Code: X9
- 611. Kingshott RN, Sime PJ, Engleman HM, et al. Self assessment of daytime sleepiness: patient versus partner. Thorax. 1995 Sep;50(9):994-5. Epub: 1995/09/01. PMID: 8539684. Exclusion Code: X8
- 612. Kinoshita LM, Yesavage JA, Noda A, et al. Modeling the effects of obstructive sleep apnea and hypertension in Vietnam veterans with PTSD. Sleep Breath. 2012
 Dec;16(4):1201-9. Epub: 2011/12/24.
 PMID: 22193972. Exclusion Code: X3

- 613. Kirsch DB. PRO: sliding into home: portable sleep testing is effective for diagnosis of obstructive sleep apnea. J Clin Sleep Med. 2013 Jan 15;9(1):5-7. Epub: 2013/01/16. PMID: 23319897. Exclusion Code: X2
- 614. Kline CE, Crowley EP, Ewing GB, et al.
 The effect of exercise training on obstructive sleep apnea and sleep quality: a randomized controlled trial. Sleep. 2011
 Dec;34(12):1631-40. Epub: 2011/12/02.
 PMID: 22131599. Exclusion Code: X6
- 615. Kline CE, Milton DN, Kane CJ, et al.
 Exercise training significantly reduces
 obstructive sleep apnea severity and
 improves sleep quality in untreated adults: A
 randomized controlled trial. Sleep.
 2011;34:A144-A5. Exclusion Code: X11
- 616. Ko MT, Su CY. Computer-assisted quantitative evaluation of obstructive sleep apnea using digitalized endoscopic imaging with Muller maneuver. Laryngoscope. 2008 May;118(5):909-14. Epub: 2008/02/28. PMID: 18300707. Exclusion Code: X3
- 617. Kobayashi M, Namba K, Tsuiki S, et al. Validity of sheet-type portable monitoring device for screening obstructive sleep apnea syndrome. Sleep Breath. 2013

 May;17(2):589-95. Epub: 2012/06/19.

 PMID: 22707086. Exclusion Code: X3
- 618. Kobukai Y, Koyama T, Watanabe H, et al. Morning pentraxin3 levels reflect obstructive sleep apnea-related acute inflammation. J Appl Physiol (1985). 2014 Nov 15;117(10):1141-8. Epub: 2014/09/23. PMID: 25237185. Exclusion Code: X10
- 619. Kohler M, Ayers L, Pepperell JC, et al. Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnoea: a randomised controlled trial. Thorax. 2009;64(1):67-73. PMID: CN-00668883. Exclusion Code: X6
- 620. Kohler M, Craig S, Pepperell JC, et al. CPAP improves endothelial function in patients with minimally symptomatic OSA: results from a subset study of the MOSAIC trial. Chest. 2013 Sep;144(3):896-902. Epub: 2013/05/25. PMID: 23702567. Exclusion Code: X4

- 621. Kohler M, Pepperell JC, Davies RJ, et al.
 Continuous positive airway pressure and
 liver enzymes in obstructive sleep apnoea:
 data from a randomized controlled trial.
 Respiration; international review of thoracic
 diseases. 2009;78(2):141-6. PMID: CN00735457. Exclusion Code: X6
- 622. Kohler M, Stoewhas AC, Ayers L, et al. Effects of continuous positive airway pressure therapy withdrawal in patients with obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 2011 Nov 15;184(10):1192-9. Epub: 2011/08/13. PMID: 21836134. Exclusion Code: X8
- 623. Koley BL, Dey D. On-line detection of apnea/hypopnea events using SpO2 signal: a rule-based approach employing binary classifier models. IEEE J Biomed Health Inform. 2014 Jan;18(1):231-9. Epub: 2014/01/10. PMID: 24403421. Exclusion Code: X8
- 624. Kolotkin RL, LaMonte MJ, Walker JM, et al. Predicting sleep apnea in bariatric surgery patients. Surg Obes Relat Dis. 2011 Sep-Oct;7(5):605-10. Epub: 2011/06/21. PMID: 21684219. Exclusion Code: X8
- 625. Kooblall M, Lane SJ, Moloney E. The role of oximetry in patients with obstructive sleep apnea. Ir Med J. 2015 Feb;108(2):61-2. Epub: 2015/03/26. PMID: 25803963. Exclusion Code: X10
- 626. Korczynski P, Gorska K, Przybylowski T, et al. Continuous positive airway pressure treatment increases bronchial reactivity in obstructive sleep apnea patients. Respiration; international review of thoracic diseases. 2009;78(4):404-10. PMID: CN-00753795. Exclusion Code: X4
- 627. Korkuyu E, Duzlu M, Karamert R, et al. The efficacy of Watch PAT in obstructive sleep apnea syndrome diagnosis. Eur Arch Otorhinolaryngol. 2015 Jan;272(1):111-6. Epub: 2014/05/20. PMID: 24838359. Exclusion Code: X4
- 628. Korostovtseva LS, Sviryaev YV, Zvartau NE, et al. Prognosis and cardiovascular morbidity and mortality in prospective study of hypertensive patients with obstructive sleep apnea syndrome in St Petersburg, Russia. Med Sci Monit. 2011 Feb 25;17(3):Cr146-53. Epub: 2011/03/02. PMID: 21358601. Exclusion Code: X12

- 629. Kotzian ST, Stanek JK, Pinter MM, et al. Subjective evaluation of sleep apnea is not sufficient in stroke rehabilitation. Top Stroke Rehabil. 2012 Jan-Feb;19(1):45-53. Epub: 2012/02/07. PMID: 22306628. Exclusion Code: X8
- 630. Koutsourelakis I, Minaritzoglou A,
 Zakynthinos G, et al. The effect of nasal
 tramazoline with dexamethasone in
 obstructive sleep apnoea patients. Eur Respir
 J. 2013 Oct;42(4):1055-63. Epub:
 2013/02/12. PMID: 23397296. Exclusion
 Code: X9
- 631. Koutsourelakis I, Perraki E, Bonakis A, et al. Determinants of subjective sleepiness in suspected obstructive sleep apnoea. J Sleep Res. 2008 Dec;17(4):437-43. Epub: 2008/09/03. PMID: 18761599. Exclusion Code: X4
- 632. Koyama RG, Esteves AM, Oliveira e Silva L, et al. Prevalence of and risk factors for obstructive sleep apnea syndrome in Brazilian railroad workers. Sleep Med. 2012 Sep;13(8):1028-32. Epub: 2012/07/31. PMID: 22841037. Exclusion Code: X4
- 633. Koziej M, Cieslicki JK, Gorzelak K, et al. Hand-scoring of MESAM 4 recordings is more accurate than automatic analysis in screening for obstructive sleep apnoea. Eur Respir J. 1994 Oct;7(10):1771-5. Epub: 1994/10/01. PMID: 7828683. Exclusion Code: X6
- 634. Krekmanov L, Andersson L, Ringqvist M, et al. Anterior-inferior mandibular osteotomy in treatment of obstructive sleep apnea syndrome. Int J Adult Orthodon Orthognath Surg. 1998;13(4):289-98. Epub: 1999/04/10. PMID: 10196816. Exclusion Code: X3
- 635. Kreutzer ML, Guilleminault C. Adherence to nasal continuous positive airway pressure (CPAP) in patients with congestive heat failure[Abstract]. Sleep. 2003;26(Suppl):A260. PMID: CN-00507732. Exclusion Code: X4
- 636. Kreuz J, Skowasch D, Horlbeck F, et al. Usefulness of sleep-disordered breathing to predict occurrence of appropriate and inappropriate implantable-cardioverter defibrillator therapy in patients with implantable cardioverter-defibrillator for primary prevention of sudden cardiac death. Am J Cardiol. 2013 May 1;111(9):1319-23. Epub: 2013/02/16. PMID: 23411108. Exclusion Code: X4

- 637. Krieger J, Meslier N, Lebrun T, et al.
 Accidents in obstructive sleep apnea patients
 treated with nasal continuous positive
 airway pressure: a prospective study. The
 Working Group ANTADIR, Paris and
 CRESGE, Lille, France. Association
 Nationale de Traitement a Domicile des
 Insuffisants Respiratoires. Chest. 1997
 Dec;112(6):1561-6. PMID: 9404754.
 Exclusion Code: X3
- 638. Kristiansen HA, Kvaerner KJ, Akre H, et al. Sleep apnoea headache in the general population. Cephalalgia. 2012
 Apr;32(6):451-8. Epub: 2011/12/17. PMID: 22174354. Exclusion Code: X3
- 639. Kritikou I, Basta M, Tappouni R, et al. Sleep apnoea and visceral adiposity in middleaged male and female subjects. Eur Respir J. 2013 Mar;41(3):601-9. Epub: 2012/06/30. PMID: 22743670. Exclusion Code: X10
- 640. Kulkarni GV, Horst A, Eberhardt JM, et al. Obstructive sleep apnea in general surgery patients: is it more common than we think? Am J Surg. 2014 Mar;207(3):436-40; discussion 9-40. Epub: 2014/01/21. PMID: 24439158. Exclusion Code: X10
- 641. Kulkas A, Leppanen T, Sahlman J, et al. Novel parameters reflect changes in morphology of respiratory events during weight loss. Physiol Meas. 2013 Sep;34(9):1013-26. Epub: 2013/08/16. PMID: 23945509. Exclusion Code: X10
- 642. Kulkas A, Tiihonen P, Julkunen P, et al. Novel parameters indicate significant differences in severity of obstructive sleep apnea with patients having similar apneahypopnea index. Med Biol Eng Comput. 2013 Jun;51(6):697-708. Epub: 2013/02/19. PMID: 23417543. Exclusion Code: X3
- 643. Kumar R, Nagar D, Mallick A, et al.
 Obstructive sleep apnoea and atopy among middle aged chronic obstructive pulmonary disease and bronchial asthma patients. J Assoc Physicians India. 2013
 Sep;61(9):615-8. Epub: 2014/04/30. PMID: 24772697. Exclusion Code: X10
- 644. Kump K, Whalen C, Tishler PV, et al. Assessment of the validity and utility of a sleep-symptom questionnaire. Am J Respir Crit Care Med. 1994 Sep;150(3):735-41. Epub: 1994/09/01. PMID: 8087345. Exclusion Code: X10

- 645. Kuna ST, Benca R, Kushida CA, et al. Agreement in computer-assisted manual scoring of polysomnograms across sleep centers. Sleep. 2013 Apr;36(4):583-9. Epub: 2013/04/09. PMID: 23565004. Exclusion Code: X4
- 646. Kuna ST, Gurubhagavatula I, Maislin G, et al. Noninferiority of functional outcome in ambulatory management of obstructive sleep apnea. Am J Respir Crit Care Med. 2011 May 1;183(9):1238-44. Epub: 2011/04/08. PMID: 21471093. Exclusion Code: X10
- 647. Kuna ST, Shuttleworth D, Chi L, et al. Webbased access to positive airway pressure usage with or without an initial financial incentive improves treatment use in patients with obstructive sleep apnea. Sleep. 2015;38(8):1229-36. Exclusion Code: X9
- 648. Kushida CA, Efron B, Guilleminault C. A predictive morphometric model for the obstructive sleep apnea syndrome. Ann Intern Med. 1997 Oct 15;127(8 Pt 1):581-7. Epub: 1997/10/27. PMID: 9341055. Exclusion Code: X3
- 649. Kushida CA, Nichols DA, Quan SF, et al.
 The Apnea Positive Pressure Long-term
 Efficacy Study (APPLES): rationale, design,
 methods, and procedures. Journal of clinical
 sleep medicine: JCSM: official publication
 of the American Academy of Sleep
 Medicine. 2006;2(3):288-300. PMID: CN00589651. Exclusion Code: X4
- 650. Kylstra WA, Aaronson JA, Hofman WF, et al. Neuropsychological functioning after CPAP treatment in obstructive sleep apnea: a meta-analysis (Provisional abstract). Sleep Med Rev. 2013;17(5):341-7. PMID: DARE-12013051616. Exclusion Code: X3
- 651. Lahav Y, Rosenzweig E, Heyman Z, et al. Tongue base ultrasound: a diagnostic tool for predicting obstructive sleep apnea. Ann Otol Rhinol Laryngol. 2009

 Mar;118(3):179-84. Epub: 2009/04/21.

 PMID: 19374148. Exclusion Code: X9
- 652. Lamberts M, Nielsen OW, Lip GY, et al. Cardiovascular risk in patients with sleep apnoea with or without continuous positive airway pressure therapy: follow-up of 4.5 million Danish adults. J Intern Med. 2014 Dec;276(6):659-66. Epub: 2014/08/30. PMID: 25169419. Exclusion Code: X3

- 653. Laporta R, Anandam A, El-Solh AA.
 Screening for obstructive sleep apnea in veterans with ischemic heart disease using a computer-based clinical decision-support system. Clin Res Cardiol. 2012
 Sep;101(9):737-44. Epub: 2012/04/06.
 PMID: 22476823. Exclusion Code: X8
- 654. Larrosa F, Hernandez L, Morello A, et al. Laser-assisted uvulopalatoplasty for snoring: does it meet the expectations? Eur Respir J. 2004 Jul;24(1):66-70. Epub: 2004/08/06. PMID: 15293606. Exclusion Code: X8
- 655. Lavie L, Lotan R, Hochberg I, et al. Haptoglobin polymorphism is a risk factor for cardiovascular disease in patients with obstructive sleep apnea syndrome. Sleep. 2003 Aug 1;26(5):592-5. Epub: 2003/08/27. PMID: 12938813. Exclusion Code: X3
- 656. Lavie P. Incidence of sleep apnea in a presumably healthy working population: a significant relationship with excessive daytime sleepiness. Sleep. 1983;6(4):312-8. Epub: 1983/01/01. PMID: 6665393. Exclusion Code: X4
- 657. Lavie P, Ben-Yosef R, Rubin AE.
 Prevalence of sleep apnea syndrome among patients with essential hypertension. Am
 Heart J. 1984 Aug;108(2):373-6. Epub:
 1984/08/01. PMID: 6464973. Exclusion
 Code: X10
- 658. Lavie P, Herer P, Peled R, et al. Mortality in sleep apnea patients: a multivariate analysis of risk factors. Sleep. 1995 Apr;18(3):149-57. Epub: 1995/04/01. PMID: 7610310. Exclusion Code: X3
- 659. Lavie P, Lavie L. Unexpected survival advantage in elderly people with moderate sleep apnoea. J Sleep Res. 2009
 Dec;18(4):397-403. Epub: 2009/08/12.
 PMID: 19663998. Exclusion Code: X3
- 660. Lavie P, Lavie L, Herer P. All-cause mortality in males with sleep apnoea syndrome: declining mortality rates with age. Eur Respir J. 2005 Mar;25(3):514-20. Epub: 2005/03/02. PMID: 15738297. Exclusion Code: X3
- 661. Le Bon O, Hoffmann G, Tecco J, et al. Mild to moderate sleep respiratory events: one negative night may not be enough. Chest. 2000 Aug;118(2):353-9. Epub: 2000/08/11. PMID: 10936124. Exclusion Code: X3

- 662. Ledereich P, Thorpy M, Lovinsky P. Fiveyear follow-up of daytime sleepinessand snoring after tracheotomy in patients with obstructive sleep apnea. Chronic Rhoncopathy. 1988:354-7. Exclusion Code: X3
- 663. Lee CH, Khoo SM, Chan MY, et al. Severe obstructive sleep apnea and outcomes following myocardial infarction. J Clin Sleep Med. 2011 Dec 15;7(6):616-21. Epub: 2011/12/16. PMID: 22171200. Exclusion Code: X8
- 664. Lee IS, Bardwell W, Ancoli-Israel S, et al. Effect of three weeks of continuous positive airway pressure treatment on mood in patients with obstructive sleep apnoea: a randomized placebo-controlled study. Sleep Med. 2012 Feb;13(2):161-6. Epub: 2011/12/17. PMID: 22172966. Exclusion Code: X5
- 665. Lee IS, Bardwell W, Ancoli-Israel S, et al. The relationship between psychomotor vigilance performance and quality of life in obstructive sleep apnea. J Clin Sleep Med. 2011 Jun 15;7(3):254-60. Epub: 2011/06/17. PMID: 21677894. Exclusion Code: X10
- 666. Lee JE, Lee CH, Lee SJ, et al. Mortality of patients with obstructive sleep apnea in Korea. J Clin Sleep Med. 2013 Oct 15;9(10):997-1002. Epub: 2013/10/16. PMID: 24127143. Exclusion Code: X8
- Lee YC, Eun YG, Shin SY, et al. Prevalence of snoring and high risk of obstructive sleep apnea syndrome in young male soldiers in Korea. J Korean Med Sci. 2013
 Sep;28(9):1373-7. Epub: 2013/09/10.
 PMID: 24015045. Exclusion Code: X10
- 668. Lee YH, Johan A, Wong KK, et al.
 Prevalence and risk factors for obstructive sleep apnea in a multiethnic population of patients presenting for bariatric surgery in Singapore. Sleep Med. 2009 Feb;10(2):226-32. Epub: 2008/04/05. PMID: 18387341. Exclusion Code: X4
- 669. Leitzen KP, Brietzke SE, Lindsay RW.
 Correlation between nasal anatomy and
 objective obstructive sleep apnea severity.
 Otolaryngol Head Neck Surg. 2014
 Feb;150(2):325-31. Epub: 2013/12/18.
 PMID: 24334963. Exclusion Code: X3
- 670. Leng PH, Low SY, Hsu A, et al. The clinical predictors of sleepiness correlated with the multiple sleep latency test in an Asian Singapore population. Sleep. 2003 Nov 1;26(7):878-81. Epub: 2003/12/06. PMID: 14655923. Exclusion Code: X3

- 671. Leonetti F, Capoccia D, Coccia F, et al. Obesity, type 2 diabetes mellitus, and other comorbidities: a prospective cohort study of laparoscopic sleeve gastrectomy vs medical treatment. Arch Surg. 2012 Aug;147(8):694-700. Epub: 2012/04/18. PMID: 22508671. Exclusion Code: X3
- 672. Lettieri CJ, Eliasson AH, Greenburg DL.
 Persistence of obstructive sleep apnea after
 surgical weight loss. J Clin Sleep Med. 2008
 Aug 15;4(4):333-8. Epub: 2008/09/04.
 PMID: 18763424. Exclusion Code: X10
- 673. Levy P, Pepin JL, Deschaux-Blanc C, et al. Accuracy of oximetry for detection of respiratory disturbances in sleep apnea syndrome. Chest. 1996 Feb;109(2):395-9. PMID: 8620711. Exclusion Code: X6
- 674. Lewis EF, Wang R, Quan S, et al. Impact of treatment modalities on health status in patients with obstructive sleep apnea. J Am Coll Cardiol. 2014;63(12 suppl. 1):A1536. PMID: CN-01058750. Exclusion Code: X8
- 675. Li HY, Huang YS, Chen NH, et al. Mood improvement after surgery for obstructive sleep apnea. Laryngoscope. 2004
 Jun;114(6):1098-102. Epub: 2004/06/05.
 PMID: 15179220. Exclusion Code: X3
- 676. Li HY, Lee LA, Wang PC, et al. Can nasal surgery improve obstructive sleep apnea: subjective or objective? Am J Rhinol Allergy. 2009 Nov-Dec;23(6):e51-5. Epub: 2009/10/02. PMID: 19793414. Exclusion Code: X3
- 677. Li HY, Lin Y, Chen NH, et al. Improvement in quality of life after nasal surgery alone for patients with obstructive sleep apnea and nasal obstruction. Arch Otolaryngol Head Neck Surg. 2008 Apr;134(4):429-33. Epub: 2008/04/23. PMID: 18427011. Exclusion Code: X3
- 678. Li HY, Wang PC, Chen YP, et al. Critical appraisal and meta-analysis of nasal surgery for obstructive sleep apnea. Am J Rhinol Allergy. 2011 Jan-Feb;25(1):45-9. Epub: 2011/06/30. PMID: 21711978. Exclusion Code: X3
- 679. Li KK, Powell NB, Riley RW, et al.
 Temperature-controlled radiofrequency
 tongue base reduction for sleep-disordered
 breathing: Long-term outcomes. Otolaryngol
 Head Neck Surg. 2002 Sep;127(3):230-4.
 Epub: 2002/09/26. PMID: 12297815.
 Exclusion Code: X10

- 680. Li KK, Riley R, Powell N. Complications of obstructive sleep apnea surgery. Oral Maxillofac Surg Clin North Am. 2003 May;15(2):297-304. PMID: 18088682. Exclusion Code: X3
- 681. Li QY, Berry RB, Goetting MG, et al.
 Detection of upper airway status and
 respiratory events by a current generation
 positive airway pressure device. Sleep.
 2015;38(4):597-605. Exclusion Code: X3
- 682. Li Y, Chongsuvivatwong V, Geater A, et al. Exhaled breath condensate cytokine level as a diagnostic tool for obstructive sleep apnea syndrome. Sleep Med. 2009 Jan;10(1):95-103. Epub: 2008/01/22. PMID: 18207457. Exclusion Code: X9
- 683. Liao P, Luo Q, Elsaid H, et al. Perioperative auto-titrated continuous positive airway pressure treatment in surgical patients with obstructive sleep apnea: a randomized controlled trial. Anesthesiology. 2013 Oct;119(4):837-47. Epub: 2013/11/08. PMID: 24195872. Exclusion Code: X14
- 684. Liesching TN, Carlisle C, Marte A, et al. Evaluation of the accuracy of SNAP technology sleep sonography in detecting obstructive sleep apnea in adults compared to standard polysomnography. Chest. 2004 Mar;125(3):886-91. Epub: 2004/03/10. PMID: 15006946. Exclusion Code: X6
- 685. Lim J, Lasserson Toby J, Fleetham J, et al.
 Oral appliances for obstructive sleep apnoea.
 Cochrane Database of Systematic Reviews.
 2006(1)PMID: CD004435. Exclusion Code:
 X10
- 686. Lim PV, Curry AR. The role of history, Epworth Sleepiness Scale Score and body mass index in identifying non-apnoeic snorers. Clin Otolaryngol Allied Sci. 2000 Aug;25(4):244-8. Epub: 2000/09/06. PMID: 10971528. Exclusion Code: X4
- 687. Lin GM, Colangelo LA, Lloyd-Jones DM, et al. Association of Sleep Apnea and Snoring With Incident Atrial Fibrillation in the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol. 2015 Jul 1;182(1):49-57. Epub: 2015/05/16. PMID: 25977516. Exclusion Code: X10
- 688. Lin SW, Chen NH, Li HY, et al. A comparison of the long-term outcome and effects of surgery or continuous positive airway pressure on patients with obstructive sleep apnea syndrome. Laryngoscope. 2006 Jun;116(6):1012-6. Epub: 2006/06/01. PMID: 16735919. Exclusion Code: X3

- 689. Lindberg E, Berne C, Elmasry A, et al. CPAP treatment of a population-based sample--what are the benefits and the treatment compliance? Sleep Med. 2006 Oct;7(7):553-60. Epub: 2006/06/03. PMID: 16740408. Exclusion Code: X9
- 690. Lindberg E, Carter N, Gislason T, et al. Role of snoring and daytime sleepiness in occupational accidents. Am J Respir Crit Care Med. 2001 Dec 1;164(11):2031-5. Epub: 2001/12/12. PMID: 11739131. Exclusion Code: X9
- 691. Lindberg E, Theorell-Haglow J, Svensson M, et al. Sleep apnea and glucose metabolism: a long-term follow-up in a community-based sample. Chest. 2012 Oct;142(4):935-42. Epub: 2012/04/14. PMID: 22499826. Exclusion Code: X4
- 692. Lindman R, Bondemark L. A review of oral devices in the treatment of habitual snoring and obstructive sleep apnoea. Swed Dent J. 2001;25(1):39-51. Epub: 2001/06/08. PMID: 11392605. Exclusion Code: X3
- 693. Litvin AY, Sukmarova ZN, Elfimova EM, et al. Effects of CPAP on "vascular" risk factors in patients with obstructive sleep apnea and arterial hypertension. Vasc Health Risk Manag. 2013;9:229-35. Epub: 2013/05/22. PMID: 23690688. Exclusion Code: X12
- 694. Liu D, Yang X, Wang G, et al. HHT based cardiopulmonary coupling analysis for sleep apnea detection. Sleep Med. 2012
 May;13(5):503-9. Epub: 2012/03/23. PMID: 22437144. Exclusion Code: X9
- 695. Liu SR, Yi HL, Yin SK, et al. Primary maxillomandibular advancement with concomitant revised uvulopalatopharyngoplasty with uvula preservation for severe obstructive sleep apnea-hypopnea syndrome. J Craniofac Surg. 2012 Nov;23(6):1649-53. Epub: 2012/11/14. PMID: 23147297. Exclusion Code: X10
- 696. Liu X, Feng L, Cao G, et al. Cardiac structure and function improvements in coronary artery disease combined with severe obstructive sleep apnea/hypopnea syndrome patients via noninvasive positive pressure ventilation therapy. Coron Artery Dis. 2014;25(6):516-20. Exclusion Code: X12

- 697. Lloberes P, Montserrat JM, Ascaso A, et al. Comparison of partially attended night time respiratory recordings and full polysomnography in patients with suspected sleep apnoea/hypopnoea syndrome. Thorax. 1996;51(10):1043-7. Exclusion Code: X11
- 698. Lloberes P, Sampol G, Espinel E, et al. A randomized controlled study of CPAP effect on plasma aldosterone concentration in patients with resistant hypertension and obstructive sleep apnea. J Hypertens. 2014;32(8):1650-7. Exclusion Code: X11
- 699. Lockhart EM, Willingham MD, Abdallah AB, et al. Obstructive sleep apnea screening and postoperative mortality in a large surgical cohort. Sleep Med. 2013
 May;14(5):407-15. Epub: 2013/03/19.
 PMID: 23499198. Exclusion Code: X10
- 700. Lojander J, Kajaste S, Maasilta P, et al.
 Cognitive function and treatment of
 obstructive sleep apnea syndrome. J Sleep
 Res. 1999 Mar;8(1):71-6. Epub: 1999/04/03.
 PMID: 10188139. Exclusion Code: X5
- 701. Lojander J, Maasilta P, Partinen M, et al. Nasal-CPAP, surgery, and conservative management for treatment of obstructive sleep apnea syndrome. A randomized study. Chest. 1996;110(1):114-9. PMID: CN-00126755. Exclusion Code: X5
- 702. Lojander J, Mustajoki P, Ronka S, et al. A nurse-managed weight reduction programme for obstructive sleep apnoea syndrome. J Intern Med. 1998 Sep;244(3):251-5. Epub: 1998/09/25. PMID: 9747748. Exclusion Code: X3
- 703. Loke YK, Brown JW, Kwok CS, et al. Association of obstructive sleep apnea with risk of serious cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2012 Sep 1;5(5):720-8. Epub: 2012/07/26. PMID: 22828826. Exclusion Code: X3
- 704. Lombardi C, Parati G, Cortelli P, et al. Daytime sleepiness and neural cardiac modulation in sleep-related breathing disorders. J Sleep Res. 2008 Sep;17(3):263-70. Epub: 2008/05/28. PMID: 18503513. Exclusion Code: X10
- 705. Lopes C, Esteves AM, Bittencourt LR, et al. Relationship between the quality of life and the severity of obstructive sleep apnea syndrome. Braz J Med Biol Res. 2008 Oct;41(10):908-13. Epub: 2008/09/30. PMID: 18820762. Exclusion Code: X10

- 706. Lopez-Padilla D, Alonso-Moralejo R, De La Torre Carazo S, et al. Survival and adherence to CPAP in the elderly. Sleep Med. 2013;14:e25-e6. Exclusion Code: X11
- 707. Lord S, Sawyer B, O'Connell D, et al.
 Night-to-night variability of disturbed breathing during sleep in an elderly community sample. Sleep. 1991
 Jun;14(3):252-8. Epub: 1991/06/01. PMID: 1896727. Exclusion Code: X6
- 708. Lord S, Sawyer B, Pond D, et al. Interrater reliability of computer-assisted scoring of breathing during sleep. Sleep. 1989
 Dec;12(6):550-8. Epub: 1989/12/01. PMID: 2595177. Exclusion Code: X6
- 709. Lozano L, Tovar JL, Sampol G, et al. Continuous positive airway pressure treatment in sleep apnea patients with resistant hypertension: a randomized, controlled trial. J Hypertens. 2010 Oct;28(10):2161-8. Epub: 2010/06/26. PMID: 20577130. Exclusion Code: X5
- 710. Lugaresi E, Coccagna G, Mantovani M, et al. Hypersomnia with periodic breathing: periodic apneas and alveolar hypoventilation during sleep. Bull Physiopathol Respir (Nancy). 1972 Sep-Oct;8(5):1103-13. Epub: 1972/09/01. PMID: 4348637. Exclusion Code: X3
- 711. Lugaresi E, Coccagna G, Mantovani M, et al. Some periodic phenomena arising during drowsiness and sleep in man.
 Electroencephalogr Clin Neurophysiol. 1972
 Jun;32(6):701-5. Epub: 1972/06/01. PMID: 4121520. Exclusion Code: X3
- 712. Luo JM, Huang R, Zhong X, et al. STOP-bang questionnaire is superior to epworth sleepiness scales, Berlin questionnaire, And STOP questionnaire in screening obstructive sleep apnea hypopnea syndrome patients. Chin Med J. 2014;127(17):3065-70. Exclusion Code: X8
- 713. Luo JM, Huang R, Zhong X, et al. Value of STOP-Bang questionnaire in screening patients with obstructive sleep apnea hypopnea syndrome in sleep disordered breathing clinic. Chin Med J. 2014;127(10):1843-8. Exclusion Code: X3
- 714. Lweesy K, Fraiwan L, Khasawneh N, et al. New automated detection method of OSA based on artificial neural networks using P-wave shape and time changes. J Med Syst. 2011 Aug;35(4):723-34. Epub: 2010/08/13. PMID: 20703519. Exclusion Code: X9

- 715. Macavei VM, Spurling KJ, Loft J, et al. Diagnostic predictors of obesity-hypoventilation syndrome in patients suspected of having sleep disordered breathing. J Clin Sleep Med. 2013 Sep;9(9):879-84. Epub: 2013/09/03. PMID: 23997700. Exclusion Code: X9
- 716. Machado MC, Vollmer WM, Togeiro SM, et al. CPAP and survival in moderate-to-severe obstructive sleep apnoea syndrome and hypoxaemic COPD. Eur Respir J. 2010 Jan;35(1):132-7. Epub: 2009/07/04. PMID: 19574323. Exclusion Code: X9
- 717. Mahakit P. A comparative study of two-hour daytime and overnight polysomnography in high risk snorers. J Med Assoc Thai. 2012 May;95 Suppl 5:S17-22. Epub: 2012/09/01. PMID: 22934440. Exclusion Code: X3
- 718. Maier C, Dickhaus H. Extraction of respiratory myogram interference from the ECG and its application to characterize sleep-related breathing disorders in atrial fibrillation. J Electrocardiol. 2014 Nov-Dec;47(6):826-30. Epub: 2014/09/01. PMID: 25173630. Exclusion Code: X4
- 719. Maier C, Wenz H, Dickhaus H. Steps toward subject-specific classification in ECG-based detection of sleep apnea. Physiol Meas. 2011 Nov;32(11):1807-19. Epub: 2011/10/27. PMID: 22027562. Exclusion Code: X9
- 720. Mair EA, Day RH. Cautery-assisted palatal stiffening operation. Otolaryngol Head Neck Surg. 2000 Apr;122(4):547-56. Epub: 2000/03/31. PMID: 10740176. Exclusion Code: X10
- 721. Maislin G, Pack AI, Kribbs NB, et al. A survey screen for prediction of apnea. Sleep. 1995 Apr;18(3):158-66. Epub: 1995/04/01. PMID: 7610311. Exclusion Code: X6
- 722. Maki-Nunes C, Toschi-Dias E, Cepeda FX, et al. Diet and exercise improve chemoreflex sensitivity in patients with metabolic syndrome and obstructive sleep apnea.

 Obesity. 2015;23(8):1582-90. Exclusion Code: X3
- 723. Malbois M, Giusti V, Suter M, et al.
 Oximetry alone versus portable polygraphy
 for sleep apnea screening before bariatric
 surgery. Obes Surg. 2010 Mar;20(3):326-31.
 Epub: 2010/01/07. PMID: 20052560.
 Exclusion Code: X10

- 724. Malhotra A, Younes M, Kuna ST, et al. Performance of an automated polysomnography scoring system versus computer-assisted manual scoring. Sleep. 2013 Apr;36(4):573-82. Epub: 2013/04/09. PMID: 23565003. Exclusion Code: X3
- 725. Man GC, Kang BV. Validation of a portable sleep apnea monitoring device. Chest. 1995 Aug;108(2):388-93. PMID: 7634872. Exclusion Code: X6
- 726. Mansfield DR, Gollogly NC, Kaye DM, et al. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med. 2004;169(3):361-6. PMID: CN-00458626. Exclusion Code: X5
- 727. Maranate T, Pongpullponsak A, Ruttanaumpawan P. The Prioritization of Clinical Risk Factors of Obstructive Sleep Apnea Severity Using Fuzzy Analytic Hierarchy Process. Comput Math Methods Med. 2015;2015. Exclusion Code: X8
- 728. Marcos JV, Hornero R, Alvarez D, et al. Automated prediction of the apneahypopnea index from nocturnal oximetry recordings. IEEE Trans Biomed Eng. 2012 Jan;59(1):141-9. Epub: 2011/09/20. PMID: 21926015. Exclusion Code: X4
- 729. Marcos JV, Hornero R, Alvarez D, et al. Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis. Med Biol Eng Comput. 2010 Sep;48(9):895-902. Epub: 2010/06/25. PMID: 20574725. Exclusion Code: X9
- 730. Marcos JV, Hornero R, Alvarez D, et al. The classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome. Physiol Meas. 2010

 Mar;31(3):375-94. Epub: 2010/02/05.

 PMID: 20130342. Exclusion Code: X3
- 731. Marcos JV, Hornero R, Nabney IT, et al. Analysis of nocturnal oxygen saturation recordings using kernel entropy to assist in sleep apnea-hypopnea diagnosis. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1745-8. Epub: 2012/01/19. PMID: 22254664. Exclusion Code: X9
- 732. Margallo VS, Muxfeldt ES, Guimarães GM, et al. Diagnostic accuracy of the Berlin questionnaire in detecting obstructive sleep apnea in patients with resistant hypertension. J Hypertens. 2014;32(10):2030-7. Exclusion Code: X12

- 733. Margarit L, Drouot X, Bokar-Thire A, et al. Validation of polygraphy versus polysomnography in the diagnosis of sleep disordered breathing, with special emphasis on heart failure patients. Journal of Sleep Research. Conference: 21st Congress of the European Sleep Research Society Paris France. Conference Start: 20120904 Conference End: 20120908. Conference Publication: (var.pagings). 2012;21(Suppl 1):223-4. PMID: CN-00839491. Exclusion Code: X8
- 734. Marin JM, Agusti A, Villar I, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012 May 23;307(20):2169-76. Epub: 2012/05/24. PMID: 22618924. Exclusion Code: X3
- 735. Marrone O, Lo Bue A, Salvaggio A, et al. Comorbidities and survival in obstructive sleep apnoea beyond the age of 50. Eur J Clin Invest. 2013 Jan;43(1):27-33. Epub: 2012/10/31. PMID: 23106598. Exclusion Code: X3
- 736. Marrone O, Salvaggio A, Insalaco G, et al. Evaluation of the POLYMESAM system in the diagnosis of obstructive sleep apnea syndrome. Monaldi Arch Chest Dis. 2001 Dec;56(6):486-90. PMID: 11980277. Exclusion Code: X6
- 737. Marshall N, Sheppard D, Campbell A, et al. Randomised controlled crossover trial of continuous positive airway pressure in the treatment of mild-moderate obstructive sleep apnoea using a mechanical placebo [abstract]. Internal medicine journal. 2004;34(3):A22. PMID: CN-00591958. Exclusion Code: X8
- 738. Marshall NS, Barnes M, Travier N, et al.
 Continuous positive airway pressure reduces
 daytime sleepiness in mild to
 moderateobstructive sleep apnoea: a metaanalysis (Provisional abstract). Thorax.
 2006;61(5):430-4. PMID: DARE12006002426. Exclusion Code: X3
- 739. Marshall NS, Delling L, Grunstein RR, et al. Self-reported sleep apnoea and mortality in patients from the Swedish Obese Subjects study. Eur Respir J. 2011 Dec;38(6):1349-54. Epub: 2011/05/31. PMID: 21622591. Exclusion Code: X10
- 740. Marshall NS, Grunstein RR. Losing weight in moderate to severe obstructive sleep apnoea. BMJ (Online). 2009;339(7734):1324-5. PMID: CN-00958861. Exclusion Code: X2

- 741. Marshall NS, Wong KK, Cullen SR, et al. Snoring is not associated with all-cause mortality, incident cardiovascular disease, or stroke in the Busselton Health Study. Sleep. 2012 Sep;35(9):1235-40. Epub: 2012/09/04. PMID: 22942501. Exclusion Code: X4
- 742. Martinez D, Breitenbach TC, Lumertz MS, et al. Repeating administration of Epworth Sleepiness Scale is clinically useful. Sleep Breath. 2011 Dec;15(4):763-73. Epub: 2010/11/11. PMID: 21063794. Exclusion Code: X8
- 743. Martinez D, da Silva RP, Klein C, et al. High risk for sleep apnea in the Berlin questionnaire and coronary artery disease. Sleep Breath. 2012 Mar;16(1):89-94. Epub: 2011/01/07. PMID: 21210233. Exclusion Code: X10
- 744. Martinez-Garcia MA, Campos-Rodriguez F, Catalan-Serra P, et al. All-cause and cardiovascular mortality in elderly patients with sleep apnea. Role of CPAP treatment. A 6-year follow-up study. Am J Respir Crit Care Med. 2011;183(1). Exclusion Code: X8
- 745. Martinez-Garcia MA, Campos-Rodriguez F, Catalan-Serra P, et al. Cardiovascular mortality in obstructive sleep apnea in the elderly: Role of long-term continuous positive airway pressure treatment: A prospective observational study. Am J Respir Crit Care Med. 2012;186(9):909-16. Exclusion Code: X8
- 746. Martinez-Garcia MA, Campos-Rodriguez F, Duran-Cantolla J, et al. Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med. 2014 Jul;15(7):742-8. Epub: 2014/06/08. PMID: 24907033. Exclusion Code: X3
- 747. Martínez-García MA, Chiner E, Hernández L, et al. Obstructive sleep apnoea in the elderly: Role of continuous positive airway pressure treatment. Eur Respir J. 2015;46(1):142-51. Exclusion Code: X11
- 748. Martínez-García MA, Galiano-Blancart R, Román-Sánchez P, et al. Continuous positive airway pressure treatment in sleep apnea prevents new vascular events after ischemic stroke. Chest. 2005;128(4):2123-9. PMID: CN-00531307. Exclusion Code: X3

- 749. Martinez-Garcia MA, Martorell-Calatayud A, Nagore E, et al. Association between sleep disordered breathing and aggressiveness markers of malignant cutaneous melanoma. Eur Respir J. 2014 Jun;43(6):1661-8. Epub: 2014/03/25. PMID: 24659545. Exclusion Code: X3
- 750. Martinez-Rivera C, Abad J, Fiz JA, et al. Usefulness of truncal obesity indices as predictive factors for obstructive sleep apnea syndrome. Obesity (Silver Spring). 2008
 Jan;16(1):113-8. Epub: 2008/01/29. PMID: 18223622. Exclusion Code: X8
- 751. Martinho FL, Tangerina RP, Moura SM, et al. Systematic head and neck physical examination as a predictor of obstructive sleep apnea in class III obese patients. Braz J Med Biol Res. 2008 Dec;41(12):1093-7. Epub: 2009/01/17. PMID: 19148371. Exclusion Code: X9
- 752. Masa JF, Corral J, Gomez de Terreros J, et al. Significance of including a surrogate arousal for sleep apnea-hypopnea syndrome diagnosis by respiratory polygraphy. Sleep. 2013 Feb;36(2):249-57. Epub: 2013/02/02. PMID: 23372273. Exclusion Code: X6
- 753. Masa JF, Corral J, Pereira R, et al.
 Therapeutic Decision For Sleep Apnea And
 Hypopnea Syndrome By Home Respiratory
 Polygraphy [Abstract]. Am J Respir Crit
 Care Med. 2011;183(Meeting
 Abstracts):A6325. PMID: CN-00797416.
 Exclusion Code: X8
- 754. Masa JF, Corral J, Pereira R, et al. Significance Of Including A Subrogated Arousal For Sleep Apnea-Hypopnea Syndrome Diagnosis By Respiratory Polygrafy [Abstract]. Am J Respir Crit Care Med. 2012;185(Meeting Abstracts):A6430. PMID: CN-00834309. Exclusion Code: X4
- 755. Masa JF, Corral J, Pereira R, et al.

 Therapeutic decision-making for sleep apnea and hypopnea syndrome using home respiratory polygraphy: a large multicentric study. Am J Respir Crit Care Med. 2011 Oct 15;184(8):964-71. Epub: 2011/07/09.

 PMID: 21737584. Exclusion Code: X4

- 756. Masa JF, Corral J, Pereira R, et al. Cost-Effectiveness of the teletransmission of home respiratory polygraphy for the diagnosis of sleep apnoea and hypopnoea syndrome. Journal of Sleep Research. Conference: 21st Congress of the European Sleep Research Society Paris France. Conference Start: 20120904 Conference End: 20120908. Conference Publication: (var.pagings). 2012;21(Suppl 1):49. PMID: CN-00839495. Exclusion Code: X8
- 757. Masa JF, Corral J, Pereira R, et al.

 Therapeutic decision-making for sleep apnea and hypopnea syndrome using home respiratory polygraphy. Sleep and Biological Rhythms. Conference: Worldsleep2011

 Kyoto Japan. Conference Start: 20111016

 Conference End: 20111020. Conference Publication: (var.pagings). 2011;9(4):416.

 PMID: CN-00836902. Exclusion Code: X8
- 758. Masa JF, Corral J, Sanchez de Cos J, et al. Effectiveness of three sleep apnea management alternatives. Sleep. 2013
 Dec;36(12):1799-807. Epub: 2013/12/03.
 PMID: 24293754. Exclusion Code: X6
- 759. Masa JF, Duran-Cantolla J, Capote F, et al. Efficacy of home single-channel nasal pressure for recommending continuous positive airway pressure treatment in sleep apnea. Sleep. 2015 Jan;38(1):13-21. Epub: 2014/10/18. PMID: 25325508. Exclusion Code: X9
- 760. Masa JF, Duran-Cantolla J, Capote F, et al. Effectiveness of home single-channel nasal pressure for sleep apnea diagnosis. Sleep. 2014 Dec;37(12):1953-61. Epub: 2014/10/18. PMID: 25325484. Exclusion Code: X9
- 761. Masa JF, Rubio M, Findley LJ. Habitually sleepy drivers have a high frequency of automobile crashes associated with respiratory disorders during sleep. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1407-12. Epub: 2000/10/13. PMID: 11029353. Exclusion Code: X3
- 762. Mason WJ, Ancoli-Israel S, Kripke DF. Apnea revisited: a longitudinal follow-up. Sleep. 1989 Oct;12(5):423-9. Epub: 1989/10/01. PMID: 2799215. Exclusion Code: X10
- 763. Massie CA, Hart RW, Peralez K, et al. Effects of humidification on nasal symptoms and compliance in sleep apnea patients using continuous positive airway pressure. Chest. 1999 Aug;116(2):403-8. Epub: 1999/08/24. PMID: 10453869. Exclusion Code: X3

- 764. Matiello M, Nadal M, Tamborero D, et al. Low efficacy of atrial fibrillation ablation in severe obstructive sleep apnoea patients. Europace. 2010 Aug;12(8):1084-9. Epub: 2010/05/22. PMID: 20488856. Exclusion Code: X4
- 765. Maurer JT, Sommer JU, Hein G, et al. Palatal implants in the treatment of obstructive sleep apnea: a randomised, placebo-controlled single-centre trial. Eur Arch Otorhinolaryngol. 2012
 Jul;269(7):1851-6. Epub: 2012/01/10.
 PMID: 22228439. Exclusion Code: X9
- 766. Maury G, Cambron L, Jamart J, et al. Added value of a mandible movement automated analysis in the screening of obstructive sleep apnea. J Sleep Res. 2013 Feb;22(1):96-103. Epub: 2012/07/28. PMID: 22835145. Exclusion Code: X9
- 767. Maury G, Senny F, Cambron L, et al.
 Mandible behaviour interpretation during
 wakefulness, sleep and sleep-disordered
 breathing. J Sleep Res. 2014 Dec;23(6):70916. Epub: 2014/08/01. PMID: 25078069.
 Exclusion Code: X9
- 768. Mayer P, Meurice JC, Philip-Joet F, et al. Simultaneous laboratory-based comparison of ResMed Autoset with polysomnography in the diagnosis of sleep apnoea/hypopnoea syndrome. Eur Respir J. 1998
 Oct;12(4):770-5. PMID: 9817143.
 Exclusion Code: X6
- 769. Mayer P, Pepin JL, Bettega G, et al.
 Relationship between body mass index, age and upper airway measurements in snorers and sleep apnoea patients. Eur Respir J. 1996 Sep;9(9):1801-9. Epub: 1996/09/01.
 PMID: 8880094. Exclusion Code: X3
- 770. Maziere S, Pepin JL, Siyanko N, et al. Usefulness of oximetry for sleep apnea screening in frail hospitalized elderly. J Am Med Dir Assoc. 2014 Jun;15(6):447.e9-14. Epub: 2014/04/29. PMID: 24768555. Exclusion Code: X10
- 771. Mazzuca E, Battaglia S, Marrone O, et al. Gender-specific anthropometric markers of adiposity, metabolic syndrome and visceral adiposity index (VAI) in patients with obstructive sleep apnea. J Sleep Res. 2014 Feb;23(1):13-21. Epub: 2013/10/15. PMID: 24118617. Exclusion Code: X8

- 772. McDaid C, Griffin S, Weatherly H, et al. Continuous positive airway pressure devices for the treatment of obstructive sleep apnoea-hypopnoea syndrome: a systematic review and economic analysis (Structured abstract). Health Technol Assess. 2009;13(4):1-274. PMID: DARE-12009102369. Exclusion Code: X3
- 773. McEwen B, Phillips C, Morel-Kopp MC, et al. Effects of continuous positive airway pressure on coagulation parameters in obstructive sleep apnoea: A randomised, placebo-controlled crossover study. Journal of Sleep Research. Conference: 23rd Annual Scientific Meeting of the Australasian Sleep Association and Australasian Sleep Technologists Association: Sleep and the City, Sleep DownUnder 2011 Sydney, NSW Australia. Conference Start: 20111027 Conference End: 20111029. Conference Publication: (var.pagings). 2011;20:22-3. PMID: CN-00834031. Exclusion Code: X8
- 774. McEwen BJ, Phillips CL, Morel-Kopp MC, et al. Diurnal changes and levels of fibrin generation are not altered by continuous positive airway pressure (CPAP) in obstructive sleep apnoea (OSA). A randomised, placebo-controlled crossover study. Thromb Haemost. 2012;108(4):701-9. PMID: CN-00879181. Exclusion Code: X6
- 775. McFadyen TA, Espie CA, McArdle N, et al. Controlled, prospective trial of psychosocial function before and after continuous positive airway pressure therapy. The European respiratory journal. 2001;18(6):996-1002. PMID: CN-00388460. Exclusion Code: X3
- 776. McIsaac DI, Gershon A, Wijeysundera D, et al. Identifying Obstructive Sleep Apnea in Administrative Data: A Study of Diagnostic Accuracy. Anesthesiology. 2015 Aug;123(2):253-63. Epub: 2015/07/23. PMID: 26200178. Exclusion Code: X3
- 777. McMahon JP, Foresman BH, Chisholm RC. The influence of CPAP on the neurobehavioral performance of patients with obstructive sleep apnea hypopnea syndrome: a systematic review (Structured abstract). Wis Med J. 2003;102(1):36-43. PMID: DARE-12003009508. Exclusion Code: X3

- 778. McMillan A, Bratton DJ, Faria R, et al. A multicentre randomised controlled trial and economic evaluation of continuous positive airway pressure for the treatment of obstructive sleep apnoea syndrome in older people: PREDICT. Health Technol Assess. 2015;19(40):1-220. PMID: CN-01077130. Exclusion Code: X3
- 779. McMillan A, Paniccia L, Glasser M, et al. The impact of continuous positive airway pressure (CPAP) therapy on cognitive function in older people with sleep disordered breathing (SDB) and comorbidity [Abstract]. Thorax. 2013;68(Suppl 3):A4 [s2]? PMID: CN-00977572. Exclusion Code: X8
- 780. McNicholas WT. Diagnosis of obstructive sleep apnea in adults. Proc Am Thorac Soc. 2008 Feb 15;5(2):154-60. Epub: 2008/02/06. PMID: 18250207. Exclusion Code: X3
- 781. Mehta A, Qian J, Petocz P, et al. A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea. Am J Respir Crit Care Med. 2001 May;163(6):1457-61. Epub: 2001/05/24. PMID: 11371418. Exclusion Code: X5
- 782. Mehta V, Subramanyam R, Shapiro CM, et al. Health effects of identifying patients with undiagnosed obstructive sleep apnea in the preoperative clinic: a follow-up study. Can J Anaesth. 2012 Jun;59(6):544-55. Epub: 2012/03/31. PMID: 22461134. Exclusion Code: X3
- 783. Mehta V, Vasu TS, Phillips B, et al.
 Obstructive sleep apnea and oxygen therapy:
 a systematic review of the literature and
 meta-analysis (Provisional abstract). J Clin
 Sleep Med. 2013;9(3):271-9. PMID: DARE12013019821. Exclusion Code: X9
- 784. Meissner WG, Flabeau O, Perez P, et al. Accuracy of portable polygraphy for the diagnosis of sleep apnea in multiple system atrophy. Sleep Med. 2014 Apr;15(4):476-9. Epub: 2014/03/25. PMID: 24656908. Exclusion Code: X8
- 785. Mendelson WB. Use of the sleep laboratory in suspected sleep apnea syndrome: is one night enough? Cleve Clin J Med. 1994 Jul-Aug;61(4):299-303. Epub: 1994/07/01. PMID: 7923748. Exclusion Code: X6

- 786. Mendez MO, Corthout J, Van Huffel S, et al. Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis. Physiol Meas. 2010 Mar;31(3):273-89. Epub: 2010/01/21. PMID: 20086277. Exclusion Code: X9
- 787. Mendonca E, Mello-Fujita L, Cintra F, et al. An association between age and compliance to CPAP treatment of obstructive sleep apnoea: A controlled study [Abstract]. J Sleep Res. 2010;19(Suppl s2):233. PMID: CN-00773445. Exclusion Code: X4
- 788. Merlin T, Liufu Z, Wang S. Unattended sleep studies in the diagnosis and reassessment of obstructive sleep apnoea (Structured abstract). Health Technology Assessment Database. 2010(3)PMID: HTA-32010001736. Exclusion Code: X6
- 789. Merritt SL, Berger BE. Obstructive sleep apnea-hypopnea syndrome. The American journal of nursing. 2004;104(7):49-52. Exclusion Code: X2
- 790. Mesarwi OA, Shin MK, Drager LF, et al. Lysyl oxidase as a serum biomarker of liver fibrosis in patients with severe obesity and obstructive sleep Apnea. Sleep. 2015;38(10):1583-91B. Exclusion Code: X3
- 791. Meslemani D, Jones LR. Skeletal surgery in sleep apnea. Curr Opin Otolaryngol Head Neck Surg. 2011 Aug;19(4):307-11. Epub: 2011/06/11. PMID: 21659878. Exclusion Code: X3
- 792. Mesquita J, Fiz JA, Sola-Soler J, et al. Regular and non regular snore features as markers of SAHS. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6138-41. Epub: 2010/11/26. PMID: 21097143. Exclusion Code: X9
- 793. Meston N, Davies RJ, Mullins R, et al. Endocrine effects of nasal continuous positive airway pressure in male patients with obstructive sleep apnoea. J Intern Med. 2003;254(5):447-54. PMID: CN-00458173. Exclusion Code: X4
- 794. Meyer TJ, Eveloff SE, Kline LR, et al. One negative polysomnogram does not exclude obstructive sleep apnea. Chest. 1993
 Mar;103(3):756-60. Epub: 1993/03/01.
 PMID: 8449064. Exclusion Code: X6

- 795. Michaelson PG, Allan P, Chaney J, et al. Validations of a portable home sleep study with twelve-lead polysomnography: comparisons and insights into a variable gold standard. Ann Otol Rhinol Laryngol. 2006 Nov;115(11):802-9. PMID: 17165661. Exclusion Code: X6
- 796. Middelkoop HA, Knuistingh Neven A, van Hilten JJ, et al. Wrist actigraphic assessment of sleep in 116 community based subjects suspected of obstructive sleep apnoea syndrome. Thorax. 1995 Mar;50(3):284-9. Epub: 1995/03/01. PMID: 7660344. Exclusion Code: X10
- 797. Milleron O, Pilliere R, Foucher A, et al. Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study. Eur Heart J. 2004 May;25(9):728-34. Epub: 2004/05/04. PMID: 15120882. Exclusion Code: X10
- 798. Min HJ, Cho YJ, Kim CH, et al. Clinical features of obstructive sleep apnea that determine its high prevalence in resistant hypertension. Yonsei Med J. 2015;56(5):1258-65. Exclusion Code: X3
- 799. Mitchell LJ, Davidson ZE, Bonham M, et al. Weight loss from lifestyle interventions and severity of sleep apnoea: a systematic review and meta-analysis (Provisional abstract). Database of Abstracts of Reviews of Effects. 2014(2):1173-83. PMID: DARE-12014056663. Exclusion Code: X3
- 800. Monaca C, Duhamel A, Jacquesson JM, et al. Vigilance troubles in Parkinson's disease: a subjective and objective polysomnographic study. Sleep Med. 2006 Aug;7(5):448-53. Epub: 2006/06/03. PMID: 16740409. Exclusion Code: X10
- 801. Monasterio C, Vidal S, Duran J, et al. Effectiveness of continuous positive airway pressure in mild sleep apnea-hypopnea syndrome. Am J Respir Crit Care Med. 2001 Sep 15;164(6):939-43. Epub: 2001/10/06. PMID: 11587974. Exclusion Code: X5
- 802. Montesi SB, Edwards BA, Malhotra A, et al. The effect of continuous positive airway pressure treatment on blood pressure: a systematic review and meta-analysis of randomized controlled trials (Provisional abstract). J Clin Sleep Med. 2012;8(5):587-96. PMID: DARE-12013022301. Exclusion Code: X3

- 803. Morillo D, Rojas Ojeda JL, Crespo Foix LF, et al. An accelerometer-based device for sleep apnea screening. IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):491-9. Epub: 2009/08/01. PMID: 19643712. Exclusion Code: X4
- 804. Morrell MJ, Finn L, McMillan A, et al. The impact of ageing and sex on the association between sleepiness and sleep disordered breathing. Eur Respir J. 2012
 Aug;40(2):386-93. Epub: 2012/01/14.
 PMID: 22241742. Exclusion Code: X3
- 805. Morris LG, Kleinberger A, Lee KC, et al. Rapid risk stratification for obstructive sleep apnea, based on snoring severity and body mass index. Otolaryngol Head Neck Surg. 2008 Nov;139(5):615-8. Epub: 2008/11/06. PMID: 18984252. Exclusion Code: X3
- 806. Mosko SS, Dickel MJ, Ashurst J. Night-tonight variability in sleep apnea and sleeprelated periodic leg movements in the elderly. Sleep. 1988 Aug;11(4):340-8. Epub: 1988/08/01. PMID: 3206054. Exclusion Code: X6
- 807. Moss J, Tew GA, Copeland RJ, et al. Effects of a lifestyle intervention in obese obstructive sleep apnoea patients treated with continuous positive airway pressure.

 Journal of Sleep Research. Conference: 21st Congress of the European Sleep Research Society Paris France. Conference Start: 20120904 Conference End: 20120908.

 Conference Publication: (var.pagings). 2012;21(Suppl 1):90-1. PMID: CN-00839492. Exclusion Code: X4
- 808. Mulgrew AT, Fox N, Ayas NT, et al. Diagnosis and initial management of obstructive sleep apnea without polysomnography: a randomized validation study. Ann Intern Med. 2007 Feb 6;146(3):157-66. Epub: 2007/02/07. PMID: 17283346. Exclusion Code: X3
- 809. Mundy L, Sullivan T, Merlin T, et al. Pillar procedure for the treatment of obstructive sleep apnoea and snoring (Structured abstract). Health Technology Assessment Database. 2006(3)PMID: HTA-32006001415. Exclusion Code: X9
- 810. Mungan U, Ozeke O, Mavioglu L, et al. The role of the preoperative screening of sleep apnoea by Berlin Questionnaire and Epworth Sleepiness Scale for postoperative atrial fibrillation. Heart Lung Circ. 2013 Jan;22(1):38-42. Epub: 2012/09/04. PMID: 22939109. Exclusion Code: X4

- 811. Munish M, Sharma V, Yarussi KM, et al.
 The use of practice guidelines by the
 American Society of Anesthesiologists for
 the identification of surgical patients at high
 risk of sleep apnea. Chron Respir Dis.
 2012;9(4):221-30. Epub: 2012/09/28.
 PMID: 23014691. Exclusion Code: X8
- 812. Munoz A, Mayoralas LR, Barbe F, et al. Long-term effects of CPAP on daytime functioning in patients with sleep apnoea syndrome. Eur Respir J. 2000
 Apr;15(4):676-81. Epub: 2000/04/26.
 PMID: 10780758. Exclusion Code: X3
- 813. Munoz R, Duran-Cantolla J, Martinez-Vila E, et al. Severe sleep apnea and risk of ischemic stroke in the elderly. Stroke. 2006 Sep;37(9):2317-21. PMID: 16888274. Exclusion Code: X5
- 814. Muraja-Murro A, Eskola K, Kolari T, et al. Mortality in middle-aged men with obstructive sleep apnea in Finland. Sleep Breath. 2013 Sep;17(3):1047-53. Epub: 2013/01/31. PMID: 23361136. Exclusion Code: X3
- 815. Muraja-Murro A, Kulkas A, Hiltunen M, et al. The severity of individual obstruction events is related to increased mortality rate in severe obstructive sleep apnea. J Sleep Res. 2013 Dec;22(6):663-9. Epub: 2013/08/14. PMID: 23937311. Exclusion Code: X3
- 816. Musman S, Passos VM, Silva IB, et al. Evaluation of a prediction model for sleep apnea in patients submitted to polysomnography. J Bras Pneumol. 2011 Jan-Feb;37(1):75-84. Epub: 2011/03/11. PMID: 21390435. Exclusion Code: X8
- 817. Muxfeldt ES, Margallo V, Costa LM, et al. Effects of continuous positive airway pressure treatment on clinic and ambulatory blood pressures in patients with obstructive sleep apnea and resistant hypertension: a randomized controlled trial. Hypertension. 2015 Apr;65(4):736-42. Epub: 2015/01/21. PMID: 25601933. Exclusion Code: X12
- 818. Myers KA, Mrkobrada M, Simel DL. Does this patient have obstructive sleep apnea? The Rational Clinical Examination systematic review (Structured abstract). JAMA. 2013;310(7):731-41. PMID: DARE-12013049250. Exclusion Code: X3

- 819. Myhill PC, Davis WA, Peters KE, et al. Effect of continuous positive airway pressure therapy on cardiovascular risk factors in patients with type 2 diabetes and obstructive sleep apnea. J Clin Endocrinol Metab. 2012 Nov;97(11):4212-8. Epub: 2012/09/11. PMID: 22962427. Exclusion Code: X3
- 820. Mykytyn IJ, Sajkov D, Neill AM, et al. Portable computerized polysomnography in attended and unattended settings. Chest. 1999 Jan;115(1):114-22. PMID: 9925071. Exclusion Code: X5
- 821. Nakano H, Ikeda T, Hayashi M, et al. Effect of body mass index on overnight oximetry for the diagnosis of sleep apnea. Respir Med. 2004 May;98(5):421-7. Epub: 2004/05/14. PMID: 15139571. Exclusion Code: X6
- 822. Nakano H, Tanigawa T, Furukawa T, et al. Automatic detection of sleep-disordered breathing from a single-channel airflow record. Eur Respir J. 2007 Apr;29(4):728-36. Epub: 2007/01/26. PMID: 17251229. Exclusion Code: X9
- 823. Nakano H, Tanigawa T, Ohnishi Y, et al. Validation of a single-channel airflow monitor for screening of sleep-disordered breathing. Eur Respir J. 2008
 Oct;32(4):1060-7. PMID: 18480104.
 Exclusion Code: X6
- 824. Naughton M, Pierce R. Effects of nasal continuous positive airway pressure on blood pressure and body mass index in obstructive sleep apnoea. Aust N Z J Med. 1991 Dec;21(6):917-9. Epub: 1991/12/01. PMID: 1818555. Exclusion Code: X10
- 825. NCT00127348. Effect of Continuous Positive Airway Pressure (CPAP) on Hypertension and Cardiovascular Morbidity-Mortality in Patients With Sleep Apnea and no Daytime Sleepiness. 2015. Exclusion Code: X4
- 826. NCT00477828. Effect of Treating Sleep Apnea on Cognition in Patients With Dementia. 2015. Exclusion Code: X4
- 827. NCT01156116. Effective Treatment of Sleep Apnea in Prediabetes to Reduce Cardiometabolic Risk. 2015. Exclusion Code: X5
- 828. NCT01196117. Sleepiness and the Effects of CPAP on Salivary Cortisol and Alpha-Amylase Levels in Patients With Sleep Apnea. 2015. Exclusion Code: X4

- 829. Ndegwa S, Clark M, Argaez C. Portable monitoring devices for diagnosis of obstructive sleep apnea at home: review of accuracy, cost effectiveness, guidelines, and coverage in Canada (Structured abstract). Health Technology Assessment Database. 2009(3)PMID: HTA-32010001048. Exclusion Code: X3
- 830. Neill A, Campbell A, Richards M, et al.
 Nasal CPAP improves echocardiographic indices in patients with obstructive sleep apnoea and heart failure [Abstract].
 Respirology (Carlton, Vic.). 2004;9(2
 Suppl):A16. PMID: CN-00476134.
 Exclusion Code: X4
- 831. Nelesen RA, Yu H, Ziegler MG, et al.
 Continuous positive airway pressure
 normalizes cardiac autonomic and
 hemodynamic responses to a laboratory
 stressor in apneic patients. Chest.
 2001;119(4):1092-101. PMID: CN00327377. Exclusion Code: X4
- 832. Neligan PJ, Malhotra G, Fraser M, et al.
 Continuous positive airway pressure via the
 Boussignac system immediately after
 extubation improves lung function in
 morbidly obese patients with obstructive
 sleep apnea undergoing laparoscopic
 bariatric surgery. Anesthesiology. 2009
 Apr;110(4):878-84. Epub: 2009/03/19.
 PMID: 19293693. Exclusion Code: X9
- 833. Nena E, Tsara V, Steiropoulos P, et al. Sleep-disordered breathing and quality of life of railway drivers in Greece. Chest. 2008 Jul;134(1):79-86. Epub: 2008/03/19. PMID: 18347205. Exclusion Code: X4
- 834. Nerfeldt P, Aoki F, Friberg D. Polygraphy vs. polysomnography: missing osas in symptomatic snorers--a reminder for clinicians. Sleep Breath. 2014
 May;18(2):297-303. Epub: 2013/08/15.
 PMID: 23942981. Exclusion Code: X10
- 835. Nerfeldt P, Nilsson BY, Mayor L, et al. A two-year weight reduction program in obese sleep apnea patients. J Clin Sleep Med. 2010 Oct 15;6(5):479-86. Epub: 2010/10/21. PMID: 20957850. Exclusion Code: X10
- 836. Nerfeldt P, Nilsson BY, Udden J, et al.
 Weight reduction improves nocturnal
 respiration in obese sleep apnoea patients a
 randomized controlled pilot study. Obes Res
 Clin Pract. 2008;2(2):119-24. PMID: CN00708177. Exclusion Code: X5

- 837. Nettleton D, Muniz J. Processing and representation of meta-data for sleep apnea diagnosis with an artificial intelligence approach. Int J Med Inform. 2001 Sep;63(1-2):77-89. Epub: 2001/08/24. PMID: 11518667. Exclusion Code: X3
- 838. Netzer NC, Stoohs RA, Netzer CM, et al. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999 Oct 5;131(7):485-91. Epub: 1999/10/03. PMID: 10507956. Exclusion Code: X10
- 839. Newall C, McCauley TM, Stockley J, et al. Changes in health status after a trial of continuous positive airway pressure in patients with obstructive sleep apnoea: 2 week v 4 week trial [Abstract]. Thorax. 2006;61(Suppl 2):ii54 [S153]. PMID: CN-00744038. Exclusion Code: X4
- 840. Ng SS, Chan TO, To KW, et al. Validation of a portable recording device (ApneaLink) for identifying patients with suspected obstructive sleep apnoea syndrome. Intern Med J. 2009 Nov;39(11):757-62. PMID: 19220528. Exclusion Code: X6
- 841. Ng SS, Chan TO, To KW, et al. Validation of Embletta portable diagnostic system for identifying patients with suspected obstructive sleep apnoea syndrome (OSAS). Respirology. 2010 Feb;15(2):336-42. Epub: 2010/03/05. PMID: 20199644. Exclusion Code: X6
- 842. Nguyen AT, Baltzan MA, Small D, et al. Clinical reproducibility of the Epworth Sleepiness Scale. J Clin Sleep Med. 2006 Apr 15;2(2):170-4. Epub: 2007/06/15. PMID: 17557491. Exclusion Code: X8
- 843. Nguyen NT, Nguyen B, Smith B, et al. Proposal for a bariatric mortality risk classification system for patients undergoing bariatric surgery. Surg Obes Relat Dis. 2013;9(2):239-46. Exclusion Code: X3
- 844. Nicholl DD, Ahmed SB, Loewen AH, et al. Clinical presentation of obstructive sleep apnea in patients with chronic kidney disease. J Clin Sleep Med. 2012;8(4):381-7. Epub: 2012/08/16. PMID: 22893768. Exclusion Code: X5
- 845. Nicholl DD, Ahmed SB, Loewen AH, et al. Diagnostic value of screening instruments for identifying obstructive sleep apnea in kidney failure. J Clin Sleep Med. 2013 Jan 15;9(1):31-8. Epub: 2013/01/16. PMID: 23319902. Exclusion Code: X10

- 846. Nickerson JE, Krieger AC, Simon EP, et al. Feasibility of portable technology to diagnose sleep apnea in underserved communities. J Gen Intern Med. 2012;27:S196. Exclusion Code: X11
- 847. Nigro CA, Aimaretti S, Gonzalez S, et al. Validation of the WristOx 3100 oximeter for the diagnosis of sleep apnea/hypopnea syndrome. Sleep Breath. 2009
 May;13(2):127-36. Epub: 2008/10/03.
 PMID: 18830731. Exclusion Code: X6
- 848. Nigro CA, Dibur E, Aragone MR, et al. Can CPAP be indicated in adult patients with suspected obstructive sleep apnea only on the basis of clinical data? Sleep and Breathing. 2015. Exclusion Code: X11
- 849. Nigro CA, Gonzalez S, Arce A, et al. Accuracy of a novel auto-CPAP device to evaluate the residual apnea-hypopnea index in patients with obstructive sleep apnea. Sleep and Breathing. 2015;19(2):569-78. PMID: CN-01069734. Exclusion Code: X9
- 850. Nishiyama T, Mizuno T, Kojima M, et al. Criterion validity of the Pittsburgh Sleep Quality Index and Epworth Sleepiness Scale for the diagnosis of sleep disorders. Sleep Med. 2014 Apr;15(4):422-9. Epub: 2014/03/25. PMID: 24657203. Exclusion Code: X8
- 851. Noda A, Nakata S, Koike Y, et al.
 Continuous positive airway pressure
 improves daytime baroreflex sensitivity and
 nitric oxide production in patients with
 moderate to severe obstructive sleep apnea
 syndrome. Hypertens Res. 2007;30(8):66976. PMID: CN-00619912. Exclusion Code:
 X9
- Nordgard S, Hein G, Stene BK, et al. One-year results: palatal implants for the treatment of obstructive sleep apnea.
 Otolaryngol Head Neck Surg. 2007
 May;136(5):818-22. Epub: 2007/05/05.
 PMID: 17478222. Exclusion Code: X3
- 853. Norman MB, Middleton S, Erskine O, et al. Validation of the Sonomat: a contactless monitoring system used for the diagnosis of sleep disordered breathing. Sleep. 2014 Sep;37(9):1477-87. Epub: 2014/08/31. PMID: 25142565. Exclusion Code: X5
- 854. Nuckton TJ, Glidden DV, Browner WS, et al. Physical examination: Mallampati score as an independent predictor of obstructive sleep apnea. Sleep. 2006 Jul;29(7):903-8. Epub: 2006/08/10. PMID: 16895257. Exclusion Code: X3

- 855. Nunes FS, Danzi-Soares NJ, Genta PR, et al. Critical evaluation of screening questionnaires for obstructive sleep apnea in patients undergoing coronary artery bypass grafting and abdominal surgery. Sleep Breath. 2015 Mar;19(1):115-22. PMID: 24668213. Exclusion Code: X12
- 856. Oeverland B, Akre H, Kvaerner KJ, et al. Patient discomfort in polysomnography with esophageal pressure measurements. Eur Arch Otorhinolaryngol. 2005

 Mar;262(3):241-5. Epub: 2005/04/12.

