Evidence Synthesis Number 180

Medication Use for the Risk Reduction of Primary Breast Cancer in Women: A Systematic Review for the U.S. Preventive Services Task Force

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. HHSA-290-2015-00009-I, Task Order No. 7

Prepared by:

Pacific Northwest Evidence-Based Practice Center Oregon Health & Science University Mail Code: BICC 3181 SW Sam Jackson Park Road Portland, OR 97239 www.ohsu.edu/epc

Investigators:

Heidi D. Nelson, MD, MPH Rongwei Fu, PhD Bernadette Zakher, MBBS Marian McDonagh, PharmD Miranda Pappas, MA Lucy Stillman, BS

AHRQ Publication No. 19-05249-EF-1 September 2019 This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (HHSA-290-2015-0000-9I, Task Order No. 7). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report.

Acknowledgments

The authors thank AHRQ Medical Officers Ernie Sullivent, MD, MPH, and Tina Fan, MD, MPH; U.S. Preventive Services Task Force leads Alex Krist, MD, MPH, Carol Mangione, MD, MSPH, and Michael Barry, MD; expert reviewers of the draft report; expert consultant Rachel Yung, MD; and research librarian Andrew Hamilton, MLS, MS.

Suggested Citation

Nelson HD, Fu R, Zakher B, McDonagh M, Pappas M, Stillman L. Medication Use for the Risk Reduction of Primary Breast Cancer in Women: A Systematic Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 180. AHRQ Publication No. 19-05249-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2019.

Structured Abstract

Background: Medications to reduce breast cancer risk are an effective prevention intervention for women at increased risk, although medications also cause adverse effects.

Purpose: To update the 2013 U.S. Preventive Services Task Force (USPSTF) systematic review on the use of medications to reduce the risk of primary breast cancer.

Data Sources: Searches included the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, EMBASE, and MEDLINE (January 1, 2013 to February 1, 2019); and manual review of reference lists. Studies published before 2013 were identified from prior systematic reviews for the USPSTF.

Study Selection: Discriminatory accuracy studies of breast cancer risk assessment methods; double-blind, placebo-controlled or head-to-head randomized controlled trials (RCT) of tamoxifen, raloxifene, and aromatase inhibitors for primary prevention of breast cancer that enrolled women without preexisting breast cancer; and RCTs and observational studies of harms of medications.

Data Extraction: One investigator abstracted data on study methods; setting; population characteristics; eligibility criteria; interventions; numbers enrolled and lost to followup; method of outcome ascertainment; and results for each outcome and a second investigator checked abstractions for accuracy. Two investigators independently assessed study quality using methods developed by the USPSTF.

Data Synthesis (Results): Eighteen risk models evaluated in 25 studies had generally low discriminatory accuracy in predicting the probability of breast cancer in an individual (c-statistics 0.55 to 0.65). Most models performed only slightly better than age alone as a risk predictor. No studies evaluated optimal ages or frequencies of risk assessment.

In placebo-controlled trials, tamoxifen (risk ratio [RR] 0.69; 95% confidence interval [CI], 0.59 to 0.84; 7 fewer cases per 1000 women over 5 years of use [95% CI, 4 to 12]; 4 trials), raloxifene (RR 0.44; 95% CI, 0.24 to 0.80; 9 fewer cases [95% CI, 3 to 15]; 2 trials), and the aromatase inhibitors exemestane and anastrozole (RR 0.45; 95% CI, 0.26 to 0.70; 16 fewer cases [95% CI, 8 to 24]; 2 trials) reduced invasive breast cancer. Risk for invasive breast cancer was higher for raloxifene than tamoxifen in the Study of Tamoxifen And Raloxifene (STAR) head-to-head trial (RR, 1.24; 95% CI, 1.05 to 1.47) after long-term followup. Effects did not differ by age of initiation or duration of use (3 to 5 years), although these effects were not directly compared. Risk reduction persisted at least 8 years after discontinuation in tamoxifen trials with long-term followup. All medications reduced estrogen receptor positive, but not estrogen receptor negative invasive breast cancer; tamoxifen reduced noninvasive cancer in two trials; and breast-cancer specific and all-cause mortality were not reduced.

In placebo-controlled trials, raloxifene (RR 0.61; 95% CI, 0.53 to 0.73; 2 trials) reduced vertebral fractures; tamoxifen reduced nonvertebral fractures in the National Surgical Adjuvant Breast and Bowel Project (NSABP P-1) trial (RR 0.66; 95% CI, 0.45 to 0.98); while the aromatase inhibitors had no effect on fractures. Tamoxifen and raloxifene had similar effects on

reducing fractures at multiple vertebral and nonvertebral sites in the STAR head-to-head trial.

In placebo-controlled trials, tamoxifen (RR 1.93; 95% CI, 1.33 to 2.68; 4 trials) and raloxifene (RR 1.56; 95% CI, 1.11 to 2.60; 2 trials) increased thromboembolic events, while aromatase inhibitors did not. Raloxifene caused fewer thromboembolic events (RR 0.75; 95% CI, 0.60 to 0.93) than tamoxifen in the STAR head-to-head trial. Tamoxifen, raloxifene, and aromatase inhibitors did not increase coronary heart disease events or strokes.

In placebo-controlled trials, tamoxifen increased endometrial cancer (RR 2.25; 95% CI, 1.17 to 4.41; 3 trials), while raloxifene and aromatase inhibitors did not. In the STAR head-to-head trial, raloxifene caused fewer cases of endometrial cancer (RR 0.55; 95% CI, 0.36 to 0.83) and endometrial hyperplasia (RR 0.19; 95% CI, 0.12 to 0.29), and fewer hysterectomies (RR 0.45; 95% CI, 0.37 to 0.54) than tamoxifen. Tamoxifen increased cataracts (RR 1.22; 95% CI, 1.08 to 1.48; 3 trials) and cataract surgery compared with placebo, while raloxifene and aromatase inhibitors did not. Risks for thromboembolic events and endometrial cancer with tamoxifen were higher for older compared with younger women and returned to normal after discontinuation. All medications caused adverse effects, such as vasomotor or musculoskeletal symptoms, that varied by medication.

Risks for invasive cancer were generally reduced in all population subgroups evaluated based on menopausal status (pre and postmenopausal); family history of breast cancer; body mass index categories; modified Gail model risk categories; and age at menarche, parity, or age at first live birth, although results varied. Tamoxifen and anastrozole had larger effects in reducing invasive breast cancer in women with previous breast lesions (lobular carcinoma in situ, atypical ductal hyperplasia, or atypical lobular hyperplasia).

Limitations: Trials were limited by clinical heterogeneity related to different medications, exposure durations, eligibility criteria, adherence, and ascertainment of outcomes. No trials compared timing and duration directly. Long-term followup data were lacking from most trials, and followup was particularly short for the aromatase inhibitors. Trials were not designed for subgroup comparisons and analysis of differences may be underpowered.

Conclusions: Tamoxifen, raloxifene, and the aromatase inhibitors exemestane and anastrozole reduce invasive breast cancer in women without preexisting breast cancer, but also cause adverse effects that vary by medication. Tamoxifen and raloxifene increase thromboembolic events and tamoxifen increases endometrial cancer and cataracts. Identifying candidates for therapy is complicated by risk stratification methods that demonstrate low accuracy.

Table of Contents

Chapter 1. Introduction and Background	1
Purpose	1
Condition Background	1
Condition Definition	
Prevalence and Burden of Disease/Illness	1
Etiology and Natural History	1
Risk Factors	2
Rationale for Screening/Screening Strategies	2
Interventions/Treatment	
Current Clinical Practice/Recommendations of Other Groups	3
Chapter 2. Methods	4
Key Questions and Analytic Framework	4
Key Questions	
Contextual Questions	4
Search Strategies	5
Study Selection	5
Data Abstraction and Quality Rating	7
Data Synthesis	7
Statistical Analysis	7
External Review	8
Chapter 3. Results	9
Key Question 1. In Adult Women Without Preexisting Breast Cancer, What Is the Accuracy	r
of Risk Assessment Methods to Identify Women Who Could Benefit From Medications to	
Reduce Risk for Primary Breast Cancer?	9
Summary	9
Evidence	9
Key Question 1a. What Is the Optimal Age at Which to Begin Risk Assessment to Identify	
Women Who Could Benefit From Medications to Reduce Risk for Primary Breast Cancer?	11
Key Question 1b. What Is the Optimal Frequency of Risk Assessment to Identify Women	
Who Could Benefit From Medications to Reduce Risk for Primary Breast Cancer?	11
Key Question 2. In Adult Women Without Preexisting Breast Cancer, What Is the	
Effectiveness and Comparative Effectiveness of Medications to Reduce Risk for Primary	
Breast Cancer on Improvement in Short- and Long-Term Health Outcomes?	11
Overview of the Primary Prevention Trials	
Summary	15
Evidence	16
Key Question 2a. Does the Effectiveness of Risk-Reducing Medications Vary by Timing of	
Initiation or Duration of Use?	18
Summary	18
Evidence	
Key Question 2b. Does the Effectiveness of Risk-Reducing Medications Persist Beyond	
Discontinuation of Use?	19
Key Question 3. What Are the Harms of Using Medications to Reduce Risk for Primary	

Summary	20
Evidence	
Key Question 3a. Do Harms of Risk-Reducing Medications Vary by Timing of Initiation	
and/or Duration of Use?	26
Key Question 3b. Do Harms of Risk-Reducing Medications Persist Beyond Discontinuation	1
of Use?	27
Summary	27
Evidence	27
Key Question 4. How Do Outcomes Vary by Population Subgroups?	27
Summary	27
Evidence	28
Contextual Question 1. What Are Current Clinician and Patient Attitudes and Practices	
Regarding Use of Medications to Reduce Risk for Primary Breast Cancer? Do They Vary by	у
Population Subgroups?	30
Patient Perspectives	30
Provider Perspectives	32
Contextual Question 2. How Well Do Statistical Models Inform the Practice of Identifying	
and Treating Women With Medications to Reduce Risk for Breast Cancer?	33
Chapter 4. Discussion	
Summary of Review Findings	35
Limitations	36
Emerging Issues/Next Steps	37
Relevance for Priority Populations, Particularly Racial/Ethnic Minorities	38
Future Research	38
Conclusions	40
References	41

Figures

Figure 18. Meta-Analysis of Trials: Cataracts

Figure 19. Meta-Analysis of Trials: Menopausal Status

Figure 20. Meta-Analysis of Trials: Estrogen Use

Figure 21. Meta-Analysis of Trials: Family History

Figure 22. Meta-Analysis of Trials: Body Mass Index

Tables

Table 1. Studies of Risk Stratification Models

Table 2. Risk Stratification Models Variables and Accuracy

Table 3. Randomized, Controlled Trials of Medications to Reduce Risk for Breast Cancer

Table 4. Outcomes Reported in Trials

Table 5. Results of the STAR Trial—Relative and Absolute Effects

Table 6. Meta-Analysis of Results of Placebo-Controlled Trials—Relative and Absolute Effects for Beneficial Outcomes

Table 7. Methods of Followup for Adverse Events in Trials

Table 8. Meta-Analysis of Results of Placebo-Controlled Trials—Relative and Absolute Effects for Harmful Outcomes

Table 9. Facilitators and Barriers to Uptake of Risk-Reducing Medications for Breast Cancer Table 10. Summary of Evidence Table

Appendixes

Appendix A. Detailed Methods

Appendix A1. Search Strategies

Appendix A2. Inclusion and Exclusion Criteria

Appendix A3. Literature Flow Diagram

Appendix A4. List of Excluded Studies

Appendix A5. Criteria for Assessing Internal Validity of Individual Studies

Appendix A6. Expert Reviewers of the Draft Report

Appendix B. Evidence Tables and Quality Tables

Appendix B1. Quality Assessment of Diagnostic Accuracy Studies

Appendix B2. Quality Assessment of Randomized, Controlled Trials

Appendix B3. Evidence Table of Trials of Risk-Reducing Medications for Breast Cancer

Appendix C. Supplemental Tables

Appendix C1. Detailed Inclusion Criteria for Primary Prevention Trials

Appendix C2. Summary of Inclusion Criteria for Primary Prevention Trials

Appendix C3. Distribution of Risk Factors in Primary Prevention Trials

Appendix C4. Summary of Treatment Trials of Aromatase Inhibitors With Fracture and Cardiovascular Disease Outcomes

Chapter 1. Introduction and Background

Purpose

This report will be used by the U.S. Preventive Services Task Force (USPSTF) to update the 2013 recommendation on the use of medications to reduce risk for primary breast cancer in women.^{1,2}

Condition Background

Condition Definition

Breast cancer is a malignancy that develops in breast tissue beginning in the lining of the lactation ducts or lobules of the breast.³ Invasive breast cancer has the potential to spread into surrounding tissue, while noninvasive or in situ breast cancer is confined to the ducts or lobules.³ Estrogen receptor positive (ER+) breast cancer, approximately 75 percent of cases, describes cells that have a receptor protein that binds estrogen. ER+ cells may need estrogen to grow, and may stop growing when treated with substances that block the binding and actions of estrogen. Estrogen receptor negative (ER-) cells do not respond to estrogen. Ductal carcinoma in situ (DCIS) may be a precursor form of breast cancer, while lobular carcinoma in situ (LCIS) serves as a marker for increased risk of developing invasive cancer.⁴

Prevalence and Burden of Disease/Illness

Breast cancer is the second most commonly diagnosed cancer among women in the United States after nonmelanoma skin cancer, and is the second leading cause of cancer death after lung cancer. In 2018, an estimated 266,120 women developed breast cancer in the United States and 40,920 women died from the disease.⁵ Based on data from 2011 to 2015, 70 percent of female breast cancer cases occurred in women aged 45 to 74 years (median age of diagnosis was 62 years).⁶ White and black women have similar rates of breast cancer incidence (128.6 and 126.9 per 100,000 persons, respectively) and are more likely to be diagnosed with breast cancer compared with other races. In 2018, breast cancer accounted for 15.3 percent of all new cancer diagnoses in the United States. In 2015, approximately 3,418,124 women were living with breast cancer in the United States.⁶

Etiology and Natural History

Based on data from 2013 to 2015, 12.4 percent of women will be diagnosed with breast cancer at some point in their lives.⁶ The 5-year relative survival rate in the United States for any breast cancer diagnosis is 91 percent, which improves to 99 percent with localized disease. Five-year relative survival rates for women with regional and distant disease are 85 percent and 27 percent, respectively.⁷ Older women are more likely to die of the disease compared with younger women, and 81 percent of female breast cancer deaths occurred in women over the age of 54 years between 2011 and 2015 (median age of death was 68 years).⁶ Black women are more likely to

die of breast cancer (28.7 deaths per 100,000 persons) compared with other races.

Risk Factors

Several factors are associated with increased risk for breast cancer. The strongest predictors are female sex and increasing age. Other important risk factors include previous diagnosis of high-risk breast lesions (DCIS, LCIS, atypical ductal or lobular hyperplasia [ADH, ALH], and others), first degree relatives with breast cancer, presence of breast cancer susceptibility mutations, previous breast biopsy, increased breast density, and previous radiation therapy to the chest (e.g., treatment for Hodgkin lymphoma).⁸ While many other risk factors have been associated with breast cancer in epidemiologic studies, their effects are lower or inconsistent.^{2,9}

Rationale for Screening/Screening Strategies

Periodic mammography screening is the current approach to early detection. Prevention strategies include use of risk-reducing medications and surgeries (i.e., mastectomy, oophorectomy) for women identified at increased risk. This review focuses on risk-reducing medications.

Candidates for risk-reducing medications need to be accurately identified to optimize potential benefits and minimize harms. The goal of clinical assessment for breast cancer risk is to stratify women into average and above average risk groups. Some of the clinical trials established inclusion criteria based on individual risk factors, while others set risk thresholds of at least 1.67 percent 5-year risk of breast cancer as determined by the modified Gail model, a clinical model to predict individualized probability of developing breast cancer. The previous USPSTF recommendation indicated 3 percent 5-year risk of breast cancer.¹ Clinical tools to assess individual risks for breast cancer in primary care settings, such as the Gail model, incorporate information about specific risk factors to estimate the likelihood of future breast cancer.^{2,9} However, risk assessment tools were developed from population-level data and have only a low degree of discriminatory accuracy when used to determine risk for individual women. In the previous systematic review, c-statistic scores ranged from 0.55 to 0.65 among 13 models tested.^{2,9}

Interventions/Treatment

Medications used in the United States to reduce the risk of breast cancer in women at increased risk include raloxifene,¹⁰ tamoxifen,¹¹ and aromatase inhibitors.¹²⁻¹⁴ Only raloxifene and tamoxifen are approved by the U.S. Food and Drug Administration (FDA) for this indication, and raloxifene is only approved for use in postmenopausal women.^{10,11} Raloxifene and tamoxifen are selective estrogen receptor modulators (SERMs) that act by blocking the response of estrogen receptors in breast tissue, limiting breast tissue proliferation and subsequent cancer. The previous review reported that the degree of risk reduction from use of these medications ranged from 30 percent to 68 percent compared with placebo, predominantly reducing incidence of ER+ invasive breast cancer.² A subsequent meta-analysis of individual participant data from nine trials of SERMs, including tamoxifen and raloxifene, reported a 38 percent risk reduction in breast cancer incidence over 10 years of followup.¹⁵ Both SERMs increase risk of

thromboembolism and tamoxifen increases risk of endometrial cancer.²

Aromatase inhibitors, including exemestane¹⁶⁻¹⁸ and anastrozole,¹⁷ have been evaluated for breast cancer risk reduction in postmenopausal women in clinical trials, although they are primarily used to treat breast cancer. These medications act by blocking aromatase, the enzyme responsible for converting androgen to estrogen, thereby decreasing the production of estrogen in tissue.

Current Clinical Practice/Recommendations of Other Groups

Use of medications for breast cancer risk reduction has been limited in clinical practice. The uptake of risk-reducing medications among 21,423 women in 26 studies was 16.3 percent in a recent meta-analysis.¹⁹ However, use among clinical populations is much lower, with estimates ranging from approximately 4 percent of women at increased risk to less than 1 percent of eligible women overall.^{20,21} Women's concerns about adverse effects and their beliefs that benefits are not worth the harms are important factors in their decisions to decline use of these medications.² In addition, many primary care physicians are unfamiliar with tamoxifen and aromatase inhibitors because they are primarily used for breast cancer treatment.²²

The National Comprehensive Cancer Network (NCCN) Breast Cancer Risk Reduction Panel recommends tamoxifen (20 mg/day) as an option to reduce breast cancer risk in healthy pre and postmenopausal women 35 years of age or older, whose life expectancy is 10 years or more, and who have at least 1.7 percent 5-year risk of breast cancer as determined by the modified Gail Model, or who have had LCIS.²³ The NCCN recommends tamoxifen over raloxifene for most postmenopausal women desiring non-surgical risk reduction therapy because it is more effective. However, consideration of toxicity may still lead to the choice of raloxifene in some women. If raloxifene is chosen, the NCCN Breast Cancer Risk Reduction Panel recommends use of 60 mg/day.²³ The NCCN has also added exemestane and anastrozole as choices of risk-reduction agents.²³ All four medications may be used in postmenopausal women, while tamoxifen is the only medication indicated for premenopausal women.

Chapter 2. Methods

Key Questions and Analytic Framework

Using the methods developed by the USPSTF,²⁴ the USPSTF and the Agency for Healthcare Research and Quality (AHRQ) determined the scope and key questions for this review. Investigators created an analytic framework with the key questions and the patient populations, interventions, and outcomes reviewed (**Figure 1**).

Key Questions

- 1. In adult women without preexisting breast cancer, what is the accuracy of risk assessment methods to identify women who could benefit from medications to reduce risk for primary breast cancer (e.g., clinical risk assessment models)?
 - a. What is the optimal age at which to begin risk assessment to identify women who could benefit from medications to reduce risk for primary breast cancer?
 - b. What is the optimal frequency of risk assessment to identify women who could benefit from medications to reduce risk for primary breast cancer?
- 2. In adult women without preexisting breast cancer, what is the effectiveness and comparative effectiveness of medications to reduce risk for primary breast cancer on improvement in short- and long-term health outcomes, including invasive breast cancer, noninvasive breast cancer (including DCIS), breast cancer mortality, all-cause mortality, and other beneficial outcomes (such as reduced fractures caused by certain medications and improved quality of life)?
 - a. Does the effectiveness of risk-reducing medications vary by timing of initiation or duration of use?
 - b. Does the effectiveness of risk-reducing medications persist beyond discontinuation of use?
- 3. What are the harms of using medications to reduce risk for primary breast cancer?
 - a. Do the harms of risk-reducing medications vary by timing of initiation or duration of use?
 - b. Do the harms of risk-reducing medications persist beyond discontinuation of use?
- 4. Do the outcomes of using medications to reduce risk for primary breast cancer vary by population subgroups?

Contextual Questions

Contextual questions provide additional information for the USPSTF, but are not systematically reviewed or represented in the Analytic Framework.

- 1. What are current clinician and patient attitudes and practices regarding use of medications to reduce risk for primary breast cancer? Do they vary by population subgroups, including nonwhite women; premenopausal women; women with comorbid conditions; and women with lower educational levels, socioeconomic status, and access to care?
- 2. How well do statistical models inform the practice of identifying and treating women with medications to reduce risk for breast cancer?

Search Strategies

A research librarian searched the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews and Ovid EMBASE and MEDLINE (January 1, 2013 to February 1, 2019) for relevant English-language studies, systematic reviews, and meta-analyses. Search strategies are available in **Appendix A1**. Studies published before 2013 were identified from prior systematic reviews for the USPSTF.^{2,9} Investigators manually reviewed reference lists of relevant articles.

Study Selection

Selection criteria for studies based on the patient populations, interventions, outcome measures, and types of evidence were developed for each key question (Appendix A2). After an initial review of citations and abstracts, investigators retrieved full-text articles of potentially relevant material and conducted a second review to determine inclusion. A second reviewer confirmed results of the initial reviewer, and discrepancies were resolved by team consensus. For Key Question 1, studies of clinical risk assessment models that could be used in primary care settings to identify women at higher than average risk for breast cancer were included. Only studies reporting discriminatory accuracy of the models were included. Discriminatory accuracy is a measure of how well the model can correctly classify persons at higher risk from those at lower risk and is measured by the model's concordance statistic or c-statistic. The c-statistic is determined by the area under the receiver operating characteristic curve (AUC), a plot of sensitivity (true-positive rate) versus 1 – specificity (false-positive rate). Perfect discrimination is a c-statistic of 1.0, whereas a c-statistic of 0.5 would result from chance alone. An acceptable level of discrimination is between 0.70 and 0.79, excellent is between 0.80 and 0.89, and outstanding is 0.90 or greater,²⁵ although these thresholds vary depending on the clinical condition and purpose of the test. Studies of individual risk factors or laboratory tests as well as models designed primarily to evaluate risk for pathogenic mutations in breast cancer susceptibility genes (e.g. BRCA1/2) were excluded.

For Key Question 2, only double-blind, placebo-controlled or head-to-head randomized controlled trials (RCT) of tamoxifen, raloxifene, or aromatase inhibitors for primary prevention of breast cancer that enrolled women without preexisting breast cancer were included. These trials reported breast cancer incidence as a primary or secondary outcome of the study. For Key Question 3, RCTs and observational studies of tamoxifen, raloxifene, or aromatase inhibitors in women without preexisting breast cancer that had a nonuser comparison group or direct comparisons between the medications were included. All adverse outcomes at all reported followup times were considered to capture potential short- and long-term adverse effects. Studies reporting only intermediate outcomes rather than health outcomes, such as cholesterol levels rather than cardiovascular disease events, were not included.

The selection of literature is summarized in the literature flow diagram (**Appendix A3**). **Appendix A4** lists excluded studies with reasons for exclusion.

Data Abstraction and Quality Rating

For the included RCTs and observational studies, investigators abstracted the following data: study design; setting; population characteristics (including age, ethnicity, diagnosis); eligibility criteria; interventions (dose and duration); numbers enrolled and lost to followup; method of outcome ascertainment; and results for each outcome. For studies of risk models, investigators abstracted: study design; population characteristics; eligibility criteria; reference standards; risk factors included in the models; and performance measures of the models.

Two investigators independently applied criteria developed by the USPSTF²⁴ to rate the quality of each study as good, fair, or poor (**Appendix A5**). Discrepancies were resolved through a consensus process.

Data Synthesis

For all key questions, the overall quality of evidence was determined using the approach described in the USPSTF Procedure Manual.²⁴ Evidence was rated good, fair, or poor, based on study quality, consistency of results between studies, precision of estimates, study limitations, risk of reporting bias, and applicability, and summarized in a table.²⁴

Statistical Analysis

Meta-Analysis

Results of the placebo-controlled primary prevention trials were combined using meta-analyses to obtain more precise estimates of clinical outcomes for the target population (Key Questions 2, 3, and 4). To determine the appropriateness of meta-analysis, investigators considered clinical and methodological differences and assessed statistical heterogeneity.

Estimates of risk ratios (RR) (rate ratio, hazard ratio [HR], or relative risk) and their standard errors were abstracted or estimated from each study and used as the effect measure. For each outcome, the following steps were adopted to obtain the RR and to account for the varying followup periods of the trials:

- 1. If a study reported a rate ratio based on a Poisson model, where women-years of followup was incorporated in the estimates, or a HR from a Cox regression model, the reported estimate was used.
- 2. If not, but the study reported the number of events and women-years of followup, or women-years of followup could be estimated from the reported data, the biostatistician estimated the rate ratio based on a Poisson distribution using the number of events and women-years of followup.
- 3. If both 1. and 2. were not possible, the reported or estimated relative risk was used, which does not account for the women-years of followup. However, the estimate of relative risk would be expected to be very close to the estimate of rate ratio since the mean or median followup time was similar between the treatment and control arms in the trials.

The presence of statistical heterogeneity among the studies was assessed using Cochran's χ^2 tests, and the magnitude of heterogeneity using the I^2 statistic.²⁶ The RRs were combined by using a profile likelihood random effects model to account for variation among studies.²⁷ When there is no variation among studies, the random effects model yields the same results as a fixed effects model.

To explore whether the combined estimate differed among subpopulations, subgroup analysis was performed by age (≤ 50 ; > 50 years), family history of breast cancer (yes; no), use of menopausal hormone therapy (yes; no), menopausal status (pre; post), and body mass index (BMI; ≤ 25 ; >25), when at least two studies reported results. For outcomes of major adverse events, the analyses were stratified by active versus posttreatment periods, although the tamoxifen trials were the only trials to report data by treatment periods.

For all above analyses, results were combined separately for tamoxifen, raloxifene, and the aromatase inhibitors. All analyses were performed by using STATA® 13.1 (StataCorp, College Station, TX), and all results were provided with 95 percent confidence intervals (CIs).

Event Rates

To facilitate the evaluation of benefits and harms across trials, event rates for both treatment and placebo groups, along with combined estimates of RRs, were provided in the forest plots for each meta-analysis. Using steps similar to those for RRs, event rates per 1000 women-years were presented if the study reported such data. Otherwise, if the study reported the number of events and women-years of followup, or women-years of followup could be estimated from the reported data, the event rates per 1000 women-years were estimated by the biostatistician. When the event rates were not reported or estimated, they were shown as NR (not reported) in the plots.

Estimation of the Number of Events Reduced or Increased

To interpret the clinical impact of the risk-reducing medications, the biostatistician estimated the number of events reduced for benefits or increased for harms compared with placebo per 1000 women assuming 5 years of medication use, when the meta-analysis indicated a significant difference between the treatment and the placebo groups. These numbers and the corresponding 95 percent CIs were estimated using the combined RRs from the meta-analyses and the combined event rates from the placebo groups of included trials. The combined event rates were estimated from a meta-analysis of the placebo event rates from each trial by using a random effects Poisson model and raw data of the number of events and women-years of followup. This analysis was performed using PROC NLMIXED, SAS 9.4. (SAS Institute Inc., Cary, NC). The 95 percent confidence intervals (CIs) for the number of events reduced or increased were obtained using a simulation method that assumed that both the logs of the RRs and event rates have normal distributions, and then drew 10,000 random samples from these normal distributions. The numbers of events reduced or increased were then estimated from each sample, and the 95 percent CIs were obtained by computing the 2.5 percent and 97.5 percent quantiles of the full sample.

External Review

The draft report was reviewed by content experts (**Appendix A6**), USPSTF members, AHRQ Project Officers, and collaborative partners and was posted for public comment. The report was revised based on reviewer comments.

Chapter 3. Results

A total of 46 studies (in 82 articles)^{17,28-107} met inclusion criteria for key questions including 25 studies of discriminatory accuracy and 21 studies of the efficacy and harms of medications (20 RCTs; one observational study). In addition, 14 studies addressed the contextual question regarding clinician and patient attitudes and practices.^{19,108-120}

Key Question 1. In Adult Women Without Preexisting Breast Cancer, What Is the Accuracy of Risk Assessment Methods to Identify Women Who Could Benefit From Medications to Reduce Risk for Primary Breast Cancer?

Summary

The goal of clinical assessment for breast cancer risk is to stratify women into average and above average risk groups to determine candidates for risk reduction therapy. Current U.S. clinical recommendations indicate a threshold of at least 1.67 percent or 3 percent 5-year risk of breast cancer as determined by the modified Gail model. Eighteen models incorporating risk factors for breast cancer to predict a woman's risk have been evaluated for use in clinical settings. Risk models demonstrate good calibration, with the expected number of breast cancer cases in a study population closely matching the number of breast cancer cases observed. However, most models have low discriminatory accuracy in predicting the probability of breast cancer in an individual with c-statistics generally ranging from 0.55 to 0.65, performing only slightly better than age alone as a risk predictor.

Evidence

A total of 25 studies reporting results of evaluations of 18 risk models met inclusion criteria (**Table 1**).²⁸⁻⁵² Of these, 14 were rated good-quality because they met quality criteria, adequately described methods, used appropriate reference standards, and included large sample sizes (**Appendix B1**).^{28,31,34-39,41,44-48} Ten studies were rated fair-quality because they inadequately met some of the criteria or methods were not well-described.^{29,30,32,33,40,42,43,49-51} One study rated poor-quality⁵² was excluded from the results.

Three new studies enhanced existing models by adding breast density to the Gail and Tyrer-Cuzick models;³³ modifying the Gail model for Asian Americans;⁴³ and adding benign breast disease to the Breast Cancer Surveillance Consortium (BCSC) model.⁴⁹ A fourth new study developed models to predict ER+ and ER- breast cancer specifically.⁴²

Risk Models

The Gail model was the first major breast cancer risk model to be used clinically.⁴¹ The current version is referred to as the Breast Cancer Risk Assessment Tool and is provided on a publicly accessible National Cancer Institute website.¹²¹ This model was derived from multivariate logistic regression analysis of identified risk factors for breast cancer.⁴¹ In the original version of

the Gail model, breast cancer incidence rates and baseline hazard rates were determined for invasive cancer, DCIS, and LCIS from a cohort of women in the Breast Cancer Detection and Demonstration Project (BCDDP). The model was subsequently modified by using U.S. national data for invasive cancer from the Surveillance, Epidemiology, and End Results (SEER) program.³⁸ From these data, the model was developed to allow the prediction of individualized absolute risk (probability) of developing breast cancer in women undergoing annual screening mammography. The Gail model has been tested in large populations of white women, data from the Women's Health Initiative (WHI) for black women, and Asian and Pacific Islander women in the WHI and data from SEER, but needs further validation for Hispanic women and other subgroups. The Breast Cancer Risk Assessment Tool is updated periodically as new data or research becomes available, and the algorithm was last updated in 2011.¹²¹

Subsequent risk models use a similar approach as the Gail model, however, they vary in their use of reference standards. Age-specific breast cancer rates and attributable risk estimates to determine baseline age-specific hazard ratios should ideally be obtained from an applicable population reference standard, such as SEER data in the United States. Several studies of subsequent models do not provide information about their reference standards.^{35-37,40,43,45,46}

Models also vary by the variables they include (**Table 2**). The original Gail model included age, age at menarche, age of first birth, family history of breast cancer in first degree relatives, number of previous breast biopsies, and history of atypical hyperplasia.⁴¹ Subsequent models include one or more of these variables in addition to other factors. These include race,^{30,35,48,122} BMI or height,^{30,32,34-36,42,50} estrogen and progestin use,^{30,32,35,36,42} parity,^{35,36,42} history or duration of breast feeding,^{35,42} menopause status or age,^{30,36,42,50} smoking,³⁵ alcohol use,^{32,35,36,42} physical activity,^{32,35} breast density,^{30,33,34,48} benign breast disease,⁴⁹ and diet.³² Some variations have been developed for specific populations, such a Asian American,⁴³ African American,^{28,40} and Italian^{32,39,44} women.

Calibration is a measure of how well predicted probabilities agree with actual observed risk. The calibration of a model refers to its ability to predict the average risk in a subset of the population. When the predicted risk matches the proportion that actually develops disease, a model is considered to be well calibrated. In a perfect prediction model, the predicted risk in a population (percent expected) would equal the observed number of cases (percent observed) such that the percent expected/percent observed (E/O) equals 1.0. For most models, the expected numbers of cases of breast cancer closely matched the observed numbers.^{1,30,32,34-36,38,39,42,48,50,122}

Studies of Discriminatory Accuracy

In prognostic modeling, discriminatory accuracy is the ability to correctly classify individuals at higher risk from those at lower risk, and is measured by the model's c-statistic (AUC). Studies indicate that discriminatory accuracy for most of the models ranges from 0.55 to 0.65 (**Table 2**).²⁸⁻⁵¹ Only one study reported levels above 0.70 for both the Gail-2 and the Tyrer-Cuzick models, with a c-statistic of 0.74 (95% CI, 0.67 to 0.80) and 0.76 (95% CI, 0.70 to 0.82), respectively.²⁹ However, this study was small (<100 cases) and did not include a primary care population, limiting its clinical applicability. The BCSC-Tice model, drawing from large U.S. national populations, provided the next highest discriminatory accuracy, with a c-statistic of 0.66 (95% CI, 0.65 to 0.66).⁴⁸ The model with the lowest level of discrimination was the African

American Gail model, with a c-statistic of 0.56 in two studies.^{28,122} The discriminatory accuracies of $age^{30,45}$ or breast density alone³⁰ as a predictor of breast cancer risk ranged from 0.55 to 0.57 and 0.55 to 0.56, respectfully.

In most of the primary prevention trials, women were assessed for their individual risks for developing breast cancer, and only those meeting established risk thresholds were eligible to participate. One study evaluated this approach to risk stratification by determining discriminatory accuracy based on a low (<1.67%) versus high (\geq 1.67%) risk threshold.⁴⁸ This threshold was used as inclusion criteria in the National Surgical Adjuvant Breast and Bowel Project (NSABP P-1) and the Study of Tamoxifen And Raloxifene (STAR) trials, and is included in the FDA's approval of the use of SERMS for risk reduction. In this study, the BCSC-Tice model demonstrated high calibration (E/O 0.99 to 1.03), and consistent, although low, discriminatory accuracy across quintiles (c-statistic 0.61 to 0.64).⁴⁸

Key Question 1a. What Is the Optimal Age at Which to Begin Risk Assessment to Identify Women Who Could Benefit From Medications to Reduce Risk for Primary Breast Cancer?

No studies were identified that addressed this question.

Key Question 1b. What Is the Optimal Frequency of Risk Assessment to Identify Women Who Could Benefit From Medications to Reduce Risk for Primary Breast Cancer?

No studies were identified that addressed this question.

Key Question 2. In Adult Women Without Preexisting Breast Cancer, What Is the Effectiveness and Comparative Effectiveness of Medications to Reduce Risk for Primary Breast Cancer on Improvement in Short- and Long-Term Health Outcomes?

Overview of the Primary Prevention Trials

Ten large RCTs of tamoxifen, raloxifene, and the aromatase inhibitors anastrozole and exemestane enrolled women without breast cancer and reported breast cancer outcomes. These trials provide the main results for Key Questions 2, 3, and 4 in this systematic review. The primary prevention trials include one head-to-head trial of tamoxifen and raloxifene, STAR;^{61,96,123} five placebo-controlled trials of tamoxifen, including the International Breast Cancer Intervention Study (IBIS-I),^{54,81,82} NSABP P-1,^{58,83,90} Royal Marsden Hospital Trial,^{59,100} Italian Tamoxifen Prevention Study,^{55,84,106,107,124} and the Hormone Replacement Therapy Opposed by Low-dose Tamoxifen (HOT) study;⁵³ two placebo-controlled trials of raloxifene, the Multiple Outcomes of Raloxifene Evaluation (MORE) with long-term followup in the Continuing Outcomes Relevant to Evista (CORE) study,^{74,75,78,80,85-87,89,93-95,97,98,103,104} and the Raloxifene Use for the Heart (RUTH) trial;^{60,91} and two placebo-controlled trials of aromatase

inhibitors, the International Breast Cancer Intervention Study II (IBIS-II) of anastrozole,^{17,102,105} and the Mammary Prevention.3 trial (MAP.3) of exemestane.^{56,99} The newest placebo-controlled tamoxifen trial, HOT, uses a lower dose than the other trials (5 mg/day vs. 20 mg/day) and was considered separately. Details of individual trials are provided in **Table 3**. The trials met criteria for fair- or good-quality (**Appendix B2**).

The trials included large numbers of women, ranging from the HOT study⁵³ enrolling 1,884 women to the STAR trial enrolling 19,747.⁶¹ Participants were recruited from clinics and communities located in several countries, with North America, Europe, and the United Kingdom most represented. The majority of participants were white and none of the trials provided outcomes specific to racial or ethnic groups. Participants ranged in age from 30s to 80s at baseline.

Inclusion criteria for trials are described in **Table 3** and **Appendixes C1** and **C2**. All trials included women who could be considered candidates for risk reduction medications in the intended target population, although participant characteristics varied across trials. The tamoxifen trials enrolled both pre and postmenopausal women, while the raloxifene and aromatase inhibitor trials enrolled only postmenopausal women. The Italian trial of tamoxifen exclusively enrolled women who had undergone prior hysterectomy including some with oophorectomy,⁵⁵ representing only a subgroup of the target population. Several trials enrolled women using exogenous estrogen including the Italian (14% of women), Royal Marsden (15 to 27%), IBIS-I (40%), and HOT (100%) tamoxifen trials. Estrogen use could modify or confound breast cancer risk, as well as other outcomes, such as thromboembolic events.

The tamoxifen trials, including STAR, were designed to determine invasive breast cancer incidence as the primary outcome.^{53-55,58,59,61,81,84,90,100,106,107} As such, inclusion criteria considered breast cancer risk in all tamoxifen trials except the Italian⁵⁵ and HOT⁵³ trials. Two trials, STAR and NSABP P-1, used the modified Gail model^{41,125} to identify participants at increased risk. In STAR, women were eligible for the trial if they were postmenopausal and had a Gail model 5-year predicted breast cancer risk of 1.67 percent or greater.⁶¹ The NSABP P-1 trial used this same threshold as well as additional criteria, such as age 60 years and older, or a history of LCIS.⁵⁸ The IBIS-I and Royal Marsden trials defined risk based on numbers of relatives with breast cancer as well as personal history of prior benign breast biopsies.^{54,59}

For the raloxifene trials, breast cancer incidence was one of two primary outcomes in RUTH and was a secondary outcome in MORE. The MORE trial enrolled women with osteoporosis in order to determine the efficacy of raloxifene in preventing fractures.^{80,89} Eligibility criteria included bone mineral density (BMD) T-score of -2.5 or less at the femoral neck or lumbar spine, or low BMD with pre-existing vertebral fractures at baseline. The RUTH trial was designed to determine the efficacy of raloxifene in preventing coronary events and enrolled women with coronary heart disease or multiple risk factors for heart disease.⁶⁰ Participants were required to have a cardiovascular risk score of 4 or greater according to a point system that assigned values for specific conditions.

The aromatase inhibitor trials enrolled postmenopausal women with risk factors for breast cancer. The IBIS-II trial of anastrozole based inclusion criteria on age and estimated breast cancer risk from a list of risk factors (age 40 to 44 years with risk 4 times higher than the general

population; age 45 to 60 years with risk ≥ 2 times higher; age 60 to 70 years with risk 1.5 times higher).¹⁷ The MAP.3 trial of exemestane used risk criteria based on age 60 years and older, Gail risk score of 1.67 percent or greater, and prior DCIS or high-risk breast lesion on biopsy.⁵⁶

Differences in inclusion criteria across the trials led to the enrollment of dissimilar groups of women (**Appendix C3**). The mean age of participants at entry ranged from 47⁵⁹ to 53⁵³ years in the tamoxifen trials, 67⁸⁰ to 68^{60,80} years in the raloxifene trials, 58.5 years in STAR,⁶¹ and 60¹⁷ to 63⁵⁶ years in the aromatase inhibitor trials. Risks for most outcomes measured in the trials increase with age including risks for breast cancer and adverse events, such as thromboembolic events and strokes. The 15- to 20-year age difference between participants in the different trials would be expected to influence results and limit comparisons across trials. Although the head-to-head design of the STAR trial allows direct comparisons between tamoxifen and raloxifene, there are no head-to-head comparison trials that include the aromatase inhibitors or alternative dosing regimens.

Trials also varied by treatment durations and followup times. These variations could influence results because participants with short exposures may not attain the optimal benefits or experience the adverse effects that would accrue for those with longer exposures. Also, short followup times may not allow conditions with slower progression, such as breast cancer, to be detected during the course of the trial. The STAR trial reported a mean treatment duration of 3.6 to 3.9 years and mean followup of 3.9 years for initial results, and 6.8 years for long-term results.^{61,96,123} Median treatment duration in the placebo-controlled trials of tamoxifen were approximately 4 to 5 years,^{58,106} while median followup times ranged from 6 years in the HOT⁵³ trial to 16 years in IBIS-I.⁸² The Royal Marsden¹⁰⁰ and IBIS-I⁸¹ trials provided some results by active versus posttreatment periods, while other trials did not. Absolute risk reduction depends on followup time and trials with longer followup provide better estimates, such as the IBIS-I trial with 16 years and Royal Marsden with 13 years.