 PMID: 15821910. Exclusion Code: X9
- 857. O'Gorman SM, Gay PC, Morgenthaler TI.
 Does autotitrating positive airway pressure therapy improve postoperative outcome in patients at risk for obstructive sleep apnea syndrome? A randomized controlled clinical trial. Chest. 2013 Jul;144(1):72-8. Epub: 2013/01/05. PMID: 23287823. Exclusion Code: X8
- 858. Ogretmenoglu O, Suslu AE, Yucel OT, et al. Body fat composition: a predictive factor for obstructive sleep apnea. Laryngoscope. 2005 Aug;115(8):1493-8. Epub: 2005/08/12. PMID: 16094131. Exclusion Code: X3
- 859. O'Hara R, Schroder CM, Kraemer HC, et al. Nocturnal sleep apnea/hypopnea is associated with lower memory performance in APOE epsilon4 carriers. Neurology. 2005 Aug 23;65(4):642-4. Epub: 2005/08/24. PMID: 16116137. Exclusion Code: X3
- 860. Ohayon MM, Guilleminault C, Zulley J, et al. Validation of the sleep-EVAL system against clinical assessments of sleep disorders and polysomnographic data. Sleep. 1999 Nov 1;22(7):925-30. Epub: 1999/11/24. PMID: 10566910. Exclusion Code: X8
- 861. Ohmura T, Iwama Y, Kasai T, et al. Impact of predischarge nocturnal pulse oximetry (sleep-disordered breathing) on postdischarge clinical outcomes in hospitalized patients with left ventricular systolic dysfunction after acute decompensated heart failure. Am J Cardiol. 2014 Feb 15;113(4):697-700. Epub: 2013/12/18. PMID: 24342759. Exclusion Code: X10
- 862. Oktay B, Akbal E, Firat H, et al. CPAP treatment in the coexistence of obstructive sleep apnea syndrome and metabolic syndrome, results of one year follow up. Acta Clin Belg. 2009 Jul-Aug;64(4):329-34. Epub: 2009/10/09. PMID: 19810420. Exclusion Code: X10

- 863. Oktay B, Rice TB, Atwood CW, Jr., et al. Evaluation of a single-channel portable monitor for the diagnosis of obstructive sleep apnea. J Clin Sleep Med. 2011 Aug 15;7(4):384-90. Epub: 2011/09/08. PMID: 21897775. Exclusion Code: X3
- 864. Olaithe M, Skinner TC, Clarke J, et al. Can we get more from the Epworth Sleepiness Scale (ESS) than just a single score? A confirmatory factor analysis of the ESS. Sleep Breath. 2013 May;17(2):763-9. Epub: 2012/08/29. PMID: 22927106. Exclusion Code: X8
- 865. Oliveira MG, Nery LE, Santos-Silva R, et al. Is portable monitoring accurate in the diagnosis of obstructive sleep apnea syndrome in chronic pulmonary obstructive disease? Sleep Med. 2012 Sep;13(8):1033-8. Epub: 2012/07/31. PMID: 22841038. Exclusion Code: X4
- 866. Oliveira MG, Santos-Silva R, Borba P, et al. Validation of a cardio-respiratory device for the diagnosis of obstructive sleep apnoea in patients with chronic obstructive pulmonary disease Preliminary results [Abstract]. J Sleep Res. 2010;19(Suppl s2):307. PMID: CN-00776894. Exclusion Code: X8
- 867. Oliveira W, Campos O, Cintra F, et al. Impact of continuous positive airway pressure treatment on left atrial volume and function in patients with obstructive sleep apnoea assessed by real-time three-dimensional echocardiography. Heart (British Cardiac Society). 2009;95(22):1872-8. PMID: CN-00733837. Exclusion Code: X4
- 868. Oliveira W, Poyares D, Cintra F, et al.
 Impact of continuous positive airway
 pressure treatment on right ventricle
 performance in patients with obstructive
 sleep apnoea, assessed by three-dimensional
 echocardiography. Echocardiography.
 Conference: 18th World Congress of
 Echocardiography and Allied Techniques
 Sao Paulo Brazil. Conference Start:
 20120308 Conference End: 20120310.
 Conference Publication: (var.pagings).
 2012;29(2):258. PMID: CN-00836897.
 Exclusion Code: X4

- 869. Oliveira W, Poyares D, Cintra F, et al. Impact of continuous positive airway pressure treatment on right ventricle performance in patients with obstructive sleep apnoea, assessed by three-dimensional echocardiography. Sleep Med. 2012 May;13(5):510-6. Epub: 2012/03/23. PMID: 22437139. Exclusion Code: X12
- 870. Olson LG, King MT, Hensley MJ, et al. A community study of snoring and sleep-disordered breathing. Health outcomes. Am J Respir Crit Care Med. 1995
 Aug;152(2):717-20. Epub: 1995/08/01.
 PMID: 7633732. Exclusion Code: X3
- 871. Olson LG, King MT, Hensley MJ, et al. A community study of snoring and sleep-disordered breathing. Symptoms. Am J Respir Crit Care Med. 1995
 Aug;152(2):707-10. Epub: 1995/08/01. PMID: 7633730. Exclusion Code: X10
- 872. Olszewski K, Wolf D. Obstructive sleep apnea among commercial motor vehicle drivers: using evidence-based practice to identify risk factors. Workplace Health Saf. 2013 Nov;61(11):479-85. Epub: 2013/10/23. PMID: 24144003. Exclusion Code: X10
- 873. Onder NS, Akpinar ME, Yigit O, et al. Watch peripheral arterial tonometry in the diagnosis of obstructive sleep apnea: influence of aging. Laryngoscope. 2012 Jun;122(6):1409-14. Epub: 2012/04/24. PMID: 22522750. Exclusion Code: X4
- 874. Onen F, Moreau T, Gooneratne NS, et al. Limits of the Epworth Sleepiness Scale in older adults. Sleep Breath. 2013 Mar;17(1):343-50. Epub: 2012/04/03. PMID: 22467194. Exclusion Code: X10
- 875. Onen SH, Onen F, Albrand G, et al. Pain tolerance and obstructive sleep apnea in the elderly. J Am Med Dir Assoc. 2010
 Nov;11(9):612-6. Epub: 2010/10/30. PMID: 21029995. Exclusion Code: X14
- 876. Ong TH, Raudha S, Fook-Chong S, et al. Simplifying STOP-BANG: use of a simple questionnaire to screen for OSA in an Asian population. Sleep Breath. 2010
 Dec;14(4):371-6. Epub: 2010/04/27. PMID: 20419474. Exclusion Code: X8
- 877. Orr WC, Eiken T, Pegram V, et al. A laboratory validation study of a portable system for remote recording of sleep-related respiratory disorders. Chest. 1994
 Jan;105(1):160-2. PMID: 8275725.
 Exclusion Code: X6

- 878. Osman EZ, Osborne J, Hill PD, et al. The Epworth Sleepiness Scale: can it be used for sleep apnoea screening among snorers? Clin Otolaryngol Allied Sci. 1999 Jun;24(3):239-41. Epub: 1999/06/29. PMID: 10384854. Exclusion Code: X4
- 879. O'Sullivan RA, Hillman DR, Mateljan R, et al. Mandibular advancement splint: the effects on snoring and obstructive sleep apnea. Sleep. 1993 Dec;16(8 Suppl):S143. Epub: 1993/12/01. PMID: 8178009. Exclusion Code: X10
- 880. O'Sullivan RA, Hillman DR, Mateljan R, et al. Mandibular advancement splint: an appliance to treat snoring and obstructive sleep apnea. Am J Respir Crit Care Med. 1995 Jan;151(1):194-8. Epub: 1995/01/01. PMID: 7812552. Exclusion Code: X3
- 881. Otake K, Delaive K, Walld R, et al.
 Cardiovascular medication use in patients
 with undiagnosed obstructive sleep apnoea.
 Thorax. 2002 May;57(5):417-22. Epub:
 2002/04/30. PMID: 11978918. Exclusion
 Code: X3
- 882. Otero A, Felix P, Presedo J, et al. An evaluation of indexes as support tools in the diagnosis of sleep apnea. Ann Biomed Eng. 2012 Aug;40(8):1825-34. Epub: 2012/03/01. PMID: 22374322. Exclusion Code: X9
- 883. Ou Q, Chen YC, Zhuo SQ, et al. Continuous positive airway pressure treatment reduces mortality in elderly patients with moderate to severe obstructive severe sleep apnea: A cohort study. PLoS One. 2015;10(6)PMID: CN-01086334. Exclusion Code: X12
- 884. Overland B, Bruskeland G, Akre H, et al. Evaluation of a portable recording device (Reggie) with actimeter and nasopharyngeal/esophagus catheter incorporated. Respiration. 2005 Nov-Dec;72(6):600-5. PMID: 15988172. Exclusion Code: X6
- 885. Ozcan KM, Ozcan M, Ozdogan F, et al. The predictive value of Muller maneuver in REM-dependent obstructive sleep apnea. Eur Arch Otorhinolaryngol. 2013 Sep;270(10):2759-62. Epub: 2013/05/02. PMID: 23632868. Exclusion Code: X9
- 886. Ozdas T, Ozcan KM, Ozdogan F, et al. Investigation of lateral pharyngeal walls in OSAS. Eur Arch Otorhinolaryngol. 2013 Feb;270(2):767-71. Epub: 2012/10/16. PMID: 23064460. Exclusion Code: X9

- 887. Ozmen OA, Tuzemen G, Kasapoglu F, et al. The reliability of SleepStrip as a screening test in obstructive sleep apnea syndrome. Kulak Burun Bogaz Ihtis Derg. 2011 Jan-Feb;21(1):15-9. Epub: 2011/02/10. PMID: 21303312. Exclusion Code: X12
- 888. Pahkala R, Seppa J, Ikonen A, et al. The impact of pharyngeal fat tissue on the pathogenesis of obstructive sleep apnea. Sleep and Breathing. 2014;18(2):275-82. Exclusion Code: X8
- 889. Paim SL, Pires ML, Bittencourt LR, et al. Sleep complaints and polysomnographic findings: a study of nuclear power plant shift workers. Chronobiol Int. 2008
 Apr;25(2):321-31. Epub: 2008/05/20.
 PMID: 18484367. Exclusion Code: X10
- 890. Palla A, Digiorgio M, Carpene N, et al. Sleep apnea in morbidly obese patients: prevalence and clinical predictivity. Respiration. 2009;78(2):134-40. Epub: 2008/10/22. PMID: 18936534. Exclusion Code: X10
- 891. Pallayova M, Steele KE, Magnuson TH, et al. Sleep apnea determines soluble TNF-alpha receptor 2 response to massive weight loss. Obes Surg. 2011 Sep;21(9):1413-23. Epub: 2011/02/08. PMID: 21298510. Exclusion Code: X10
- 892. Pallin M, O'Hare E, Zaffaroni A, et al. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea. J Sleep Res. 2014 Aug;23(4):475-84. Epub: 2014/02/06. PMID: 24495222. Exclusion Code: X9
- 893. Palombini LO, Tufik S, Rapoport DM, et al. Inspiratory flow limitation in a normal population of adults in Sao Paulo, Brazil. Sleep. 2013 Nov;36(11):1663-8. Epub: 2013/11/02. PMID: 24179299. Exclusion Code: X4
- 894. Pamidi S, Knutson KL, Ghods F, et al. Depressive symptoms and obesity as predictors of sleepiness and quality of life in patients with REM-related obstructive sleep apnea: cross-sectional analysis of a large clinical population. Sleep Med. 2011 Oct;12(9):827-31. Epub: 2011/10/08. PMID: 21978724. Exclusion Code: X3

- 895. Pan F, Liu J, Xie Y, et al. [Simple three-variable screening tool for identification of patients with obstructive sleep apnea-hypopnea syndrome in middle-aged male snorers from Guangxi region: a multi-center study]. Zhonghua Yi Xue Za Zhi. 2015 Jan 13;95(2):100-5. Epub: 2015/04/17. PMID: 25876894. Exclusion Code: X1
- 896. Pan YY, Deng Y, Xu X, et al. Effects of continuous positive airway pressure on cognitive deficits in middle-aged patients with obstructive sleep apnea syndrome: A meta-analysis of randomized controlled trials. Chin Med J. 2015;128(17):2365-73. Exclusion Code: X11
- 897. Pang KP, Dillard TA, Blanchard AR, et al. A comparison of polysomnography and the SleepStrip in the diagnosis of OSA.
 Otolaryngol Head Neck Surg. 2006
 Aug;135(2):265-8. PMID: 16890080.
 Exclusion Code: X6
- 898. Pang KP, Gourin CG, Terris DJ. A comparison of polysomnography and the WatchPAT in the diagnosis of obstructive sleep apnea. Otolaryngol Head Neck Surg. 2007 Oct;137(4):665-8. Epub: 2007/10/02. PMID: 17903588. Exclusion Code: X6
- 899. Pang KP, Siow JK, Tseng P. Safety of multilevel surgery in obstructive sleep apnea: a review of 487 cases. Arch Otolaryngol Head Neck Surg. 2012 Apr;138(4):353-7. Epub: 2012/03/21. PMID: 22431863. Exclusion Code: X3
- 900. Pang KP, Woodson BT. Expansion sphincter pharyngoplasty: a new technique for the treatment of obstructive sleep apnea. Otolaryngol Head Neck Surg. 2007
 Jul;137(1):110-4. Epub: 2007/06/30. PMID: 17599576. Exclusion Code: X3
- 901. Papadimitriou V, Sofras F, Bouloukaki I, et al. CPAP versus CPAP plus low dose of PDE-inhibitor in men with obstructive sleep apnoea-hypopnoea syndrome and erectile dysfunction [Abstract]. J Sleep Res. 2010;19(Suppl s2):296. PMID: CN-00774263. Exclusion Code: X9
- 902. Papandreou C, Schiza SE, Bouloukaki I, et al. Effect of Mediterranean diet versus prudent diet combined with physical activity on OSAS: a randomised trial. Eur Respir J. 2012 Jun;39(6):1398-404. Epub: 2011/10/29. PMID: 22034645. Exclusion Code: X10

- 903. Park do Y, Kim HJ, Kim CH, et al. Reliability and validity testing of automated scoring in obstructive sleep apnea diagnosis with the Embletta X100. Laryngoscope. 2015 Feb;125(2):493-7. Epub: 2014/08/16. PMID: 25124863. Exclusion Code: X3
- 904. Parks P, Durand G, Tsismenakis AJ, et al. Screening for obstructive sleep apnea during commercial driver medical examinations. J Occup Environ Med. 2009 Mar;51(3):275-82. Epub: 2009/03/14. PMID: 19280762. Exclusion Code: X10
- 905. Parra i Ordaz O. AHI as an independent risk factor for sleepiness. Arch Bronconeumol. 2012 Mar;48(3):67-9. Epub: 2011/07/16. PMID: 21757282. Exclusion Code: X2
- 906. Parra O, Garcia-Esclasans N, Montserrat JM, et al. Should patients with sleep apnoea/hypopnoea syndrome be diagnosed and managed on the basis of home sleep studies? Eur Respir J. 1997 Aug;10(8):1720-4. PMID: 9272909. Exclusion Code: X6
- 907. Parra O, Sanchez-Armengol A, Bonnin M, et al. Early treatment of obstructive apnoea and stroke outcome: a randomised controlled trial. Eur Respir J. 2011 May;37(5):1128-36. Epub: 2010/09/18. PMID: 20847081. Exclusion Code: X8
- 908. Parra O, Sanchez-Armengol MA, Bonnin M, et al. Usefulness of nasal CPAP in patients with a first ever stroke and sleep disordered breathing: 2 years follow-up. Eur Respir J. 2009;34(Suppl 53):805s. PMID: CN-00854718. Exclusion Code: X8
- 909. Partinen M, Guilleminault C. Daytime sleepiness and vascular morbidity at seven-year follow-up in obstructive sleep apnea patients. Chest. 1990 Jan;97(1):27-32. PMID: 2295260. Exclusion Code: X3
- 910. Partinen M, Jamieson A, Guilleminault C. Long-term outcome for obstructive sleep apnea syndrome patients. Mortality. Chest. 1988 Dec;94(6):1200-4. PMID: 3191760. Exclusion Code: X3
- 911. Pastore AL, Palleschi G, Silvestri L, et al. Severe obstructive sleep apnoea syndrome and erectile dysfunction: A prospective randomised study to compare sildenafil vs. Nasal continuous positive airway pressure. J Urol. 2015;193(4 suppl 1):e906. PMID: CN-01068136. Exclusion Code: X10
- 912. Pataka A, Daskalopoulou E, Kalamaras G, et al. Evaluation of five different questionnaires for assessing sleep apnea syndrome in a sleep clinic. Sleep Med. 2014;15(7):776-81. Exclusion Code: X8

- 913. Patwardhan AA, Larson MG, Levy D, et al. Obstructive sleep apnea and plasma natriuretic peptide levels in a community-based sample. Sleep. 2006 Oct;29(10):1301-6. Epub: 2006/10/31. PMID: 17068983. Exclusion Code: X3
- 914. Pedrosa RP, Drager LF, de Paula LK, et al. Effects of OSA treatment on BP in patients with resistant hypertension: a randomized trial. Chest. 2013 Nov;144(5):1487-94. Epub: 2013/04/20. PMID: 23598607. Exclusion Code: X12
- 915. Peker Y, Carlson J, Hedner J. Increased incidence of coronary artery disease in sleep apnoea: a long-term follow-up. Eur Respir J. 2006 Sep;28(3):596-602. PMID: 16641120. Exclusion Code: X8
- 916. Peker Y, Glantz H, Thunstrom E, et al.
 Rationale and design of the Randomized
 Intervention with CPAP in Coronary Artery
 Disease and Sleep Apnoea--RICCADSA
 trial. Scand Cardiovasc J. 2009
 Feb;43(1):24-31. PMID: 18663661.
 Exclusion Code: X2
- 917. Peker Y, Hedner J, Norum J, et al. Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med. 2002 Jul 15;166(2):159-65. Epub: 2002/07/18. PMID: 12119227. Exclusion Code: X3
- 918. Pelechas E, Doina A. Impact of nasal continuous positive airway pressure on heart rhythm in patients with obstructive sleep apnea/hypopnea syndrome. Minerva Med. 2014 Jun;105(3):255-60. Epub: 2014/07/06. PMID: 24988091. Exclusion Code: X10
- 919. Pelletier-Fleury N, Meslier N, Gagnadoux F, et al. Economic arguments for the immediate management of moderate-to-severe obstructive sleep apnoea syndrome. Eur Respir J. 2004 Jan;23(1):53-60. Epub: 2004/01/24. PMID: 14738231. Exclusion Code: X10
- 920. Pendlebury ST, Pepin JL, Veale D, et al. Natural evolution of moderate sleep apnoea syndrome: significant progression over a mean of 17 months. Thorax. 1997
 Oct;52(10):872-8. Epub: 1997/12/24. PMID: 9404374. Exclusion Code: X3
- 921. Penzel T, Kesper K, Pinnow I, et al. Peripheral arterial tonometry, oximetry and actigraphy for ambulatory recording of sleep apnea. Physiol Meas. 2004 Aug;25(4):1025-36. Epub: 2004/09/24. PMID: 15382839. Exclusion Code: X4

- 922. Pepin JL, Defaye P, Vincent E, et al. Sleep apnea diagnosis using an ECG Holter device including a nasal pressure (NP) recording: validation of visual and automatic analysis of nasal pressure versus full polysomnography. Sleep Med. 2009 Jun;10(6):651-6. PMID: 19028140. Exclusion Code: X9
- 923. Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000 Dec 20;284(23):3015-21. Epub: 2000/12/21. PMID: 11122588. Exclusion Code: X3
- 924. Pepperell JCT, Mullins B, Dow SR, et al. Blood pressure change after treatment for obstructive sleep apnoea (OSA) with continuous positive airway pressure (CPAP). Thorax. 2000;55(Suppl 3):A24. PMID: CN-00402204. Exclusion Code: X11
- 925. Perleth M, Leyen Uvd, Schmitt H, et al.
 Diagnosis and treatment of sleep apnea systematic review of diagnostics, therapy,
 and cost-effectiveness (Structured abstract).
 Health Technology Assessment Database.
 2003(3)PMID: HTA-32000001748.
 Exclusion Code: X1
- 926. Permut I, Diaz-Abad M, Chatila W, et al. Comparison of positional therapy to CPAP in patients with positional obstructive sleep apnea. J Clin Sleep Med. 2010 Jun 15;6(3):238-43. Epub: 2010/06/25. PMID: 20572416. Exclusion Code: X9
- 927. Persaud N. APNEIC: an easy-to-use screening tool for obstructive sleep apnea. Can Fam Physician. 2010 Sep;56(9):904-5. Epub: 2010/09/16. PMID: 20841594. Exclusion Code: X3
- 928. Peter JV, Moran JL, Phillips-Hughes J, et al. Noninvasive ventilation in acute respiratory failure: a meta-analysis update (Structured abstract). Crit Care Med. 2002;30(3):555-62. PMID: DARE-12002000795. Exclusion Code: X8
- 929. Phillips B, Shafazand S. CPAP and hypertension in nonsleepy patients. J Clin Sleep Med. 2013 Feb 1;9(2):181-2. Epub: 2013/02/02. PMID: 23372475. Exclusion Code: X2
- 930. Phillips CL, McEwen BJ, Morel-Kopp MC, et al. Effects of continuous positive airway pressure on coagulability in obstructive sleep apnoea: a randomised, placebocontrolled crossover study. Thorax. 2012 Jul;67(7):639-44. Epub: 2012/02/16. PMID: 22334531. Exclusion Code: X6

- 931. Phillips CL, Yee BJ, Marshall NS, et al. Treatment of obstructive sleep apnoea reduces post-prandial lipidaemia: Evidence from a randomized, placebo-controlled trial of continuous positive airway pressure [Abstract]. J Sleep Res. 2010;19(Suppl s2):170. PMID: CN-00776810. Exclusion Code: X4
- 932. Phillips MC, Costello CA, White EJ, et al. Routine polysomnography in an epilepsy monitoring unit. Epilepsy Res. 2013 Aug;105(3):401-4. Epub: 2013/03/29. PMID: 23535035. Exclusion Code: X5
- 933. Pichon Riviere A, Augustovski F, Alcaraz A, et al. Outpatient BiPAP (bi-level positive airway pressure) in obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2006(3)PMID: HTA-32006000044. Exclusion Code: X1
- 934. Pichon Riviere A, Augustovski F, Garcia Marti S, et al. Upper respiratory tract surgical techniques for the treatment of patients with obstructive sleep apnea syndrome (Structured abstract). Health Technology Assessment Database. 2012(3)PMID: HTA-32014000288. Exclusion Code: X1
- 935. Pichon-Riviere A, Augustovski F, Garcia Marti S, et al. Autoset usefulness in the diagnosis of obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 2008(3)PMID: HTA-32009100182. Exclusion Code: X1
- 936. Pillar G, Bar A, Betito M, et al. An automatic ambulatory device for detection of AASM defined arousals from sleep: the WP100. Sleep Med. 2003 May;4(3):207-12. PMID: 14592323. Exclusion Code: X6
- 937. Pillar G, Bar A, Shlitner A, et al. Autonomic arousal index: an automated detection based on peripheral arterial tonometry. Sleep. 2002 Aug 1;25(5):543-9. Epub: 2002/08/02. PMID: 12150321. Exclusion Code: X9
- 938. Pinna GD, Robbi E, Pizza F, et al. Can cardiorespiratory polygraphy replace portable polysomnography in the assessment of sleep-disordered breathing in heart failure patients? Sleep Breath. 2014 Sep;18(3):475-82. Epub: 2013/11/19. PMID: 24242991. Exclusion Code: X10
- 939. Pinto JA, Godoy LB, Marquis VW, et al. Anthropometric data as predictors of Obstructive Sleep Apnea Severity. Braz J Otorhinolaryngol. 2011 Jul-Aug;77(4):516-21. Epub: 2011/08/24. PMID: 21860980. Exclusion Code: X8

- 940. Piper AJ, Laks L, Sullivan CE.
 Effectiveness of short-term NIPPV in the management of patients with severe OSA and REM hypoventilation. Sleep. 1993
 Dec;16(8 Suppl):S115-6; discussion S6-7.
 Epub: 1993/12/01. PMID: 8177997.
 Exclusion Code: X10
- 941. Pittman SD, Ayas NT, MacDonald MM, et al. Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep. 2004 Aug 1;27(5):923-33. Epub: 2004/09/30. PMID: 15453551. Exclusion Code: X6
- 942. Pittman SD, MacDonald MM, Fogel RB, et al. Assessment of automated scoring of polysomnographic recordings in a population with suspected sleep-disordered breathing. Sleep. 2004 Nov 1;27(7):1394-403. Epub: 2004/12/14. PMID: 15586793. Exclusion Code: X9
- 943. Planes C, Leroy M, Bouach Khalil N, et al. Home diagnosis of obstructive sleep apnoea in coronary patients: validity of a simplified device automated analysis. Sleep Breath. 2010 Feb;14(1):25-32. Epub: 2009/06/18. PMID: 19533191. Exclusion Code: X10
- 944. Platt AB, Wick LC, Hurley S, et al. Hits and misses: screening commercial drivers for obstructive sleep apnea using guidelines recommended by a joint task force. J Occup Environ Med. 2013 Sep;55(9):1035-40. Epub: 2013/08/24. PMID: 23969501. Exclusion Code: X10
- 945. Polese JF, Santos-Silva R, de Oliveira Ferrari PM, et al. Is portable monitoring for diagnosing obstructive sleep apnea syndrome suitable in elderly population? Sleep Breath. 2013 May;17(2):679-86. Epub: 2012/07/04. PMID: 22752758. Exclusion Code: X3
- 946. Pons Y, Ballivet de Regloix S, Maurin O, et al. Prevalence of and risk factors for obstructive syndrome apnea. Rev Laryngol Otol Rhinol (Bord). 2011;132(2):89-94. Epub: 2011/01/01. PMID: 22416488. Exclusion Code: X10
- 947. Popovic D, Khoo M, Westbrook P.
 Automatic scoring of sleep stages and cortical arousals using two electrodes on the forehead: validation in healthy adults. J
 Sleep Res. 2014 Apr;23(2):211-21. Epub: 2013/12/10. PMID: 24313630. Exclusion Code: X9

- 948. Porthan KM, Melin JH, Kupila JT, et al. Prevalence of sleep apnea syndrome in lone atrial fibrillation: a case-control study. Chest. 2004 Mar;125(3):879-85. Epub: 2004/03/10. PMID: 15006945. Exclusion Code: X3
- 949. Portier F, Portmann A, Czernichow P, et al. Evaluation of home versus laboratory polysomnography in the diagnosis of sleep apnea syndrome. Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):814-8. PMID: 10988088. Exclusion Code: X5
- 950. Pouliot Z, Peters M, Neufeld H, et al. Using self-reported questionnaire data to prioritize OSA patients for polysomnography. Sleep. 1997 Mar;20(3):232-6. Epub: 1997/03/01. PMID: 9178919. Exclusion Code: X8
- 951. Poupard L, Mathieu M, Goldman M, et al. Multi-modal ECG Holter system for sleep-disordered breathing screening: a validation study. Sleep Breath. 2012 Sep;16(3):685-93. Epub: 2011/07/27. PMID: 21789729. Exclusion Code: X3
- 952. Powell NB, Zonato AI, Weaver EM, et al. Radiofrequency treatment of turbinate hypertrophy in subjects using continuous positive airway pressure: a randomized, double-blind, placebo-controlled clinical pilot trial. Laryngoscope. 2001;111(10):1783-90. PMID: CN-00377215. Exclusion Code: X3
- 953. Pradeep Kumar VG, Bhatia M, Tripathi M, et al. Obstructive sleep apnoea: a case-control study. Neurol India. 2003
 Dec;51(4):497-9. Epub: 2004/01/27. PMID: 14742931. Exclusion Code: X3
- 954. Pradhan PS, Gliklich RE, Winkelman J. Screening for obstructive sleep apnea in patients presenting for snoring surgery. Laryngoscope. 1996 Nov;106(11):1393-7. Epub: 1996/11/01. PMID: 8914907. Exclusion Code: X8
- 955. Pranathiageswaran S, Badr MS, Severson R, et al. The influence of race on the severity of sleep disordered breathing. J Clin Sleep Med. 2013 Apr 15;9(4):303-9. Epub: 2013/04/16. PMID: 23585743. Exclusion Code: X3
- 956. Prasad B, Carley DW, Herdegen JJ.
 Continuous positive airway pressure devicebased automated detection of obstructive
 sleep apnea compared to standard laboratory
 polysomnography. Sleep Breath. 2010
 Jun;14(2):101-7. Epub: 2009/10/15. PMID:
 19826848. Exclusion Code: X3

- 957. Prilipko O, Huynh N, Schwartz S, et al. The Effects of CPAP Treatment on Task Positive and Default Mode Networks in Obstructive Sleep Apnea Patients: An fMRI Study. PLoS One. 2012;7(12)PMID: CN-00898726. Exclusion Code: X4
- 958. Priou P, Hamel JF, Person C, et al. Long-term outcome of noninvasive positive pressure ventilation for obesity hypoventilation syndrome. Chest. 2010 Jul;138(1):84-90. Epub: 2010/03/30. PMID: 20348200. Exclusion Code: X4
- 959. Profant J, Ancoli-Israel S, Dimsdale JE. A randomized, controlled trial of 1 week of continuous positive airway pressure treatment on quality of life. Heart Lung. 2003;32(1):52-8. PMID: CN-00430989. Exclusion Code: X5
- 960. Proimos E, Kiagiadaki D, Kaprana A, et al. Clinical application of subjective measurements for OSAS assessment: predictive factors of syndrome severity. ORL J Otorhinolaryngol Relat Spec. 2012;74(5):240-5. Epub: 2012/09/26. PMID: 23007371. Exclusion Code: X8
- 961. Prudon B, Roddy E, Stradling JR, et al. CPAP therapy does not reduce serum uric acid levels in obstructive sleep apnoea [Abstract]. Thorax. 2012;67(Suppl 2):A182 [p269]. PMID: CN-00839716. Exclusion Code: X4
- 962. Prudon B, Roddy E, Stradling JR, et al. Serum urate levels are unchanged with continuous positive airway pressure therapy for obstructive sleep apnea: a randomized controlled trial. Sleep Med. 2013

 Dec;14(12):1419-21. Epub: 2013/10/25.

 PMID: 24152796. Exclusion Code: X6
- 963. Qaddoura A, Kabali C, Drew D, et al.
 Obstructive sleep apnea as a predictor of atrial fibrillation after coronary artery bypass grafting: a systematic review and meta-analysis (Provisional abstract).
 Database of Abstracts of Reviews of Effects.
 2014(2):1516-22. PMID: DARE-12014071046. Exclusion Code: X3
- 964. Qaseem A, Dallas P, Owens DK, et al. Diagnosis of obstructive sleep apnea in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2014 Aug 5;161(3):210-20. Epub: 2014/08/05. PMID: 25089864. Exclusion Code: X2

- 965. Quan SF, Budhiraja R, Clarke DP, et al. Impact of treatment with continuous positive airway pressure (CPAP) on weight in obstructive sleep apnea. J Clin Sleep Med. 2013 Oct 15;9(10):989-93. Epub: 2013/10/16. PMID: 24127141. Exclusion Code: X4
- 966. Quan SF, Griswold ME, Iber C, et al. Short-term variability of respiration and sleep during unattended nonlaboratory polysomnography--the Sleep Heart Health Study. [corrected]. Sleep. 2002

 Dec;25(8):843-9. Epub: 2002/12/20. PMID: 12489889. Exclusion Code: X6
- 967. Quan SF, Wright R, Baldwin CM, et al. Obstructive sleep apnea-hypopnea and neurocognitive functioning in the Sleep Heart Health Study. Sleep Med. 2006 Sep;7(6):498-507. Epub: 2006/07/04. PMID: 16815753. Exclusion Code: X4
- 968. Quera-Salva MA, Guilleminault C, Partinen M, et al. Determinants of respiratory disturbance and oxygen saturation drop indices in obstructive sleep apnoea syndrome. Eur Respir J. 1988 Jul;1(7):626-31. Epub: 1988/07/01. PMID: 3181410. Exclusion Code: X8
- 969. Querejeta Roca G, Redline S, Punjabi N, et al. Sleep apnea is associated with subclinical myocardial injury in the community. The ARIC-SHHS study. Am J Respir Crit Care Med. 2013 Dec 15;188(12):1460-5. Epub: 2013/10/26. PMID: 24156237. Exclusion Code: X10
- 970. Quinnell TG, Clutterbuck-James AL, Bennett M, et al. Randomised controlled trial of mandibular advancement devices for obstructive sleep apnoea (TOMADO): One year follow-up. J Sleep Res. 2014;23:116. PMID: CN-01038279. Exclusion Code: X4
- 971. Quinnell TG, Pittman MA, Bennett M, et al. TOMADO: A crossover randomised controlled trial of oral mandibular advancement devices for obstructive sleep apnoea-hypopnoea [abstract]. Thorax. 2014;68:A4. PMID: CN-00986227. Exclusion Code: X8
- 972. Quintana-Gallego E, Villa-Gil M, Carmona-Bernal C, et al. Home respiratory polygraphy for diagnosis of sleep-disordered breathing in heart failure. Eur Respir J. 2004 Sep;24(3):443-8. PMID: 15358704. Exclusion Code: X6

- 973. Raff H, Ettema SL, Eastwood DC, et al. Salivary cortisol in obstructive sleep apnea: the effect of CPAP. Endocrine. 2011 Aug;40(1):137-9. Epub: 2011/04/27. PMID: 21519909. Exclusion Code: X3
- 974. Ragette R, Wang Y, Weinreich G, et al. Diagnostic performance of single airflow channel recording (ApneaLink) in home diagnosis of sleep apnea. Sleep Breath. 2010 Jun;14(2):109-14. Epub: 2009/08/29. PMID: 19714380. Exclusion Code: X9
- 975. Rakel RE. Clinical and societal consequences of obstructive sleep apnea and excessive daytime sleepiness. Postgrad Med. 2009 Jan;121(1):86-95. Epub: 2009/01/31. PMID: 19179816. Exclusion Code: X3
- 976. Ramachandran SK, Josephs LA. A metaanalysis of clinical screening tests for obstructive sleep apnea (Structured abstract). Anesthesiology. 2009;110(4):928-39. PMID: DARE-12009105318. Exclusion Code: X3
- 977. Ramachandran SK, Kheterpal S, Consens F, et al. Derivation and validation of a simple perioperative sleep apnea prediction score. Anesth Analg. 2010 Apr 1;110(4):1007-15. Epub: 2010/04/02. PMID: 20357144. Exclusion Code: X3
- 978. Randerath W, David M, Feldmeyer F, et al. Prospective randomized study comparing impedance-controlled self-adjusting cpap therapy (apapfot) with constant cpap in the treatment of obstructive sleep apnoea syndrome (OSAS). European Respiratory Society; 1999 Oct 9-13; Madrid, Spain. 1999:P2709. PMID: CN-00403764. Exclusion Code: X10
- 979. Randerath WJ, Heise M, Hinz R, et al. An individually adjustable oral appliance vs continuous positive airway pressure in mild-to-moderate obstructive sleep apnea syndrome. Chest. 2002;122(2):569-75. PMID: CN-00390785. Exclusion Code: X10
- 980. Randerath WJ, Treml M, Priegnitz C, et al. Evaluation of a noninvasive algorithm for differentiation of obstructive and central hypopneas. Sleep. 2013 Mar;36(3):363-8. Epub: 2013/03/02. PMID: 23450252. Exclusion Code: X10

- 981. Rao A, Tey BH, Ramalingam G, et al. Obstructive sleep apnoea (OSA) patterns in bariatric surgical practice and response of OSA to weight loss after laparoscopic adjustable gastric banding (LAGB). Ann Acad Med Singapore. 2009 Jul;38(7):587-7. Epub: 2009/08/05. PMID: 19652849. Exclusion Code: X10
- 982. Rasmussen JJ, Fuller WD, Ali MR. Sleep apnea syndrome is significantly underdiagnosed in bariatric surgical patients. Surg Obes Relat Dis. 2012 Sep-Oct;8(5):569-73. Epub: 2011/09/20. PMID: 21925966. Exclusion Code: X10
- 983. Rauscher H, Popp W, Zwick H.
 Quantification of sleep disordered breathing
 by computerized analysis of oximetry, heart
 rate and snoring. Eur Respir J. 1991
 Jun;4(6):655-9. Epub: 1991/06/01. PMID:
 1889491. Exclusion Code: X4
- 984. Rauscher H, Popp W, Zwick H. Model for investigating snorers with suspected sleep apnoea. Thorax. 1993 Mar;48(3):275-9. Epub: 1993/03/01. PMID: 8497828. Exclusion Code: X8
- 985. Ravelo-Garcia AG, Saavedra-Santana P, Julia-Serda G, et al. Symbolic dynamics marker of heart rate variability combined with clinical variables enhance obstructive sleep apnea screening. Chaos. 2014 Jun;24(2):024404. Epub: 2014/07/06. PMID: 24985458. Exclusion Code: X8
- 986. Ravesloot MJ, de Vries N. One hundred consecutive patients undergoing druginduced sleep endoscopy: results and evaluation. Laryngoscope. 2011 Dec;121(12):2710-6. Epub: 2011/11/24. PMID: 22109770. Exclusion Code: X3
- 987. Ravesloot MJ, van Maanen JP, Hilgevoord AA, et al. Obstructive sleep apnea is underrecognized and underdiagnosed in patients undergoing bariatric surgery. Eur Arch Otorhinolaryngol. 2012
 Jul;269(7):1865-71. Epub: 2012/02/09.
 PMID: 22310840. Exclusion Code: X8
- 988. Raymond B, Cayton RM, Chappell MJ.
 Combined index of heart rate variability and oximetry in screening for the sleep apnoea/hypopnoea syndrome. J Sleep Res. 2003 Mar;12(1):53-61. Epub: 2003/02/27. PMID: 12603787. Exclusion Code: X6

- 989. Redline S, Kump K, Tishler PV, et al. Gender differences in sleep disordered breathing in a community-based sample. Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):722-6. Epub: 1994/03/01. PMID: 8118642. Exclusion Code: X8
- 990. Redline S, Tosteson T, Boucher MA, et al. Measurement of sleep-related breathing disturbances in epidemiologic studies. Assessment of the validity and reproducibility of a portable monitoring device. Chest. 1991 Nov;100(5):1281-6. PMID: 1935282. Exclusion Code: X6
- 991. Redolfi S, Bettinzoli M, Venturoli N, et al. Attenuation of obstructive sleep apnea and overnight rostral fluid shift by physical activity. Am J Respir Crit Care Med. 2015;191(7):856-8. PMID: CN-01070694. Exclusion Code: X9
- 992. Rees K, Wraith PK, Berthon-Jones M, et al. Detection of apnoeas, hypopnoeas and arousals by the AutoSet in the sleep apnoea/hypopnoea syndrome. Eur Respir J. 1998 Oct;12(4):764-9. PMID: 9817142. Exclusion Code: X6
- 993. Reichert JA, Bloch DA, Cundiff E, et al. Comparison of the NovaSom QSG, a new sleep apnea home-diagnostic system, and polysomnography. Sleep Med. 2003 May;4(3):213-8. PMID: 14592324. Exclusion Code: X6
- 994. Reichmuth KJ, Austin D, Skatrud JB, et al. Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med. 2005 Dec 15;172(12):1590-5. Epub: 2005/09/30. PMID: 16192452. Exclusion Code: X9
- 995. Reinhard W, Plappert N, Zeman F, et al. Prognostic impact of sleep duration and sleep efficiency on mortality in patients with chronic heart failure. Sleep Med. 2013
 Jun;14(6):502-9. Epub: 2013/05/01. PMID: 23628241. Exclusion Code: X10
- 996. Reuveni H, Greenberg-Dotan S, Simon-Tuval T, et al. Elevated healthcare utilisation in young adult males with obstructive sleep apnoea. Eur Respir J. 2008 Feb;31(2):273-9. Epub: 2007/09/28. PMID: 17898013. Exclusion Code: X10
- 997. Riad W, Chung F. Preoperative screening for obstructive sleep apnea in morbidly obese patients. Int Anesthesiol Clin. 2013 Summer;51(3):13-25. Epub: 2013/06/26. PMID: 23797642. Exclusion Code: X2

- 998. Rich J, Raviv A, Raviv N, et al. All-cause mortality and obstructive sleep apnea severity revisited. Otolaryngol Head Neck Surg. 2012 Sep;147(3):583-7. Epub: 2012/06/13. PMID: 22687326. Exclusion Code: X3
- 999. Riley RW, Powell NB, Li KK, et al. Surgery and obstructive sleep apnea: long-term clinical outcomes. Otolaryngol Head Neck Surg. 2000 Mar;122(3):415-21. Epub: 2000/03/04. PMID: 10699820. Exclusion Code: X3
- 1000. Rizzi CF, Ferraz MB, Poyares D, et al. Quality-adjusted life-years gain and health status in patients with OSAS after one year of continuous positive airway pressure use. Sleep. 2014 Dec;37(12):1963-8. Epub: 2014/10/18. PMID: 25325505. Exclusion Code: X3
- 1001. Rizzi CF, Rios L, Mello-Fujita L, et al. Ambulatory blood pressure monitoring in patients with obstructive sleep apnoea after effective CPAP and sham treatments [Abstract]. J Sleep Res. 2010;19(Suppl s2):295. PMID: CN-00773398. Exclusion Code: X8
- 1002. Robinson GV, Pepperell JC, Segal HC, et al. Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax. 2004;59(9):777-82. PMID: CN-00480352. Exclusion Code: X3
- 1003. Robinson GV, Smith DM, Langford BA, et al. CPAP does not reduce 24 hour blood pressure in hypertensive obstructive sleep apnoea patients without daytime sleepiness[Abstract]. Thorax. 2004;59(Suppl II):ii16. PMID: CN-00518584. Exclusion Code: X8
- 1004. Roche F, Sforza E, Hupin D. CPAP for excessive sleepiness in elderly patients. The Lancet Respiratory Medicine. 2014;2(10):778-9. PMID: CN-01023094. Exclusion Code: X2
- 1005. Roche N, Durieux P. Evaluation of the application of nocturnal nasal continuous positive airway pressure (CPAP) in the treatment of obstructive sleep apnea (Structured abstract). Health Technology Assessment Database. 1992(3):82. PMID: HTA-31995000094. Exclusion Code: X1

- 1006. Rochford PD, Collins AL, Howard ME, et al. Comparison of two auto-titrating CPAP devices with fixed CPAP in obstructive sleep apnoea (OSA). [abstract]. Intern Med J. 2006;36:A32. PMID: CN-00613672. Exclusion Code: X10
- 1007. Rodriguez-Villegas E, Chen G, Radcliffe J, et al. A pilot study of a wearable apnoea detection device. BMJ Open. 2014;4(10):e005299. Epub: 2014/10/05. PMID: 25280802. Exclusion Code: X3
- 1008. Rodsutti J, Hensley M, Thakkinstian A, et al. A clinical decision rule to prioritize polysomnography in patients with suspected sleep apnea. Sleep. 2004 Jun 15;27(4):694-9. Epub: 2004/07/31. PMID: 15283004. Exclusion Code: X3
- 1009. Rodway GW, Weaver TE, Mancini C, et al. Evaluation of sham-CPAP as a placebo in CPAP intervention studies. Sleep. 2010 Feb;33(2):260-6. Epub: 2010/02/24. PMID: 20175410. Exclusion Code: X3
- 1010. Roebuck T, Solin P, Kaye DM, et al.
 Increased long-term mortality in heart
 failure due to sleep apnoea is not yet proven.
 Eur Respir J. 2004 May;23(5):735-40.
 PMID: 15176689. Exclusion Code: X10
- 1011. Romano S, Salvaggio A, Lo Bue A, et al. A negative expiratory pressure test during wakefulness for evaluating the risk of obstructive sleep apnea in patients referred for sleep studies. Clinics (Sao Paulo). 2011;66(11):1887-94. Epub: 2011/11/17. PMID: 22086518. Exclusion Code: X9
- 1012. Romem A, Koldobskiy D, Scharf SM. Diagnosis of obstructive sleep apnea using pulse oximeter derived photoplethysmographic signals. J Clin Sleep Med. 2014;10(3):285-90. PMID: CN-00984664. Exclusion Code: X9
- 1013. Romero-Lopez Z, Ochoa-Vazquez MD, Mata-Marin JA, et al. Development and validation of a questionnaire to identify patients with sleep apnea in Mexican population: Mexican questionnaire to identify sleep apnea. Sleep Breath. 2011 Jan;15(1):113-9. Epub: 2010/02/24. PMID: 20177973. Exclusion Code: X8
- 1014. Rosales-Mayor E, Rey de Castro J, Huayanay L, et al. Validation and modification of the Epworth Sleepiness Scale in Peruvian population. Sleep Breath. 2012 Mar;16(1):59-69. Epub: 2011/02/01. PMID: 21279696. Exclusion Code: X4

- 1015. Rosenthal LD, Dolan DC. The Epworth sleepiness scale in the identification of obstructive sleep apnea. J Nerv Ment Dis. 2008 May;196(5):429-31. Epub: 2008/05/15. PMID: 18477888. Exclusion Code: X8
- 1016. Ross SD, Allen IE, Harrison KJ, et al.
 Systematic review of the literature regarding the diagnosis of sleep apnea (Structured abstract). Database of Abstracts of Reviews of Effects. 1999(3):154. PMID: DARE-12000008301. Exclusion Code: X6
- 1017. Ross SD, Sheinhait IA, Harrison KJ, et al. Systematic review and meta-analysis of the literature regarding the diagnosis of sleep apnea. Sleep. 2000 Jun 15;23(4):519-32. Epub: 2000/06/30. PMID: 10875559. Exclusion Code: X3
- 1018. Rossi VA, Stoewhas AC, Camen G, et al. The effects of continuous positive airway pressure therapy withdrawal on cardiac repolarization: data from a randomized controlled trial. Eur Heart J. 2012 Sep;33(17):2206-12. Epub: 2012/03/29. PMID: 22453648. Exclusion Code: X3
- 1019. Rossner S, Lagerstrand L, Persson HE, et al. The sleep apnoea syndrome in obesity: risk of sudden death. J Intern Med. 1991
 Aug;230(2):135-41. Epub: 1991/08/01.
 PMID: 1865165. Exclusion Code: X10
- 1020. Roth T, Zammit G, Kushida C, et al. A new quetionnaire to detect sleep disorders. Sleep Med. 2002;3(2):99-108. Exclusion Code: X9
- 1021. Rowley JA, Aboussouan LS, Badr MS. The use of clinical prediction formulas in the evaluation of obstructive sleep apnea. Sleep. 2000 Nov 1;23(7):929-38. Epub: 2000/11/18. PMID: 11083602. Exclusion Code: X3
- 1022. Ruehland WR, O'Donoghue FJ, Pierce RJ, et al. The 2007 AASM recommendations for EEG electrode placement in polysomnography: impact on sleep and cortical arousal scoring. Sleep. 2011 Jan;34(1):73-81. Epub: 2011/01/05. PMID: 21203376. Exclusion Code: X4
- 1023. Rusu A, Todea D, Rosca L, et al. The development of a sleep apnea screening program in Romanian type 2 diabetic patients: a pilot study. Acta Diabetol. 2012 Apr;49(2):105-9. Epub: 2010/02/05. PMID: 20130936. Exclusion Code: X10

- 1024. Ryan CM, Bayley M, Green R, et al. Influence of continuous positive airway pressure on outcomes of rehabilitation in stroke patients with obstructive sleep apnea. Stroke. 2011 Apr;42(4):1062-7. Epub: 2011/03/05. PMID: 21372306. Exclusion Code: X8
- 1025. Ryan CM, Usui K, Floras JS, et al. Effect of continuous positive airway pressure on ventricular ectopy in heart failure patients with obstructive sleep apnoea. Thorax. 2005;60(9):781-5. PMID: CN-00522945. Exclusion Code: X4
- 1026. Ryan PJ, Hilton MF, Boldy DA, et al. Validation of British Thoracic Society guidelines for the diagnosis of the sleep apnoea/hypopnoea syndrome: can polysomnography be avoided? Thorax. 1995 Sep;50(9):972-5. PMID: 8539678. Exclusion Code: X6
- 1027. Saarelainen S, Lahtela J, Kallonen E. Effect of nasal CPAP treatment on insulin sensitivity and plasma leptin. J Sleep Res. 1997;6(2):146-7. PMID: CN-00144940. Exclusion Code: X10
- 1028. Sadeghniiat Haghighi K, Montazeri A, Khajeh Mehrizi A, et al. The Epworth Sleepiness Scale: translation and validation study of the Iranian version. Sleep Breath. 2013 Mar;17(1):419-26. Epub: 2012/02/14. PMID: 22327509. Exclusion Code: X8
- 1029. Sagaspe P, Leger D, Taillard J, et al. Might the Berlin Sleep Questionnaire applied to bed partners be used to screen sleep apneic patients? Sleep Med. 2010 May;11(5):479-83. Epub: 2010/04/07. PMID: 20363669. Exclusion Code: X8
- 1030. Sahlman J, Seppa J, Herder C, et al. Effect of weight loss on inflammation in patients with mild obstructive sleep apnea. Nutr Metab Cardiovasc Dis. 2012 Jul;22(7):583-90. Epub: 2011/01/05. PMID: 21193295. Exclusion Code: X3
- 1031. Sahlman J, Seppa J, Peltonen M, et al. Surgical intervention represents a feasible option for patients with mild obstructive sleep apnoea. Acta Otolaryngol. 2009
 Nov;129(11):1266-73. Epub: 2009/10/30.
 PMID: 19863323. Exclusion Code: X3
- 1032. Sahlman J, Seppa J, Tuomilehto H. Effect of weight loss on inflammatory markers in overweight patients with mild obstructive sleep apnoea [Abstract]. J Sleep Res. 2010;19(Suppl s2):19. PMID: CN-00774637. Exclusion Code: X4

- 1033. Saint Martin M, Sforza E, Roche F, et al. Sleep breathing disorders and cognitive function in the elderly: an 8-year follow-up study. the proof-synapse cohort. Sleep. 2015;38(2):179-87. Epub: 2014/10/18. PMID: 25325480. Exclusion Code: X5
- 1034. Saleh ABM, Ahmad MA, Awadalla NJ.
 Development of Arabic version of Berlin
 questionnaire to identify obstructive sleep
 apnea at risk patients. Ann Thorac Med.
 2011;6(4):212-6. Exclusion Code: X9
- 1035. Salisbury JI, Sun Y. Rapid screening test for sleep apnea using a nonlinear and nonstationary signal processing technique. Med Eng Phys. 2007 Apr;29(3):336-43. Epub: 2006/06/30. PMID: 16807053. Exclusion Code: X9
- 1036. Salord N, Mayos M, Fortuna AM, et al. Effect of continuous positive airway pressure therapy on metabolic control in patients with morbid obesity and obstructive sleep apnoea [Abstract]. European Respiratory Society Annual Congress, 2013 Sept 7-11, Barcelona, Spain. 2013;42(Suppl 57):1066s [5033]. PMID: CN-00973561. Exclusion Code: X4
- 1037. Sanders MH, Martin RJ, Pennock BE, et al. The detection of sleep apnea in the awake patient. The 'saw-tooth' sign. JAMA. 1981 Jun 19;245(23):2414-8. Epub: 1981/06/19. PMID: 7230472. Exclusion Code: X9
- 1038. Sangal RB. Evaluating sleepiness-related daytime function by querying wakefulness inability and fatigue: Sleepiness-Wakefulness Inability and Fatigue Test (SWIFT). J Clin Sleep Med. 2012 Dec 15;8(6):701-11. Epub: 2012/12/18. PMID: 23243405. Exclusion Code: X8
- 1039. Sanna A. Obstructive sleep apnoea, motor vehicle accidents, and work performance. Chron Respir Dis. 2013 Feb;10(1):29-33. Epub: 2013/01/29. PMID: 23355403. Exclusion Code: X2
- 1040. Sanner BM, Fluerenbrock N, Kleiber-Imbeck A, et al. Effect of continuous positive airway pressure therapy on infectious complications in patients with obstructive sleep apnea syndrome.

 Respiration. 2001;68(5):483-7. Epub: 2001/11/06. PMID: 11694810. Exclusion Code: X3

- 1041. Sanner BM, Klewer J, Trumm A, et al.
 Long-term treatment with continuous
 positive airway pressure improves quality of
 life in obstructive sleep apnoea syndrome.
 Eur Respir J. 2000 Jul;16(1):118-22. Epub:
 2000/08/10. PMID: 10933096. Exclusion
 Code: X3
- 1042. Sanner BM, Kollhosser P, Buechner N, et al. Influence of treatment on leptin levels in patients with obstructive sleep apnoea. Eur Respir J. 2004 Apr;23(4):601-4. Epub: 2004/04/16. PMID: 15083761. Exclusion Code: X3
- 1043. Santaolalla Montoya F, Iriondo
 Bedialauneta JR, Aguirre Larracoechea U, et
 al. The predictive value of clinical and
 epidemiological parameters in the
 identification of patients with obstructive
 sleep apnoea (OSA): a clinical prediction
 algorithm in the evaluation of OSA. Eur
 Arch Otorhinolaryngol. 2007
 Jun;264(6):637-43. Epub: 2007/01/27.
 PMID: 17256124. Exclusion Code: X9
- 1044. Santos-Silva R, Sartori DE, Truksinas V, et al. Validation of a portable monitoring system for the diagnosis of obstructive sleep apnea syndrome. Sleep. 2009
 May;32(5):629-36. PMID: 19480230.
 Exclusion Code: X3
- 1045. Sareli AE, Cantor CR, Williams NN, et al. Obstructive sleep apnea in patients undergoing bariatric surgery A tertiary center experience. Obes Surg. 2011;21(3):316-27. Exclusion Code: X11
- 1046. Sarkhosh K, Switzer NJ, El-Hadi M, et al. The impact of bariatric surgery on obstructive sleep apnea: a systematic review (Provisional abstract). Obes Surg. 2013;23(3):414-23. PMID: DARE-12013036482. Exclusion Code: X4
- 1047. Saunamaki T, Himanen SL, Polo O, et al. Executive dysfunction and learning effect after continuous positive airway pressure treatment in patients with obstructive sleep apnea syndrome. Eur Neurol. 2010;63(4):215-20. Epub: 2010/03/11. PMID: 20215753. Exclusion Code: X10
- 1048. Scarlata S, Pedone C, Curcio G, et al. Prepolysomnographic assessment using the Pittsburgh Sleep Quality Index questionnaire is not useful in identifying people at higher risk for obstructive sleep apnea. J Med Screen. 2013 Dec;20(4):220-6. Epub: 2013/11/01. PMID: 24174512. Exclusion Code: X10

- 1049. Schafer H, Ewig S, Hasper E, et al. Predictive diagnostic value of clinical assessment and nonlaboratory monitoring system recordings in patients with symptoms suggestive of obstructive sleep apnea syndrome. Respiration. 1997;64(3):194-9. Epub: 1997/01/01. PMID: 9154670. Exclusion Code: X6
- 1050. Schafer H, Pauleit D, Sudhop T, et al. Body fat distribution, serum leptin, and cardiovascular risk factors in men with obstructive sleep apnea. Chest. 2002 Sep;122(3):829-39. Epub: 2002/09/13. PMID: 12226021. Exclusion Code: X3
- 1051. Scharf SM, Garshick E, Brown R, et al. Screening for subclinical sleep-disordered breathing. Sleep. 1990 Aug;13(4):344-53. Epub: 1990/08/01. PMID: 2267477. Exclusion Code: X4
- 1052. Schellenberg JB, Maislin G, Schwab RJ.
 Physical findings and the risk for obstructive sleep apnea. The importance of oropharyngeal structures. Am J Respir Crit Care Med. 2000 Aug;162(2 Pt 1):740-8.
 Epub: 2000/08/10. PMID: 10934114.
 Exclusion Code: X9
- Scheuller M, Weider D. Bariatric surgery for treatment of sleep apnea syndrome in 15 morbidly obese patients: long-term results.
 Otolaryngol Head Neck Surg. 2001
 Oct;125(4):299-302. Epub: 2001/10/11.
 PMID: 11593162. Exclusion Code: X10
- 1054. Schiza SE, Bouloukaki I, Mermigkis C, et al. Utility of formulas predicting the optimal nasal continuous positive airway pressure in a Greek population. Sleep Breath. 2011 Sep;15(3):417-23. Epub: 2010/04/29. PMID: 20424921. Exclusion Code: X9
- 1055. Schiza SE, Mermigkis C, Bouloukaki I. The effect of weight loss on obstructive sleep apnea (OSA) severity and position dependence in the bariatric population.

 Sleep Breath. 2014 Dec;18(4):679-81. Epub: 2014/03/19. PMID: 24638264. Exclusion Code: X2
- 1056. Schiza SE, Mermigkis C, Panagiotis P, et al. C-reactive protein evolution in obstructive sleep apnoea patients under CPAP therapy. Eur J Clin Invest. 2010 Nov;40(11):968-75. Epub: 2010/07/16. PMID: 20629709. Exclusion Code: X10
- 1057. Schmittendorf E, Schultheib B, Bohning N. Analysis of nocturnal pulse oximetry in sleep medicine. Biomed Tech (Berl). 2011 Aug;56(4):215-22. Epub: 2011/08/10. PMID: 21823998. Exclusion Code: X10

- 1058. Schulz R, Flototto C, Jahn A, et al.
 Circulating adrenomedullin in obstructive sleep apnoea. J Sleep Res. 2006
 Mar;15(1):89-95. Epub: 2006/02/24. PMID: 16490007. Exclusion Code: X10
- 1059. Scott AS, Baltzan MA, Wolkove N.
 Examination of pulse oximetry tracings to detect obstructive sleep apnea in patients with advanced chronic obstructive pulmonary disease. Can Respir J. 2014 May-Jun;21(3):171-5. Epub: 2014/02/14. PMID: 24524112. Exclusion Code: X10
- 1060. Seicean S, Strohl KP, Seicean A, et al. Sleep disordered breathing as a risk of cardiac events in subjects with diabetes mellitus and normal exercise echocardiographic findings. Am J Cardiol. 2013 Apr 15;111(8):1214-20. Epub: 2013/02/19. PMID: 23415514. Exclusion Code: X3
- 1061. Sengul YS, Ozalevli S, Oztura I, et al. The effect of exercise on obstructive sleep apnea: a randomized and controlled trial. Sleep Breath. 2011 Jan;15(1):49-56. Epub: 2009/11/10. PMID: 19898884. Exclusion Code: X5
- 1062. Series F, Marc I, Cormier Y, et al. Utility of nocturnal home oximetry for case finding in patients with suspected sleep apnea hypopnea syndrome. Ann Intern Med. 1993 Sep 15;119(6):449-53. PMID: 8357109. Exclusion Code: X6
- 1063. Sert Kuniyoshi FH, Zellmer MR, Calvin AD, et al. Diagnostic accuracy of the Berlin Questionnaire in detecting sleep-disordered breathing in patients with a recent myocardial infarction. Chest. 2011
 Nov;140(5):1192-7. Epub: 2011/05/21.
 PMID: 21596794. Exclusion Code: X8
- 1064. Sert-Kuniyoshi FH, Squires RW, Korenfeld YK, et al. Screening for obstructive sleep apnea in early outpatient cardiac rehabilitation: feasibility and results. Sleep Med. 2011 Oct;12(9):924-7. Epub: 2011/10/08. PMID: 21978725. Exclusion Code: X8
- 1065. Servantes DM, Pelcerman A, Salvetti XM, et al. Effects of home-based exercise training for patients with chronic heart failure and sleep apnoea: a randomized comparison of two different programmes. Clin Rehabil. 2012 Jan;26(1):45-57. Epub: 2011/09/23. PMID: 21937519. Exclusion Code: X3

- 1066. Sforza E, Addati G, Cirignotta F, et al.
 Natural evolution of sleep apnoea syndrome:
 a five year longitudinal study. Eur Respir J.
 1994 Oct;7(10):1765-70. Epub: 1994/10/01.
 PMID: 7828682. Exclusion Code: X8
- 1067. Sforza E, Chouchou F, Pichot V, et al. Is the Berlin questionnaire a useful tool to diagnose obstructive sleep apnea in the elderly? Sleep Med. 2011 Feb;12(2):142-6. Epub: 2011/01/14. PMID: 21227749. Exclusion Code: X10
- 1068. Sforza E, Gauthier M, Crawford-Achour E, et al. A 3-year longitudinal study of sleep disordered breathing in the elderly. Eur Respir J. 2012 Sep;40(3):665-72. Epub: 2012/03/13. PMID: 22408210. Exclusion Code: X9
- 1069. Shada AL, Hallowell PT, Schirmer BD, et al. Aerobic exercise is associated with improved weight loss after laparoscopic adjustable gastric banding. Obes Surg. 2013 May;23(5):608-12. Epub: 2012/12/01. PMID: 23196991. Exclusion Code: X10
- 1070. Shah N, Redline S, Yaggi HK, et al.
 Obstructive sleep apnea and acute
 myocardial infarction severity: ischemic
 preconditioning? Sleep Breath. 2013
 May;17(2):819-26. Epub: 2012/10/24.
 PMID: 23090861. Exclusion Code: X4
- 1071. Shah NA, Yaggi HK, Concato J, et al.
 Obstructive sleep apnea as a risk factor for coronary events or cardiovascular death.
 Sleep Breath. 2010 Jun;14(2):131-6. Epub: 2009/09/25. PMID: 19777281. Exclusion Code: X3
- 1072. Shah RV, Abbasi SA, Heydari B, et al. Obesity and sleep apnea are independently associated with adverse left ventricular remodeling and clinical outcome in patients with atrial fibrillation and preserved ventricular function. Am Heart J. 2014 Apr;167(4):620-6. Epub: 2014/03/25. PMID: 24655713. Exclusion Code: X4
- 1073. Sharkey KM, Orff HJ, Tosi C, et al. Subjective sleepiness and daytime functioning in bariatric patients with obstructive sleep apnea. Sleep Breath. 2013 Mar;17(1):267-74. Epub: 2012/04/25. PMID: 22528950. Exclusion Code: X3
- 1074. Sharma B, Feinsilver S, Owens RL, et al. Obstructive airway disease and obstructive sleep apnea: effect of pulmonary function. Lung. 2011 Feb;189(1):37-41. Epub: 2010/12/07. PMID: 21132554. Exclusion Code: X10

- 1075. Sharma SK, Agrawal S, Damodaran D, et al. Effect of continuous positive airway pressure on metabolic syndrome and cardiovascular markers in patients with obstructive sleep apnea in a north indian population. Am J Respir Crit Care Med. 2011;183(1). Exclusion Code: X8
- 1076. Sharma SK, Agrawal S, Damodaran D, et al. CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med. 2011 Dec 15;365(24):2277-86. Epub: 2011/12/16. PMID: 22168642. Exclusion Code: X15
- 1077. Sharma SK, Malik V, Vasudev C, et al. Prediction of obstructive sleep apnea in patients presenting to a tertiary care center. Sleep Breath. 2006 Sep;10(3):147-54. Epub: 2006/05/16. PMID: 16699807. Exclusion Code: X12
- 1078. Sharma SK, Vasudev C, Sinha S, et al. Validation of the modified Berlin questionnaire to identify patients at risk for the obstructive sleep apnoea syndrome. Indian J Med Res. 2006 Sep;124(3):281-90. Epub: 2006/11/07. PMID: 17085831. Exclusion Code: X9
- 1079. Sharples L, Glover M, Clutterbuck-James A, et al. TOMADO: crossover randomised controlled Trial of Oral Mandibular Advancement Devices for Obstructive sleep apnoea-hypopnoea (Project record). Health Technology Assessment Database. 2011(3)PMID: HTA-32011000673. Exclusion Code: X3
- 1080. Sharples L, Glover M, Clutterbuck-James A, et al. Clinical effectiveness and costeffectiveness results from the randomised controlled Trial of Oral Mandibular Advancement Devices for Obstructive sleep apnoea-hypopnoea (TOMADO) and long-term economic analysis of oral devices and continuous positive airway pressure. Health Technol Assess. 2014 Oct;18(67):1-296. Epub: 2014/11/02. PMID: 25359435. Exclusion Code: X3
- 1081. Shechter A, St-Onge M, Kuna ST, et al. Sleep architecture following a weight loss intervention in overweight and obese patients with obstructive sleep apnea and type 2 diabetes: Relationship to apneahypopnea index. Sleep. 2014;37:A160. Exclusion Code: X4

- 1082. Shechter A, St-Onge MP, Kuna ST, et al. Sleep architecture following a weight loss intervention in overweight and obese patients with obstructive sleep apnea and type 2 diabetes: relationship to apneahypopnea index. J Clin Sleep Med. 2014 Nov 15;10(11):1205-11. Epub: 2014/10/18. PMID: 25325608. Exclusion Code: X6
- 1083. Shin JH, Chee YJ, Jeong DU, et al.
 Nonconstrained sleep monitoring system
 and algorithms using air-mattress with
 balancing tube method. IEEE Trans Inf
 Technol Biomed. 2010 Jan;14(1):147-56.
 Epub: 2009/10/23. PMID: 19846378.
 Exclusion Code: X2
- 1084. Shin S, Lee HJ, Kim JH, et al.
 Polysomnography in the diagnosis of sleeprelated breathing disorders (Structured
 abstract). Health Technology Assessment
 Database. 2012(3)PMID: HTA32013000534. Exclusion Code: X1
- 1085. Shizuku H, Hori Y, Uemura T, et al.
 Combination of Bernouilli effect producing
 maneuver-induced pharyngeal narrowing
 rate with body mass index as predictive tool
 for obstructive sleep apnea syndrome. Acta
 Otolaryngol. 2008 May;128(5):569-73.
 Epub: 2008/04/19. PMID: 18421613.
 Exclusion Code: X9
- 1086. Shneerson J, Wright John J. Lifestyle modification for obstructive sleep apnoea. Cochrane Database of Systematic Reviews. 2001(1)PMID: CD002875. Exclusion Code: X8
- 1087. Shochat T, Hadas N, Kerkhofs M, et al. The SleepStrip: an apnoea screener for the early detection of sleep apnoea syndrome. Eur Respir J. 2002 Jan;19(1):121-6. Epub: 2002/02/15. PMID: 11843310. Exclusion Code: X5
- 1088. Shpirer I, Elizur A, Shorer R, et al. Hypoxemia correlates with attentional dysfunction in patients with obstructive sleep apnea. Sleep Breath. 2012 Sep;16(3):821-7. Epub: 2011/09/08. PMID: 21898098. Exclusion Code: X3
- 1089. Silecchia G, Boru C, Pecchia A, et al. Effectiveness of laparoscopic sleeve gastrectomy (first stage of biliopancreatic diversion with duodenal switch) on comorbidities in super-obese high-risk patients. Obes Surg. 2006 Sep;16(9):1138-44. Epub: 2006/09/23. PMID: 16989696. Exclusion Code: X10

- 1090. Silva GE, An MW, Goodwin JL, et al.
 Longitudinal evaluation of sleep-disordered breathing and sleep symptoms with change in quality of life: the Sleep Heart Health Study (SHHS). Sleep. 2009
 Aug;32(8):1049-57. Epub: 2009/09/04.
 PMID: 19725256. Exclusion Code: X3
- 1091. Silva GE, Vana KD, Goodwin JL, et al. Identification of patients with sleep disordered breathing: comparing the four-variable screening tool, STOP, STOP-Bang, and Epworth Sleepiness Scales. J Clin Sleep Med. 2011 Oct 15;7(5):467-72. Epub: 2011/10/18. PMID: 22003341. Exclusion Code: X10
- 1092. Silva RS, Figueiredo AC, Mady C, et al. Breathing disorders in congestive heart failure: gender, etiology and mortality. Braz J Med Biol Res. 2008 Mar;41(3):215-22. Epub: 2008/06/26. PMID: 18575711. Exclusion Code: X5
- 1093. Simpson L, Hillman DR, Cooper MN, et al. High prevalence of undiagnosed obstructive sleep apnoea in the general population and methods for screening for representative controls. Sleep Breath. 2013 Sep;17(3):967-73. Epub: 2012/11/20. PMID: 23161476. Exclusion Code: X10
- 1094. Simpson L, Mukherjee S, Cooper MN, et al. Sex differences in the association of regional fat distribution with the severity of obstructive sleep apnea. Sleep. 2010 Apr;33(4):467-74. Epub: 2010/04/17. PMID: 20394315. Exclusion Code: X3
- 1095. Simpson PJ, Hoyos CM, Celermajer D, et al. Continuous positive airway pressure does not improve circulating progenitor cell counts or endothelial function in obstructive sleep apnea: A randomised sham-controlled study. Circulation. 2012;126(21 suppl. 1)PMID: CN-00839988. Exclusion Code:
- 1096. Simpson PJL, Hoyos CM, Celermajer D, et al. Effects of continuous positive airway pressure on endothelial function and circulating progenitor cells in obstructive sleep apnoea: A randomised shamcontrolled study. Int J Cardiol. 2013;168(3):2042-8. PMID: CN-00874507. Exclusion Code: X4

- 1097. Sin DD, Fitzgerald F, Parker JD, et al. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med. 1999 Oct;160(4):1101-6. Epub: 1999/10/06. PMID: 10508793. Exclusion Code: X3
- 1098. Singh A, Al-Reefy H, Hewitt R, et al. Evaluation of ApneaGraph in the diagnosis of sleep-related breathing disorders. Eur Arch Otorhinolaryngol. 2008

 Dec;265(12):1489-94. Epub: 2008/05/09. PMID: 18463886. Exclusion Code: X9
- 1099. Singh M, Liao P, Kobah S, et al. Proportion of surgical patients with undiagnosed obstructive sleep apnoea. Br J Anaesth. 2013 Apr;110(4):629-36. Epub: 2012/12/22. PMID: 23257990. Exclusion Code: X10
- 1100. Sivalingam M, Chakravorty I, Mouatt S, et al. Obstructive sleep apnea in incremental hemodialysis: determinants, consequences, and impact on survival. Hemodial Int. 2013 Apr;17(2):230-9. Epub: 2012/08/14. PMID: 22882705. Exclusion Code: X8
- 1101. Sivam S, Phillips CL, Trenell MI, et al. Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. Eur Respir J. 2012 Oct;40(4):913-8. Epub: 2012/01/24. PMID: 22267762. Exclusion Code: X6
- 1102. Sivam S, Witting P, Hoyos C, et al. Effects of 8 weeks of CPAP on lipid-based oxidative markers in obstructive sleep apnoea: A randomised trial. Obes Rev. 2014;15:80. PMID: CN-00997154. Exclusion Code: X8
- 1103. Sivam S, Witting PK, Hoyos CM, et al. Effects of 8 weeks of CPAP on lipid-based oxidative markers in obstructive sleep apnea: a randomized trial. J Sleep Res. 2015 Jun;24(3):339-45. Epub: 2014/12/24. PMID: 25533591. Exclusion Code: X4
- 1104. Sjosten N, Vahtera J, Salo P, et al. Increased risk of lost workdays prior to the diagnosis of sleep apnea. Chest. 2009 Jul;136(1):130-6. Epub: 2009/03/26. PMID: 19318680. Exclusion Code: X3
- 1105. Skinner MA, Kingshott RN, Filsell S, et al. Efficacy of the 'tennis ball technique' versus nCPAP in the management of position-dependent obstructive sleep apnoea syndrome. Respirology (Carlton, Vic.). 2008;13(5):708-15. PMID: CN-00668305. Exclusion Code: X10

- 1106. Skomro RP, Gjevre J, Reid J, et al.
 Outcomes of home-based diagnosis and treatment of obstructive sleep apnea. Chest.
 2010 Aug;138(2):257-63. Epub: 2010/02/23.
 PMID: 20173052. Exclusion Code: X10
- 1107. Smith LA, Chong DW, Vennelle M, et al. Diagnosis of sleep-disordered breathing in patients with chronic heart failure: evaluation of a portable limited sleep study system. J Sleep Res. 2007 Dec;16(4):428-35. Epub: 2007/11/27. PMID: 18036089. Exclusion Code: X6
- 1108. Smith LA, Vennelle M, Gardner RS, et al. Auto-titrating continuous positive airway pressure in patients with obstructive sleep apnoea and chronic heart failure: a randomised placebo controlled trial [abstract]. Scott Med J. 2006;51(4):45. PMID: CN-00651914. Exclusion Code: X8
- 1109. Smith R, Ronald J, Delaive K, et al. What are obstructive sleep apnea patients being treated for prior to this diagnosis? Chest. 2002 Jan;121(1):164-72. Epub: 2002/01/18. PMID: 11796446. Exclusion Code: X3
- 1110. Smith SS, Oei TP, Douglas JA, et al.
 Confirmatory factor analysis of the Epworth
 Sleepiness Scale (ESS) in patients with
 obstructive sleep apnoea. Sleep Med. 2008
 Oct;9(7):739-44. Epub: 2007/10/09. PMID:
 17921053. Exclusion Code: X4
- Soares MC, de Azeredo Bittencourt LR,
 Zonato AI, et al. Application of the Kushida morphometric model in patients with sleep-disordered breathing. Braz J
 Otorhinolaryngol. 2006 Jul-Aug;72(4):541-8. Epub: 2006/12/05. PMID: 17143435.
 Exclusion Code: X8
- 1112. Sommermeyer D, Zou D, Grote L, et al. Detection of sleep disordered breathing and its central/obstructive character using nasal cannula and finger pulse oximeter. J Clin Sleep Med. 2012 Oct 15;8(5):527-33. Epub: 2012/10/16. PMID: 23066364. Exclusion Code: X2
- 1113. Song Y, Blackwell T, Yaffe K, et al.
 Relationships between sleep stages and changes in cognitive function in older men: the MrOS Sleep Study. Sleep. 2015
 Mar;38(3):411-21. Epub: 2014/10/18.
 PMID: 25325465. Exclusion Code: X3
- 1114. Sonsuwan N, Suchachaisri S, Chaloeykitti L. The relationships between cephalometric parameters and severity of obstructive sleep apnea. Auris Nasus Larynx. 2011 Feb;38(1):83-7. Epub: 2010/06/18. PMID: 20554416. Exclusion Code: X8

- 1115. Sookoian S, Pirola CJ. Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: a meta-analysis. Obes Surg. 2013 Nov;23(11):1815-25. Epub: 2013/06/07. PMID: 23740153. Exclusion Code: X4
- 1116. Spicuzza L, Bernardi L, Balsamo R, et al. Effect of treatment with nasal continuous positive airway pressure on ventilatory response to hypoxia and hypercapnia in patients with sleep apnea syndrome. Chest. 2006;130(3):774-9. PMID: CN-00567956. Exclusion Code: X5
- 1117. Spiegel EP, Krahe JA. Sleep disordered breathing: orthodontics and sleep disorders dentistry. Funct Orthod. 2004 Winter-2005 Spring;22(1):24-32. Epub: 2005/07/28. PMID: 16044747. Exclusion Code: X3
- 1118. Spira AP, Stone KL, Rebok GW, et al. Sleep-disordered breathing and functional decline in older women. J Am Geriatr Soc. 2014 Nov;62(11):2040-6. Epub: 2014/11/08. PMID: 25376169. Exclusion Code: X4
- 1119. Steier J, Jolley CJ, Seymour J, et al.
 Screening for sleep-disordered breathing in
 neuromuscular disease using a questionnaire
 for symptoms associated with diaphragm
 paralysis. Eur Respir J. 2011 Feb;37(2):4005. Epub: 2010/07/03. PMID: 20595146.
 Exclusion Code: X4
- 1120. Steinshamn S, Nes B, Tjonna AE, et al.
 Aerobic interval exercise training improves apnea-hypopnea index in obstructive sleep apnea patients. Eur Respir J. 2014;44PMID: CN-01081223. Exclusion Code: X8
- 1121. Steward DL, Huntley TC, Woodson BT, et al. Palate implants for obstructive sleep apnea: multi-institution, randomized, placebo-controlled study. Otolaryngology-head and neck surgery. 2008;139(4):506-10. PMID: CN-00651408. Exclusion Code: X3
- 1122. Stockx EM, Camilleri P, Skuza EM, et al. New acoustic method for detecting upper airway obstruction in patients with sleep apnoea. Respirology. 2010 Feb;15(2):326-35. Epub: 2010/03/05. PMID: 20199643. Exclusion Code: X4
- 1123. Stoohs R, Guilleminault C. MESAM 4: an ambulatory device for the detection of patients at risk for obstructive sleep apnea syndrome (OSAS). Chest. 1992
 May;101(5):1221-7. Epub: 1992/05/01.
 PMID: 1582275. Exclusion Code: X6

- 1124. Stoohs RA, Facchini FS, Philip P, et al. Selected cardiovascular risk factors in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure (n-CPAP). Sleep. 1993 Dec;16(8 Suppl):S141-2. Epub: 1993/12/01. PMID: 8178008. Exclusion Code: X10
- 1125. Stoohs RA, Guilleminault C, Dement WC. Sleep apnea and hypertension in commercial truck drivers. Sleep. 1993 Dec;16(8 Suppl):S11-3; discussion 3-4. Epub: 1993/12/01. PMID: 8177995. Exclusion Code: X10
- 1126. Stoohs RA, Guilleminault C, Itoi A, et al. Traffic accidents in commercial long-haul truck drivers: the influence of sleep-disordered breathing and obesity. Sleep. 1994 Oct;17(7):619-23. Epub: 1994/10/01. PMID: 7846460. Exclusion Code: X3
- 1127. Stradling J, Roberts D, Wilson A, et al.
 Controlled trial of hypnotherapy for weight
 loss in patients with obstructive sleep
 apnoea (OSA). Thorax. 1997;52(Suppl
 6):A8, s30. PMID: CN-00267065. Exclusion
 Code: X9
- 1128. Stradling J, Roberts D, Wilson A, et al.
 Controlled trial of hypnotherapy for weight
 loss in patients with obstructive sleep
 apnoea. International journal of obesity and
 related metabolic disorders: journal of the
 International Association for the Study of
 Obesity. 1998;22(3):278-81. PMID: CN00681324. Exclusion Code: X3
- 1129. Stradling JR, Craig SE, Kohler M, et al. Markers of inflammation: data from the MOSAIC randomised trial of CPAP for minimally symptomatic OSA. Thorax. 2015;70(2):181-2. PMID: CN-01071300. Exclusion Code: X4
- 1130. Stradling JR, Crosby JH. Predictors and prevalence of obstructive sleep apnoea and snoring in 1001 middle aged men. Thorax. 1991 Feb;46(2):85-90. Epub: 1991/02/01. PMID: 2014507. Exclusion Code: X10
- Stradling JR, Davies RJ. Is more NCPAP better? Sleep. 2000 Jun 15;23 Suppl 4:S150-3. Epub: 2000/07/13. PMID: 10893091. Exclusion Code: X6
- 1132. Stroh C, Groh C, Weiner R, et al. Are there gender-specific aspects of gastric banding? Data analysis from the quality assurance study of the surgical treatment of obesity in Germany. Obes Surg. 2013

 Nov;23(11):1783-9. Epub: 2013/04/25.

 PMID: 23612866. Exclusion Code: X10

- 1133. Su CT, Chen KH, Chen LF, et al.
 Prediagnosis of obstructive sleep apnea via
 multiclass MTS. Comput Math Methods
 Med. 2012;2012:212498. Epub: 2012/05/01.
 PMID: 22545062. Exclusion Code: X8
- 1134. Su MC, Chen YC, Huang KT, et al.
 Association of metabolic factors with highsensitivity C-reactive protein in patients
 with sleep-disordered breathing. Eur Arch
 Otorhinolaryngol. 2013 Feb;270(2):749-54.
 Epub: 2012/10/12. PMID: 23053373.
 Exclusion Code: X10
- 1135. Su S, Baroody FM, Kohrman M, et al. A comparison of polysomnography and a portable home sleep study in the diagnosis of obstructive sleep apnea syndrome.

 Otolaryngol Head Neck Surg. 2004
 Dec;131(6):844-50. PMID: 15577778.
 Exclusion Code: X6
- 1136. Su VY, Liu CJ, Wang HK, et al. Sleep apnea and risk of pneumonia: a nationwide population-based study. CMAJ. 2014 Apr 1;186(6):415-21. Epub: 2014/03/05. PMID: 24591276. Exclusion Code: X3
- 1137. Subramanian S, Hesselbacher SE, Aguilar R, et al. The NAMES assessment: a novel combined-modality screening tool for obstructive sleep apnea. Sleep Breath. 2011 Dec;15(4):819-26. Epub: 2010/11/16. PMID: 21076972. Exclusion Code: X8
- 1138. Suksakorn S, Rattanaumpawan P, Banhiran W, et al. Reliability and validity of a Thai version of the Berlin questionnaire in patients with sleep disordered breathing. J Med Assoc Thai. 2014 Mar;97 Suppl 3:S46-56. Epub: 2014/04/30. PMID: 24772580. Exclusion Code: X12
- 1139. Sullivan CE, Issa FG. Pathophysiological mechanisms in obstructive sleep apnea. Sleep. 1980;3(3-4):235-46. Epub: 1980/01/01. PMID: 7221334. Exclusion Code: X3
- 1140. Sullivan DR, Lai N, Phillips C, et al. Postprandial lipidemia is reduced by treatment of obstructive sleep apnoea: A randomised, placebo controlled trial of continuous positive airway pressure. Atherosclerosis Supplements. 2011;12(1):15. Exclusion Code: X4
- 1141. Sumi K, Tsuboi T, Yamashita M, et al. How many times should overnight pulse-oximetry be undergone to screen obstructive sleep apnea syndrome? Eur Respir J. 2014;44PMID: CN-01081211. Exclusion Code: X8

- 1142. Sun H, Shi J, Li M, et al. Impact of continuous positive airway pressure treatment on left ventricular ejection fraction in patients with obstructive sleep apnea: a meta-analysis of randomized controlled trials (Provisional abstract). PLoS One. 2013;8(5):e62298. PMID: DARE-12013025269. Exclusion Code: X3
- 1143. Sun LM, Chiu HW, Chuang CY, et al. A prediction model based on an artificial intelligence system for moderate to severe obstructive sleep apnea. Sleep Breath. 2011 Sep;15(3):317-23. Epub: 2010/07/06. PMID: 20602177. Exclusion Code: X8
- 1144. Sundaram S, Lim J, Lasserson Toby J.
 Surgery for obstructive sleep apnoea in adults. Cochrane Database of Systematic Reviews. 2005(4)PMID: CD001004.
 Exclusion Code: X4
- 1145. Suzuki T, Kameyama K, Inoko Y, et al. Development of a sleep apnea event detection method using photoplethysmography. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5258-61. Epub: 2010/11/26. PMID: 21096051. Exclusion Code: X4
- 1146. Svendsen M, Blomhoff R, Holme I, et al. The effect of an increased intake of vegetables and fruit on weight loss, blood pressure and antioxidant defense in subjects with sleep related breathing disorders. Eur J Clin Nutr. 2007 Nov;61(11):1301-11. Epub: 2007/02/03. PMID: 17268408. Exclusion Code: X5
- 1147. Szymanski FM, Filipiak KJ, Hrynkiewicz-Szymanska A, et al. Clinical characteristics of patients with acute coronary syndrome at high clinical suspicion for obstructive sleep apnea syndrome. Hellenic J Cardiol. 2013 Sep-Oct;54(5):348-54. Epub: 2013/10/09. PMID: 24100177. Exclusion Code: X10
- 1148. Szyszko A, Franceschini C, Gonzalez-Zuelgaray J. Reliability of a Holter-based methodology for evaluation of sleep apnoea syndrome. Europace. 2009 Jan;11(1):94-9. Epub: 2008/10/31. PMID: 18971289. Exclusion Code: X9
- 1149. Tada T, Kusano KF, Ogawa A, et al. The predictors of central and obstructive sleep apnoea in haemodialysis patients. Nephrol Dial Transplant. 2007 Apr;22(4):1190-7. Epub: 2007/02/06. PMID: 17277346. Exclusion Code: X2

- 1150. Tagluk ME, Sezgin N. Classification of sleep apnea through sub-band energy of abdominal effort signal using Wavelets + Neural Networks. J Med Syst. 2010 Dec;34(6):1111-9. Epub: 2009/06/23. PMID: 20703596. Exclusion Code: X3
- 1151. Takaesu Y, Inoue Y, Komada Y, et al. Effects of nasal continuous positive airway pressure on panic disorder comorbid with obstructive sleep apnea syndrome. Sleep Med. 2012 Feb;13(2):156-60. Epub: 2011/12/17. PMID: 22172965. Exclusion Code: X5
- 1152. Takama N, Kurabayashi M. Effectiveness of a portable device and the need for treatment of mild-to-moderate obstructive sleep-disordered breathing in patients with cardiovascular disease. J Cardiol. 2010 Jul;56(1):73-8. Epub: 2010/04/13. PMID: 20382001. Exclusion Code: X6
- 1153. Takeda T, Nishimura Y, Satouchi M, et al. Usefulness of the oximetry test for the diagnosis of sleep apnea syndrome in Japan. Am J Med Sci. 2006 Jun;331(6):304-8. Epub: 2006/06/16. PMID: 16775436. Exclusion Code: X6
- 1154. Takegami M, Hayashino Y, Chin K, et al. Simple four-variable screening tool for identification of patients with sleep-disordered breathing. Sleep. 2009
 Jul;32(7):939-48. Epub: 2009/07/31. PMID: 19639757. Exclusion Code: X10
- 1155. Takegami M, Suzukamo Y, Wakita T, et al. Development of a Japanese version of the Epworth Sleepiness Scale (JESS) based on item response theory. Sleep Med. 2009 May;10(5):556-65. Epub: 2008/10/01. PMID: 18824408. Exclusion Code: X9
- 1156. Tami TA, Duncan HJ, Pfleger M. Identification of obstructive sleep apnea in patients who snore. Laryngoscope. 1998
 Apr;108(4 Pt 1):508-13. Epub: 1998/04/18. PMID: 9546261. Exclusion Code: X6
- 1157. Tan A, Cheung YY, Yin J, et al. Predicting obstructive sleep apnea using STOP-Bang Questionnaire in the general population.
 Respiratory and Critical Care Medicine,
 Abstract Issue. American Thoracic Society;
 2016:A2515. Exclusion Code: X10
- 1158. Tan X, Saarinen A, Mikkola TM, et al. Effects of exercise and diet interventions on obesity-related sleep disorders in men: study protocol for a randomized controlled trial. Trials. 2013;14:235. Epub: 2013/07/28. PMID: 23886347. Exclusion Code: X5

- 1159. Tandeter H. Obstructive sleep apnea: a puzzle built in retrospect. Can Fam Physician. 2009 Jan;55(1):74-5. Epub: 2009/01/22. PMID: 19155376. Exclusion Code: X3
- 1160. Tang RB, Dong JZ, Liu XP, et al.
 Obstructive sleep apnoea risk profile and the risk of recurrence of atrial fibrillation after catheter ablation. Europace. 2009
 Jan;11(1):100-5. Epub: 2008/11/15. PMID: 19008237. Exclusion Code: X10
- 1161. Tang SC, Lam B, Yao TJ, et al. Sleep apnea is a novel risk predictor of cardiovascular morbidity and death in patients receiving peritoneal dialysis. Kidney Int. 2010 Jun;77(11):1031-8. Epub: 2010/03/20. PMID: 20237456. Exclusion Code: X8
- 1162. Tangugsorn V, Krogstad O, Espeland L, et al. Obstructive sleep apnea (OSA): a cephalometric analysis of severe and non-severe OSA patients. Part II: A predictive discriminant function analysis. Int J Adult Orthodon Orthognath Surg. 2000 Fall;15(3):179-91. Epub: 2001/04/20. PMID: 11307197. Exclusion Code: X9
- 1163. Tantrakul V, Guilleminault C. Chronic sleep complaints in premenopausal women and their association with sleep-disordered breathing. Lung. 2009 Mar-Apr;187(2):82-92. Epub: 2009/02/17. PMID: 19219502. Exclusion Code: X10
- 1164. Tasker C, Crosby JH, Stradling JR.
 Evidence for persistence of upper airway
 narrowing during sleep, 12 years after
 adenotonsillectomy. Arch Dis Child. 2002
 Jan;86(1):34-7. Epub: 2002/01/25. PMID:
 11806880. Exclusion Code: X8
- 1165. Tedeschi E, Carratu P, Damiani MF, et al. Home unattended portable monitoring and automatic CPAP titration in patients with high risk for moderate to severe obstructive sleep apnea. Respir Care. 2013
 Jul;58(7):1178-83. Epub: 2012/10/12.
 PMID: 23051680. Exclusion Code: X4
- 1166. Teferra RA, Grant BJ, Mindel JW, et al.
 Cost minimization using an artificial neural
 network sleep apnea prediction tool for sleep
 studies. Ann Am Thorac Soc. 2014
 Sep;11(7):1064-74. Epub: 2014/07/30.
 PMID: 25068704. Exclusion Code: X3
- 1167. Teixeira AOB, Abi-Ramia LBP, Almeida MAO. Treatment of obstructive sleep apnea with oral appliances. Prog Orthod. 2013;14(1):1-9. Exclusion Code: X3

- 1168. Telakivi T, Kajaste S, Partinen M, et al. Cognitive function in obstructive sleep apnea. Sleep. 1993 Dec;16(8 Suppl):S74-5. Epub: 1993/12/01. PMID: 8178034. Exclusion Code: X3
- 1169. Telakivi T, Kajaste S, Partinen M, et al.
 Cognitive function in middle-aged snorers
 and controls: role of excessive daytime
 somnolence and sleep-related hypoxic
 events. Sleep. 1988 Oct;11(5):454-62. Epub:
 1988/10/01. PMID: 3227226. Exclusion
 Code: X10
- 1170. Tenhunen M, Elomaa E, Sistonen H, et al. Emfit movement sensor in evaluating nocturnal breathing. Respir Physiol Neurobiol. 2013 Jun 15;187(2):183-9. Epub: 2013/04/16. PMID: 23583829. Exclusion Code: X9
- 1171. Teodorescu M, Barnet JH, Hagen EW, et al. Association between asthma and risk of developing obstructive sleep apnea. JAMA. 2015 Jan 13;313(2):156-64. Epub: 2015/01/15. PMID: 25585327. Exclusion Code: X3
- 1172. Teramoto S, Yamaguchi Y, Yamamoto H, et al. Cardiovascular and metabolic effects of CPAP in obese obstructive sleep apnoea patients. The European respiratory journal. 2008;31(1):223-5. PMID: CN-00637443. Exclusion Code: X2
- 1173. Terris DJ. Prospective, randomized trial of surgery for sleep-disordered breathing.
 105th Annual Meeting of the American Academy of Otolaryngology Head and Neck Surgery Foundation (AAO-HNS),
 Denver, Colorado, 9-12 September, 2001.
 Otolaryngology Head and Neck Surgery.
 2001;125(2):P76. PMID: CN-00549228.
 Exclusion Code: X11
- 1174. Teschler H, Berthon-Jones M, Wessendorf T, et al. Influence of moderate alcohol consumption on obstructive sleep apnoea with and without AutoSet nasal CPAP therapy. Eur Respir J. 1996 Nov;9(11):2371-7. Epub: 1996/11/01. PMID: 8947088. Exclusion Code: X3
- 1175. Thulesius HL, Thulesius HO, Jessen M. Pharyngometric correlations with obstructive sleep apnea syndrome. Acta Otolaryngol. 2004 Dec;124(10):1182-6. Epub: 2005/03/17. PMID: 15768815. Exclusion Code: X8

- 1176. Thurtell MJ, Bruce BB, Rye DB, et al. The Berlin questionnaire screens for obstructive sleep apnea in idiopathic intracranial hypertension. J Neuroophthalmol. 2011 Dec;31(4):316-9. Epub: 2011/05/04. PMID: 21537196. Exclusion Code: X8
- 1177. Thurtell MJ, Trotti LM, Bixler EO, et al. Obstructive sleep apnea in idiopathic intracranial hypertension: comparison with matched population data. J Neurol. 2013 Jul;260(7):1748-51. Epub: 2013/02/16. PMID: 23412355. Exclusion Code: X8
- 1178. Ting H, Huang RJ, Lai CH, et al. Evaluation of candidate measures for home-based screening of sleep disordered breathing in Taiwanese bus drivers. Sensors (Basel). 2014;14(5):8126-49. Epub: 2014/05/08. PMID: 24803198. Exclusion Code: X12
- 1179. Ting H, Mai YT, Hsu HC, et al. Decision tree based diagnostic system for moderate to severe obstructive sleep apnea. J Med Syst. 2014 Sep;38(9):94. Epub: 2014/07/12. PMID: 25012477. Exclusion Code: X8
- 1180. Tippu Z, Pengo M, Kosky C, et al.
 Comparison of the polysomnographic apnoea-hypopnea-index with the oxygen desaturation index in patients with obstructive sleep apnoea. Eur Respir J. 2014;44PMID: CN-01081209. Exclusion Code: X8
- 1181. Tishler PV, Larkin EK, Schluchter MD, et al. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA. 2003 May 7;289(17):2230-7. Epub: 2003/05/08. PMID: 12734134. Exclusion Code: X3
- 1182. Tkacova R, McNicholas WT, Javorsky M, et al. Nocturnal intermittent hypoxia predicts prevalent hypertension in the European Sleep Apnoea Database cohort study. Eur Respir J. 2014 Oct;44(4):931-41. Epub: 2014/08/12. PMID: 25102963. Exclusion Code: X4
- 1183. To KW, Chan WC, Chan TO, et al.
 Comparison of empirical continuous
 positive airway pressure (CPAP) treatment
 versus initial portable sleep monitoring
 followed by CPAP treatment for patients
 with suspected obstructive sleep apnoea.
 Intern Med J. 2012 Jun;42(6):e107-14.
 Epub: 2010/12/02. PMID: 21118409.
 Exclusion Code: X8

- 1184. To KW, Chan WC, Chan TO, et al.
 Validation study of a portable monitoring
 device for identifying OSA in a
 symptomatic patient population.
 Respirology. 2009 Mar;14(2):270-5. PMID:
 19210658. Exclusion Code: X6
- 1185. Tonelli de Oliveira AC, Martinez D, Vasconcelos LF, et al. Diagnosis of obstructive sleep apnea syndrome and its outcomes with home portable monitoring. Chest. 2009 Feb;135(2):330-6. PMID: 19201709. Exclusion Code: X12
- 1186. Toraldo DM, De Nuccio F, Nicolardi G. Fixed-pressure nCPAP in patients with obstructive sleep apnea (OSA) syndrome and chronic obstructive pulmonary disease (COPD): a 24-month follow-up study. Sleep Breath. 2010 Jun;14(2):115-23. Epub: 2009/09/17. PMID: 19756803. Exclusion Code: X10
- 1187. Tregear S, Reston J, Schoelles K, et al.
 Continuous positive airway pressure reduces
 risk of motor vehicle crash among drivers
 with obstructive sleep apnea: systematic
 review and meta-analysis (Structured
 abstract). Sleep. 2010;33(10):1373-80.
 PMID: DARE-12011000149. Exclusion
 Code: X3
- 1188. Tregear S, Reston J, Schoelles K, et al.
 Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis. Sleep. 2010
 Oct;33(10):1373-80. PMID: 21061860.
 Exclusion Code: X3
- 1189. Trikalinos TA, Ip S, Raman G, et al. Home Diagnosis of Obstructive Sleep Apnea-Hypopnea Syndrome. Rockville, MD:
 Agency for Healthcare Research and Quality; 2007
 http://www.cms.gov/Medicare/Coverage/De terminationProcess/downloads/id48TA.pdf. Accessed April 4 2014. Exclusion Code: X3
- 1190. Troell R, Powell N, Riley R.
 Hypopharyngeal airway surgery for
 obstructive sleep apnea syndrome. Seminars
 in Respiratory Critical Care Medicine.
 1998;19:175-83. Exclusion Code: X3
- 1191. Trombetta IC, Somers VK, Maki-Nunes C, et al. Consequences of comorbid sleep apnea in the metabolic syndrome--implications for cardiovascular risk. Sleep. 2010 Sep;33(9):1193-9. Epub: 2010/09/23. PMID: 20857866. Exclusion Code: X3

- 1192. Troussiere AC, Charley CM, Salleron J, et al. Treatment of sleep apnoea syndrome decreases cognitive decline in patients with Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2014 Dec;85(12):1405-8. Epub: 2014/05/16. PMID: 24828897. Exclusion Code: X3
- 1193. Tsai WH, Remmers JE, Brant R, et al. A decision rule for diagnostic testing in obstructive sleep apnea. Am J Respir Crit Care Med. 2003 May 15;167(10):1427-32. Epub: 2003/05/10. PMID: 12738600. Exclusion Code: X8
- 1194. Tsara V, Serasli E, Amfilochiou A, et al. Greek version of the Epworth Sleepiness Scale. Sleep Breath. 2004 Jun;8(2):91-5. Epub: 2004/06/24. PMID: 15211393. Exclusion Code: X1
- 1195. Tsukahara M, Sakao S, Jujo T, et al. The accuracy and uncertainty of a sheet-type portable monitor as a screening device to identify obstructive sleep apnea-hypopnea syndrome. Intern Med. 2014;53(12):1307-13. Epub: 2014/06/17. PMID: 24930649. Exclusion Code: X9
- 1196. Tun Y, Hida W, Okabe S, et al. Can nasal continuous positive airway pressure decrease clinic blood pressure in patients with obstructive sleep apnea? Tohoku J Exp Med. 2003 Nov;201(3):181-90. Epub: 2003/12/03. PMID: 14649740. Exclusion Code: X3
- 1197. Tuomilehto H, Seppa J, Uusitupa M, et al. The impact of weight reduction in the prevention of the progression of obstructive sleep apnea: an explanatory analysis of a 5-year observational follow-up trial. Sleep Med. 2014;15(3):329-35. Exclusion Code: X3
- 1198. Tuomilehto H, Uusitupa M, Seppa J.
 Sustained improvement in mild obstructive sleep apnoea by lifestyle intervention-post-interventional follow-up of a randomised, controlled trial (5-year follow-up upcoming). Journal of Sleep Research.
 Conference: 21st Congress of the European Sleep Research Society Paris France.
 Conference Start: 20120904 Conference End: 20120908. Conference Publication: (var.pagings). 2012;21(Suppl 1):91. PMID: CN-00839544. Exclusion Code: X4

- 1199. Tuomilehto HPI. Initial improvements in apnoea-hypopnoea index after very low calorie diet maintained for 1 year with weight loss maintenance program. Evid Based Med. 2012;17(1):32-3. PMID: CN-00897764. Exclusion Code: X3
- 1200. Turkington PM, Sircar M, Saralaya D, et al. Time course of changes in driving simulator performance with and without treatment in patients with sleep apnoea hypopnoea syndrome. Thorax. 2004;59(1):56-9. PMID: CN-00459790. Exclusion Code: X3
- 1201. Turnbull F, Blood Pressure Lowering
 Treatment Trialists Collaboration. Effects of
 different blood-pressure-lowering regimens
 on major cardiovascular events: results of
 prospectively-designed overviews of
 randomised trials. Lancet. 2003 Nov
 8;362(9395):1527-35. PMID: 14615107.
 Exclusion Code: X8
- 1202. Ucok K, Aycicek A, Sezer M, et al. Resting metabolic rate and anthropometric measurements in male sleep apnea patients. Intern Med. 2011;50(8):833-8. Epub: 2011/04/19. PMID: 21498930. Exclusion Code: X8
- 1203. Ueno K, Kasai T, Brewer G, et al.
 Evaluation of the apnea-hypopnea index determined by the S8 auto-CPAP, a continuous positive airway pressure device, in patients with obstructive sleep apnea-hypopnea syndrome. J Clin Sleep Med. 2010 Apr 15;6(2):146-51. Epub: 2010/04/24.
 PMID: 20411691. Exclusion Code: X8
- 1204. Ugur KS, Ark N, Kurtaran H, et al.
 Comparison of scores of application
 methods of the Epworth Sleepiness Scale:
 self administered or nurse administered.
 ORL J Otorhinolaryngol Relat Spec.
 2011;73(5):249-52. Epub: 2011/08/09.
 PMID: 21822031. Exclusion Code: X4
- 1205. Ulasli SS, Gunay E, Koyuncu T, et al.
 Predictive value of Berlin Questionnaire and
 Epworth Sleepiness Scale for obstructive
 sleep apnea in a sleep clinic population. Clin
 Respir J. 2014;8(3):292-6. Exclusion Code:
 X8
- 1206. Ulfberg J, Carter N, Talback M, et al. Excessive daytime sleepiness at work and subjective work performance in the general population and among heavy snorers and patients with obstructive sleep apnea. Chest. 1996 Sep;110(3):659-63. Epub: 1996/09/01. PMID: 8797408. Exclusion Code: X3

- 1207. Unal M, Ozturk L, Kanik A. The role of oxygen saturation measurement and body mass index in distinguishing between nonapnoeic snorers and patients with obstructive sleep apnoea syndrome. Clin Otolaryngol Allied Sci. 2002 Oct;27(5):344-6. Epub: 2002/10/18. PMID: 12383294. Exclusion Code: X4
- 1208. Utriainen KT, Airaksinen JK, Polo O, et al. Sleep apnoea is associated with major cardiac events in peripheral arterial disease. Eur Respir J. 2014 Jun;43(6):1652-60. Epub: 2014/02/22. PMID: 24558173. Exclusion Code: X8
- 1209. Vaessen TJ, Overeem S, Sitskoorn MM.
 Cognitive complaints in obstructive sleep
 apnea. Sleep Med Rev. 2015 Feb;19:51-8.
 Epub: 2014/05/23. PMID: 24846772.
 Exclusion Code: X3
- 1210. Vaidya AM, Petruzzelli GJ, Walker RP, et al. Identifying obstructive sleep apnea in patients presenting for laser-assisted uvulopalatoplasty. Laryngoscope. 1996 Apr;106(4):431-7. Epub: 1996/04/01. PMID: 8614217. Exclusion Code: X8
- 1211. Vakulin A. Catcheside P. Baulk S. et al. Driving simulator performance deficits in OSA patients distinguished by auditory reaction time lapses and cortical evoked potentials but not OSA severity or sleepiness. Journal of Sleep Research. Conference: 23rd Annual Scientific Meeting of the Australasian Sleep Association and Australasian Sleep Technologists Association: Sleep and the City, Sleep DownUnder 2011 Sydney, NSW Australia. Conference Start: 20111027 Conference End: 20111029. Conference Publication: (var.pagings). 2011;20:62. PMID: CN-00834026. Exclusion Code: X4
- 1212. Valbuza JS, de Oliveira MM, Conti CF, et al. Oropharyngeal examination as a predictor of obstructive sleep apnea: pilot study of gag reflex and palatal reflex. Arq Neuropsiquiatr. 2011 Oct;69(5):805-8. Epub: 2011/11/02. PMID: 22042185. Exclusion Code: X8
- 1213. Valenza MC, Baranchuk A, Valenza-Demet G, et al. Prevalence of risk factors for atrial fibrillation and stroke among 1210 patients with sleep disordered breathing. Int J Cardiol. 2014 Jun 1;174(1):73-6. Epub: 2014/04/15. PMID: 24726170. Exclusion Code: X4

- 1214. van Knippenberg FC, Passchier J, Heysteck D, et al. The Rotterdam Daytime Sleepiness Scale: a new daytime sleepiness scale. Psychol Rep. 1995 Feb;76(1):83-7. Epub: 1995/02/01. PMID: 7770597. Exclusion Code: X8
- 1215. Van Meerhaeghe A, Delpire P, Stenuit P, et al. Operating characteristics of the negative expiratory pressure technique in predicting obstructive sleep apnoea syndrome in snoring patients. Thorax. 2004
 Oct;59(10):883-8. Epub: 2004/09/30. PMID: 15454655. Exclusion Code: X9
- 1216. Van Surell C, Lemaigre D, Leroy M, et al. Evaluation of an ambulatory device, CID 102, in the diagnosis of obstructive sleep apnoea syndrome. Eur Respir J. 1995 May;8(5):795-800. PMID: 7656952. Exclusion Code: X8
- 1217. Vana KD, Silva GE, Goldberg R. Predictive abilities of the STOP-Bang and Epworth Sleepiness Scale in identifying sleep clinic patients at high risk for obstructive sleep apnea. Res Nurs Health. 2013 Feb;36(1):84-94. Epub: 2012/09/26. PMID: 23007730. Exclusion Code: X8
- 1218. Varghese B. Identification of risk for obstructive sleep apnea by Berlin Questionnaire. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2011;2(4):1035-40. Exclusion Code: X12
- 1219. Vasquez M, Goodwin J, Drescher A, et al. Associations of dietary intake and physical activity with sleep disordered breathing [Abstract]. Sleep. 2007;30(Suppl):A174. PMID: CN-00623604. Exclusion Code: X4
- 1220. Vaz AP, Drummond M, Mota PC, et al.
 Translation of Berlin Questionnaire to
 Portuguese language and its application in
 OSA identification in a sleep disordered
 breathing clinic. Rev Port Pneumol. 2011
 Mar-Apr;17(2):59-65. Epub: 2011/04/12.
 PMID: 21477567. Exclusion Code: X8
- 1221. Vazir A, Hastings PC, Papaioannou I, et al. Variation in severity and type of sleep-disordered breathing throughout 4 nights in patients with heart failure. Respir Med. 2008 Jun;102(6):831-9. Epub: 2008/03/18. PMID: 18343647. Exclusion Code: X8
- 1222. Vazquez JC, Tsai WH, Flemons WW, et al. Automated analysis of digital oximetry in the diagnosis of obstructive sleep apnoea. Thorax. 2000 Apr;55(4):302-7. PMID: 10722770. Exclusion Code: X6

- 1223. Verbraecken J. Clinical implications of residual sleep apnoea after chronic CPAP therapy. Breathe. 2011;7(3):289-90. PMID: CN-00887923. Exclusion Code: X10
- 1224. Verbraecken J, Willemen M, De Cock W, et al. Influence of longterm CPAP therapy on CO(2) drive in patients with obstructive sleep apnea. Respir Physiol. 2000 Oct;123(1-2):121-30. Epub: 2000/09/21. PMID: 10996193. Exclusion Code: X4
- 1225. Verse T, Hormann K. The surgical treatment of sleep-related upper airway obstruction.
 Dtsch Arztebl Int. 2011 Apr;108(13):216-21. Epub: 2011/04/21. PMID: 21505609.
 Exclusion Code: X2
- 1226. Verse T, Pirsig W, Junge-Hulsing B, et al. Validation of the POLY-MESAM seven-channel ambulatory recording unit. Chest. 2000 Jun;117(6):1613-8. PMID: 10858392. Exclusion Code: X6
- 1227. Vgontzas AN, Tan TL, Bixler EO, et al. Sleep apnea and sleep disruption in obese patients. Arch Intern Med. 1994 Aug 8;154(15):1705-11. Epub: 1994/08/08. PMID: 8042887. Exclusion Code: X10
- 1228. Vicente E, Marin JM, Carrizo S, et al.
 Tongue-base suspension in conjunction with
 uvulopalatopharyngoplasty for treatment of
 severe obstructive sleep apnea: long-term
 follow-up results. Laryngoscope. 2006
 Jul;116(7):1223-7. Epub: 2006/07/11.
 PMID: 16826064. Exclusion Code: X3
- 1229. Viner S, Szalai JP, Hoffstein V. Are history and physical examination a good screening test for sleep apnea? Ann Intern Med. 1991 Sep 1;115(5):356-9. Epub: 1991/09/01. PMID: 1863025. Exclusion Code: X8
- 1230. Vitarelli A, D'Orazio S, Caranci F, et al. Left ventricular torsion abnormalities in patients with obstructive sleep apnea syndrome: an early sign of subclinical dysfunction. Int J Cardiol. 2013 May 25;165(3):512-8. Epub: 2011/10/04. PMID: 21962612. Exclusion Code: X3
- 1231. Vlachantoni IT, Dikaiakou E, Antonopoulos CN, et al. Effects of continuous positive airway pressure (CPAP) treatment for obstructive sleep apnea in arterial stiffness: a meta-analysis (Provisional abstract). Sleep Med Rev. 2013;17(1):19-28. PMID: DARE-12013017661. Exclusion Code: X3
- 1232. Wachter R, Luthje L, Klemmstein D, et al. Impact of obstructive sleep apnoea on diastolic function. Eur Respir J. 2013 Feb;41(2):376-83. Epub: 2012/07/14. PMID: 22790918. Exclusion Code: X10

- 1233. Walia HK, Li H, Rueschman M, et al. Association of severe obstructive sleep apnea and elevated blood pressure despite antihypertensive medication use. J Clin Sleep Med. 2014 Aug 15;10(8):835-43. Epub: 2014/08/16. PMID: 25126027. Exclusion Code: X3
- 1234. Walia R, Achilefu A, Crawford S, et al. Are at-home sleep studies performed using portable monitors (PMs) as effective at diagnosing obstructive sleep apnea (OSA) in adults as sleep laboratory-based polysomnography (PSG)? J Okla State Med Assoc. 2014 Dec;107(12):642-4. Epub: 2015/03/21. PMID: 25790587. Exclusion Code: X2
- 1235. Walker RP, Garrity T, Gopalsami C. Early polysomnographic findings and long-term subjective results in sleep apnea patients treated with laser-assisted uvulopalatoplasty. Laryngoscope. 1999 Sep;109(9):1438-41. Epub: 1999/09/28. PMID: 10499051. Exclusion Code: X3
- 1236. Walker-Engstrom ML, Wilhelmsson B, Tegelberg A, et al. Quality of life assessment of treatment with dental appliance or UPPP in patients with mild to moderate obstructive sleep apnoea. A prospective randomized 1-year follow-up study. J Sleep Res. 2000 Sep;9(3):303-8. Epub: 2000/09/30. PMID: 11012871. Exclusion Code: X10
- 1237. Wang CW, Hunter A, Gravill N, et al. Real time pose recognition of covered human for diagnosis of sleep apnoea. Comput Med Imaging Graph. 2010 Sep;34(6):523-33. Epub: 2009/12/08. PMID: 19963347. Exclusion Code: X9
- 1238. Wang PC, Li HY, Shih TS, et al. Generic and specific quality-of-life measures in Taiwanese adults with sleep-disordered breathing. Otolaryngol Head Neck Surg. 2006 Sep;135(3):421-6. Epub: 2006/09/05. PMID: 16949976. Exclusion Code: X3

- 1239. Ward K, Palmer L, Mukherjee S, et al.
 Validation of a portable monitoring device
 for investigation of obstructive sleep apnoea
 (OSA). Journal of Sleep Research.
 Conference: 23rd Annual Scientific Meeting
 of the Australasian Sleep Association and
 Australasian Sleep Technologists
 Association: Sleep and the City, Sleep
 DownUnder 2011 Sydney, NSW Australia.
 Conference Start: 20111027 Conference
 End: 20111029. Conference Publication:
 (var.pagings). 2011;20:57. PMID: CN00834027. Exclusion Code: X8
- 1240. Ward NR, Cowie MR, Rosen SD, et al.
 Utility of overnight pulse oximetry and heart rate variability analysis to screen for sleep-disordered breathing in chronic heart failure.
 Thorax. 2012 Nov;67(11):1000-5. Epub: 2012/07/19. PMID: 22807517. Exclusion Code: X10
- 1241. Watkins MR, Talmage JB, Thiese MS, et al. Correlation between screening for obstructive sleep apnea using a portable device versus polysomnography testing in a commercial driving population. J Occup Environ Med. 2009 Oct;51(10):1145-50. PMID: 19786903. Exclusion Code: X9
- 1242. Waxman JA, Graupe D, Carley DW.
 Automated prediction of apnea and
 hypopnea, using a LAMSTAR artificial
 neural network. Am J Respir Crit Care Med.
 2010 Apr 1;181(7):727-33. Epub:
 2009/12/19. PMID: 20019342. Exclusion
 Code: X9
- 1243. Weaver EM, Kapur V, Yueh B.
 Polysomnography vs self-reported measures in patients with sleep apnea. Arch
 Otolaryngol Head Neck Surg. 2004
 Apr;130(4):453-8. Epub: 2004/04/21.
 PMID: 15096430. Exclusion Code: X3
- 1244. Weaver EM, Woodson BT, Steward DL. Polysomnography indexes are discordant with quality of life, symptoms, and reaction times in sleep apnea patients. Otolaryngol Head Neck Surg. 2005 Feb;132(2):255-62. Epub: 2005/02/05. PMID: 15692538. Exclusion Code: X4
- 1245. Weihu C, Jingying Y, Demin H, et al.
 Relationship of body position, upper airway morphology, and severity of obstructive sleep apnea/hypopnea syndrome among Chinese patients. Acta Otolaryngol. 2011
 Feb;131(2):173-80. Epub: 2010/11/11.
 PMID: 21062119. Exclusion Code: X9

- 1246. Weinreich G, Terjung S, Wang Y, et al. Validation of SleepMinder as screening device for obstructive sleep apnea.
 [German]. Somnologie. 2014;18(4):238-42.
 PMID: CN-01078972. Exclusion Code: X8
- 1247. Weir ID, Ahmed KM, Korbuly S, et al.
 Detection of postoperative sleep-disordered breathing using a portable monitoring device. Sleep Breath. 2012 Sep;16(3):881-6. Epub: 2011/09/29. PMID: 21948101. Exclusion Code: X3
- 1248. Weitzman ED, Kahn E, Pollak CP.
 Quantitative analysis of sleep and sleep
 apnea before and after tracheostomy in
 patients with the hypersomnia-sleep apnea
 syndrome. Sleep. 1980;3(3-4):407-23. Epub:
 1980/01/01. PMID: 7221348. Exclusion
 Code: X10
- 1249. Wellman A, Eckert DJ, Jordan AS, et al. A method for measuring and modeling the physiological traits causing obstructive sleep apnea. J Appl Physiol (1985). 2011
 Jun;110(6):1627-37. Epub: 2011/03/26.
 PMID: 21436459. Exclusion Code: X10
- 1250. West P, George CF, Kryger MH. Dynamic in vivo response characteristics of three oximeters: Hewlett-Packard 47201A, Biox III, and Nellcor N-100. Sleep. 1987
 Jun;10(3):263-71. Epub: 1987/06/01. PMID: 3629089. Exclusion Code: X10
- 1251. West SD, Nicoll DJ, Wallace TM, et al. The effect of CPAP on insulin resistance and HBAIC in people with obstructive sleep apnoea and type 2 diabetes: A randomised controlled trial [Abstract]. Thorax. 2006;61(Suppl 2):ii54 [S152]. PMID: CN-00592299. Exclusion Code: X8
- 1252. West SD, Nicoll DJ, Wallace TM, et al.
 Obstructive sleep apnoea in men with type 2
 diabetes a double blind randomised
 controlled trial of the effects of CPAP on
 HbA1c and insulin resistance [Abstract].
 Proc Am Thorac Soc. 2006:A733. PMID:
 CN-00592081. Exclusion Code: X8
- 1253. Westbrook PR, Levendowski DJ, Cvetinovic M, et al. Description and validation of the apnea risk evaluation system: a novel method to diagnose sleep apnea-hypopnea in the home. Chest. 2005 Oct;128(4):2166-75. PMID: 16236870. Exclusion Code: X6

- 1254. Wheaton AG, Perry GS, Chapman DP, et al. Sleep disordered breathing and depression among U.S. adults: National Health and Nutrition Examination Survey, 2005-2008. Sleep. 2012 Apr;35(4):461-7. Epub: 2012/04/03. PMID: 22467983. Exclusion Code: X3
- 1255. White DP, Gibb TJ, Wall JM, et al.
 Assessment of accuracy and analysis time of a novel device to monitor sleep and breathing in the home. Sleep. 1995
 Feb;18(2):115-26. Epub: 1995/02/01.
 PMID: 7792491. Exclusion Code: X6
- 1256. Whitelaw WA, Brant RF, Flemons WW.
 Clinical usefulness of home oximetry
 compared with polysomnography for
 assessment of sleep apnea. Am J Respir Crit
 Care Med. 2005;171(2):188-93. PMID: CN00501870. Exclusion Code: X6
- 1257. Whittle AT, Finch SP, Mortimore IL, et al. Use of home sleep studies for diagnosis of the sleep apnoea/hypopnoea syndrome. Thorax. 1997 Dec;52(12):1068-73. Epub: 1998/03/28. PMID: 9516901. Exclusion Code: X6
- 1258. Whyte KF, Allen MB, Fitzpatrick MF, et al. Accuracy and significance of scoring hypopneas. Sleep. 1992 Jun;15(3):257-60. Epub: 1992/06/01. PMID: 1621027. Exclusion Code: X6
- 1259. Williams AJ, Yu G, Santiago S, et al.
 Screening for sleep apnea using pulse
 oximetry and a clinical score. Chest. 1991
 Sep;100(3):631-5. Epub: 1991/09/01.
 PMID: 1889245. Exclusion Code: X6
- 1260. Wilson G, Terpening Z, Wong K, et al.
 Screening for sleep apnoea in mild cognitive impairment: The utility of the multivariable apnoea prediction index. Sleep Disorders.
 2014. Exclusion Code: X11
- 1261. Wiltshire N, Kendrick AH, Catterall JR. Home oximetry studies for diagnosis of sleep apnea/hypopnea syndrome: limitation of memory storage capabilities. Chest. 2001 Aug;120(2):384-9. Epub: 2001/08/15. PMID: 11502633. Exclusion Code: X6
- 1262. Winslow DH, Bowden CH, DiDonato KP, et al. A randomized, double-blind, placebo-controlled study of an oral, extended-release formulation of phentermine/topiramate for the treatment of obstructive sleep apnea in obese adults. Sleep. 2012 Nov;35(11):1529-39. Epub: 2012/11/02. PMID: 23115402. Exclusion Code: X3

- 1263. Won CH, Chun HJ, Chandra SM, et al. Severe obstructive sleep apnea increases mortality in patients with ischemic heart disease and myocardial injury. Sleep Breath. 2013 Mar;17(1):85-91. Epub: 2012/02/02. PMID: 22294346. Exclusion Code: X3
- 1264. Wong KK, Jankelson D, Reid A, et al.
 Diagnostic test evaluation of a nasal flow
 monitor for obstructive sleep apnea
 detection in sleep apnea research. Behav Res
 Methods. 2008 Feb;40(1):360-6. Epub:
 2008/04/17. PMID: 18411561. Exclusion
 Code: X9
- 1265. Woodson BT, Han JK. Relationship of snoring and sleepiness as presenting symptoms in a sleep clinic population. Ann Otol Rhinol Laryngol. 2005
 Oct;114(10):762-7. Epub: 2005/11/16.
 PMID: 16285266. Exclusion Code: X8
- 1266. Worsnop C, Naughton M, Barter C, et al.
 Blood pressure and humoral effects of nasal
 continuous positive airway pressure
 (NCPAP) in hypertensives with obstructive
 sleep apnoea (OSA). Aust N Z J Med.
 1994;24:480. PMID: CN-00320306.
 Exclusion Code: X11
- 1267. Worsnop CJ, Miseki S, Rochford PD. Humidification of CPAP for obstructive sleep apnoea [Abstract]. Eur Respir J. 2005;26(Suppl 49):Abstract No. 1311. PMID: CN-00592554. Exclusion Code: X9
- 1268. Worsnop CJ, Miseski S, Rochford PD.
 Routine use of humidification with nasal
 continuous positive airway pressure. Intern
 Med J. 2010 Sep;40(9):650-6. Epub:
 2009/05/23. PMID: 19460056. Exclusion
 Code: X3
- 1269. Worsnop CJ, Pierce RJ, Naughton M.
 Systemic hypertension and obstructive sleep
 apnea. Sleep. 1993 Dec;16(8 Suppl):S148-9.
 Epub: 1993/12/01. PMID: 8178012.
 Exclusion Code: X10
- 1270. Wu X, Lv S, Yu X, et al. Treatment of OSA reduces the risk of repeat revascularization after percutaneous coronary intervention. Chest. 2015 Mar;147(3):708-18. Epub: 2014/11/21. PMID: 25412159. Exclusion Code: X3
- 1271. Xie B, Minn H. Real-time sleep apnea detection by classifier combination. IEEE Trans Inf Technol Biomed. 2012 May;16(3):469-77. Epub: 2012/02/23. PMID: 22353404. Exclusion Code: X9

- 1272. Xu H, Yi H, Guan J, et al. Effect of continuous positive airway pressure on lipid profile in patients with obstructive sleep apnea syndrome: a meta-analysis of randomized controlled trials (Provisional abstract). Database of Abstracts of Reviews of Effects. 2014(2):446-53. PMID: DARE-12014028845. Exclusion Code: X3
- 1273. Xu M, Yang Y, Zhang J. Levels of neuroglobin in serum and neurocognitive impairments in Chinese patients with obstructive sleep apnea. Sleep Breath. 2013 May;17(2):573-82. Epub: 2012/06/08. PMID: 22674396. Exclusion Code: X4
- 1274. Yadollahi A, Azarbarzin A, Montazeri A, et al. Acoustical flow estimation in patients with obstructive sleep apnea during sleep. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3640-3. Epub: 2013/02/01. PMID: 23366716. Exclusion Code: X9
- 1275. Yagi H, Nakata S, Tsuge H, et al.
 Morphological examination of upper airway
 in obstructive sleep apnea. Auris Nasus
 Larynx. 2009 Aug;36(4):444-9. Epub:
 2008/12/23. PMID: 19097716. Exclusion
 Code: X3
- 1276. Yagi H, Nakata S, Tsuge H, et al.
 Significance of a screening device
 (Apnomonitor 5) for sleep apnea syndrome.
 Auris Nasus Larynx. 2009 Apr;36(2):17680. PMID: 18635324. Exclusion Code: X4
- 1277. Yalamanchali S, Farajian V, Hamilton C, et al. Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: meta-analysis. JAMA Otolaryngol Head Neck Surg. 2013 Dec;139(12):1343-50. Epub: 2013/10/26. PMID: 24158564. Exclusion Code: X4
- 1278. Yamamoto H, Akashiba T, Kosaka N, et al. Long-term effects nasal continuous positive airway pressure on daytime sleepiness, mood and traffic accidents in patients with obstructive sleep apnoea. Respir Med. 2000 Jan;94(1):87-90. Epub: 2000/03/14. PMID: 10714485. Exclusion Code: X10
- 1279. Yamashiro Y, Kryger MH. Nocturnal oximetry: is it a screening tool for sleep disorders? Sleep. 1995 Apr;18(3):167-71. Epub: 1995/04/01. PMID: 7610312. Exclusion Code: X3

- 1280. Yang D, Liu Z, Yang H. The impact of effective continuous positive airway pressure on homeostasis model assessment insulin resistance in non-diabetic patients with moderate to severe obstructive sleep apnea. Diabetes Metab Res Rev. 2012 Sep;28(6):499-504. Epub: 2012/04/12. PMID: 22492705. Exclusion Code: X3
- 1281. Yang D, Liu Z, Yang H, et al. Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis (Provisional abstract). Sleep and Breathing. 2013;17(1):33-8. PMID: DARE-12013016300. Exclusion Code: X3
- 1282. Yang SQ, Han LL, Dong XL, et al. Maleffects of obstructive sleep apnea on the heart. Sleep Breath. 2012 Sep;16(3):717-22. Epub: 2011/09/20. PMID: 21928076. Exclusion Code: X3
- 1283. Ye H, Li TP, Feng Y, et al. Effect of CPAP treatment on life quality in patients with obstructive sleep apnea-hypopnea syndrome results of a meta-analysis (Provisional abstract). Chinese Journal of Evidence-Based Medicine. 2009;9(10):1067-73. PMID: DARE-12009110298. Exclusion Code: X1
- 1284. Ye L, Pien GW, Ratcliffe SJ, et al. The different clinical faces of obstructive sleep apnoea: a cluster analysis. Eur Respir J. 2014 Dec;44(6):1600-7. Epub: 2014/09/05. PMID: 25186268. Exclusion Code: X3
- 1285. Ye L, Pien GW, Ratcliffe SJ, et al. Gender differences in obstructive sleep apnea and treatment response to continuous positive airway pressure. J Clin Sleep Med. 2009 Dec 15;5(6):512-8. Epub: 2010/05/15. PMID: 20465016. Exclusion Code: X4
- 1286. Yee BJ, Cheung J, Phipps P, et al. Treatment of obesity hypoventilation syndrome and serum leptin. Respiration. 2006;73(2):209-12. Epub: 2005/09/24. PMID: 16179823. Exclusion Code: X4
- 1287. Yin M, Miyazaki S, Ishikawa K. Evaluation of type 3 portable monitoring in unattended home setting for suspected sleep apnea: factors that may affect its accuracy.

 Otolaryngol Head Neck Surg. 2006
 Feb;134(2):204-9. PMID: 16455365.
 Exclusion Code: X6

- 1288. Yin M, Miyazaki S, Itasaka Y, et al. A preliminary study on application of portable monitoring for diagnosis of obstructive sleep apnea. Auris Nasus Larynx. 2005

 Jun;32(2):151-6. Epub: 2005/05/27. PMID: 15917172. Exclusion Code: X6
- 1289. Yoshihisa A, Owada T, Hoshino Y, et al. Flow-mediated dilatation identifies impaired endothelial function in patients with sleep apnea syndrome. Fukushima J Med Sci. 2010 Dec;56(2):115-20. Epub: 2011/04/20. PMID: 21502711. Exclusion Code: X9
- 1290. Yoshihisa A, Suzuki S, Yamaki T, et al. Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail. 2013 May;15(5):543-50. Epub: 2012/12/20. PMID: 23250911. Exclusion Code: X9
- 1291. Yoshihisa A, Suzuki S, Yamauchi H, et al. Beneficial Effects of Positive Airway Pressure Therapy for Sleep-Disordered Breathing in Heart Failure Patients with Preserved Left Ventricular Ejection Fraction. Clin Cardiol. 2015;38(7):413-21. Exclusion Code: X3
- 1292. Yosunkaya S, Okur HK, Can U, et al. Impact of continuous positive airway pressure treatment on leptin levels in patients with obstructive sleep apnea syndrome. Metab Syndr Relat Disord. 2015;13(6):272-7. Exclusion Code: X3
- 1293. Young T, Blustein J, Finn L, et al. Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep. 1997

 Aug;20(8):608-13. Epub: 1997/08/01.

 PMID: 9351127. Exclusion Code: X3
- 1294. Yu BH, Ancoli-Israel S, Dimsdale JE. Effect of CPAP treatment on mood states in patients with sleep apnea. J Psychiatr Res. 1999;33(5):427-32. PMID: CN-00167862. Exclusion Code: X6
- 1295. Yu R, Li W, Huo H, et al. Short daytime ApneaGraph for initial case selection of obstructive sleep apnea-hypopnea syndrome before surgery. Eur Arch Otorhinolaryngol. 2011 Nov;268(11):1663-9. Epub: 2011/03/31. PMID: 21448614. Exclusion Code: X10

- 1296. Yuan X, Fang J, Wang L, et al. Continuous positive airway pressure eliminates increased risk of death of obstructive sleep apnea in Chinese patients. Sleep. 2015;38:A150. PMID: CN-01080120. Exclusion Code: X3
- 1297. Yuan X, Fang J, Wang L, et al. Adequate continuous positive airway pressure therapy reduces mortality in Chinese patients with obstructive sleep apnea. Sleep and Breathing. 2015;19(3):911-20. Exclusion Code: X3
- 1298. Yuceege M, Firat H, Demir A, et al. Reliability of the Watch-PAT 200 in detecting sleep apnea in highway bus drivers. J Clin Sleep Med. 2013 Apr 15;9(4):339-44. Epub: 2013/04/16. PMID: 23585749. Exclusion Code: X12
- 1299. Yuceege M, Firat H, Sever O, et al. The effect of adding gender item to Berlin Questionnaire in determining obstructive sleep apnea in sleep clinics. Ann Thorac Med. 2015;10(1):25-8. Exclusion Code: X8
- 1300. Zaffaroni A, Kent B, O'Hare E, et al. Assessment of sleep-disordered breathing using a non-contact bio-motion sensor. J Sleep Res. 2013 Apr;22(2):231-6. Epub: 2012/11/28. PMID: 23176607. Exclusion Code: X9
- 1301. Zamarron C, Gude F, Barcala J, et al. Utility of oxygen saturation and heart rate spectral analysis obtained from pulse oximetric recordings in the diagnosis of sleep apnea syndrome. Chest. 2003 May;123(5):1567-76. PMID: 12740275. Exclusion Code: X6
- 1302. Zamarron C, Hornero R, del Campo F, et al. Heart rate regularity analysis obtained from pulse oximetric recordings in the diagnosis of obstructive sleep apnea. Sleep Breath. 2006 Jun;10(2):83-9. Epub: 2006/02/02. PMID: 16450176. Exclusion Code: X6
- 1303. Zamarron C, Romero PV, Rodriguez JR, et al. Oximetry spectral analysis in the diagnosis of obstructive sleep apnoea. Clin Sci (Lond). 1999 Oct;97(4):467-73. PMID: 10491347. Exclusion Code: X6
- 1304. Zeng J, Gu Y, Ke J, et al. [Evaluation of the diagnostic accuracy of modified Berlin questionnaire on predicting obstructive sleep apnea-hypopnea syndrome in adults]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2014 Nov;28(21):1658-62. Epub: 2015/03/05. PMID: 25735095. Exclusion Code: X1

- 1305. Zhang J, Li Y, Cao X, et al. The combination of anatomy and physiology in predicting the outcomes of velopharyngeal surgery. Laryngoscope. 2014
 Jul;124(7):1718-23. Epub: 2013/12/20.
 PMID: 24353091. Exclusion Code: X3
- 1306. Zhang P, Ouyang SY, Sun PZ, et al. Effects of noninvasive positive pressure ventilation on patients with arrhythmia complicated by sleep apnea syndrome. [Chinese]. Chinese Journal of Cardiology. 2013;41(9):747-50. PMID: CN-00959005. Exclusion Code: X1
- 1307. Zhang X, Zhang T, Zhang X, et al.
 Obstructive sleep apnea syndrome: a risk
 factor for Stanford's type B aortic dissection.
 Ann Vasc Surg. 2014 Nov;28(8):1901-8.
 Epub: 2014/08/12. PMID: 25108088.
 Exclusion Code: X8
- 1308. Zhao Q, Liu Z, McEvoy D, et al.
 Effectiveness of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnoea. Heart. Conference: 21st Great Wall International Congress of Cardiology, GWICC 2010 Beijing China. Conference Start: 20101014 Conference End: 20101017. Conference Publication: (var.pagings). 2010;96(Suppl 3):A183. PMID: CN-00836954. Exclusion Code: X8
- 1309. Zhao Q, Liu ZH, Luo Q, et al. Effects of continuous positive airway pressure on blood pressure and daytime sleepiness in obstructive sleep apnea patients with coronary heart diseases under optimal medications. Sleep Breath. 2012

 Jun;16(2):341-7. Epub: 2011/02/22. PMID: 21337116. Exclusion Code: X3
- 1310. Ziegler MG, Mills PJ, Loredo JS, et al. Effect of continuous positive airway pressure and placebo treatment on sympathetic nervous activity in patients with obstructive sleep apnea. Chest. 2001;120(3):887-93. PMID: CN-00356377. Exclusion Code: X6
- 1311. Zimmerman ME, Aloia MS. Sleepdisordered breathing and cognition in older adults. Curr Neurol Neurosci Rep. 2012 Oct;12(5):537-46. Epub: 2012/07/04. PMID: 22752614. Exclusion Code: X3
- 1312. Zou D, Grote L, Peker Y, et al. Validation a portable monitoring device for sleep apnea diagnosis in a population based cohort using synchronized home polysomnography. Sleep. 2006 Mar;29(3):367-74. Epub: 2006/03/24. PMID: 16553023. Exclusion Code: X10

- 1313. Zou J, Guan J, Yi H, et al. An effective model for screening obstructive sleep apnea: a large-scale diagnostic study. PLoS One. 2013;8(12):e80704. Epub: 2013/12/07. PMID: 24312494. Exclusion Code: X8
- 1314. Zucconi M, Ferini-Strambi L, Castronovo V, et al. An unattended device for sleep-related breathing disorders: validation study in suspected obstructive sleep apnoea syndrome. Eur Respir J. 1996

 Jun;9(6):1251-6. Epub: 1996/06/01. PMID: 8804946. Exclusion Code: X6
- 1315. Zucconi M, Ferini-Strambi L, Palazzi S, et al. Habitual snoring with and without obstructive sleep apnoea: the importance of cephalometric variables. Thorax. 1992 Mar;47(3):157-61. Epub: 1992/03/01. PMID: 1519191. Exclusion Code: X8

Appendix D Table 1. Quality Ratings of Studies of Screening Questionnaires and Clinical Prediction Tools (KQ 2)

First Author, Year	Test(s) adequately described (or referenced)?	Was the spectrum of patients representative of the patients who will receive the test in PC?	Were selection criteria clearly described?	Did the whole or a random selection of the sample receive reference test?	Did patients receive the reference test (and the same reference test) regardless of screening test results?	Was the reference standard independent of the test?	Were the index test and reference standard results interpreted independently blinded (each test interpreted blinded to the result of the other)?	Were withdrawals from the study explained (post- enrollment)?	Were methods for calculating accuracy clearly reported and valid?
Gurubhagavatula, 2013 ¹⁰⁴	Yes	Partially; sample was 80% men, had higher prevalence of any OSA (AHI ≥5 for 80%; and mean AHI of 22.5) than would be expected, age limited to 30-65, and had high proportion of African Americans (59%); they enrolled consecutive outpatients with HTN aged 30-65; some from HTN clinic.		No, all were invited for PSG, but 21% (52/250) did not get it	Yes	Yes	Yes	Partially	Yes
Morales, 2012 ¹⁰³	Yes	Partially; sample was ≥65, had higher prevalence of sleepiness than would be expected (74% reported that they had a problem staying awake every day or several [≥3] days per week; 32% had ESS >10)		did not get it; some of those were ineligible— roughly 13% of those eligible did not complete studies	Yes, and they sought to recruit equal numbers of study participants for each decile of MAP score	Yes	Yes	Yes	Yes
Hrubos-Strom, 2011 ¹⁰²	Yes		Yes		No	Yes	Yes	Yes	Yes

Appendix D Table 1. Quality Ratings of Studies of Screening Questionnaires and Clinical Prediction Tools (KQ 2)

First Author, Year	Test(s) adequately described (or referenced)?		described?	Did the whole or a random selection of the sample receive reference test?	Did patients receive the reference test (and the same reference test) regardless of screening test results?	Was the reference	Were the index test and reference standard results interpreted independently blinded (each test interpreted blinded to the result of the other)?	Were withdrawals from the study explained (post- enrollment)?	Were methods for calculating accuracy clearly reported and valid?
		had higher ESS scores, rates of snoring		sample of 518 overrepresented the BQ high risk group					
Gurubhagavatula, 2004 ¹⁰⁵		No, commercial drivers, 93.5% men, 85% white, and oversampled the higher-risk group (247 of the 406 who had PSG)		strategy was to invite all of those with the highest risk scores and then a random (and smaller) sample of the lower-risk group	No, sampling strategy was to invite all of those with the highest risk scores and then a random (and smaller) sample of the lower-risk group	Yes	Yes	Yes, to some degree	Yes

Abbreviations: AHI=apnea-hypopnea index; ESS=Epworth Sleepiness Scale; HTN=hypertension; MAP=multivariate apnea prediction; OSA=obstructive sleep apnea; PC=primary care; PSG=polysomnography.