In the raloxifene trials, results of the MORE trial were reported after 3 and 4 years of treatment.^{74,75,78,80,85-87,89,93,95,103} The CORE study is a continuation of MORE that follows a subset of MORE participants in order to further examine raloxifene's effect on breast cancer incidence. Although participants continued their randomized assignment to raloxifene or placebo in CORE, all had a gap in use. Median time between participation in MORE and CORE was 10.6 months (2.6 to 62 months).⁵⁷ Results of CORE were reported for 4-year and combined 8-year outcomes (MORE + CORE).^{97,98,104} For RUTH, the median treatment duration was 5.1 years and followup 5.6 years.⁶⁰ The aromatase inhibitor trials are the most recent and have the shortest followup times. The median treatment duration and followup was 5 years for IBIS-II¹⁷ and 3 years for MAP.3.⁵⁶

Adherence and completion rates varied across trials and treatment groups. In the STAR trial, the mean duration of treatment was similar for raloxifene and tamoxifen (3.2 vs. 3.1 years, respectively).⁶¹ In IBIS-I, adherence after 4.5 years was 65.2 percent for tamoxifen versus 74.0 percent for placebo (p<0.001).¹²⁶ In the Italian trial, designed for 60 months of treatment, women using tamoxifen had lower completion rates than placebo (59.8 vs. 61.8%, respectively).¹⁰⁶ In the Royal Marsden trial, adherence was 8 percent lower with tamoxifen compared with placebo (p=0.002).¹⁰⁰ In RUTH, 70 percent of raloxifene versus 71 percent of placebo groups took at least 70 percent of the study medication.⁶⁰ Also, women using raloxifene had slightly higher

completion rates than placebo (80 vs. 79%; p=0.02), although the median duration of treatment was 5.05 years for both groups.⁶⁰ Adherence was not reported by group in MORE; 92 percent of the entire study population took at least 80 percent of the assigned study medication.⁸⁰ In IBIS-II, 5-year adherence was 68 percent for anastrozole and 72 percent for placebo (p=0.0047),¹⁷ while for MAP.3, 3-year adherence was 67 percent for exemestane and 71 percent for placebo.⁵⁶

Protocol specified and non-protocol specified events affecting adherence were reported by some of the trials. Protocol specified events are outcomes explicitly stated in the protocol requiring that a participant discontinue the study medication. In the NSABP P-1 trial, discontinuation related to non-protocol specified events was 23.7 percent of tamoxifen versus 19.7 percent of placebo groups.⁵⁸ In the Italian trial, 7.6 percent of tamoxifen versus 6.9 percent of placebo groups experienced protocol specified events and withdrew from treatment; 26.7 percent of tamoxifen versus 25.3 percent of placebo groups experienced non-protocol specified events and withdrew from treatment.¹⁰⁶ In RUTH, 22 percent of raloxifene and 20 percent of placebo groups experienced adverse events and discontinued study medications (p=0.01); specific adverse events were not described.⁶⁰ In the MORE trial, significantly more women receiving raloxifene than placebo reported hot flashes and withdrew from treatment.⁸⁰ Early discontinuation in IBIS-II was related to toxic effects (20% anastrozole vs. 15% placebo) and patient refusal (5% in each group).¹⁷ In MAP.3, early discontinuation was also related to toxic effects (15.4% exemestane vs. 10.8% placebo; p<0.001) and patient refusal (6.9% exemestane vs. 6.0% placebo; p=0.22).⁵⁶

Although most trials reported similar outcomes (**Table 4**), the ascertainment of outcomes varied by trial. While diagnostic criteria for primary outcomes were generally well-defined and diagnoses were determined by blinded adjudication committees, ascertainment of additional outcomes was not well described. For these outcomes, it is likely that differences in results between trials may be due, at least in part, to how the outcomes were determined. All of the primary prevention trials reported incidence of invasive, ER+, ER-, and noninvasive breast cancer. All-cause mortality was provided in all of the trials, and breast cancer specific mortality in all but RUTH, while combined mortality results of MORE, CORE, and RUTH were reported in a review.⁹² Fracture outcomes were more comprehensively evaluated in the MORE trial^{80,85,89,104} that evaluated fractures at multiple anatomic sites, such as the hip and wrist specifically, and detected rigorously defined radiographic vertebral fractures. The NSABP P-1, RUTH, STAR, HOT, MAP.3, and IBIS-II trials included clinical vertebral fractures^{17,53,56,60,61,90} identified by physical findings or symptoms. Most trials reported various categories of nonvertebral fractures including all types or those specific to osteoporosis (hip, vertebral, wrist).

All trials reported thromboembolic events, and some provided specific results for deep vein thrombosis (DVT),^{58,60,84,93} pulmonary embolus (PE),^{58,60,84,93} and superficial phlebitis.^{17,81,84} Coronary heart events were described in all trials and generally included myocardial infarction, angina, acute ischemic syndrome, and other cardiac events. However, specific outcomes included in this broad category varied and were often not well specified. The RUTH trial, designed primarily to measure coronary outcomes, provided the most comprehensive measures.⁶⁰ Stroke was measured in all trials and transient ischemic attack in six.^{17,53,56,58,61,80,81,106} Endometrial cancer, hysterectomy, endometrial hyperplasia, uterine fluid, and vaginal bleeding were determined in various ways in most trials. While seven trials reported cataracts,^{17,58,60,61,81,93,100} most of these were self-reported. Descriptions of other outcomes, such as vasomotor symptoms, edema, pain, for example, varied by trial.

Summary

Ten large RCTs provide data on breast cancer risk reduction in women without preexisting breast cancer. These include one good-quality head-to-head trial of tamoxifen and raloxifene and nine fair- and good-quality placebo-controlled trials (five tamoxifen, two raloxifene, and two aromatase inhibitors). The HOT trial of low-dose tamoxifen indicated no statistically significant differences in outcomes compared with placebo and was not included in the meta-analyses of tamoxifen trials. Results of placebo-controlled trials cannot be directly compared between types of medications because of important differences between study participants, especially differences in age.

Tamoxifen 20 mg/day (RR 0.69; 95% CI, 0.59 to 0.84; 4 trials), raloxifene (RR 0.44; 95% CI, 0.24 to 0.80; 2 trials), and aromatase inhibitors (RR 0.45; 95% CI, 0.26 to 0.70; 2 trials) reduced the incidence of invasive breast cancer in midlife and older women by approximately 31 to 56 percent in placebo-controlled trials. These estimates are comparable to 7 (4 to 12) fewer events per 1000 women over 5 years of use for tamoxifen, 9 (3 to 15) for raloxifene, and 16 (8 to 24) for aromatase inhibitors. Tamoxifen reduced invasive breast cancer more than raloxifene in the STAR head-to-head trial (RR 1.24; 95% CI, 1.05 to 1.47) after long-term followup comparable to 5 (1 to 9) fewer events with tamoxifen per 1000 women over 5 years of use. Tamoxifen (RR 0.58; 95% CI, 0.42 to 0.81; 4 trials), raloxifene (RR 0.33; 95% CI, 0.15 to 0.70; 2 trials), and aromatase inhibitors (RR 0.37; 95% CI, 0.19 to 0.63; 2 trials) reduced ER+ invasive breast cancer, but not ER- invasive breast cancer, in placebo-controlled trials. Raloxifene and tamoxifen had similar effects on ER+ and ER- invasive breast cancer in the STAR head-to-head trial while on active treatment.

For noninvasive cancer, risks were reduced only in the NSABP P-1⁹⁰ (RR 0.63; 95% CI, 0.45 to 0.89) and IBIS-I⁸² (RR 0.65; 95% CI, 0.43 to 1.00) tamoxifen trials. Meta-analyses of trials of tamoxifen, raloxifene, and aromatase inhibitors indicated no reduction in noninvasive cancer. The STAR head-to-head trial indicated no differences between raloxifene and tamoxifen in reducing noninvasive breast cancer (RR 1.22; 95% CI, 0.95 to 1.59).

All-cause mortality was similar for women using raloxifene compared with tamoxifen; or tamoxifen, raloxifene, or aromatase inhibitors compared with placebo, although followup times in trials varied. Tamoxifen did not reduce breast cancer mortality compared with raloxifene or placebo, while few cases of breast cancer mortality were reported in placebo-controlled trials of raloxifene and aromatase inhibitors.

Tamoxifen and raloxifene had similar effects on fractures at multiple vertebral and nonvertebral sites in the STAR head-to-head trial. In placebo-controlled trials, raloxifene (RR 0.61; 95% CI, 0.53 to 0.73; 2 trials) reduced vertebral fractures, tamoxifen reduced nonvertebral fractures in the NSABP P-1 trial (RR 0.66; 95% CI, 0.45 to 0.98), while the aromatase inhibitors had no effect on fractures.

Evidence

The ten RCTs described above and in **Tables 3, 4**, and **Appendix B3** provide data for Key Question 2. Trials are reported in 32 publications, of which seven are new and 25 were cited

in the 2013 review. The new studies include updated long-term results of the IBIS-I trial of tamoxifen,⁸² a placebo-controlled trial of low-dose tamoxifen,⁵³ and placebo-controlled trials of anastrozole^{17,102,105} and exemestane.^{56,99} Results are summarized in **Tables 5** and **6**. The HOT trial of low-dose tamoxifen indicated no statistically significant differences in outcomes compared with placebo and was not included in the meta-analyses of tamoxifen trials discussed in this section.⁵³

Invasive Breast Cancer

Tamoxifen versus raloxifene. Risk for invasive breast cancer was higher for raloxifene than tamoxifen in the STAR head-to-head trial (RR, 1.24; 95% CI, 1.05 to 1.47) after long-term followup, comparable to 5 (1 to 9) fewer events with tamoxifen per 1000 women over 5 years of use.¹²³ Differences for ER+ and ER- subtypes were not statistically significant.⁶¹

Tamoxifen versus placebo. Tamoxifen (20 mg/day) reduced invasive breast cancer in all four prevention trials compared with placebo based on long-term followup data (7 to 16 years).^{82,90,100,106} Reductions ranged from 20 to 43 percent with the biggest effect from the largest trial, the NSABP P-1 trial (RR 0.57; 95% CI, 0.46 to 0.70).⁹⁰ Combined results indicate a summary RR of 0.69 (95% CI, 0.59 to 0.84; 4 trials; **Figure 2**), comparable to 7 (4 to 12) fewer cases per 1000 women over 5 years of use. Tamoxifen reduced risks for ER+ (RR 0.58; 95% CI, 0.42 to 0.81; 4 trials; **Figure 3**), but not ER- breast cancer (RR 1.18; 95% CI, 0.93 to 1.53; 4 trials; **Figure 4**).^{81,90,100,106}

Raloxifene versus placebo. Raloxifene reduced invasive breast cancer by 44 and 66 percent in the MORE⁵⁷ and RUTH⁶⁰ trials, respectively. Combined results indicate a RR of 0.44 (95% CI, 0.24 to 0.80; 2 trials; **Figure 2**), comparable to 9 (3 to 15) fewer cases per 1000 women over 5 years of use. Raloxifene also reduced risk for ER+ (RR 0.33; 95% CI, 0.15 to 0.70; 2 trials; **Figure 3**), but not ER- breast cancer (RR 1.25; 95% CI, 0.60 to 2.58; 2 trials; **Figure 4**).

Aromatase inhibitors versus placebo. Anastrozole¹⁷ and exemestane⁵⁶ reduced invasive breast cancer compared with placebo (RR 0.45; 95% CI, 0.26 to 0.70; 2 trials; **Figure 2**), comparable to 16 (8 to 24) fewer cases per 1000 women over 5 years of use. The aromatase inhibitors reduced risk for ER+ (RR 0.37; 95% CI, 0.19 to 0.63; 2 trials; **Figure 3**), but not ER- breast cancer (RR 0.79; 95% CI, 0.35 to 1.79; 2 trials; **Figure 4**) similar to tamoxifen and raloxifene.

Noninvasive Breast Cancer Including Ductal Carcinoma In Situ

Tamoxifen versus raloxifene. STAR reported no statistically significant difference between tamoxifen and raloxifene for noninvasive breast cancer (RR 1.22; 95% CI, 0.95 to 1.59), although the point estimate is favorable for tamoxifen.¹²³

Tamoxifen versus placebo. All four tamoxifen trials reported noninvasive cancer outcomes, although specific definitions of noninvasive cancer varied between trials. Risks were reduced in the NSABP P-1⁹⁰ (RR 0.63; 95% CI, 0.45 to 0.89) and IBIS-I⁸² (RR 0.65; 95% CI, 0.43 to 1.00) trials, but not in the Royal Marsden¹⁰⁰ and Italian¹⁰⁶ trials. When trials were combined, the risk of noninvasive breast cancer was not significantly reduced (RR 0.72; 95% CI, 0.56 to 1.41; 4 trials (**Figure 5**).

Raloxifene versus placebo. Both the MORE⁵⁷ and RUTH⁶⁰ trials indicated increased point estimates for noninvasive breast cancer, although results were not statistically significant (RR 1.47; 95% CI, 0.61 to 3.85; 2 trials; **Figure 5**).

Aromatase inhibitors versus placebo. Risk for noninvasive breast cancer was reduced in the IBIS-II¹⁷ trial (RR 0.30; 95% CI, 0.12 to 0.74), but not in the MAP.3 trial.⁵⁶ When trials were combined, the risk of noninvasive breast cancer was not significantly reduced (RR 0.46; 95% CI, 0.16 to 1.42; 2 trials; **Figure 5**).

Breast Cancer Mortality

Tamoxifen versus raloxifene. STAR reported no statistically significant difference between tamoxifen and raloxifene for breast cancer mortality (RR 0.36; 95% CI, 0.08 to 1.21).¹²³

Tamoxifen versus placebo. All four tamoxifen trials reported breast cancer specific mortality using long-term followup data (7 to 16 years).^{81,90,100,106} None of these results were significantly different for tamoxifen versus placebo (RR 1.20; 95% CI, 0.79 to 1.79; 4 trials **Figure 6**).

Raloxifene versus placebo. In a review that reported results of MORE, CORE, and RUTH combined, there were two breast cancer deaths in the raloxifene group and none reported in the placebo group.⁹²

Aromatase inhibitors versus placebo. Very few breast cancer deaths occurred in the IBIS-II¹⁷ and MAP.3⁵⁶ trials and no relative risks were reported.⁵⁶

All-Cause Mortality

Tamoxifen versus raloxifene. All-cause mortality in the STAR trial was similar for women treated with tamoxifen or raloxifene (RR 0.84; 95% CI, 0.70 to 1.02).¹²³

Tamoxifen versus placebo. All four tamoxifen trials reported all-cause mortality using long-term followup data (7 to 16 years), and none were significantly different for tamoxifen compared with placebo (RR 1.07; 95% CI, 0.91 to 1.23; 4 trials; **Figure 7**).^{82,90,100,106}

Raloxifene versus placebo. All-cause mortality was similar between raloxifene and placebo in the RUTH and MORE trials (RR 0.90; 95% CI, 0.63 to 1.05; 2 trials; **Figure 7**).^{57,60}

Aromatase inhibitors versus placebo. All-cause mortality was similar between aromatase inhibitors and placebo in the IBIS II¹⁷ and MAP.3⁵⁶ trials (RR 1.02; 95% CI, 0.58 to 1.82; 2 trials; **Figure 7**).

Osteoporotic Fractures

Tamoxifen versus raloxifene. Results of the STAR trial indicate no differences between tamoxifen and raloxifene for clinical vertebral (RR 0.98; 95% CI, 0.65 to 1.46), hip, wrist, or total fractures, although all rates were slightly less for raloxifene.⁶¹

Tamoxifen versus placebo. The NSABP P-1,⁹⁰ IBIS-I,⁸¹ and Royal Marsden¹⁰⁰ trials reported

fractures as secondary outcomes. In the NSABP P-1 trial, tamoxifen did not significantly reduce clinical vertebral fractures compared with placebo (RR 0.75; 95% CI, 0.48 to 1.15; **Figure 8**). Combined outcomes of hip and wrist fractures were significantly reduced with tamoxifen compared with placebo (RR 0.66; 95% CI, 0.45 to 0.98; **Figure 9**),⁹⁰ comparable to 3 (0.2 to 5) fewer cases per 1000 women over 5 years of use. Point estimates of RRs were also reduced for these fractures in the IBIS-I⁸¹ and Royal Marsden trials,¹⁰⁰ however, results were not statistically significant.

Raloxifene versus placebo. The MORE trial recruited women with low BMD (T-score \leq -2.5) and/or prior vertebral fractures.^{85,104} At baseline, 37 percent of women had prior radiographically defined vertebral fractures. In MORE, raloxifene reduced radiographically defined vertebral fractures (RR 0.60; 95% CI, 0.53 to 0.69),⁸⁵ but not nonvertebral or hip fractures compared with placebo.¹⁰⁴ Results were similar for women with and without prior vertebral fractures and for women using two different doses of raloxifene (60 or 120 mg/day).

The RUTH trial measured fractures as secondary outcomes.^{60,88} RUTH reported reduced clinical vertebral fractures (RR 0.65; 95% CI, 0.47 to 0.89), but not nonvertebral fractures (RR 0.96; 95% CI, 0.84 to 1.10) among raloxifene users compared with placebo, consistent with results of MORE.⁶⁰ Combining results of MORE and RUTH indicates a vertebral fracture RR of 0.61 (95% CI, 0.53 to 0.73; 2 trials; **Figure 8**) comparable to 7 (4 to 12) fewer cases per 1000 women over 5 years of use, and a nonvertebral fracture RR of 0.97 (0.86 to 1.12; 2 trials; **Figure 9**).

Aromatase inhibitors versus placebo. The IBIS-II¹⁷ and MAP.3⁵⁶ trials reported fractures as secondary outcomes. Clinical vertebral (RR 1.28; 95% CI, 0.59 to 2.75; 2 trials; **Figure 8**) and nonvertebral fractures (RR 1.05; 95% CI, 0.87 to 1.28; 2 trials; **Figure 9**) were not significantly reduced in either trial or when combined in meta-analysis.

Key Question 2a. Does the Effectiveness of Risk-Reducing Medications Vary by Timing of Initiation or Duration of Use?

Summary

Eight trials reported no significant differences in breast cancer outcomes by age, although age categories varied by trial. No studies specifically compared shorter versus longer regimens of medication use or initiation based on time since menopause. While most trials intended 5 years of use, mean exposure times varied across the trials from 3 to 5 years. Despite these variations, comparisons across similar medications indicate general consistency in risk reduction for invasive breast cancer.

Evidence

Timing of Initiation

The STAR,⁶¹ IBIS-I,⁸¹ Italian,¹⁰⁶ NSABP P-1,⁹⁰ RUTH,⁹¹ MORE,⁹⁷ IBIS-II,¹⁷ and MAP.3⁵⁶ trials reported no significant differences in breast cancer outcomes by age, although age categories varied by trial. The HOT trial of low-dose tamoxifen indicated reduced risk for women initiating

therapy under 55 years, but not women aged 55 years and older, based on few cases.⁵³ Initiation based on time since menopause was not reported in any trial. In STAR, invasive breast cancer outcomes did not differ for women using raloxifene compared with tamoxifen in the three age categories evaluated (\leq 49; 50 to 59; \geq 60 years), and results were similar across categories.⁶¹ In the three standard dose tamoxifen placebo-controlled trials, combined risk estimates for invasive or all breast cancer outcomes were significantly reduced and similar for women age 50 years and younger (RR 0.65; 95% CI, 0.54 to 0.85; 3 trials) and women over 50 years (RR 0.68; 95% CI, 0.50 to 0.94; 3 trials; **Figure 10**).^{17,81,90,106} The raloxifene placebo-controlled trials showed similar results for invasive breast cancer across different age categories (MORE <65 years; RUTH <60 years) that were not combined in a meta-analysis (**Figure 10**).^{91,97} Risk reduction was similar regardless of age (<60; >60 years) in the aromatase inhibitor trials as well (**Figure 10**).^{17,56}

Duration of Use

Although most trials intended 5 years of medication use, mean exposure times varied across the trials from 3 years in MAP.3⁵⁶ to 5 years in IBIS-I,⁸¹ Royal Mardsen,¹⁰⁰ RUTH,⁹¹ and IBIS-II.¹⁷ No studies specifically compared shorter versus longer regimens. Despite these variations, comparisons across similar medications indicate general consistency in risk reduction for invasive breast cancer. Among the four tamoxifen placebo-controlled trials, risk reduction was similar regardless of exposures of 4 (NSABP P-1,⁹⁰ Italian¹⁰⁶) or 5 years (IBIS-I,⁸¹ Royal Marsden¹⁰⁰). Notably, the tamoxifen trial with the shortest mean exposure time resulted in the largest risk reduction (NSABP P-1 RR 0.57; 95% CI, 0.46 to 0.70).⁹⁰ Slight differences between risk reduction estimates across the trials may relate to additional factors leading to heterogeneity in addition to duration of use, especially variations in participant eligibility criteria.

Key Question 2b. Does the Effectiveness of Risk-Reducing Medications Persist Beyond Discontinuation of Use?

The IBIS-I⁸¹ and Royal Marsden¹⁰⁰ trials provided results for invasive and ER+ breast cancer for both active treatment (mean duration 5 years) and posttreatment periods (median followup 13 and 16 years, respectively). These results indicate continued risk reduction after discontinuation of tamoxifen, providing point estimates of even larger reductions in invasive and ER+ breast cancer during the posttreatment period. For IBIS-I, risk reduction for invasive breast cancer was 0.74 (95% CI, 0.60 to 0.93) for the 0 to 10 year followup period, and 0.70 (95% CI, 0.52 to 0.95) for the greater than 10 year followup period,¹⁷ although the difference between periods was not statistically significant.

Key Question 3. What Are the Harms of Using Medications to Reduce Risk for Primary Breast Cancer?

Summary

Raloxifene caused fewer thromboembolic events (RR 0.75; 95% CI, 0.60 to 0.93) than tamoxifen in the STAR head-to-head trial, comparable to 4 (1 to 7) fewer events per 1000 women over

5 years of use. Tamoxifen (RR 1.93; 95% CI, 1.33 to 2.68; 4 trials) and raloxifene (RR 1.56; 95% CI, 1.11 to 2.60; 2 trials) increased thromboembolic events compared with placebo, while aromatase inhibitors did not. These estimates are comparable to 5 (2 to 9) more events per 1000 women over 5 years of use for tamoxifen and 7 (0.3 to 17) for raloxifene. Tamoxifen, raloxifene, and aromatase inhibitors did not increase coronary heart disease events or strokes.

In the STAR head-to-head trial, raloxifene caused fewer cases of endometrial cancer (RR 0.55; 95% CI, 0.36 to 0.83) and endometrial hyperplasia (RR 0.19; 95% CI, 0.12 to 0.29), and fewer hysterectomies (RR 0.45; 95% CI, 0.37 to 0.54) than tamoxifen. Tamoxifen increased endometrial cancer compared with placebo (RR 2.25; 95% CI, 1.17 to 4.41; 3 trials); while risks for endometrial cancer were not increased with raloxifene and aromatase inhibitors.

Raloxifene caused fewer cataracts (RR 0.80; 95% CI, 0.72 to 0.95) and cataract surgeries (RR 0.79; 95% CI, 0.70 to 0.90) than tamoxifen in the STAR head-to-head trial. Tamoxifen increased cataracts compared with placebo (RR 1.22; 95% CI, 1.08 to 1.48; 3 trials). Raloxifene and aromatase inhibitors did not increase risks for cataracts or cataract surgery in trials.

In head-to-head comparisons, women using raloxifene reported more musculoskeletal problems, dyspareunia, and weight gain, while those using tamoxifen had more gynecological problems, vasomotor symptoms, leg cramps, and bladder control symptoms. Compared with placebo, the most commonly reported side effects for tamoxifen were hot flashes and other vasomotor symptoms, vaginal discharge, and other vaginal symptoms such as itching or dryness; for raloxifene, vasomotor symptoms and leg cramps; and for aromatase inhibitors, arthralgia, carpal tunnel syndrome, joint stiffness, vasomotor symptoms, dry eyes, and hypertension.

Evidence

A total of 22 studies (in 54 publications) met inclusion criteria for Key Question 3 including eight new publications and 46 cited in the prior review. The new publications include updated long-term results of the IBIS-I trial of tamoxifen,⁸² a placebo-controlled trial of low-dose tamoxifen,⁵³ and placebo-controlled trials of anastrozole^{17,102,105} and exemestane.^{56,99} Details of studies are provided in **Tables 3, 7**, and **Appendix B3**.