Appendix D Table 2. Quality Ratings for Studies of Screening Questionnaires and Clinical Prediction Tools for KQ2

First Author, Year	Did the study have high attrition raising concern for bias?	Equal, valid, reliable ascertainment of exposure/ risk factors?	Were outcome assessors masked to risk factors?	Was an appropriate method used to handle missing data?	Did the study use acceptable statistical methods?	Was the sample size adequate to detect differences?	Quality	Comments
Gurubhaga- vatula, 2013 ¹⁰⁴	have PSG; 23%	Yes (self-report for age, sex; BMI was measured)	Yes	Yes, multiple imputation	Yes	Unclear; no sample size calculation	Fair	Some concern for attrition bias (although they used good methods for handling missing data) and for selection bias and spectrum bias (with high prevalence of OSA)
Morales, 2012 ¹⁰³	No	Yes	Yes	Yes		Unclear; no sample size calculation	Fair	Some concern for selection bias and spectrum bias (with high prevalence of sleepiness)
Hrubos- Strom, 2011 ¹⁰²	Yes, 518/1772 (29%) subjects randomly drawn had PSG; 518/1350 (38%) invited by mail for PSG had it	Yes	Yes	Yes; 1 or more items were missing on 43.8% of BQs; Zeros were imputed for missing data on BQs, but they conducted sensitivity analysis using maximum values (doing so did not significantly change the results)		Unclear, no sample size calculation		Moderate concern for attrition bias, spectrum bias (oversampling of high-risk subjects), and missing data; however, would expect those biases to favor the accuracy of BQ—and this study did not find good accuracy
Gurubha- gavatula, 2004 ¹⁰⁵	Yes, less than half of those in the high-risk group invited for PSG attended (247/551); unclear how many were invited from the 778 lower-risk group to get 159 to attend PSG		Yes for symptoms and questionnaire s; unclear for BMI and sex (seems they were observing the PSG and may have ascertained these)	Unclear if anything was done		Unclear, no sample size calculation		High risk of selection bias; high risk of attrition bias and spectrum bias (oversampling of high-risk subjects); unclear handling of missing data

Abbreviations: BMI=body mass index; BQ=Berlin Questionnaire; NR=not reported; OSA=obstructive sleep apnea; PSG=polysomnography.

Appendix D Table 3. Quality Ratings of Systematic Reviews and Meta-Analyses for KQ 3

First Author, Year	Was the review based on a focused question of interest?	Was the literature search strategy clearly described?	research?	exclusion criteria for the selection of studies?	Did at least 2 people independently review studies?	adequately assessed?	Was publication bias assessed?	Was heterogeneity assessed and addressed?	Was the approach used to synthesize the information adequate and appropriate?	Were the authors' conclusions supported by the evidence they presented?	Quality Rating
Balk, 2011 ¹	Yes	Yes	Yes	Yes	Yes	Yes		Yes (Statistical testing, subgroup analyses)	Yes	Yes	Good
El Shayeb, 2014 ¹¹²	Yes		Yes (2004-March 2013)	Yes (Appendix 2)	Yes	Yes (QUADAS- 2)	literature in Appendix 1,	Yes (Subgroup analyses, sensitivity analyses)	Yes	Yes	Good

Abbreviations: QUADAS-2=Quality Assessment of Diagnostic Accuracy Studies 2.

Appendix D Table 4. Quality Ratings of Newly Identified Included Studies for KQ 3

First Author, Year	Were the tests adequately described (or referenced)?	Were selection criteria clearly described?	Is the time period between the test (PM) and reference test (PSG) short enough (to be reasonably sure that the condition did not change between the 2 tests)?	participants receive the reference test (PSG)?	Did patients receive the reference test (and the same reference test) (PSG) regardless of screening test results?	independent of the test?	Were the test (PM) and reference standard (PSG) results interpreted independently (blinded)?
Alvarez, 2009 ¹²⁶	Yes	Yes	Yes	Yes	Yes		NR
Alvarez, 2012 ¹¹⁸	Yes	Partially	Yes	Yes	Yes	Yes	Yes
Barak-Shinar, 2013 ¹¹⁵	Yes	Yes	Yes	Yes			Yes
Bohning, 2011 ¹²¹	Partially	Partially	Yes	Yes	Yes	Yes	Yes
Bruyneel, 2011 ¹¹⁰	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Campbell, 2011 ¹¹¹	Yes	Yes	Yes	Yes	Yes		No
Choi, 2010 ¹²⁵	Yes	Yes	Yes	Yes	Yes		NR
Ferre, 2012 ¹⁰⁹	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Garg, 2014 ¹²⁷	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Guerrero,2014 ¹¹³	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Gurubhagavatula, 2013 ¹⁰⁴	Yes	Yes	NR	Partially	Yes	Yes	Yes
Masa, 2011 ¹¹⁹	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Morillo, 2013 ¹¹⁶	Yes	Yes	Yes	Yes	Yes	No	NR
Nigro, 2010 ¹²⁴	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Nigro, 2013 ¹¹⁷	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Pereira, 2013 ¹¹⁴	Yes	Partially	Yes	Yes	Yes	Yes	Yes
Poupard, 2012 ¹²⁰	Yes	Yes	Yes	Yes	Yes	Unclear	NR
Rofail, 2010 ¹²²	Yes	Yes	Partially	Yes	Yes	Yes	Yes
Yadollahi, 2010 ¹²³	Yes	Partially	Yes	Yes	Yes	Yes	NR

Abbreviations: NR=not reported; PM=portable monitor; PSG=polysomnography.

Table D5. Quality Ratings of Newly Identified Included Studies for KQ 3

First Author, Year	Were withdrawals from the study explained (post- enrollment)?	Were methods for calculating accuracy clearly reported and valid?	Did the study have high attrition raising concern for bias?	Was an appropriate method used to handle missing data?	Quality	Comments
Alvarez, 2009 ¹²⁶	NA	Yes	No	NR	Good	Information on blinding of scoring was not presented. There were no withdrawn patients but authors did not describe whether all data were collected or if there were technical issues resulting in missing data. Cross-validation was performed for the ROC analyses.
Alvarez, 2012 ¹¹⁸	NA	Yes	No	NA	Fair	Selection criteria were not clearly described. Authors report that subjects were included who were suspected of having OSA based on clinical features. Clinical features were not described.
Barak-Shinar, 2013 ¹¹⁵	NA	Yes	No	NR	Fair	The PSG and PM were not independent. Datasets were obtained for all participants, but authors did not describe missing data points or channel failures during the PSG/PM test.
Bohning, 2011 ¹²¹	Partially	Yes	No	No	Fair	Patients were screened using cardiorespiratory polygraphy and referred to the sleep lab for further testing. Patients underwent PSG and PM simultaneously and results were independently evaluated. It appears only one person was missing PM data and dropped from analysis. Reported results for Groups 0 and 1 versus 2 and 3 don't appear to be valid given text and counts in Table 1.
Bruyneel, 2011 ¹¹⁰	Yes	Yes	No	No	Fair	PM at home was within 2 weeks of PSG. Authors described 2 patients who did not complete both tests. Authors described the failure rate and reasons of both the PSG and PM. In total, 6% of enrolled participants did not provide complete data. Authors only performed a complete case analysis. Moderate sample size.
Campbell, 2011 ¹¹¹	Yes	Yes	No	Partially	Fair	PM at home was within 2 weeks of PSG. Authors evaluated PSG on two nights rather than one and confirmed reliability; laboratory night 1 was later described as an adaptation night; it was not immediately clear that laboratory night 2 provided the results for comparison with PM. Only 2 patients had failed PM recordings; technical problems were described well. Patients with failed recordings were dropped from analysis; all others with technical issues were deemed clinically acceptable. Sample

Table D5. Quality Ratings of Newly Identified Included Studies for KQ 3

First Author, Year	Were withdrawals from the study explained (post- enrollment)?	Were methods for calculating accuracy clearly reported and valid?	Did the study have high attrition raising concern for bias?	Was an appropriate method used to handle missing data?	Quality	Comments
						size is small. Scorer was not blind to PSG vs. PM due to how sound was recorded.
Choi, 2010 ¹²⁵	No	Yes	No	No	Fair	It is unclear whether the PM and PSG results were interpreted independently. However, the tests were completed in different settings at different times and the PM scoring was automatic (versus manual for the PSG). The overall sample is small (26); two subjects did not successfully undergo portable monitoring (one due to battery failure, one cause unknown) and were excluded from the analysis. This is a narrow spectrum of patients- primarily Korean men presenting with symptoms suggesting OSA- that may prevent generalizability to the US population.
Ferre, 2012 ¹⁰⁹	NA	Yes	No	NA	Good	Authors only reported on the 68 patients who completed the protocol.
Garg, 2014 ¹²⁷	Yes	Yes	No	NR	Good	One participant did not complete the in-lab PSG and PM session and two participants did not complete the at-home PM session. It is unclear what the overlap is among those participants. Authors did not report how missing participant data were handled; it is assumed they were dropped from the analysis.
Guerrero,2014 ¹¹³	Yes	Yes	No	NR	Good	Authors provided detailed description of inclusion and exclusion criteria. PSG and PM evaluated within same week; PM used over 3 nights and assessed for consistency. PSG and PM scored manually, separately, and blinded by independent techs. Authors don't describe method of dealing with missing data, but only 1 patient did not have valid PM results.
Gurubhagavatula, 2013 ¹⁰⁴	Partially	Yes	Yes	Yes	Fair	Patients underwent in-home PM first and then in-lab PSG; days between events was not reported. Though a large subset of enrolled patients underwent PM and PSG, it is not clear what the overlap is. Authors do not report reasons for patients not undergoing PSG and/or PM, but do explain failure rate of studies applied. Missing data, including PSG and PM AHI were imputed, but only a reference was provided for the method. 21% of

Table D5. Quality Ratings of Newly Identified Included Studies for KQ 3

First Author, Year	Were withdrawals from the study explained (postenrollment)?	Were methods for calculating accuracy clearly reported and valid?	Did the study have high attrition raising concern for bias?	Was an appropriate method used to handle missing data?	Quality	Comments
	om emmenty.	vana	Dido:	autu.	quanty	enrolled participants declined PSG and 17% of enrolled participants declined PM so there is a concern for selection bias.
Masa, 2011 ¹¹⁹	Yes	Yes	No	No	Good	Although authors did not use any methods for handling missing data, overall attrition was very low (5%) and unlikely to bias results.
Morillo, 2013 ¹¹⁶	NA	Yes	No	NR	Fair	A convenience sample of 115 consecutively referred patients comprised the participant population; none were excluded post-enrollment. A sleep specialist analyzed the complete set of recordings from the PSG; output from the pulse oximeter (which was part of the PSG) appear to have been downloaded and automatically scored/analyzed according to the multivariate features extraction methods described by the authors but it remains unclear if analyst interpreted results independently. Authors did not describe missing data from the PSG or pulse oximeter.
Nigro, 2010 ¹²⁴	Yes	Yes	Partially	No	Fair	Ten of 76 (13%) patients were dropped from the analysis, 1 out of choice and 9 because of technical problems with the PSG or PM. Technical difficulties may be related to disease severity, leaving some concern for bias.
Nigro, 2013 ¹¹⁷	Yes	Yes	No	NR	Good	Authors did not report on any technical issues during PSG/PM in the sleep lab or if there was missing data. However, all other aspects of the study are clearly described and valid.
Pereira, 2013 ¹¹⁴	NA	Yes	No	Yes	Good	Authors describe inclusion and exclusion criteria but do not elaborate on the reason(s) for referral to the sleep disorders clinic. PM nights were completed before the PSG night. The PM was scored manually by an experienced scorer who was blind to the PSG results; the PSG was manually scored by registered PSG techs who were blind to the PM results. The PM was worn on the second night as a backup for the first night; authors reported the first night failure rate.

Table D5. Quality Ratings of Newly Identified Included Studies for KQ 3

First Author, Year	Were withdrawals from the study explained (postenrollment)?	accuracy clearly reported and valid?	Did the study have high attrition raising concern for bias?	Was an appropriate method used to handle missing data?	Quality	Comments
Poupard, 2012 ¹²⁰	NA	Yes	No	NA	Fair	Spectrum of patients was unclear; authors report that patients are a referral population for sleep apnea syndrome but do not provide additional details. It is unclear whether the pulse oximetry was independent of the gold standard (versus part of the full PSG monitoring). The authors did not describe whether the oxygen saturation data were blindly scored.
Rofail, 2010 ¹²²	No	Yes	No	Partially	Fair	There was a possibility of up to 8 weeks between PSG and PM evaluations. No explanation was provided for 7 (7%) withdrawn patients. Patients without sufficient data from PSG and/or PMs were dropped from analysis, but authors did average data over 3 nights for the PMs, allowing for more participants to be included.
Yadollahi, 2010 ¹²³	NR	Yes	NR	Yes		No additional information on the patients already undergoing PSG were provided. Blinding of technicians was not reported. There was a small amount of data missing from the PMs but the authors describe averaging and other adequate approaches to handle the missing data. Authors do not report on withdrawals/attrition.

Abbreviations: AHI=apnea-hypopnea index; NA=not applicable; NR=not reported; OSA=obstructive sleep apnea; PM=portable monitor; PSG=polysomnography; ROC=receiver operating characteristic.

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	Were groups similar at baseline?	Was intervention fidelity adequate?	What was the reported adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	overs or contamination
Aarab, 2011 ¹⁸⁹	Yes	Yes	Yes	Yes	MAD use 91% of nights nCPAP 83% of nights Intraoral placebo device 94% of nights	11%	13% (MAD vs. nCPAP), 5% (MAD vs. Intraoral placebo device) 7% (nCPAP vs. Intraoral placebo device)	Partially	No
Andren, 2013 ¹⁸⁸		NR	Mostly	Yes	NR	1%	3%	No	No
Arias, 2005 ¹²⁸	NR	NR	Yes (cross- over study)		7% were nonadherent (use <3.5 hrs/night) and excluded from analysis; of the rest: CPAP: 6 hrs/night; sham 6 hrs/night	7%	7%	No	No
Arias, 2008 ¹²⁹	NR	NR	Yes	NA	CPAP: 6.2 hrs/night Sham CPAP: 6.3 hrs/night	17%	Unclear	Unclear (unable to determine differential attrition)	No
Bäck, 2009 ¹⁹⁸	Yes	Yes	Yes	NA	NA	0%	0%	No	No
Ballester, 1999 ¹⁷⁰	NR	NR	Yes		Mean CPAP 5.2 hrs/night; 73% used it >4.5 hrs/night	0%	0%	No	No
Barbe, 2001 ¹³⁰	Yes	NR	Yes	NA	CPAP: 5 hrs/night; Sham: 4 hrs/night	2%	2%	No	No
Barbe, 2010 ¹⁷¹	Yes	Yes	Mostly	NR	CPAP: mean use 4.7 hrs/night	4%	6%	No	No
Barbe, 2012 ¹⁷²	Yes	Yes	Yes, although AHI was a little higher in CPAP group	NA	CPAP: median 5h/night; 36% with mean use <4h per night	Loss to follow-up: 17%	1%	No	No

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	Were groups similar at baseline?	Was intervention fidelity adequate?	What was the reported adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	overs or contamination
Bardwell, 2007 ¹³¹	NR	NR	Partially (SaO2 different)	NA	CPAP: 6.3 hrs/night; Sham CPAP: 6.0 hrs/night	0%	0%	No	No
Barnes, 2004 ¹⁷³	Yes	Yes	Yes	NA	CPAP: 3.6 hrs/night; MAD: 5.5 hrs/night; Placebo: 94.3%	23%	6%	Yes, high overall	No
Bloch, 2000 ²¹⁴	Yes	NR	Yes (cross- over study)	NA	MADs: at least 4 to 7 nights/week No tx: NA	0%	NA	No	No
Browaldh, 2013 ¹⁹⁹ SKUP3	Yes	Yes	Yes	NA	NA	8%	NR	No	No
Campos- Rodriguez, 2006 ¹³²	NR	Unclear	Yes	NA	5.0 vs. 4.4 hrs/day for CPAP vs. sham	6%	0%	No	No
Chasens, 2014 ²⁸⁷	Yes	NR	Partially	NA	74% were adherent for at least 4 hours per night	4.3%	9%	No	No
Chong, 2006 ¹³⁴	NR	No	Yes	NA	5.2 hrs/night	5%	0%	No	No
Coughlin, 2007 ¹³⁵	Yes	NR	Yes (cross- over)	NA	CPAP: 3.9 hrs/night; Sham CPAP: 2.6 hrs/night	3%	0%	No	No
Craig, 2012 ¹⁷⁴ MOSAIC	Yes	Yes	Yes	NA	Median CPAP usage: 2.39 h/night (IQR: 0.36 to 4.59)	13% for the coprimary outcome ESS (lower for some secondary outcomes)	0%	No	No
Cross, 2008 ¹³⁶	NR	NR	Yes (cross- over study)	NA	CPAP: 4.5 hrs/night; Sham: 3.1 hrs/night	17%	4%	No	No

First Author, Year Trial Name	Was randomization adequate?	adequate?	similar at baseline?	Was intervention fidelity adequate?	adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	overs or contamination raising concern for bias?
			ESS scores and BP higher in intervention group		NR (but inpatient program, so implied to be 100% for the completers)		0	No	No
Dixon, 2012 ²⁰⁰	NR	NR	Yes	group); NR for weight loss group	intervention NR; CPAP adherence was about 67% for both groups	Non- completers: 10% for main outcomes, 13% for QOL outcomes; Loss to follow-up 0%	7% (for main outcomes; unclear for QOL outcomes	No	No (small number of cross-overs)
Durán-Cantolla, 2010 ¹³⁷	Yes	Yes	Yes		hrs/day over 12 weeks; 59% (Sham) and 65%	20% did not complete the trial (either refused to continue, intolerant to CPAP, protocol violation, or technical problems)		Borderline for overall attrition; no for differential attrition	No
Durán-Cantolla, 2015 ³⁶	Yes		NA (cross- over)		MAD: 6.4 hrs/night; placebo: 6.2 hrs/night		5%	No	No
Egea, 2008 ¹³⁸	NR		Yes based on N randomized, but partially based on N analyzed	NA	NR	18%	4%	No	No

First Author,	Was	Was allocation	Were groups	Was intervention		What was	What was the	Did the study have differential attrition or overall high attrition raising	overs or contamination
Year	randomization			fidelity	adherence to the	the overall	differential	concern for	concern for
Trial Name	adequate?	adequate?	baseline?	adequate?	intervention? CPAP: mean 3.7	attrition?	attrition?	bias?	bias?
Engleman, 1994 ²¹⁶		NR	Yes		hrs/night		Unclear		
Engleman, 1997 ²¹⁷	NR	NR	Yes	NA	CPAP mean 3.2 hrs/night	11%	20%	Partially	No
Engleman, 1998 ¹⁷⁵	NR	NR	Yes	NA	Mean of 3.2 hours of CPAP runtime and used effectively 2.8 hours per night	0%	0%	No	No
Engleman, 1999 ¹⁷⁶	NR	NR	Yes	NA	CPAP 3.5 hrs/night	8%	NR (at most 8%)	No	No
Faccenda, 2001 ¹⁷⁷	NR	NR	Yes (cross- over study)	NA	47% of patients used CPAP at least 3.5 hrs/night; mean use 3.3 hrs/night; placebo adherence almost 100%	4%	2%	No	No
Ferguson, 2003 ²⁰¹	Yes	NR	Yes	NA	NA (surgery vs. no treatment)	4%	4%	No	No
Foster, 2009 ²⁰⁵ Kuna, 2013 ²⁰⁶ Sleep AHEAD	Yes	Yes	Yes	NA	NR	At 1 yr: 17% At 2 yrs: 20% At 4 yrs: 38%	At 1 yr: 1% At 2 yrs: 1% At 4 yrs: 6%	At 4 yrs, high overall	No
Gottlieb, 2014 ¹⁷⁸ HeartBEAT	Yes	Yes	Partially	NA	CPAP: 3.5 hrs/night Oxygen: mean 4.8 hrs/night	12% for primary outcome; 5% to 7% for other outcomes	3% to 7%	No	No
Haensel, 2007 ¹³⁹	NR	NR	Yes	NA	CPAP: 6.6 hrs/night; Sham CPAP: 6.0 hrs/night	0%	0%	No	No

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	Were groups similar at baseline?	Was intervention fidelity adequate?	adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	concern for bias?
Hoyos, 2012 ¹⁴⁰	Yes	Yes	Yes	NA	CPAP: 3.6 hrs/night; Sham CPAP: 2.8 hrs/ night	Loss to followup at 12 weeks: 20%; Missing data for ESS and BP: 23%	11% (from published correction); 2% (from Table 2)	Yes	No
Hui, 2006 ¹⁴¹	NR	NR	Yes	NA	CPAP 5.1 hrs/night; sham 2.6 hrs/night	18%	0%	No	No
Ip, 2004 ¹⁷⁹	NR	NR	Yes	NA	CPAP: 4.3 hrs/night UC: NA	4%	4%	No	No
Jenkinson, 1999 ¹⁴² Hack, 2000 ¹⁴³	NR	Yes	Yes	NA	CPAP 5.4 hrs/night; sham 4.6 hrs/night	6%	4%	No	No
Johansson, 2009 ²⁰⁷	Yes	Yes	Yes	NA	VLCD: 100%	3%	6%	No	No
Johnston, 2002 ¹⁹⁵	NR	NR	Yes	NA	MAD 68% every or almost every night; 79% ≥4 hrs/night	5%	5%	No	No
Jones, 2013 ¹⁴⁴	Yes	NR	Yes	NA	CPAP: 3.0 hrs/night Sham CPAP: 2.0 hrs/night	19%	5%	No	No
Kline, 2012 ²⁰⁸ Kline, 2013 ²⁰⁹	Yes		Partially (exercise training group had higher mean AHI (32 vs. 24), higher mean baseline weight and BMI, higher percentage	NA	Rate of attendance 87% (exercise) 79% (control); 81% of the treatment group received the targeted aerobic dose	completers)	2%	No	No

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	similar at baseline? White, lower	Was intervention fidelity adequate?	What was the reported adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	overs or contamination
			percentage with prior OSA treatment)						
Koutsourelaski, 2008 ²⁰²	Yes	NR	Yes	NA	NA (surgery)	0%	0%	No	No
Kushida, 2012 ¹⁴⁵ Batool-Anwar, 2016 ²⁸⁸	Yes	Yes	Yes	NA	CPAP: 5.8 hrs/night Sham: 4.3 hrs/night	23% (for ESS at 6 months; varies by outcome and timing)	5%	Yes	No
Lam, 2007 ¹⁸⁰	Yes	NR	Yes		CPAP: 4.2 hrs/night; MAD: 6.4 hrs/night	10%	3% to 12%	Partially	Partially
Lam, 2010 ¹⁴⁶	Yes	NR	Yes	NA	CPAP 6.2 hrs/night; sham 4.5 hrs/night	0%	0%	No	No
Lee, 2011 ¹⁴⁷	NR	NR	Yes		CPAP: 5.0 hrs/night; Placebo CPAP: 6.9 hrs/night	NR, presume 0	NR, presume 0	No	No
Lim, 2007 ²¹⁵	NR	NR	Yes		NR	0	0	No	No
Loredo, 1999 ¹⁴⁸	NR	NR	Partially (RDI higher in CPAP than pbo)	NA	Both groups: >5 hrs/night	15%	Somewhat unclear (if 48 randomized resulted in 24 in each group, then 21%, 12%, and 16%, respectively	Somewhat unclear due to limited reporting	No
Loredo, 2006 ¹⁴⁹	NR	NR	Yes		CPAP: 6.6 hrs/night Sham CPAP: 6.0 hrs/night	Unclear which exclusions were prior to vs. after	NR	No for overall; unclear for differential	No

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	Were groups similar at baseline?	Was intervention fidelity adequate?	What was the reported adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	Did the study have cross- overs or contamination raising concern for bias?
						randomiz- ation (max would be 17%)			
Malow, 2008 ¹⁵⁰	Yes	Yes	Yes		CPAP: 4.7 hrs/night Sham CPAP: 3.6 hrs/night	9%	14%	Yes; all noncompleters were from G1; 9% of G1 d/c due to inability to tolerate CPAP— maybe higher severity?	No
Marshall, 2005 ¹⁵¹	Yes	Yes	Yes (cross- over study)		CPAP: 4.9 hrs/night; Sham CPAP 4.9 hrs/night	7%	<1%	No	No
Martinez-Garcia, 2013 ¹⁸¹ HIPARCO	Yes	Yes	Yes	NA	CPAP: 5 hrs/night; 72% at least 4 hours/night	10%	2%	No	No
McArdle, 2001 ¹⁵²	Yes		NA (cross- over)		Median 4.5 hrs/night	4%	4%	No	No
McMillan, 2014 ¹⁸² PREDICT	Yes	Yes	Yes	Yes	71% reported still using CPAP at 12 mths; at 3 mths, median usage of 1 h 52 min per night; at 12 mth, 2 h 22 min/night	17	3		No
Mills, 2006 ¹⁵³	NR		Partially; 47% HTN in CPAP arm, 25% in sham arm		CPAP: 6.8	NR, presume 0	NR, presume 0	No	No

First Author, Year Trial Name	Was randomization adequate?	adequate?	similar at baseline?	Was intervention fidelity adequate?	adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	attrition raising concern for bias?	overs or contamination raising concern for bias?
Montserrat, 2001 ¹⁵⁴	Yes	NR	Partially	NA	CPAP 4.3 hrs/night; sham 4.5 hrs/night	4%	0%	No	No
Moss, 2014 ²¹⁰	Yes	NR	Yes	NR	Exercise: 96% of sessions attended; control: NA	10%	0%	No	No; all patients were on CPAP for at least 6 months prior
Naismith, 2005; ¹⁹² Gotsopoulos, 2002; ¹⁹³ Gotsopoulos, 2004 ¹⁹⁴	Yes	Yes	Yes (crossover study)	NA	Both MAD and sham MAS: 6.7 hrs/night; 96-97% of nights	9%	5%	No	No
Neikrug, 2014 ¹⁵⁵	Yes	NR	Yes	NA	CPAP: 5.2 hrs/night	18%	5%	No	No
Nguyen, 2010 ¹⁵⁷	NR	NR	Yes	Yes	NR (assessed but not reported)	0%	0%	No	No
Norman, 2006 ¹⁵⁶	NR	NR	Partially; higher SBP and MAP in CPAP group	NA	CPAP: 6.7 hrs/night Sham: 6.0 hrs/night	NR, presume 0	NR, presume 0	No	No
Pamidi, 2015 ¹⁵⁸	Yes	Yes	Mostly: 19% of CPAP had HTN; 0% of pbo had HTN	NA	8 hrs/night—all CPAP patients slept in the lab and were required to wear CPAP whole night	15%	11%	Borderline for differential	No
Pepperell, 2002 ¹⁵⁹ Kohler, 2008 ¹⁶⁰	NR	NR	Yes	NA	4.9 h/night for CPAP and 4.5h/night for Sham	20% (for missing blood pressure data)	1% (for blood pressure outcomes)	No	No
Petri, 2008 ¹⁹¹	Yes	Yes	Yes	NA	NR	13%	1%-15%	Partially (G1 vs. G3)	No

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	similar at baseline?	Was intervention fidelity adequate?	adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	attrition raising concern for bias?	overs or contamination raising concern for bias?
Phillips, 2011 ¹⁶¹	Yes	Yes	Yes	NA	CPAP: 4.4 hrs/night Sham CPAP: 3.4 hrs/night	24%	5%	Yes overall, but not differential	No
Quinnell, 2014 ¹⁹⁷ TOMADO	Yes	Yes	Yes		Mean (SD) 4.4 (2.4) to 5.7 (2.0) hrs/night for the 3 MAD groups	18% did not complete; 8% not analyzed	Low when comparing most groups, but high for bMAD group vs. others (17%- 30% differential)	Yes (high differential attrition for bMAD group compared with the others)	No
Redline, 1998 ¹⁸³	Yes	NR	Mostly (slightly higher RDI in CPAP arm, and fewer women)	NA	CPAP: 44% of sleep time; 3.1 hrs/night CT: 82% of nights	13%	2%	No	Possibly
Robinson, 2006 ¹⁶²	NR	Yes	Yes	NA	CPAP: 5.2 hrs/night; Sham CPAP: 4.3 hrs/night	9%	9%	No	No
Ruttanaumpawan , 2008 ¹⁸⁴	NR	NR	Partially; higher AHI in control, but they adjusted for it in analyses	NA	CPAP: 6.2 hrs/night	NR, presume 0	NR, presume 0	No	No
Siccoli, 2008 ¹⁶⁴	NR	NR	Yes	NA	CPAP: 4.7 hrs/night Sham CPAP: 3.9 hrs/night	3%	2%	No	Possibly – 52 has been involved in previous study on CPAP effect on BP

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	Were groups similar at baseline?	Was intervention fidelity adequate?	What was the reported adherence to the intervention?	What was the overall attrition?	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	Did the study have cross- overs or contamination raising concern for bias?
Smith, 2007 ¹⁶³	Yes	NR	Yes		CPAP 3.5 hrs/night; Sham 3.3 hrs/night	15%	Unable to determine	No	No
Tomfohr, 2011 ¹⁸⁶	NR	NR	Yes		5.5 hrs/night for CPAP group; 6.6 for sham CPAP	17%	4%	No	No
Toukh, 2012 ¹⁶⁵	Yes		NA (cross- over)	NA	NR	8%	NR	No	No
Tuomilehto, 2009 ²¹¹ Tuomilehto, 2010 ²¹² Tuomilehto, 2013 ²¹³	Yes		Partially	NA	NR	At 12 wks: 9% At 1 yr: 11% At 2 yrs: 12% At 5 yrs: 30%	1%-3%	Partially (at 5 yrs)	No
Usui, 2005 ¹⁸⁷	NR		Partially: no women in CPAP vs. 29% in control and fewer patients with HTN in CPAP vs. control	NA	NR/NA	NR, presume 0	NR, presume 0	No	No
Weaver, 2012 ¹⁶⁶	Yes	Yes	Yes, except slightly higher score on mental health component of SF36 for sham CPAP group		CPAP: 4.0 hrs/night; Sham: 3.1 hrs/night	Overall: 21% who were randomized were not included in analyses (15% withdrew prior to receiving CPAP or sham;	1%	Yes, high overall	No

First Author, Year Trial Name	Was randomization adequate?	Was allocation concealment adequate?	Were groups similar at baseline?	Was intervention fidelity adequate?	What was the reported adherence to the intervention?	What was the overall attrition? another 6% were missing data for the primary outcome)	What was the differential attrition?	Did the study have differential attrition or overall high attrition raising concern for bias?	overs or contamination
Weinstock, 2012 ^{167,289}	Yes	NR	Yes	NA	Mean nightly use: CPAP: 4.8h Sham CPAP: 3.4h; p<00.1	2% (1 participant completed the first [CPAP] period only)	4%	No	No
West, 2007 ¹⁶⁸ West, 2009 ¹⁶⁹	Yes	NR	Yes	NA	CPAP: 3.6 hrs/night Sham CPAP: 3.3 hrs/night	5%	0%	No	No
Woodson, 2003 ²⁰³	Yes	Yes	Yes	Good (e.g., planned 5 tongue sessions and delivered 4.5 +/- 0.8)	NA	11%	6%	No	No

^{*}Subjects with symptoms of nasal congestion were provided with a nasal steroid spray, and it's NR whether there was an equal proportion of such patients in each arm. Control pts got nasal dilator strips.

Abbreviations: AHEAD=Action for Health in Diabetes; AHI=apnea-hypopnea index; bMAD=fully-bespoke mandibular advancement device; BMI=body mass index; BP=blood pressure; CPAP=continuous positive airway pressure; ESS=Epworth Sleepiness Scale; G=group; HeartBEAT=Heart Biomarker Evaluation in Apnea Treatment; hrs=hours; HTN=hypertension; IQR=interquartile ratio; MAD=mandibular advancement device; MOSAIC=Multicentre Obstructive Sleep Apnoea Interventional Cardiovascular; mth=month; N=number; NA=not applicable; nCPAP=nasal continuous positive airway pressure; NR=not reported; OSA=obstructive sleep apnea; QOL=quality of life; RDI=respiratory disturbance index; Sa02=oxygen saturation; SBP=systolic blood pressure; SKUP3=Sleep apnoea Karolinska; TOMADO=trial of oral mandibular advancement devices for obstructive sleep apnoea-hypopnoea; tx=treatment; UPPP=uvulopalatopharygoplasty; VLCD=very low calorie diet; vs.=versus.

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Aarab, 2011 ¹⁸⁹	Yes	Partially	NR	NR	Yes	Worst and best case sensitivity analyses		Fair	Differential attrition between two treatment groups, do not suspect that this contributes to significant bias when both groups are compared to placebo. Only the comparison of the active and "sham" oral device was masked; patients receiving CPAP were not masked.
Andren, 2013 ¹⁸⁸	Yes	Yes	NR	Yes (for Ambulatory BP monitoring and AHI); NR for ESS	Yes	BOCF	Yes	Fair	Allocation concealment is not described. Compliance with intervention and control is not described. More patients in the control group were on antihypertensive medications compared to the active treatment group (47% vs. 25%, respectively). Not clear whether changes in antihypertensives were allowed during the trial (and BP measures are the primary outcome)
Arias, 2005 ¹²⁸	Yes	Yes	NR	NR	Yes	Excluded	Partially	Fair	Excluded non-adherent patients from analysis, but N=2. No description of randomization or blinding of assessors.
Arias, 2008 ¹²⁹	Yes	Yes	NR	Yes	Yes		Other than no handling of missing data, acceptable methods	Fair	Methods of sequence generation and allocation concealment NR; no handling of missing data (not high overall at 17%, but unable to determine differential attrition)
Bäck, 2009 ¹⁹⁸	Yes	Yes	No	Partially	Yes	NA	Yes	Good	Some flexibility for outcome timing assessment (4-6 months), but unlikely to have introduced important bias. Surgeon not masked, but not feasible to mask the surgeon. Patients were masked, so self-reported outcomes are blinded; masking of assessors for other outcomes NR. Intended sample size

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?		Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
									was 34; they randomized 32 (very unlikely to make any difference in their conclusions as they found identical reduction for ESS in both groups, and AHI trend favoring placebo group)
Ballester, 1999 ¹⁷⁰	Yes	No	No	No	Yes	NR, but suggests there was no missing data	Yes	Fair	No masking; methods of randomization and allocation concealment NR
Barbe, 2001 ¹³⁰	Yes	Yes	NR	Yes	Yes	Excluded	Yes	Fair	Methods of allocation concealment NR
Barbe, 2010 ¹⁷¹	Yes	No	NR	NR	Yes	None	Yes	Fair	Differences in baseline AHI and other variables associated with OSA severity (oxygen saturation) were statistically significant but unlikely to be clinically significant. Multiple ROB domains NR. This is a completers' analysis, however overall and differential attrition is low and unlikely to bias results.
Barbe, 2012 ¹⁷²	Unclear (the composite outcome lumps less severe with more serious outcomes)	No	No	Yes	Yes	None (exposure time ended upon withdrawal or loss to followup)	Yes	Fair	Outcome assessors were masked but statisticians and researchers were not. No sham CPAP (control group received nothing). Could perhaps have improved blood pressure measurement validity/reliability if using 24h ambulatory blood pressure monitoring. Trial may have been underpowered. Some concern with using a composite outcome that combines incidence of HTN with CV events. The latter have a much more significant impact on health and quality of life (and there were few events)

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?		Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	study use acceptable statistical methods?	Quality Rating	Comments
Bardwell, 2007 ¹³¹	Yes	Yes	NR	NR	Yes	NA	Unclear	Fair	Not much information on randomization and masking; short duration ok because we are only using the RDI data; not much info on statistical analyses for RDI
Barnes, 2004 ¹⁷³	Yes	Yes	NR	NR	Yes	Multiple imputation	Yes	Fair	Risk of attrition bias; masking of providers and outcome assessors NR.
Bloch, 2000 ²¹⁴	Yes	No	NR	NR	Yes	NA	Yes	Fair	Open-label for patients; other masking NR; sequential open-label treatment could bias self-reported outcomes.
Browaldh, 2013 ¹⁹⁹ SKUP3	Yes	No	No	Partially	Yes	Baseline values +1	Yes	Good	Sleep data assessors were blinded; BMI results were not. Although we're not given the actual results of the ITT analyses, I don't think there's concern for bias.
Campos- Rodriguez, 2006 ¹³²	Yes	Yes	Yes	Yes	Yes	None, excluded	Other than no handling of missing data, acceptable methods	Fair	Methods or generating randomization sequence NR; unclear if allocation concealed (used presealed envelopes, but unclear if the person assigning to treatment groups was the person who knew the sequence and filled the envelopes)
Chasens, 2014 ²⁸⁷	Yes	Yes	NR	No	Yes	NR	Yes	Fair	Very small study (N=23) that aimed to determine feasibility of conducting an RCT of CPAP vs. sham CPAP focused on improving activity; Baseline AHI and oxygen desaturation indexes were higher in the active CPAP group; research staff were masked to group except for the night PSG technician who performed the overnight titration and the study's sleep physician co-investigator

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Chong, 2006 ¹³⁴	Yes	Yes	No	Yes	Yes	NR	NR, unclear if ITT or per protocol analysis; otherwise acceptable	Fair	Methods of randomization NR; lack of allocation concealment. Likely used completers analysis because no description of handling of missing data, but very low attrition (1 person in each group at 3 weeks).
Coughlin, 2007 ¹³⁵	Yes	Yes	Yes	Yes	Yes	Excluded	Yes	Good	Only 1 person lost/excluded, and since it's cross-over, not a big concern
Craig, 2012 MOSAIC ¹⁷⁴	Yes	No	No	Partially	some secondary outcomes (e.g., stroke, vascular events)	most secondary outcomes; used multiple imputation for risk score analyses	completers analysis (analyzed on ITT basis but excluded those with missing data and those who attended their 6 month visit either more than 4 weeks earlier or 8 weeks later than the expected data)	Fair	Lack of masking (according to the supplemental appendix, "it was not possible to blind all trial staff, although the assessments were done blind whenever possible"); completer's analysis (but not a lot of missing data),
Cross, 2008 ¹³⁶	Yes	Yes	Yes	Yes	Yes	Excluded	,	Fair	Randomization method NR, small N, excluded some dropouts but not all
Desplan, 2014 ²⁰⁴	Yes	No	No	NR	Yes	None, excluded	Other than no handling of missing data, acceptable methods	Fair	

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Dixon, 2012 ²⁰⁰	Yes	No	No	Yes for AHI; NR for other outcomes	Yes	Multiple imputation	Yes		Method of randomization, allocation concealment were not reported. Lack of masking patients and providers (although likely not realistic for this intervention and comparison).
Durán-Cantolla, 2010 ¹³⁷	Yes	Yes	Yes	Yes	Yes	Baseline observation carried forward	Yes		Although the study had borderline overall attrition, with 20% not completing the 12 week study; they used a conservative BOCF analysis (assuming that blood pressure was not changed from baseline) for people who did not complete. ITT analysis with all randomized subjects. No medications were allowed for hypertension during the study
Durán-Cantolla, 2015 ³⁶	Yes	Yes	Yes	Yes	Yes	NR; looks like excluded	Partially	Good	Small amount of missing data excluded
Egea, 2008 ¹³⁸	Yes	Yes	NR	Partially	Yes	Excluded	Partially	Fair	Completers analysis, no info on randomization, blinding of outcome assessors other than pts
Engleman, 1994 ²¹⁶	Yes	Yes	NR	NR	Yes		Yes, other than exclusion of missing		Self-reported outcome assessors masked b/c patients were masked.
Engleman, 1997 ²¹⁷	Yes	Yes	NR	NR	Yes	analysis	Yes, other than exclusion of missing	cognitive outcomes poor for ESS	
Engleman, 1998 ¹⁷⁵	Yes	Yes	No	NR	Yes	NR	Yes		Methods of randomization and allocation concealment NR; not clear if outcome assessors masked; approach to missing data NR.

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Engleman, 1999 ¹⁷⁶	Yes	Yes	NR	Partially	Yes	Excluded	Yes	Fair	Methods of randomization and allocation concealment NR; outcome assessors not masked for some outcomes (patient-reported outcomes masked, others NR).
Faccenda, 2001 ¹⁷⁷	Yes	Yes	NR	Yes	Yes	Excluded	Yes	Fair	I consider patients masked because they were told that placebo was beneficial. Poor adherence to CPAP, but analysis of all pts vs. adherent yielded same result for BP; since outcomes were self-reported or via 24-hr BP monitor, I consider outcome assessors masked.
Ferguson, 2003 ²⁰¹	Yes for valid and reliable; unclear for equal (possible differences in timing of outcome assessment)	No	No	No/NR	Yes	Excluded, completers (and those who refused additional procedures) only	Partially	Fair	Methods of allocation concealment NR; open-label; no masking. Patients in surgery group had multiple procedures until endpoint was reached. LAUP group underwent varying numbers of procedures (mean 2.4). Timing of outcome measurement varied (3 months after last procedure or 6 months after baseline).
Foster, 2009 ²⁰⁵ Kuna, 2013 ²⁰⁶ Sleep AHEAD	Yes	No	No	Yes	Yes	Mixed-effects MLE and GEE	Yes	Good	High attrition after 2 yrs, but accounted for with statistical methods
Gottlieb, 2014 ¹⁷⁸ HeartBEAT	Yes	No	Unclear	Yes	Yes	Excluded, though they did multiple imputation sensitivity analyses	Yes	Good	Since all outcomes were objectively recorded, not concerned about lack of blinding causing bias.
Haensel, 2007 ¹³⁹ Hoyos, 2012 ¹⁴⁰	Yes	Yes Yes	NR Yes	NR Yes	Yes		Unclear No.	Fair Fair	No clear method of randomization/allocation; masking NR for providers and assessors—so questionable for AHI (self-report outcomes masked) Moderate risk of attrition bias, but it

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
							completers analysis		was non-differential for outcomes eligible for our review (ESS, BP); no handling of missing data; completers analysis.
Hui, 2006 ¹⁴¹	Yes	Yes	Yes	Yes	Yes	excluded subjects with missing data	No, completers analysis; otherwise acceptable	Fair	Methods of randomization and allocation concealment NR. Completer's analysis introducing some risk of selection bias and confounding. But, low attrition and no differential attrition.
lp, 2004 ¹⁷⁹	Yes	No	No	No	Yes	Excluded	Yes	Fair	Randomization/allocation concealment methods NR; no masking reported (but AHI data may have been automated); no handling of missing data (but only 1 subject without complete data).
Jenkinson, 1999 ¹⁴² Hack, 2000 ¹⁴³	Yes	Yes	No	Yes	Yes		Other than no handling of missing data, acceptable methods	Fair	
Johansson, 2009 ²⁰⁷	Yes	No	No	No	Yes	ITT with BL carried forward		AHI; Fair	No blinding; not concerned with significant bias for AHI in this study, but potential for bias with the self-reported ESS.
Johnston, 2002 ¹⁹⁵	Yes	Yes	NR	NR	Yes		reporting of methods, completers analysis	Fair	Methods of randomization and allocation concealment NR. Missing data excluded, but little missing data
Jones, 2013 ¹⁴⁴	Yes	Yes	Yes	Yes	Yes	Excluded non- completers	Yes	Fair	Inadequate methods of handling missing data, allocation concealment NR

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Kline, 2012 ²⁰⁸ Kline, 2013 ²⁰⁹	Yes	No (although both programs were presented as active treat- ments)	No	NR	and ÈSS);	LOCF (which is the baseline observation for this study)	Yes	Fair	Baseline age, sex, and education were similar, but some baseline differences for AHI (higher in the intervention group: 32.2 vs. 24.4) and weight; therefore some concern for selection bias. Lack of masking.
Koutsourelaski2 008 ²⁰²	Yes	Yes	No	Yes	Yes	NA	Yes	Fair	Allocation concealment NR, otherwise this would be good.
Kushida, 2012 ¹⁴⁵ Batool-Anwar, 2016 ²⁸⁸	Yes	Yes	Yes	Yes	Yes	None	Yes	Fair	High overall attrition; no imputation was performed except for the analysis of adherence, where one version imputed missing values to zeros; analyses used GEE, GLM, or GLMM approaches.
Lam, 2007 ¹⁸⁰	Yes	No		NR	Yes	Missing values replaced by baseline values	Yes	Fair	Many but not all subjects were referred to a weight-loss program; NR which proportion in each arm; contamination possible. Since more patients withdrew from control arm vs. CPAP and BL values were imputed, it could bias the result against the null. Not a much concern about MAD vs. control; similar rates of attrition.
Lam, 2010 ¹⁴⁶	Yes	Yes	Yes	NR	unclear for ESS and BP	NA, no missing values for outcomes of interest	Yes	Fair	Methods of allocation concealment NR; unclear if outcome assessors were masked; only 1 week of followup (focus was on insulin sensitivity measures, but they also report AHI, ESS, and blood pressure)

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Lee, 2011 ¹⁴⁷	Yes	Yes	Yes	Yes	Uncertain	NA	Yes	Fair	No mention of how patients were randomized. CPAP group was less compliant than the sham CPAP group. Uncertain if 3 wks is long enough for cognitive changes.
Lim, 2007 ²¹⁵	Yes	Yes	Yes	Yes	Unclear	NA	Yes	Fair	Information on methods of randomization and allocation concealment was not described. Compliance with CPAP and sham CPAP was not described. The authors note that 2 weeks may not be sufficient time to assess for improvements in some neurocognitive measures.
Loredo, 1999 ¹⁴⁸	Yes	Yes	NR	NR	Yes	Excluded, completers only	Partially	Fair	Methods of randomization, allocation concealment and masking of providers and outcome assessors NR; no handling of missing data.
	Yes	Yes	Yes	Yes	Yes		Other than no handling of missing data, acceptable methods	Fair	Methods of randomization and allocation concealment NR. Ns randomized are NR, and thus attrition rates by group are unclear (but max overall attrition was 17%, depending on whether some of the exclusions were pre- or postrandomization. Missing data excluded from analysis; completers only.
Malow, 2008 ¹⁵⁰	Yes	Yes	Yes	Yes	Yes	Excluded	Partially	Fair	Only usable outcome in this study is AHI, and it's only at 2 nights; pilot/feasibility study not designed to examine efficacy
Marshall, 2005 ¹⁵¹	Yes	Yes	Yes	Yes	Yes	Excluded	Partially	Good	Excluded non-adherent patients from analysis, but N=2. Adjusted appropriately.

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?		Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Martinez- Garcia, 2013 ¹⁸¹ HIPARCO	Yes		No	No	Yes	Multiple imputation	Yes	Good	Since all outcomes were objectively recorded, not concerned about lack of blinding causing bias.
McArdle, 2001 ¹⁵²	Yes	Yes	NR	Yes	Yes	NR	Mostly	Fair	Very small sample size; missing data excluded
McMillan, 2014 ¹⁸² PREDICT	Yes	Yes	No	Yes	Yes	Sensitivity analyses with multiple imputation	Yes	Good	
Mills, 2006 ¹⁵³	Yes	Yes	NR	NR	Yes	NA	Yes	Fair	Much higher %age of HTN in CPAP arm (and pts were tapered off BP meds), not clear if adjusted for this; however, this would bias toward the null, so not a big concern. However, randomization, allocation, and blinding NR. Not explicitly stated that no pts dropped out, but maybe none did.
Montserrat, 2001 ¹⁵⁴	Yes	Yes	NR	Yes	Yes	None, excluded	Other than no handling of missing data, acceptable methods	Fair	Methods of allocation concealment NR; excluded dropouts, but just 1 in each group.
Moss, 2014 ²¹⁰	Yes	No	No	No	Yes	NR; looks like excluded	Other than no handling of missing data, acceptable methods	Fair	
Naismith, 2005; ¹⁹² Gotsopoulos, 2002; ¹⁹³ Gotsopoulos, 2004 ¹⁹⁴	Yes	Yes	Yes	Yes	Yes	Conducted both ITT and completers	Yes	Good	

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Neikrug, 2014 ¹⁵⁵	Yes	Yes	No	Yes	Yes	None, excluded	Other than no handling of missing data, acceptable methods	Fair	
Nguyen, 2010 ¹⁵⁷	Yes	Yes	NR	Yes	Yes	NA	NR	Fair	Multiple ROB domains NR (e.g., randomization, allocation concealment, and adherence).
Norman, 2006 ¹⁵⁶	Yes	Yes		NR	Yes	NA	Yes	blood pressure	Methods of random sequence generation and allocation concealment NR; masking of outcome assessors NR; some baseline differences between groups (with higher SBP and MAP in CPAP group—although they adjusted for this in analyses, the baseline SPB of 135 (CPAP) vs. 122 (placebo) indicates that randomization may not have been effective in this small study (15 subjects in placebo group and 18 in CPAP group), and the results might be completely explained by regression to the mean as the groups had almost identical post-treatment BPs. High risk of selection bias and confounding for the blood pressure outcomes.
Pamidi, 2015 ¹⁵⁸		Yes	No	NR	Yes	Sensitivity analyses with imputation	Yes	Fair	Borderline differential attrition, potentially important differences at baseline
Pepperell, 2002 ¹⁵⁹ Kohler, 2008 ¹⁶⁰	Yes	Yes	Yes	Yes	Yes	BOCF (assumed no change in BP for missing)	Yes	Fair	Methods of sequence generation and allocation concealment NR (they used presealed and numbered envelopes, but NR whether the nurse who assigned groups filled the envelopes)

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Petri, 2008 ¹⁹¹	Yes	Yes (G1 vs. G2) No (G1 vs. G3)	Yes (G1 vs. G2) No (G1 vs. G3)	Yes (G1 vs. G2) No (G1 vs. G3)	Yes	Sensitivity analyses with different scenarios	Partially	Fair	Active vs. sham MAD was triple-masked; no masking in the "no treatment" arm. Not concerned about the small amount of cross-over (2 total subjects) and that would bias results toward null (not in favor of the MAD). Missing data handled by use of sensitivity analyses, but they don't present those results.
Phillips, 2011 ¹⁶¹	Yes	Yes	Yes	Yes	Yes	Excluded; completers only	Other than no handling of missing data, acceptable methods	Fair	24% overall attrition (but low differential attrition); no handling of missing data
Quinnell, 2014 ¹⁹⁷ TOMADO	Yes	No	No	Yes for AHI; unclear for other outcomes	Yes	None, excluded	Other than no handling of missing data, acceptable methods	Fair	Open-label trial; high differential attrition between some groups (but overall attrition and missing data was not high)
Redline, 1998 ¹⁸³	Yes	No	NR	NR	Yes	Excluded but examined in sensitivity analyses		Fair	Methods of allocation concealment NR; no masking reported
Robinson, 2006 ¹⁶²	Yes	Yes	Yes	Yes	Yes	None, excluded	Yes	Fair	Method of random sequence generation NR; missing data were excluded from analysis
Ruttanaumpa- wan, 2008 ¹⁸⁴	Yes	No	No	Yes	Yes	NA?		Fair	Open-label, randomization and allocation NR, big difference in AHI at BL that would favor CPAP, but they adjusted for it. Good adherence, seems like no attrition.
Siccoli, 2008 ¹⁶⁴	Yes	Yes	Yes	Yes	Yes	ITT: LOCF	Yes	Fair	Methods of randomization and allocation concealment NR.

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	Were patients masked?	Were providers masked?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	What was the method used to handle missing data?	Did the study use acceptable statistical methods?	Quality Rating	Comments
Smith, 2007 ¹⁶³	Yes	Yes	Yes	Yes	Yes	Unclear	Unclear	Fair	Unclear methods of allocation concealment; limited reporting of methods for handling missing data (although attrition was not too high, it was 4/26 participants) and likely nothing done to handle missing data
Tomfohr, 2011 ¹⁸⁶	Yes	Yes	No	Yes	Yes	None	No, completers analysis	Fair	Methods of randomization and allocation concealment NR; completers only analysis with no handling of missing data, but relatively low attrition and low differential attrition
Toukh, 2012 ¹⁶⁵	Yes	No	No	Yes	Yes	1 patient excluded	Partially	Fair	Very small sample size; no masking of patients or providers; methods of allocation concealment NR
Tuomilehto, 2009 ²¹¹ Tuomilehto, 2010 ²¹² Tuomilehto, 2013 ²¹³	Yes	No	No	NR	Yes	Excluded	Partially	Fair	Open-label, completers only; some analyses adjusted for potential confounders.
Usui, 2005 ¹⁸⁷	Yes	No	No	Yes	Yes	NA	Yes	Fair	Very small study; randomization/allocation NR; some differences between groups at BL
Weaver, 2012 ¹⁶⁶	Yes	Yes	Yes	Yes for primary outcome and most outcomes; those performing PSGs were not masked	Yes	None (21% of those randomized were not included in analyses in their modified ITT)	No, modified ITT does not include 21% of those randomized	Fair	No handling of missing data; 21% of those randomized not included in analyses

First Author, Year Trial Name	Were outcome measurements equal, valid and reliable?	masked?	masked?	masked?	followup adequate to assess the outcome?	What was the method used to handle missing data?	study use acceptable statistical methods?	Quality Rating	Comments
Weinstock, 2012 ^{167,289}	Yes	Yes	NR	NR	Yes	NR (but just 1 subject with some missing data)	Yes		Methods of allocation concealment and masking of outcome assessors were not described. Although the sequence 1 group had higher baseline AHI, this is a cross-over and both groups had almost identical AHIs after CPAP and after sham conditions.
West, 2007 ¹⁶⁸ West, 2009 ¹⁶⁹	Yes	Yes	Yes	Yes	Yes	Excluded	Partially	Fair	Missing data excluded; I consider assessors blinded because outcomes of interest were all patient-reported.
Woodson, 2003 ²⁰³	Yes for valid and reliable, but seems that timing of assessment differed (although not clear)	Yes	No	Yes	Yes, although specific duration differed by group; not clear how much though	excluded	Other than no handling of missing data, acceptable methods	Fair	No handling of missing data; differences in timing/protocol between sham/placebo and the radiofrequency intervention; unclear how much difference in timing of outcome assessments.

Abbreviations: AHEAD=Action for Health in Diabetes; AHI=apnea-hypopnea index; BL=baseline; BOCF=baseline observation carried forward; BP=blood pressure; CPAP=continuous positive airway pressure; CV=cardiovascular; ESS=Epworth Sleepiness Scale; G=group; GEE=generalized estimating equation; HeartBEAT=Heart Biomarker Evaluation in Apnea Treatment; h=hour; HTN=hypertension; IQR=interquartile ratio; ITT=intention to treat; LOCF=last observation carried forward; LAUP=laser assisted uvulopalatoplasty; MAD=mandibular advancement device; MLE=maximum likelihood estimation; MOSAIC=Multicentre Obstructive Sleep Apnoea Interventional Cardiovascular; mth=month; N=number; NA=not applicable; nCPAP=nasal continuous positive airway pressure; NR=not reported; OSA=obstructive sleep apnea; PSG=polysomnography; pts=patients; QOL=quality of life; ROB=risk of bias; RDI=respiratory disturbance index; Sa02=oxygen saturation; SBP=systolic blood pressure; SKUP3=Sleep apnoea Karolinska; TOMADO=trial of oral mandibular advancement devices for obstructive sleep apnoea-hypopnoea; tx=treatment; UPPP=uvulopalatopharygoplasty; VLCD=very low calorie diet; vs.=versus; wks=weeks; yrs=years.

First Author, Year	Did the study have differential attrition or overall high attrition raising concern for bias?	Were outcome measurements equal, valid and reliable?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	Did the analysis control for baseline differences between groups?	Does the analysis control for potential confounders? (or are confounders addressed via restriction, matching, or stratification)	Does the analysis account for differences in treatment received by	Are the statistical methods used to assess the outcomes appropriate?	Quality Rating	Comments
Blackwell, 2015 ²⁹⁰ MrOS	for 4.5% of the 2,760 who were cognitively intact at baseline and	Yes (although unclear whether using the top decile of change for Trails B is a valid way to determine clinically significant decline)	NR	Unknown (mean 3.4 years)	Yes (except perhaps caffeine use)	Yes	Yes, they removed the 197 men using CPAP or oxygen in additional analyses (results were similar)	Yes	Fair	Controlled for a large number of potential cofounders; did not control for caffeine or cholesterol (but controlled for number of comorbid medical conditions); risk of residual confounding; multiple comparisons performed and some findings may be due to chance
Ensrud, 2012 ²²⁰ MrOS	No (missing vital status for just 1%; 7% of those who were eligible and had PSG at baseline were excluded from analyses, but were known to be living)	Yes	NR	Yes	Unclear (baseline data reported by frailty status, not by AHI categories)	Yes	Yes, they excluded those who started treatment	Yes	Fair	Controlled for a large number of potential cofounders, but did not control for cardiovascular disease, diabetes, hypertension, cholesterol (but controlled for number of comorbid medical conditions); risk of residual confounding [†]

First Author, Year Gooneratne,	Did the study have differential attrition or overall high attrition raising concern for bias?	Were outcome measurements equal, valid and reliable?	Were outcome assessors masked?	outcome?	Did the analysis control for baseline differences between groups?	Does the analysis control for potential confounders? (or are confounders addressed via restriction, matching, or stratification) Yes	Does the analysis account for differences in treatment received by the groups?	Are the statistical methods used to assess the outcomes appropriate?	Quality Rating Fair	Comments
2011 ²²³					(baseline data NR by AHI categories; reported by EDS vs. not)					
Gottlieb, 2010 ²²⁴ SHHS	No [§]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Good	Regarding measures, they were valid and reliable measures for CHD; some variation in how they were assessed because it depended on the parent cohort (but it does not seem to differ by AHI, and adjudication methods were similar). For HF, adjudication methods differed across cohorts (but some reassurance from statistical analyses that it didn't matter)

First Author, Year Marin, 2005 ⁵⁰	Did the study have differential attrition or overall high attrition raising concern for bias?	Were outcome measurements equal, valid and reliable?	Were outcome assessors masked? NR (seems	Was the duration of followup adequate to assess the outcome?	Did the analysis control for baseline differences between groups?	Does the analysis control for potential confounders? (or are confounders addressed via restriction, matching, or stratification)	Does the analysis account for differences in treatment received by the groups?	Are the statistical methods used to assess the outcomes appropriate?	Quality Rating Fair	Comments
		single physician assessed all patients at baseline and during followup	given that a single physician assessed all patients at baseline and during followup)							
Marshall, 2014 ²²⁹ Marshall, 2008 ²²⁸ Busselton Health Study	No	Yes for all- cause mortality; no or uncertain for other outcomes (e.g., no independent adjudication of stroke outcomes; relied on hospital codes)	NR	Yes		mortality; some limitations for other outcomes (e.g., lacking	No (although they indicate that they think that none were treated)	Yes	Poor for other out- comes	Lack of masking outcome assessors of lesser importance when using death index to determine mortality; very wide CIs; lack of precision; only 18 people with moderate to severe OSA; 1 town in Western Australia. High risk of measurement bias and confounding for outcomes other than all-cause mortality

First Author, Year	Did the study have differential attrition or overall high attrition raising concern for bias?	Were outcome measurements equal, valid and reliable?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	Did the analysis control for baseline differences between groups?	Does the analysis control for potential confounders? (or are confounders addressed via restriction, matching, or stratification)	Does the analysis account for differences in treatment received by the groups?	Are the statistical methods used to assess the outcomes appropriate?	Quality Rating	Comments
Nieto, 2012 ²²¹ WSCS	No	Yes	NR	Yes		(cancer deaths) yielded imprecise results (7 total cancer deaths in	and the effects increased slightly)		Fair for cancer mortality	Moderate risk of residual confounding; lack of precise information for Some cancer risk factors (e.g., smoking was current, past, or never, rather than pack-years)
Punjabi, 2009 ²²⁷ SHHS	No	Yes	Probably ¹	Yes	Yes	Yes	Yes, excluded those who reported treatment with PAP (n 147)	Yes	Good	
Redline, 2010 ²²⁵ SHHS	No	Yes	Probably ¹	Yes	Yes	Yes	Yes, excluded those who reported CPAP use	Yes	Good	
Yaffe, 2011 ²²²	Yes, overall 35% (163/461 who had PSG were not included in analyses because of death, not completing outcome	Yes	Yes (clinical cognitive status was adjudicate d by panel of experts blinded to sleep- disordered breathing	Yes	Yes	Yes [#]		Statistical analyses used appropriate methods, although nothing was done to handle missing data	Fair	Some strengths in controlling for a large number of potential confounders, masked expert panel adjudicating cognitive status, and strength of association increased when

First Author, Year	Did the study have differential attrition or overall high attrition raising concern for bias?	Were outcome measurements equal, valid and reliable?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	Did the analysis control for baseline differences between groups?	Does the analysis control for potential confounders? (or are confounders addressed via restriction, matching, or stratification)	Does the analysis account for differences in treatment received by	Are the statistical methods used to assess the outcomes appropriate?	Quality Rating	Comments
	assessment, or other reasons); differential attrition NR		status)							controlling for baseline cognitive status. Moderate risk of bias due to high attrition (and differential attrition was NR); no handling of missing data; longer followup than 5 years might be needed to better estimate the relationship between OSA and cognitive impairment. Possible applicability limitations
Young, 2008 ²²⁶ WSCS	No	Yes	NR	Yes	Yes	Yes	Yes (included analyses that removed those treated; and the effect increased)	Yes	Good	

^{*} Age, race, site, health status, body mass index, education, social support, alcohol intake, smoking, antidepressant, benzodiazepine, non-benzodiazepine sedative hypnotic use, number of comorbid medical conditions, cognitive function, and baseline frailty status

[†] The ORs they report are 1.74 or 1.88 and just barely reach significance and additional adjustment could alter findings. Possible that the effect could increase over longer followup though (this had shorter followup than some other studies)

[†] But minimal concern for risk of bias from this with this type of mortality outcome assessment

No followup data or missing covariates for about 10% (476/4422)

Used matching for age and BMI to select healthy community participants; long list of potential confounders considered in forward stepwise Cox model

Unclear if masked, but seems likely that some/all/most were given the reliance on the physician review and the parent cohorts that these come from

Appendix D Table 8. Quality Ratings of Included Prospective Cohort Studies for KQ 6

Abbreviations: AHI=apnea-hypopnea index; CHD=coronary heart disease; EDS=excessive daytime sleepiness; HF=heart failure; HRs=hazard ratios; MrOS=; NR=not reported; OSA=obstructive sleep apnea; PAP=positive airway pressure; PSG=polysomnography; SDB=Sleep Disordered Breathing; SHHS=Sleep Heart Health Study; vs.=versus; WSCS=Wisconsin Sleep Cohort Study.

[#] Adjusted for age, race, BMI, education, smoking status, diabetes, hypertension, antidepressant use, benzodiazepine use, and use of non-benzodiazepine anxiolytics; additional models adjusted for baseline cognitive test scores

Appendix D Table 9. Relevance of Systematic Reviews and Meta-Analyses for the Association Between AHI and Health Outcomes (KQ 6)

First Author, Year	Did the review focus on community-based samples (as opposed to sleep clinic populations) or stratify results separately for community-based samples?	Did the review limit to prospective studies?	Did the review focus on studies comparing by different AHI categories/ thresholds, including comparison with people with untreated OSA?	Did the review include relevant health outcomes?	Did the review require that included studies adjust for potential confounders (or use other methods to address potential confounding)?	Is the review directly relevant, providing an adequate answer to our KQ?	Comments
Ge, 2013 ⁹¹	No (included 6 studies, and combined community-based and referral populations)	Yes	Yes	Yes (CV and all-cause mortality)		No	Limited by combining community-based and referral populations; potential spectrum bias in referral populations may lead to overestimate of HR
Kendzerska, 2014 ⁹²	Yes, stratified Tables by population based sample vs. clinical sample	No (also included retrospective studies)	Yes	also included diabetes and depression)	Yes (required to get in main analysis; if no adjustment they were excluded by quality assessment)		Limited by including retrospective and prospective studies; and by approach to synthesis that makes it difficult to pull out the portion(s) relevant for our KQ.
Balk, 2011 ¹	No	No (also included retrospective studies)	Yes	mortality, CV death, nonfatal CVD, QOL, incident stroke; also included diabetes and hypertension)			Limited by combining community-based and referral populations; potential spectrum bias in referral populations may lead to overestimate of HR; (Inclusion criteria also differ from ours by limiting to studies with at least 500 participants, whereas we did not set a limit)

Abbreviations: CV=cardiovascular; CVD=cardiovascular disease; HR=heart rate; KQ=key question; QOL=quality of life.

Appendix D Table 10. Quality Ratings for Systematic Reviews and Meta-Analyses for the Association Between AHI and Health Outcomes (KQ 6)

First Author, Year	interest?	described?		exclusion criteria for the selection of studies?	Did at least 2 people independently review studies?	adequately assessed?	Was publication bias assessed?	assessed and addressed?	appropriate?	presented?	Quality Rating
Ge, 2013 ⁹¹	Yes	Yes	Yes	Yes	Yes	items, but the assessments were not used in data	would not be considered appropriate with so few	It was assessed statistically; limited assessment of clinical or methodological heterogeneity	Yes	Yes	Fair
Kendzerska, 2014 ⁹²	Yes	Yes	Yes	Yes	Yes	The method of assessment described is adequate, but some of the individual assessments seem to differ from ours [†]	No	Yes, through qualitative synthesis	Yes	Yes	Fair
Balk, 2011 ¹	Yes	Yes	Yes	Yes	Yes	Yes	No	Unclear [‡]	Yes	Yes	Fair

^{*}Clear inclusion and exclusion criteria; document the loss to followup rate; clear definition of outcome; sufficient duration of followup; control of confounding

^{†(}e.g., adequacy of retrospective studies to account for confounding)

Does not mention assessment of heterogeneity related to this part of the report (KQ 4 of their report) in the Methods or Results. From the quality approach used, they give some attention to heterogeneity from risk of bias, but not clear how much they assessed clinical heterogeneity (e.g., differences for community vs. sleep clinic populations) or other methodological heterogeneity

Appendix D Table 11. Quality Ratings of Prospective Cohort Studies Excluded From KQ 6 Due to Poor Quality

First Author, Year	Did the study have differential attrition or overall high attrition raising concern for bias?	Were outcome measurements equal, valid and reliable?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	Did the analysis control for baseline differences between groups?	restriction, matching, or stratification)	Does the analysis account for differences in treatment received by the groups?	Are the statistical methods used to assess the outcomes appropriate?	Quality Rating	Comments
Arzt, 2005 ²³⁰ WSCS	No		NR	Yes	Yes	age, sex, BMI (limited the number of covariates due to the very small number of events)	No	Yes		High risk of confounding and moderate risk of measurement bias
Munoz, 2006 ²³¹	No	records of two	Yes (neurologist masked to AHI status)	Yes	Yes	\ I	Yes (excluded those who started CPAP)	Yes	Poor	High risk of measurement bias and confounding
Saint Martin, 2015 ²³²	Yes, high overall attrition (only 60% of those with baseline neuropsych evaluation are included in the analysis, 559/929)	See comments	NR	Yes	Yes, for variables they reported baseline data on	potential confounders not	Yes, those treated with CPAP were excluded from analyses	Yes, but see comments about how they used the measures of cognitive function		High risk of selection bias, measurement bias, and confounding. High attrition; some important differences between completers and noncompleters; baseline cognitive measures and baseline assessment of AHI were taken at

Appendix D Table 11. Quality Ratings of Prospective Cohort Studies Excluded From KQ 6 Due to Poor Quality

First Author, Year	Did the study have differential attrition or overall high attrition raising concern for bias?	Were outcome measurements equal, valid and reliable?	Were outcome assessors masked?	Was the duration of followup adequate to assess the outcome?	Did the analysis control for baseline differences between groups?	Does the analysis control for potential confounders? (or are confounders addressed via restriction, matching, or stratification)	Does the analysis account for	Are the statistical methods used to assess the outcomes appropriate?	Quality Rating	Comments
*0										different times (2001-2003 vs. 2003-2004); no data on some potential confounders (e.g., medications); outcome analyzed is not in terms of cognitive impairment-although they used measures of cognitive function to construct the outcome, they converted all of the data into cognitive z score changes for the study population

^{*}Outcome measure was self-reported physician diagnosed stroke; small number of events (14 incident strokes) yielded imprecise results; high risk of residual confounding with only adjusting for age, sex, BMI (which may overestimate the effect); and no adjustment or analyses to consider treatment with CPAP (may lead to underestimate of the effect; and this found no statistically significant effect but OR, 3.08)

Abbreviations: CPAP=continuous positive airway pressure; NR=not reported; WSCS=Wisconsin Sleep Cohort Study.