For tamoxifen, information on adverse effects was confined to the five large placebo controlled primary prevention trials,^{53-55,58,59,76,77,79,81-84,90,100,106,107} and the STAR head-to-head trial.^{61,96,101,123} No other randomized controlled trials or observational studies evaluated adverse effects of tamoxifen in women without breast cancer. Trials ascertained and reported adverse effects in different ways, although most evaluated them at clinic visits using either self or staff administered questionnaires and checklists. The HOT trial of low-dose tamoxifen indicated no statistically significant differences in outcomes compared with placebo and was not included in the meta-analyses of tamoxifen trials discussed in this section.⁵³

For raloxifene, adverse effects were reported from the two large placebo-controlled trials, MORE/CORE and RUTH,^{60,74,75,78,80,85-89,91,93-95,97,98,103,104} the STAR head-to-head trial,^{61,96,123} eight smaller trials (in 11 publications) evaluating either bone density, biochemical profiles, or fractures (**Appendix B3**),^{63-72,127} and one observational study.⁶² Of the smaller raloxifene trials, six reported thromboembolic events;^{65-67,69,70,72} four uterine outcomes;^{63,64,67,68} one urinary outcomes;¹²⁷ one cognitive function;⁷¹ and none reported cardiovascular events. The most commonly reported adverse events were hot flashes and vasomotor symptoms reported in eight trials.^{64-66,68-72} The one observational study evaluated the effect of raloxifene on vaginal bleeding and endometrial thickness.⁶² These studies contribute little to the evaluation of harms because they involve so few women relative to the large primary prevention trials, although they are generally consistent with the results of the larger trials. Consequently, they were not included in the meta-analyses of raloxifene trials discussed in this section.

For anastrozole and exemestane, information on adverse effects was confined to the two large placebo-controlled primary prevention trials.^{17,56} Similar to tamoxifen, no other RCT or observational studies evaluated adverse effects of aromatase inhibitors in women without breast cancer.

Thromboembolic Events

Tamoxifen versus raloxifene. In the STAR trial, raloxifene caused fewer thromboembolic events (DVT + PE) than tamoxifen (RR 0.75; 95% CI, 0.60 to 0.93), comparable to 4 (1 to 7) fewer events per 1000 women over 5 years of use (**Table 5**).¹²³ Separate estimates for DVT (RR 0.72; 95% CI, 0.54 to 0.95), and PE (RR 0.80; 95% CI, 0.57 to 1.11) indicated reduced events with raloxifene.¹²³

Tamoxifen versus placebo. The four tamoxifen prevention trials identified thromboembolic complications as an adverse effect of active treatment, although the definition of this outcome varied by trial.^{58,81,84,100} All trials included DVT and PE outcomes, the IBIS-I trial also included superficial thrombophlebitis and retinal vein thrombosis,⁸¹ and the Italian trial included visceral, retinal, and superficial thrombophlebitis.⁸⁴ All of these trials excluded women with either a history of prior thromboembolic events or one within 10 years prior to study enrollment.

Active treatment with tamoxifen increased composite measures of thromboembolic events in all four prevention trials resulting in a RR of 1.93 (95% CI, 1.33 to 2.68; 4 trials; **Figure 11**),^{58,81,84,100} comparable to 5 (2 to 9) more events with tamoxifen per 1000 women over 5 years of use. The IBIS-I⁸² and Royal Marsden¹⁰⁰ trials provided results for both active and posttreatment periods indicating no increased risk after discontinuation of active treatment (RR 0.98; 95% CI, 0.48 to 1.80; 2 trials; **Figure 11**).

Only the NSABP P-1⁵⁸ and Italian trials⁸⁴ evaluated DVT and PE separately. In the NSABP P-1 trial, tamoxifen increased risks for PE (RR 3.01; 95% CI, 1.15 to 9.27); but risk was not statistically significantly increased for DVT (RR 1.60; 95% CI, 0. 91 to 2.86).⁵⁸ In the Italian trial, risks were not elevated.⁸⁴ Combining results, RRs are 2.69 (95% CI, 0.54 to 8.13; 2 trials) for PE and 1.45 (95% CI, 0.73 to 2.59; 2 trials) for DVT (**Figure 12**).

Tamoxifen increased superficial thrombophlebitis in the Italian (RR 1.96; 1.10 to 3.51)⁸⁴ and IBIS-I trials (RR 2.84; 95% CI, 1.07 to 8.78),⁸¹ with a combined RR of 2.14 (95% CI, 1.17 to 4.42; 2 trials; **Figure 12**). The Italian trial also reported one retinal vein thrombosis in each arm of the trial and one visceral thrombosis in the placebo group.⁸⁴

Raloxifene versus placebo. Raloxifene increased thromboembolic events in both the MORE (RR 2.10; 95% CI, 1.20 to 3.80)⁹³ and RUTH (RR 1.44; 95% CI, 1.06 to 1.95)⁶⁰ trials. Further

analysis of the MORE trial by year of treatment indicated the highest risks during the first 2 years of therapy (RR ≥ 6 in years 1 and 2 vs. 0.9 in year 4).⁹³ Combining results of both trials in a meta-analysis results in a RR of 1.56 (95% CI, 1.11 to 2.60; 2 trials; **Table 8** and **Figure 11**), comparable to 7 (0.3 to 17) more events with raloxifene per 1000 women over 5 years of use.¹²³ Both trials also reported elevated risks for PE (combined RR 2.11; 95% CI, 0.82 to 6.12; 2 trials) and DVT separately (combined RR 1.66; 95% CI, 0.79 to 5.14; 2 trials; **Figure 12**) that did not reach statistical significance.

Aromatase inhibitors versus placebo. In contrast to tamoxifen and raloxifene, anastrozole¹⁷ and exemestane⁵⁶ did not increase thromboembolic events compared with placebo (RR 1.24; 0.65 to 2.61; 2 trials; **Table 8** and **Figure 11**). The aromatase inhibitor trials did not report DVT or PE separately; risk for superficial thrombophlebitis was not increased in IBIS-II.¹⁷

Cardiovascular Events

Tamoxifen versus raloxifene. The STAR trial reported no differences between raloxifene and tamoxifen for a composite measure of ischemic coronary heart disease events (RR 1.10; 95% CI, 0.85 to 1.43; **Table 5**).⁶¹ Specific events, such as myocardial infarction, severe angina, and acute ischemic syndrome, were also not significantly different between medications.⁶¹ Stroke and transient ischemic attacks were also similar for raloxifene and tamoxifen in STAR (RR 0.96; 95% CI, 0.64 to 1.43 and 1.21; 95% CI, 0.79 to 1.88, respectively; **Table 5**).⁶¹

Tamoxifen versus placebo. Although the four prevention trials evaluated cardiovascular events, ^{58,81,84,100} definitions of outcomes, and the quality and detail of reporting varied across trials. Only the Italian trial indicated that they excluded women with a history of cardiovascular disease other than stable angina.⁸⁴

The NSABP P-1 trial provided the most detailed information on cardiovascular outcomes, although it did not explicitly describe how these events were defined or adjudicated.⁵⁸ In this trial, rates of a composite measure of coronary heart disease, myocardial infarction, acute coronary syndrome, and severe angina were similar for tamoxifen and placebo.⁵⁸ The IBIS-I trial reported no increase in a composite measure of "all cardiac problems," including myocardial infarction, angina and other cardiac problems, as well as myocardial infarction specifically for both active treatment and posttreatment periods.⁸¹ Definitions for these outcomes were not provided. The Italian trial indicated no increase in myocardial infarction but identified an elevated rate of atrial fibrillation (RR 1.73; 95% CI, 1.02 to 2.98) among women randomized to tamoxifen,¹⁰⁶ however, this is the only trial reporting atrial fibrillation specifically. The Royal Marsden trial reported no differences in "cardiovascular problems."¹⁰⁰

Since tamoxifen showed no differential effects on multiple specific coronary heart disease outcomes, results of composite measures of coronary heart disease were combined in meta-analysis, resulting in a summary RR of 1.00 (95% CI, 0.75 to 1.30; 4 trials; **Table 8** and **Figure 13**).^{58,81,100,106} The combined RR for myocardial infarction specifically is 1.01 (95% CI, 0.45 to 1.70; 3 trials; **Figure 14**).^{58,81,106}

All four prevention trials evaluated stroke outcomes, and stroke was a predefined outcome in the IBIS-I trial. None of the trials indicated how stroke was defined or whether it was adjudicated.

Tamoxifen did not increase stroke in either the active or posttreatment periods of the Royal Marsden¹⁰⁰ and IBIS-I⁸² trials. The Italian¹⁰⁶ and NSABP P-1⁵⁸ trials reported elevated RRs for stroke during active treatment that did not reach statistical significance. In meta-analysis, the combined RR for stroke is 1.36 (95% CI, 0.78 to 2.20; 4 trials; **Table 8** and **Figure 15**). After discontinuation of treatment in the IBIS-I⁸¹ and Royal Marsden¹⁰⁰ trials, tamoxifen had no effect on stroke (RR 0.92; 95% CI, 0.25 to 2.09; 2 trials; **Figure 15**).

Tamoxifen did not increase risk for transient ischemic attack in the trials evaluating this outcome (RR 0.77; 95% CI, 0.42 to 1.42; 3 trials; **Figure 16**).^{58,81,106}

Raloxifene versus placebo. Cardiovascular outcomes were extensively evaluated in the MORE and RUTH trials.^{60,75} In the MORE trial, raloxifene did not increase risk for a composite measure of coronary heart disease, including myocardial infarction, coronary death, silent myocardial infarction, sudden death, unstable angina, coronary ischemia, and acute coronary syndrome (RR 0.92; 95% CI, 0.66 to 1.27).⁷⁵ Results using a more narrow definition of coronary heart disease events, including coronary death, myocardial infarction, and unstable angina, were similar between raloxifene and placebo. Followup in the CORE trial also showed no relationship between the use of raloxifene for 8 years and major cardiovascular events (HR 1.16; 95% CI, 0.86 to 1.56) or coronary events (RR 1.22; 95% CI, 0.82 to 1.83).⁸⁸ The RUTH trial was designed to determine whether raloxifene prevented coronary heart disease among women at high-risk for heart disease or with existing heart disease. In RUTH, raloxifene showed no benefit in reducing composite coronary heart disease outcomes including coronary heart disease death, non-fatal myocardial infarction, and acute coronary syndrome (RR 0.95; 95% CI, 0.84 to 1.07) or myocardial infarction specifically.⁶⁰ Combining coronary heart disease composite measures from MORE and RUTH provides a RR of 0.95 (95% CI, 0.80 to 1.10; 2 trials; **Figure 13**).

Raloxifene did not increase risk of stroke in the MORE⁷⁵ or RUTH⁶⁰ trials (RR 1.04; 95% CI, 0.64 to 1.36; 2 trials; **Figure 15**). In CORE, raloxifene did not increase risk of stroke after 8 years of followup.⁸⁸ None of the raloxifene trials evaluated transient ischemic attacks.

Aromatase inhibitors versus placebo. Anastrozole¹⁷ and exemestane⁵⁶ showed no differences compared with placebo for coronary heart disease events (combined RR 0.76; 95% CI, 0.41 to 1.49; 2 trials; **Figure 13**) or stroke (combined RR 0.98; 95% CI, 0.27 to 2.56; 2 trials; **Figure 15**).

Genitourinary Outcomes

Tamoxifen versus raloxifene. Raloxifene caused fewer cases of endometrial cancer (RR 0.55; 95% CI, 0.36 to 0.83) than tamoxifen, comparable to 5 (2 to 9) more cases with tamoxifen per 1000 women over 5 years of use¹²³ (**Table 5**). Raloxifene was also associated with less endometrial hyperplasia (RR 0.16; 95% CI, 0.09 to 0.29) and fewer hysterectomies (RR 0.44; 95% CI, 0.35 to 0.56) than tamoxifen.

Tamoxifen versus placebo. Three prevention trials reported data on endometrial cancer;^{58,81,100} the Italian trial included only women with prior hysterectomies.⁵⁵ Trials evaluated endometrial changes in different ways. The Royal Marsden trial evaluated endometrial thickness with ultrasound, although the protocol was not reported.¹²⁸ The IBIS-I trial included endometrial

cancer as a predefined outcome. The NSABP P-1 trial included endometrial sampling prior to randomization for women enrolled later in the trial,⁵⁸ and monitored gynecologic conditions and procedures during the course of the trial.⁷⁹

All three trials reported increased risks for endometrial cancer with tamoxifen, although only results from the NSABP P-1 trial reached statistical significance (RR 3.28; 95% CI, 1.87 to 6.03).^{58,90} Combining results from the three trials provides a RR of 2.25 (95% CI, 1.17 to 4.41; 3 trials; **Table 8** and **Figure 17**), comparable to 4 (1 to 8) more events with tamoxifen per 1000 women over 5 years of use.^{90,100,123}

In the NSABP P-1 trial, tamoxifen increased rates of endometrial hyperplasia without atypia (RR 2.06; 95% CI, 1.64 to 2.60)⁷⁹ and other benign gynecologic conditions for both pre and postmenopausal women. For premenopausal women, these included endometrial polyps (RR 1.9; 95% CI, 1.55 to 2.41), leiomyomas (RR 1.3; 95% CI, 1.14 to 1.55), endometriosis (RR 1.9; 95% CI, 1.35 to 2.70), and ovarian cysts (RR 1.5; 95% CI, 1.2 to 1.78), as well as gynecologic surgical procedures including hysterectomy (RR 1.6; 95% CI, 1.88 to 11.29).⁷⁹ For postmenopausal women, these included endometrial polyps (RR 2.4; 95% CI, 1.65 to 3.24), leiomyomas (RR 1.4; 95% CI, 1.04 to 1.80), endometriosis (RR 1.9; 95% CI, 1.29 to 5.58), and gynecologic procedures (RR 2.2; 95% CI, 1.6 to 3.13).⁷⁹ Tamoxifen had similar effects in the IBIS-I trial increasing rates of gynecologic procedures including hysterectomy, abnormal bleeding, endometrial polyps, and ovarian cysts.⁵⁴ Tamoxifen was associated with higher rates of hysterectomy than placebo in the Royal Marsden trial (177 vs. 96 per 1000 women years, respectively; p<0.001).¹⁰⁰ None of the tamoxifen trials reported rates of ovarian cancer.

Tamoxifen increased vaginal symptoms, including dryness, discharge, and other types, in all of the prevention trials.^{58,81,100,106} Over twice as many women using tamoxifen versus placebo reported vaginal discharge (p<0.001) or vaginal symptoms (p=0.008) in the Royal Marsden trial.¹⁰⁰ In the NSABP P-1 trial, 13 percent of women taking placebo and 29 percent taking tamoxifen reported vaginal discharge that was at least moderately bothersome.⁵⁸ Tamoxifen increased risks for vaginal dryness (RR 1.14; 95% CI, 0.97 to 1.34) and discharge (RR 3.44; 95% CI, 2.9 to 4.09) in the Italian trial.¹⁰⁶ Tamoxifen increased symptoms of cystitis and incontinence in the Italian trial (RR 1.52; 95% CI, 1.23 to 1.89),¹⁰⁶ but not similar symptoms during and after active treatment in the Royal Marsden trial.¹⁰⁰

Raloxifene versus placebo. The raloxifene trials differed in their methods of ascertaining endometrial cancer outcomes. In the MORE trial, 17 clinical centers performed annual transvaginal ultrasonography in all participants with a uterus, carefully monitoring uterine pathology.⁹³ In the RUTH trial, endometrial cancer was determined on the basis of unsolicited reporting by the participant.⁶⁰ In neither trial were the risks of endometrial cancer elevated (combined RR 1.14; 95% CI, 0.54 to 2.17; 2 trials; **Figure 17**).^{60,93}

Raloxifene increased rates of endometrial cavity fluid, as determined by periodic transvaginal ultrasound in the MORE trial (p<0.009).⁷⁸ Raloxifene did not increase rates of ovarian cancer in RUTH, the only trial reporting this outcome.⁶⁰ Raloxifene increased urinary symptoms in the CORE trial (2.1% raloxifene vs. 1.2% placebo; p=0.041).⁵⁷

Aromatase inhibitors versus placebo. Anastrozole did not increase endometrial cancer

compared with placebo (RR 0.60; 95% CI, 0.09 to 3.07) in IBIS-II.¹⁷ This outcome was not reported in MAP.3.⁵⁶

Ophthalmologic Disorders

Tamoxifen versus raloxifene. In the STAR trial, women on raloxifene had fewer cataracts (RR 0.80; 95% CI, 0.72 to 0.95) and cataract surgeries than women on tamoxifen, comparable to 15 (8 to 22) more cases with tamoxifen (**Table 5**).¹²³

Tamoxifen versus placebo. All four prevention trials evaluated ocular outcomes,^{58,81,100,106} although the Italian trial reported data on the composite category of "ophthalmologic diseases."¹⁰⁶ None of the trials described how women were evaluated for ophthalmologic outcomes. The NSABP P-1,⁵⁸ Royal Marsden,¹⁰⁰ and IBIS-I⁸¹ trials reported increased cataracts with tamoxifen, although results for the IBIS-I trial did not reach statistical significance. The combined RR for cataracts is 1.22 (95% CI, 1.08 to 1.48; 3 trials), comparable to 26 (5 to 50) more events with tamoxifen per 1000 women over 5 years of use (**Table 8** and **Figure 18**).^{81,90,100} Cataract surgery was also more common with tamoxifen in the NSABP-1 trial during the initial (RR 1.57; 95% CI, 1.16 to 2.14)⁵⁸ and followup (RR 1.21; 95% CI, 1.10 to 1.34)⁹⁰ phases.

Raloxifene versus placebo. Raloxifene did not cause more cataracts than placebo in the MORE and RUTH trials (combined RR 0.93; 95% CI, 0.82 to 1.06; 2 trials; **Figure 18**).^{60,93}

Aromatase inhibitors versus placebo. Anastrozole did not increase cataracts compared with placebo (RR 0.94; 95% CI, 0.70 to 1.27) in IBIS-II.¹⁷ This outcome was not reported in MAP.3.⁵⁶

Other Adverse Effects

Tamoxifen versus raloxifene. In STAR, mean scores on quality of life instruments (health survey, depression scale, sexual questionnaire) did not differ between women using tamoxifen versus raloxifene, except sexual function was slightly better for tamoxifen (odds ratio [OR] 1.22%; 95% CI, 1.01 to 1.46).⁹⁶ Women using raloxifene reported more musculoskeletal problems, dyspareunia, and weight gain, while those using tamoxifen reported more gynecological problems, vasomotor symptoms, leg cramps, and bladder control symptoms.⁹⁶

Tamoxifen versus placebo. Tamoxifen increased vasomotor symptoms in the four prevention trials.^{58,81,100,106} In the Royal Marsden trial, 32 percent of women taking placebo reported hot flashes versus 48 percent of women taking tamoxifen (p<0.001).¹⁰⁰ In the NSABP P-1 trial, 29 percent of placebo and 46 percent of tamoxifen users reported hot flashes.⁵⁸ Hot flashes were also increased with tamoxifen in the Italian trial (RR 1.78; 95% CI, 1.57 to 2.0).¹⁰⁶

Two studies from the NSABP P-1 trial evaluated depression and other symptoms and identified no increased depression with tamoxifen.^{83,129} Women randomized to tamoxifen reported 4 percent more sexual side effects than women randomized to placebo, although women on tamoxifen were slightly more sexually active (p=0.031).¹²⁹ Tamoxifen caused weight gain in the Royal Marsden trial,¹⁰⁰ but not in the Italian trial.¹⁰⁶ Tamoxifen did not increase headaches in the IBIS-I or Royal Marsden trials.^{81,100}

Raloxifene versus placebo. Raloxifene increased vasomotor symptoms in both the MORE and RUTH trials.^{60,78} In MORE, 7 percent of women using placebo, 11 percent using raloxifene 60 mg/day, and 12 percent using raloxifene 120 mg/day reported vasomotor symptoms (p<0.05).⁷⁸ In the RUTH trial, comprised of older women, the rates of vasomotor symptoms were lower in general than in MORE, but higher for women taking raloxifene compared with placebo (8.0 vs. 4.8%, respectively; p<0.001).⁶⁰

Raloxifene caused leg cramps^{60,78} and peripheral edema in the MORE (6.1% placebo vs. 7.1% raloxifene 60 mg vs. 7.9% raloxifene 120 mg; p=0.026)⁷⁸ and RUTH trials (12.1% placebo vs. 14.4% raloxifene; p<0.001).⁶⁰ Influenza syndrome symptoms occurred at a higher rate among women taking raloxifene in MORE (16.2% raloxifene 60 mg vs. 16.7% raloxifene 120 mg vs. 14% placebo),⁷⁸ but not in RUTH.⁶⁰ In RUTH, raloxifene caused joint pain, but had no effect on mood, depression, and anxiety symptoms.⁶⁰

Aromatase inhibitors versus placebo. Anastrozole is associated with increased moderate arthralgia, carpal tunnel syndrome, joint stiffness, vasomotor symptoms, dry eyes, and hypertension.¹⁷ Exemestane is associated with fatigue, sweating, insomnia, and arthralgia.⁵⁶ Increased menopause-related vasomotor symptoms, sexual symptoms, and pain were more common with exemestane compared with placebo mainly during the first 6 months to 2 years of the study.⁹⁹

Key Question 3a. Do Harms of Risk-Reducing Medications Vary by Timing of Initiation and/or Duration of Use?

The NSABP P-1 tamoxifen placebo-controlled trial suggested higher risks for DVT, PE, and stroke for women aged 50 years and older compared with women younger than 50 years, although results were not statistically significant.⁵⁸ Results of the NSABP P-1 trial also indicated that the risk of thromboembolic events was elevated only during the first 3 years of tamoxifen use.⁷³ Age over 60 years was also an important risk factor for venous thrombosis in the Italian trial.⁸⁴ The NSABP P-1 trial found that endometrial cancer was more common among women aged 50 years and older compared with women younger than 50 years (RR 4.01; 95% CI, 1.70 to 10.90 vs. RR 1.21; 95% CI, 0.41 to 3.60; respectively).⁵⁸ Initiation based on time since menopause was not reported.

Key Question 3b. Do Harms of Risk-Reducing Medications Persist Beyond Discontinuation of Use?

Summary

While tamoxifen increased thromboembolic events compared with placebo in trials, risk returned to normal after discontinuation of tamoxifen in the two trials providing posttreatment data. Risk for endometrial cancer also diminished after discontinuation of tamoxifen.

Evidence

Long-term followup of the IBIS-I⁸¹ and Royal Marsden¹⁰⁰ trials provides results for thromboembolic outcomes for both active treatment (mean duration 5 and 8 years, respectively) and posttreatment periods (median followup 16 and 13 years, respectively). Similar followup results are not available for raloxifene or the aromatase inhibitors. During active treatment, tamoxifen significantly increased venous thromboembolic events compared with placebo (RR 1.93; 95% CI, 1.33 to 2.68; 4 trials).^{58,81,84,100} After discontinuation of tamoxifen, risk returned to normal (RR 0.98; 95% CI, 0.48 to 1.80; 2 trials; **Figure 11**).⁸²

The IBIS-I trial also provided long-term data on risk of endometrial cancer. During the 0 to 5 year followup period, risk increased for tamoxifen compared with placebo (RR 3.76; 95% CI, 1.20 to 15.56), while risk declined after discontinuation (5 to 10 year followup RR 0.64; 95% CI, 0.21 to 1.80; \geq 10 year followup RR 1.40; 95% CI, 0.38 to 5.61).⁸²

Key Question 4. How Do Outcomes Vary by Population Subgroups?

Summary

Trials of risk-reducing medications provide data for specific population subgroups, although outcomes are predominantly confined to breast cancer and most estimates are not statistically significant because of smaller numbers of participants in the comparison groups. Subgroups are based on menopausal status, hysterectomy status, estrogen use, family history of breast cancer, BMI, history of breast abnormalities, predicted breast cancer risk,^{61,90,91} and reproductive factors. No trials reported outcomes by race or ethnic groups.

Tamoxifen and raloxifene had similar effects on breast cancer outcomes regardless of family history of breast cancer in the head-to-head STAR trial. Tamoxifen reduced breast cancer outcomes in subgroups evaluated in placebo-controlled trials based on menopausal status, estrogen use, family history of breast cancer, and history of LCIS or atypical hyperplasia. In the NSABP P-1 trial, cancer rates were highest and risk reduction greatest among women in the highest modified Gail model risk category and among women with prior atypical hyperplasia. Raloxifene reduced breast cancer outcomes in subgroups evaluated in placebo-controlled trials based on age at menarche, parity, age at first live birth, and BMI. Aromatase inhibitors had similar effects regardless of BMI or Gail risk score, but risk reduction was greatest for women with LCIS, ADH, or ALH compared with women without these breast lesions for anastrozole. Estimates from subgroups based on prior estrogen use, family history of breast cancer, and prior hysterectomy or oophorectomy were limited by smaller numbers of participants.

Evidence

Some trials of risk-reducing medications provide data for population subgroups, although outcomes are predominantly confined to breast cancer (all breast cancer, invasive, and ER+). Data are available for subgroups based on menopausal status, ^{81,97,100,106} hysterectomy status, ⁹¹ estrogen use, ^{81,90,91,97,106} family history of breast cancer, ^{61,90,91,97,106} BMI, ^{73,91,97} history of breast abnormalities, ^{61,90} predicted breast cancer risk, ^{61,90,91} and reproductive factors. ⁹¹ No trials

reported outcomes by race or ethnic groups.

Menopausal Status

The IBIS-I⁸¹ and Italian¹⁰⁶ tamoxifen trials evaluated breast cancer outcomes by menopausal status (pre vs. postmenopausal). Point estimates indicated similar risk reduction with tamoxifen for both pre and postmenopausal women, although results were of borderline statistical significance for postmenopausal women in both trials (**Figure 19**). In the MORE/CORE studies, raloxifene had less effect on invasive cancer outcomes among women with estradiol levels less than 5 pmol/L (RR 0.52; 95% CI, 0.26 to 1.06) than women with higher levels (5 to 10 pmol/L, RR 0.33; 95% CI, 0.13 to 0.84; >10 pmol/L, RR 0.25; 95% CI, 0.14 to 0.47).⁹⁷

Hysterectomy Status

In RUTH, raloxifene did not significantly reduce risk for invasive cancer for women with prior hysterectomies or oophorectomies, while risk reduction was significant in women without these prior surgeries.⁹¹ However, these differences could reflect the smaller numbers of women in the surgical subgroups.

Use of Exogenous Estrogen

The IBIS-I,⁸¹ Royal Marsden,¹⁰⁰ Italian,¹⁰⁶ RUTH,⁹¹ MORE,⁹⁷ IBIS-II,¹⁷ and MAP.3⁵⁶ trials evaluated breast cancer outcomes by use of menopausal hormone therapy (estrogen with or without progestin). In the IBIS-I, Royal Marsden, and Italian tamoxifen trials, women were allowed to use hormones during the trial, and use rates varied from 14 percent in the Italian trial¹⁰⁶ to 40 percent in IBIS-I.⁵⁴ Women in the raloxifene and aromatase inhibitor trials were not allowed to use hormones during the trial and hormone use status represented prior use. For all medications, risk reduction was generally similar for hormone users and nonusers (**Figure 20**). Differences in point estimates and CIs may reflect the smaller numbers of hormone users in the trials.

Family History of Breast Cancer

The STAR,⁶¹ Italian,¹⁰⁶ NSABP P-1,⁹⁰ RUTH,⁹¹ and MORE⁹⁷ trials evaluated breast cancer outcomes by family history of breast cancer, most commonly referring to the number of first-degree relatives with breast cancer. In STAR, risk estimates for invasive breast cancer did not differ significantly for women using raloxifene compared with tamoxifen in the three family history categories evaluated (0, 1, \geq 2), and results were similar across categories.⁶¹ In the NSABP P-1 tamoxifen trial, risk was reduced for subgroups of women with and without family histories of breast cancer.⁹⁰ In the Italian trial,¹⁰⁶ risk estimates did not reach statistical significantly reduced risk estimates for women without family history, while risks for women with family histories were reduced in MORE, but not in RUTH (**Figure 21**).^{91,97} These results may reflect the smaller numbers of women with positive family history for breast cancer in these trials rather than true medication effects.

Body Mass Index

The RUTH and MORE trials evaluated invasive breast cancer by BMI ($\leq 25 \text{ vs.} > 25 \text{ kg/m}^2$).^{91,97} While MORE indicated similar significantly reduced risk estimates for women with low and high BMI, RUTH reported lower risk estimates for women with high BMI (**Figure 22**), although estimates were not significantly different. The aromatase inhibitors reduced invasive breast cancer in all BMI groups evaluated in the IBIS-II¹⁷ and MAP.3⁵⁶ trials (BMI <25, 25 to 30, <30 kg/m²; **Figure 22**).

A nested case-control analysis of data from the NSABP P-1 trial indicated that increased BMI is associated with higher risk of thromboembolic events among women in both the placebo and control groups (RR 3.69; 95% CI, 2.09 to 6.65).⁷³

History of Breast Abnormalities

Breast cancer risk reduction was similar regardless of history of LCIS or atypical hyperplasia for tamoxifen and raloxifene in STAR,⁶¹ tamoxifen in IBIS-I,⁸¹ and exemestane in MAP.3.⁵⁶ In NSABP P-1, tamoxifen reduced invasive cancer compared with placebo regardless of history of LCIS or atypical hyperplasia, although reduction was greatest among women with prior atypical hyperplasia (RR 0.25; 95% CI, 0.10 to 0.52).⁹⁰ Risk reduction was also greatest for women with LCIS, ADH, or ALH for anastrozole in IBIS-II (HR 0.32; 95% CI, 0.13 to 0.79).¹⁷

Predicted Breast Cancer Risk

In STAR, tamoxifen and raloxifene had similar effects on invasive breast cancer for women in all risk categories determined by the modified Gail model (5-year predicted risk \leq 3.00; 3.01 to 5.00; \geq 5.01).⁶¹ In NSABP P-1, tamoxifen reduced risk for invasive cancer compared with placebo for women in all modified Gail model risk categories (5-year predicted risk \leq 2.00; 2.01 to 3.00; 3.01 to 5.00, \geq 5.01).⁹⁰ Cancer rates were highest and risk reduction greatest among women in the highest risk group in this trial. In RUTH, raloxifene reduced risk for invasive cancer compared with placebo for women in all modified Gail model risk categories (5-year predicted risk \leq 2.00; 2.01 to 3.00; 3.01 to 5.00), although results were statistically significant only for the large number of women in the lowest risk group.⁹¹ Exemestane had similar effects in reducing invasive breast cancer for women with high and low Gail risk scores (\leq 2.0%; >2.0%).⁵⁶

Reproductive Factors

Raloxifene reduced risk for invasive cancer regardless of age at menarche ($<11, \ge11$ years), parity (0, 1 to 2, ≤3), or age at first live birth ($<20, \ge20$ years) in the RUTH trial.⁹¹

Contextual Question 1. What Are Current Clinician and Patient Attitudes and Practices Regarding Use of Medications to Reduce Risk for Primary Breast Cancer? Do They Vary by Population Subgroups?

Patient Perspectives

Three systematic reviews examined factors related to patient uptake of risk-reducing medications for breast cancer.^{19,116,119} Although reviews included several of the same studies, each had a different focus. Two reviews used criteria to critically appraise included studies,^{19,119} while the other did not.¹¹⁶ Most studies were conducted in the United States or similar countries and are applicable to primary care practice.

Use of risk-reducing medications was 16.3 percent (95% CI, 13.6 to 19.0, $I^2 = 98.9\%$, p <0.001) in a meta-analysis of 26 studies of women at increased risk for breast cancer and without previous breast cancer diagnosis.¹⁹ Uptake ranged from 0 to 54.9 percent, with significantly higher uptake in trials (25.2%; 95% CI, 18.3 to 32.2; 13 trials) compared with non-trials (8.7%; 95% CI, 6.6 to 10.9; 13 studies). Uptake was not affected by study location or type of medication (tamoxifen, raloxifene, aromatase inhibitors). Predictors of uptake include having an abnormal breast biopsy, receiving a physician recommendation for medication, and higher clinically assessed or perceived risk for breast cancer, although no factor was consistently associated with uptake across studies. Lower uptake was associated with concerns about adverse effects and contraindications with estrogen. No patient or demographic factors were associated with uptake across studies in this review.

Motivators and barriers to both hypothetical and actual uptake rates in women at increased risk for breast cancer were examined in a systematic review of 31 observational and qualitative studies (**Table 9**),¹¹⁶ including 13 studies not included in the previous review.¹⁹ Uptake was increased among women who had higher perceived risk of breast cancer, were more worried about breast cancer, had received a recommendation for use from their health care providers, and had a positive perception of drug effectiveness. Barriers to uptake included concerns about side effects, not wanting to take a medication regularly or as a preventive measure, and not wanting a daily reminder of their risk. Four studies demonstrated that women who were better informed of the benefits and risks of tamoxifen were less likely to use it.¹³⁰⁻¹³³ A study of *BRCA1/2* mutation carriers found that women preferred mastectomy or bilateral oophorectomy rather than tamoxifen to reduce their risks for breast cancer.¹³⁴

A review of similar studies reported findings by hypothetical versus real decisionmaking about the use of risk-reducing medications.¹¹⁹ In regression analysis controlling for intervention and breast cancer risk, studies of women making hypothetical decisions reported significantly higher mean uptake (24.7%, 9 studies) compared with studies of real decisions (14.8%, 5 studies), as defined by participants taking tamoxifen and raloxifene or being enrolled in the STAR trial (OR 1.65; 95% CI, 1.26 to 2.16). Uptake varied widely in both settings (real, 0.5 to 51.2%; hypothetical, 5.7 to 60.0%). Notably, mean uptake for real decisions was skewed by one study with high uptake;¹³⁵ the mean rate of uptake among the remaining four studies was 5.8 percent.

One study that reported both hypothetical and real uptake rates in the same cohort described rates of 5.7 percent compared with 0.5 percent, respectively.¹³⁰ Studies that included an educational or decision-support intervention had lower mean uptake rates than those that did not in both real (4.1 vs. 31.0%) and hypothetical situations (11.7 vs. 31.2%). Studies of high-risk women making hypothetical decisions demonstrated lower uptake than studies that were not limited to high-risk women (22.3 vs. 29.6%, respectively).

Six recent observational studies not included in systematic reviews reported use of SERMS for breast cancer risk reduction among high-risk women ranging from 5.5 to 54.4 percent.^{110,111,114,117,118,120} Similar to findings from systematic reviews, recurrent themes among individual studies included interest in risk reduction, but concerns about side effects. Notably, a study of high-risk women in Australia (median age 39 years) reported that 87 percent of eligible women (n=168; 95% premenopausal) declined therapy, and of these, 28 percent were not able to provide a specific reason for declining even when probed.¹²⁰

The importance of risk in clinical decisionmaking is supported by several studies. In a study of high-risk women attending a breast center in the United States (n=189; 51.5% postmenopausal; 57.7% white), for every 1 percent increase in 5-year Gail risk score, use of risk-reducing medications (tamoxifen, raloxifene, aromatase inhibitors) increased by 17 percent (RR 1.17; 95% CI, 1.03 to1.33).¹¹⁷ Similarly, in a multivariable analysis of high-risk women attending a clinic in the United States (69.1% postmenopausal; 88.5% white), the odds of accepting risk-reducing medications increased 4 percent for every 1 percent increase in lifetime risk.¹¹⁸ In addition, odds increased with diagnoses of LCIS (OR 7.65; 95% CI, 1.48 to 39.5) and atypical hyperplasia (OR 2.76; 95% CI, 1.37 to 5.54) in this cohort.¹¹⁸ Risk reduction was also the most important factor in hypothetical decisions about medication use in a discrete-choice experiment among 622 women with pathogenic *BRCA1/2* mutations in Australia.¹¹⁴ However, few women who said they would take a risk-reducing medication in theory (28%) followed through with this decision in practice (5.5%). Reasons for declining medications in this study included the lack of a physician recommendation (52%) and concerns for side effects (39%).

Provider recommendation was the most influential independent factor for risk-reducing medication uptake among predominantly postmenopausal women surveyed in one large U.S. study (n=795; 88% white).¹¹¹ Other factors that increased the likelihood of use included a positive attitude toward taking risk-reducing SERMs compared with a negative attitude; higher levels of worry about breast cancer in the next 5 years; knowing others who had a good experience with a SERM; having considered taking a SERM in the past; having a positive perception of SERM users as being brave, smart, or healthy; having atypical hyperplasia on prior biopsy; and having a discussion of test results with a health care provider. Factors that decreased the likelihood of use included knowing someone with a bad experience with SERMs, and family members with thromboembolic conditions or endometrial cancer.

Familial considerations were also important in a survey of 258 high-risk women in England (mean age 45.4 years; 96.5% white). In this study, women with children were significantly more likely to initiate tamoxifen for risk-reduction compared with women without children (17.6 vs. 3.8%, respectively; OR 5.26; 95% CI, 1.13 to 24.49).¹¹⁰ Qualitative themes in this study suggested that women were also influenced by their family's views and experiences taking medications more generally.

Few studies focused on decisionmaking about risk-reducing medications for breast cancer in the context of race/ethnicity. A study of racially diverse women (n=417; mean age 59 years; 28.5% white; 14.6% black; 20.6% Latina; 36.2% Asian) recruited from primary care community clinics found that willingness to take risk-reducing medications varied considerably, and was not based only on risk perception or understanding the risks and benefits of the medications.¹¹³ After receiving brief information about tamoxifen, 40 percent of women reported they would be willing to take tamoxifen if considered high-risk. In this sample, characteristics of women more likely to take tamoxifen included being Asian, uninsured, having less than a high school education, higher numeracy, and greater breast cancer knowledge. However, women with higher knowledge about tamoxifen were less willing to use it for breast cancer risk reduction. In another study of 1,094 racially diverse women surveyed from the general population (mean age 54 years; 79.1% white; 15.6% Hispanic; 15.3% black), interest in risk-reducing medications was low, even when presented in a scenario of maximum benefit with fewest risks.¹¹⁵ Time needed to take the medication for effect and 5-year risk of breast cancer were the most important drivers of tradeoff preferences between different scenarios in this study.

Provider Perspectives

Prescribing risk-reducing medications is an uncommon practice among primary care physicians surveyed in three U.S. studies.^{108,109,112} In a cross-sectional survey of 316 primary care physicians (34% with >20 years attending experience) at an academic health center, only 13 percent of physicians had ever prescribed a risk-reducing medication for breast cancer risk reduction in a high-risk patient.¹⁰⁹ In adjusted analysis, there were no significant differences in prescribing practices across specialties including internal medicine (8.5%), family medicine (8.0%) and gynecology (30%). Among prescribers, 65 percent had prescribed risk-reducing medications only one to five times.

Among 822 physicians (mean age 47 years; 92% board-certified) surveyed in California, only 10.6 percent had prescribed tamoxifen and 30.7 percent had prescribed raloxifene for breast cancer risk reduction in the past year.¹¹² In this sample, obstetrician/gynecologists were significantly more likely than their internal medicine and family medicine counterparts to prescribe tamoxifen or raloxifene to reduce breast cancer risk (tamoxifen: 15 vs. 9.0 and 7.5%, p=0.01; raloxifene: 43.2 vs. 23.3 and 21.9%, p<0.001, respectively). Factors significantly associated with low prescribing included practice in Health Management Organizations or academic settings, and physicians who were foreign-born. Raloxifene prescribing was more common among physicians who were female and had more breast cancer diagnoses per year in their practices; while tamoxifen prescribing was more common among physicians who had more breast cancer diagnoses per year in their practices and those with personal experience of breast cancer themselves or among relatives.

In an additional survey of U.S. primary care physicians (n=350; mean age 46 years), 27.4 percent had prescribed tamoxifen for breast cancer prevention in the past year.¹⁰⁸ However, the vast majority (85.4%) of prescribers had prescribed tamoxifen for breast cancer risk reduction only one to six times. Prescribers tended to be older, were less likely to be female, and more likely to have a family member with breast cancer.

Responses from physicians in U.S. studies described several key considerations when prescribing risk-reducing medications for breast cancer. These include comfort with medications, perceived evidence of benefit and harm, patient interest, and perceived role in prescribing risk-reducing medications. Among primary care physicians at an academic health center, the main reasons for not prescribing risk-reducing medications included discomfort with medications (79.8%), not identifying candidates for risk-reducing medications (60.7%), not enough time to discuss medications with patients (32.1%), and not believing that these medications were of benefit for most eligible women (10.7%).¹⁰⁹ Additionally, California-based physicians reported that factors relating to training and role (i.e. not my role to prescribe, not sufficiently trained/informed to prescribe) were barriers to prescribing tamoxifen and raloxifene for breast cancer risk reduction.¹¹² Patient factors (i.e. lack of patient interest, patient would not understand) were additional barriers.

In a cohort of U.S. primary care physicians, factors related to prescribing included having a family member with breast cancer, physician belief that benefits outweigh risks, considering it easy to determine eligibility, and patients asking for more information.¹⁰⁸ Employing hypothetical vignettes of a 55-year old woman with varied family history and hysterectomy status, physicians were more likely to recommend tamoxifen to a woman who had a mother with breast cancer than to a woman with no family history of breast cancer; and also more likely to recommend tamoxifen if a women had a mother and a sister with breast cancer compared with only a mother with breast.¹⁰⁸

Contextual Question 2. How Well Do Statistical Models Inform the Practice of Identifying and Treating Women With Medications to Reduce Risk for Breast Cancer?

One statistical model estimated the benefits and harms of tamoxifen and raloxifene for breast cancer risk reduction to identify candidates for therapy.¹³⁶ This model was used by the USPSTF in its previous recommendation that set a 5-year breast cancer risk threshold of 3 percent to select candidates for medications to reduce breast cancer risk.¹ The model uses risk/benefit indices developed from weighting various health outcomes; estimating baseline incidence of health outcomes from breast cancer risk-reducing medication trials, the SEER, and the WHI; and calculating relative risk estimates for health outcomes in the presence of tamoxifen or raloxifene from the NSABP P-1 and STAR trials. The model is limited by not including aromatase inhibitors and updated estimates in its assumptions.

In the model, life-threatening events (invasive breast cancer, hip fracture, endometrial cancer, stroke, and PE) were weighted as 1.0; severe events (in situ breast cancer and DVT) were weighted as 0.5; while other events (wrist and spine fractures and cataracts) were weighted as 0.0. The net benefit index was estimated using the expected number of life-threatening equivalent events in 5 years without risk-reducing medication in 10,000 women minus the expected number of life-threatening equivalent events if risk-reducing medication is used.

Results of the model suggested that the benefits and harms of tamoxifen and raloxifene for breast cancer risk reduction in postmenopausal women varied by age, race, risk for invasive breast cancer, and history of hysterectomy. These estimates were described in tables that could be used

to guide decisionmaking ¹³⁷ For women aged 50 to 59 years with 5-year Gail model risks of 4.5 to 6.5 percent or higher, tamoxifen had moderate to strong net positive benefit in the model. However, for older women, harms outweighed benefits regardless of risk level. Raloxifene had strong net benefit for women aged 50 to 59 years with 5-year risks of 3.5 percent or higher, and for older women with 5-year risks of 6.5 percent or higher. For postmenopausal black and Hispanic women with a uterus, raloxifene demonstrated a better risk/benefit profile compared with tamoxifen, similar to that seen in white women. Net benefit indices were typically larger in Hispanic compared with white women, and smaller in black compared with white women. Also, over a 5-year period, postmenopausal women with a uterus had a better risk/benefit ratio for raloxifene than for tamoxifen, whereas for women without a uterus the risk/benefit ratio of raloxifene and tamoxifen was similar.