[†]They didn't consider running models that force in known risk factors to show us if that would change the result. And this study had relatively small sample size and few events (N=394 participants, and just 20 ischemic stroke events)

No information on why this would be adequate capture of events

Appendix D Table 12. Quality Ratings for Included Randomized, Controlled Trials That Reported Harms (KQ 8*)

Study, First Author, Year	Were harms pre- specified and defined?	Were ascertainment techniques for harms adequately described?	Were ascertainment techniques for harms equal, valid, and reliable?	Was duration of followup adequate for harms assessment?	Harms Quality Rating	Comments
Aarab, 2011 ¹⁸⁹	NR	NR	NR	Yes	Fair	Methods NR, but they reported a lot of harms information
Bäck, 2009 ¹⁹⁸	,	NR	Partially	Yes	Fair	Harms were prespecified but NR if defined. For pain, the VAS scale doesn't need much explanation. But for drinking, speaking, and opening the mouth (for example), it is less clear what was actually asked or if these are valid, reliable measures.
Bloch, 2000 ²¹⁴		NR	NR	Yes	Fair	No info on harms assessment, but it looks like they did gather some harms info.
Browaldh, 2013 ¹⁹⁹ SKUP3	NR	NR	NR	Yes	Fair	No description of methods for harms assessment, but I don't get a sense that there is concern for bias.
Dixon, 2012 ²⁰⁰	NR	NR	Partially	Yes	Fair	Harms are reported in an online appendix table. Authors do not report the timing of events and whether they were during or after the perioperative period.
Durán-Cantolla, 2015 ³⁶	NR	Partially	NR	Yes	Fair	No description of methods for harms assessment
Engleman, 1999 ¹⁷⁶	NR	NR	NR	Yes	Fair	No description of methods for harms assessment, but they recorded many.
Ferguson, 2003 ²⁰¹	NR	NR	NR	Yes	Fair	No info on harms assessment, but it looks like they did gather a lot of harms info.
Hui, 2006 ¹⁴¹	NR	NR	NR	Yes	Fair	Only harm reported was withdrawal due to adverse effects (discomfort)
Johansson, 2009 ²⁰⁷	Yes, prespecified lists of relevant harms; NR if defined	No	Unclear	Yes	Fair	Adverse events from the very low energy diet were noted by the study nurse at each visit (but NR whether they asked about these or if they only reported information raised by subjects), and subsequently classified by

Appendix D Table 12. Quality Ratings for Included Randomized, Controlled Trials That Reported Harms (KQ 8*)

Study, First Author, Year	Were harms pre- specified and defined?	Were ascertainment techniques for harms adequately described?	Were ascertainment techniques for harms equal, valid, and reliable?	Was duration of followup adequate for harms assessment?	Harms Quality Rating	Comments
						the study physician for potential causality (unclear how this was determined)
Johnston, 2002 ¹⁹⁵	Yes	Partially	NR	Yes	Fair	
Kushida, 2012 ¹⁴⁵	NR	NR	Yes (equal); NR for valid and reliable	Yes	Fair	
Lam, 2007 ¹⁸⁰	NR	Partially	NR	Yes	Fair	"Side effects of treatment were evaluated by self-reporting using questionnaires in a clinical setting." Implied pre-specification and definition.
Malow, 2008 ¹⁵⁰	NR	Partially	NR	Yes	Fair	
Naismith, 2005 ¹⁹² Gotsopoulos, 2002 ¹⁹³ Gotsopoulos, 2004 ¹⁹⁴	Partially	Yes	Unclear	Yes	Fair	"A self-administered detailed, inhouse questionnaire was used to documenttreatment-related side effects"
Petri, 2008 ¹⁹¹	NR	NR	NR	Yes	Fair	No description of methods for harms assessment. However, The harms they are reporting were discontinuation due to adverse effects, and the reasons for discontinuation. Therefore, not much concern for high risk of bias despite limited reporting.
	NR	NR	NR	Yes	Fair	No description of methods for harms assessment. However, The harms they are reporting were discontinuation due to adverse effects, and the reasons for discontinuation; therefore, not high risk of bias despite limited reporting.
Redline, 1998 ¹⁸³	NR	NR	NR	Yes	Fair	No info on harms assessment, but it looks like they did gather a lot of harms info based on the Results reported.

Appendix D Table 12. Quality Ratings for Included Randomized, Controlled Trials That Reported Harms (KQ 8*)

Study, First Author, Year	Were harms pre- specified and defined?	Were ascertainment techniques for harms adequately described?	Were ascertainment techniques for harms equal, valid, and reliable?	Was duration of followup adequate for harms assessment?	Harms Quality Rating	Comments
Smith, 2007 ¹⁶³	NR	NR	NR	Yes		No info on harms assessment, but it looks like they did gather a lot of harms info based on the Results reported.
Weaver, 2012 ¹⁶⁶	NR	NR	NR	Yes		Methods NR, but they reported a lot of harms information
Woodson, 2003 ²⁰³	Yes	Yes	Yes	Yes	Fair	

^{*}The quality rating assessments for these studies that re in the tables above for KQ 4 and 5 also contribute information toward the overall quality ratings for harms

Abbreviations: NR=not reported; SKUP3=Sleep apnoea Karolinska uvulopalatopharyngoplasty; VAS=visual analog scale.

Appendix E Table 1. Characteristics of Included Studies of Type II Portable Monitors for KQ 3

First Author, Year Country	PM Name PM Type (Number of Channels) PM Channels	PM Setting PM Timing	N Enrolled (N Analyzed)	Mean (SD) AHI [Range]	Mean (SD) ESS [Range]	Mean Age, Yr	% Female	Mean BMI, kg/m²	Participants	% With OSA According to Specific PSG AHI Cutpoints	Quality
Bruyneel,	Pamela V	Home	66 (62)	26 (30) [NR]		49	41	30		AHI ≥5: 81	Fair
2011 ¹¹⁰ Belgium	3.631 II (10)	Different time			[NR]				patients referred to sleep lab for clinical suspicion of OSA	AHI ≥15: 44 AHI ≥30: 31	
	1–5, 7–11			()							
Campbell, 2011 ¹¹¹	Siesta Sleep System	Home	31 (30)	35 (29) [NR]	11 (4.9) [0–20]	49	20	31	patients referred for	AHI >10: 70	Fair
New Zealand	II (11)	Different time							possible OSA without significant comorbidity		
Ferré, 2012 ¹⁰⁹	1–5, 7–12	Cloop Joh	ND (60)	Coorer 1, 22	0 (0 5)	56	43	29	Patients with	AHI ≥5: 81	Good
reire, 2012	Somté	Sleep lab	NR (68)	Scorer 1: 22 (10) [NR]	9 (9.5) [15–81]	56	43	29	suspected sleep	A⊓i ≥5. 6 i	Good
Spain	II (11)	Simultaneous		Scorer 2: 20					apnea referred to sleep unit	AHI ≥15: 53	
	1–3, 6–11			(18.8) [NR]						AHI ≥30: 26	

^{*1=}oxygen saturation from pulse oximetry; 2=electroencephalogram; 3=electro-oculogram; 4=electromyogram; 5=electrocardiogram; 6=heart rate; 7=snoring; 8=airflow; 9=chest wall motion; 10=abdomen motion; 11=body position; 12=leg movements; 13=thermal flow; 14=photoplethlysmograph; 15=peripheral arterial tone; 16=wrist activity

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; ESS=Epworth Sleepiness Scale; kg=kilograms; m=meters; N=sample size; NR=not reported; OSA=obstructive sleep apnea; PM=portable monitor; PSG=polysomnography; SD=standard deviation; yr=years.

Appendix E Table 2. Characteristics of Included Studies of Type III Portable Monitors for KQ3

First Author, Year Country	PM Name PM Type (Number of Channels) PM Channels	PM Setting PM Timing	N Enrolled (N Analyzed)	Mean (SD) AHI [Range]	Mean (SD) ESS [Range]	Mean Age, Yr	% Female	Mean BMI, kg/m²	Participants	% With OSA According to Specific PSG AHI Cutpoints	Quality
Guerrero, 2014 ¹¹³ Spain	III (5)	Home Different time	56 (56)	30 (22.4) [NR]			45	30	Patients referred to sleep unit with mild-moderate clinical suspicion of OSA or with significant comorbidity that induced frequent symptoms mimicking those of OSA		Good
Pereira, 2013 ¹¹⁴ Canada	III (5)	Home Different time		Berlin Low: 25 (29.7) [NR] High: 35 (27.0) [NR] SACS Low: 19 (15.6) [NR] Intermediate: 39 (27.5) [NR] High: 39 (31.3) [NR] STOP-Bang Low: 15 (13.7) [NR] High: 36 (28.0) [NR]	NR	50	34	31	Patients referred to sleep clinic	AHI >5: 91	Good

^{*1=}oxygen saturation from pulse oximetry; 2=electroencephalogram; 3=electro-oculogram; 4=electromyogram; 5=electrocardiogram; 6=heart rate; 7=snoring; 8=airflow; 9=chest wall motion; 10=abdomen motion; 11=body position; 12=leg movements; 13=thermal flow; 14=photoplethlysmograph; 15=peripheral arterial tone; 16=wrist activity

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; ESS=Epworth Sleepiness Scale; kg=kilograms; m=meters; N=sample size; OSA=obstructive sleep apnea; PM=portable monitor; PSG=polysomnography; SACS=Sleep Apnea Clinical Score; SD=standard deviation; yr=years.

Appendix E Table 3. Characteristics of Included Studies of Type IV (3+ Channels) Portable Monitors for KQ3

First Author, Year Country	PM Name PM Type (Number of Channels) PM Channels	PM Setting PM Timing	N Enrolled (N Analyzed)	Mean (SD) AHI [Range]	Mean (SD) ESS [Range]	Mean Age, Yr	% Female	Mean BMI, kg/m²	Participants	% With OSA According to Specific PSG AHI Cutpoints	Quality
Barak-Shinar, 2013 ¹¹⁵ Israel	Morpheus Ox IV (3) 1, 6, 14	Sleep lab Simultaneous	140 (140)	16 (17.4) [NR]	10.2 (NR) [NR]	53	44	31	Patients referred to sleep lab due to suspected risk of OSA		Fair
Choi, 2010 ¹²⁵ Korea	Watch-PAT 100 IV (4) 1, 6, 15, 16	Hospital Different time	27 (25)	32 (28.9) [NR]	NR	41	16	26	Adult subjects with suspected OSA	AHI ≥5: 76 AHI ≥15: 68 AHI ≥30: 44	Fair
Garg, 2014 ¹²⁷ United States	Watch-PAT 200 IV (6) 1, 6, 7, 11, 12, 15	Home and sleep lab Simultaneous and different time	75 (75)	30 (35.0) [NR]	12 (5.5) [NR]		76	NR	Patients recruited from primary care and sleep clinics who were considered to be high risk for OSA as determined by Berlin questionnaire		Good
2013 ¹⁰⁴	AutoSet IV (4) 1 [†] , 8, 9, 10	Home Different time	250 (250)*	23 (22.9) [NR]	NR	53	20	32	Outpatients with hypertension recruited from	Any OSA (AHI ≥5): 80 Mild OSA (AHI=5-14.9): 34 Moderate OSA (AHI=15- 29.9): 22 Severe OSA (AHI ≥30): 25 Any OSAS (AHI ≥5 and	Fair

Appendix E Table 3. Characteristics of Included Studies of Type IV (3+ Channels) Portable Monitors for KQ3

First Author, Year Country	PM Name PM Type (Number of Channels) PM Channels	PM Setting PM Timing	N Enrolled (N Analyzed)	Mean (SD) AHI [Range]	Mean (SD) ESS [Range]	Mean Age, Yr	% Female	Mean BMI, kg/m²	Participants	% With OSA According to Specific PSG AHI Cutpoints	Quality
										ESS>10): 25 s-OSAS (AHI ≥30 and ESS>10): 8	
Masa, 2013 ²⁹¹	BreastSC20 IV (5) 1, 8–11	Home Different time		38 (NR) [NR]	12 (5.0) [NR]	49	24		Patients referred for pulmonary		Good

^{* 1=}oxygen saturation from pulse oximetry; 2=EEG; 3=electro-oculogram; 4=electromyogram; 5=electrocardiogram; 6=heart rate; 7=snoring; 8=airflow; 9=chest wall motion; 10=abdomen motion; 11=body position; 12=leg movements; 13=thermal flow; 14=photoplethlysmograph; 15=peripheral arterial tone; 16=wrist activity

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; ESS=Epworth Sleepiness Scale; kg=kilograms; m=meters; N=sample size; OSA=obstructive sleep apnea; PM=portable monitor; PSG=polysomnography; SD=standard deviation; yr=years.

[†] Oximetry was worn according to manufacturer's directions but was not used in automated scoring because desaturation was not required to score apneas or hypopneas.

[†] Of the 250 participants, 242 completed the ESS, 198 completed a PSG, and 192 completed a PM evaluation; missing data were imputed prior to analysis.

Appendix E Table 4. Characteristics of Included Studies of Type IV (2 Channels) Portable Monitors for KQ3

First Author, Year Country	PM Name PM Type (Number of Channels) PM Channels	PM Setting PM Timing	N Enrolled (N Analyzed)	Mean (SD) AHI [Range]	Mean (SD) ESS [Range]	Mean Age, Yr	% Female	Mean BMI, kg/m²	Participants	% With OSA According to Specific PSG AHI Cutpoints	Quality
Alvarez, 2009 ¹²⁶ Spain	Criticare 504 Pulse Oximeter IV (2) 1, 6	Sleep lab Simultaneous	187 (187)	AHI ≥10: 40 (19.6) [NR] AHI<10: 2.0 (2.4) [NR]	NR	58	21	30	Patients with suspected OSA	AHI >10: 59	Good
Nigro, 2010 ¹²⁴ Argentina	ApneaLink IV (2) [†] 7, 8	Sleep lab Simultaneous	76 (66)	10 (NR) [4.1- 34.1]	NR	52	29	29	Consecutive patients referred for possible sleep apnea hypopnea syndrome	Mild (RDI=5-<15): 30 Moderate (RDI=15-<30): 21 Severe (RDI ≥30): 26	Fair
Nigro, 2013 ¹¹⁷ Argentina	ApneaLink Ox IV (2) 1, 8	Sleep lab Simultaneous	55 (55)	NR [‡]	NR	48	31	30	Patients with suspected OSA referred to clinic	RDÍ ≥5: 78	Good
Poupard, 2012 ¹²⁰ France	Nonin WristOx IV (2) 1, 6	Sleep lab Simultaneous	106 (106)	NR	NR AHI<5: 11 (7) [NR]; 5≤AHI<15: 8 (5) [NR]; 15≤AHI<30: 9 (5) [NR]; AHI ≥30: 10 (6) [NR]	57	35	29	Consecutive patients referred to sleep laboratory for suspected sleep apnea syndrome	AHI ≥15: 50	Fair

Appendix E Table 4. Characteristics of Included Studies of Type IV (2 Channels) Portable Monitors for KQ3

First Author, Year Country	PM Name PM Type (Number of Channels) PM Channels	PM Setting PM Timing	N Enrolled (N Analyzed)	Mean (SD)	Mean (SD) ESS [Range]	Mean Age, Yr	% Female	Mean BMI, kg/m²	Participants	% With OSA According to Specific PSG AHI Cutpoints	Quality
Yadollahi, 2010 ¹²³	Acoustical Sleep Apnea	Sleep lab	66 (66)				27	32	Population already		Fair
	Diagnosis	Simultaneous		[0.2 120.1]					undergoing full-		
Canada	(ASAD) System [§]								night PSG study		
	IV (2)										
	1, 7										

^{*1=}oxygen saturation from pulse oximetry; 2=EEG; 3=electro-oculogram; 4=electromyogram; 5=electrocardiogram; 6=heart rate; 7=snoring; 8=airflow; 9=chest wall motion; 10=abdomen motion; 11=body position; 12=leg movements; 13=thermal flow; 14=photoplethlysmograph; 15=peripheral arterial tone; 16=wrist activity

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; ESS=Epworth Sleepiness Scale; kg=kilograms; m=meters; N=sample size; OSA=obstructive sleep apnea; PM=portable monitor; PSG=polysomnography; RDI=respiratory disturbance index; SD=standard deviation; yr=years.

[†] Authors describe ApneaLink as a single-channel portable monitor that measures airflow; we reclassified it as a dual-channel portable monitor since it also measures snoring. † The mean RDI was 15 (NR) [6-35].

[§] The ASAD system included an omnidirectional microphone (Sony ECM-77B) and Masimo pulse oximeter.

Appendix E Table 5. Characteristics of Included Studies of Type IV (1 Channel) Portable Monitors for KQ3

First Author, Year Country	PM Name PM Type (Number of Channels) PM Channel	PM Setting PM Timing	N Enrolled (N Analyzed)	Mean (SD) AHI [Range]	Mean (SD) ESS [Range]	Mean Age, yr	% Female	Mean BMI, kg/m²	Participants	% With OSA According to Specific PSG AHI Cutpoints	Quality
Alvarez, 2012 ¹¹⁸ Spain	Nonin PureSAT IV (1) Oxygen saturation from pulse oximetry	Sleep lab Simultaneous	240 (240)	OSA- positive patients: 37 (25.7) [NR] OSA- negative patients: 4 (2.4) [NR]	NR	52	24	30	Subjects who showed high suspicion of suffering from OSA based on clinical evaluation and referred to a hospital's sleep unit	AHI ≥10: 67	Fair
Bohning, 2011 ¹²¹ Germany	WristOx 3100 IV (1) Oxygen saturation from pulse oximetry	Sleep lab Simultaneous	135 (135)	NR	NR	55	18	32	Patients who had undergone a prior cardiorespiratory polygraphy exam and were referred to the sleep lab	AHI ≥5: 87	Fair
Morillo, 2013 ¹¹⁶ Spain	70750A19 (Jaeger) Pulse Oximeter IV (1) Oxygen saturation from pulse oximetry	Sleep lab Simultaneous	115 (115)	23 (25.1) [NR]	NR	61	17	32	Referred to the sleep unit of the University Hospital with suspected SAHS	AHI ≥10: 57	Fair
Rofail, 2010 ¹²² Australia	FlowWizard IV (1) [†] Airflow RadicalSet IV (1) [†] Oxygen saturation from pulse oximetry	Home Different time	98 (92)	19 (21.2) [NR]	10 (5.0) [NR]	46	23	30	Referred to the Sleep Disorders Clinic for evaluation of possible OSA	AHI ≥5: 71 AHI ≥30: 25	Fair

^{*}The overall study sample was distributed among a training set (n=96) and a test set (n=144).

† Authors evaluated two single-channel portable monitors, separately.

Appendix E Table 5. Characteristics of Included Studies of Type IV (1 Channel) Portable Monitors for KQ3 Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; ESS=Epworth Sleepiness Scale; kg=kilograms; m=meters; N=sample size; OSA=obstructive sleep apnea; PM=portable monitor; PSG=polysomnography; SD=standard deviation; yr=years.

Appendix E Table 6. Results of Newly Identified, Included Studies for KQ 3: Accuracy of Diagnostic Tests (Type II Portable Monitors)

First Author Voor	PM Name	PSG AHI Cutpoint	Sensitivity	0	ALIDOO (050/ OI)	D I D (050/ OI)	N D (05% OI)
First Author, Year	PM Setting	PM AHI Cutpoint	(95% CI)	Specificity (95% CI)			Neg LR (95% CI)
Bruyneel, 2011 ¹¹⁰	Pamela V 3.631	AHI ≥5	96.0 (NR)	71.0 (NR)	NR	NR	NR
110	Home	NR					
Bruyneel, 2011 ¹¹⁰	Pamela V 3.631	AHI ≥20	76.0 (NR)	85.0 (NR)	NR	NR	NR
	Home	NR					
Bruyneel, 2011 ¹¹⁰	Pamela V 3.631	AHI ≥30	86.0 (NR)	100.0 (NR)	NR	NR	NR
	Home	NR					
Campbell, 2011 ¹¹¹	Siesta Sleep System	AHI >5	88.0 (NR)	50.0 (NR)	0.900 (NR)	1.76 (NR)	0.24 (NR)
	Home	NR					
Campbell, 2011 ¹¹¹	Siesta Sleep System	AHI >10	90.5 (NR)	88.9 (NR)	0.921 (NR)	8.14 (NR)	0.11 (NR)
	Home	NR					
Campbell, 2011 ¹¹¹	Siesta Sleep System	AHI >15	93.7 (NR)	76.9 (NR)	0.942 (NR)	4.06 (NR)	0.08 (NR)
	Home	NR					
Ferré, 2012 ¹⁰⁹	Somté	AHI ≥5	Scorer 1: 91.0 (NR)	Scorer 1: 77.0 (NR)	Scorer 1: 0.810 (0.660, 0.960)	Scorer 1: 4.00 (NR)	Scorer 1: 0.12 (NR)
	Lab	NR	,	Scorer 2: 90.0 (NR)	, ,	,	,
			Scorer 2: 90.0 (NR)	Average: 83.5	Scorer 2: 0.900 (0.780, 1.000)	Scorer 2: 9.00 (NR)	Scorer 2: 0.11 (NR)
			Average: 90.5		Average: 85.5	Average: 6.5	Average: 0.12
Ferré, 2012 ¹⁰⁹	Somté	AHI ≥15	Scorer 1: 86.0 (NR)	Scorer 1: 97.0 (NR)	Scorer 1: 0.900 (0.820, 0.980)	Scorer 1: 24.70 (NR)	Scorer 1: 0.14 (NR)
	Lab	NR		Scorer 2: 92.0 (NR)			
			Scorer 2: 83.0		Scorer 2: 0.880	Scorer 2: 10.50	Scorer 2: 0.18
			(NR)	Average: 94.5	(0.780, 0.970)	(NR)	(NR)
			Average: 84.5		Average: 0.89	Average: 17.6	Average: 0.16
Ferré, 2012 ¹⁰⁹	Somté	AHI ≥30	Scorer 1: 61.0 (NR)	Scorer 1: 96.0 (NR)	Scorer 1: 0.860 (0.730, 0.990)	Scorer 1: 15.30 (NR)	Scorer 1: 0.41 (NR)
	Lab	NR		Scorer 2: 100.0 (NR)			
			Scorer 2: 67.0 (NR)	Average: 98.0	Scorer 2: 0.830 (0.700, 0.97)	Scorer 2: 2.00 (NR)	Scorer 2: 0.33 (NR)
			Average: 64.0			Average: 8.65	Average: 0.37
111 111 177	1	ev: AUROC-area under re		<u> </u>			

Abbreviations: AHI=apnea-hypopnea index; AUROC=area under receiver operating characteristic curve; LR=likelihood ratio; Neg=negative; NR=not reported; PM=portable monitor; Pos=positive; PSG=polysomnography.

Appendix E Table 7. Results of Newly Identified, Included Studies for KQ 3: Accuracy of Diagnostic Tests (Type III Portable Monitors)

	PM Name	PSG AHI Cutpoint	Sensitivity (95%	Specificity (95%			
First Author, Year	PM Setting	PM AHI Cutpoint	CI)	CI)	AUROC (95% CI)	Pos LR (95% CI)	Neg LR (95% CI)
Guerrero, 2014 *113	3N-PM	AHI ≥5	96.2 (NR)	66.7 (NR)	0.955 (0.862, 0.993)	2.88 (0.60 14.30)	0.06 (0.01, 0.30)
	Home	AHI ≥5 [†]					
Guerrero, 2014 *113	3N-PM	AHI ≥10	NR	NR	0.942 (0.844, 0.987)	NR	NR
	Home	NR					
Guerrero, 2014 *113	3N-PM	AHI ≥15	94.9 (NR)	56.2 (NR)	0.852 (0.730, 0.933)	2.17 (1.20, 3.80)	0.09 (0.02, 0.40)
	Home	AHI<7 [‡]					
Guerrero, 2014*113	3N-PM	AHI ≥15	48.7 (NR)	93.7 (NR)	0.852 (0.730, 0.933)	7.79 (1.10, 53.40)	0.55 (0.40, 0.80)
	Home	AHI ≥22 [‡]					
Guerrero, 2014 113	3N-PM	AHI ≥30	NR	NR	0.900 (0.789, 0.965)	NR	NR
	Home	NR					
Pereira, 2013 ¹¹⁴	MediByte	AHI ≥5	87.0 (NR)	67.0 (NR)	NR	2.60 (NR)	0.20 (NR)
	Home	NR					
Pereira, 2013 ¹¹⁴	MediByte	AHI ≥10	79.0 (NR)	86.0 (NR)	0.824 (NR)	5.50 (NR)	0.20 (NR)
	Home	NR					
Pereira, 2013 ¹¹⁴	MediByte	AHI ≥15	77.0 (NR)	95.0 (NR)	NR	15.50 (NR)	0.20 (NR)
	Home	NR					
Pereira, 2013 ¹¹⁴	MediByte	AHI ≥30	50.0 (NR)	93.0 (NR)	NR	7.20 (NR)	0.50 (NR)
_	Home	NR					

Abbreviations: AHI=apnea-hypopnea index; AUROC=area under receiver operating characteristic curve; LR=likelihood ratio; Neg=negative; NR=not reported; PM=portable monitor; Pos=positive; PSG=polysomnography.

Authors obtained the mean values for 3 nights of PM use and compared them to PSG.

The For a PSG solution of PM and a PM AHI solution of PM and a PM AHI solution of PSG.

The For a PSG solution of PSG and a PM AHI solution of PSG.

^{*} For a PSG≥15, authors report that a PM AHI<7 would exclude and a PM AHI ≥22 would confirm OSA diagnosis.

Appendix E Table 8. Results of Newly Identified, Included Studies for KQ 3: Accuracy of Diagnostic Tests (Type IV Portable Monitors With 3+ Channels)

	PM Name	PSG AHI Cutpoint	Sensitivity (95%	Specificity (95%			
First Author, Year	PM Setting	PM AHI Cutpoint		CI)	AUROC (95% CI)	Pos LR (95% CI)	Neg LR (95% CI)
Barak-Shinar, 2013 ¹¹⁵	Morpheus Ox	AHI ≥5	97.0 (91.6, 99.4)	97.4 (86.5, 99.9)	NR	NR	NR
	Lab	AHI ≥5					
Barak-Shinar, 2013 ¹¹⁵	Morpheus Ox	AHI ≥15	94.4 (84.6, 98.8)	96.5 (90.1, 99.3)	NR	NR	NR
	Lab	AHI ≥15					
Choi, 2010 ¹²⁵	Watch-PAT 100	AHI ≥5	100.0 (NR)	83.0 (NR)	NR	NR	NR
	Home	NR					
Choi, 2010 ¹²⁵	Watch-PAT 100	AHI ≥15	81.0 (NR)	77.0 (NR)	NR	NR	NR
	Home	NR					
Choi, 2010 ¹²⁵	Watch-PAT 100	AHI ≥30	92.0 (NR)	92.0 (NR)	NR	NR	NR
	Home	NR					
Garg, 2014 ¹²⁷	Watch-PAT 200	AHI ≥5	Lab: NR	Lab: NR	Lab: 0.940 (NR)	Lab: 1.70 (NR)	Lab: NR
	Lab, Home	NR	Home: 96.0 (85.0, 99.0)	Home: 43.0 (22.0, 66.0)	Home: 0.909 (NR)	Home: 1.67 (1.15, 2.44)	Home: 0.01 (0.02, 0.42)
Garg, 2014 ¹²⁷	Watch-PAT 200	AHI ≥10	Lab: NR	Lab: NR	Lab: 0.960 (NR)	Lab: NR	Lab: NR
	Lab, Home	NR	Home: 90.0 (77.0, 97.0)	Home: 69.0 (48.0, 86.0)	Home: 0.946 (NR)	Home: 2.94 (1.64, 5.28)	Home: 0.14 (0.05, 0.36)
Garg, 2014 ¹²⁷	Watch-PAT 200	AHI ≥15	Lab: NR	Lab: NR	Lab: 0.960 (NR)	Lab: NR	Lab: NR
	Lab, Home	NR	Home: 92.0 (79.0, 98.0)	Home: 77.0 (58.0, 90.0)	Home: 0.922 (NR)	7.60)	Home: 0.10 (0.03, 0.31)
Gurubhagavatula, 2013 ¹⁰⁴	AutoSet PDS	AHI ≥5 [*]	71.8 (NR)	47.8 (NR)	0.591 (NR)	NR	0.57 (NR)
	Home	AHI cutpoint=8.9					
Gurubhagavatula, 2013 ¹⁰⁴	AutoSet PDS	AHI ≥30 [†]	74.7 (NR)	70.6 (NR)	0.727 (NR)	NR	0.36 (NR)
	Home	AHI cutpoint=16					
Masa, 2011 ¹¹⁹	BreastSC20	AHI ≥5	PM AHI ≥5: 96.0 (NR)	PM AHI ≥5: 57.0 (NR)	0.917 (0.864, 0.969)	PM AHI ≥5: 2.23 (1.78, 2.79)	PM AHI ≥5: 0.07 (0.05, 0.10)
	Home	Multiple [‡]					
			PM AHI ≥10: 87.0 (NR)	PM AHI ≥10: 86.0 (NR)		PM AHI ≥10: 6.25 (2.73, 14.00)	PM AHI ≥10: 0.15 (0.11, 0.21)

Appendix E Table 8. Results of Newly Identified, Included Studies for KQ 3: Accuracy of Diagnostic Tests (Type IV Portable Monitors With 3+ Channels)

		PSG AHI Cutpoint		Specificity (95%			
First Author, Year	PM Setting	PM AHI Cutpoint	CI)	CI)	AUROC (95% CI)	Pos LR (95% CI)	Neg LR (95% CI)
Masa, 2011 ¹¹⁹	BreastSC20	AHI ≥10	PM AHI ≥5: 97.0	PM AHI ≥5: 39.0	0.883 (0.845,	PM AHI ≥5: 1.59	PM AHI ≥5: 0.08
			(NR)	(NR)	0.933)	(1.30, 1.94)	(0.04, 0.16)
	Home	Multiple [‡]	,	,	,	,	,
			PM AHI ≥20: 71.0	PM AHI ≥20: 90.0		PM AHI ≥20: 7.10	PM AHI ≥20: 0.32
			(NR)	(NR)		(3.37, 15.00)	(0.26, 0.39)
Masa, 2011 ¹¹⁹	BreastSC20	AHI ≥15	PM AHI ≥10: 94.0	PM AHI ≥10: 60.0	0.891 (0.859,	PM AHI ≥10:2.35	PM AHI ≥10: 0.10
			(NR)	(NR)	0.933)	(1.81, 3.05)	(0.06, 0.17)
	Home	Multiple [‡]	,	,	,	,	
			PM AHI ≥25: 67.0	PM AHI ≥25: 92.0		PM AHI ≥25: 8.36	PM AHI ≥25: 0.36
			(NR)	(NR)		(4.09, 17.00)	(0.30, 0.44)

^{*} Authors defined any obstructive sleep apnea syndrome as AHI ≥5 and Epworth Sleepiness Scale >10.

Abbreviations: AHI=apnea-hypopnea index; AUROC=area under receiver operating characteristic curve; LR=likelihood ratio; Neg=negative; NR=not reported; PM=portable monitor; Pos=positive; PSG=polysomnography.

[†] Authors defined severe obstructive sleep apnea syndrome as AHI ≥30 and Epworth Sleepiness Scale >10. [‡] Authors reported exclusionary and confirmatory PM AHI cutpoints for each level of the PSG AHI.

Appendix E Table 9. Results of Newly Identified, Included Studies for KQ 3: Accuracy of Diagnostic Tests (Type IV Portable Monitors With 2 Channels)

First Author Von	PM Name	PSG AHI Cutpoint			AUD 00 (05% OI)	D I D (05% OI)	No I. D. (05%, OI)
First Author, Year Alvarez, 2009 ¹²⁶	PM Setting	PM AHI Cutpoint	Cl) Classical MSC*:	Cl) Classical MSC*:	AUROC (95% CI)		Neg LR (95% CI)
Alvarez, 2009	Criticare 504	AHI ≥10			Classical MSC:	NR	NR
	Lab	NR	69.2 (NR)	90.9 (NR)	0.781 (NR)		
	Lab	INK	Cross ApEn* 92.7	Cross-ApEn*: 84.3	Cross AnEn*		
			(NR)	(NR)	0.840 (NR)		
Nigro, 2010 ¹²⁴	ApneaLink	RDI ≥5	PM RI>9: 80.4	PM RI>9: 100.0	PM RI>9: 0.900	PM RI>9:NR	PM RI>9: 0.20
Nigro, 2010	AprieaLink	RDI ≥5	(66.9, 91.4)	(78.0, 100.0)	(0.800, 0.960)	PIVI RI>9.NR	(NR)
	Lab	Multiple	(00.9, 91.4)	(76.0, 100.0)	(0.800, 0.900)		(INIX)
	Lab	Multiple	PM AHI ≥5: 88.2	PM AHI ≥5: 86.7	PM AHI ≥5: 0.875	PM AHI ≥5: 6.60	PM AHI ≥5: 0.14
			(76.1, 95.5)	(59.5, 98.0)	(0.770, 0.940)	(5.30, 8.30)	(0.03, 0.60)
Nigro, 2010 ¹²⁴	ApneaLink	RDI ≥10	PM RI>13: 91.7	PM RI>13: 93.3	PM RI>13: 0.920	PM RI>13: 13.70	PM RI>13: 0.09
141g10, 2010	ApricaLink	INDI = 10	(77.5, 98.2)	(77.9, 99.0)	(0.830, 0.970)	(12.00, 15.80)	(0.02, 0.50)
	Lab	Multiple	(11.0, 50.2)	(77.5, 55.6)	(0.000, 0.070)	(12.00, 10.00)	(0.02, 0.00)
	Lab	Manapio	PM AHI ≥10: 88.9	PM AHI ≥10: 90.0	PM AHI ≥10: 0.890	PM AHI ≥10· 8 90	PM AHI ≥10: 0.12
			(73.9, 96.8)	(73.4, 97.8)	(0.790, 0.960)	(7.50, 10.50)	(0.03, 0.50)
Nigro, 2010 ¹²⁴	ApneaLink	RDI ≥15	PM RI>16: 93.5	PM RI>16: 91.4		PM RI>16: 10.9	PM RI>16: 0.07
1 tigi 0, 2010	, tp://od2iiiit	110	(78.5, 99.0)	(76.9, 98.1)		(9.50, 12.50)	(0.01, 0.40)
	Lab	Multiple	(10.0, 00.0)	(10.0, 00.1)	(0.010, 0.000)	(0.00, 12.00)	(0.01, 0.10)
			PM AHI ≥15: 93.5	PM AHI ≥15: 91.4	PM AHI ≥15: 0.925	PM AHI ≥15: 10.9	PM AHI ≥15: 0.07
			(78.5, 99.0)	(76.9, 98.1)	(0.830, 0.975)	(9.50, 12.50)	(0.01, 0.40)
			(1.0.0, 00.0)	(1.0.0, 001.)	(0.000, 0.0.0)	(0.00, 12.00)	(0.0., 00)
Nigro, 2010 ¹²⁴	ApneaLink	RDI ≥30	100.0 (80.5,	89.8 (77.8, 96.6)	NR	9.80 (8.90, 10.80)	0.00 (NR)
			100.00)				,
	Lab	AHI ≥30					
Nigro, 2013 ¹¹⁷	ApneaLink Ox	RDI ≥5	O₂ saturation≥3%:	O₂ saturation≥3%:	O ₂ saturation≥3%:	O₂ saturation≥3%:	O₂ saturation≥3%:
3 1, 1	(Automatic				0.870 (NR)	5.40 (NR)	0.11 (NR)
	Scoring) [†]	AHI ≥5	, , ,	, , ,		, ,	, ,
	J		O₂ saturation≥4%:	O₂ saturation≥4%:	O₂ saturation≥4%:	O₂ saturation≥4%:	O₂ saturation≥4%:
	Lab		76.7 (61.4, 88.2)	91.7 (61.5, 99.8)	0.840 (NR)	9.20 (NR)	0.25 (NR)
Nigro, 2013 ¹¹⁷	ApneaLink Ox	RDI ≥5	93.0 (80.9, 98.5)	91.7 (61.5, 99.8)	0.923 (NR)	11.60 (NR)	0.08 (NR)
	(Manual Scoring)						, ,
	(AHI ≥5					
	Lab						
Poupard, 2012 ¹²⁰	Nonin WristOx	AHI >5	65.0 (NR)	100.0 (NR)	NR	NR	NR
•			, ,				
	Lab	NR					
Poupard, 2012 ¹²⁰	Nonin WristOx	AHI >15	58.0 (NR)	100.0 (NR)	NR	NR	NR
	Lab	NR					
Poupard, 2012 ¹²⁰	Nonin WristOx	AHI >30	59.0 (NR)	100.0 (NR)	NR	NR	NR
			, ,				
	Lab	NR					

Appendix E Table 9. Results of Newly Identified, Included Studies for KQ 3: Accuracy of Diagnostic Tests (Type IV Portable Monitors With 2 Channels)

	PM Name	PSG AHI Cutpoint				D 10 (050) ON	N 15 (25)(20)
First Author, Year	PM Setting	PM AHI Cutpoint	CI)	CI)	AUROC (95% CI)	Pos LR (95% CI)	Neg LR (95% CI)
Yadollahi, 2010 ¹²³	ASAD [‡]	AHI ≥5	74.3 (NR)	82.4 (NR)	0.870 (NR)	NR	NR
	Lab	AHI ≥8.6					
Yadollahi, 2010 ¹²³	ASAD [‡]	AHI ≥10	82.8 (NR)	91.1 (NR)	0.950 (NR)	NR	NR
	Lab	AHI ≥13					
Yadollahi, 2010 ¹²³	ASAD [‡]	AHI ≥15	84.6 (NR)	96.0 (NR)	0.960 (NR)	NR	NR
	Lab	AHI ≥18.5					
Yadollahi, 2010 ¹²³	ASAD [‡]	AHI ≥20	91.6 (NR)	97.8 (NR)	0.990 (NR)	NR	NR
	Lab	AHI ≥23					

^{*} Oximetry signals were processed by means of a classical frequency analysis based on the magnitude squared coherence (Classical MSC) and a nonlinear analysis based on the means of cross-approximate entropy, a recently developed measure of synchrony (Cross-ApEn).

Abbreviations: AHI=apnea-hypopnea index; ASAD=acoustical sleep apnea diagnosis; AUROC=area under receiver operating characteristic curve; Cross-ApEn=cross-approximate entropy; LR=likelihood ratio; MSC=magnitude squared coherence; Neg=negative; NR=not reported; PM=portable monitor; Pos=positive; PSG=polysomnography; RDI=respiratory disturbance index; RI=risk indicator.

[‡] A hypopnea was defined in two different ways: decrease in airflow≥30% of baseline for at least 10 seconds plus oxygen desaturation (1) ≥3% or (2) ≥4%.

[‡] The acoustical sleep apnea diagnosis (ASAD) system included an omnidirectional microphone (Sony ECM-77B) and Masimo pulse oximeter.

Appendix E Table 10. Results of Newly Identified, Included Studies for KQ 3: Accuracy of Diagnostic Tests (Type IV Portable Monitors With 1 Channel)

	PM Name	PSG AHI Cutpoint	Sensitivity (95%	Specificity (95%			
First Author, Year	PM Setting	PM AHI Cutpoint		CI)	AUROC (95% CI)	Pos LR (95% CI)	Neg LR (95% CI)
Alvarez, 2012 ¹¹⁸	Nonin PureSAT	AHI ≥10	89.1 (NR)	87.5 (NR)	NR	NR	NR
	l						
5	Lab	NR	(22.2.4)	(NID)			
Bohning, 2011 ¹²¹	WristOX 3100	AHI ≥5	100.0 (NR)	35.0 (NR)	NR	NR	NR
	Lab	NR					
Morillo, 2013 ¹¹⁶	70750A19 (Jaeger) pulse oximeter	AHI ≥10	ODI4 ₄₀ : 86.4 (NR)	ODI4 ₄₀ : 89.8 (NR)	ODI4 ₄₀ : 0.903 (NR)	ODI4 ₄₀ : 8.5	ODI4 ₄₀ : 0.15
		NR	ODI4 ₃₀ : 84.9 (NR)	ODI4 ₃₀ : 93.4 (NR)	ODI4 ₃₀ : 0.890 (NR)	ODI4 ₃₀ : 13.9	ODI4 ₃₀ : 0.16
	Sleep lab		ODI3 ₄₀ : 81.8 (NR)	ODI3 ₄₀ : 77.6 (NR)	ODI3 ₄₀ : 0.860 (NR)	ODI3 ₄₀ : 3.6	ODI3 ₄₀ : 0.23
			ODI3 ₃₀ : 84.9 (NR)	ODI3 ₃₀ : 75.5 (NR)	ODI3 ₃₀ : 0.835 (NR)	ODI3 ₃₀ : 3.5	ODI3 ₃₀ : 0.2
Rofail, 2010 ¹²²	Flow Wizard	AHI ≥5	Single Night: 75.0	Single Night: 79.0	Single Night: 0.800	Single Night: 3.60	Single Night: 0.30
	Home	NR	(63.0, 85.0)	(61.0, 97.0)	(0.700, 0.910)	(NR)	(NR)
			Averaged Over	Averaged Over	Averaged Over	Averaged Over	Averaged Over
			Multiple Nights:	Multiple Nights:	Multiple Nights:	Multiple Nights:	Multiple Nights:
			80.0 (67.0, 93.0)	87.0 (77.0, 97.0)	0.850 (0.760, 0.910)	6.30 (NR)	0.23 (NR)
Rofail, 2010 ¹²²	Flow Wizard	AHI ≥30	Single Night: 90.0 (84.0, 98.0)	Single Night: 83.0 (76.0, 87.0)	Single Night: 0.940 (0.870, 100.0)	Single Night: 5.3 (NR)	Single Night: 0.12 (NR)
	Home	NR	, ,	, ,			,
			Averaged Over	Averaged Over	Averaged Over	Averaged Over	Averaged Over
			Multiple Nights:	Multiple Nights:		Multiple Nights:	Multiple Nights:
122			90.0 (83.0, 98.0)	85.0 (78.0, 89.0)		6.00 (NR)	0.12 (NR)
Rofail, 2010 ¹²²	Radical Set	AHI ≥5	Single Night: 63.0 (66.0, 86.0)	Single Night: 83.0 (74.0, 80.0)	Single Night: 0.800 (0.690, 0.910)	Single Night: 3.70 (NR)	Single Night: 0.45 (NR)
	Home	NR	(00.0, 00.0)	(14.0, 00.0)	(0.000, 0.010)	((VIV)	(IVIV)
	1101110		Averaged Over	Averaged Over	Averaged Over	Averaged Over	Averaged Over
			Multiple Nights:	Multiple Nights:	Multiple Nights:	Multiple Nights:	Multiple Nights:
			77.0 (63.0, 91.0)	89.0 (80.0, 98.0)	0.810 (0.720, 0.900)	7.20 (NR)	0.26 (NR)
Rofail, 2010 ¹²²	Radical Set	AHI ≥30	Single Night: 90.0	Single Night: 88.0	Single Night: 0.910	Single Night: 7.50	Single Night: 0.11
			(86.0, 96.0)	(75.0, 94.0)	(0.820, 0.990)	(NR)	(NR)
	Home	NR					
			Averaged Over	Averaged Over	Averaged Over	Averaged Over	Averaged Over
			Multiple Nights:	Multiple Nights:	Multiple Nights:	Multiple Nights:	Multiple Nights:
	annaa hymannaa inday	1777.0.0	90.0 (87.0, 97.0)	85.0 (73.0, 92.0)	0.910 (0.830, 0.980)		0.11 (NR)

Abbreviations: AHI=apnea-hypopnea index; AUROC=area under receiver operating characteristic curve; LR=likelihood ratio; Neg=negative; NR=not reported; PM=portable monitor; Pos=positive; PSG=polysomnography.

First Author, Year						Mean								
Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	(Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Arias, 2005 ¹²⁸ Cross-over	Total (37) nCPAP first (14) Sham nCPAP first (13)	NR	No	Spain	12 active; 12 sham		0	NR	31	44	NR	Mild to severe	0; 0	Fair
Arias, 2008 ¹²⁹ Cross-over	Total (30) CPAP 1 st (13) Sham 1 st (12)	Unclear	No	Spain	12 active 12 sham	52	0	NR	31	44	>11 required	Mild to severe	0; 0	Fair
Barbe, 2001 ¹³⁰ Parallel	nCPAP (29) Sham CPAP (26)	Sleep clinic	No	Spain	6	52-54	9	NR	29	54-57	7	Severe	0	Fair
Bardwell, 2007 ¹³¹ Parallel	CPAP (12) Sham CPAP (12)	Ads, word of mouth	No	United States	2	44-51	13	NR	30-31	RDI 59	NR	Mod to severe	NR NR	Fair
Campos- Rodriguez, 2006 ¹³² Parallel	CPAP (36) Sham CPAP (36)	Sleep center	No	Spain	4	55-58	35-44	NR	34-36	58-60	14-15	Mild to severe	100%;NR [†]	Fair
Chasens, 2014 ²⁸⁷ Parallel	CPAP (12) Sham CPAP (11)	Community	No	United States	4	56 (34-80)	39	52	36	39	11	Mod to severe	NR; NR	Fair
Chong, 2006 ¹³⁴ Parallel	CPAP (19) Sham CPAP (20)	Ads, referrals	No	United States	3	78	26	5	24-25	RDI 26- 31	8-9	Mild to severe	NR 0	Fair
Coughlin, 2007 ¹³⁵ Cross-over	Total (35) CPAP first (18) Sham first (17)	Sleep center	No	United Kingdom	6 active; 6 sham	49	0	NR	36	RDI 39.7	13.8	Mod to severe	79 0	Good
Cross, 2008 ¹³⁶ Cross-over	Total (29) CPAP first (15) Sham CPAP first (14)	NR	No	United Kingdom	6 active; 6 pbo	48	4	NR	37	63	NR	Mod to severe	NR; 0	Fair
Durán- Cantolla, 2010 ¹³⁷ Parallel	CPAP (169) Sham (171)	Referrals to 11 general hospitals	No	Spain	12	52-53	19	NR	32	43 to 45	10	Mod to severe	100 per GP, but 64 vs. 56 from ABPM; NR	
Egea, 2008 ¹³⁸ Parallel	Overall [‡] CPAP (35) Sham CPAP (38)	Referral from cardiology to sleep center	No	Spain	12	63-64	4-9	NR	31-32	35-43	7-8	Mild to severe		Fair

First Author, Year Design	G1 (N)	Source of	Screen		Duration.	Mean (Range)		% Non-	Mean	Mean	Mean	OSA	% HTN;	
Trial Name	G2 (N)	Patients	Detected?	Country	Wks	Age	% F	White	BMI	AHI	ESS	Severity	% HF	Quality
Haensel, 2007 ¹³⁹ Parallel	CPAP (25) Sham CPAP (25)	ents, word of mouth,	No	United States	2	49	20	40	33	58-64	NR	Mod to severe	14 0	Fair
Hoyos, 2012 ¹⁴⁰ Parallel	CPAP (34) Sham CPAP (31)	referrals Sleep clinics	No	Australia	12	46-51	0	NR	31-32	39-42	10	Mod to severe	34; NR	Fair
Hui, 2006 ¹⁴¹ Parallel	nCPAP (28) Sham CPAP (28)	Respiratory clinic		Hong Kong	12	51	23	NR	27	31	11	severe	50 NR	Fair
Jenkinson, 1999 ¹⁴² Hack, 2000 ¹⁴³ Parallel	nCPAP (54) Sham nCPAP (53)	Referred to sleep clinic	No	United Kingdom	4	48-50 (33- 71)	0	NR	35	ODI (>4%): 36-38	16-17	Mild to severe	19 NR	Fair
Jones, 2013 ¹⁴⁴ Cross-over	Total (53) [§] CPAP first (25) Sham CPAP first (27)	Sleep medicine department	No	United Kingdom	12 CPAP; 12 sham	46	35	NR	Median 30	Median 31	Median 13	Mod to severe	NR NR	Fair
Kushida, 2012 ¹⁴⁵ Parallel APPLES	CPAP (558) Sham (547)	Sleep Clinics (5 hospitals)	No	United States	24	51-52	34-35	24	32	40-41	10	Mild to severe	NR 0	Fair
Lam, 2010 ¹⁴⁶ Parallel	nCPAP (31) Sham nCPAP (30)	Sleep center	No	Hong Kong	1	46	0	NR	28	40	10-11	Mod to severe	NR NR	Fair
Lee, 2011 ¹⁴⁷ Parallel	Total (38) CPAP (17) Sham CPAP (21)	Ads and word of mouth	No	United States	3	48-49	NR	11	28-29	30-33	7-10	Mild to severe	5; 0	Fair
Loredo, 1999 ¹⁴⁸ Parallel	Total (48) ^{II} CPAP (23) Sham CPAP (18)	Ads, word of mouth, community MD referrals	No	United States	1	47-50 (30- 65)	20	NR	30-33	RDI 44- 56	NR	Mod to Severe	0; 0	Fair ¹⁴⁸ ; Poor for KQ 5 ^{292,293}
Loredo, 2006 ¹⁴⁹ Parallel	CPAP (22) Sham (19) [¶]	Ads and sleep labs	No	United States	2	48	17	NR	32	58-66	12	Mod to severe	NR; 0	Fair
Malow, 2008 ¹⁵⁰ Parallel	Total (35) CPAP (22) Sham CPAP (13)	Epilepsy clinic	No	United States	10 overall; 2 nights for AHI		43		32-35		NR	severe	22%; NR	Fair
Marshall, 2005 ¹⁵¹ Cross-over	Total (31) CPAP first (15) Sham first (16)	Sleep clinics	No	New Zealand	3 active; 3 sham	51 (25-67)	24	NR	32	21.6	13		NR NR	Good

First Author, Year						Mean								
Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	(Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Mills, 2006 ¹⁵³	nCPAP (17)	Ads and	No	United	2	48-49	15	NR	32		NR	Mild to	36;	Fair
Parallel	Sham (16)**	referrals		States								severe	0	
Montserrat, 2001 ¹⁵⁴ Parallel	CPAP (24) Sham CPAP (24)	Sleep clinic	No	Spain	6	54 (28-77)	NR	NR	30-34	54	16-17	Mod to severe	NR 0	Fair
Neikrug, 2014 ¹⁵⁵ Parallel	CPAP (19) Sham nCPAP (19)	Neurolo- gist ^{††} referral and volunteer	No	United States	3	67-68	32	NR	27-28	22	NR	Mild to severe	NR; NR	Fair
Nguyen, 2010 ¹⁵⁷ Parallel	nCPAP (10) Sham nCPAP (10)	Sleep clinic	No	United States	12	53 (42-65)	10	40	30	32-39	NR	Mod to Severe	100 0	Fair
Norman, 2006 ¹⁵⁶ Parallel	CPAP (18) Sham CPAP (15) ^{##}	Ads and word-of- mouth referral	No	United States	2	49-50	15	36	30-32	54-66	12	Mod to severe	NR; 0	Fair for AHI; Poor for BP
Pepperell, 2002 ¹⁵⁹ Kohler, 2008 ¹⁶⁰ Parallel	CPAP (59) Sham CPAP (59)	Referred by ENTs, GPs, or consultants	No	United Kingdom	4	50-51	0	NR	35	NR	16	Mild to severe	19; NR	Fair
Phillips, 2011 ¹⁶¹ Cross-over	Total (38) CPAP first (18) Sham CPAP first (19)	Referrals from tertiary clinics	No	Australia	8 active; 8 sham		11	NR	32	38	10	Mod to severe	32; NR	Fair; Poor for harms
Robinson, 2006 ¹⁶² Cross-over	Total (35) CPAP first (18) Sham first (17)	Sleep center	No	United Kingdom	4 active; 4 sham	54	11	NR	33	median 28	5.3	Mild to severe	100; NR	Fair
Siccoli, 2008 ¹⁶⁴ Parallel	CPAP (51) Sham CPAP (51)	Sleep center	No	United Kingdom	4	48	0	NR	35-36	NR	15-16	Mod to severe	NR; NR	Fair
Smith, 2007 ¹⁶³ Cross-over	Total (24) CPAP first (11) Sham first (13)	Cardiology clinics	No	United Kingdom	6 active; 6 sham		12	NR	31	36	10	Mod to severe	42 100	Fair
Weaver, 2012 ¹⁶⁶ Parallel	CPAP (141) ^{§§} Sham CPAP (140)	Respiratory Clinics	No	US and Canada	8	50-52	37-45	16-17	33-34	13	15	Mild to mod	40 2	Fair

First Author, Year Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?		Duration, Wks	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Weinstock, 2012 ^{167,289} Cross-over	CPAP first (25) Sham CPAP first (25)	clinics, prior studies and ads		_	8 active; 8 sham	53-54	58	40				severe	NR; NR	Fair
. 400		Sleep center	No	United Kingdom	12	55-58	0	NR	37	NR	14-15		NR NR	Fair

^{*} Not clear how many people were randomly assigned to each group first; 5 dropouts—unclear how many from each group.

Abbreviations: ABPM=ambulatory blood pressure monitor; AHI=apnea-hypopnea index; APPLES=Apnea Positive Pressure Long-term Efficacy Study; BMI=body mass index; CPAP=continuous positive airway pressure; CSA=central sleep apnea; dur=duration; ENT=otolaryngologist; ESS=Epworth Sleepiness Scale; F=female; G=group; GP=general practitioner; HF=heart failure; HTN=hypertension; mod=moderate; N=sample size; nCPAP=nasal continuous positive airway pressure; NR=not reported; NYHA=New York Heart Association; ODI=oxygen desaturation index; OSA=obstructive sleep apnea; pbo=placebo; pts=patients; RDI=respiratory disturbance index; RF=radiofrequency; SD=standard deviation; tx=treatment; wks=weeks.

[†] those with NYHA class III-IV HF were excluded.

[‡] The overall study included some subjects with CSA. The numbers randomized who had OSA only was NR; the study reported number of completers who had OSA only (CPAP, 20 vs. Sham CPAP, 25)

^{§1} person dropped out before beginning a treatment, but unclear if it was before or after randomization and unclear which group they were in

⁴⁸ randomized but unclear how many to each group. 23 and 18 completed.

The study also had a sham+oxygen (N=22) arm. These Ns and baseline characteristics are for completers

^{**} Study also had a sham+oxygen arm (17)

^{††} Patients with Parkinson's

^{**} Study had a third arm. It was a CPAP device that only delivered oxygen (n=13).

^{§§} These are the numbers randomized including the post-randomization drop-outs. 42 participants withdrew before exposure to CPAP or sham and were excluded from all analyses. Ns randomized and exposure were: active CPAP = 121 and sham CPAP= 118. All characteristics are for those randomized and exposed.

First Author, Year						Mean								
Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	(Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Ballester, 1999 ¹⁷⁰ Parallel	CPAP (68) Usual Care (37)	NR	No	Spain	12	53	12	NR	32	56	12	Mod to severe	NR NR	Fair
Barbe, 2010 ¹⁷¹ Parallel	CPAP (178) conservative treatment for HTN (181)	Sleep clinics	No	Spain	52	55-56	15-18	NR	32-33	43-49	6	Mod to Severe	100 NR	Fair
Barbe, 2012 ¹⁷² Parallel	CPAP (357) Control (366)	Teaching hospitals	No	Spain	Median: 208 [*]	52	12-16	NR	31	35-42	7	Mod to severe	50-53; NR	Fair
Barnes, 2004 ¹⁷³ Cross-over	CPAP (97) [†] Placebo (98)	Referrals	No	Australia	12 active; 12 placebo	47	20	NR	31	21.3	10.7	Mild to mod	15; NR	Good
Craig, 2012 ¹⁷⁴ Parallel	CPAP (195) Standard Care [‡] (196)	Sleep clinics	No	United Kingdom and Canada	24	58	22-21	NR	32-33	ODI >4% dips/hr: 9-10	8 (4)	NR [§]	76-77; NR	Fair
Engleman, 1998 ¹⁷⁵ Cross-over	Total (23) CPAP first (10) Placebo(13)	Sleep center	No	United Kingdom	4 active; 4 pbo	47	9	NR	30	43	12	Mod to severe	NR	Fair
Engleman, 1999 ¹⁷⁶ Cross-over	Total (37) CPAP first (NR) Oral Placebo first (NR)	Sleep clinic		Kingdom	4 active; 4 pbo		38	NR	30	10	13	,	NR	Fair
Faccenda, 2001 ¹⁷⁷ Cross-over	Total (71) CPAP first (35) Pbo capsule first (36)	center				(29-72)		NR	Median 30	Median 35	Median 15	Mod to severe	NR	Fair
Gottlieb, 2014 ¹⁷⁸ Parallel HeartBEAT	CPAP+usual care ^{II} (106) Usual care alone (106) ^{II}	Cardiology practices	,	United States	12		26	20	34	25	8-10	Mod to severe	NR	Good
Ip, 2004 ¹⁷⁹ Parallel	CPAP (14) No treatment (14)	Sleep lab		Hong Kong	4	43 (21-62)	0	NR	29	45-48	11	Mod to Severe	0; 0	Fair
Lam, 2007 ¹⁸⁰ Parallel	CPAP (34) ^T Usual care (33) ^{††}	Sleep center		Hong Kong	10	45-47	22	NR	27	21.4	12	Mild to severe	19 NR	Fair
Martinez- Garcia, 2013 ¹⁸¹ Parallel HIPARCO	CPAP (98) No CPAP (96)		No	Spain	12	56	31	NR	34	40	9	Mod to severe		Good

First Author, Year Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
McArdle, 2001 ¹⁵² Cross-over	Total (23) CPAP first (NR) Pbo capsule first (NR)	Sleep center	No		4 active; 4 pbo		13	NR	31	Median 40	Median 14	Mod to severe	NR	Fair
McMillan, 2014 ¹⁸² Parallel	CPAP + Best Supportive Care (BSC) (140) BSC only (138)	Sleep centers (14)	No	UK	52	71 (66-76)	18	4	34	28-29	12	Mild to severe	73; 6	Good
Pamidi, 2015 ¹⁵⁸ Parallel	CPAP (26) Oral placebo (13)	Ads	No	United States	2	54-55	23-38	50-62	33-37	34-39	10-11	Mild to severe	0-19; NR	Fair
Redline, 1998 ¹⁸³ Parallel	nCPAP (59) Conservative therapy ^{§§} (52)	Ads and referrals	No	United States	8-12	48	48	38	32-33	RDI 13	10-11	Mild to mod	NR; 0	Fair
	CPAP (19) Usual care (14)	HF clinic	Yes, ESS	Canada	4	59-61	9	NR	30-32	36-51	NR	Mod to severe	42-58; 100	Fair
Tomfohr, 2011 ¹⁸⁶ Parallel	CPAP (34) Placebo CPAP (37)	Ads and referrals	No	United States	3	48	14	14	29-31	32-39	9-11	Mild to severe	NR; NR	Fair
Toukh, 2012 ¹⁶⁵ Cross-over	Total (13) CPAP first (NR) No CPAP first (NR)	Sleep center	No	Canada	2 CPAP; 2 no treatment	46 (33-61)	38	NR	36	NR	NR	Severe	NR; NR	Fair
Usui, 2005 ¹⁸⁷ Parallel	CPAP (8) Control (9)	NR	NR	Canada	4	52-55	12	NR	30-31	33-NR	NR	Mod to severe	47% 100%	Fair

^{*} Followup was "time until a CVD event, loss to followup or the end of the study" and ranged from 0 to 5.38 years, with a median of 4.0 years (*IQR= 2.19-4.38).

[†] Study also had an MAD arm. Because 6 different orders were possible, they did not list out individuals' actual order. Numbers represent the number of people that started treatment in that arm. 104 participants total; 80 completed all three arms

[†]One followup visit with a physician between randomization and the final visit at six months.

[§] Had to have >7.5 oxygen desaturations per hour of >4%...but insufficient daytime symptoms associated with OSA to warrant CPAP therapy. This was made based on discussion with physician based on benefits of CPAP versus potential lifelong nightly usage of CPAP.

Usual care was "healthy lifestyle and sleep education"

Study also had an oxygen+usual care arm (N=106)

[#] Eligible patients were required to have Berlin questionnaire score of 2 or 3 and established CAD or multiple CVD risk factors

^{**} Study also has a MAD arm

^{††} Authors call it "mild to moderate," but they allowed AHI up to 40, and the range of included patients included some with severe OSA

[#] BP remained above goal despite at least 3 antihypertensive medications

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; BSC=best supportive care; CAD=coronary artery disease; CPAP=continuous positive airway pressure; CVD=cardiovascular disease; dur=duration; ESS=Epworth Sleepiness Scale; F=female; G=group; HeartBEAT=Heart Biomarker Evaluation in Apnea Treatment; HF=heart failure; HTN=hypertension; MAD=mandibular advancement device; mod=moderate; N=sample size; nCPAP=nasal continuous positive airway pressure; NR=not reported; ODI=oxygen desaturation index; OSA=obstructive sleep apnea; pbo=placebo; pts=patients; RDI=respiratory disturbance index; RF=radiofrequency; SD=standard deviation; tx=treatment; wks=weeks.

^{§§} Conservative therapy for all patients consisted of sleep hygiene counseling, weight loss referrals for overweight patients, and nasal steroid spray for those with nasal congestion. Control participants also received nasal dilator strips.

Appendix E Table 13. Characteristics of Included Randomized, Controlled Trials That Evaluated Mandibular Advancement Devices (KQs 4 and 5)

First Author, Year						Mean								
Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	(Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Aarab, 2011 ¹⁸⁹ Parallel	MAD (20) Intraoral Placebo Device (19)	Sleep	No	The Netherlands	24	52 (including drop-outs)	27		29	20	11	Mild to Mod	NR NR	Fair
Andren, 2013 ¹⁸⁸ Parallel	MAD (36) Intraoral Sham/Placebo Device (36)	Sleep clinics	No	Sweden	12	57-59	17- 25	NR	29-30	23-24	11	Mild- Severe	100 NR	Fair
Barnes, 2004 ¹⁷³ Cross-over	MAD [†] (99) Placebo (98)	Referrals	No	Australia	12 CPAP; 12 MAD; 12 placebo	47	20	NR	31	21	11	Mild to mod	15; NR	Good
Bloch. 1999 ²¹⁴ Cross-over	Total (24) MAD Monobloc first (8) MAD Herbst first (8) No treatment first (8)	NR	No	Switzerland	1	51	NR	NR	27	27	12	Mild to severe	NR	Fair
Durán- Cantolla, 2015 ³⁶ Cross-over	Total (42) MAD first (NR) Sham MAD first (NR)	Sleep clinic	No	Spain	12 active; 12 sham	47	21	NR	28	15	12	Mild to mod	NR	Good
Johnston, 2002 ¹⁹⁵ Cross-over	Total (21) MAD first (13) Sham MAD first (8)	Sleep clinic	No	Ireland	4-6 active; 4-6 sham	55 (35-64)	19	NR	32	32	14	Mild to severe	NR 0	Fair
Lam, 2007 ¹⁸⁰ Parallel	MAD [‡] (34) Usual care [§] (33)	Sleep center		Hong Kong	10	45-47	22		27	21	12	Mild to severe ^{II}	19 NR	Fair
Naismith, 2005 ¹⁹² Gotsopoulos, 2002 ¹⁹³ Gotsopoulos, 2004 ¹⁹⁴	Total (67) MAD first (35) Sham MAD first (32)	Sleep clinic	No	Australia	4 active; 4 sham	48	19	NR	29	26-28	11	Mild to severe	NR NR	Good
Petri, 2008 ¹⁹¹ Parallel	MAD (33) Sham MAD (30) No tx (30)	ENT clinic sleep lab	No	Denmark	4	46-50	18	NR	31	35	11	Mild to severe	NR NR	Fair

Appendix E Table 13. Characteristics of Included Randomized, Controlled Trials That Evaluated Mandibular Advancement Devices (KQs 4 and 5)

First Author,														
Year						Mean								
Design	G1 (N)	Source of	Screen		Duration,	(Range)		% Non-	Mean	Mean	Mean	OSA	% HTN;	
Trial Name	G2 (N)	Patients	Detected?	Country	Wks	Age	% F	White	BMI	AHI	ESS	Severity	% HF	Quality
Quinnell,	Total (90)	Sleep	No	United	6 active	51 (26-80)	20	NR	31	14	12	Mild to	26	Fair
2014 ¹⁹⁷	SP1 - MAD (23)	center		Kingdom	4 no tx							mod	NR	
Cross-over	SP2 - MAD (22)													
	bMAD (23)													
	No tx (22)													

^{*} This study also a CPAP arm

Abbreviations: AHI=apnea-hypopnea index; bMAD=fully-bespoke mandibular advancement device; BMI=body mass index; CPAP=continuous positive airway pressure; dur=duration; ENT=otolaryngology; ESS=Epworth Sleepiness Scale; F=female; G=group; HF=heart failure; HTN=hypertension; MAD=mandibular advancement device; mod=moderate; N=sample size; NR=not reported; OSA=obstructive sleep apnea; pbo=placebo; pts=patients; RF=radiofrequency; SD=standard deviation; SP=SleepPro; tx=treatment; wks=weeks.

Study also had a CPAP arm. Because 6 different orders were possible, they did not list out individuals' actual order. Numbers represent the number of people that started treatment in that arm. 104 participants total; 80 completed all three arms

[‡] This study also a CPAP arm

[§] Usual care = conservative measures - sleep hygiene and weight loss advice (if applicable)

Authors call it "mild to moderate," but they allowed AHI up to 40, and the range of included patients included some with severe OSA

Appendix E Table 14. Characteristics of Included Randomized, Controlled Trials That Evaluated Surgical Interventions (KQ 4)

First Author, Year Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Bäck, 2009 ¹⁹⁸ Parallel	Soft palate RF surgery (17) Sham surgery (15)	and neck surgical unit	No	Finland	16-24	NR (NR)	0	NR	26-29	11-12	8-10	Mild only	NR NR	Good
Browaldh, 2013 ¹⁹⁹ Parallel SKUP3	UPPP (33) No treatment (34)	ENT clinic	No	Sweden	Median 28 (range 20- 58)		9	NR	28	53	13	Mod to severe	NR 0	Good
Dixon, 2012 ²⁰⁰ Parallel	Bariatric Surgery (30) Conventional Weight loss program [†] (30) [‡]	Sleep clinics	No	Australia		47-50 (SD 8-9)	40-43	NR	44-46	57-65	NR	Mod to severe	NR; NR	Fair
Ferguson, 2002 ²⁰¹ Parallel	LAUP (21) No treatment (25)	NR	No	Canada	varied [§]	45 (31-65)	24	NR	32	16-19	10-11	Mild to Mod	NR; NR	Fair
Koutsourelaski, 2008 ²⁰² Parallel	Septoplasty (27) Sham sugery (22)	Referrals to sleep center	No	Greece	12-16	38-39	37-41	NR	30	31-32	13-14	Mild to severe	NR NR	Fair
Woodson, 2003 ²⁰³ Parallel	RF surgery (30) Sham surgery (30)	Ads, referrals	No	United States	8	49 (NR)	22	NR	28-29	15-21	12-13	Mild to mod	NR NR	Fair

Surgical intervention: Two weeks of VLED prior to placement of an LAGB (LAP-BAND System) by one of three experienced surgeons within one month of randomizations.

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; CPAP=continuous positive airway pressure; dur=duration; ENT=otolaryngology; ESS=Epworth Sleepiness Scale; F=female; G=group; HF=heart failure; HTN=hypertension; LAGB=laparoscopic adjustable gastric band; LAUP=laser assisted uvulopalatoplasty; mod=moderate; N=sample size; NR=not reported; OSA=obstructive sleep apnea; pbo=placebo; pts=patients; RF=radiofrequency; tx=treatment; VLED=very low energy diet; wks=weeks.

[†] Both groups were provided with auto titrating CPAP equipment.

^{*} Weight loss intervention: Individualized dietary, physical activity and behavioral programs. Advice regarding physical activity encouraged walking and 200 minutes per week of structured activity, including moderate-intensity aerobic activity and resistance exercise. Dietary advice included a planned daily deficit of 500 kcal from estimated energy requirements. All participants were offered an initial intensive very low energy dietary program (VLED, Optifast, Nestle-Australia) with the meal replacements provided. The VLED were available for continued or intermittent use throughout the study.

[§] Duration was 3 months after last LAUP procedure (since multiple procedures were allowed/done); 6 months after baseline for control arm. Final evaluation was performed 15.4 months after BL in treatment (which was 7.2 months after last LAUP procedure) and 8.2 months after BL in control.

Appendix E Table 15. Characteristics of Included Randomized, Controlled Trials That Evaluated Weight Loss, Diet, and Exercise Programs (KQ 4)

First Author, Year Design	G1 (N)	Source of	Screen		Duration,	Mean (Range)		% Non-	Mean	Mean	Mean	OSA	% HTN;	
Trial Name	G2 (N)	Patients	Detected?	Country	Wks	Age	% F	White	BMI	AHI	ESS	Severity	% HF	Quality
Desplan, 2013 ²⁰⁴ Parallel	Inpatient individualized exercise training (13) Standard health education (13)	NR	No		4		NR	NR	30-31	40-41	11	Mod to severe	NR; NR	Fair
Foster, 2009 ²⁰⁵ Kuna, 2013 ²⁰⁶ Sleep AHEAD Parallel	Intensive lifestyle intervention (125)		Partially [†]	United States	208	61 (NR)	59	27	37	23	NR	Mild to severe	NR	Good
Johannson, 2009 ²⁰⁷ Parallel	Very low energy diet (30) Usual diet (33)	Sleep clinic database	No	Sweden	9	49 (33-61)	0	NR	35	37	8	Mod to severe		Good for AHI; Fair for ESS
Kline, 2012 ²⁰⁸ ; Kline, 2013 ²⁰⁹ Parallel	Exercise Training [‡] (27) Stretching control (16)	Sleep clinics and ads	No	United States	12	47 (NR)	40	26	35	24-32	7-11	Mod to severe	NR NR	Fair
Moss, 2014 ²¹⁰ Parallel	Lifestyle intervention§ (30) Advice-only control (30)	Sleep clinics	No	3.	12 active; 26 total inc followup		NR	NR	39-40	2"	5	Controlle d mod to severe	0	Fair
Tuomilehto, 2009 ²¹¹ Tuomilehto, 2010 ²¹² Tuomilehto, 2013 ²¹³ Parallel	supervised lifestyle (52 wks) (40) Usual care (routine lifestyle guidance) (41)	Primary care referrals to respiratory clinic	No			(NR)	23	NR	31-33	9-10	10	-	41 NR	Fair

^{*} Consisted of portion-controlled diet, physical activity, and group behavioral weight loss intervention

Abbreviations: AHEAD=Action for Health in Diabetes; AHI=apnea-hypopnea index; BMI=body mass index; CPAP=continuous positive airway pressure; dur=duration; ESS=Epworth Sleepiness Scale; F=female; G=group; HF=heart failure; HTN=hypertension; inc=including; min=minutes; mod=moderate; N=sample size; NR=not reported; OSA=obstructive sleep apnea; pbo=placebo; pts=patients; RF=radiofrequency; tx=treatment; VLCD=very low calorie diet; wks=weeks.

[†] Efforts were made to enroll individuals with undiagnosed OSA using a symptom questionnaire. Because almost all of the first 80 participants had OSA upon polysomnography, the symptom screen was dropped as an eligibility criterion.

^{*} Moderate intensity exercise training program meeting 4x/week for 12 weeks; 150 min/wk of mod-intensity aerobic activity, followed by resistance training twice/week

[§] Supervised individualized exercise sessions, cognitive-behavioral psychoeducation, dietary education and diet diary

All patients were using CPAP for at least 6 months prior to study start.

First Author, Year						Mean								
Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	(Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Arias, 2005 ¹²⁸ Cross-over	nCPAP first (14) Sham nCPAP first (13)		No	Spain	12 sham	52 (NR)	0	NR	31	44	NR	Mild to severe	0; 0	Fair
Ballester, 1999 ¹⁷⁰ Parallel	CPAP (68) Usual Care (37)	NR	No	Spain	12	53	12	NR	32	56	12	Mod to severe	NR NR	Fair
Barnes, 2004 ¹⁷³ Cross-over	CPAP* (97) Placebo (98)	Referrals	No	Australia	12 CPAP; 12 placebo	47 (NR)	20	NR	31	21.3	10.7	Mild to mod	15; NR	Good
Barbe, 2001 ¹³⁰ Parallel	nCPAP (29) Sham CPAP (26)	Sleep clinic	No	Spain	6	52-54	9	NR	29	54-57	7	Severe	NR 0	Fair
Barbe, 2012 ¹⁷² Parallel	CPAP (357) Control (366)	Teaching hospitals	No	•	Median: 208 [†]	52 (SD11)			31	35-42	7	Mod to severe	50-53; NR	Fair
Craig, 2012 ¹⁷⁴ Parallel	CPAP (195) Standard Care (196) [‡]	Sleep clinics		United Kingdom and Canada	24	58 (SD 7)	22-21	NR	32-33	ODI >4% dips/hr: 9-10	8 (4)	NR [§]	76-77; NR	Fair
Durán- Cantolla, 2010 ¹³⁷ Parallel		Referrals to 11 general hospitals	No	Spain	12	52-53	19	NR	32	43 to 45	10		100 per GP, but 64 vs. 56 from ABPM; NR	Good
Egea, 2008 ¹³⁸ Parallel	CPAP (35) Sham CPAP (38)	Referral from cardiology to sleep center	No	Spain	12	63-64	4-9	NR	31-32	35-43	7-8	Mild to severe	NR 100	Fair
Engleman, 1994 ²¹⁶ Cross-over	CPAP first (17)	Referred due to symptoms	No		4 active 4 pbo	49	19	NR	33	28	NR	Mild to severe	NR; NR	Fair
Engleman, 1997 ²¹⁷ Cross-over	Total (18)	Referral to sleep clinic	No	United Kingdom	4 active, 4 pbo	52	25	NR	30	11	14	Mild only	NR; NR	Fair
Engleman, 1998 ¹⁷⁵ Cross-over		Sleep center	No	United Kingdom	4 active 4 pbo	47	9	NR	30	43	12	Mod to severe	NR	Fair

First Author, Year						Mean								
Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	(Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
Engleman, 1999 ¹⁷⁶ Cross-over	CPAP first (NR) Oral Placebo first (NR)	Sleep clinic	No	Kingdom	4 CPAP; 4 placebo	44	38	NR	30	10	13	Mild only	NR NR	Fair
Faccenda, 2001 ¹⁷⁷ Cross-over	Total (71) CPAP first (35) Pbo capsule first (36)	Sleep center	No	United Kingdom	•	(29-72)		NR	Median 30	Median 35	Median 15	Mod to severe	0 NR	Fair
Gottlieb, 2014 ¹⁷⁸ Parallel HeartBEAT	care [#] (106) Usual care alone (106)*	Cardiology practices	Yes, Berlin ⁱ	United States		63	26	20	34	25	8-10	Mod to severe	NR	Good
Haensel, 2007 ¹³⁹ Parallel	Sham ČPÁP (25)	Ads, word of mouth, referrals	No	United States	2		20	40	33	58-64	NR	Mod to severe	0	Fair
Hoyos, 2012 ¹⁴⁰ Parallel		Sleep clinics	No	Australia	12	46-51 (SD 10-12)	0	NR	31-32	39-42	10	Mod to severe	34; NR	Fair
Jenkinson, 1999 ¹⁴² Hack, 2000 ¹⁴³ Parallel	nCPAP (54) Sham nCPAP (53)	Referred to sleep clinic	No	United Kingdom	4	48-50 (33- 71)	0	NR	35	ODI (>4%): 36-38	16-17	Mild to severe	19 NR	Fair
Kushida, 2012 ¹⁴⁵ Batool-Anwar, 2016 ²⁸⁸ Parallel APPLES	Sham (547)	Sleep Clinics (5 hospitals)	No	United States		51-52	34-35	24	32	40-41	10	Mild to severe	0	Fair
Lam, 2007 ¹⁸⁰ Parallel	\ /±±	Sleep center		Hong Kong	10	45-47	22	NR	27	21.4	12	Mild to severe§§	19 NR	Fair
Lee, 2011 ¹⁴⁷ Parallel	CPAP (17) Sham CPAP (21)	Ads and word of mouth	No	United States	3		NR	11	28-29	30-33	7-10	Mild to severe	0	Fair
Lim, 2007 ²¹⁵ Parallel	Sham CPAP (14)	Ads, word of mouth, referrals	No	United States	2		NR	NR	31	64-66	11-13	Mod to severe	0	Fair
Malow, 2008 ¹⁵⁰ Parallel		Epilepsy clinic	No		10 overall; 2 nights for AHI	42 (NR)	43	NR	32-35	16-19	NR	Mild to severe	22%; NR	Fair

First Author, Year Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, Wks	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
McMillan, 2014 ¹⁸² Parallel	Supportive Care (BSC) (140) BSC only (138)	Sleep centers (14)	No	UK	52	(00.0)	18	4	34	28-29	12	Mild to severe	6	Good
Marshall, 2005 ¹⁵¹ Cross-over	CPAP first (15) Sham first (16)	Sleep clinics	No	New Zealand	3 active; 3 sham	51 (25-67)	24	NR	32	21.6	13	Mild to mod	NR	Good
Montserrat, 2001 ¹⁵⁴ Parallel	CPAP (24) Sham CPAP (24)	Sleep clinic	No	Spain	6	54 (28-77)	NR	NR	30-34	54	16-17	Mod to severe	NR 0	Fair
Neikrug, 2014 ¹⁵⁵ Parallel	Sham nCPAP (19)	Neurolo- gistIIII referral and volunteer	No	United States	3	67-68	32	NR	27-28	22	NR	Mild to severe	NR; NR	Fair
Nguyen, 2010 ¹⁵⁷ Parallel	nCPAP (10) Sham nCPAP (10)		No	United States	12	53 (42-65)	10	40	30	32-39	NR	Mod to Severe	100 0	Fair
Phillips, 2011 ¹⁶¹ Cross-over	CPAP first (18)	Referrals from tertiary clinics	No	Australia	8 active; 8 sham	49	11	NR	32	38	10	Mod to severe	32; NR	Fair
Redline, 1998 ¹⁸³ Parallel	nCPAP (59)	Ads and referrals	No	United States	8-12	48	48	38	32-33	RDI 13	10-11	Mild to mod	NR; 0	Fair
Robinson, 2006 ¹⁶² Cross-over		Sleep center	No		4 active; 4 sham	54 (NR)	11	NR	33	ODI: median 28	5.3	Mild to severe	100; NR	Fair
		HF clinic	Yes, ESS	Canada	4	59-61	9	NR	30-32	36-51	NR	Mod to severe	42-58; 100	Fair
Siccoli, 2008 ¹⁶⁴ Parallel	CPAP (51) Sham CPAP (51)	Sleep center	No	United Kingdom	4	48 (NR)	0	NR	35-36	NR	15-16	Mod to severe	NR NR	Fair
Smith, 2007 ¹⁶³ Cross-over		Cardiology clinics	No		6 active; 6 sham	61	12	NR	31	36	10	Mod to severe	42 100	Fair

First Author, Year Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?		Duration, Wks	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF	Quality
400'	CPAP (141) ^{##} Sham CPAP (140)	1 7	_	US and Canada		50-52 (SD 11-12)	37-45	16-17	33-34	13	_	Mild to mod	40 2	Fair
100	` '	Sleep center	_	United Kingdom	12	55-58	0	NR	37	NR	_		NR NR	Fair

^{*} Study also had an MAD arm. Because 6 different orders were possible, they did not list out individuals' actual order. Numbers represent the number of people that started treatment in that arm. 104 participants total; 80 completed all three arms

Abbreviations: ABPM=ambulatory blood pressure monitor; AHEAD=Action for Health in Diabetes; AHI=apnea-hypopnea index; APPLES=Apnea Positive Pressure Long-term Efficacy Study; BMI=body mass index; CPAP=continuous positive airway pressure; CSA=central sleep apnea; CVD=cardiovascular disease; dur=duration; ESS=Epworth Sleepiness Scale; F=female; G=group; GP=general practitioner; HEARTBEAT=HeartBEAT=Heart Biomarker Evaluation in Apnea Treatment; HF=heart failure; HTN=hypertension; IQR=interquartile range; MAD=mandibular advancement device; mod=moderate; N=sample size; nCPAP=nasal continuous positive airway pressure; NR=not reported; ODI=oxygen desaturation index; OSA=obstructive sleep apnea; pbo=placebo; pts=patients; RDI=respiratory disturbance index; RF=radiofrequency; SD=standard deviation; tx=treatment; wks=weeks.

[†] Followup was "time until a CVD event, loss to followup or the end of the study" and ranged from 0 to 5.38 years, with a median of 4.0 years (*IQR= 2.19-4.38).

[‡] One followup visit with a physician between randomization and the final visit at six months.

[§] Had to have >7.5 oxygen desaturations per hour of >4%...but insufficient daytime symptoms associated with OSA to warrant CPAP therapy. This was made based on discussion with physician based on benefits of CPAP versus potential lifelong nightly usage of CPAP.

The overall study included some subjects with CSA. The numbers randomized who had OSA only was NR; the study reported number of completers who had OSA only (CPAP, 20 vs. Sham CPAP, 25)

¹ 3 withdrew after start of tx but its not clear from which arm(s)

[#] Eligible patients were required to have Berlin questionnaire score of 2 or 3 and established CAD or multiple CVD risk factors

^{**} Study also had an oxygen+usual care arm (N=106)

tt study also has a MAD arm

^{**} Usual care = conservative measures - sleep hygiene and weight loss advice (if applicable)

Conservative therapy for all patients consisted of sleep hygiene counseling, weight loss referrals for overweight patients, and nasal steroid spray for those with nasal congestion. Control participants also received nasal dilator strips.

^{***} These are the numbers randomized including the post-randomization drop-outs. 42 participants withdrew before exposure to CPAP or sham and were excluded from all analyses. Ns randomized and exposure were: active CPAP = 121 and sham CPAP= 118. All characteristics are for those randomized and exposed.

First Author,							CBV		
Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	Events, N (%)	Heart Failure, N (%)	Headache, N (%)
Arias, 2005 ¹²⁸	nCPAP first (14) Sham nCPAP first (13)		NR	NR	NR	NR	NR	NR	NR
Ballester, 1999 ¹⁷⁰	CPAP (68) Usual Care (37)	0 (0.0)	NHP domains: Emotional Reaction, mean (SE) Baseline CPAP: 28.4 (3.3) UC: 29.4 (5.0) 12 wks CPAP: 17.0 (3.0) UC: 26.4 (4.5) Between groups p=0.080 Sleep, mean (SE) Baseline CPAP: 30.1 (3.3) UC: 23.1 (3.8) 12 wks CPAP: 18.1 (3.0) UC: 16.0 (4.0) Between groups p=0.183 Physical, mean (SE) Baseline CPAP: 24.2 (2.6) UC: 25.0 (3.6) 12 wks CPAP: 15.1 (2.1) UC: 21.1 (3.2) Between groups p=0.090 Continued from above row Social isolation, mean (SE) Baseline CPAP: 14.2 (2.3) UC: 13.2 (3.0) 12 wks CPAP: 8.5 (1.8) UC: 11.2 (3.4)	Daytime function, mean (SE) Baseline CPAP: 33.9 (1.3) UC: 32.3 (1.7) 12 wks CPAP: 24.2 (1.2) UC: 29.7 (2.0) Between groups p<0.005	NR	NR	NR	NR	NR

First Author,							CBV		
Year	G1 (N)	Mortality, N		Cognitive	MVAs, N	CV Events, N	Events,	Heart Failure,	
Trial Name	G2 (N)	(%)	Quality of Life	Impairment	(%)	(%)	N (%)	N (%)	(%)
			Between groups p=0.030						
			NHP Domains:						
			Pain, mean (SE)						
			Baseline						
			CPAP: 20.5 (3.3)						
			UC: 20.6 (4.0)						
			12 wks						
			CPAP: 14.8 (3.1)						
			UC: 15.1 (3.9)						
			Between groups p=0.940						
			Energy, mean (SE)						
			Baseline						
			CPAP: 34.3 (4.7)						
			UC: 23.2 (4.6)						
			12 wks						
			CPAP: 12.7 (3.3)						
			UC: 22.2 (5.0)						
Barbe, 2001 ¹³⁰	Total (55)	0 (0.0)	Between groups p<0.005 FOSQ, mean (SE)	Hits on Steer Clear	NR	NR	NR	NR	NR
barbe, 2001	CPAP (29)		Baseline	test, mean (SE) %	INIX	INIX	INIX	INIX	INIX
	Sham	0 (0.0)	CPAP: 102 (3)	Baseline					
	CPAP (26)		Sham: 107 (3)	CPAP: 5 (1)					
	, ,		6 wks	Sham: 6 (2)					
			CPAP 108 (2)	6 wks					
			Sham: 110 (2)	CPAP: 4 (1)					
			Change from BL	Sham: 5 (2)					
			CPAP: 7 (2)	Change from BL					
			Sham: 3 (3) Between group: p>0.2	CPAP: -1 (1) Sham:-1 (1)					
			Between group. p>0.2	Between group p>0.2					
			SF-36 PCS, mean (SE)	Botween group p>0.2					
			Baseline	Also reported: WAIS					
			CPAP: 49 (1)	digit symbols, block					
			Sham: 48 (1)	design, digit span,					
			6 wks	PASAT 1-4, Trail					
			CPAP: 51 (1)	making test A & B,					
			Sham: 50 (1)	Wechsler memory					
			Change from BL	scale					
			CPAP: 2 (1)						
			Sham: 1 (1)						

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	CBV Events, N (%)	Heart Failure, N (%)	Headache, N
			Between group: p>0.2 SF-36 MCS, mean (SE) Baseline CPAP: 51 (2) Sham: 50 (2) 6 wks CPAP: 51 (2) Sham: 52 (2) Change from BL CPAP Change: -1 (2) Sham Change: 1 (2) Between group: p>0.2						
Barbe, 2012 ¹⁷²	CPAP (357) Control (366)	All-cause: 8 (2.2) 3 (0.8) CVD-specific: 1 (0.3) 0 (0.0)	NR	NR	NR	Total: 19 (5.3) 19 (5.2) CV [†] Hospitalizations: 17 (4.8) 11 (3.0) Nonfatal myocardial infarction: 2 (0.6) 8 (2.2)	TIA: 2 (0.6) 5 (1.4) Non-fatal stroke: 3 (0.8) 2 (0.5)	3 (0.8) 5 (1.4)	NR
Barnes, 2004 ¹⁷³	CPAP (97) Placebo (98)	0 (0.0) 0 (0.0)	FOSQ mean score, mean (SE): Baseline: 3.1 (0.1) 3.3 (0.1), p < 0.001 3.3 (0.1), p < 0.01 CPAP vs. Placebo p < 0.05	Reported: Word Pair Memory Recall; Logical Memory Test; Digit Span Backwards; Trailmaking B; Digit Symbol Substitution Task; COWAT; PVT; Stroop Color Association Test	NR	NR	NR	NR	NR
Craig, 2012 ¹⁷⁴	CPAP (195) Standard Care (196)	1 (0.5) 0 (0.0)	MCS, Mean (SD) Baseline: 48.2 (10.4) 46.6 (11.3) 24 weeks: 52.0 (9.8)	NR	NR	Angina: 1 (0.6) 3 (1.7)	TIA: 1 (0.6) 0 (0.0)	NR	NR

First Author,							CBV		
Year Trial Name	G1 (N) G2 (N)	Mortality, N	Quality of Life	Cognitive Impairment	MVAs, N	CV Events, N	Events,	Heart Failure, N (%)	Headache, N (%)
			48.5 (11.0) Between group difference: 2.6 (95% CI, 0.9 to 4.2; p=0.003) EQ-5D score, Mean (SD) [‡] Baseline: 0.80 (0.17) 0.75 (0.24) 24 weeks: 0.83 (0.19) 0.80 (0.22) Between group difference: +0.20 (95% CI, -0.03 to 0.06; p=0.43) SAQLI, mean (SD) Baseline: 4.9 (1.1) 4.8 (1.2) 24 weeks: 5.6 (1.0) 5.0 (1.3) Mean change (SE) 0.7 (0.1) 0.2 (0.1) Between group difference: p<0.0001		(%)	(%) MI: 0 (0.0) 0 (0.0) PVD: 2 (1.2) 1 (0.6) AF: 6 (3.5) 7 (4.1)	N (%) Stroke: 0 (0.0) 0 (0.0)		
Durán-Cantolla, 2010 ¹³⁷	CPAP (169) Sham (171)	0 (0.0) 0 (0.0)	EuroQoI, mean (SD) at baseline, 6 wks, 12 wls CPAP 69 (15), 74 (14), [§] 76 (16) ^{II} Sham CPAP 72 (17), 72 (16), 73 (15)		NR	NR	NR	NR	NR
Egea, 2008 ¹³⁸	CPAP ¹ (35) Sham CPAP (38)	0 (0.0) 1 (2.6)	OSA Only SF-36 – PCS, Mean (SE) Baseline: 41.4 (2.0) 42.0 (2.1) 12 weeks 44.9 (1.8), p = 0.10 40.7 (2.1), p = 0.41 Between group p=NS	NR	NR	Angina 0 (0.0) 1 (2.6)	NR	NR	NR

First Author,							CBV		
Year	G1 (N)	Mortality, N		Cognitive	MVAs, N	CV Events, N	Events,	Heart Failure,	
Trial Name	G2 (N)	(%)	Quality of Life	Impairment	(%)	(%)	N (%)	N (%)	(%)
			SF-36 – MCS, Mean (SE)						
			Baseline:						
			46.4 (3.0)						
			45.8 (2.7)						
			12 weeks						
			48.8 (2.3), p = 0.40						
			48.7 (2.2), p = 0.27 Between group p=NS						
Engleman,	CPAP first	0 (0 0)	NHP-2,	Mental Flexibility	NR	NR	NR	NR	NR
1994 ²¹⁶	(17)	0 (0.0)	4 wks:	(Trailmaking B)	INIX	INIX	INIX	INIX	INIX
1001	Oral	0 (0.0)	4.9 (SE 0.9)	66 (SE 5)					
	placebo		7.9 (SE 0.9)	75 (SE 5)					
	first (15)		Between groups p=0.002	Between groups P=					
				0.02					
			CPAP > placebo (p<0.05) for						
				Coding efficiency					
			carry out domestic chores	(Digit symbol					
				substitution)					
				52 (SE 2)					
				51 (SE 2) Between groups P=					
				0.05					
				0.03					
				Vigilance (Steer Clear,					
				N objects hit)					
				76 (SE 5)					
				81 (SE 6)					
				Between groups P=					
				0.01					
				10.1					
				IQ decrement score					
				4.0 (SE 2.1) 7.2 (SE 2.0)					
				Between groups P=					
				0.04					
				Concentration (PASAT					
				2)					
				Between groups P=					
				0.02 but after					
				adjustment for order					
		1		effect, P=0.11	1				

First Author,							CBV		
Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	Events, N (%)	Heart Failure, N (%)	Headache, N (%)
Engleman, 1997 ²¹⁷	CPAP first (8) Oral placebo first (8)	0 (0.0) 0 (0.0)	Nottingham Health Profile Part 2, total score 4 wks 3.8 (SE 1.1) 5.8 (SE 1.4) Betw groups p=NS Better compliers (mean 5 hrs/night), NHP Part 2 total score 4 wks 2.4 (SE 1.5) 6.8 (SE 2.5) Betw groups p=0.03	Reports IQ decrement, Trailmaking, SteerClear, PASAT2, RVIPT, reaction time, verbal fluency, BVRT. Only significant changes on TrailMaking B no changes on other various cognitive functioning measures	NR	NR	NR	NR	NR
Engleman, 1998 ¹⁷⁵	CPAP first (10) Placebo (13)	0 (0.0) 0 (0.0)	NHP-2 Baseline, mean (SD) 8.0 (5.0) 4 wks, mean (SD) 5.8 (5.4) 6.3 (5.7) Between group change: -0.5 (95% CI, -2.5 to 1.5; p=NS)	No significant difference between groups on changes in the following: 30 min. SteerClear;TrailMakin g B; WAIS-R performance IQ (Block Design and Digit Symbol Substitution);NART; RVIP;* 8-choice reaction time; PASAT;* Verbal fluency; BVRT††	NR	NR	NR	NR	NR
Engleman, 1999 ¹⁷⁶	Total (37) CPAP first (NR) Oral Placebo first (NR)	0 (0.0) 0 (0.0)	NHP- 2 score, mean (SD) Baseline: 10.5 (4.8) 4 wks CPAP: 6.1 (4.7) 4 wks placebo: 7.3 (5.2) Between groups p = NS SF-36 Domains only: Physical Function Baseline: 75 (27) 4 wks CPAP: 84 (22) 4 wks placebo: 83 (23) Between groups p=NS		NR	NR	NR	NR	0 (0.0) 3 (8.8)

First Author,							CBV		
Year Trial Name	G1 (N) G2 (N)	Mortality, N		Cognitive	MVAs, N	CV Events, N	Events,	Heart Failure,	
That Name	GZ (N)	(%)	Quality of Life Mental health Baseline: 64 (19) 4 wks CPAP: 79 (16) 4 wks Placebo: 75 (15) Between groups p=NS General Health Baseline: 68 (21) 4 wks CPAP: 76 (19) 4 wks placebo: 74 (20) Between groups p=NS	Impairment Design, performance IQ, PASAT	(%)	(%)	N (%)	N (%)	(%)
		0 (0.0) 0 (0.0)	FOSQ total, mean change from baseline (SE): 12.4 (0.5) 11.6 (0.7) P=0.010	NR	NR	NR	NR	NR	NR
HeartBEAT	(106) Usual care alone (106)			NR	0 (0.0)	Unstable angina: 0 (0.0) 1 (0.9) MI: 0 (0.0) 1 (0.9) PCI for worsening angina: 0 (0.0) 1 (0.9) AF: 1 (0.9) 0 (0.0) Arrhythmia ^{‡‡} 0 (0.0) 1 (0.9)	0 (0.0) 1 (0.9)	NR	NR
	CPAP (25) Sham CPAP (25)	0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N	CBV Events, N (%)	Heart Failure, N (%)	Headache, N
Hoyos, 2012 ¹⁴⁰	CPAP (34) Sham	All-cause: 0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR
Jenkinson, 1999 ¹⁴² Hack, 2000 ¹⁴³		0 (0.0) 0 (0.0)	SF-36 MCS, mean (SD) Baseline: 44.8 (10.4) 43.5 (10.7) 4 wks: 55.4 (7.0) 47.8 (10.1) Between group change: p=0.002 SF36 PCS, mean (SD): Baseline: 43.7 (11.6) 42.6 (10.1) 4 wks: 49.4 (10.1) 45.5 (10.4) 5.7 (NR); p<0.001 2.9 (NR); p=0.007 Between group change: p=0.080	Measures of driving simulation	NR	NR	NR	NR	NR
Kushida, 2012 ¹⁴⁵ Batool-Anwar, 2016 ²⁸⁸ APPLES	CPAP (558) Sham (547)	2 (0.4) 2 (0.4)	4.6 (0.8) 6 months: 4.7 (0.8) 4.6 (1.0)	No difference between groups on multiple measures of neurocognitive function (Pathfinder NumberTest, Buschke Selective Reminding Test, Sustained Working Memory Test)	10 (1.8) 11 (2.0)	CV events reported as "adverse events" but not defined: 31 (5.6) 29 (5.3)	NR ^{§§}	NR	NR

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	CBV Events, N (%)	Heart Failure, N (%)	Headache, N (%)
		0 (0.0)	Quality of Life Between-group change: p<0.05 SAQLI total score, mean (SE) Baseline: 5.0 (0.1) 5.1 (0.1) 10 weeks: 5.5 (0.1) 5.0 (0.1) Between group difference: 0.77 (-1.5 to 0.4); p=0.04 SF36, mean (SEM); p-val of within group change from BL; between group change from BL vs. usual care Physical function domain, Baseline 84.7 (2.2) 82.3 (2.6) 10 weeks 88.2 (1.7); p<0.05; p<0.05 78.9 (3.6) General health domain, Baseline 48.3 (3.1) 51.2 (3.3) 10 weeks	Impairment					
Lee, 2011 ¹⁴⁷	Total (38) CPAP (17) Sham CPAP (21)	0 (0.0) 0 (0.0)	58.9 (3.3); p<0.05; p=NS 54.8 (3) Mental health domain, Baseline 66.8 (2.5) 65.6 (2.5) 10 weeks 71.8 (2.8); p=NS; p=NS 68.0 (2.5) NR	Measured: WAIS-III; Digit Symbol; Digit Span; Letter-Number Sequencing; Symbol Search; Brief	NR	NR	NR	NR	NR

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N	CBV Events, N (%)	Heart Failure, N (%)	Headache, N (%)
				Visuospatial Memory Test-Rev; Hopkins Verbal Learning Test- Rev; Trail Making A/B; Digit Vigilance; Stroop Color-Word; Word Fluency					
Lim, 2007 ²¹⁵	Total (46) nCPAP (17) Sham CPAP (14)	NR	NR	Reports multiple cognitive function outcomes	NR	NR	NR	NR	NR
Malow, 2008 ¹⁵⁰	CPAP (22) Sham CPAP (13)	0 (0.0)	NR	NR	NR	NR	NR	NR	NR
Marshall, 2005 ¹⁵¹	Total (31) CPAP first (15) Sham first (16)	0 (0.0)	FOSQ total, mean (SE): Baseline: 12.6 (0.3) 13.6 (0.3), p < 0.01 13.3 (0.3), p=ns Btwn groups diff= 0.3 (-0.5 to 1.1) SF36 domains Mental health Baseline: 75 (3) 77 (2) p=NS 80 (2) p <0.05 Btwn groups diff=-3 (-10 to 3) Physical functioning Baseline: 82 (3) 81 (2) p=NS 80 (2) p=NS 80 (2) p=NS Btwn groups diff=1 (-3 to 6) General health Baseline: 74 (3) 76 (2) p=NS 76 (2) p=NS Btwn groups diff=0 (-6 to 7)	Psychomotor vigilance task: Mean (SE) reaction time (ms): Baseline: 264 (5) 266 (5) p=NS 259 (5) p=NS Betw groups diff=7 (-7 to 20) Mean (SE) lapses (>500 ms reaction time): Baseline: 1.3 (0.3) 3.2 (0.7) p=NS 3.3 (0.7) p=NS Betw groups diff=0.4 (-0.7 to 1.4) Errors, mean (SE): Baseline: 2.8 (0.5) 3.2 (0.7) p=NS 3.3 (0.7) p=NS Betw groups diff=0.4 (-0.7 to 1.4)	NR	Non-fatal MI: 0 (0.0) 1 (3.2)	NR	NR	NR

First Author,							CBV		
Year	G1 (N)	Mortality, N		Cognitive	MVAs, N	CV Events, N	Events,	Heart Failure,	
Trial Name	G2 (N)	(%)	Quality of Life	Impairment	(%)	(%)	N (%)	N (%)	(%)
	Total (278)	NR	SAQL, baseline, mean (SD)	No difference between		52 weeks:	52	NR	
	CPAP +				2 (3.0)	MI	weeks:		
	BSC (140)			function measures:	1 (1.0)	3 (2.1)	Stroke		
	BSC only		12 weeks, mean (SD)	Digit symbol		0 (0.0)	0 (0.0)		
	(138)		5.3 (1.1)	substitution		New Angina	0 (0.0) "Mini-		
			5.0 (1.1) between groups p=0.005	Trail Making B Simple reaction time		2 (1.4) 3 (2,2)	stroke"		
			52 weeks, mean (SD)	Simple reaction time		New A-fib	1 (0.3)		
			5.5 (1.1)			6 (4.3)	2 (1.4)		
			5.1 (1.1)			12 (8.7)	between		
			between groups p=0.001			New PVD	groups		
			3 1 1			1 (0.3)	for al		
			SF-36 reported in Figure only;			0 (0.0)	adverse		
			authors report improvement on			All	CV		
			the energy and vitality			12 (4.3)	events		
			subscales			15 (10.1)	p=0.72		
						betw groups for			
						all CV events p=0.72			
Montserrat,	CPAP (24)	0 (0.0)	FOSQ total, mean change from	NR	NR	NR	NR	NR	NR
			baseline (SD):			TWI C	IVIX		IVIX
	CPAP (24)	(0.0)	25.0 (NR); P<0.001						
	(= 1)		14.5 (NR); P=0.008						
			Between groups P=0.12						
			SF36 MCS, mean change from						
			baseline (SD):						
			1.32 (NR); P=0.61						
			4.92 (NR); P=0.006						
			Between groups P=0.52						
			SF36 PCS, mean change from						
			baseline (SD):						
			4.18 (NR); P=0.002						
			1.62 (NR); P=0.36						
155	05.5		Between groups P=0.23						
	CPAP (19)		NR	NR	NR	NR	NR	NR	NR
	Sham	0 (0.0)							
	CPAP (19)								

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	CBV Events, N (%)	Heart Failure, N (%)	(%)
Nguyen, 2010 ¹⁵⁷	nCPAP (10), sham CPAP (10)	0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR
Phillips, 2011 ¹⁶¹	Total (38) CPAP first (18) Sham CPAP first (19)	NR	FOSQ total, mean (SD): Baseline: 15.2 (3.1) 8 week, mean (SE): 16.0 (0.53) 16.7 (0.52) Between groups P=0.056	NR	NR	NR	NR	NR	NR
Redline, 1998 ¹⁸³	Total (111) nCPAP (59) Conservati ve therapy (52)	o (o.o)	SF-36 Energy/fatigue subscore, mean (SD) Baseline: 51.7 (19.8) 58.3 (19.0) Change from BL to 8-12 wks 10.3 (17.8) 2.3 (16.8) Between groups p<0.05		NR	NR	NR	NR	NR
Robinson, 2006 ¹⁶²	Total (35) CPAP first (18) Sham first (17)	0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR
Ruttanaumpawan , 2008 ¹⁸⁴	treatment (12)	0 (0.0)		NR	NR	NR	NR	(All pts had HF)	NR
Siccoli, 2008 ¹⁶⁴	CPAP (51) Sham CPAP (51)	0 (0.0) 0 (0.0)	SF-36 PCS, Mean (SD) Baseline 62.0 (20.0) 69.4 (21.5) 4 weeks 70.8 (18.5) P<0.0001 70.0 (18.8) P=0.68 Between groups P=0.010 SF-36 MCS, Mean (SD) Baseline 62.2 (20.2) 64.8 (21.2) 4 weeks	NR	NR	NR	NR	NR	NR

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N	CV Events, N	CBV Events, N (%)	Heart Failure, N (%)	Headache, N
			76.8 (16.2) P<0.0001 68.6 (22.7) P=0.17 Between groups P=0.002 SAQLI , Mean (SD) Baseline 3.5 (1.0) 3.8 (1.1) 4 weeks 4.4 (1.1) P<0.0001 3.8 (1.6) P=0.65	•					
Smith, 2007 ¹⁶³	Total (26) CPAP first (11) Sham first (13)	0 (0.0) 0 (0.0)	Between groups P=0.001 MLHF Baseline: 38 (27) G1: 36 (29) G2: 34 (28) Between groups difference 1.0 (-4.3 to 6.4) P=0.70 SF36 PCS Baseline: 34 (16) G1: 34 (14) G2: 35 (14) Between groups difference -1.0 (-3.6 to 1.6) P=0.43 SF36 MCS Baseline: 51 (10) G1: 49 (12) G2: 50 (11) Between groups difference -0.5 (-4.2 to 3.2) P=0.79	NR	NR	NR	NR	NR	NR
Weaver, 2012 ¹⁶⁶	Total (281) CPAP (141) Sham CPAP (140)	0 (0.0) 0 (0.0)	FOSQ total, unadj mean change from BL (SD): 0.98 (2.89) p=0.0005 -0.14 (2.61) p=0.57 Adj mean change from BL (SD): 0.89 (NR) -0.06 (NR) Adj diff in mean change (SE); 0.95 (0.34) Between groups p=0.006	NR	NR	NR	NR	NR	NR

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	CBV Events, N (%)	Heart Failure, N (%)	Headache, N
			SF-36, PCS Adj mean change from BL: 3.89 0.04 Adj between group difference in mean change from BL (SE): 3.85 (1.17) 95% CI, 1.53-6.17 p=0.001 SF-36, MCS Adj mean change from BL: 3.07 2.21 Adj between group difference in mean change from BL (SE): 0.86 (1.42) 95% CI, -1.95 -3.67						
West, 2007 ¹⁶⁸	CPAP (20) Sham CPAP (22)		p=0.546 SAQLI, mean (SD) Baseline 4.3 (1.1) 4.4 (0.9) Change from BL at 12 wks: +0.8 (1.0) +0.03 (1.2) Between-group difference (95% CI): 0.77 (-1.5 to 0.04); p=0.04			1 CPAP patient (5%) had emergency cardiac surgery	NR	NR	NR

^{*} Footnote: For all-cause mortality, the authors also report an incidence density ratio: 2.6 (95% CI, 0.70-11.8; P=0.16)

[†] Hospitalizations were for unstable angina or arrhythmias.

^{*}Authors also report the EQ-5D Health Status (Visual Analogue Score); there were no differences between groups in the total score (p=0.095).

[§] P<0.001 compared with baseline; effect size (SD units) 0.31

P<0.001 compared with baseline; effect size (SD units) 0.38; EuroQol scores improved significantly only in the CPAP group

[¶]Sample size includes some patients who had central sleep apnea.

^{*} Rapid visual information processing

^{** 2} second presentation rate

^{††} Benton visual retention test

^{**} Per authors, one person in the control group developed "unspecified tachyarrhythmia requiring hospitalization."

Authors report counts for neurological "adverse events" but do not specify how these were measured or defined: CPAP 36 events (6.5%) versus Sham 32 events (5.9%)

Authors also report a score for the PCS and MCS components of the SF-12; results are similar to those seen on the SF-36.

Abbreviations: adj=adjusted; AF=atrial fibrillation; APPLES=Apnea Positive Pressure Long-term Efficacy Study; BL=baseline; BSC=best supportive care; btwn=between; BVRT=Benton Visual Retention Test; CBV=cerebrovascular; CI=confidence interval; COWAT=Controlled Oral Word Association Test; CPAP=continuous positive airway pressure; CV=cardiovascular; CVD=cardiovascular disease; EQ=EuroQoL; FOSQ=Functional Outcomes of Sleep Questionnaire; G=group; HeartBEAT=Heart Biomarker Evaluation in Apnea Treatment; HF=heart failure; MCS=Mental Component Score of the SF-36; IQ=intelligence quotient; MI=myocardial infarction; MLHF=Minnesota Living with Heart Failure; ms=milliseconds; MVA=motor vehicle accident; N=sample size; NART=National Adult Reading Test; NHP=Nottingham Health Profile; nCPAP=nasal continuous positive airway pressure; NR=not reported; NS=not significant; PASAT=Paced Auditory Serial Addition Test; PCI=percutaneous coronary intervention; PCS=Physical Component Score of the SF-36; pts=patients; PVD=peripheral vascular disease; PVT=psychomotor vigilance test; RVIP=Rapid Visual Information Processing; SAQLI=Sleep Apnea Quality of Life Index; SE=standard error; SF-36=36-Item Short Form Health Survey; TIA=transient ischemic attack; UC=usual care; WAIS=Wechsler Adult Intelligence Scale; wks=weeks.

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	N (%)	(%)	(%)	Headache, N (%)
Bäck, 2009 ¹⁹⁸		0 (0.0) 0 (0.0)	SF-36 PCS, Median (Range) Baseline: 47.2 (22.7 to 64.1) 49.4 (37.6 to 60.4) 16 weeks: 48.5 (33.0 to 67.4) 55.3 (19.1 to 63.7) Between-groups P=0.713 SF-36 MCS, Median (Range) Baseline: 53.7 (20.9 to 68.2) 51.6 (22.2 to 63.2) 16 weeks: 55.3 (19.1 to 63.7) 45.0 (28.1 to 61.6) Between groups P=0.345	NR	NR	NR	NR	NR	NR
Desplan, 2013 ²⁰⁴ Parallel	Inpatient individualized exercise training (13) Standard health education (13)	NR	SF-36 Domains: Physical functioning, baseline: 72.7 (18.9) 70.0 (31.2) Physical functioning, 4 weeks: 92.2 (5.8); p<0.005 80.9 (16.1); p=0.29 Role limitation (physical), baseline: 36.4 (37.7) 70.5 (36.8) Role limitation (physical), 4 weeks: 86.4 (23.3); p<0.005 70.5 (36.8); p=1.00 Vitality, baseline: 38.1 (22.9) 53.2 (15.7) Vitality, 4 weeks: 76.2 (11.8); p=0.0002 52.3 (13.5); p=0.83 Role limitation (emotional), baseline: 57.6 (47.4) 54.6 (40.2) Role limitation (emotional), 4 weeks: 78.8 (30.8); p=0.13 60.6 (44.3); p=0.72	NR	NR	NR	NR	NR	NR

First Author,							CBV	Heart	
Year	G1 (N)	Mortality,		Cognitive					Headache, N
Trial Name	G2 (N)	N (%)	Quality of Life	Impairment	MVAs, N (%)	N (%)	(%)	(%)	(%)
			Mental health, baseline:						
			56.4 (19.8)						
			45.9 (15.6)						
			Mental health; 4 weeks:						
			64.1 (19.0); p=0.20						
			49.9 (17.9); p=0.17						
			Social functioning, baseline:						
			56.7 (35.0)						
			66.9 (21.9)						
			Social functioning, 4 weeks:						
			83.9 (12.3); p=0.02						
5. 6. 6. 1. 200		2 (2 2)	73.3 (24.7); p=0.19						. (2.2)
Dixon, 2012 ²⁰⁰		0 (0.0)	SF-36 PCS:	NR	NR	NR	NR	NR	1 (3.3)
Paralell		0 (0.0)	Baseline: NR						0 (0.0)
	Conventional		104 weeks, mean (95% CI):						
	Weight loss		48.0 (43.9 to 52.1)						
	program (30)		44.5 (40.1 to 49.0)						
			Change from baseline (95% CI): 12.6 (7.3 to 17.9)						
			3.4 (-1.6 to 8.4)						
			Between group difference (95% CI):						
			9.3 (0.5 to 18.0); p=0.04						
			9.3 (0.3 to 18.0), p=0.04						
			SF-36 MCS:						
			Baseline: NR						
			104 weeks, mean (95% CI):						
			48.5 (45.5 to 51.4)						
			46.7 (43.9 to 49.4)						
			Change from baseline (95% CI):						
			0.5 (-3.0 to 4.0)						
			0.8 (-2.2 to 3.8)						
			Between group difference (95% CI);						
			-0.3 (-5.3 to 4.8); p=0.92						
Ferguson,	LAUP (21)	0 (0.0)	SAQLI (total)	NR	NR	NR	NR	NR	NR
Ferguson, 2002 ²⁰¹	No treatment		Baseline:						
Parallel	(25)	` ′	4.2 (0.8)						
	<u> </u>		4.1 (1.0)						
			Endpoint*						
			4.6 (0.9); p>0.05 from BL						
			4.3 (1.5); p>0.05 from BL						
			Between groups p=NS						

First Author, Year	G1 (N)	Mortality,		Cognitive					Headache, N
Trial Name	G2 (N)	N (%)	Quality of Life	Impairment	MVAs, N (%)	N (%)	(%)	(%)	(%)
Sleep AHEAD Parallel	lifestyle intervention (125) Diabetes support and education (139)	0 (0.0) 0 (0.0)	NR	NR	NR	NR		NR	NR
Johansson, 2009 ²⁰⁷ Parallel	Very low energy diet (30) Usual diet (33)	0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR
Kline, 2012 ²⁰⁸ Kline, 2013 ²⁰⁹ Parallel	Exercise Training (27) Stretching control (16)	0 (0.0) 0 (0.0)	FOSQ-10 (total score), mean (SE) Baseline: 15.1 (0.5) 16.0 (0.6) 12 weeks: 16.7 (0.5) 16.0 (0.6) Between groups: P= NS SF-36 domains, Mean (SE) Physical Functioning: Baseline: 77.2 (4.1) 76.3 (4.8) 12 weeks: 86.1 (2.9) 76.6 (4.9) Between groups: P≤0.05 General Health: Baseline: 63.7 (3.1) 66.9 (4.3) 12 weeks: 72.4 (3.4) 68.4 (3.9) Between groups: P=NS Mental Health: Baseline: 71.7 (3.6)	No statistically significant difference between groups on the following: Psychomotor Vigilance Test (PVT), Stroop Color-Word Test (SCWT), and Trail-Making Test (TMT)		NR	NR	NR	NR

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	CBV Events, N (%)	Heart Failure, N (%)	Headache, N (%)
			74.0 (3.9) 12 weeks: 80.6 (2.5) 76.0 (3.2) Between groups: P≤0.05						
Koutsoure- laski, 2008 ²⁰² Parallel	Septoplasty (27) Sham sugery (22)		NR		NR	NR		NR	NR
Moss, 2014 ²¹⁰	Lifestyle intervention (30) Advice only (30)	NR	EuroQoL EQ-5D-3L VAS, mean (SD) Baseline: 64 (17) 58 (18) 13 weeks: 60 (20) 63 (19) Adjusted mean difference between groups: 3 (95% CI: -4 to 10) Between groups P=0.385 26-wk followup: 72 (16) 69 (18) Adjusted mean difference between groups: 9 (95% CI: 2 to 16) Between groups P=0.017	NR	NR	NR	NR	NR	NR
Tuomilehto, 2009 ²¹¹ Tuomilehto, 2010 ²¹² Tuomilehto, 2013 ²¹³	VLCD (12 wks) + supervised lifestyle (52 wks) (40) Usual care (routine lifestyle guidance) (41)	1 (1.2) NR which arm	15D score, overall, change from BL:+0.041 +0.022 Between groups P=0.167		NR	NR		NR	NR
Woodson, 2003 ²⁰³ Parallel	RF surgery (30) Sham surgery (30)	NR	FOSQ total, mean change from baseline (SD): 1.2 (1.6); P=0.005 0.4 (2.0); P=0.18 Between groups difference (95% CI): 0.9 (-0.1 to 1.9); P = 0.04	No difference between groups on multiple measures of reaction time measured with	NR	NR	NR	NR	NR

First Author, Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	CBV Events, N (%)	Heart Failure, N (%)	Headache, N
	32 ()		SNORE25 total, mean change from baseline (SD): -0.43 (0.56); P<0.001 -0.21 (0.56); P=0.06 Between groups difference (95% CI): -0.22 (-0.53 to 0.09); P=0.08 SF36 MCS, mean change from baseline (SD): 2.9 (7.3); P=0.08 0.4 (6.4); P=0.70 Between groups difference (95% CI): 2.5 (-1.4 to 6.4); P=0.10 SF36 PCS, mean change from baseline (SD): 0.5 (6.8); P=0.42 1.5 (7.8); P=0.44 Between groups difference (95% CI): -1.0 (-5.1 to 3.1); P=0.69	the Psychomotor Vigilance Task			(70)	(70)	

^{* (}mean 7.2 months from final tx for G1 and mean 8.2 months from BL for G2)

Abbreviations: AHEAD=Action for Health in Diabetes; BL=baseline; CBV=cerebrovascular; CI=confidence interval; CV=cardiovascular; FOSQ=Functional Outcomes of Sleep Questionnaire; G=group; LAUP=laser assisted uvulopalatoplasty; MCS=Mental Component Score of the SF-36; MVA=motor vehicle accident; N=sample size; NR=not reported; PCS=Physical Component Score of the SF-36; RF=radiofrequency; SAQLI=Sleep Apnea Quality of Life Index; SD=standard deviation; SE=standard error; SF-36=36-Item Short Form Health Survey; VLCD=very low calorie diet.

First Author,							CBV		
Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	Events, N (%)	Heart Failure, N (%)	Headache, N (%)
	MAD (20) Intraoral Placebo Device (19)	NR	SF-36 Mean (SD) Baseline: PF 82.98 (22.7) SF 75.0 (23.6) RF 53.9 (48.1) RE 77.2 (41.7) MH 66.7 (14.1) Vit 49.7 (18.0) BP 79.6 (27.9) GHP 54.7 (22.3) HT 41.3 (24.7) SF-36: Changes in the domains of SF-36 were not NS between groups at 24 weeks. Post-treatment values were NR.	NR	NR	NR	NR	NR	NR
Barnes, 2004 ¹⁷³	MAD (99) Placebo (98)	0 (0.0) 0 (0.0)	FOSQ mean score, mean (SE): Baseline: 3.1 (0.1) 3.3 (0.1), p < 0.001 3.3 (0.1), p < 0.01 MAD vs. Placebo p < 0.05 FOSQ domains, mean (SE): General Productivity: Baseline: 3.2 (0.1) 3.4 (0.1), p < 0.001 3.4 (0.1), p < 0.001 MAD vs. Placebo p = NS Activity level: Baseline: 3.0 (0.1) 3.2 (0.1), p < 0.001 3.1 (0.1), p < 0.05 MAD vs. Placebo p = NS Sexual Relationships: Baseline: 2.9 (0.1) 3.0 (0.1), p = NS 3.0 (0.1), p = NS MAD vs. Placebo p = NS Social Outcomes: Baseline: 3.3 (0.1) 3.7 (0.1), p < 0.001	Reported: Word Pair Memory Recall; Logical Memory Test; Digit Span Backwards; Trailmaking B; Digit Symbol Substitution Task; COWAT; PVT; Stroop Color Association Test	NR	NR	NR	NR	NR

First Author,							CBV		
Year	G1 (N)	Mortality,		Cognitive	MVAs, N	CV Events,	Events, N	Heart Failure,	
Trial Name	G2 (N)	N (%)	Quality of Life	Impairment	(%)	N (%)	(%)	N (%)	(%)
			3.4 (0.1), p = NS MAD vs. Placebo p < 0.001						
			NAD VS. Flacebo ρ < 0.001						
			Vigilance:						
			Baseline: 3.0 (0.1)						
			3.1 (0.1), p < 0.01 3.1 (0.1), p < 0.05						
			MAD vs. Placebo p = ns						
			SF-36 mean score, mean (SE) Baseline: 69.4 (1.3) 73.7 (1.2); p <0.001						
			71.4 (1.4); P = NS MAD vs. placebo p = NS						
			Overall health Baseline: 65.9 (1.7)						
			71.7 (1.6); p <0.001 68.7 (1.6); p = NS						
214		- ()	MAD vs. placebo p <0.05						
	Total (24) MAD Monobloc first (8) MAD Herbst	0 (0.0) 0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR
	first (8)								
	No treatment								
	first (8)								
	MAD (34) Usual care (33)	NR	SAQLI, mean (SEM) contd. Treatment-related symptoms Mean (SEM) 10 weeks 1.8 (0.2)	NR	NR	NR	NR	NR	NR
			SF36, mean (SEM); p-val of within group change from BL;						
			between group change from BL						
			vs. usual care						
			Physical function baseline						
			84.7 (1.7)						
			82.3 (2.6)						
			Physical function 10 weeks						
			86.5 (2.0); p=NS; p=NS						
			78.9 (3.6) General health baseline						
			Condial Health Dasellile	1	I				

First Author,							CBV		
Year Trial Name	G1 (N) G2 (N)	Mortality, N (%)	Quality of Life	Cognitive Impairment	MVAs, N (%)	CV Events, N (%)	Events, N (%)	Heart Failure, N (%)	Headache, N (%)
			50.8 (3.9) 51.2 (3.3) General health 10 weeks 58.1 (3.7); p<0.05; p=NS 54.8 (3) Mental health baseline 65.8 (2.9) 65.6 (2.5) Mental health 10 weeks 69.8 (3.1); p=NS; p=NS 68.0 (2.5)						
Petri, 2008 ¹⁹¹	MAD (33) Sham MAD (30) No tx (30)	0 (0.0) 0 (0.0) 1 (3.3)	SF-36 PCS, Mean (SD) Baseline: 45.5 (9.5) 48.1 (9.2) 46.6 (9.6) 4 weeks (within group p-value): 46.5 (8.0); P=0.21 47.5 (11.2); P=0.40 47.3 (8.7); P=0.69 SF-36 MCS, Mean (SD) Baseline: 47.2 (8.5) 48.8 (10.0) 50.2 (8.9) 4 weeks (within group p-value): 51.1 (8.0); P=0.039 49.8 (8.5); P=0.48 51.2 (7.8); P=0.79	NR	NR	NR	NR	NR	NR
Quinnell, 2014 ¹⁹⁷	Total (90) No tx (22) SP1 - MAD (23) SP2 - MAD (22) bMAD (23)	0 0 0 0	FOSQ (p is change from no tx) Total Score 16.62 (2.55), no tx 17.13 (2.42), p < 0.05 17.70 (2.14), p < 0.05 17.90 (1.92), p < 0.05 General Productivity 3.48 (0.45), no tx 3.57 (0.44), p < 0.05 3.66 (0.40), p < 0.05 3.73 (0.36), p < 0.05	NR	2 (3%) 1 (1%) 0 (0%) 2 (3%)	CV Events 1 (1%) 0 (0%) 0 (0%) 1 (1%)	NR	NR	NR

First Author,							CBV		
Year	G1 (N)	Mortality,		Cognitive	MVAs, N	CV Events,	Events, N	Heart Failure,	Headache, N
Trial Name	G2 (N)	N (%)	Quality of Life	Impairment	(%)	N (%)	(%)	N (%)	(%)
	` ,		Social Outcome	-	, ,	` ,	•	ì	ì
			3.53 (0.58), no tx						
			3.61 (0.58)						
			3.71 (0.53), p < 0.05						
			3.74 (0.49), p < 0.05						
			Activity Level						
			3.11 (0.68), no tx						
			3.25 (0.59), p < 0.05						
			3.37 (0.53), p < 0.05						
			3.40 (0.48), p < 0.05						
			Vigilance						
			3.25 (0.57), no tx						
			3.33 (0.54)						
			3.48 (0.47), p < 0.05						
			3.53 (0.42), p < 0.05						
			Intimate Relationships						
			3.20 (0.87), no tx						
			3.34 (0.80)						
			3.45 (0.73), p < 0.05						
			3.49 (0.68), p < 0.05						
			SAQLI (p is change from no tx)						
			Total Score						
			5.01 (1.24), no tx						
			5.25 (1.20), p<0.05						
			5.60 (1.12), p<0.05						
			5.64 (1.06), p<0.05						
			Daily Activities						
			4.83 (1.49), no tx						
			5.16 (1.38), p<0.05						
			5.56 (1.23), p<0.05						
			5.47 (1.33), p<0.05						
			Social Interactions						
			5.31 (1.25), no tx						
			5.49 (1.34)						
			5.85 (1.16), p<0.05						
			5.89 (1.12), p<0.05						
			Emotions						
			5.40 (1.25), no tx						
			5.46 (1.25)						
			5.70 (1.25), p<0.05						
			5.79 (1.09), p<0.05						Ì

First Author,							CBV		
Year	G1 (N)	Mortality,		Cognitive	MVAs, N	CV Events,		Heart Failure,	
Trial Name	G2 (N)	N (%)	Quality of Life	Impairment	(%)	N (%)	(%)	N (%)	(%)
			Symptoms						
			4.47 (1.72), no tx						
			4.82 (1.59), p<0.05						
			5.23 (1.52), p<0.05						
			5.37 (1.47), p<0.05						
			SF36 (p is change from no tx)						
			Physical component						
			43.06 (12.86), no tx						
			42.73 (12.22)						
			45.11 (12.33), p<0.05						
			43.12 (13.81)						
			Mental component						
			46.20 (10.78), no tx						
			46.87 (9.63)						
			47.34 (11.24)						

Abbreviations: BL=baseline; bMAD=fully-bespoke mandibular advancement device; BP=bodily pain; CBV=cerebrovascular; COWAT=Controlled Oral Word Association Test; CV=cardiovascular; FOSQ=Functional Outcomes of Sleep Questionnaire; G=group; GHP=general health perceptions; HT=health transition; MAD=mandibular advancement device; MCS=Mental Component Score of the SF-36; MH=mental health; MVA=motor vehicle accident; N=sample size; NR=not reported; NS=not significant; PCS=Physical Component Score of the SF-36; PF=physical functioning; PVT=Psychomotor Vigilance Test; RE=role emotional; RP=role physical; SAQLI=Sleep Apnea Quality of Life Index; SD=standard deviation; SE=standard error; SF=social functioning; SF-36=36-Item Short Form Health Survey; SP=SleepPro; tx=treatment; Vit=vitality.

Appendix E Table 20. Characteristics of Included Prospective Cohort Studies for KQ 6

First Author, Year Cohort Name N	Study Groups (n)	Participants	Outcomes	Country	F/U	Mean (Range) Age	% F		Mean BMI	Mean AHI; ESS	% HTN	% DM	% Sm	Quality
Blackwell, 2015 ²⁹⁰ MrOS Sleep 2,636	AHI <15 (1,504) AHI ≥15 (1,132)	Community sample, men, ≥67 y/o	Cognitive decline	US	Mean 3.4 yr	,	0		27	12.4; NR	49	13		Fair
Ensrud, 2012 ²²⁰ MrOS Sleep [*] 2,505	AHI ≥30 (209) AHI < 30 (2296)	Community based sample, men, ≥ 67 y/o	All-cause mortality	US	Mean 3.4 yr				27	NR [†]	NR			Fair
Nieto, 2012 ²²¹ WSCS 1,522	AHI <5 (1157) AHI 5 to <15 (222) AHI 15 to <30 (84) AHI ≥30 (59)	community-based, random sample of employed adults, 30- 60 y/o men and women	mortality; all-	US	Up to 22 yr	48 (NR)	45	5	30	NR; NR	NR	NR	57 [§]	Fair
Gooneratne, 2011 ²²³ None 289	AHI ≥ 20 (66) AHI < 20 (223)	Community based sample, men and women > 65 y/o	All-cause mortality	US	Mean 13.8 yr	78 (NR)	74	26	26	14.5; NR	NR	NR		Fair
Gottlieb, 2010 ²²⁴ SHHS 4,422	AHI <5 (2434) AHI 5 to <15 (1254) AHI 15 to <30 (478) AHI ≥30 (256)		Incident CHD Incident HF	US	Med 8.7 yr	, ,	56		28	6.2; NR	33 ¹¹	11		Good
Marin, 2005 ⁵⁰ 1,651	Untreated mild-moderate OSA (AHI 5-30) (403) Untreated severe OSA AHI >30 (235) Treated OSA with CPAP (372) Snorers (377) Healthy controls (264)	Community-based and sleep clinic, men with OSA or snoring	Fatal and non-fatal CV events	Spain	10.1 yr					NR; NR	35	6 to 11	25	Fair
Marshall, 2014 ²²⁹ Marshall, 2008 ²²⁸ Busselton Health Study 393	AHI < 5 (294) 5 ≤ AHI < 15 (81) AHI ≥ 15 (18)	Community-based sample, men and women, aged 40 to65	All-cause mortality	Australia	Up to 20 yrs	54 (NR)	26	NR	26 to 34	NR; NR	NR	3		Fair for all-cause mortality; poor for other outcomes

Appendix E Table 20. Characteristics of Included Prospective Cohort Studies for KQ 6

First Author, Year Cohort Name N	Study Groups (n)	Participants	Outcomes	Country	F/U	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI; ESS	% HTN	% DM	% Sm	Quality
Punjabi, 2009 ²²⁷ SHHS 6,294	AHI <5 (3429) AHI 5-<15 (1797) AHI 15 to <30 (727) AHI ≥30 (341)	sample, ≥40 y/o, recruited from	All-cause mortality; CAD-specific mortality	US	Mean 8.2 yr	63 (NR)	53	23	28	NR	52	11	54#	Good
Redline, 2010 ²²⁵ SHHS 5,422	AHI <4.1 (1356) AHI 4.1-<9.5 (1355) AHI 9.5 to 19.1 (1356) AHI 19.1 to 164.5 (1355)	Community-based sample, ≥40 y/o	Stroke	US	Med 8.7 yr	Med 62- 75 (NR)	55	22	28	6.9- 19.2; NR	37"	12	55 ^{††}	Good
Substudy of SOF 461 had PSG; 298 analyzed	AHI ≥15 (105) AHI < 15 (193)	sample, women ≥ 65 y/o who had PSG in	cognitive	US	Mean 4.7 yr	82 (NR)		9.7	28	10; NR	62	13	2	Fair
WSCS 1,522	AHI <5 (1157) AHI 5 to <15 (220) AHI 15 to <30 (82) AHI ≥30 (63)	•	mortality;	US	Up to 18 yr; mean 13.8 yr	48 (NR)	45	5	28.6	NR; NR ^{‡‡}	33	3	18	Good

Outcomes of Sleep Disorders in Older Men (MrOS Sleep) study; they recruited from the Osteoporotic Fractures in Men (MrOS) Study

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; CAD=coronary artery disease; CHD=coronary heart disease; CV=cardiovascular; DM=diabetes mellitus; ESS=Epworth Sleepiness Scale; F=female; F/U=duration of followup; HF=heart failure; HTN=hypertension; Med=median; N=sample size; NR=not reported; PSG=polysomnography; SDB=sleep disordered breathing; SHHS=Sleep Heart Health Study; Sm=smokers; SOF=Study of Osteoporotic Fractures; US=United States; WSCS=Wisconsin Sleep Cohort Study; yr=years; y/o=years old.