Chapter 4. Discussion

Summary of Review Findings

Table 10 summarizes the evidence reviewed for this update. New studies include updated long-term results from the placebo-controlled IBIS-I trial of tamoxifen⁸² and two placebo-controlled trials of aromatase inhibitors, IBIS-II of anastrozole^{17,102,105} and the MAP.3 trial of exemestane.^{56,99} A new placebo-controlled tamoxifen trial, HOT, used a lower dose than the other trials (5 mg/day vs. 20 mg/day), and indicated no differences between tamoxifen and placebo.⁵³ In addition, four new studies of risk prediction models include two studies that added breast density to the Gail and Tyrer-Cuzick models;^{33,52} a study modifying the Gail model for Asian Americans;⁴³ a study that added benign breast disease to the BCSC model;⁴⁹ and models to predict ER+ and ER- breast cancer specifically.⁴²

Eighteen risk models have been evaluated in 25 studies including various modifications of the original Gail model, a model developed from the BCSC, the Tyrer-Cuzick model developed from the IBIS-I trial, models developed for specific populations (Italian, African American, Asian American), and others (Chlebowski, Rosner-Colditz, Model_{ER+}). While most models share common risk factor variables, they differ by including additional variables and using different reference populations. Regardless of their complexity, models have low discriminatory accuracy in predicting the probability of breast cancer in an individual woman (AUC c-statistics 0.55 to 0.65). Isolated studies demonstrating higher accuracy were methodologically limited or inconsistent with other studies of the same model. Models that include breast density, postmenopausal hormone use, and a more extensive family history minimally improved predictive estimates. Most models performed only slightly better than age alone as a risk predictor. No studies evaluated optimal ages or frequencies for risk assessment.

A modified 5-year Gail score of 1.67 percent or higher has been used as a risk threshold in primary prevention trials and in FDA approval of tamoxifen and raloxifene for reducing risk for primary breast cancer. However, thresholds based on tools with low discriminatory accuracy may not be clinically useful in selecting candidates for therapy. Most women aged 60 years and older without other risk factors would meet this threshold by age alone.

Tamoxifen, raloxifene, and aromatase inhibitors (anastrozole, exemestane) reduced risk for invasive breast cancer in women without preexisting breast cancer after 3 to 5 years of use in clinical trials. Placebo-controlled trials indicated clinically significant reductions for tamoxifen (RR 0.69; 95% CI, 0.59 to 0.84; 7 fewer cases per 1000 women over 5 years of use [95% CI, 4 to 12]; 4 trials), raloxifene (RR 0.44; 95% CI, 0.24 to 0.80; 9 fewer cases [95% CI, 3 to 15]; 2 trials), and aromatase inhibitors (RR 0.45; 95% CI, 0.26 to 0.70; 16 fewer cases [95% CI, 8 to 24]; 2 trials). Risk for invasive breast cancer was higher for raloxifene than tamoxifen in the STAR head-to-head trial (RR, 1.24; 95% CI, 1.05 to 1.47) after long-term followup. Effects did not differ by age of initiation (before or after age 50 years) or duration of use (3 to 5 years), although this effect was not directly compared. Risk reduction persisted at least 8 years after discontinuation in the two tamoxifen trials providing long-term followup data. All medications reduced ER+, but not ER- invasive breast cancer; tamoxifen reduced noninvasive cancer in two

trials. Breast-cancer specific and all-cause mortality were not reduced, although statistical power and followup of trials were insufficient for mortality outcomes.

In placebo-controlled trials, raloxifene (RR 0.61; 95% CI, 0.53 to 0.73; 2 trials) reduced vertebral fractures; tamoxifen reduced nonvertebral fractures in the NSABP P-1 trial (RR 0.66; 95% CI, 0.45 to 0.98); while the aromatase inhibitors had no effect on fractures. Tamoxifen and raloxifene had similar effects on fractures at multiple vertebral and nonvertebral sites in the STAR head-to-head trial.

In placebo-controlled trials, tamoxifen (RR 1.93; 95% CI, 1.33 to 2.68; 4 trials) and raloxifene (RR 1.56; 95% CI, 1.11 to 2.60; 2 trials) increased thromboembolic events while aromatase inhibitors did not. Raloxifene caused fewer thromboembolic events (RR 0.75; 95% CI, 0.60 to 0.93) than tamoxifen in the STAR head-to-head trial. Tamoxifen, raloxifene, and aromatase inhibitors did not increase risk for coronary heart disease events or strokes.

Tamoxifen increased endometrial cancer compared with placebo (RR 2.25; 95% CI, 1.17 to 4.41; 3 trials), while endometrial cancer was not increased with raloxifene and aromatase inhibitors. In the STAR head-to-head trial, raloxifene caused fewer cases of endometrial cancer (RR 0.55; 95% CI, 0.36 to 0.83) and endometrial hyperplasia (RR 0.19; 95% CI, 0.12 to 0.29), and fewer hysterectomies (RR 0.45; 95% CI, 0.37 to 0.54) than tamoxifen. Tamoxifen increased cataracts (RR 1.22; 95% CI, 1.08 to 1.48; 3 trials) and cataract surgery compared with placebo, while raloxifene and aromatase inhibitors did not. Risks for thromboembolic events and endometrial cancer with tamoxifen were higher for older compared with younger women (<50 or \geq 50 years) and returned to normal after discontinuation, ^{126,138} such as vasomotor or musculoskeletal symptoms, that varied by medication. Symptoms such as arthralgia often occurred at high rates in both treatment and placebo groups.

Risks for invasive cancer were generally reduced in all population subgroups evaluated based on menopausal status (pre and postmenopausal); family history of breast cancer; BMI categories; modified Gail model risk categories; and age at menarche, parity, or age at first live birth although this varied across trials. Tamoxifen and anastrozole had more effects on women with previous breast lesions (LCIS, ADH, or ALH). Trials were not designed for subgroup comparisons and analysis of differences may be underpowered.

Regarding treatment choice, small descriptive studies indicate that women make decisions to use medications to reduce breast cancer risk based on their concern for adverse effects as well as their risks of breast cancer informed by an abnormal breast biopsy or risk assessment. They weigh their physicians' recommendations highly in their decisions. Physicians are more likely to prescribe medications if they believe benefits outweigh risks, they consider determining eligibility for medication is easy, and their patients ask for more information.

Limitations

While most discriminatory accuracy studies of risk assessment methods met criteria for goodquality, others inadequately met criteria or methods were not well-described. These studies varied in size, study populations, and methods and results may not be directly comparable. Studies primarily reported AUC c-statistics as accuracy measures, however, other approaches may be better suited for predicting relatively rare events, such as breast cancer. For example, a longitudinal cohort study of 132,139 women in a breast registry found that women with 10-year risk for breast cancer of 8 percent or higher determined by the Tyrer-Cuzick model with and without breast density had statistically significantly elevated hazards ratios for breast cancer.¹³⁹ An approach targeting higher risk women would be relevant to identifying candidates for risk reducing medications in primary care practice.

Primary prevention trials are limited by clinical heterogeneity related to different medications, exposure durations, eligibility criteria, adherence, and ascertainment of outcomes. Trials were not designed for subgroup comparisons and analysis of differences may be underpowered. No trials compared timing and duration directly and long-term followup data were lacking from most trials.

The aromatase inhibitor prevention trials particularly lack followup data. However, these data are important to understanding whether harms demonstrated in trials of breast cancer treatment also occur when aromatase inhibitors are used for risk reduction. While treatment trials do not meet inclusion criteria for this evidence review, they provide additional insight on potential harms that have not yet been adequately studied in prevention trials (Appendix C4). A multicenter RCT of 2.980 women with locally excised ER+ DCIS compared 1 mg/day of oral anastrozole with 20 mg/day of oral tamoxifen for 5 years with median followup of 7.2 years.¹⁴⁰ Results indicated increased fractures (9% anastrozole vs. 7% tamoxifen; OR 1.36, 95% CI, 1.03 to 1.80) and stroke (OR 3.36, 95% CI, 1.04 to 14.18) with anastrozole; increased venous thromboembolic events with tamoxifen; and no differences in coronary heart disease. A meta-analysis of individual-level data from 31,920 postmenopausal women with ER+ early breast cancer in treatment RCTs of aromatase inhibitors versus tamoxifen also indicated increased fractures for aromatase inhibitors, but showed no differences for coronary heart disease, venous thromboembolic events, or stroke outcomes.¹⁴¹ Also, seven RCTs that compared extended aromatase inhibitor treatment with treatment followed by placebo or no treatment also showed increased fractures and stroke for extended aromatase inhibitors.¹⁴² It is unclear how well the results of treatment trials of women with early breast cancer translate to women without cancer, particularly in the absence of true placebo comparison groups. For example, does the increase in fractures reflect the direct harm of aromatase inhibitors or the protective effect of tamoxifen?

Many issues outside the scope of this systematic review influence the decision to use medications to reduce risk of breast cancer. These issues need to be considered when applying the results of this review to health policy, insurance coverage, or patient decisions. Research is lacking in many areas including optimal doses, duration of use, persistence of effects after treatment, and outcomes in population subgroups. Data are lacking for nonwhite women, premenopausal women, and women with co-morbidities or taking additional medications for other indications.

Emerging Issues/Next Steps

Studies of emerging medications and other types of interventions to reduce breast cancer risk are

under investigation. Ongoing National Cancer Institute-funded studies of topical tamoxifen metabolites that maintain the preventive benefits of tamoxifen while decreasing systemic harms are in early phases. Research on mechanisms and intermediate markers would be useful. Well designed and powered head-to-head trials of different medications and regimens could contribute much needed information on outcomes, duration and timing of treatment, and identification of optimal candidates. Controlled trials of lifestyle modification interventions to reduce risk for breast cancer, such as weight loss and exercise, could also be explored. These interventions could be incorporated into comparative trials that could also include medications.

Relevance for Priority Populations, Particularly Racial/Ethnic Minorities

While priority populations were not explicitly excluded from studies in this systematic review, results were not reported specifically by population.

Future Research

The efficacy of tamoxifen, raloxifene, and aromatase inhibitors to reduce risk for invasive breast cancer has been demonstrated for women without preexisting cancer in RCTs, however, it is not clear which women in clinical practice would optimally benefit from risk reducing medications. Inclusion criteria for three of the placebo-controlled tamoxifen trials (NSABP P-1, IBIS, and Royal Marsden), STAR, and the aromatase inhibitors included assessments of risk for breast cancer and only women meeting criteria were enrolled. However, for the other trials, no breast cancer risk assessment was performed and women of all risk groups were included. Despite these differences, trials of all the medications demonstrated efficacy in reducing invasive breast cancer. Further analysis comparing various subgroups, such as by age and risk factors, also indicated no major differences, suggesting that most women could benefit. Future research to determine the optimal candidates for these medications and the effects of risk-reducing therapy on them would focus risk-reducing efforts. Applying these findings to clinical selection criteria would improve identification of candidates in practice settings.

No new studies and no studies in the 2013 review evaluated risk-reducing medications specifically in pathogenic BRCA1/2 mutation carriers. However, mutation testing was not a common practice when most of the trials were conducted and it is not known how many BRCA1/2 carriers were enrolled. The NSABP P-1 trial of tamoxifen described results for 288 mutation carriers who developed breast cancer during the trial.¹⁴³ Of the eight women with breast cancer who had BRCA1 mutations, five received tamoxifen and three placebo (RR 1.67; 95% CI, 0.32 to 10.70). Of 11 women with breast cancer and BRCA2 mutations, three received tamoxifen and eight placebo (RR 0.38; 95% CI, 0.06 to 1.56). Also, 86 percent (6/7) of women with BRCA1 mutations had ER- breast cancer, and 67 percent (6/9) with BRCA2 mutations had ER+. Tamoxifen is only effective in reducing risk for ER+ breast cancer. Additional research on benefits and harms of risk-reducing medications for BRCA1/2 mutation carriers would guide their clinical decisions, particularly as mutation testing becomes more widespread.

In addition to improving our understanding of optimal candidates for therapy, research is needed

to further evaluate clinical risk instruments to identify women who are most likely to benefit from risk-reducing interventions. Current research indicates that prediction models that include breast density offer marginal improvement in diagnostic accuracy. Addition of other factors such as diet, alcohol use, physical activity, smoking status, and height offer little improvement in diagnostic accuracy. New methods need to build on current research findings, and research needs to expand beyond diagnostic accuracy studies. Methods need to be evaluated in relevant clinical settings and populations to determine their effectiveness in identifying high-risk women for clinical decisionmaking. Effective methods should also be validated in various racial and ethnic populations, among non-English speakers, and across multiple age groups. This work should include research regarding optimal methods for communicating risks and benefits to women¹⁴⁴ and lead to the development of effective patient decision aids.

The results of current trials indicate that adverse effects differ between medications and may drive decisions for risk-reducing medications as much or more than benefits. Further research to more clearly identify characteristics of individuals experiencing specific adverse effects would guide physicians and patients to regimens that cause the least harm. Strategies could be tested that optimize benefits and minimize harms. For example, the effects of adding aspirin in conjunction with tamoxifen or raloxifene might improve the benefit/harm balance for women by reducing risks of thromboembolic adverse events, stroke, and possibly breast cancer itself.¹⁴⁵ Further analysis of data from the MORE and RUTH trials could address this question because a large proportion of subjects were using aspirin in these trials. Future trials could evaluate the benefits and harms of using tamoxifen or raloxifene with an anticoagulant such as warfarin, heparin, or low molecular weight heparin.

Primary prevention trials need to be continually evaluated for long-term and unanticipated outcomes. Many questions remain regarding the persistence of beneficial and harmful effects of medications. For example, tamoxifen users in the NSABP P-1 trial who developed ER- breast cancer had shorter times to diagnosis and were more likely to be detected by routine mammograms than placebo users who developed ER- breast cancer.¹⁴⁶

Evaluating the timing of medication use may also lead to effective clinical strategies. Results of current trials suggest that breast cancer risk reduction persists after treatment while some harms diminish. It is important to understand these changes over time. Use of medication for risk reduction at younger ages (45 to 55 years) could provide better long-term benefit and short-term harm for individuals at lower risk of thromboembolism or stroke than use at older ages (over age 60 years). Placebo-controlled trials of raloxifene in younger postmenopausal women selected for breast cancer risk would be more comparable to trials of other risk reducing medications and could provide more accurate estimates of benefits and harms for raloxifene. Also, further analysis of data from currently available trials could compare risk/benefit profiles for women of various ages and risk groups. Additional analysis could also indicate optimal treatment durations. Shortening treatment duration would reduce harms, but also could compromise efficacy.

Despite prior recommendations to identify women at increased risk for breast cancer and offer medications to reduce their risks,¹ and the availability of effective medications for this purpose, use is low in the United States.^{20,21,108} Understanding this experience requires additional research regarding the attitudes of physicians toward recommending 3 to 5 years of medication therapy to reduce risk as well as attitudes of patients regarding receptivity to this recommendation and

adherence over time. Additional research on the physician and patient decisionmaking process could identify factors important for selecting use of medications to reduce breast cancer risk beyond empirical risk and lead to the development of effective clinical decision aids.

Conclusions

Tamoxifen, raloxifene, and aromatase inhibitors reduce invasive breast cancer for women without preexisting breast cancer, but also cause adverse effects that vary by medication. Tamoxifen and raloxifene increase thromboembolic events and tamoxifen increases endometrial cancer and cataracts. Identifying candidates for therapy is complicated by risk stratification methods that demonstrate low accuracy.

References

- U.S. Preventive Services Task Force. Medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2013 Nov 19;159(10):698-708. doi: 10.7326/0003-4819-159-10-201311190-00717. PMID: 24061412.
- Nelson HD, Smith ME, Griffin JC, et al. Use of medications to reduce risk for primary breast cancer: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2013 Apr 16;158(8):604-14. doi: 10.7326/0003-4819-158-8-201304160-00005. PMID: 23588749.
- National Cancer Institute. NCI dictionary of cancer terms: breast cancer. National Institute of Health; 2016. <u>https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=444971</u>. Accessed June 21 2019.
- 4. National Cancer Institute. NCI dictionary of cancer terms: lobular carcinoma. National Institute of Health; 2016. <u>https://www.cancer.gov/publications/dictionaries/</u> <u>cancer-terms?search=lobular%20carcinoma</u>. Accessed June 21 2019.
- American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society, Inc.; 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/ annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf. Accessed June 21 2019.
- 6. National Cancer Institute. Cancer Stat Facts: Female Breast Cancer. National Institute of Health; 2018. <u>https://seer.cancer.gov/statfacts/html/breast.html</u>. Accessed June 21 2019.
- American Cancer Society. Breast Cancer Facts & Figures 2017-2018. Atlanta: American Cancer Society, Inc.; 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/ breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf. Accessed June 21 2019.
- 8. Centers for Disease Control and Prevention. What are the Risk Factors for Breast Cancer? Atlanta, GA: U.S Department of Health and Human Services 2016. http://www.cdc.gov/cancer/breast/basic_info/risk_factors.htm. Accessed June 21 2019.
- Nelson HD, Fu R, Griffin JC, et al. Systematic review: comparative effectiveness of medications to reduce risk for primary breast cancer. Ann Intern Med. 2009 Nov 17;151(10):703-15, w-226-35. doi: 10.7326/0003-4819-151-10-200911170-00147. PMID: 19920271.
- 10. Eli Lilly and Company. EVISTA (raloxifene) Medication Guide. Indianapolis, IN; 2007. <u>https://www.fda.gov/downloads/Drugs/DrugSafety/ucm088593.pdf</u>. Accessed June 21 2019.
- AstraZeneca Pharmaceuticals LP. NOLVADEX (tamoxifen) Medication Guide. Wilmington, DE; 2004. <u>https://www.fda.gov/downloads/drugs/drugsafety/ucm088661.pdf</u>. Accessed June 21 2019.

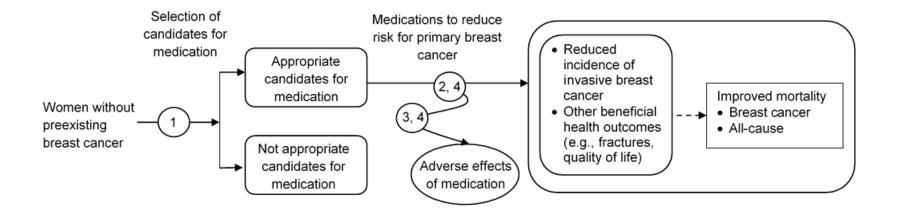
- 12. AstraZeneca Pharmaceuticals LP. ARIMIDEX (anastrozole) FDA Prescription Label. Wilmington, DE; 2010. <u>https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020541s026lbl.pdf</u>. Accessed June 21 2019.
- 13. Pfizer Inc. AROMASIN (exemestane) FDA Prescription Label. New York, NY; 2018. <u>https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020753s020lbl.pdf</u>. Accessed June 24 2019.
- Novartis Pharmaceuticals Corporation. Femara (letrozole) FDA Prescription Label. East Hanover, NJ; 2018. <u>https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020726s035lbl.pdf</u>. Accessed June 24 2019.
- 15. Cuzick J, Sestak I, Bonanni B, et al. Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet. 2013 May 25;381(9880):1827-34. doi: 10.1016/s0140-6736(13)60140-3. PMID: 23639488.
- 16. Richardson H, Johnston D, Pater J, et al. The National Cancer Institute of Canada Clinical Trials Group MAP.3 trial: an international breast cancer prevention trial. Curr Oncol. 2007 Jun;14(3):89-96. PMID: 17593981.
- 17. Cuzick J, Sestak I, Forbes JF, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial.[Erratum appears in Lancet. 2014 Mar 22;383(9922):1040]. Lancet. 2014 Mar 22;383(9922):1041-8. doi: 10.1016/S0140-6736(13)62292-8. PMID: 24333009.
- 18. van de Velde CJ, Rea D, Seynaeve C, et al. Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet. 2011 Jan 22;377(9762):321-31. doi: 10.1016/S0140-6736(10)62312-4. PMID: 21247627.
- 19. Smith SG, Sestak I, Forster A, et al. Factors affecting uptake and adherence to breast cancer chemoprevention: A systematic review and meta-analysis. Cancer Res. 2016;76(4)doi: 10.1158/1538-7445.SABCS15-PD1-08. PMID: 26646754.
- 20. Pinsky P, Miller E, Heckman-Stoddard B, et al. Use of raloxifene and tamoxifen by breast cancer risk level in a Medicare-eligible cohort. Am J Obstet. Gynecol. 2018. doi: 10.1016/j.ajog.2018.03.031. PMID: 29630889.
- 21. Waters EA, Cronin KA, Graubard BI, et al. Prevalence of tamoxifen use for breast cancer chemoprevention among U.S. women. Cancer Epidemiol Biomarkers Prev. 2010 Feb;19(2):443-6. doi: 10.1158/1055-9965.epi-09-0930. PMID: 20142242.
- 22. Smith SG, Foy R, McGowan JA, et al. Prescribing tamoxifen in primary care for the prevention of breast cancer: a national online survey of GPs' attitudes. Br J Gen Pract. 2017 Jun;67(659):e414-e27. doi: 10.3399/bjgp17X689377. PMID: 28193617.
- 23. National Comprehensive Cancer Network. NCCN Clinical Practices Guidelines in Onconlogy: Breast Cancer Risk Reduction. 2019. Available at https://www.nccn.org/professionals/physician_gls/pdf/breast_risk.pdf.
- 24. U.S. Preventive Services Task Force. Methods and Processes. 2018. <u>https://www.uspreventiveservicestaskforce.org/Page/Name/methods-and-processes</u>. Accessed June 21 2019.
- 25. Homer D, Lemeshow S. Applied logistic regression. 2nd ed. New York, NY: John Wiley & Sons Inc.; 2000.