[†] 9% had AHI ≥30; 12% had ESS>10

[‡] 2% current and 57.7% past

[§] past = 38.6; current = 18.1

percentage on antihypertensive medications

^{¶41%} past and 12% current smokers

^{# 11%} current, 43% former smokers

** percentage on antihypertensive medications
†† 12% current and 43% former smokers

^{‡‡} 25% had excessive daytime sleepiness

Appendix E Table 21. Results of Included Prospective Cohort Studies Reporting Mortality by AHI (KQ 6)

First Author,			Other Disease- Specific	
Year		Cardiovascular Mortality, n	Mortality, n	Covariates Included in the Final Adjusted Model
Study Name AHI Cutpoints	All-Cause Mortality, n Events, Adjusted HR/OR (95% CI)	Events, Adjusted HR/OR (95% CI)	Events, Adjusted HR/OR (95% CI)	(Other Covariates Considered in the Study that Were Not Included in the Final Model)
Ensrud, 2012 ²²⁰ None		NR	NR	Base: age, race, clinic site, health status, and BMI
Severe: ≥30 Not Severe: < 30	Base Model OR 1.88 (1.15, 3.08)			Multivariate: age, race, site, health status, BMI, education, social support, alcohol intake, smoking, antidepressant, benzodiazepine, nonbenzodiazepine
	Multivariate model OR 1.74 (1.04, 2.89)			sedative hypnotic use, medical conditions, cognition, and baseline frailty status.
SDB+ (AHI ≥20)/EDS+ SBD-/EDS+ SDB+(AHI ≥20)/EDS-	HR: SDB-/EDS- = Ref SDB+/EDS+ = 2.28 (1.46, 3.57) SBD-/EDS+ = 1.11 (0.75, 1.63) SDB+/EDS- = 0.74 (0.39, 1.38)	NR	NR	Final model included age, male gender, African American race, history of angina, habitual self-reported sleep duration > 8.5 h (other covariates considered: smoking, alcohol intake, BMI, habitual sleep parameters [self-reported sleep duration, sleep latency, sleep efficiency], polysomnography sleep parameters [sleep duration, sleep latency, wakefulness after sleep onset, sleep efficiency], oxyhemoglobin desaturation [nadir in REM and NREM sleep during polysomnography], and 22 medical conditions [diabetes, emphysema, high blood pressure, heart attack, stroke, heart failure, etc.]).
Marin, 2005 ⁵⁰ Untreated mild to mod: AHI 5-30 Untreated Severe: AHI >30 Treated OSA with CPAP: Any AHI >5 Snorers: AHI <5 Healthy controls: AHI <5		81 fatal CV events (due to MI or stroke): 47 in untreated OSA participants; 13 in treated OSA group; 13 in simple snorers; and 8 in healthy men Partial adjusted OR Untreated mild to mod: 1.16 (0.55 to 2.11) Untreated severe: 3.02 (1.44 to 7.33) CPAP treated: 1.05 (0.45 to 2.09) Snorers: 1.03 (0.41 to 1.46)	NR	Partial: Age, diagnostic group, diabetes, lipid disorders, smoking status, alcohol use, systolic and diastolic blood pressure, blood glucose, total cholesterol. Triglycerides, and current use of antihypertensive, lipid-lowering and antidiabetic drugs Full: above plus hypertension and presence of cardiovascular disease—i.e., ischemic heart disease, congestive heart disease, or cerebrovascular disease. Used matching for age and BMI
		Fully adjusted OR Untreated mild to mod: 1.15 (0.34 to 2.69) Untreated severe: 2.87 (1.17 to		

Appendix E Table 21. Results of Included Prospective Cohort Studies Reporting Mortality by AHI (KQ 6)

First Author, Year Study Name	All-Cause Mortality, n Events,	Cardiovascular Mortality, n Events, Adjusted HR/OR (95%	Other Disease- Specific Mortality, n Events, Adjusted	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study that
AHI Cutpoints	Adjusted HR/OR (95% CI)	CI)	HR/OR (95% CI)	Were Not Included in the Final Model)
		7.3) CPAP treated: 1.05 (0.39 to 2.21)Snorers: 1.03 (0.31 to 1.84)		
Busselton Health Study	For 14 year followup: 33 deaths (by group: 22, 5, and 6, respectively) Partially Adjusted HR No OSA: Ref	NR		For 14 year followup: Partially adjusted for age, gender, BMI, smoking status, total cholesterol, HDL cholesterol, diabetes (yes/no), doctor diagnoses angina Fully adjusted: Everything in the partially adjusted
followup RDI No OSA: 0 to 4 Mild: 5 to <15 Mod to severe: ≥15 For 20 year followup: Normal: < 5 Mild 5 to <15 Mod to severe:	Mild: 0.62 (0.23 to 1.69) Mod to severe: 4.40 (1.48 to 13.07), P=0.008 Fully Adjusted HR No OSA: Ref Mild: 0.47 (0.17 to 1.29) Mod to severe: 6.24 (2.01 to 19.39), P=0.002 For 20 year followup: 77 deaths G1: Ref G2: 0.51 (0.27 to 0.99) G3: 4.2 (1.9 to 9.2)			model plus mean arterial pressure For 20 year followup: Adjusted for age, gender, body mass index (normal, overweight, obese), smoking status (never, ex, current), total cholesterol, high density lipoprotein cholesterol, mean arterial pressure, diabetes (yes/no), doctor-diagnosed angina (yes/no), and in mortality, stroke, and CHD models a history of cardiovascular disease (via record linkage yes/no).
WSCS	112 deaths HR:		deaths	age, sex, BMI, smoking (analyses also with stratification for sleepiness and obesity; additional adjustment for alcohol use, physical activity,
Mild: 5 to <15: Mod: 15 to <30	Normal: Ref Mild: 1.8 (1.1 to 2.8) Mod: 1.1 (0.5 to 2.5) Severe: 3.4 (1.7 to 6.7)		Mild: 1.1 (0.5 to 2.7)	educational status, diabetes, waist circumference, and sleep duration did not materially change results [data NR]; analyses removing those treated with CPAP resulted in slightly increased HRs [data NR])

First Author, Year Study Name AHI Cutpoints	All-Cause Mortality, n Events, Adjusted HR/OR (95% CI)	Cardiovascular Mortality, n Events, Adjusted HR/OR (95% CI)	Other Disease- Specific Mortality, n Events, Adjusted HR/OR (95% CI)	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study that Were Not Included in the Final Model)
Punjabi, 2009 ²²⁷ SHHS No SDB: <5 Mild: 5-<15 Mod: 15 to <30 Severe: ≥30	Deaths by AHI: No SDB: 477 Mild: 319 Mod: 165 Severe: 86 All participants Adjusted HR: Model 1 No SDB: ref Mild: 0.90 (0.78 to 1.04) Mod: 1.16 (0.97 to 1.39) Severe: 1.30 (1.03 to 1.64) Adjusted HR: Model 2 No SDB: ref Mild: 0.93 (0.80 to 1.07) Mod: 1.20 (1.00 to 1.44) Severe: 1.38 (1.08 to 1.75) Adjusted HR: Model 3 No SDB: ref Mild: 0.93 (0.80 to 1.08) Mod: 1.17 (0.97 to 1.42) Severe: 1.46 (1.14 to 1.86) Men- all ages Adjusted HR: Model 1 No SDB: ref Mild: 0.94 (0.78 to 1.15) Mod: 1.23 (0.98 to 1.54) Severe: 1.30 (0.98 to 1.72) Adjusted HR: Model 2 No SDB: ref Mild: 0.99 (0.81 to 1.20) Mod: 1.30 (1.03 to 1.64) Severe: 1.42 (1.06 to 1.90)	CAD-specific mortality 220 deaths Limited data reported. In men, AHI ≥15 had a fully adjusted HR 1.69 (1.13 to 2.52). In women, an association was not identified between SDB and CAD-related deaths	NR	Sex was included in all models that used all participants Model 1: Age (continuous) and race Model 2: Age (continuous), race, BMI Model 3: Age (continuous), race, BMI, smoking status (current, never, former), systolic and diastolic blood pressure, prevalent hypertension, diabetes, and CV disease

First Author, Year Study Name AHI Cutpoints	All-Cause Mortality, n Events, Adjusted HR/OR (95% CI)	Cardiovascular Mortality, n Events, Adjusted HR/OR (95% CI)	Other Disease- Specific Mortality, n Events, Adjusted HR/OR (95% CI)	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study that Were Not Included in the Final Model)

First Author, Year Study Name AHI Cutpoints	All-Cause Mortality, n Events, Adjusted HR/OR (95% CI)	Cardiovascular Mortality, n Events, Adjusted HR/OR (95% CI)	Other Disease- Specific Mortality, n Events, Adjusted HR/OR (95% CI)	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study that Were Not Included in the Final Model)
	Adjusted HR: Model 3 No SDB: ref Mild: 0.92 (0.70 to 1.20) Mod: 1.23 (0.90 to 1.68) Severe: 1.27 (0.86 to 1.86) Women – all ages Adjusted HR: Model 1 No SDB: ref Mild: 0.84 (0.68 to 1.04) Mod: 1.05 (0.77 to 1.42) Severe: 1.34 (0.86 to 2.07) Adjusted HR: Model 2 No SDB: ref Mild: 0.85 (0.68 to 1.06) Mod: 1.06 (0.78 to 1.43) Severe: 1.37 (0.88 to 2.13) Adjusted HR: Model 3 No SDB: ref Mild: 0.83 (0.66 to 1.04) Mod: 1.01 (0.73 to 1.38) Severe: 1.40 (0.89 to 2.22) Women- ≤70 yrs Adjusted HR: Model 1 No SDB: ref Mild: 1.00 (0.68 to 1.45) Mod: 1.11 (0.63 to 1.96) Severe: 1.73 (0.84 to 3.58) Adjusted HR: Model 2 No SDB: ref Mild: 0.99 (0.66 to 1.47) Mod: 1.12 (0.62 to 2.02) Severe: 1.75 (0.82 to 3.74)			

First Author, Year Study Name AHI Cutpoints	All-Cause Mortality, n Events, Adjusted HR/OR (95% CI)	Cardiovascular Mortality, n Events, Adjusted HR/OR (95% CI)	Other Disease- Specific Mortality, n Events, Adjusted HR/OR (95% CI)	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study that Were Not Included in the Final Model)
	Adjusted HR: Model 3 No SDB: ref Mild: 0.97 (0.64 to 1.48) Mod: 1.15 (0.63 to 2.11) Severe: 1.76 (0.77 to 3.95) Women- >70 yrs Adjusted HR: Model 1 No SDB: ref Mild: 0.77 (0.60 to 1.00) Mod: 0.98 (0.68 to 1.40) Severe: 1.09 (0.62 to 1.89) Adjusted HR: Model 2 No SDB: ref Mild: 0.78 (0.60 to 1.02) Mod: 0.99 (0.69 to 1.42) Severe: 1.10 (0.63 to 1.92) Adjusted HR: Model 3 No SDB: ref Mild: 0.77 (0.58 to 1.00)			
7736	Mod: 0.89 (0.61 to 1.31) Severe: 1.14 (0.65 to 2.01)			
Young, 2008 ²²⁶ WSCS	80 deaths	25 deaths		Adjusted HRs: Age, age-squared, sex, BMI, BMI-squared
No SDB:<5 Mild: 5 to <15 Mod: 15 to <30 Severe: ≥30	Adjusted HR: No SDB: ref Mild: 1.6 (0.9 to 2.8) Mod: 1.4 (0.6 to 3.3) Severe: 3.0 (1.4 to 6.3) Adjusted HR accounting for comorbidity: No SDB: ref	Adjusted HR: No SDB: ref Mild: 1.8 (0.7 to 4.9) Mod: 1.2 (0.3 to 5.8) Severe: 2.9 (0.8 to 10.0) Fully adjusted HR: Severe: 5.9 (2.6 to 13.3)		Fully adjusted HR: Age, age-squared, sex, BMI, BMI-squared, smoking, alcohol use, general health status, educational status, neck girth, waist-hip ratio, sleep duration, and total cholesterol (authors did not consider this model robust for several reasons, including multicollinearity and potential model instability due to outliers and influential points which was of concern with a small number of outcomes;
	Mild: 1.5 (0.8 to 2.8) Mod: 1.3 (0.5 to 3.2) Severe: 2.7 (1.3 to 5.7)	Adjusted HR excluding those treated with CPAP (n=1396): No SDB: ref Mild: 1.3 (0.4 to 4.1) Mod: 1.5 (0.3 to 7.3)		they just show this model to show that the adjusted HRs did not overestimate the HRs—if anything, they seem to underestimate them) Adjusted HRs also accounting for comorbidity: Age,

Appendix E Table 21. Results of Included Prospective Cohort Studies Reporting Mortality by AHI (KQ 6)

First Author, Year Study Name AHI Cutpoints	All-Cause Mortality, n Events, Adjusted HR/OR (95% CI)	Cardiovascular Mortality, n Events, Adjusted HR/OR (95% CI)	Other Disease- Specific Mortality, n Events, Adjusted HR/OR (95% CI)	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study that Were Not Included in the Final Model)
	treated with CPAP (n=1396): No SDB: ref Mild: 1.4 (0.7 to 2.6) Mod: 1.7 (0.7 to 4.1) Severe: 3.8 (1.6 to 9.0)	Severe: 5.2 (1.4 to 19.2)		age-squared, sex, BMI, BMI-squared, hypertension/use of HTN meds, self-reported diabetes, coronary artery disease, cardiovascular disease, heart failure, myocardial infarction, cardiac surgery, and stroke

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; CAD=coronary artery disease; CI=confidence interval; CPAP=continuous positive airway pressure; CV=cardiovascular; EDS=excessive daytime sleepiness; HDL=high-density lipoprotein; HR=hazard ratio; HTN=hypertension; mod=moderate; MI=myocardial infarction; Mod=moderate; n=number; NR=not reported; NREM=non-rapid eye movement; OR=odds ratio; OSA=obstructive sleep apnea; RDI=respiratory disturbance index; Ref=reference; REM=rapid eye movement; SDB=sleep disordered breathing; SHHS=Sleep Heart Health Study; WSCS=Wisconsin Sleep Cohort Study.

First Author, Year	Cardiovascular Events,	Cardiovascular Events, n	Cognitive Impairment, n	Covariates Included in the Final Adjusted Model
Study Name	n Events, Adjusted	Events, Adjusted HR/OR (95%		
AHI Cutpoints	HR/OR (95% CI)	CI) <u>Continued</u>	(95% CI)	Were Not Included in The Final Model)
Blackwell, 2015 ²⁹⁰	NR	NR	Trails B:	Age, site, race, BMI, education, number of depressive
MrOS Sleep			Normal to mild: Ref	symptoms, history of diabetes, history or stroke or
				transient ischemic attack, history of hypertension, history
Normal or			to 1.54)	of CHD, history of Parkinson's disease, impairment in
mild: < 15				instrumental activities of daily living, benzodiazepine
Mod to			Modified Mini-Mental	use, antidepressant use, self-reported health status,
severe: ≥ 15			State Examination (3MS)	physical activity, alcohol use, and smoking status.
			Normal to mild: Ref	
			Mod to severe: 0.99 (0.79	
2 224			to 1.24)	5.0
Gottlieb, 2010 ²²⁴	Incident CHD events, n	_ ·		Model 1. age, race, BMI, smoking
SHHS	Total: 473 (76 CHD	Total: 308		
Normal: <5		Men: 141		Model 2. age, race, BMI, smoking, total and HDL
Mild: 5 to <15	1	Women: 167		cholesterol, lipid-lowering medications, diabetes mellitus
Mod: 15 to <30	revascularization	Institut UE was UE		Madal O and mada DMI amaking tatal and UDI
Severe: ≥30	procedures)	Incident HF, men, HR		Model 3. age, race, BMI, smoking, total and HDL
		Normal: Ref		cholesterol, lipid-lowering medications, diabetes mellitus,
	Women: 177	4 Milds 0.00 (0.00 to 4.40)		SBP, DBP, use of antihypertensive medications
	Incident CUD man UB	1. Mild: 0.96 (0.63 to 1.46)		
	Incident CHD, men, HR Normal: Ref			
	Normal. Kei	Severe: 1.61 (0.95 to 2.71)		
	1. Mild: 0.94 (0.71 to	2. Mild: 0.90 (0.59 to 1.38)		
		Mod: 1.08 (0.65 to 1.80)		
	Mod: 1.07 (0.75 to 1.52)	Severe: 1.59 (0.94 to 2.69)		
	Severe: 1.45 (0.99 to	0.04 to 2.00)		
	2.13)	3. Mild: 0.88 (0.57 to 1.35)		
		Mod: 1.13 (0.68 to 1.89)		
	2. Mild: 0.93 (0.70 to	Severe: 1.58 (0.93 to 2.66)		
	1.23)	(0.00 10 = 0.00)		
		Incident HF, women, HR		
	Severe: 1.41 (0.96 to	1. Mild: 1.12 (0.79 to 1.59)		
		Mod: 1.10 (0.66 to 1.83)		
		Severe: 1.05 (0.50 to 2.23)		
	3. Mild: 0.91 (0.69 to	,		
		2. Mild: 1.15 (0.81 to 1.63)		
		Mod: 1.06 (0.64 to 1.77)		
	Severe: 1.33 (0.91 to	Severe: 1.19 (0.56 to 2.53)		
	1.95)			
		3. Mild: 1.13 (0.80 to 1.61)		
		Mod: 1.01 (0.60 to 1.69)		
		Severe: 1.19 (0.56 to 2.52)		

First Author, Year Study Name AHI Cutpoints	Cardiovascular Events, n Events, Adjusted HR/OR (95% CI)	Cardiovascular Events, n Events, Adjusted HR/OR (95% CI) <u>Continued</u>	Cognitive Impairment, n Events, Adjusted HR/OR (95% CI)	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study That Were Not Included in The Final Model)
	Incident CHD, women, HR 1. Mild: 1.01 (0.73 to 1.45) Mod: 0.92 (0.54 to 1.55) Severe: 0.36 (0.11 to 1.16) 2. Mild: 0.99 (0.71 to 1.40) Mod: 0.89 (0.52 to 1.51) Severe: 0.37 (0.12 to 1.19) 3. Mild: 0.98 (0.69 to 1.38) Mod: 0.87 (0.51 to 1.49) Severe: 0.40 (0.12 to 1.27)			
Marin, 2005 ⁵⁰ Untreated mild to mod: AHI 5-30 Untreated Severe: AHI >30 Treated OSA with CPAP: Any AHI >5 Snorers: AHI <5 Healthy controls: AHI <5	144 Non-fatal cardiovascular events (non-fatal MI, non-fatal stroke, coronary bypass surgery, percutaneous transluminal coronary angiography): 86 in untreated OSA participants; 24 in treated OSA group; 22 in simple snorers; and 12 in healthy men Partial adjusted OR Untreated mild to mod: 1.62 (0.65 to 3.01) Untreated severe: 3.32 (1.24 to 7.41) CPAP treated: 1.42 (0.53 to 3.29) Snorers: 1.23 (0.71 to 2.86)			Partial: Age, diagnostic group, diabetes, lipid disorders, smoking status, alcohol use, systolic and diastolic blood pressure, blood glucose, total cholesterol. Triglycerides, and current use of antihypertensive, lipid-lowering and antidiabetic drugs Full: above plus hypertension and presence of cardiovascular disease—i.e., ischemic heart disease, congestive heart disease, or cerebrovascular disease. Used matching for age and BMI

First Author, Year Study Name	Cardiovascular Events, n Events, Adjusted	Cardiovascular Events, n Events, Adjusted HR/OR (95%	Cognitive Impairment, n	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study That
AHI Cutpoints	HR/OR (95% CI)	CI) Continued	(95% CI)	Were Not Included in The Final Model)
	Fully adjusted OR Untreated mild to mod: 1.57 (0.62 to 3.16) Untreated severe: 3.17 (1.12 to 7.52) CPAP treated: 1.42 (0.52 to 3.40) Snorers: 1.32 (0.64 to 3.01)		(00.000)	,
Redline, 2010 ²²⁵	0.01)	Incident ischemic stroke		Fully adjusted model included age, BMI, smoking status,
SHHS		193 total (15 fatal), 85 in men		SBP, use of antihypertensive medications, diabetes
		and 108 in women		status, and race (secondary analyses addressed atrial
Men				fibrillation also; including it did not materially change the
Quartile I: <4.1		Age Adjusted HR		findings)
Quartile II: 4.1-<9.5		Men AHI <4.1: ref		
Quartile III: 9.5 to 19.1		AHI 4.1-<9.5: 1.86 (0.68 to 5.13)		
Quartile IV: 19.1 to		AHI 9.5 to 19.1: 1.97 (0.74 to		
164.5		5.21)		
		AHI 19.1 to 164.5: 3.05 (1.21 to		
		7.72)		
		Women		
		AHI <4.1: ref		
		AHI 4.1-<9.5: 1.34 (0.77 to 2.34)		
		AHI 9.5 to 19.1: 1.26 (0.72 to		
		2.20)		
		AHI 19.1 to 164.5: 1.24 (0.69 to 2.22)		
		Fully Adjusted HR Men AHI <4.1: ref AHI 4.1-<9.5: 1.86 (0.67 to 5.12) AHI 9.5 to 19.1: 1.86 (0.70 to 4.95) AHI 19.1 to 164.5: 2.86 (1.10 to 7.39)		
		Women		
		AHI <4.1: ref		
		AHI 4.1-<9.5: 1.34 (0.76 to 2.36)		
		AHI 9.5 to 19.1: 1.20 (0.67 to		

First Author, Year	Cardiovascular Events,		Cognitive Impairment, n	
Study Name	n Events, Adjusted	Events, Adjusted HR/OR (95%		
AHI Cutpoints	HR/OR (95% CI)	CI) <u>Continued</u>	(95% CI)	Were Not Included in The Final Model)
		2.16)		
		AHI 19.1 to 164.5: 1.21 (0.65 to		
		2.24)		
Yaffe, 2011 ²²²			Mild cognitive impairment	Adjusted: age, race, body mass index, education level,
SOF			or dementia	smoking status, presence of diabetes, presence of
SDB+: ≥ 15				hypertension, antidepressant use, benzodiazepine use,
SDB-: < 15			Unadjusted OR 1.80	and use of nonbenzodiazepine anxiolytics.
			(1.10, 2.93)	' '
			, ,	Additional adjustment models also adjusted for baseline
				cognitive test scores.
			3.08)	
			0.00)	
			Additional adjustment OR	
			2.36 (1.34, 4.13)	

^{*} Shortened mini-mental state exam and modified Trails B at baseline. Followup included: Trails B, modified mini-mental state examination, California Verbal Learning Test, Digit Span, and category and verbal fluency tests.

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; CHD=cardiovascular heart disease; CI=confidence interval; CPAP=continuous positive airway pressure; DBP=diastolic blood pressure; HDL=high-density lipoprotein; HF=heart failure; HR=hazard ratio; mod=moderate; MI=myocardial infarction; NA=not applicable; NR=not reported; OR=odds ratio; OSA=obstructive sleep apnea; RDI=respiratory disturbance index; Ref=reference; SDB=Sleep Disordered Breathing; SBP=systolic blood pressure; SHHS=Sleep Heart Health Study; SOF=Study of Osteoporotic Fractures; WSCS=Wisconsin Sleep Cohort Study.

Appendix E Table 23. Results of Included Randomized, Controlled Trials: Harms of CPAP Compared With Sham or Control (KQ 8)

First Author, Year Trial Name Quality for Harms	G1 (N) G2 (N)	DC Due to Harms, N (%)	Rash, N (%)	(%)	Need for Additional Sleep Meds, N (%)	Claustrophobia, N (%)	Ñ (%)	Nosebleed, N (%)	Pain, N (%)	Excess Salivation, N (%)	Dental, N (%)
Engleman, 1999 ¹⁷⁶	(NR)	0 (0.0)	NR	NR	NR	NR	4 (12) 0 (0)	NR	0 (0.0) 1 (2.9)	NR	NR
Fair	Oral Placebo first (NR)										
Hui, 2006 ¹⁴¹		0 (0.0) 5 (17.8)	NR	NR	NR	NR	NR	NR	NR	NR	NR
Fair	(28)	NID	D (ND	NID	ND	NID	ND	NID	NID	ND
Kushida, 2012 ¹⁴⁵	CPAP (556) Sham CPAP	NR		NR	NR	NR	NR	NR	NR	NR	NR
APPLES	(542)		logical 102 (18.3) 61 (11.3)								
Fair			(
Lam, 2007 ¹⁸⁰ Fair	CPAP (34) Usual care (33)	0 (0.0) 0 (0.0)		Facial skin abrasion: 7 (21)	NR	NR	16 (47) 0 (0)	NR	TMJ pain: 0 (0.0) 0 (0.0)	0 (0) 0 (0)	0 (0) 0 (0)
Malow, 2008 ¹⁵⁰ Fair	Total (35) CPAP (22) Sham CPAP (13)	0 (0.0) 0 (0.0)	NR	0 (0) 2 (9.1) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR
Redline, 1998 ¹⁸³	CPAP (59)	3 (5.1) 0 (0.0)		2 (3.3) 0 (0.0)	NR	NR	NR	1 (1.7) 2 (3.6)	NR	NR	NR
Fair	(5.4)	2 (2 2)				1 (2 2) 1					
Smith, 2007 ¹⁶³	Total (24) CPAP first	0 (0.0) 1 (3.9)	NR	NR	NR	1 (3.9) but unclear which	NR	NR	NR	NR	NR
Fair	(11) Sham first (13)					arm					
Weaver, 2012 ¹⁶⁶	CPAP (141) Sham CPAP (140)	1 (0.8) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR	NR	NR
Fair	<u> </u>										

Appendix E Table 23. Results of Included Randomized, Controlled Trials: Harms of CPAP Compared With Sham or Control (KQ 8)

First Author, Year Trial Name Quality for Harms	G1 (N) G2 (N)	DC Due to Harms, N (%)	Rash, N (%)	Irritation, N (%)	Need for Additional Sleep Meds, N (%)	Claustrophobia, N (%)	Oral or Nasal Dryness, N (%)	Nosebleed, N (%)	Pain, N (%)	Excess Salivation, N (%)	Dental, N (%)
Weinstock, 2012 ^{167,289} Fair	, ,	0 (0.0) 0 (0.0)	NR	Skin irritation: 6 (12.0) 2 (4.0) Eye irritation: 1 (2.0) 0 (0.0)	NR	0 (0.0) 1 (2.0)	NR	NR	Ear pain: 1 (2.0) 0 (0.0) Non-cardiac chest pain: 1 (2.0) 0 (0.0)	NR	NR

Abbreviations: addl=additional; APPLES=Apnea Positive Pressure Long-term Efficacy Study; claustro=claustrophobia; CPAP=continuous positive airway pressure; DC=discontinued; G=group; MAD=mandibular advancement device; meds=medications; N=sample size; NR=not reported; saliv=salivation; TMJ=temporomandibular; UC=usual care; wks=weeks.

Appendix E Table 24. Results of Included Randomized, Controlled Trials: Harms of MADs Compared With Sham or Control (KQ 8)

First Author, Year Trial Name	G1 (N) G2 (N)	DC Due to Harms, N (%)	Rash, N (%)	Irritation, N	Need for Addl Sleep Meds, N (%)	Claustro, N (%)	Oral or Nasal Dryness, N (%)	Nosebleed, N (%)	Excess Saliv, N (%)	Pain, N (%)	Dental, N (%)
Aarab, 2011 ¹⁸⁹	MAD (20) Intraoral Placebo Device (19)	0 (0.0)	NR		NR	NR	4 (20.0) 0 (0.0)	NR	9 (45.0) 0 (0.0)	10 ^x (50.0) 0 (0.0)	9 [†] (45.0) 0 (0.0)
Bloch, 2000 ²¹⁴	Total (24) MAD Monobloc first (8) MAD Herbst first (8) No treatment first (8)	0 (0.0) 0 (0.0)	NR	NR (but reported dental discomfort and mucosal erosions— see Dental column)	NR	NR	NR	NR	NR	TMJ pain Both MADs: 7 (29.2) No tx: 0 (0.0) Muscle discomfort Both MADs: 4 (16.7) No tx (0.0)	Dental discomfort Both MADs: 3 (12.5) No tx: 0 (0.0) Mucosal erosions Herbst MAD: 3 (12.5) Monobloc MAD: 0 (0.0) No tx: 0 (0.0)
Durán- Cantolla, 2015 ³⁶	Total (42) MAD first (NR) Sham MAD first (NR)		NR		NR	NR	Oral dryness: 2 (4.8) 1 (2.6)		15 (35.7) 22 (57.9)	Dental or gingival pain: 7 (16.7) 4 (10.5) Tongue pain: 3 (7.1) 4 (10.5) TMJ pain: 3 (7.1) 1 (2.6)	Temporal bite change: 5 (11.9) 2 (5.3) Damage to dental restorations: 2 (5.1) 1 (2.6)
Johnston, 2002 ¹⁹⁵	Total (21) MAD first (13) Sham first (8)	0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR (68)	TMJ	Temporary occlusal changes: NR (4)

Appendix E Table 24. Results of Included Randomized, Controlled Trials: Harms of MADs Compared With Sham or Control (KQ 8)

First Author, Year	G1 (N)	DC Due to	Rash,	Irritation, N	,	Claustro,	Oral or Nasal Dryness,	Nosebleed,	Excess Saliv,	Pain,	Dental,
Trial Name	G2 (N)	Harms, N (%)	N (%)	(%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)
Lam, 2007 ¹⁸⁰	MAD (34)	` '	NR	NR	NR	NR	11 (33)	NR	19 (56)	TMJ pain:	11 (33)
	Usual care (33)	0 (0.0)					0 (0)		0 (0)	13 (38) 0 (0.0)	0 (0)
Naismith, 2005 ¹⁹² Gotsopoulos, 2002 ¹⁹³ Gotsopoulos, 2004 ¹⁹⁴	Total (67) MAD first (35) Sham MAD first (32)	0 (0.0) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR; P<0.05	Jaw discomfort: NR; P<0.0001	Tooth tenderness: NR; P<0.0001
Petri, 2008 ¹⁹¹	MAD (33) Sham MAD (30) No tx (30)	4 (12.1) 2 (6.7) 0 (0.0)	NR	NR	NR	NR	NR	NR	NR	1 (3.0) 0 (0.0) 0 (0.0)	1 (3.0) 1 (3.3) 0 (0.0)
Quinnell, 2014 ¹⁹⁷	Total (90) SP1 - MAD (23) SP2 - MAD (22) bMAD (23) No tx (22)	1 (4.3) 0 (0) 2 (8.6) 0 (0)	NR	NR	NR	NR	20 (24.7) 24 (30.8) 18 (23.4) 10 (12.8)	NR	32 (39.5) 18 (23.1) 29 (37.7) 2 (2.6)	60* (74.1) 52 (66.7) 74 (96.1) 13 (16.7)	1 (4.3) 0 (0) 2 (8.6) 0 (0)

Abbreviations: addl=additional; bMAD=fully-bespoke mandibular advancement device; claustro=claustrophobia; DC=discontinuation; G=group; meds=medications; MAD=mandibular advancement device; N=sample size; NR=not reported; saliv=salivation; SP=SleepPro; TMJ=temporomandibular; tx=treatment.

^{*} Discomfort in wearing MAD

† Data reported were for sensitive teeth upon awakening (Study also reported tenderness in the masseter muscle region upon awakening, n=13 in MAD group)

† Data were for "discomfort/mouth problems"

Table E25. Results of Included Randomized, Controlled Trials: Harms of Weight Loss Interventions Compared With Sham or Control (KQ 8)

First Author, Year Trial Name Quality for Harms	G1 (N) G2 (N)	DC Due to Harms, N (%)	,	Irritation, N	Need for Addl Sleep Meds, N (%)	Claustro, N (%)	Oral or Nasal Dryness, N (%)	Nosebleed, N (%)	Pain, N (%)	Excess Saliv, N (%)	Dental, N (%)
Johansson, 2009 ²⁰⁷	Weight loss (30) Usual care	0 (0.0) 0 (0.0)	NR	NR	NR		Dry lips: 1 (3.3) 0 (0.0)	NR	NR	NR	NR
Fair	(33)						0 (0.0)				

Abbreviations: addl=additional; claustro=claustrophobic; DC=discontinued: G=group; N=number; NR=not reported; saliv=salivation.

Appendix E Table 26. Results of Included Randomized, Controlled Trials: Harms of Surgical Treatment (KQ 8)

First Author, Year Trial Name	G1 (N) G2 (N)	Periop Death, N (%)	Pain N(%)	Hemrg, N (%)	Nerve Palsy, N (%)	Addl Emerg Surgery, N (%)	CV Events, N (%)	Resp Failure, N (%)	Rehosp, N (%)	Speech or Voice Changes, N (%)	Diff Swallow, N (%)	Airway Stenosis, N (%)	Other
Bäck, 2009 ¹⁹⁸ Fair	Soft palate	0 (0.0) 0 (0.0)	Data in figure only, VAS, p<0.05 on POD #1	NR	NR	NR	NR	NR	NR		NR	NR	Swelling sensation: Data in figure only, VAS, p<0.05 on POD #1, 2, 3, 4, and 6 Drinking: Data in figure only, VAS, NS Breathing: Data in figure only, VAS, NS Opening the mouth: Data in figure only, VAS, NS
2013 ¹⁹⁹		0 (0.0) NA		Post- operative bleeding: 2 (6) NA	NR	NR	NR	NR	NR	NR	NR	NR	
	Bariatric Surgery (30) Conven- tional Weight loss program (30)	` '	NR	NR	NR	NR	NR	NR	1 (3.3) NA	NR	NR		One patient in the surgery group experienced an acute proximal gastric pouch dilation causing obstructive symptoms and requiring elective laporascopic replacement of the LAGB at 1 month.

Appendix E Table 26. Results of Included Randomized, Controlled Trials: Harms of Surgical Treatment (KQ 8)

First Author, Year Trial Name	G1 (N) G2 (N)	Periop Death, N (%)	Pain N(%)	Hemrg, N (%)	Nerve Palsy, N (%)	Addl Emerg Surgery, N (%)	CV Events, N (%)	Resp Failure, N (%)	Rehosp, N (%)	Speech or Voice Changes, N (%)	Diff Swallow, N (%)	Airway Stenosis, N (%)	Other
Woodson, 2003 ²⁰³ Fair	TCRFTA surgery (30) Sham surgery (30)	0 (0.0)	10-cm VAS pain scale (SD): 1 week 1.64 (2.19) 1.84 (2.35) 3 weeks 0.71 (1.13) 0.33 (0.65)	NR	NR	NR		NR	NR		10-cm VAS swallowing scale (SD): 1 week 2.14 (2.52) 1.73 (2.44) 3 weeks 0.85 (1.36) 0.57 (0.99)		Hematomas: 3 (12) 3 (11) Ulcerations: 1 (4) 0 (0) Infections: 0 (0) 0 (0)
Ferguson, 2002 ²⁰¹ Fair	LAUP (21) No treatment (25)	0 (0) NA	NA	4 (19) mild bleeding; 5 (24) mod to severe bleeding NA	NR	NR	NR	NR	NR	1 (5) change in vocal quality NA	4 (19) NA		Temporary nasal regurgitation: 5 (24) Mild infection: 4 (19) NA

Abbreviations: addl=additional; CV=cardiovascular; CI=confidence interval; DC=discontinued; diff swallow=difficulty swallowing; emerg=emergency; G=group; hemrg=hemorrhage; LAGB=laparoscopic adjustable gastric banding; LAUP=laser assisted uvulopalatoplasty; MVA=motor vehicle accident; N=sample size; NA=not applicable; NR=not reported; OR=odds ratio; periop=perioperative; POD=postoperative day; rehosp=rehospitalization; RF=radiofrequency; resp=respiratory; SD=standard deviation; TCRFTA=temperature-controlled radiofrequency tissue ablation; UC=usual care; UPPP=uvulopalatopharyngoplasty; VAS=visual analog scale; wks=weeks.

Appendix E Table 27. Characteristics of Studies Excluded From KQ 2 Because of Poor Quality

First Author, Year Country Study design	N	Participants	Questionnaire(s)/ Tool(s) Name	Questionnaire(s)/ Tool(s) Components	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI	% HTN; % HF	% With OSA
Chung, 2008 ⁶⁹ Canada Cross-sectional		Preoperative clinics	STOP and STOP-BANG	STOP Questionnaire - snoring, tiredness during the daytime, observed apnea, high blood pressure STOP-Bang – STOP plus BMI, Age, neck circumference, gender	55 (NR)	50	NR	30	20		Any: 69 Mild: 29 Mod: 18 Severe: 22
Gurubhagavatula, 2004 ¹⁰⁵ United States Cross-sectional	had PSG [†]	sample of commercial driver's license holders within 50 miles of their sleep			44 (NR)	7	15	28	NR		Weighted average sample: No OSA: 72 At least mild: 28 At least mod: 11 Severe:5

^{*} Population characteristics entered in this table are for the validation sample

Abbreviations: AHI=apnea-hypopnea index; BMI=body mass index; F=female; HF=heart failure; HTN=hypertension; Mod=moderate; MVAP=multivariable apnea prediction; N=sample size; NR=not reported; ODI=oxygen desaturation index; OSA=obstructive sleep apnea; PA=Pennsylvania; PM=portable monitor; PSG=polysomnography; STOP=snoring, tiredness, observed apnea, high blood pressure.

[†] Sample who had PSG was enriched for the presence of OSA by inviting those with the highest risk (based on MVAP) and then randomly sampling a smaller number from the lower risk participants. About 45% (247/551) of the higher-risk stratum and 20% (159/778) of the lower-risk stratum ultimately underwent PSG

Appendix E Table 28. Results of Studies Excluded Because of Poor Quality: Accuracy of Screening Questionnaires and Clinical Prediction Tools (KQ 2)

First Author,	Questionnaire/Tool Name					
Year	Cutoff Value	Sensitivity (95% CI)	Specificity (95% CI)	AUROC (95% CI)	Calibration*	Others
Chung, 2008 ⁶⁹	predict AHI > 5	65.6 (56.4 to 73.9)	60.0 (45.9 to 73.0)	0.703	NR	PPV 78.4 (69.2 to 86.0) NPV 44.0 (32.6 to
	STOP high risk (yes to 2 or more) vs. low risk					56.0)
Chung, 2008 ⁶⁹	STOP Questionnaire to predict AHI > 15	74.3 (62.4 to 84.0)	53.3 (43.4 to 63.0)	0.722	NR	PPV 51.0 (41.3 to 60.7) NPV 76.0 (64.8 to
	STOP high risk (yes to 2 or more) vs. low risk					85.1)
Chung, 2008 ⁶⁹	STOP Questionnaire to predict AHI > 30	79.5 (63.5 to 90.7)	48.6 (40.0 to 63.0)	0.769	NR	PPV 30.4 (21.7 to 40.3) NPV 89.3 (80.1 to
	STOP high risk (yes to 2 or more) vs. low risk					95.3)
Chung, 2008 ⁶⁹	STOP BANG to predict AHI > 5	83.6 (75.8 to 89.7)	56.4 (42.3 to 69.7)	0.806	NR	PPV 81.0 (73.0 to 87.4) NPV 60.8 (46.1 to
	STOP-BANG high risk (yes to ≥3) vs. low risk					74.2)
Chung, 2008 ⁶⁹	STOP-BANG to predict AHI > 15	92.9 (84.1 to 97.6)	43.0 (33.5 to 52.9)	0.782	NR	PPV 51.6 (42.5 to 60.6) NPV 90.2 (78.6 to
	STOP-BANG high risk (yes to ≥3) vs. low risk					96.7)
Chung, 2008 ⁶⁹	STOP-BANG to predict AHI > 30	100 (91.0 to 100.0)	37.0 (28.9 to 45.6)	0.822	NR	PPV 31.0 (23.0 to 39.8) NPV 100 (93.0 to
	STOP-BANG high risk (yes to ≥3) vs. low risk					100.0)
Gurubhaga- vatula, 2004 ¹⁰⁵	MVAP to predict severe OSA (AHI ≥ 30)	0.808 (0.516 to 0.905)	0.728 (0.719 to 0.802)	0.841 (0.707 to 0.872)	NR	LR Neg 0.264 (0.123 to 0.568)
	0.55					

Appendix E Table 29. Results of Studies Excluded Because of Poor Quality: Accuracy of Screening Questionnaires and Clinical Prediction Tools (KQ 2)

First Author,	Questionnaire/Tool Name					
Year	Cutoff value	Sensitivity (95% CI)	Specificity (95% CI)	AUROC (95% CI)	Calibration*	Others
Gurubhagavatula, 2004 ¹⁰⁵	, ,	0.724 (0.655 to 0.792)	0.756 (0.651 to 0.764)	0.798 (0.737 to 0.823)	NR	LR Neg 0.365 (0.289 to 0.495)
Gurubhagavatula, 2004 ¹⁰⁵	_	0.909 (0.719 to 0.969)	0.906 (0.845 to 0.910)	0.937 (0.936 to 0.939)	NR	LR Neg 0.100 (0.035 to 0.323)
2004 ¹⁰⁵	Two-stage model: MVAP+PM to predict any OSA (AHI ≥ 5) 0.9, 0.2, 5 ^a		0.892 (0.869 to 0.937)	0.881 (0.869 to 0.887)	NR	LR Neg 0.287 (0.257 to 0.432)

^{*} Upper bound for MVAP, lower bound for MVAP, and ODI threshold

Abbreviations: AHI=apnea-hypopnea index; AUROC=area under the receiver operating characteristic curve; CI=confidence interval; LR=likelihood ratio; MVAP=multivariate apnea prediction; Neg=negative; NPV=negative predictive value; NR=not reported; ODI=oxygen desaturation index; OSA=obstructive sleep apnea; PM=portable monitor; PPV=positive predictive value; STOP=snoring, tiredness, observed apnea, high blood pressure.

Appendix E Table 30. Characteristics of Randomized, Controlled Trials of Mandibular Advancement Devices Excluded Because of Poor Quality

First Author, Year Design Trial Name	G1 (N) G2 (N)	Source of Patients	Screen Detected?	Country	Duration, wks	Mean (Range) Age	% F	% Non- White	Mean BMI	Mean AHI	Mean ESS	OSA Severity	% HTN; % HF
2005 ²⁹⁴ Parallel	Sham (12)	NR	No	Spain	12	53-56	17	NR	28	24-34		Mild to severe	NR; 0%
	Total (28) MAD first (NR) Sham MAD first (NR)	Sleep clinic	No	Australia	1-2 [*]	48 (35-73)	21	NR	29	27			NR NR

^{* 3} weeks total; ABB/BAA design, so some patients were on MAD for 1 week and others for 2 weeks

Abbreviations: AHI=apnea hypopnea index; BMI=body mass index; Dur=duration; ESS=Epworth Sleepiness Scale; F=female; G=group; HF=heart failure; HTN=hypertension; MAD=mandibular advancement device; N=sample size; NR=not reported; OSA=obstructive sleep apnea; pts=patients; wks=weeks.

Appendix E Table 31. Results of Randomized, Controlled Trials That Evaluated Mandibular Advancement Devices and Reported Health Outcomes That Were Excluded Because of Poor Quality (KQ 5)

First Author,							CBV		
Year	G1 (N)	Mortality,		Cognitive	MVAs, N	CV Events,		Heart Failure,	
Trial Name	G2 (N)	N (%)	Quality of Life	Impairment ^f	(%)	N (%)	(%)	N (%)	(%)
Blanco, 2005 ²⁹⁴	MAD (12)	0 (0.0)	FOSQ (total score), mean (SD) Baseline 78.1 (22.6) 83.7 (20.8) 12 weeks 99.3 (14.4), p < 0.05 82.3 (13.9), p = NS SF-36, mean (SD) Physical function Baseline 70.7 (16.4) 71.5 (20.7) 12 weeks 74.1 (18.4), p = NS 78.8 (19.1), p = NS Mental health Baseline 60.1 (19.3) 52 (15.7) 12 weeks 59.4 (19.2), p = NS 56.0 (18.0), p = NS General health Baseline 60.7 (22.0) 57.4 (6.8) 12 weeks	NR	NR		NR	NR	NR
			61.0 (20.7), p = NS 58.4 (10.5), p = NS						
Mehta, 2001 ²⁹⁵	Total (28)	0 (0.0)	NR	NR	NR	NR	NR	NR	NR
Cross-over	MAD first (NR) Sham MAD first (NR)								

Abbreviations: CBV=cerebrovascular; CV=cardiovascular; FOSQ=Functional Outcomes of Sleep Questionnaire; G=group; MAD=mandibular advancement device; MVA=motor vehicle accident; N=number; NR=not reported; NS=not significant; SD=standard deviation; SF-36=36-Item Short Form Health Survey.

Appendix E Table 32. Characteristics of Prospective Cohort Studies Excluded From KQ 6 Because of Poor Quality

First Author,													
Year						Mean				Mean			
Cohort Name						(Range)		% Non-	Mean	AHI;			
N	Study Groups (n)	Participants	Outcomes	Country	F/U	Age	% F	White	BMI	ESS	% HTN	% DM	% Sm
Arzt, 2005 ²³⁰	AHI <5 (1,121)	Community-based,	Stroke	US	Up to 12	47 (NR)	45	5	30	NR; NR	32	3	18
WSCS	AHI 5 to <20 (255)	random sample of			yr								1
1,475 (1,189 in	AHI ≥20 (99)	employed adults, 30-											i
Iongitudinal		60 y/o men and											i
analysis)		women											i
Munoz, 2006 ²³¹	AHI <30, No OSA to	Community-based	Ischemic	Spain	Up to 6	77 (NR)	43	NR		: -	67	16	12
Vitoria Sleep	mod (299)	sample, aged 70 to	stroke		yr; mean					28; NR			1
Project	AHI ≥30, severe (95)	100, noninstitutiona-			4.5 yr								1
394		lized											1
	AHI <15 (156)	Community sample,	Cognitive	France	8 yrs	67	60	NR	24.9	21.0; 5.8	42.3	3.8	NR
2015 ²³²	15 ≤ AHI ≤ 30 (304)	men and women, 65	function										i
559	AHI >30 (99)	yrs old at intake											

^{*} Reported mean AHI for those without incident stroke (20.1) and those with incident stroke (28).

Abbreviations: AHI=apnea hypopnea index; BMI=body mass index; DM=diabetes mellitus; ESS=Epworth Sleepiness Scale; F=female; F/U=followup; HTN=hypertension; N=number; NR=not reported; OSA=obstructive sleep apnea; Sm=smokers; US=United States; WSCS=Wisconsin Sleep Cohort Study; y/o=years old; yr=year.

Appendix E Table 33. Results of Prospective Cohort Studies Excluded From KQ 6 Because of Poor Quality That Reported Cardiovascular Events, Cerebrovascular Events, or Cognitive Impairment by AHI

First Author, Year Study Name AHI Cutpoints	Cardiovascular Events, n Events, Adjusted HR/OR (95% CI)	Cerebrovascular Events, n Events, Adjusted HR/OR (95% CI)	Cognitive Impairment, n Events, Adjusted HR/OR (95% CI)	Covariates Included in the Final Adjusted Model (Other Covariates Considered in the Study That Were Not Included in the Final Model)
Arzt, 2005 ²³⁰ WSCS No SDB: <5: Mild: 5 to <20 Mod to severe: ≥20	NR	14 participants had a first- ever stroke (9, 1, and 4, respectively) Adjusted OR for Incidence of stroke: Model 2B No SDB: ref Mild:0.35 (0.05 to 2.69) Mod to severe: 4.48 (1.31 to 15.33) Model 3B No SDB: ref Mild:0.29 (0.04 to 2.36) Mod to severe: 3.08 (0.74 to	NR	Model 2B: age, sex Model 3B: age, sex, BMI
Munoz, 2006 ²³¹ Vitoria Sleep Project	NR	12.81) 25 ischemic strokes: Adjusted HR AHI <30: 1 ref AHI ≥30: 2.52 (1.04 to 6.10),	NR	Adjusted only for sex
No OSA to mod: 0 to 29 Severe: ≥30		P=0.040		
Saint Martin, 2015 ²³² Normal or mild: AHI <15 Mod: 15≤AHI≤30 Severe: AHI >30	NR	NR	Attentional Z-Score AHI - t = -3.63, p = 0.0003 Executive Z-Score AHI - t = -0.27, p = 0.45 Memory Z-Score AHI - t = -1.65, p = 0.08 Multiple logistic regression analyses revealed that group 2 (\geq 15 AHI \leq 30) had no risk for attentional decline (OR, 0.73; 95%	Sex, educational level, baseline age, number of years of follow-up, body mass index, Epworth Sleepiness Scale, hypertension, diabetes, anxiety, and depression

Appendix E Table 33. Results of Prospective Cohort Studies Excluded From KQ 6 Because of Poor Quality That Reported Cardiovascular Events, Cerebrovascular Events, or Cognitive Impairment by AHI

First Author, Year	The state of the s	Cerebrovascular Events, n		
Study Name	Events, Adjusted HR/OR	Events, Adjusted HR/OR	Events, Adjusted HR/OR	(Other Covariates Considered in the Study That
AHI Cutpoints	(95% CI)	(95% CI)	(95% CI)	Were Not Included in the Final Model)
			confidence interval (CI) =	
			0.35-1.52, $P = 0.40$),	
			moderate to severe cases	
			(AHI > 30) were three	
			times more likely to have	
			a greater attentional	
			decline (OR, 2.97; 95%	
			CI, 1.45 to 6.10; P =	
			0.003).	

Abbreviations: AHI=apnea hypopnea index; BMI=body mass index; CI=confidence interval; HR=hazard ratio; Mod=moderate; NR=not reported; OR=odds ratio; OSA=obstructive sleep apnea; ref=reference; SDB=sleep disordered breathing; WSCS=Wisconsin Sleep Cohort Study.

Appendix E Table 34. Results of Randomized, Controlled Trials That Reported Harms (KQ 8) of Mandibular Advancement Devices But Were Excluded Because of Poor Quality

First Author, Year Trial Name	G1 (N) G2 (N)	DC Due to Harms, N (%)	,	Irritation, N	Need for Addl Sleep Meds, N (%)	Claustro, N (%)	Oral or Nasal Dryness, N (%)	Nosebleed, N (%)	Excess Saliv, N (%)	Pain, N (%)	Dental, N (%)
Blanco, 2005 ²⁹⁴	MAD (12) Sham MAD	- ()	NR	NR	NR	NR	NR	NR	2 (25.0) 0 (0.0)	NR	NR
	(12) Total (28)	0 (7.4)	ND	F (20)	ND	ND	44 (40)	ND	` ′	2 (42.5)	2 (42.5)
		2 (7.1) 0 (0.0)	NR	5 (20)	NR	NR	11 (46)	NR	12 (50)	3 (12.5)	3 (12.5)
	Sham MAD first (NR)										

Abbreviations: addl=additional; claustro=claustrophobia; DC=discontinued: G=group; MAD=mandibular advancement device; N=number; NR=not reported; saliv=salivation.

Appendix F Figure 1. AHI, CPAP vs. Control

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each	study	Samp	ole size	Difference in
Study Design							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% CI
Crossover	Barnes 2004	12	mil-mod	11	31	21	-15.50	-18.70	-12.30	114	114	
Crossover	Toukh, 2012	2	sev only	NR	36	NR	-27.80	-38.53	-17.07	13	13	- -
Crossover							-20.54	-32.40	-8.68			😓
Parallel	lp, 2004	4	mod-sev	11	29	47	-46.80	-57.70	-35.90	14	14	-= -
Parallel	Lam, 2007	10	mil-sev	12	27	21	-22.20	-27.66	-16.74	34	33	=
Parallel	Ruttanaumpawan, 2008	4	mod-sev	NR	31	43	-23.00	-34.40	-11.60	19	14	 = -
Parallel	Pamidi, 2015	2	mil-sev	11	35	37	-33.90	-47.59	-20.21	2 6	13	-
Parallel							-31.02	-42.81	-19.24			
Overall							-25.81	-34.17	-17.45			
												-60.00 -30.00 0.00 30.00

Random-effects meta-analyses; overall I-squared=87%

roup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	study	Samp	e size		Differ	ence i	in	
tudy Design							Difference in means	Lower limit	Upper limit	CPAP	Sham		means a	nd 95	% CI	
rossover	Phillips, 2011	8	mod-sev	10	32	38	-33.10	-43.77	-22.43	38	38			1	1	
rossover	Weinstock, 2012 (P1)	8	mod-sev	NR	39	38	-41.00	-54.31	-27.69	25	25	-				
rossover	Weinstock, 2012 (P2)	8	mod-sev	NR	39	38	-17.00	-29.57	-4.43	25	25		-	·l		
rossover							-30.33	-43.49	-17.16							
arallel	Chasens, 2014	4	mod-sev	11	36	39	-37.85	-56.20	-19.50	12	11	-	┿			
arallel	Egea, 2008	12	mil-sev	8	32	39	-25.60	-35.20	-16.00	35	38		-			
arallel	Haensel, 2007	2	mod-sev	NR	33	61	-58.30	-74.88	-41.72	2 5	25		-			
arallel	Lam, 2010	1	mod-sev	11	28	40	-24.60	-43.37	-5.83	31	30		 -			
arallel	Loredo, 2006	2	mod-sev	12	32	62	-57.90	-75.70	-40.10	22	19		-			
arallel	Malow, 2008	<1	mil-sev	NR	34	18	-11.60	-18.18	-5.02	22	15		-	·l		
arallel	Mills, 2006	2	mil-sev	NR	32	63	-58.50	-83.02	-33.98	17	16	(■	+			
arallel	Neikrug, 2014	3	mil-sev	NR	28	22	-14.60	-22.59	-6.61	19	19		-			
arallel	Nguyen, 2010	12	mod-sev	NR	30	36	-42.40	-60.32	-24.48	10	10	-	┿			
arallel	Norman, 2006	2	mod-sev	12	31	60	-58.90	-78.95	-38.85	18	15	⊢	-			
arallel	Tomfohr, 2011	3	mil-sev	10	30	36	-26.65	-36.19	-17.11	34	37		-	1		
arallel							-36.03	-46.51	-25.55				*	1		
verall							-33.82	-42.02	-25.62					I		
												-80.00 -4	- 40.00 0	.00	40.00	

Random-effects meta-analyses; overall I-squared=85%

Appendix F Figure 3. AHI, CPAP vs. Any Inactive, Grouped by OSA Severity

Group by	Study name	Wks	BL ESS	BL BMI	BL AHI	Statist	ics for each s	tudy	Sam	ole size	_Dif	ference i	n means	and 95%	CI
Severity						Difference in means	Lower limit	Upper limit	СРАР	Control					
nil-mod	Barnes, 2004	12	11	31	21	-15.50	-18.70	-12.30	114	114	I				
mil-mod						-15.50	-34.84	3.84							
nil-sev	Egea, 2008	12	8	32	39	-25.60	-35.20	-16.00	35	38			-		
nil-sev	Lam, 2007	10	12	27	21	-22.20	-27.66	-16.74	34	33		-	-		
nil-sev	Malow, 2008	<1	NR	34	18	-11.60	-18.18	-5.02	22	15			-		
nil-sev	Mills, 2006	2	NR	32	63	-58.50	-83.02	-33.98	17	16	-				
nil-sev	Neikrug, 2014	3	NR	28	22	-14.60	-22.59	-6.61	19	19					
nil-sev	Pamidi, 2015	2	11	35	37	-33.90	-47.59	-20.21	26	13		+			
nil-sev	Tomfohr, 2011	3	10	30	36	-26.65	-36.19	-17.11	34	37			-		
nil-sev						-24.41	-32.70	-16.13				- ●	• I		
nod-sev	Chasens, 2014	4	11	36	39	-37.85	-56.20	-19.50	12	11	Ι.	Ť			
nod-sev	Haensel, 2007	2	NR	33	61	-58.30	-74.88	-41.72	25	25	 —	—			
nod-sev	lp, 2004	4	11	29	47	-46.80	-57.70	-35.90	14	14	Ι.	- +			
nod-sev	Lam, 2010	1	11	28	40	-24.60	-43.37	-5.83	31	30		-	— I		
nod-sev	Loredo, 2006	2	12	32	62	-57.90	-75.70	-40.10	22	19	I	_			
nod-sev	Nguyen, 2010	12	NR	30	36	-42.40	-60.32	-24.48	10	10	l -	-			
nod-sev	Norman, 2006	2	12	31	60	-58.90	-78.95	-38.85	18	15	<u> </u>	_			
nod-sev	Phillips, 2011	8	10	32	38	-33.10	-43.77	-22.43	38	38		∔-			
nod-sev	Ruttanaumpawan, 2008	4	NR	31	43	-23.00	-34.40	-11.60	19	14		 	- I		
nod-sev	Weinstock, 2012 (P1)	8	NR	39	38	-41.00	-54.31	-27.69	25	25		+			
nod-sev	Weinstock, 2012 (P2)	8	NR	39	38	-17.00	-29.57	-4.43	25	25		I -			
nod-sev						-39.01	-46.34	-31.67				•	I		
ev only	Toukh, 2012	2	NR	36	NR	-27.80	-38.53	-17.07	13	13		Ĭ#	.		
ev only	•					-27.80	-49.68	-5.92				4	►		
Overall						-28.10	-39.95	-16.24							
										-8	0.00	-40.00	0.00	40.00	8
												vors CPA		avors Cont	
											ra	VOIS CPA	г г	avors Cont	101

Random-effects meta-analysis; overall I-squared=85%; mil-mod I-squared=0%; mil-sev I-squared=76%; mod-sev I-squared=73%; sev only I-squared=0%

Appendix F Figure 4. AHI, MADs vs. Control

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	study	Sam	ple size	Differer	ice in n	neans	and 959	6 CI
Study Design							Difference in means	Lower limit	Upper limit	СРАР	Control					
Crossover	Barnes, 2004	12	mil-mod	11	31	21	-6.30	-9.38	-3.22	114	114		-	1	- 1	- 1
Crossover	Bloch, 2000a	1	mil-sev	12	27	27	-13.90	-22.32	-5.48	24	24	$I \rightarrow$				
Crossover	Bloch, 2000b	1	mil-sev	12	27	27	-14.70	-23.12	-6.28	24	24	\perp	—			
Crossover	Quinnell, 2014a	6	mil-mod	12	31	14	-3.80	-6.36	-1.24	90	90		-	ᅥ		
Crossover	Quinnell, 2014b	6	mil-mod	12	31	14	-4.90	-7.40	-2.40	90	90		-	.		
Crossover	Quinnell, 2014c	6	mil-mod	12	31	14	-5.10	-7.55	-2.65	90	90		-	.		
Crossover							-5.85	-7.80	-3.90				•			
Parallel	Lam, 2007	10	mil-sev	12	27	21	-11.50	-17.02	-5.98	34	33	1 -				
Parallel	Petri, 2008	4	mil-sev	11	31	35	-13.10	-25.87	-0.33	33	30	I - I	_	4		
Parallel							-11.80	-17.52	-6.09			-				
Overall							-8.20	-13.89	-2.50				•	.		
											-	30.00 -15	.00 (0.00	15.00	30.00

Favors MAD Favors Control

Random-effects meta-analysis; overall I-squared=57%

Appendix F Figure 5. AHI, MADs vs. Sham MAD

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	study	Samp	le size	Difference in
Study Design							Difference in means	Lower	Upper limit	MAD	Sham	means and 95% CI
Crossover	Durán-Cantolla, 2010	12	mil-mod	12	28	15	-14.00	-22.01	-5.99	42	42	
Crossover	Johnston, 2002	4 to 6	mil-sev	14	32	32	-14.80	-28.51	-1.09	21	21	
Crossover	Naismith, 2005	4	mil-sev	11	29	27	-13.20	-18.13	-8.27	67	67	🖶
Crossover							-13.54	-17.55	-9.53			•
Parallel	Aarab. 2011	24	mil-mod	11	29	20	-11.10	-17.39	-4.81	21	21	-{■
Parallel	Andren, 2013	12	mil-sev	11	31	24	-11.60	-18.22	-4.98	36	36	-
Parallel	Petri, 2008	4	mil-sev	11	31	35	-13.20	-25.47	-0.93	33	30	I - I
Parallel							-11.56	-15.84	-7.29			
Overall							-12.61	-15.54	-9.69			

Random-effects meta-analysis; overall I-squared=0%

Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Wt loss	Statistics f	for each	study	Sam	ple size	Difference in
							Difference in means	Lower limit	Upper limit	СРАР	Control	means and 95% CI
Desplan, 2014	4	mod-sev	11	31	41	BMI -0.8	-18.20	-33.74	-2.66	13	13	
Foster, 2009	208	mil-sev	NR	37	23	-5 kg	-7.70	-12.13	-3.27	125	139	
Johansson, 2009	9	mod-sev	8	35	37	-20 kg	-23.00	-30.11	-15.89	30	33	-■
Kline, 2012	12	mod-sev	9	35	28	-0.3 kg	-12.10	-27.99	3.79	27	16	│ │ ■
Tuomilehto, 2013	260	mild only	10	32	10	-6.1 kg	-5.80	-9.72	-1.88	40	41	
							-12.42	-19.38	-5.47			🔷

-35.00-17.50 0.00 17.50 35.00

Favors Lifestyle Favors Control

Random-effects meta-analysis; overall I-squared=79%

Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Wt loss	Statistics 1	for each	study	Sam	ple size	Difference in
							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% Cl
Desplan, 2014	4	mod-sev	11	31	41	BMI -0.8	-18.20	-33.74	-2.66	13	13	
Foster, 2009	208	mil-sev	NR	37	23	-5 kg	-7.70	-12.13	-3.27	125	139	=
Kline, 2012	12	mod-sev	9	35	28	-0.3 kg	-12.10	-27.99	3.79	27	16	 •
Tuomilehto, 2013	260	mild only	10	32	10	-6.1 kg	-5.80	-9.72	-1.88	40	41	
							-7.19	-10.03	-4.36			

Favors Lifestyle Favors Control

-35.00 -17.50 0.00 17.50 35.00

Random-effects meta-analysis; overall I-squared=0%

^{*} We found substantial statistical heterogeneity ($I^2=79\%$) in the main analysis, which was no longer present after removing the one study with much larger weight reduction (and with the largest reduction in AHI).

Study name	Wks	Surgery	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each	study	Samp	ole size	Difference in
							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% CI
Bäck, 2009	16 to 24	RF surgery	mild only	9	28	12	3.00	-9.01	15.01	17	15	-=-
Browaldh, 2013	28	UPPP	mod-sev	13	28	53	-26.40	-36.19	-16.61	33	34	I- ■
Dixon. 2012	104	Bariatric	mod-sev	NR	45	61	-11.50	-27.95	4.95	30	30	▎ ▗ ▎█▋▎
Ferguson, 2003	varied	LAUP	mil-mod	11	32	18	-10.50	-16.88	-4.12	21	25	∰
Koutsourelakis, 20	0812 to 16	Septoplasty	mil-sev	14	30	32	-1.50	-10.54	7.54	27	22	│
Woodson, 2003	8	TCRFTA	mil-mod	13	29	18	-2.70	-9.75	4.35	30	30	🖷

-40.00-20.00 0.00 20.00 40.00

Favors Surgery Favors Control

Random-effects meta-analysis; overall I-squared=77%; TCRFTA = temperature-controlled radiofrequency tissue ablation

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics f	or each	study	Sam	ple size		Dif	ference	in
Study Design							Difference in means	Lower limit		CPAP	Control		mear	ns and 9)5% CI
Cross-over	Barnes, 2004	12	mil-mod	11	31	21	-1.00	-2.09	0.09	114	114				
Cross-over	Engleman, 1998	4	mod-sev	12	30	43	-6.00	-8.92	-3.08	23	23	H	╍┼╴		
Cross-over	Engleman, 1999	4	mild only	13	30	10	-3.00	-4.64	-1.36	37	37		┤█	-	
Cross-over	Faccenda, 2001	4	mod-sev	15	30	35	-2.40	-3.80	-1.00	71	71		-	┡│	
Cross-over							-2.47	-3.60	-1.35					▶	
Parallel	Ballester, 1999	12	mod-sev	12	32	56	-5.70	-7.77	-3.63	68	37	_	■┤		
Parallel	Barbe, 2010	52	mod-sev	6	33	46	-1.26	-1.91	-0.61	191	183			▆▎	
Parallel	Barbe, 2012	208	mod-sev	7	31	39	-1.10	-1.48	-0.72	357	366				
Parallel	Craig, 2012	24	NR	8	33	NR	-2.00	-3.18	-0.82	195	196		-	-	
Parallel	Lam, 2007	10	mil-sev	12	27	21	-3.00	-5.77	-0.23	34	33		+	_	
Parallel	Martinez-Garcia, 2013	12	mod-sev	9	34	40	-3.10	-4.27	-1.93	98	96		-	.	
Parallel	McMillan, 2014	48	mil-sev	12	34	NR	-2.20	-2.28	-2.12	140	138			•	
Parallel	Redline, 1998	8 to 12	mil-mod	11	33	13	-1.09	-2.44	0.26	59	52		-	╼┤	
Parallel							-2.09	-2.77	-1.41				- [₹		
Overall							-2.19	-2.78	-1.61				_ [€)	
												-8.00	-4.00	0.00	4.00

Favors CPAP Favors Control

Random-effects meta-analysis; overall I-squared 84%

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics 1	for each	study	Samp	e size	<u>Di</u>	fference	in means	and 95%	CI
Study Design							Difference in means	Lower limit	Upper limit	CPAP	Sham					
Cross-over	Coughlin 2007	6	mod-sev	14	36	40	-3.10	-5.48	-0.72	35	35		—	-	- 1	
Cross-over	Jones, 2013	12	mod-sev	13	30	31	-3.00	-4.74	-1.26	53	53		→	- -		
Cross-over	Marshall 2005	3	mil-mod	13	32	22	-2.40	-4.16	-0.64	31	31		-	━-		
Cross-over	Phillips, 2011	8	mod-sev	10	32	38	-1.80	-3.83	0.23	38	38		-			
Cross-over	Robinson, 2006	4	mil-sev	5	33	NR	-1.10	-2.00	-0.20	35	35					
Cross-over	Smith, 2007	6	mod-sev	10	31	36	-1.00	-3.61	1.61	26	26		- -	 -		
Cross-over							-1.86	-2.62	-1.10					♦		
Parallel	Barbe, 2001	6	severe only	7	29	56	0.00	-1.93	1.93	29	26			+		
Parallel	Campos-Rodriguez, 2006	4	mil-sev	15	35	59	-2.40	-4.01	-0.79	36	36		-			
Parallel	Chasens, 2014	4	mod-sev	11	36	39	-2.29	-6.02	1.44	12	11		_			
Parallel	Duran-Cantolla, 2010	12	mod-sev	10	32	44	-2.20	-3.00	-1.40	169	171			-		
Parallel	Egea, 2008	12	mil-sev	8	32	39	-1.90	-12.64	8.84	20	25	k	_		_	-
Parallel	Hoyos, 2012	12	mod-sev	10	32	41	-0.10	-1.29	1.09	34	31			-		
Parallel	Hui, 2006	12	mil-sev	11	27	29	-0.04	-2.88	2.80	28	28			\rightarrow	.	
Parallel	Jenkinson, 1999	4	mil-sev	17	35	NR	-7.00	-11.33	-2.67	54	53	I—		-		
Parallel	Kohler, 2008	4	mod-sev	16	35	NR	-5.30	-7.29	-3.31	51	51		- - -			
Parallel	Kushida, 2012	24	mil-sev	10	32	41	-1.00	-1.50	-0.50	558	547			-		
Parallel	Lam, 2010	1	mod-sev	11	28	40	0.65	-0.76	2.06	31	30			+-		
Parallel	Loredo 2006	2	mod-sev	12	32	62	-1.10	-4.34	2.14	22	19		-			
Parallel	Montserrat, 2001	6	mod-sev	17	32	54	-7.15	-9.90	-4.40	24	24	-				
Parallel	Siccoli, 2008	4	mod-sev	16	36	NR	-5.70	-7.62	-3.78	51	51		+			
Parallel	Weaver, 2012	8	mil-mod	15	34	13	-1.78	-2.81	-0.75	121	118					
Parallel	West, 2007	12	mil-sev	15	37	NR	-4.00	-23.36	15.36	21	21				_	
Parallel							-2.22	-3.19	-1.25					◆ l		
Overall							-2.00	-2.59	-1.40					♦		
												-12.00	-6.00	0.00	6.00	1
																am

Random-effects meta-analysis; overall I-squared=76%

Appendix F Figure 11. ESS, CPAP vs. Any Inactive, Sensitivity Analysis With Only Studies With Baseline Mean ESS ≥10

Study name	Wks	BL ESS	BL BMI	BL AHI	<u>Statistics</u>	for each	study	Samp	ole size	Diff	erence	in means	s and 95	<u>% CI</u>
					Difference in means	Lower limit	Upper limit	CPAP	Control					
Ballester, 1999	12	12	32	56	-5.70	-7.77	-3.63	68	37	- 1	-	- 1		
Barnes, 2004	12	11	31	21	-1.00	-2.09	0.09	114	114					
Campos-Rodriguez, 200	064	15	35	59	-2.40	-4.01	-0.79	36	36		-	━-		
Chasens, 2014	4	11	36	39	-2.29	-6.02	1.44	12	11		⊢	━┼-		
Coughlin, 2007	6	14	36	40	-3.10	-5.48	-0.72	35	35					
Ouran-Cantolla, 2010	12	10	32	44	-2.20	-3.00	-1.40	169	171					
Ingleman, 1998	4	12	30	43	-6.00	-8.92	-3.08	23	23		-+ -	.		
Engleman, 1999	4	13	30	10	-3.00	-4.64	-1.36	37	37		⊣	-		
accenda, 2001	4	15	30	35	-2.40	-3.80	-1.00	71	71		-			
Hoyos, 2012	12	10	32	41	-0.10	-1.29	1.09	34	31			•		
lui, 2006	12	11	27	29	-0.04	-2.88	2.80	28	28				-	
enkinson, 1999	4	17	35	NR	-7.00	-11.33	-2.67	54	53	-		-		
ones, 2013	12	13	30	31	-3.00	-4.74	-1.26	53	53		→	■- I		
(ohler, 2008	4	16	35	NR	-5.30	-7.29	-3.31	51	51		- 			
(ushida, 2012	24	10	32	41	-1.00	-1.50	-0.50	558	547					
.am, 2007	10	12	27	21	-3.00	-5.77	-0.23	34	33		⊢⊢			
.am, 2010	1	11	28	40	0.65	-0.76	2.06	31	30			-		
oredo, 2006	2	12	32	62	-1.10	-4.34	2.14	22	19		-	╼┼╴		
/larshall, 2005	3	13	32	22	-2.40	-4.16	-0.64	31	31		-	- -		
/IcMillan, 2014	48	12	34	NR	-2.20	-2.28	-2.12	140	138					
Iontserrat, 2001	6	17	32	54	-7.15	-9.90	-4.40	24	24	-	╼┼╴			
Phillips, 2011	8	10	32	38	-1.80	-3.83	0.23	38	38		-	-■-		
Redline, 1998	8 to 12	11	33	13	-1.09	-2.44	0.26	59	52			- ■		
Siccoli, 2008	4	16	36	NR	-5.70	-7.62	-3.78	51	51					
Smith, 2007	6	10	31	36	-1.00	-3.61	1.61	26	26		-	= }-		
Veaver, 2012	8	15	34	13	-1.78	-2.81	-0.75	121	118			▆▎		
Vest, 2007	12	15	37	NR	-4.00	-23.36	15.36	21	21	₩	- -	_	_	
					-2.37	-2.89	-1.85					♦ I		
										-12.00	-6.00	0.00	6.00	12
										_	avors CPA	.D =-	avors Inac	eis ra

Random-effects meta-analysis; overall I-squared=78 $\!\%$

Appendix F Figure 12. ESS, CPAP vs. Any Inactive, Grouped by OSA Severity

Group by	Study name	Wks	BL ESS	BL BMI	BL AHI	Statistic	s for each	study	Samp	ole size	D <u>iff</u>	erence	in mean	s and 95%	<u>6 C</u> I
Severity						Difference in means	Lower limit	Upper limit	CPAP	Control					
mil-mod	Barnes, 2004	12	11	31	21	-1.00	-2.09	0.09	114	114	1	1		- 1	
mil-mod	Engleman, 1999	4	13	30	10	-3.00	-4.64	-1.36	37	37	1	Ι.	- -7	- 1	
mil-mod	Marshall, 2005	3	13	32	22	-2.40	-4.16	-0.64	31	31	1			- 1	
mil-mod	Redline, 1998	8 to 12	11	33	13	-1.09	-2.44	0.26	59	52	1	- 1	-	- 1	
mil-mod	Weaver, 2012	8	15	34	13	-1.78	-2.81	-0.75	121	118	1	- 1		- 1	
mil-mod						-1.69	-2.38	-1.01			1	- 1	₹I	- 1	
mil-sev	Campos-Rodriguez, 200	6 4	15	35	59	-2.40	-4.01	-0.79	36	36	1	- 1		- 1	
mil-sev	Egea, 2008	12	8	32	39	-1.90	-12.64	8.84	20	25	I —	-			
mil-sev	Hui, 2006	12	11	27	29	-0.04	-2.88	2.80	28	28	1	- 1	-	- 1	
mil-sev	Jenkinson, 1999	4	17	35	NR	-7.00	-11.33	-2.67	54	53	I -	┿	- I	- 1	
mil-sev	Kohler, 2008	4	16	35	NR	-5.30	-7.29	-3.31	51	51	1	-	- I	- 1	
mil-sev	Kushida, 2012	24	10	32	41	-1.00	-1.50	-0.50	558	547	1	- 1		- 1	
mil-sev	Lam, 2007	10	12	27	21	-3.00	-5.77	-0.23	34	33	1	1-	━	- 1	
mil-sev	McMillan, 2014	48	12	34	NR	-2.20	-2.28	-2.12	140	138	1	- 1		- 1	
nil-sev	Robinson, 2006	4	5	33	NR	-1.10	-2.00	-0.20	35	35	1	- 1	_	- 1	
nil-sev	West, 2007	12	15	37	NR	-4.00	-23.36	15.36	21	21	┡	┵	—	-	_
nil-sev						-2.14	-2.96	-1.33			1	- 1	٠l	- 1	
nod-sev	Ballester, 1999	12	12	32	56	-5.70	-7.77	-3.63	68	37	1	-	. 1	- 1	
nod-sev	Barbe, 2001	6	7	29	56	0.00	-1.93	1.93	29	26	1	- 1	+	- 1	
mod-sev	Barbe, 2010	52	6	33	46	-1.26	-1.91	-0.61	191	183	1	- 1	-1	- 1	
mod-sev	Barbe, 2012	208	7	31	39	-1.10	-1.48	-0.72	357	366	1	- 1	-1	- 1	
mod-sev	Chasens, 2014	4	11	36	39	-2.29	-6.02	1.44	12	11	1	1-	╼+	- 1	
mod-sev	Coughlin, 2007	6	14	36	40	-3.10	-5.48	-0.72	35	35	1	I -	- -I	- 1	
mod-sev	Duran-Cantolla, 2010	12	10	32	44	-2.20	-3.00	-1.40	169	171	1	- 1	• I	- 1	
mod-sev	Engleman, 1998	4	12	30	43	-6.00	-8.92	-3.08	23	23	1	+-	- I	- 1	
mod-sev	Faccenda, 2001	4	15	30	35	-2.40	-3.80	-1.00	71	71	1	- 1	+ Ⅰ	- 1	
mod-sev	Hoyos, 2012	12	10	32	41	-0.10	-1.29	1.09	34	31	1	- 1	+	- 1	
mod-sev	Jones, 2013	12	13	30	31	-3.00	-4.74	-1.26	53	53	1	Ι.	 Ⅰ	- 1	
mod-sev	Lam, 2010	1	11	28	40	0.65	-0.76	2.06	31	30	1	- 1	+	- 1	
mod-sev	Loredo, 2006	2	12	32	62	-1.10	-4.34	2.14	22	19	1	Ι.	━	- 1	
mod-sev	Martinez-Garcia, 2013	12	9	34	40	-3.10	-4.27	-1.93	98	96	1	П,	-	- 1	
mod-sev	Montserrat, 2001	6	17	32	54	-7.15	-9.90	-4.40	24	24	1	┿	- 1	- 1	
nod-sev	Phillips, 2011	8	10	32	38	-1.80	-3.83	0.23	38	38	1	- 1	╼┤	- 1	
nod-sev	Siccoli, 2008	4	16	36	NR	-5.70	-7.62	-3.78	51	51	1	-		- 1	
mod-sev	Smith, 2007	6	10	31	36	-1.00	-3.61	1.61	26	26	1	- 1		- 1	
mod-sev		-	-			-2.35	-3.11	-1.60			1	- 1	ا •	- 1	
						2.34					-15.00	-7.50	0.00	7.50	
											-10.00	-1.00	0.00	7.00	

Random-effects meta-analysis; overall I-squared=81%; mil-mod I-squared=26%; mil-sev I-squared=79%; mod-sev I-squared=83%

Appendix F Figure 13. ESS, MADs vs. Control

roup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	study	Sam	ple size	Difference in
tudy Design							Difference in means	Lower limit	Upper limit	СРАР	Control	means and 95% CI
rossover	Barnes, 2004	12	mil-mod	11	31	18	-1.00	-2.09	0.09	114	114	🖶
rossover	Bloch, 2000a	1	mil-sev	12	27	27	-1.20	-7.76	5.36	24	24	
rossover	Bloch, 2000b	1	mil-sev	12	27	27	-1.20	-7.76	5.36	24	24	
rossover	Quinnell, 2014a	6	mil-mod	12	31	14	-1.47	-2.27	-0.67	90	90	=
rossover	Quinnell, 2014b	6	mil-mod	12	31	14	-2.30	-3.13	-1.47	90	90	🗕
rossover	Quinnell, 2014c	6	mil-mod	12	31	14	-2.41	-3.25	-1.57	90	90	🗕
ossover							-1.83	-2.45	-1.21			•
arallel	Lam, 2007	10	mil-sev	12	27	21	-1.00	-1.49	-0.51	34	33	
rallel	Petri, 2008	4	mil-sev	11	31	35	-2.60	-4.17	-1.03	33	30	=-
arallel							-1.39	-2.27	-0.50			♦
verall							-1.68	-2.19	-1.17			♦

Random-effects meta-analysis; overall I-squared 52%

Favors MAD Favors Control

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Sam	ple size	Difference in
Study Design							Difference in means	Lower	Upper limit	MAD	Control	means and 95% Cl
Crossover	Durán-Cantolla, 2010	12	mil-mod	12	28	15	0.50	-1.34	2.34	42	42	- =-
Crossover	Naismith, 2005	4	mil-sev	11	29	27	-2.00	-3.63	-0.37	67	67	-■-
Crossover	Johnston, 2002	4 to 6	mil-sev	14	32	32	-0.95	-4.95	3.05	20	20	 • -
Crossover							-0.86	-2.26	0.53			🔷
Parallel	Andren, 2013	12	mil-sev	11	31	24	-2.20	-3.72	-0.68	36	36	
Parallel	Petri, 2008	4	mil-sev	11	31	35	-2.10	-4.21	0.01	36	30	I I≣ -I I
Parallel							-2.16	-3.66	-0.66			◆
Overall							-1.48	-2.75	-0.21			

Random-effects meta-analysis; overall I-squared=34%

Favors MAD Favors Sham

Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Wt loss	Statistics	for each	study	Sam	ple size	Difference in
							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% C
Desplan, 2014	4	mod-sev	11	31	41	BMI -0.8	-7.00	-10.24	-3.76	13	13	-■-
ohansson, 2009	9	mod-sev	8	35	37	-20 kg	-4.00	-6.01	-1.99	30	33	
line, 2012	12	mod-sev	9	35	28	-0.3 kg	-3.00	-5.57	-0.43	27	16	-
uomilehto, 2013	260	mild only	10	32	10	-6.1 kg	-0.60	-2.35	1.15	40	41	
							-3.43	-5.92	-0.95			◆

Favors Lifestyle Favors Control

-12.00 -6.00 0.00 6.00 12.00

Random effects meta-analysis; overall I-squared 78%

	Difference in means	Lower	Upper			means and 95% CI
	in means	limit	limit	CPAP	Control	
BMI -0.8	-7.00	-10.24	-3.76	13	13	-■-
-20 kg	-4.00	-6.01	-1.99	30	33	
-0.3 kg	-3.00	-5.57	-0.43	27	16	
	-4.42	-6.44	-2.41			♦
	-20 kg	-20 kg -4.00 -0.3 kg -3.00	-20 kg -4.00 -6.01 -0.3 kg -3.00 -5.57	-20 kg -4.00 -6.01 -1.99 -0.3 kg -3.00 -5.57 -0.43	-20 kg -4.00 -6.01 -1.99 30 -0.3 kg -3.00 -5.57 -0.43 27	-20 kg -4.00 -6.01 -1.99 30 33 -0.3 kg -3.00 -5.57 -0.43 27 16

Favors Lifestyle Favors Control

Random effects meta-analysis; overall I-squared 47%

^a The substantial statistical heterogeneity found in the main analysis was reduced when removing the one trial that enrolled participants with mild OSA.

Appendix F Figure 17. ESS, Surgery vs. Control

Study name	Wks	Surgery	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each st	tudy	Sam	ple size	Difference in
							Difference in means	Lower limit	Upper limit	СРАР	Control	means and 95% CI
Bäck, 2009	16 to 24	RF surgery	mild only	9	28	12	-0.00	-0.00	0.00	17	15	•
Dixon, 2012	104	Bariatric	mod-sev	NR	45	61	-3.20	-7.12	0.72	30	30	- •
Ferguson, 2003	varied	LAUP	mil-mod	11	32	18	-2.20	-5.96	1.56	21	25	 •
Koutsourelakis	12 to 16	Septoplasty	mil-sev	14	30	32	-0.50	-2.54	1.54	27	22	🛶
Woodson, 2003	8	TCRFTA	mil-mod	13	29	18	-1.20	-3.11	0.71	30	30	-■+

Favors Surgery Favors Inactive

Random-effects meta-analysis; overall I-squared 52%

Appendix F Figure 18. 24-Hour Mean Arterial Pressure, CPAP vs. Control

Group by	Study name	Wks	Severity	BL ES	S BL BM	BL AHI	Statistics f	or each	<u>study</u>	Sam	ple size	Difference in
Study Design							Difference in means	Lower limit		CPAP	Control	means and 95% CI
Crossover	Faccenda, 2001	4	mod-sev	15	30	35	-1.00	-2.59	0.59	71	71	🖶
Crossover							-1.00	-2.59	0.59			🔷
arallel	Gottlieb, 2014	12	mod-sev	9	34	25	-3.00	-5.54	-0.46	106	106	- ■
arallel	Martinez-Garcia, 2013	12	mod-sev	9	34	40	-3.10	-5.58	-0.62	98	96	│ │ ■─
arallel							-3.05	-4.83	-1.28			★
Overall							-1.99	-3.99	0.02			

Favors CPAP Favors Control

Random-effects meta-analysis; overall I-squared 30%

Appendix F Figure 19. 24-Hour Mean Arterial Pressure, CPAP vs. Sham

iroup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics f	or each s	tudy	Sam	ple size			fference	
tudy Design							Difference in means	Lower limit	Upper limit	СРАР	Control		mear	ns and 9	5% CI
ross-over	Robinson, 2006	4	mil-sev	5	33	NR	-0.74	-4.33	2.85	35	35		\vdash		- I
oss-over							-0.74	-4.48	3.00				-	*	-
rallel	Campos-Rodriguez, 2006	4	mil-sev	15	35	59	-0.90	-5.66	3.86	36	36		+	-	\dashv
rallel	Duran-Cantolla	12	mod-sev	10	32	44	-1.50	-2.65	-0.35	169	171		- ⊣	■-	
rallel	Hui, 2006	12	mil-sev	11	27	31	-3.80	-7.22	-0.38	28	28	-	┿	-	
rallel	Pepperell, 2002	4	mil-sev	16	35	NR	-3.30	-5.28	-1.32	59	59		╅	-	
rallel							-2.20	-3.37	-1.03				_ ◀	▶	
erall							-2.07	-3.19	-0.95				⊟∢	▶	
												-8.00	-4.00	0.00	4.00

Favors CPAP Favors Sham

Random-effects meta-analysis; overall I-squared 3%

Appendix F Figure 20. 24-Hour Systolic Blood Pressure, CPAP vs. Control

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Samp	ole size		Dif	fference	in	
Study Design							Difference in means	Lower limit	Upper limit	CPAP	Control		mean	s and 9	5% CI	
Cross-over	Barnes, 2004	12	mil-mod	11	31	21	-0.90	-3.93	2.13	114	114		-	-		
Cross-over	Faccenda, 2001	4	mod-sev	15	30	35	-1.30	-3.28	0.68	71	71					
Cross-over							-1.18	-2.84	0.48					4		
Parallel	Gottlieb, 2014	12	mod-sev	9	34	25	-1.90	-5.13	1.33	106	106		- 1-	╼┼		
Parallel	Martinez-Garcia, 2013	12	mod-sev	9	34	40	-3.10	-6.73	0.53	98	96		┼	₽		
Parallel	McMillan, 2014	48	mil-sev	12	34	NR	3.70	0.19	7.21	140	138			-	━┼	
Parallel	Pamidi, 2015	2	mil-sev	11	35	37	-9.50	-16.37	-2.63	2 6	13	 ■	+	-		
Parallel							-2.08	-6.46	2.29				-			
Overall							-1.29	-2.85	0.26				-			
												-12.00	-6.00	0.00	6.00	12.0

Random-effects meta-analysis; overall I-squared=65%

Appendix F Figure 21. 24-Hour Systolic Blood Pressure, CPAP vs. Sham

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each	study	Sam	ple size			fference		
Study Design							Difference in means	Lower limit	Upper limit	СРАР	Control	I	mea	ns and 9	5% CI	
Cross-over	Robinson, 2006	4	mil-sev	5	33	NR	-0.10	-5.21	5.01	35	35		1-	-	-1	
Cross-over							-0.10	-5.21	5.01				-		-	
Parallel	Barbe, 2001	6	sev only	7	29	56	-1.00	-7.35	5.35	29	26		+	╌├		
Parallel	Campos-Rodriguez, 2006	4	mil-sev	15	35	59	-1.00	-7.73	5.73	36	36		+	→		
Parallel	Duran-Cantolla, 2010	12	mod-sev	10	32	44	-2.10	-3.74	-0.46	169	171		-	▄▏		
Parallel	Hui, 2006	12	mil-sev	11	27	31	-0.40	-10.42	9.62	28	28	I —	+	-	_	-
Parallel	Pepperell, 2002	4	mil-sev	16	35	NR	-3.40	-6.22	-0.58	59	59		┝	-		
Parallel							-2.27	-3.62	-0.93				- -	◆		
Overall							-2.13	-3.43	-0.83					◆		
												-12.00	-6.00	0.00	6.00	12.

Favors CPAP Favors Sham

Random-effects meta-analysis; overall I-squared 0%

Appendix F Figure 22. 24-Hour Diastolic Blood Pressure, CPAP vs. Control

roup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Sam	ole size	Difference in
tudy Design							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% CI
ross-over	Barnes, 2004	. 12	mil-mod	11	31	21	-0.60	-2.72	1.52	114	114	🖶
ross-over	Faccenda, 2001	4	mod-sev	15	30	35	-1.50	-2.94	-0.06	71	71	
ross-over							-1.09	-3.79	1.62			🔷
arallel	Gottlieb, 2014	12	mod-sev	9	34	25	-2.80	-4.73	-0.87	106	106	-■-
arallel	Martinez-Garcia, 2013	12	mod-sev	9	34	40	-3.20	-5.39	-1.01	98	96	-■-
arallel	McMillan, 2014	48	mil-sev	12	34	NR	0.20	-1.74	2.14	140	138	🛊
arallel	Pamidi, 2015	2	mil-sev	11	35	37	-7.10	-10.82	-3.38	2 6	13	I ─■ ─ I I
arallel							-2.79	-4.86	-0.71			◆
verall							-2.16	-3.80	-0.51			♠

Favors CPAP Favors Control

Random-effects meta-analysis; overall I-squared=68%

Appendix F Figure 23. 24-Hour Diastolic Blood Pressure, CPAP vs. Sham

roup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics 1	for each s	tudy	Sam	ple size	Difference in
tudy Design							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% CI
ross-over	Robinson, 2006	4	mil-sev	5	33	NR	-1.47	-6.63	3.69	35	35	- ■ -
ross-over							-1.47	-6.78	3.84			
arallel	Barbe, 2001	6	sev only	7	29	56	0.00	-4.18	4.18	29	26	
rallel	Campos-Rodriguez, 2006	4	mil-sev	15	35	59	-0.70	-5.02	3.62	36	36	
rallel	Durán-Cantolla, 2010	12	mod-sev	10	32	44	-1.30	-2.39	-0.21	169	171	-■
rallel	Hui, 2006	12	mil-sev	11	27	31	-3.50	-6.48	-0.52	28	28	- •
rallel	Pepperell, 2002	4	mil-sev	16	35	NR	-3.30	-5.33	-1.27	59	59	│ ──│ │
rallel							-1.93	-3.10	-0.76			♦
verall							-1.91	-3.05	-0.77			♦

Favors CPAP Favors Sham

Random-effects meta-analysis; overall I-squared 3%

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics f	for each s	tudy	Sam	ple size	Difference in
Study Design							Difference in means	Lower limit	Upper limit	СРАР	Control	means and 95% CI
Crossover	Arias, 2008	12	mil-sev	NR	31	44	1.00	-2.68	4.68	30	30	
Crossover	Coughlin, 2007	6	mod-sev	14	36	40	-5.50	-8.15	-2.85	35	35	📲
Crossover	Jones, 2013	12	mod-sev	13	30	31	0.00	-3.56	3.56	53	53	- ≢
crossover	Robinson, 2006	4	mil-sev	5	33	NR	1.10	-2.83	5.03	35	35	
crossover							-1.21	-3.74	1.31			🔷
Parallel	Campos-Rodriguez, 2006	4	mil-sev	15	35	15	-1.00	-7.73	5.73	36	36	
Parallel	Durán-Cantolla, 2010	12	mod-sev	10	32	44	0.00	-2.03	2.03	169	171	🔷
arallel	Hoyos, 2012	12	mod-sev	10	32	41	-1.01	-4.42	2.40	34	31	│
arallel	Hui, 2006	12	mil-sev	11	27	31	-2.20	-6.16	1.76	28	28	│
arallel	Pepperell, 2002	4	mil-sev	16	35	NR	-4.20	-6.38	-2.02	59	59	┼█─-
arallel	Weaver, 2012	8	mil-mod	15	34	13	-1.76	-3.80	0.28	121	118	 =
Parallel							-1.78	-3.76	0.19			
Overall							-1.57	-3.12	-0.01			♦

Random-effects meta-analysis; overall I-squared 57%

Favors CPAP Favors Sham

Appendix F Figure 25. Diurnal Systolic Blood Pressure, CPAP vs. Control

Froup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Sam	ole size	Difference in
Study Design							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% CI
ross-over	Craig, 2012	24	NR	8	33	NR	1.80	0.06	3.54	195	196	
ross-over							1.80	-5.34	8.94			🍎
arallel	Barbe, 2010	52	mod-sev	6	33	46	-2.14	-5.41	1.13	191	183	
arallel	Gottlieb, 2014	12	mod-sev	9	34	25	-2.80	-4.73	-0.87	106	106	🚽
arallel	lp, 2004	4	mod-sev	11	29	47	0.30	-8.85	9.45	14	14	——
arallel	Lam, 2006	10	mil-sev	12	27	21	-6.10	-14.55	2.35	34	33	
arallel	Martinez-Garcia, 2013	12	mod-sev	9	34	40	0.30	-3.43	4.03	98	96	+
arallel	McMillan, 2014	48	mil-sev	12	34	NR	5.70	1.46	9.94	140	138	
arallel	Pamidi, 2015	2	mil-sev	11	35	37	-9.70	-16.62	-2.78	26	13	
arallel	Ruttanaumpawan, 2008	4	mod-sev	NR	31	43	-14.00	-27.78	-0.22	19	14	
arallel	Usui, 2005	4	mod-sev	NR	31	33	-19.90	-41.98	2.18	8	9	
arallel							-2.45	-5.61	0.71			🜖
verall							-1.58	-4.94	1.78			🐳

Random-effects meta-analysis; overall I-squared=75%

Favors CPAP Favors Control

Appendix F Figure 26. Diurnal Systolic Blood Pressure, CPAP vs. Sham

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each	study	Sam	ole size	Diff	erence i	in mean	s and 95	% C
Study Design							Difference in means	Lower limit	Upper limit	СРАР	Control					
ross-over	Arias, 2008	12	mil-sev	NR	31	44	1.00	-4.25	6.25	30	30	1	- 1	-	- I	
ross-over	Arias, 2005	12	mil-sev	NR	31	44	0.00	-5.44	5.44	27	27			- ∳-	-	
ross-over	Coughlin, 2007	6	mod-sev	14	36	40	-6.70	-10.04	-3.36	35	35		⊢∎	⊦		
ross-over	Cross, 2008	6	mod-sev	NR	37	63	-3.80	-12.80	5.20	29	29		+	•	-	
ross-over	Jones, 2013	12	mod-sev	13	30	31	-3.00	-7.96	1.96	53	53		-	╼┼		
ross-over							-3.45	-5.61	-1.28					◆		
arallel	Barbe, 2001	6	sev only	7	29	56	-2.00	-7.51	3.51	29	26		-	╼┼╴		
arallel	Duran-Cantolla, 2010	12	mod-sev	10	32	44	-1.60	-3.34	0.14	169	171					
arallel	Egea, 2008	12	mil-sev	8	32	39	1.60	-8.44	11.64	20	25		-	┿	-+	
arallel	Hoyos, 2012	12	mod-sev	10	32	41	-4.25	-9.50	1.00	34	31		-	━┤		
arallel	Hui, 2006	12	mil-sev	11	27	31	-2.50	-8.07	3.07	28	28		- I			
arallel	Kohler, 2008	4	mil-sev	16	35	NR	-5.60	-12.57	1.37	51	51		+	\dashv		
arallel	Lam, 2010	1	mod-sev	11	28	40	-0.95	-5.18	3.28	31	30			╼╋╴		
arallel	Mills, 2006	2	mil-sev	NR	32	63	-8.00	-22.39	6.39	17	16	\leftarrow	+	+	- I	
arallel	Nguyen, 2010	12	mod-sev	NR	30	36	1.60	-15.46	18.66	10	10	-	$+\!\!\!-$	+	$-\!\!\!+\!\!\!\!-$	_
arallel	Weaver, 2012	8	mil-mod	15	34	13	-1.32	-4.45	1.81	121	118		- [-		
arallel							-1.83	-3.09	-0.57					♦		
verall							-2.39	-3.89	-0.88				- [♦		
											_	20.00	-10.00	0.00	10.00	2

Random-effects meta-analysis; overall I-squared 0%

Favors CPAP Favors Sham

Froup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	study	Sam	ole size	Difference in
tudy Design							Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% C
ross-over	Craig, 2012	24	NR	8	33	NR	-0.40	-1.50	0.70	195	196	
ross-over							-0.40	-4.01	3.21			
arallel	Barbe, 2010	52	mod-sev	6	33	46	-1.90	-4.22	0.42	191	183	4
arallel	Gottlieb, 2014	12	mod-sev	9	34	25	-2.50	-4.59	-0.41	106	106	+
arallel	lp, 2004	4	mod-sev	11	29	47	-8.90	-18.88	1.08	14	14	│ │
arallel	Lam, 2006	10	mil-sev	12	27	21	-2.00	-7.85	3.85	34	33	│
arallel	Martinez-Garcia, 2013	12	mod-sev	9	34	40	-1.50	-3.84	0.84	98	96	🛶
arallel	McMillan, 2014	48	mil-sev	12	34	NR	0.70	-1.98	3.38	140	138	+
arallel	Pamidi, 2015	2	mil-sev	11	35	37	-8.20	-12.36	-4.04	26	13	
arallel	Ruttanaumpawan, 2008	4	mod-sev	NR	31	43	-5.00	-13.17	3.17	19	14	l l + l
arallel	Usui, 2005	4	mod-sev	NR	31	33	-8.50	-21.13	4.13	8	9	l -
arallel							-2.65	-4.44	-0.87			♦
verall							-2.09	-4.00	-0.19			

Favors CPAP Favors Control

Random-effects meta-analysis; overall I-squared=57%

	tudy name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Samp	ole size		Di	fference	e in	
Study Design							Difference in means	Lower limit	Upper limit	СРАР	Control		mea	ns and 9	95% CI	
Cross-over A	rias, 2008	12	mil-sev	NR	31	44	1.00	-1.93	3.93	30	30	1	-1	-	- I	
Cross-over A	rias, 2005	12	mil-sev	NR	31	44	0.00	-2.82	2.82	27	27			+		
Cross-over C	oughlin, 2007	6	mod-sev	14	36	40	-4.90	-7.94	-1.86	35	35		-	⊢		
Cross-over C	ross, 2008	6	mod-sev	NR	37	63	0.00	-5.14	5.14	29	29		- 1 -	+	- 1	
Cross-over Jo	ones, 2013	12	mod-sev	13	30	31	0.00	-3.25	3.25	53	53			+	٠ [
Cross-over							-0.85	-2.46	0.75					*		
Parallel B	arbe, 2001	6	sev only	7	29	56	-1.00	-3.76	1.76	29	26			-		
Parallel D	urán-Cantolla,2010	12	mod-sev	10	32	44	-1.10	-2.30	0.10	169	171					
Parallel E	gea, 2008	12	mil-sev	8	32	39	-0.80	-9.25	7.65	20	25		+	+	\dashv	
Parallel H	oyos, 2012	12	mod-sev	10	32	41	0.45	-3.31	4.21	34	31			+	-	
Parallel H	ui, 2006	12	mil-sev	11	27	31	-1.80	-5.27	1.67	28	28		-	╼┼	- 1	
Parallel K	ohler, 2008	4	mil-sev	16	35	NR	-4.70	-8.07	-1.33	51	51		-	\vdash		
Parallel Li	am, 2010	1	mod-sev	11	28	40	-0.61	-4.08	2.86	31	30			┽		
Parallel N	1ills, 2006	2	mil-sev	NR	32	63	-4.00	-12.54	4.54	17	16	-	+	+	- 1	
Parallel N	guyen, 2010	12	mod-sev	NR	30	36	8.90	-8.03	25.83	10	10	- 1	\vdash		-	_
Parallel V	Veaver, 2012	8	mil-mod	15	34	13	-1.93	-3.82	-0.04	121	118	- 1		=		
Parallel							-1.47	-2.57	-0.38					•		
Overall							-1.28	-2.18	-0.37			1		•		
												-15.00	-7.50	0.00	7.50	

Random-effects meta-analysis; overall I-squared 16%

Favors CPAP Favors Sham

Appendix F Figure 29. Nocturnal Mean Arterial Pressure, CPAP vs. Sham

Group by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Sam	ple size	Dif	fference	in means	and 95%	CI
Study Design							Difference in means	Lower limit	Upper limit	СРАР	Control					
Crossover	Arias, 2008	12	mil-sev	NR	31	44	0.00	-4.85	4.85	30	30	1	Ι-		- 1	
Crossover	Robinson, 2006	4	mil-sev	5	33	NR	-2.81	-7.72	2.10	35	35		\vdash	-		
Crossover							-1.39	-4.84	2.06				- ∙	•		
arallel	Campos-Rodriguez, 2006	4	mil-sev	15	35	15	-1.10	-6.16	3.96	36	36		-	-	-	
Parallel	Durán-Cantolla, 2010	12	mod-sev	10	32	44	-2.00	-4.18	0.18	169	171			=		
Parallel	Hui, 2006	12	mil-sev	11	27	31	-4.90	-9.20	-0.60	28	28		+-	-		
arallel	Pepperell, 2002	4	mil-sev	16	35	NR	-3.00	-5.67	-0.33	59	59		-	■		
arallel	Weaver, 2012	8	mil-mod	15	34	13	-1.77	-4.41	0.87	121	118	1	-	■		
arallel							-2.39	-3.69	-1.08				- 1	♦		
overall							-2.26	-3.49	-1.04			Ţ	1	♦		
												15.00	-7.50	0.00	7.50	15

Favors CPAP Favors Sham

Random-effects meta-analysis; overall I-squared 0%

Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each	study	Samp	ole size	Difference in
						Difference in means	Lower limit	Upper limit	СРАР	Control	means and 95%
Gottlieb, 2014	12	mod-sev	9	34	25	-3.30	-7.33	0.73	106	106	🖷
Lam, 2007	10	mil-sev	12	27	21	-7.20	-16.40	2.00	34	33	 ■
Martinez-Garcia, 201	312	mod-sev	9	34	40	-3.70	-8.17	0.77	98	96	🖷
Pamidi, 2015	2	mil-sev	11	35	37	-10.80	-20.42	-1.18	26	13	+=-
						-4.40	-7.13	-1.67			

-30.00-15.00 0.00 15.00 30.00

Favors CPAP Favors Control

Random-effects meta-analysis; overall I-squared=0%

iroup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics f	or each	study	Sam	ple size	Difference in
tudy Design							Difference in means	Lower limit	• • •	СРАР	Control	means and 95% CI
ross-over	Arias, 2005	12	mil-sev	NR	31	44	0.00	-7.08	7.08	27	27	
ross-over	Arias, 2008	12	mil-sev	NR	31	44	0.00	-6.91	6.91	30	30	│
ross-over							0.00	-4.94	4.94			 ◆
arallel	Barbe, 2001	6	sev only	7	29	56	0.00	-5.51	5.51	29	26	-+-
arallel	Duran-Cantolla, 2010	12	mod-sev	10	32	44	-4.10	-6.09	-2.11	169	171	🖶
arallel	Hui, 2006	12	mil-sev	11	27	31	-6.30	-11.73	-0.87	28	28	
arallel	Kohler, 2008	4	mil-sev	16	35	NR	-2.80	-9.82	4.22	51	51	 • -
arallel	Weaver, 2012	8	mil-mod	15	34	13	-2.21	-5.89	1.47	121	118	-=
arallel							-3.55	-5.11	-2.00			•
verall							-2.58	-5.68	0.52			◆

Favors CPAP Favors Sham

Random-effects meta-analysis; overall I-squared 0%

Appendix F Figure 32. Nocturnal Diastolic Blood Pressure, CPAP vs. Control

roup by	Study name	Wks	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each	study	Sam	ole size		Difference	e in	
tudy Design							Difference in means	Lower limit	Upper limit	CPAP	Control	n	neans and	95% CI	
ross-over	Barnes, 2004	12	mil-mod	11	31	21	1.00	-1.39	3.39	114	114		-	-	
ross-over							1.00	-1.39	3.39					▶	
arallel	Gottlieb, 2014	12	mod-sev	9	34	25	-3.70	-5.87	-1.53	106	106				
arallel	Lam, 2007	10	mil-sev	12	27	21	-3.60	-8.96	1.76	34	33				
arallel	Martinez-Garcia, 2013	12	mod-sev	9	34	40	-2.10	-4.73	0.53	98	96		╼╂		
arallel	Pamidi, 2015	2	mil-sev	11	35	37	-6.10	-11.23	-0.97	2 6	13	1 —			
arallel							-3.37	-4.89	-1.84				♦		
verall							-2.10	-3.39	-0.81						

Favors CPAP Favors Control

Random-effects meta-analysis; overall I-squared=64%

iroup by	Study name	Wks	Severity	BL ES	S BL BMI	BL AHI	Statistics f	or each	study	Sam	ple size	Difference in
tudy Design							Difference in means	Lower limit	• • •	СРАР	Control	means and 95% CI
ross-over	Arias, 2005	12	mil-sev	NR	31	44	-1.00	-4.96	2.96	27	27	-
ross-over	Arias, 2008	12	mil-sev	NR	31	44	-1.00	-5.00	3.00	30	30	-
ross-over							-1.00	-3.81	1.81			🔷
arallel	Barbe, 2001	6	sev only	7	29	56	1.00	-1.76	3.76	29	26	╆
arallel	Duran-Cantolla, 2010	12	mod-sev	10	32	44	-1.50	-2.94	-0.06	10	171	
arallel	Hui, 2006	12	mil-sev	11	27	31	-3.80	-7.91	0.31	28	28	 •
arallel	Kohler, 2008	4	mil-sev	16	35	NR	-1.40	-5.44	2.64	51	51	
arallel	Weaver, 2012	8	mil-mod	15	34	13	-1.51	-3.95	0.93	121	118	
arallel							-1.28	-2.33	-0.23			
verall							-1.25	-2.23	-0.26			♦

Favors CPAP Favors Sham

Random-effects meta-analysis; overall I-squared 0%

Appendix F Figure 34. 24-Hour Blood Pressure Measures, CPAP vs. Any Inactive in Patients With Hypertension

Group by	Study name	Control	Wks	Severity	Study Design	BL ESS	BL BMI	BL AHI	Statistic	s for each s	tudy	Sam	ple size	Difference in means and 95%
BP outcome									Difference in means	Lower limit	Upper Iimit	CPAP	Control	
24h DBP	Duran-Cantolla, 2010a	Sham	12	mod-sev	Parallel	10	32	44	-1.30	-2.39	-0.21	169	171	
4h DBP	Hui, 2006a	Sham	12	mil-sev	Parallel	11	27	31	-4.70	-9.75	0.35	17	11	 -
4h DBP	Martinez-Garcia, 2013a	No tx	12	mod-sev	Parallel	9	34	40	-3.20	-5.39	-1.01	98	96	 =
4h DBP	Robinson, 2006a	Sham	4	mil-sev	Cross-over	5	33	NR	-1.47	-6.63	3.69	35	35	 -
4h DBP									-1.99	-3.24	-0.75			
4h MAP	Hui, 2006b	Sham	12	mil-sev	Parallel	11	27	31	-5.70	-11.52	0.12	17	11	 • -
4h MAP	Martinez-Garcia, 2013b	No tx	12	mod-sev	Parallel	9	34	40	-3.10	-5.58	-0.62	98	96	 =
4h MAP	Robinson, 2006b	Sham	4	mil-sev	Cross-over	5	33	NR	-0.74	-4.33	2.85	35	35	│
4h MAP									-2.70	-4.77	-0.63			♦
4h SBP	Duran-Cantolla, 2010b	Sham	12	mod-sev	Parallel	10	32	44	-2.10	-3.74	-0.46	169	171	
4h SBP	Hui, 2006c	Sham	12	mil-sev	Parallel	11	27	31	-8.60	-17.04	-0.16	17	11	 - -
4h SBP	Martinez-Garcia, 2013c	No tx	12	mod-sev	Parallel	9	34	40	-3.10	-6.73	0.53	98	96	│ │ ■ │ ┃
4h SBP	Robinson, 2006c	Sham	4	mil-sev	Cross-over	5	33	NR	-0.10	-5.21	5.01	35	35	
4h SBP									-2.33	-3.97	-0.69			•

Random-effects meta-analysis; I-squared=18% (DBP), 12% (MAP), 3% (SBP)

Appendix F Figure 35. Diurnal and Nocturnal Blood Pressure Measures, CPAP vs. Any Inactive in Patients With Hypertension

Group by	Study name	Control	Wks	Severity	Study Design	BL ESS	BL BMI	BL AHI	Statistics	for each	tudy	Sam	ple size	Difference in means and 95%
BP outcome									Difference in means	Lower limit	Upper limit	CPAP	Control	
Day DBP	Barbe, 2010a	Usual care	52	mod-sev	Parallel	6	33	46	-1.90	-4.22	0.42	191	183	🖶
Day DBP	Coughlin, 2007a	Sham	6	mod-sev	Cross-over	14	36	40	-4.90	-7.94	-1.86	35	35	-
Day DBP	Duran-Cantolla, 2010c	Sham	12	mod-sev	Parallel	10	32	44	-1.10	-2.30	0.10	169	171	1 4
Day DBP	Hui, 2006d	Sham	12	mil-sev	Parallel	11	27	31	-2.40	-7.74	2.94	17	11	
ay DBP	Martinez-Garcia, 2013d	No tx	12	mod-sev	Parallel	9	34	40	-1.50	-3.84	0.84	98	96	
ay DBP									-2.06	-3.63	-0.50			♦
ay MAP	Coughlin, 2007b	Sham	6	mod-sev	Cross-over	14	36	40	-5.50	-8.15	-2.85	35	35	=
ay MAP	Duran-Cantolla, 2010d	Sham	12	mod-sev	Parallel	10	32	44	0.00	-2.03	2.03	169	171	1 + 1
ay MAP	Hui, 2006e	Sham	12	mil-sev	Parallel	11	27	31	-3.10	-9.25	3.05	17	11	 -
ay MAP	Robinson, 2006d	Sham	4	mil-sev	Cross-over	5	33	NR	1.10	-2.83	5.03	35	35	 =
ay MAP									-1.80	-3.81	0.21			🔷
ay SBP	Barbe, 2010b	Usual care	52	mod-sev	Parallel	6	33	46	-2.14	-5.41	1.13	191	183	-=
ay SBP	Coughlin, 2007c	Sham	6	mod-sev	Cross-over	14	36	40	-6.70	-10.04	-3.36	35	35	
ay SBP	Duran-Cantolla, 2010e	Sham	12	mod-sev	Parallel	10	32	44	-1.60	-3.34	0.14	169	171	1 1 4 1
ay SBP	Hui, 2006f	Sham	12	mil-sev	Parallel	11	27	31	-4.80	-13.95	4.35	17	11	l -
ay SBP	Martinez-Garcia, 2013e	No tx	12	mod-sev	Parallel	9	34	40	0.30	-3.43	4.03	98	96	🛨
ay SBP									-2.53	-4.37	-0.68			♦
loct DBP	Duran-Cantolla, 2010f	Sham	12	mod-sev	Parallel	10	32	44	-1.50	-2.94	-0.06	10	171	1 1
oct DBP	Hui, 2006g	Sham	12	mil-sev	Parallel	11	27	31	-2.30	-9.45	4.85	17	11	
oct DBP	Martinez-Garcia, 2013f	No tx	12	mod-sev	Parallel	9	34	40	-2.10	-4.73	0.53	98	96	
oct DBP									-1.77	-3.90	0.35			
oct MAP	Duran-Cantolla, 2010g	Sham	12	mod-sev	Parallel	10	32	44	-2.00	-4.18	0.18	169	171	1 = 1
oct MAP	Hui, 2006h	Sham	12	mil-sev	Parallel	11	27	31	-2.90	-10.10	4.30	17	11	
loct MAP	Robinson, 2006e	Sham	4	mil-sev	Cross-over	5	33	NR	-2.81	-7.72	2.10	35	35	-=
oct MAP									-2.29	-4.92	0.33			♦
oct SBP	Duran-Cantolla, 2010h	Sham	12	mod-sev	Parallel	10	32	44	-4.10	-6.09	-2.11	169	171	🖶
oct SBP	Hui, 2006i	Sham	12	mil-sev	Parallel	11	27	31	-5.40	-14.94	4.14	17	11	
oct SBP	Martinez-Garcia, 2013h	No tx	12	mod-sev	Parallel	9	34	40	-3.70	-8.17	0.77	98	96	-■-
loct SBP									-4.09	-6.66	-1.51			◆

Random-effects meta-analysis; I-squared=25% (Day DBP), 76% (Day MAP), 58% (Day SBP), 0% (Noct DBP, MAP, SBP)

Appendix F Figure 36. 24-Hour Systolic Blood Pressure, MADs vs. Any Inactive

Group by Comparator	Study name	Wks	Study Design	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	study	Sam	ple size	Di	fference	in means	and 95%	CI
comparator								Difference in means	Lower limit	Upper limit	СРАР	Control	I				
Control	Barnes, 2004	12	Crossover	mil-mod	11	31	18	-1.50	-4.38	1.38	114	114		H			
Control								-1.50	-5.97	2.97				-		-	
Sham	Andren, 2013	12	Parallel	mil-sev	11	30	24	1.80	-2.03	5.63	36	36			╅	┿	
Sham	Gotsopoulos, 2004	4	Crossover	mil-sev	11	29	27	-1.50	-3.43	0.43	67	67		- ⊣	■┼		
Sham								-0.28	-3.40	2.84				- -		-	
Overall								-0.68	-3.24	1.88				-			
													-8.00	-4.00	0.00	4.00	8.00

Favors MAD Favors Control

Random-effects meta-analysis; overall I-squared=17%

Appendix F Figure 37. 24-Hour Diastolic Blood Pressure, MADs vs. Any Inactive

Group by	Study name	Wks	Study Design	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Sam	ple size	Differen	ce in means	and 95%	6 CI
Comparator								Difference in means	Lower limit	Upper limit	СРАР	Control				
Control	Barnes, 2004	12	Crossover	mil-mod	11	31	18	-1.00	-3.06	1.06	114	114				
Control								-1.00	-4.51	2.51			l ∤	~	-	
Sham	Andren, 2013	12	Parallel	mil-sev	11	30	24	1.00	-1.85	3.85	36	36		- =	\dashv	
Sham	Gotsopoulos, 2004	4	Crossover	mil-sev	11	29	27	-1.60	-2.89	-0.31	67	67		-		
Sham								-0.62	-3.09	1.84					.	
Overall								-0.75	-2.77	1.27				*		
													3.00 -4.0	0 0.00	4.00	8

Favors MAD Favors Control

Random-effects meta-analysis; overall I-squared=25%

Appendix F Figure 38. Diurnal Systolic Blood Pressure, MADs vs. Any Inactive

roup by	Study name	Wks	Study Design	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	study	Sam	ple size	Difference in
omparator								Difference in means	Lower limit	Upper limit	MAD	Control	means and 95% CI
ntrol	Lam, 2007	10	Parallel	mil-sev	12	27	21	-2.40	-11.58	6.78	34	33	 ■
ontrol								-2.40	-12.45	7.65			
am	Andren, 2013	12	Parallel	mil-sev	11	30	24	1.80	-2.08	5.68	36	36	悔
am	Durán-Cantolla, 2010	12	Crossover	mil-mod	12	28	15	-2.30	-8.67	4.07	42	42	 -
am	Gotsopoulos, 2004	4	Crossover	mil-sev	11	29	27	-3.00	-5.63	-0.37	67	67	
am								-1.21	-4.52	2.09			♦
erall								-1.33	-4.47	1.81			📤

Favors MAD Favors Control

Random-effects meta-analysis; overall I-squared=27%

Appendix F Figure 39. Diurnal Diastolic Blood Pressure, MADs vs. Any Inactive

Group by	Study name	Wks	Study Design	Severity	BL ESS	BL BMI	BL AHI	Statistics	for each s	tudy	Samp	ole size	Difference in
Comparator								Difference in means	Lower limit	Upper limit	CPAP	Control	means and 95% CI
control	Lam, 2007	10	Parallel	mil-sev	12	27	21	0.40	-5.48	6.28	34	33	
control								0.40	-6.76	7.56			
ham	Andren, 2013	12	Parallel	mil-sev	11	30	24	1.20	-1.40	3.80	36	36	🗦
ham	Durán-Cantolla, 2010	12	Crossover	mil-mod	12	28	15	-1.40	-5.26	2.46	42	42	I I
ham	Gotsopoulos, 2004	4	Crossover	mil-sev	11	29	27	-3.10	-5.13	-1.07	67	67	=
ham								-1.16	-4.02	1.70			💠
verall								-0.95	-3.60	1.71			🐳

Favors MAD Favors Control

Random-effects meta-analysis; overall I-squared=56%

Appendix F Figure 40. Nocturnal Systolic Blood Pressure, MADs vs. Any Inactive

Group by	Study name	Wks	Study Design	Severity	BL ESS	BL BMI	BL AHI	Statistics f	or each s	study	Sam	ple size	Difference in
Comparator								Difference in means	Lower limit	Upper limit	СРАР	Control	means and 95%
Control	Lam, 2007	10	Parallel	mil-sev	12	27	21	-3.30	-13.06	6.46	34	33	▎ ▔ ▎█▋┤
Control								-3.30	-13.06	6.46			
Sham	Andren, 2013	12	Parallel	mil-sev	11	30	24	1.40	-2.43	5.23	36	36	 = -
ham	Gotsopoulos, 2004	4	Crossover	mil-sev	11	29	27	0.10	-3.27	3.47	67	67	│ │ ─╪ ─
ham								0.67	-1.86	3.20			│
verall								0.42	-2.03	2.87			🔷

Favors MAD Favors Control

Random-effects meta-analysis; overall I-squared=0%

Appendix F Figure 41. Nocturnal Diastolic Blood Pressure, MADs vs. Any Inactive

Group by	Study name	Wks	Study Design	Severity	BL ESS	BL BMI	BL AHI	Statistics f	or each s	study	Sam	ole size		Differer	nce in
Comparator								Difference in means	Lower limit	• • •	СРАР	Control		means and	d 95% CI
Control	Barnes, 2004	12	Crossover	mil-mod	11	31	18	-1.70	-4.07	0.67	114	114			.
Control	Lam, 2007	10	Parallel	mil-sev	12	27	21	-1.50	-7.01	4.01	34	33	-	├╺ ┤	
Control								-1.67	-3.84	0.51					.
Sham	Andren, 2013	12	Parallel	mil-sev	11	30	24	1.30	-1.45	4.05	36	36		l →	╼┤
Sham	Gotsopoulos, 2004	4	Crossover	mil-sev	11	29	27	-0.40	-2.78	1.98	67	67		│ - ■	-
ham								0.33	-1.47	2.13				◀	▶
Overall								-0.57	-2.52	1.37					▶

Favors MAD Favors Control

Random-effects meta-analysis; overall I-squared=0%

Appendix F Figure 42. Short-Form (36-Item) Health Survey Mental Component Summary, CPAP vs. Inactive Control

Study name	Wks	Severity	BL ESS	BL AHI	Study Design	Comparator	Statistics	for each st	tudy	Sam	ple size		Dif	ference	in	
							Difference in means	Lower limit	Upper limit	СРАР	Control		mea	ns and 9	5% CI	
Barbe, 2001	6	sev only	7	56	Parallel	Sham	-2.00	-7.29	3.29	29	26	1	-	╼┼╴		
Craig, 2012	24	NR	8	NR	Parallel	Control	1.90	-0.21	4.01	195	196				·	
Egea, 2008	12	mil-sev	8	39	Parallel	Sham	-0.50	-1.69	0.69	35	38					
Jenkinson, 1999	4	mil-mod	17	NR	Parallel	Sham	6.20	2.48	9.92	54	53			-	╼╅╴	
Montserrat, 2001	6	mod-sev	17	54	Parallel	Sham	-3.60	-9.71	2.51	24	24		┼	┅		
Siccoli, 2008	4	mod-sev	16	NR	Parallel	Sham	10.80	2.91	18.69	51	51			- -		
Smith, 2007	6	mod-sev	10	36	Crossover	Sham	-0.50	-4.10	3.10	24	24		- -			
Weaver, 2012	8	mil-mod	15	13	Parallel	Sham	0.86	-1.94	3.66	121	118			#	.	
							1.19	-0.84	3.23					-		
												-16.00	-8.00	0.00	8.00	16.0
												Favo	ors Compar	ator F	avors CP	AP

Random-effects meta-analysis; overall I-squared 69%

Appendix F Figure 43. Short-Form (36-Item) Health Survey Physical Component Summary, CPAP vs. Inactive Control

tudy name	Wks	Severity	BL ESS	BL AHI	Study Design	Comparator	Statistics	for each st	udy	Sam	ple size			fference		
							Difference in means	Lower limit	Upper limit	СРАР	Control		mea	ns and 9!	5% CI	
Barbe, 2001	6	sev only	7	56	Parallel	Sham	0.00	-2.76	2.76	29	26	I		-		
gea, 2008	12	mil-sev	8	39	Parallel	Sham	4.80	0.39	9.21	35	38				■┼	
enkinson, 1999	4	mil-mod	12	NR	Parallel	Sham	2.80	-1.22	6.82	54	53			-	⊢ ∣	
Montserrat, 2001	6	mod-sev	17	54	Parallel	Sham	2.56	-2.56	7.68	24	24			-	-	
iccoli, 2008	4	mod-sev	16	NR	Parallel	Sham	8.20	0.52	15.88	51	51				-+-	\dashv
mith, 2007	6	mod-sev	10	36	Crossover	Sham	-1.00	-3.53	1.53	24	24			=		
Weaver, 2012	8	mil-mod	15	13	Parallel	Sham	3.85	1.54	6.16	121	118				■-	
							2.29	0.21	4.37			200		•	•	ş
												-16.00	-8.00	0.00	8.00	16.00

Random-effects meta-analysis; overall I-squared 57%

Appendix F Figure 44. Sleep-Related Quality of Life, CPAP vs. Inactive Control^a

Barnes, 2004 Craig, 2012 Facenda, 2001 am, 2007 AcMillian, 2014	12 24 4	mil-mod NR mod-sev	8	21	Crossover	Std diff in means 0.00	Lower limit -0.28	Upper limit	CPAP	Control			
craig, 2012 facenda, 2001 am, 2007	24 4	NR			Crossover	0.00	0.20					-	
acenda, 2001 am, 2007	4		8			0.00	-0.28	0.28	97	97	- 1	-	. 1
am, 2007		mod-sev		NR	Parallel	0.43	0.23	0.63	195	196		1.5	₽
The state of the s	10	501	15	35	Crossover	0.16	-0.17	0.49	71	71		-	-
Actillian 2014		mil-sev	12	21	Crossover	0.73	0.24	1.22	34	34		I -	-=-
ACIVIIIIIAN, 2014	52	mil-sev	12	NR	Parallel	0.26	0.02	0.50	140	138		- 1=	-
						0.29	0.07	0.50		- 1			, I
Barbe, 2001	6	sev only	7	56	Parallel	0.22	-0.31	0.75	29	26		_ €	— I
Batool-Anwar, 2016a	24	mil-sev	10	40	Parallel	0.00	-0.19	0.19	193	242			
Batool-Anwar, 2016b	24	mil-sev	10	40	Parallel	0.26	0.07	0.46	249	160			
Marshall, 2005	3	mil-mod	13	22	Crossover	0.19	-0.31	0.69	31	31		- - -	- 1
Montserrat, 2001	6	mod-sev	17	54	Parallel	0.46	-0.11	1.03	24	24		- +-	•→
Phillips, 2011	8	mod-sev	8	38	Crossover	-0.22	-0.67	0.23	38	38	- 13		
Siccoli, 2008	4	mod-sev	16	NR	Parallel	0.73	0.33	1.13	51	51		-	-■-
Veaver, 2012	8	mil-mod	15	13	Parallel	0.40	0.16	0.65	141	118		-#	- -
Vest, 2007	12	mil-sev	15	NR	Parallel	0.70	0.07	1.32	21	21		-	-
						0.27	0.09	0.45			- 1	I⊕	,
						0.28	0.14	0.42		I		Iě	,
	atool-Anwar, 2016a latool-Anwar, 2016b larshall, 2005 dontserrat, 2001 thillips, 2011 ciccoli, 2008 Veaver, 2012	tatool-Anwar, 2016a 24 tatool-Anwar, 2016b 24 tarshall, 2005 3 tontserrat, 2001 6 thillips, 2011 8 ticcoli, 2008 4 Veaver, 2012 8	tatool-Anwar, 2016a 24 mil-sev tatool-Anwar, 2016b 24 mil-sev darshall, 2005 3 mil-mod dontserrat, 2001 6 mod-sev thillips, 2011 8 mod-sev ticcoli, 2008 4 mod-sev Veaver, 2012 8 mil-mod	hatool-Anwar, 2016a 24 mil-sev 10 hatool-Anwar, 2016b 24 mil-sev 10 harshall, 2005 3 mil-mod 13 hontserrat, 2001 6 mod-sev 17 hillips, 2011 8 mod-sev 8 hiccoli, 2008 4 mod-sev 16 heat of the color of	Atool-Anwar, 2016a 24 mil-sev 10 40 Atool-Anwar, 2016b 24 mil-sev 10 40 Alarshall, 2005 3 mil-mod 13 22 Atontserrat, 2001 6 mod-sev 17 54 Athillips, 2011 8 mod-sev 8 38 Atoiccoli, 2008 4 mod-sev 16 NR Veaver, 2012 8 mil-mod 15 13	Parallel Parallel Parallel	Parallel 0.22 statool-Anwar, 2016a 24 mil-sev 10 40 Parallel 0.00 statool-Anwar, 2016b 24 mil-sev 10 40 Parallel 0.26 statool-Anwar, 2016b 24 mil-sev 10 40 Parallel 0.26 statool-Anwar, 2016b 24 mil-sev 10 40 Parallel 0.26 statool-Anwar, 2016b 24 mil-sev 17 54 Parallel 0.46 statool-Anwar, 2001 6 mod-sev 17 54 Parallel 0.46 statool-Anwar, 2001 8 mod-sev 8 38 Crossover -0.22 statooli, 2008 4 mod-sev 16 NR Parallel 0.73 statooli, 2008 4 mod-sev 16 NR Parallel 0.73 statooli, 2007 12 mil-sev 15 NR Parallel 0.70 0.27	Parallel 0.22 -0.31 altool-Anwar, 2016a 24 mil-sev 10 40 Parallel 0.00 -0.19 altool-Anwar, 2016b 24 mil-sev 10 40 Parallel 0.26 0.07 alton-larshall, 2005 3 mil-mod 13 22 Crossover 0.19 -0.31 alton-larshall, 2005 6 mod-sev 17 54 Parallel 0.46 -0.11 alton-larshall, 2001 8 mod-sev 8 38 Crossover -0.22 -0.67 alton-larshall, 2008 4 mod-sev 16 NR Parallel 0.73 0.33 alton-larshall 0.73 0.33 alton-larshall 0.73 0.34 alton-larshall 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Parallel 0.22 -0.31 0.75 altool-Anwar, 2016a 24 mil-sev 10 40 Parallel 0.00 -0.19 0.19 altool-Anwar, 2016b 24 mil-sev 10 40 Parallel 0.26 0.07 0.46 alarshall, 2005 3 mil-mod 13 22 Crossover 0.19 -0.31 0.69 altonserrat, 2001 6 mod-sev 17 54 Parallel 0.46 -0.11 1.03 altonserrat, 2001 8 mod-sev 8 38 Crossover -0.22 -0.67 0.23 altonserrat, 2008 4 mod-sev 16 NR Parallel 0.73 0.33 1.13 altonservation 2012 8 mil-mod 15 13 Parallel 0.40 0.16 0.65 altonserrat, 2007 12 mil-sev 15 NR Parallel 0.70 0.07 1.32 altonservation 2015 NR Parallel 0.70 0.09 0.45	Parallel 0.22 -0.31 0.75 29 Parallel 0.22 -0.31 0.75 29 Parallel 0.00 -0.19 0.19 193 Parallel 0.00 -0.19 0.19 193 Parallel 0.00 -0.19 0.19 193 Parallel 0.26 0.07 0.46 249 Parallel 0.26 0.07 0.31 0.69 31 Parallel 0.46 -0.11 1.03 24 Parallel 0.46 -0.11 1.03 24 Parallel 0.46 0.11 1.03 24 Parallel 0.73 0.33 1.13 51 Parallel 0.73 0.33 1.13 51 Parallel 0.40 0.16 0.65 141 Parallel 0.70 0.07 1.32 21 Parallel 0.70 0.07 1.32 21	Parallel 0.22 -0.31 0.75 29 26 26 27 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	Parallel 0.22 -0.31 0.75 29 26 alatool-Anwar, 2016a 24 mil-sev 10 40 Parallel 0.00 -0.19 0.19 193 242 alatool-Anwar, 2016b 24 mil-sev 10 40 Parallel 0.26 0.07 0.46 249 160 alarshall, 2005 3 mil-mod 13 22 Crossover 0.19 -0.31 0.69 31 31 alatoniserrat, 2001 6 mod-sev 17 54 Parallel 0.46 -0.11 1.03 24 24 alatoniserrat, 2001 8 mod-sev 8 38 Crossover -0.22 -0.67 0.23 38 38 alatoniserrat, 2008 4 mod-sev 16 NR Parallel 0.73 0.33 1.13 51 51 alatoniserrat, 2012 8 mil-mod 15 13 Parallel 0.40 0.16 0.65 141 118 alatoniserrat, 2007 12 mil-sev 15 NR Parallel 0.70 0.70 0.07 1.32 21 21 0.27 0.09 0.45	Parallel 0.22 -0.31 0.75 29 26 alatool-Anwar, 2016a 24 mil-sev 10 40 Parallel 0.00 -0.19 0.19 193 242 alatool-Anwar, 2016b 24 mil-sev 10 40 Parallel 0.26 0.07 0.46 249 160 alarshall, 2005 3 mil-mod 13 22 Crossover 0.19 -0.31 0.69 31 31 alatoniserrat, 2001 6 mod-sev 17 54 Parallel 0.46 -0.11 1.03 24 24 alatoniserrat, 2001 8 mod-sev 8 38 Crossover -0.22 -0.67 0.23 38 38 alatoniserrat, 2008 4 mod-sev 16 NR Parallel 0.73 0.33 1.13 51 51 alatoniserrat, 2012 8 mil-mod 15 13 Parallel 0.40 0.16 0.65 141 118 alatoniserrat, 2007 12 mil-sev 15 NR Parallel 0.70 0.70 0.07 1.32 21 21 alatoniserrat, 2007 0.09 0.45

Random-effects meta-analysis; overall I-squared=58%

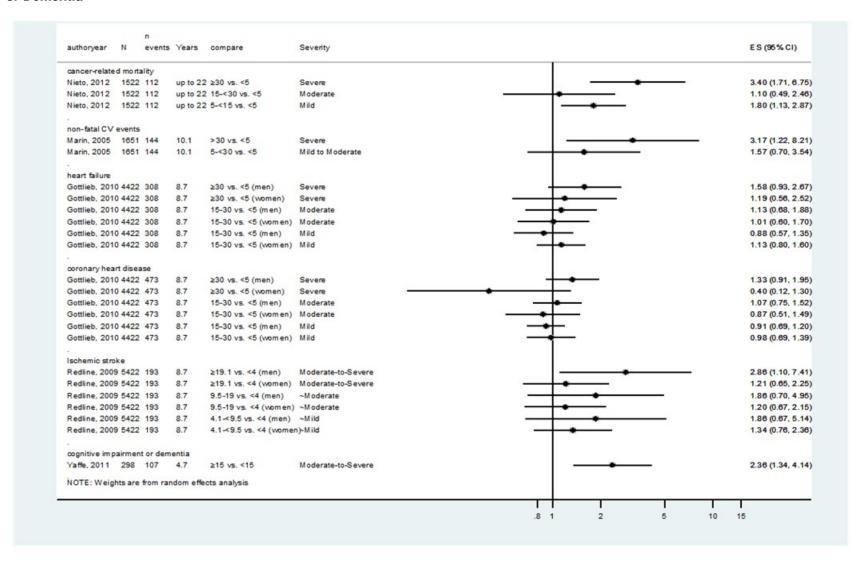
^{*} Batool-Anwar, 2016a data are from participants with CPAP (or sham) compliance < 4 hours; Batool-Anwar, 2016b data are from participants with compliance >4 hours.

Appendix F Figure F45. Sleep-Related Quality of Life, CPAP vs. Inactive Control; Sensitivity Analysis Without Phillips^a

Group by	Study name	Wks	Severity	BL ESS	BL AHI	Study Design	Statistic	s for each	study	Sam	ple size	Std diff in means and 95% C
Comparator							Std diff in means	Lower limit	Upper limit	CPAP	Control	
Control	Barnes, 2004	12	mil-mod	8	21	Crossover	0.00	-0.28	0.28	97	97	🛊
ontrol	Craig, 2012	24	NR	8	NR	Parallel	0.43	0.23	0.63	195	196	
ontrol	Facenda, 2001	4	mod-sev	15	35	Crossover	0.16	-0.17	0.49	71	71	+=-
ontrol	Lam, 2007	10	mil-sev	12	21	Crossover	0.73	0.24	1.22	34	34	
ontrol	McMillian, 2014	52	mil-sev	12	NR	Parallel	0.26	0.02	0.50	140	138	=
ontrol							0.29	0.08	0.49			♦
am	Barbe, 2001	6	sev only	7	56	Parallel	0.22	-0.31	0.75	29	26	 = -
am	Batool-Anwar, 2016a	24	mil-sev	10	40	Parallel	0.00	-0.19	0.19	193	242	#
am	Batool-Anwar, 2016b	24	mil-sev	10	40	Parallel	0.26	0.07	0.46	249	160	=
am	Marshall, 2005	3	mil-mod	13	22	Crossover	0.19	-0.31	0.69	31	31	 =
am	Montserrat, 2001	6	mod-sev	17	54	Parallel	0.46	-0.11	1.03	24	24	
am	Siccoli, 2008	4	mod-sev	16	NR	Parallel	0.73	0.33	1.13	51	51	-■+
am	Weaver, 2012	8	mil-mod	15	13	Parallel	0.40	0.16	0.65	141	118	-
am	West, 2007	12	mil-sev	15	NR	Parallel	0.70	0.07	1.32	21	21	
am							0.32	0.14	0.50			♦
verall							0.31	0.17	0.44		- 1	♦

Random-effects meta-analysis; overall I-squared=54%

^{*} Batool-Anwar, 2016a data are from participants with CPAP (or sham) compliance < 4 hours; Batool-Anwar, 2016b data are from participants with compliance >4 hours.


Appendix F Figure 46. Sleep-Related Quality of Life, CPAP vs. Inactive Control; Sensitivity Analysis Including Only Studies With Mean Baseline ESS ≥10

Group by Comparator	Study name	Wks	Severity	BL ESS	BL AHI	Study Design	Statistics for each study			Sample size		Std diff in means and 95% CI
							Std diff in means	Lower limit	Upper limit	CPAP	Control	
control	Facenda, 2001	4	mod-sev	15	35	Crossover	0.16	-0.17	0.49	71	71	🖶
ontrol	Lam, 2007	10	mil-sev	12	21	Crossover	0.73	0.24	1.22	34	34	■+
ontrol	McMillian, 2014	52	mil-sev	12	NR	Parallel	0.26	0.02	0.50	140	138	 ■
ontrol							0.33	0.04	0.63			
ham	Batool-Anwar, 2016a	24	mil-sev	10	40	Parallel	0.00	-0.19	0.19	193	242	+
ham	Batool-Anwar, 2016b	24	mil-sev	10	40	Parallel	0.26	0.07	0.46	249	160	=
ham	Marshall, 2005	3	mil-mod	13	22	Crossover	0.19	-0.31	0.69	31	31	
ham	Montserrat, 2001	6	mod-sev	17	54	Parallel	0.46	-0.11	1.03	24	24	 -
ham	Siccoli, 2008	4	mod-sev	16	NR	Parallel	0.73	0.33	1.13	51	51	-=
ham	Weaver, 2012	8	mil-mod	15	13	Parallel	0.40	0.16	0.65	141	118	-
ham	West, 2007	12	mil-sev	15	NR	Parallel	0.70	0.07	1.32	21	21	
ham							0.34	0.14	0.53			♦
Overall							0.33	0.17	0.50			♦

Random-effects meta-analysis; overall I-squared=56%

^{*} Batool-Anwar, 2016a data are from participants with CPAP (or sham) compliance < 4 hours; Batool-Anwar, 2016b data are from participants with compliance >4 hours.

Appendix F Figure 47. Association Between AHI and Cancer-Related Mortality, Cardiovascular Events, Stroke, and Cognitive Impairment or Dementia

Appendix G. Summary of Contextual Questions and Where They Are Addressed in the Report

- 1a. What is the rate of adherence to CPAP, mandibular advancement devices, and weight loss interventions among persons with OSA?
- 1b. How effective are interventions designed to enhance adherence to CPAP?

CQ1 is addressed in the Discussion, last paragraph under "Benefits and Harms of Treatment for OSA" (pg 37). That entire paragraph is related to CQ 1a and 1b. Briefly, a wide range of adherence to CPAP usage recommendations has been reported, ranging from about 30 to 85 percent. A systematic review reported that 14 to 32 percent of patients discontinue CPAP over 4 years and patients use CPAP for an average of 5 hours per night; data were too limited to provide adherence rates for MADs. A recent Cochrane systematic review of 33 studies (2,047 participants) found low- to moderate-quality evidence that three types of interventions can increase CPAP machine usage in CPAP-naive participants with moderate to severe OSA syndrome. However, they noted that trials did not assess people who have struggled to adhere to treatment and the impact of improved CPAP usage on daytime sleepiness, quality of life, and long-term cardiovascular risks remains unclear.

For weight loss interventions, a wide range of adherence has been reported. A systematic review of interventions for improving nutrition and physical activity behaviors reported that adherence to attending intervention programs ranged from 33.0 percent to 95.0 percent and that retention rates ranged from 43 percent to 96 percent (mean 80%). ²⁹⁶ The review for the USPSTF on behavioral counseling to promote physical activity and a healthful diet to prevent cardiovascular disease in adults noted that most trials did not report adherence to interventions.²⁹⁷ The review for the USPSTF on counseling to promote a healthy lifestyle in persons with cardiovascular risk factors²⁹⁸ noted that many intensive combined lifestyle and diet-only interventions would require resources that are not currently available or paid for and that "...fidelity of and adherence to counseling interventions should be routinely reported to better understand the applicability of behavioral counseling trial findings". A systematic review that reported adherence to self-monitoring activities in weight loss interventions²⁹⁹ noted that "detailed measurement of adherence to self-monitoring has been reported infrequently; thus, little is known about the extent to which people adhere over time." It concluded that the variability in measurement methods (for adherence) made it impossible to compare adherence across studies. Data from years 1 and 5 of the Women's Health Initiative Dietary Modification Trial (N~50,000), in which participants were randomly assigned to a low-fat dietary intervention arm or usual diet control arm, suggest that long-term dietary change can be achieved (although it was in a clinical trial setting). The authors reported adherence to a low-fat dietary pattern (less than 20% energy from fat, five or more fruit/vegetable and six or more grain servings daily) assessed as the difference between groups in percent total energy from fat. The difference was 10.9 percentage points of energy from fat at Year 1 and 9.0 at Year 5.

2. What are the barriers to undergoing diagnostic testing for OSA (e.g., availability of polysomnography, ability to tolerate testing)? How often do those barriers prevent completion of testing?

CQ2 is addressed in the Discussion, second paragraph under "Accuracy and Reliability of Diagnostic Tests" (pg 35). That entire paragraph is related to CQ 2. Briefly, barriers

Appendix G. Summary of Contextual Questions and Where They Are Addressed in the Report

include limited availability of PSG, ability to tolerate testing, inconvenience, and costs. It is unclear how often those barriers prevent completion of testing. Mean time from referral to sleep clinic evaluation ranges from a few weeks to more than a year, with longer wait times for university, state, and federal government sleep lab facilities.

3. Is there an association between reduction in sleepiness and quality of life, work productivity, motor vehicle crashes, or other health outcomes?

Some information related to this CQ was within 1 study in the results for KQ 6 (because one study assessing the relationship between AHI and all-cause mortality evaluated subgroups based on sleepiness). That study (last paragraph under the All-cause Mortality header in KQ 6, pg 28) found that the association between AHI \geq 20 and death was limited to those with excessive daytime sleepiness (determined by self-report of having a problem with feeling sleepy or struggling to stay awake during the daytime \geq 3 or 4 times a week) but was not significant for those without excessive daytime sleepiness (HR, 2.28; 95% CI, 1.46 to 3.57 vs. HR, 0.74; 95% CI, 0.39 to 1.38) compared with a reference group with AHI <20 and no excessive daytime sleepiness.

CQ 3 is addressed also in the Discussion in under "Benefits and Harms of Treatment for OSA" (pg 35-36). One publication that used the nation-wide population-based Sleep Heart Health Study (SHHS) (n=5,816; mean age=63 years; 52.5% women) reported that EDS was strongly associated with reduced QoL even after adjusting for confounding variables (age, ethnicity) for both sexes. Sleepiness has been linked to motor vehicle crashes in multiple observational studies. A cross-sectional study of 913 employed adults from the general U.S. population (enrolled in the Wisconsin Sleep Cohort Study) found that men and women with AHI >15 were significantly more likely to have multiple accidents over the past 5 years (OR, 7.3; 95% CI, 1.8 to >25; adjusted for age, miles driven, and sex) using state records for motor vehicle accident history (retrospectively). The study was limited by the retrospective design and potential confounding. Considering education and usual alcohol consumption reportedly did not alter the odds ratio. None of their measures of perceived sleepiness (including those derived from ESS) were significantly related to accident occurrence. A cross-sectional study of 2,342 Australian commercial vehicle drivers found that the sleepiest five percent of drivers (based on ESS) had about twice the odds of a self-reported motor vehicle accident over the previous three years (OR, 1.91; 95% CI, 1.09 to 3.35) and even greater odds of multiple accidents over the previous three years (OR, 2.67; 95% CI, 1.29 to 5.52).

Note that the various studies reporting associations between sleepiness and health outcomes do not establish the degree to which a reduction in sleepiness would result in improved health outcomes (and they are not all limited to people with OSA).

4. Is there an association between reduction in blood pressure and health outcomes?

CQ 4 is addressed in the first paragraph under "Benefits and Harms of Treatment for OSA" (pg 35-36). Briefly, yes, data suggest that mean reductions of 2 to 3 mm Hg for systolic

Appendix G. Summary of Contextual Questions and Where They Are Addressed in the Report

blood pressure (across a population) could result in a clinically significant reduction in cardiovascular mortality (by 4% to 5% for coronary heart disease and 6% to 8% for stroke).

5. What are clinically meaningful changes in the AHI, sleepiness (as measured by the Epworth Sleepiness Scale), and blood pressure?

There is no clear numerical change in AHI that constitutes a clinically meaningful change for AHI. Reducing it from severe OSA levels to normal (<5) or near normal levels could possibly be clinically meaningful. Our KQ 6 findings suggest that it may be clinically meaningful, but empiric data to confirm that is lacking.

CQ 5 is addressed also in the first paragraph under "Benefits and Harms of Treatment for OSA" (pg 35-36). Briefly, for sleepiness, the threshold for a clinically significant change in ESS is somewhat uncertain. Although a reduction from ESS ≥ 10 (indicating excessive daytime sleepiness) to one of <10 (considered the normal range) is likely clinically meaningful, recent systematic reviews found that some experts consider a 1 point change in ESS clinically significant. However, other sources suggest that a greater change, of at least 3 or 4 points, should be the clinically significant threshold. For example, some trials that use ESS as an outcome have considered a \geq 4-point change in ESS as clinically significant for their sample size calculations or in their interpretation of findings. 242-244 Also, the American College of Chest Physicians' outcome experts evaluating the ESS informally stated that a clinically significant change in the ESS is probably at least \geq 3; a specific example cited was that a reduction by 1 point (e.g., from 3 [high] to 2 [moderate]) on two out of seven ESS domains was unlikely clinically relevant.

For blood pressure reduction, some authors suggest that a difference of more than 9/10 mm Hg is clinically meaningful for individuals. However, across a population, guidelines have suggested that much smaller reductions of 2 to 3 mm Hg for systolic blood pressure could result in a clinically significant reduction in cardiovascular mortality (by 4% to 5% for coronary heart disease and 6% to 8% for stroke).

6. Is there an association between OSA and incident diabetes?

CQ 6 is addressed in the Limitations section of the report when mentioning that we did not evaluate the association between AHI and incident diabetes (pg 38). A 2011 systematic review concluded that there may be an association but the strength of evidence was low and the association may be confounded by obesity. A more recent (2014) systematic review concluded that the association between OSA and incident diabetes is uncertain.