- 26. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002 Jun 15;21(11):1539-58. doi: 10.1002/sim.1186. PMID: 12111919.
- Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects.
 Stat Med. 1996 Mar 30;15(6):619-29. doi: 10.1002/(sici)1097-0258(19960330)15:6<619::aid-sim188>3.0.co;2-a. PMID: 8731004.
- Adams-Campbell LL, Makambi KH, Palmer JR, et al. Diagnostic accuracy of the Gail model in the Black Women's Health Study. Breast J. 2007;13(4):332-6.
 PMID: 17593036.
- 29. Amir E, Evans DG, Shenton A, et al. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet. 2003 Nov;40(11):807-14. PMID: 14627668.
- 30. Barlow WE, White E, Ballard-Barbash R, et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst. 2006 Sep 6;98(17):1204-14. doi: 10.1093/jnci/djj331. PMID: 16954473.
- Boughey JC, Hartmann LC, Anderson SS, et al. Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women with atypical hyperplasia. J Clin Oncol. 2010 Aug 1;28(22):3591-6. doi: 10.1200/jco.2010.28.0784. PMID: 20606088.
- 32. Boyle P, Mezzetti M, La Vecchia C, et al. Contribution of three components to individual cancer risk predicting breast cancer risk in Italy. Eur J Cancer Prev. 2004;13:183-91. PMID: 15167217.
- 33. Brentnall AR, Harkness EF, Astley SM, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17(1)doi: 10.1186/s13058-015-0653-5. PMID: 26627479.
- 34. Chen J, Pee D, Ayyagari R, et al. Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density. J Natl Cancer Inst. 2006 Sep 6;98(17):1215-26. doi: 10.1093/jnci/djj332. PMID: 16954474.
- 35. Chlebowski RT, Anderson GL, Lane DS, et al. Predicting risk of breast cancer in postmenopausal women by hormone receptor status. J Natl Cancer Inst. 2007;99(22):1695-705. doi: 10.1093/jnci/djm224 PMID: 18000216.
- 36. Colditz GA, Rosner B. Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses' Health Study. Am J Epidemiol. 2000 Nov 15;152(10):950-64. PMID: 11092437.
- Colditz GA, Rosner BA, Chen WY, et al. Risk factors for breast cancer according to estrogen and progesterone receptor status. J Natl Cancer Inst. 2004 Feb 4;96(3):218-28. PMID: 14759989.
- Costantino JP, Gail MH, Pee D, et al. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst. 1999;91(18):1541-8.
 PMID: 10491430.
- 39. Decarli A, Calza S, Masala G, et al. Gail model for prediction of absolute risk of invasive breast cancer: Independent evaluation in the florence–european prospective investigation into cancer and nutrition cohort. J Natl Cancer Inst. 2006 December 6, 2006;98(23):1686-93. doi: 10.1093/jnci/djj463. PMID: 17148770.
- 40. Gail M, Anderson W, Garcia-Closas M, et al. Absolute risk models for subtypes of breast cancer [Editorial]. J Natl Cancer Inst. 2007;99:1657-9. PMID: 18000214.

- 41. Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879-86. PMID: 2593165.
- 42. Li K, Anderson G, Viallon V, et al. Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts 11 Medical and Health Sciences 1117 Public Health and Health Services. Breast Cancer Res. 2018;20(3):147. doi: 10.1186/s13058-018-1073-0. PMID: 30509329.
- 43. Matsuno RK, Costantino JP, Ziegler RG, et al. Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. J Natl Cancer Inst. 2011 Jun 22;103(12):951-61. doi: 10.1093/jnci/djr154. PMID: 21562243.
- 44. Petracci E, Decarli A, Schairer C, et al. Risk factor modification and projections of absolute breast cancer risk. J Natl Cancer Inst. 2011 June 24, 2011doi: 10.1093/jnci/djr172. PMID: 21705679.
- 45. Rockhill B, Byrne C, Rosner B, et al. Breast cancer risk prediction with a log-incidence model: evaluation of accuracy. J Clin Epidemiol. 2003 9//;56(9):856-61. doi: 10.1016/S0895-4356(03)00124-0. PMID: 14505770.
- 46. Rockhill B, Spiegelman D, Byrne C, et al. Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst. 2001 Mar 7;93(5):358-66. PMID: 11238697.
- 47. Tamimi RM, Rosner B, Colditz GA. Evaluation of a breast cancer risk prediction model expanded to include category of prior benign breast disease lesion. Cancer. 2010;116(21):4944-53. doi: 10.1002/cncr.25386. PMID: 20645399.
- 48. Tice JA, Cummings SR, Smith-Bindman R, et al. Using clinical factors and mammographic breast density to estimate breast cancer risk: Development and validation of a new predictive model. Ann Intern Med. 2008;148(5):337-47. PMID: 18316752.
- 49. Tice JA, Miglioretti DL, Li CS, et al. Breast density and benign breast disease: Risk assessment to identify women at high risk of breast cancer. J Clin Oncol. 2015;33(28):3137-43. doi: 10.1200/JCO.2015.60.8869. PMID: 26282663.
- 50. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004 Apr 15;23(7):1111-30. doi: 10.1002/sim.1668. PMID: 15057881.
- 51. Vacek PM, Skelly JM, Geller BM. Breast cancer risk assessment in women aged 70 and older. Breast Cancer Res Treat. 2011 Nov;130(1):291-9. doi: 10.1007/s10549-011-1576-1. PMID: 21604157.
- 52. Warwick J, Birke H, Stone J, et al. Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res. 2014 Oct 08;16(5):451. doi: 10.1186/s13058-014-0451-5. PMID: 25292294.
- 53. DeCensi A, Bonanni B, Maisonneuve P, et al. A phase-III prevention trial of low-dose tamoxifen in postmenopausal hormone replacement therapy users: the HOT study. Ann Oncol. 2013 Nov;24(11):2753-60. doi: 10.1093/annonc/mdt244. PMID: 23864098.
- 54. Cuzick J, Forbes J, Edwards R, et al. First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet. 2002 Sep 14;360(9336):817-24. PMID: 12243915.

- 55. Veronesi U, Maisonneuve P, Costa A, et al. Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomised women. Italian Tamoxifen Prevention Study. Lancet. 1998 Jul 11;352(9122):93-7. PMID: 9672273.
- 56. Goss PE, Ingle JN, Ales-Martinez JE, et al. Exemestane for breast-cancer prevention in postmenopausal women.[Erratum appears in N Engl J Med. 2011 Oct 6;365(14):1361]. N Engl J Med. 2011 Jun 23;364(25):2381-91. doi: 10.1056/NEJMoa1103507. PMID: 21639806.
- 57. Martino S, Cauley JA, Barrett-Connor E, et al. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst. 2004 Dec 1;96(23):1751-61. doi: 10.1093/jnci/djh319. PMID: 15572757.
- 58. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998 Sep 16;90(18):1371-88. PMID: 9747868.
- 59. Powles T, Eeles R, Ashley S, et al. Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet. 1998;352(9122):98-101. doi: 10.1016/S0140-6736(98)85012-5. PMID: 9672274.
- 60. Barrett-Connor E, Mosca L, Collins P, et al. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med. 2006;355(2):125-37. doi: 10.1056/NEJMoa062462. PMID: 16837676.
- 61. Vogel VG, Costantino JP, Wickerham DL, et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006 Jun 21;295(23):2727-41. doi: 10.1001/jama.295.23.joc60074. PMID: 16754727.
- 62. Christodoulakos GE, Botsis DS, Lambrinoudaki IV, et al. A 5-year study on the effect of hormone therapy, tibolone and raloxifene on vaginal bleeding and endometrial thickness. Maturitas. 2006 Mar 20;53(4):413-23. doi: 10.1016/j.maturitas.2005.07.003. PMID: 16140483.
- 63. Cohen FJ, Watts S, Shah A, et al. Uterine effects of 3-year raloxifene therapy in postmenopausal women younger than age 60. Obstet Gynecol. 2000 Jan;95(1):104-10. PMID: 10636511.
- 64. Delmas PD, Bjarnason NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med. 1997 Dec 4;337(23):1641-7. doi: 10.1056/nejm199712043372301. PMID: 9385122.
- 65. Johnston CC, Jr., Bjarnason NH, Cohen FJ, et al. Long-term effects of raloxifene on bone mineral density, bone turnover, and serum lipid levels in early postmenopausal women: three-year data from 2 double-blind, randomized, placebo-controlled trials. Arch Intern Med. 2000 Dec 11-25;160(22):3444-50. PMID: 11112238.
- 66. Jolly EE, Bjarnason NH, Neven P, et al. Prevention of osteoporosis and uterine effects in postmenopausal women taking raloxifene for 5 years. Menopause. 2003 Jul-Aug;10(4):337-44. doi: 10.1097/01.gme.0000058772.59606.2a. PMID: 12851517.
- 67. Lufkin EG, Whitaker MD, Nickelsen T, et al. Treatment of established postmenopausal osteoporosis with raloxifene: a randomized trial. J Bone Miner Res. 1998 Nov;13(11):1747-54. doi: 10.1359/jbmr.1998.13.11.1747. PMID: 9797484.

- 68. McClung MR, Siris E, Cummings S, et al. Prevention of bone loss in postmenopausal women treated with lasofoxifene compared with raloxifene. Menopause. 2006 May-Jun;13(3):377-86. doi: 10.1097/01.gme.0000188736.69617.4f. PMID: 16735934.
- 69. Meunier PJ, Vignot E, Garnero P, et al. Treatment of postmenopausal women with osteoporosis or low bone density with raloxifene. Raloxifene Study Group. Osteoporos Int. 1999;10(4):330-6. PMID: 10692984.
- 70. Morii H, Ohashi Y, Taketani Y, et al. Effect of raloxifene on bone mineral density and biochemical markers of bone turnover in Japanese postmenopausal women with osteoporosis: results from a randomized placebo-controlled trial. Osteoporos Int. 2003 Oct;14(10):793-800. doi: 10.1007/s00198-003-1424-1. PMID: 12955333.
- 71. Nickelsen T, Lufkin EG, Riggs BL, et al. Raloxifene hydrochloride, a selective estrogen receptor modulator: safety assessment of effects on cognitive function and mood in postmenopausal women. Psychoneuroendocrinology. 1999 Jan;24(1):115-28. PMID: 10098223.
- 72. Palacios S, Farias ML, Luebbert H, et al. Raloxifene is not associated with biologically relevant changes in hot flushes in postmenopausal women for whom therapy is appropriate. Am J Obstet Gynecol. 2004 Jul;191(1):121-31. doi: 10.1016/j.ajog.2003.10.701. PMID: 15295352.
- 73. Abramson N, Costantino JP, Garber JE, et al. Effect of Factor V Leiden and prothrombin G20210A mutations on thromboembolic risk in the national surgical adjuvant breast and bowel project breast cancer prevention trial. J Natl Cancer Inst. 2006 Jul 05;98(13):904-10. doi: 10.1093/jnci/djj262. PMID: 16818854.
- Barrett-Connor E, Cauley JA, Kulkarni PM, et al. Risk-benefit profile for raloxifene:
 4-year data From the Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. J Bone Miner Res. 2004 Aug;19(8):1270-5. doi: 10.1359/jbmr.040406. PMID: 15231013.
- 75. Barrett-Connor E, Grady D, Sashegyi A, et al. Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. JAMA. 2002 Feb 20;287(7):847-57. PMID: 11851576.
- 76. Brisson J, Brisson B, Cote G, et al. Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev. 2000 Sep;9(9):911-5. PMID: 11008908.
- 77. Bruno S, Maisonneuve P, Castellana P, et al. Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial. BMJ. 2005 Apr 23;330(7497):932. doi: 10.1136/bmj.38391.663287.E0. PMID: 15746106.
- 78. Cauley JA, Norton L, Lippman ME, et al. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-Year results from the MORE trial. Breast Cancer Res Treat. 2001;65(2):125-34. doi: 10.1023/a:1006478317173. PMID: 11261828.
- 79. Chalas E, Costantino JP, Wickerham DL, et al. Benign gynecologic conditions among participants in the Breast Cancer Prevention Trial. Am J Obstet Gynecol. 2005 Apr;192(4):1230-7; discussion 7-9. doi: 10.1016/j.ajog.2004.12.083. PMID: 15846210.


- 80. Cummings SR, Eckert S, Krueger KA, et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA. 1999 Jun 16;281(23):2189-97. PMID: 10376571.
- 81. Cuzick J, Forbes JF, Sestak I, et al. Long-term results of tamoxifen prophylaxis for breast cancer--96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst. 2007 Feb 21;99(4):272-82. doi: 10.1093/jnci/djk049. PMID: 17312304.
- 82. Cuzick J, Sestak I, Cawthorn S, et al. Tamoxifen for prevention of breast cancer: extended long-term follow-up of the IBIS-I breast cancer prevention trial. Lancet Oncol. 2015 Jan;16(1):67-75. doi: 10.1016/S1470-2045(14)71171-4. PMID: 25497694.
- 83. Day R, Ganz PA, Costantino JP. Tamoxifen and depression: More evidence from the National Surgical Adjuvant Breast and Bowel Project's Breast Cancer Prevention (P-1) randomized study. J Natl Cancer Inst. 2001 November 7, 2001;93(21):1615-23. doi: 10.1093/jnci/93.21.1615. PMID: 11698565.
- 84. Decensi A, Maisonneuve P, Rotmensz N, et al. Effect of tamoxifen on venous thromboembolic events in a breast cancer prevention trial. Circulation. 2005;111(5):650-6. doi: 10.1161/01.cir.0000154545.84124.ac. PMID: 15699284.
- 85. Delmas PD, Ensrud KE, Adachi JD, et al. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab. 2002 Aug;87(8):3609-17. doi: 10.1210/jcem.87.8.8750. PMID: 12161484.
- 86. Delmas PD, Genant HK, Crans GG, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone. 2003 Oct;33(4):522-32. PMID: 14555255.
- B7. Duvernoy CS, Kulkarni PM, Dowsett SA, et al. Vascular events in the Multiple Outcomes of Raloxifene Evaluation (MORE) trial: incidence, patient characteristics, and effect of raloxifene. Menopause. 2005 Jul-Aug;12(4):444-52. doi: 10.1097/01.gme.0000151653.02620.89. PMID: 16037760.
- 88. Ensrud KE, Stock JL, Barrett-Connor E, et al. Effects of raloxifene on fracture risk in postmenopausal women: the raloxifene use for the heart trial. J Bone Miner Res. 2008 Jan;23(1):112-20. doi: 10.1359/jbmr.070904. PMID: 17892376.
- 89. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999 Aug 18;282(7):637-45. PMID: 10517716.
- 90. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 2005 Nov 16;97(22):1652-62. doi: 10.1093/jnci/dji372. PMID: 16288118.
- 91. Grady D, Cauley JA, Geiger MJ, et al. Reduced incidence of invasive breast cancer with raloxifene among women at increased coronary risk. J Natl Cancer Inst. 2008 Jun 18;100(12):854-61. doi: 10.1093/jnci/djn153. PMID: 18544744.
- 92. Grady D, Cauley JA, Stock JL, et al. Effect of raloxifene on all-cause mortality. Am J Med. 2010 May;123(5):469.e1-7. doi: 10.1016/j.amjmed.2009.12.018. PMID: 20399327.

- 93. Grady D, Ettinger B, Moscarelli E, et al. Safety and adverse effects associated with raloxifene: multiple outcomes of raloxifene evaluation. Obstet Gynecol. 2004 Oct;104(4):837-44. doi: 10.1097/01.AOG.0000137349.79204.b8. PMID: 15458908.
- 94. Johnell O, Cauley JA, Kulkarni PM, et al. Raloxifene reduces risk of vertebral fractures [corrected] in postmenopausal women regardless of prior hormone therapy. J Fam Pract. 2004 Oct;53(10):789-96. PMID: 15469774.
- 95. Keech CA, Sashegyi A, Barrett-Connor E. Year-by-year analysis of cardiovascular events in the Multiple Outcomes of Raloxifene Evaluation (MORE) trial. Curr Med Res Opin. 2005 Jan;21(1):135-40. PMID: 15881485.
- 96. Land SR, Wickerham DL, Costantino JP, et al. Patient-reported symptoms and quality of life during treatment with tamoxifen or raloxifene for breast cancer prevention: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006 Jun 21;295(23):2742-51. doi: 10.1001/jama.295.23.joc60075. PMID: 16754728.
- 97. Lippman ME, Cummings SR, Disch DP, et al. Effect of raloxifene on the incidence of invasive breast cancer in postmenopausal women with osteoporosis categorized by breast cancer risk. Clin Cancer Res. 2006 Sep 1;12(17):5242-7. doi: 10.1158/1078-0432.ccr-06-0688. PMID: 16951244.
- 98. Martino S, Disch D, Dowsett SA, et al. Safety assessment of raloxifene over eight years in a clinical trial setting. Curr Med Res Opin. 2005 Sep;21(9):1441-52. doi: 10.1185/030079905x61839. PMID: 16197663.
- 99. Maunsell E, Goss PE, Chlebowski RT, et al. Quality of life in MAP.3 (Mammary Prevention 3): a randomized, placebo-controlled trial evaluating exemestane for prevention of breast cancer. J Clin Oncol. 2014 May 10;32(14):1427-36. doi: 10.1200/JCO.2013.51.2483. PMID: 24711552.
- Powles TJ, Ashley S, Tidy A, et al. Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial. J Natl Cancer Inst. 2007 Feb 21;99(4):283-90. doi: 10.1093/jnci/djk050. PMID: 17312305.
- Runowicz CD, Costantino JP, Wickerham DL, et al. Gynecologic conditions in participants in the NSABP breast cancer prevention study of tamoxifen and raloxifene (STAR). Am J Obstet Gynecol. 2011 Dec;205(6):535.e1-5. doi: 10.1016/j.ajog.2011.06.067. PMID: 21872200.
- 102. Sestak I, Singh S, Cuzick J, et al. Changes in bone mineral density at 3 years in postmenopausal women receiving anastrozole and risedronate in the IBIS-II bone substudy: an international, double-blind, randomised, placebo-controlled trial.[Erratum appears in Lancet Oncol. 2014 Dec;15(13):e587]. Lancet Oncol. 2014 Dec;15(13):1460-8. doi: 10.1016/S1470-2045(14)71035-6. PMID: 25456365.
- 103. Silverman SL, Delmas PD, Kulkarni PM, et al. Comparison of fracture, cardiovascular event, and breast cancer rates at 3 years in postmenopausal women with osteoporosis. J Am Geriatr Soc. 2004 Sep;52(9):1543-8. doi: 10.1111/j.1532-5415.2004.52420.x. PMID: 15341559.
- 104. Siris ES, Harris ST, Eastell R, et al. Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J Bone Miner Res. 2005 Sep;20(9):1514-24. doi: 10.1359/jbmr.050509. PMID: 16059623.
- 105. Spagnolo F, Sestak I, Howell A, et al. Anastrozole-induced carpal tunnel syndrome: Results from the international breast cancer intervention study II prevention trial. J Clin Oncol. 2016 Jan 10;34(2):139-43. doi: 10.1200/JCO.2015.63.4972. PMID: 26598748.

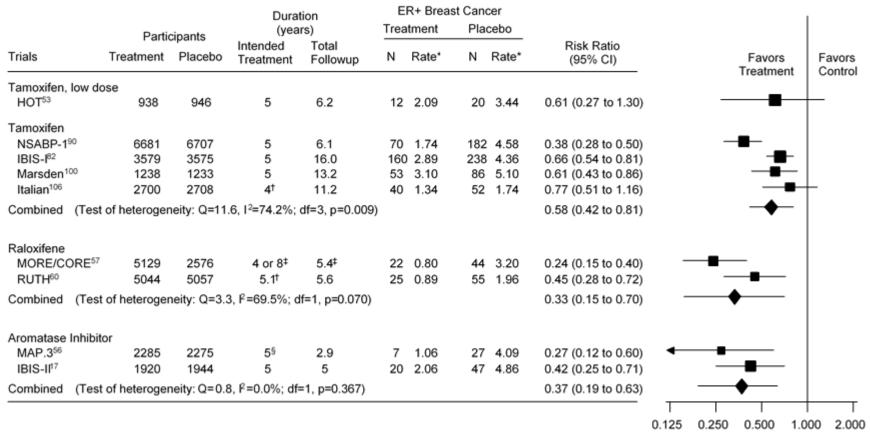
- 106. Veronesi U, Maisonneuve P, Rotmensz N, et al. Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial among women with hysterectomy. J Natl Cancer Inst. 2007 May 2;99(9):727-37. doi: 10.1093/jnci/djk154. PMID: 17470740.
- 107. Veronesi U, Maisonneuve P, Rotmensz N, et al. Italian randomized trial among women with hysterectomy: tamoxifen and hormone-dependent breast cancer in high-risk women. J Natl Cancer Inst. 2003 Jan 15;95(2):160-5. PMID: 12529349.
- 108. Armstrong K, Quistberg DA, Micco E, et al. Prescription of tamoxifen for breast cancer prevention by primary care physicians. Arch Intern Med. 2006 Nov 13;166(20):2260-5. doi: 10.1001/archinte.166.20.2260. PMID: 17101945.
- 109. Corbelli J, Borrero S, Bonnema R, et al. Use of the Gail model and breast cancer preventive therapy among three primary care specialties. J Womens Health (Larchmt). 2014 Sep;23(9):746-52. doi: 10.1089/jwh.2014.4742. PMID: 25115368.
- 110. Hackett J, Thorneloe R, Side L, et al. Uptake of breast cancer preventive therapy in the UK: results from a multicentre prospective survey and qualitative interviews. Breast Cancer Res Treat. 2018 Apr 24doi: 10.1007/s10549-018-4775-1. PMID: 29687178.
- 111. Holmberg C, Bandos H, Fagerlin A, et al. NRG oncology/national surgical adjuvant breast and bowel project decision-making project-1 results: Decision making in breast cancer risk reduction. Cancer Prev Res (Phila). 2017 Nov;10(11):625-34. doi: 10.1158/1940-6207.capr-17-0076. PMID: 28978566.
- 112. Kaplan CP, Haas JS, Perez-Stable EJ, et al. Factors affecting breast cancer risk reduction practices among California physicians. Prev Med. 2005 Jul;41(1):7-15. doi: 10.1016/j.ypmed.2004.09.041. PMID: 15916987.
- 113. Kaplan CP, Kim SE, Wong ST, et al. Willingness to use tamoxifen to prevent breast cancer among diverse women. Breast Cancer Res Treat. 2012 May;133(1):357-66. doi: 10.1007/s10549-012-1960-5. PMID: 22315131.
- 114. Liede A, Mansfield CA, Metcalfe KA, et al. Preferences for breast cancer risk reduction among BRCA1/BRCA2 mutation carriers: a discrete-choice experiment. Breast Cancer Res Treat. 2017 Sep;165(2):433-44. doi: 10.1007/s10549-017-4332-3. PMID: 28624978.
- 115. Martinez KA, Fagerlin A, Witteman HO, et al. What matters to women when making decisions about breast cancer chemoprevention? Patient. 2016 Apr;9(2):149-59. doi: 10.1007/s40271-015-0134-z. PMID: 26115846.
- 116. Meiser B, Wong WKT, Peate M, et al. Motivators and barriers of tamoxifen use as risk-reducing medication amongst women at increased breast cancer risk: a systematic literature review. Hered Cancer Clin Pract. 2017;15:14. doi: 10.1186/s13053-017-0075-8. PMID: 28943990.
- 117. Reimers LL, Sivasubramanian PS, Hershman D, et al. Breast cancer chemoprevention among high-risk women and those with ductal carcinoma in situ. Breast J. 2015 Jul-Aug;21(4):377-86. doi: 10.1111/tbj.12418. PMID: 25879521.
- 118. Roetzheim RG, Lee JH, Fulp W, et al. Acceptance and adherence to chemoprevention among women at increased risk of breast cancer. Breast. 2015 Feb;24(1):51-6. doi: 10.1016/j.breast.2014.11.006. PMID: 25491191.
- 119. Ropka ME, Keim J, Philbrick JT. Patient decisions about breast cancer chemoprevention: a systematic review and meta-analysis. J Clin Oncol. 2010 Jun 20;28(18):3090-5. doi: 10.1200/jco.2009.27.8077. PMID: 20458026.

- 120. Skandarajah AR, Thomas S, Shackleton K, et al. Patient and medical barriers preclude uptake of tamoxifen preventative therapy in women with a strong family history. Breast. 2017 Apr;32:93-7. doi: 10.1016/j.breast.2017.01.002. PMID: 28107734.
- 121. National Cancer Institute. Breast Cancer Risk Assessment Tool. National Institutes of Health 2011. <u>https://www.cancer.gov/bcrisktool/</u>. Accessed June 21 2019.
- 122. Gail MH, Costantino JP, Pee D, et al. Projecting individualized absolute invasive breast cancer risk in African American women. J Natl Cancer Inst. 2007;99(23):1782-92. doi: 10.1093/jnci/djm223 PMID: 18042936.
- 123. Vogel VG, Costantino JP, Wickerham DL, et al. Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: Preventing breast cancer. Cancer Prev Res (Phila). 2010 Jun;3(6):696-706. PMID: 20404000.
- 124. Veronesi U, Maisonneuve P, Sacchini V, et al. Tamoxifen for breast cancer among hysterectomised women. Lancet. 2002 Mar 30;359(9312):1122-4. doi: 10.1016/s0140-6736(02)08159-x. PMID: 11943263.
- 125. Gail MH. The estimation and use of absolute risk for weighing the risks and benefits of selective estrogen receptor modulators for preventing breast cancer. Ann N Y Acad Sci. 2001 Dec;949:286-91. PMID: 11795364.
- 126. Smith SG, Sestak I, Howell A, et al. Participant-reported symptoms and their effect on long-term adherence in the International Breast Cancer Intervention Study I (IBIS I). J Clin. Oncol. 2017 Aug 10;35(23):2666-73. doi: 10.1200/jco.2016.71.7439. PMID: 28661758.
- 127. Goldstein SR, Johnson S, Watts NB, et al. Incidence of urinary incontinence in postmenopausal women treated with raloxifene or estrogen. Menopause. 2005 Mar;12(2):160-4. PMID: 15772563.
- 128. Powles TJ, Jones AL, Ashley SE, et al. The Royal Marsden Hospital pilot tamoxifen chemoprevention trial. Breast Cancer Res Treat. 1994;31(1):73-82. PMID: 7981459.
- 129. Day R, Ganz PA, Costantino JP, et al. Health-related quality of life and tamoxifen in breast cancer prevention: a report from the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Clin Oncol. 1999 Sep;17(9):2659-69. PMID: 10561339.
- 130. Fagerlin A, Zikmund-Fisher BJ, Nair V, et al. Women's decisions regarding tamoxifen for breast cancer prevention: responses to a tailored decision aid. Breast Cancer Res Treat. 2010 Feb;119(3):613-20. doi: 10.1007/s10549-009-0618-4. PMID: 19908143.
- 131. Melnikow J, Paterniti D, Azari R, et al. Preferences of Women Evaluating Risks of Tamoxifen (POWER) study of preferences for tamoxifen for breast cancer risk reduction. Cancer. 2005 May 15;103(10):1996-2005. doi: 10.1002/cncr.20981. PMID: 15825209.
- 132. McKay A, Martin W, Latosinsky S. How should we inform women at higher risk of creast cancer about tamoxifen? An approach with a decision guide. Breast Cancer Res. Treat. 2005;94(2):153-9. doi: 10.1007/s10549-005-6932-6. PMID: 16261414.
- 133. Paterniti DA, Melnikow J, Nuovo J, et al. "I'm going to die of something anyway": women's perceptions of tamoxifen for breast cancer risk reduction. Ethn Dis. 2005 Summer;15(3):365-72. PMID: 16108294.
- 134. Metcalfe KA, Snyder C, Seidel J, et al. The use of preventive measures among healthy women who carry a BRCA1 or BRCA2 mutation. Fam Cancer. 2005;4(2):97-103. doi: 10.1007/s10689-005-4215-3. PMID: 15951959.

- Bober SL, Hoke LA, Duda RB, et al. Decision-making about tamoxifen in women at high risk for breast cancer: Clinical and psychological factors. J Clin Oncol. 2004;22(24):4951-7. doi: 10.1200/JCO.2004.05.192. PMID: 15598980.
- Freedman AN, Yu B, Gail MH, et al. Development of a benefit/risk assessment tool for breast cancer chemoprevention. Pharmacoepidemiol Drug Saf. 2011;20:S273-S4. doi: 10.1002/pds.2206.
- 137. Freedman AN, Yu B, Gail MH, et al. Benefit/risk assessment for breast cancer chemoprevention with raloxifene or tamoxifen for women age 50 years or older. J Clin Oncol. 2011 Jun 10;29(17):2327-33. doi: 10.1200/jco.2010.33.0258. PMID: 21537036.
- 138. Sestak I, Smith SG, Howell A, et al. Early participant-reported symptoms as predictors of adherence to anastrozole in the International Breast Cancer Intervention Studies II. Ann Oncol. 2018;29(2):504-9. PMID: 29126161.
- 139. Brentnall AR, Cuzick J, Buist DSM, et al. Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density. JAMA Oncology. 2018 Apr 5:e180174. doi: 10.1001/jamaoncol.2018.0174. PMID: 29621362.
- 140. Forbes JF, Sestak I, Howell A, et al. Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial. Lancet. 2016 Feb 27;387(10021):866-73. doi: https://dx.doi.org/10.1016/S0140-6736(15)01129-0. PMID: 26686313.
- 141. Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet. 2015 Oct 3;386(10001):1341-52. doi: 10.1016/s0140-6736(15)61074-1. PMID: 26211827.
- 142. Goldvaser H, Barnes TA, Seruga B, et al. Toxicity of extended adjuvant therapy with aromatase inhibitors in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst. 2018 Jan 01;110(1)doi: 10.1093/jnci/djx141. PMID: 28922781.
- 143. King MC, Wieand S, Hale K, et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA. 2001 Nov 14;286(18):2251-6. PMID: 11710890.
- 144. Kurz-Milcke E, Gigerenzer G, Martignon L. Transparency in risk communication: graphical and analog tools. Ann N Y Acad Sci. 2008;18(28)doi: 10.1196/annals.1399.004. PMID: 8469211
- 145. Gierach G, Lacey JJ, Schatzkin A, et al. Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Res. 2008;10(2)doi: 10.1186/bcr2089. PMID: 18447943.
- 146. Shen Y, Costantino JP, Qin J. Tamoxifen chemoprevention treatment and time to first diagnosis of estrogen receptor-negative breast cancer. J Natl Cancer Inst. 2008;100(20):1448-53. PMID: 18840821.

	Parti	cipants	-	ation ars)		asive B atment		Cance lacebo			
Trials	Treatment	•	Intended Treatment	Total t Followup	Ν	Rate*	N	Rate*	Risk Ratio (95% CI)	Favors Treatment	Favors Control
Tamoxifen, HOT ⁵³	low dose 938	946	5	6.2	18	3.13	22	3.78	0.83 (0.42 to 1.62)		
Tamoxifen NSABP-1 ⁹ IBIS-I ⁸² Marsden ¹⁰ Italian ¹⁰⁶ Combined (⁰ 3579 1238 2700	3575 1233 2708	5 5 5 4† 0=4 9 l ² =3	16.0 13.2 11.2	214 82 53	3.59 3.86 4.80 1.77 0.180)	289 104 66	6.29 5.29 6.10 2.21	0.57 (0.46 to 0.70) 0.73 (0.61 to 0.87) 0.78 (0.58 to 1.04) 0.80 (0.56 to 1.15) 0.69 (0.59 to 0.84)	- - - - +	_
Raloxifene MORE/CO			4 or 8 [‡]	5.4 [‡]		1.40		4.20	0.34 (0.22 to 0.50)		
RUTH ⁶⁰	5044	5057	5.1†	5.6	40	1.43	70	2.49	0.56 (0.38 to 0.83)		
Combined (rogeneity:	Q=3.0, I ² =0	0.4%; 0I=	ι, p=	-0.084)			0.44 (0.24 to 0.80)	•	
Aromatase MAP.3 ⁵⁶ IBIS-II ¹⁷	2285 1920	1944	5 [§] 5	2.9 5	32	1.66 3.29		4.85 6.62	0.35 (0.18 to 0.70) 0.50 (0.32 to 0.76)		
Combined	(lest of hete	erogeneity:	Q=0.8, I ² =0).0%; df=1	, p=	0.385)			0.45 (0.26 to 0.70) ⊤ 0.1	25 0.250 0.500 1.0	00 2.000

Risk Ratio (95% CI)


* Per 1,000 women-years.

[†] Veronesi, 2007 and Barrett-Connor, 2006 reported mean or median duration of the actual treatment period.

[‡] The analysis included data from both MORE and CORE. Participants from MORE had 4-year treatment and those who continued in CORE had 4 additional years of treatment. The total followup time is averaged over both MORE and CORE for 7705 participants.

[§] The intended treatment duration is 5 years or until a breast, neoplastic, cardiovascular or toxicity event.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

Risk Ratio (95% CI)

[†] Veronesi, 2007 and Barrett-Connor, 2006 reported mean or median duration of the actual treatment period.

[‡] The analysis included data from both MORE and CORE. Participants from MORE had 4-year treatment and those who continued in CORE had 4 additional years of treatment. The total followup time is averaged over both MORE and CORE for 7705 participants.

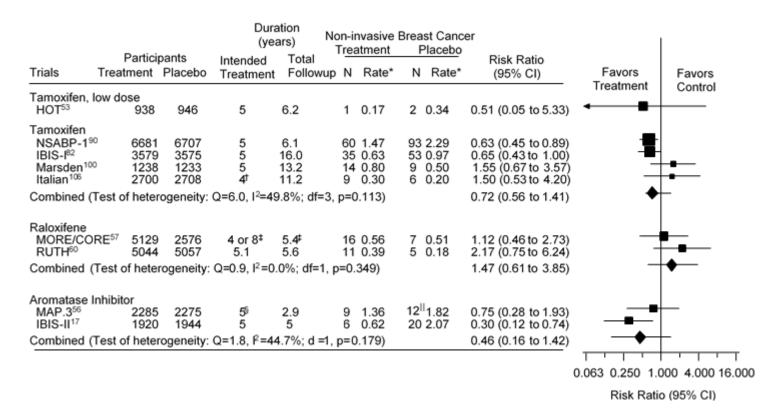
[§] The intended treatment duration is 5 years or until a breast, neoplastic, cardiovascular or toxicity event.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; ER+=estrogen receptor positive; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II;

Figure 3. Meta-Analysis of Trials: Estrogen Receptor Positive Breast Cancer

MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

	Partic	pants		ation ars) Total		ER-Brea eatment		ancer lacebo	Risk Ratio		
Trials	Treatment	Placebo	Treatment	Followup	Ν	Rate*	N	Rate*		Favors Treatment	Favors Control
Tamoxifen, lo HOT ⁵³	ow dose 938	946	5	6.2	4	0.70	2	0.34	2.02 (0.29 to 22.4)		
Tamoxifen NSABP-1 ⁹⁰ IBIS-I ⁸² Marsden ¹⁰⁰ Italian ¹⁰⁶ Combined (T	3579 1238 2700	6707 3575 1233 2708	4†	6.1 16.0 13.2 11.2	50 24 21	1.39 0.90 1.40 0.70	47 17	1.06 0.86 1.00 0.64	1.31 (0.86 to 2.01) 1.05 (0.71 to 1.57) 1.40 (0.70 to 2.60) 1.10 (0.59 to 2.05) 1.18 (0.93 to 1.53)	-	₩- ₽- ₽
Combined (1	eat of fieters	genery.	2-0.3,1 -0	7.0 %, ui=0,	p-c	.052)			1.10 (0.35 (0 1.55)		ľ
Raloxifene MORE/COF RUTH ⁶⁰	5044	2576 5057	4 or 8‡ 5.1†	5.4‡ 5.6	13	0.53 0.46		0.51 0.32	1.06 (0.43 to 2.59) 1.44 (0.61 to 3.36)		• •
Combined (T	Fest of heter	ogeneity:	Q=0.2, I ² =0.	0%; df=1, p	=0.	628)			1.25 (0.60 to 2.58)		•
Aromatase Ir MAP.3 ⁵⁶ IBIS-II ¹⁷	2285 1920	2275 1944	5 [§] 5	2.9 5	11	1.13	-	0.76 1.45	0.80 (0.21 to 2.98) 0.78 (0.35 to 1.72)		
Combined (T	Fest of heter	ogeneity:	Q=0.0, 1 ² =0.	0%; df=1, p	=0.	974)			0.79 (0.35 to 1.79)	+	
										0.063 0.250 1.0	000 4.000 16.000


Risk Ratio (95% CI)

[†] Veronesi, 2007 and Barrett-Connor, 2006 reported mean or median duration of the actual treatment period.

[‡] The analysis included data from both MORE and CORE. Participants from MORE had 4-year treatment and those who continued in CORE had 4 additional years of treatment. The total followup time is averaged over both MORE and CORE for 7705 participants.

§ The intended treatment duration is 5 years or until a breast, neoplastic, cardiovascular or toxicity event.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; ER-=estrogen receptor negative; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

[†] Veronesi, 2007 and Barrett-Connor, 2006 reported mean or median duration of the actual treatment period.

[‡] The analysis included data from both MORE and CORE. Participants from MORE had 4-year treatment and those who continued in CORE had 4 additional years of treatment.

¹The total followup time is averaged over both MORE and CORE for 7705 participants.

[§] The intended treatment duration is 5 years or until a breast, neoplastic, cardiovascular or toxicity event.

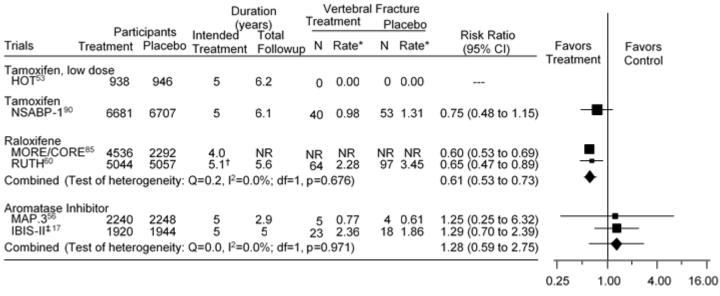
Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

[†] Veronesi, 2007 reported mean or median duration of the actual treatment period.

Abbreviations: CI=confidence interval; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; N=number; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study.

			Dura (yea			All-Caus itment	se Mortality Placebo					
Trials	Partic Treatment	ipants Placebo	Intended Treatment	Total Followup	N	Rate*	Ν	Rate*	Risk Ratio (95% Cl)	Favors Treatment	Favors Control	
Tamoxifen, low dos											_	
HOT ⁵³	938	946	5	6.2	6	1.04	2	0.34	3.03 (0.54 to 30.7)			
Tamoxifen												
NSABP-190	6681	6707	5	6.1	126	3.08	114	2.80	1.10 (0.85 to 1.43)	-	₩-	
IBIS-I ⁸²	3579	3575	5	16.0	182	3.28	166	3.04	1.10 (0.88 to 1.37)			
Marsden ¹⁰⁰	1238	1233	5	13.2	54	3.15	54	3.15	0.99 (0.68 to 1.44)		•	
Italian ¹⁰⁶	2700	2708	4†	11.2	36	1.46	38	1.54	0.95 (0.60 to 1.49)	_	-	
Combined (Test	of heterogen	eity: Q= 0.	5, I²=0.0%; df	=3, p=0.912)					1.07 (0.91 to 1.23)		•	
Raloxifene												
MORE/CORE92	2557	2576	4 or 8 [‡]	5.4 [‡]	45	NR	65	NR	0.68 (0.46 to 0.99)		-	
RUTH ⁶⁰	5044	5057	5.1 [†]	5.6	554	2.07	595	2.25	0.92 (0.82 to 1.03)		¢.	
Combined (Test	of heterogen	eity: Q=2.2	2, I²=54.5%; d	f=1, p=0.138)					0.90 (0.63 to 1.05)	-		
Aromatase Inhibito	r											
MAP.356	2285	2275	5 [§]	2.9	19	2.87	19	0.88	1.00 (0.50 to 1.99)		-	
IBIS-II17	1920	1944	5	5	18	1.85	17	0.76	1.05 (0.51 to 2.17)		•	
Combined (Test	of heterogen	eity: Q=0.0), I²=0.0%; df=	=1, p=0.924)					1.02 (0.58 to 1.82)	_	♦—	
										1 '	· ·	- T
										0.25 1.	00 4.00	16.00
										Risk	Ratio (95% C	D

Risk Ratio (95% CI)

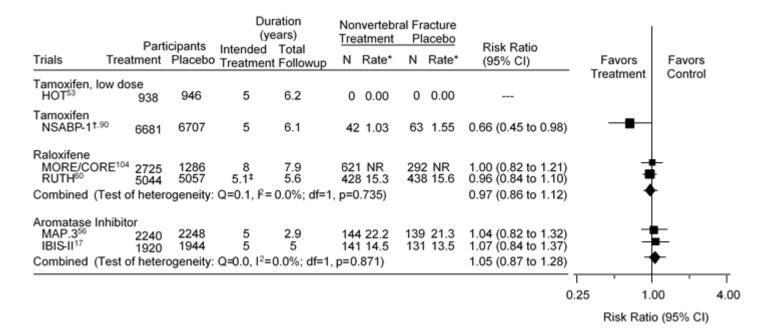

* Per 1,000 women-years.

[†] Veronesi, 2007 and Barrett-Connor, 2006 reported mean or median duration of the actual treatment period.

[‡] The analysis included a subset of data from both MORE and CORE. Participants from MORE had 4-year treatment and those who continued in CORE had 4 additional years of treatment. The total followup time is averaged over both MORE and CORE for 7705 participants.

§ The intended treatment duration is 5 years or until a breast, neoplastic, cardiovascular or toxicity event.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.



Risk Ratio (95% CI)

[†] Barrett-Connor, 2006 reported median duration of the actual treatment period.

[‡] Included fractures from rib, spine, or collarbone.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

[†] Only hip and radius fractures were included.

[‡] Barrett-Connor, 2006 reported median duration of the actual treatment period.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

Figure 10. Meta-Analysis of Trials: Timing of Initiation

	Parti Treatment	cipants	Total Followup Duration	Breast Cancer	Treatment	Cancer Placebo	Risk Ratio	Favors	Favors
Trials	rreatment	Flacebo	(years)	Category	N Rate*	N Rate*	(95% CI)	Treatment	Control
Tamoxifen, low dose HOT ⁵³ (<55 years) HOT ⁵³ (≿55 years)	NR NR		6.1 6.1	All All	5 1.47 14 5.98	15 4.29 9 3.88	0.34 (0.10 to 0.99) 1.54 (0.67 to 3.57)	• • • <u> </u>	
Tamoxifen - <50 yea	rs							_	
NSABP-1 ⁹⁰ Italian ^{10€} IBIS-I ⁸²	258 106 NR	2 1011	6.1 11.2 16.0	Invasive All All	63 4.04 22 1.87 101 NR	98 6.32 22 1.98 161 NR	0.64 (0.46 to 0.89) 0.95 (0.52 to 1.71) 0.62 (0.48 to 0.79)	- -	
Combined (Test of h	eterogeneit	y: Q=1.70	, I ² =0.0%; d	if=2, p=0.426)	1011111	101 101	0.65 (0.54 to 0.85)		
Tamoxifen - >50 yea	•	-					. ,		
NSABP-1 ⁹⁰ Italian ¹⁰⁶ IBIS-I ⁸²	400 163 NR	8 1697	6.1 11.2 16.0	Invasive All All	82 3.32 38 2.00 150 NR	152 6.27 56 2.78 189 NR	0.53 (0.40 to 0.69) 0.79 (0.53 to 1.20) 0.78 (0.63 to 0.97)	-#- -#- #	-
Combined (Test of h	eterogeneit	y: Q=5.45	, I ² = 63.3%	; df =2, p =0.0			0.68 (0.50 to 0.94)		
Raloxifene MORE/CORE ⁹⁷ (<6 RUTH ⁹¹ (<60 [†] year			5.4 5.6	Invasive Invasive	25 1.50 4 NR	41 5.10 8 NR	0.42 (0.21 to 0.85) 0.49 (0.15 to 1.64)	8	
Raloxifene								_	
MORE/CORE ⁸⁶ (≥65 RUTH ⁹¹ (≥60 [†] years			5.4 5.6	Invasive Invasive	15 1.30 36 NR	17 3.00 62 NR	0.30 (0.18 to 0.49) 0.57 (0.38 to 0.86)		
Aromatase Inhibitor	,							_	
MAP.3 ⁵⁶ IBIS-II ¹⁷	NF NF		2.9 5	Invasive Invasive	NR NR 20 NR	NR NR 44 NR	0.44 (0.15 to 1.27) 0.47 (0.28 to 0.80)		_
Combined (Test of h	eterogeneit	y: Q=0.01	, I ² =0.0%; (df=1, p=0.913)			0.46 (0.25 to 0.83)	↓	
Aromatase Inhibitor	->60 years								
MAP.3 ⁵⁶ IBIS-II ¹⁷	NF		2.9 5	Invasive Invasive	NR NR	NR NR	0.29 (0.12 to 0.73) 0.46 (0.27 to 0.78)		
Combined (Test of h					20 NR	41 NR	0.46 (0.27 to 0.78) 0.41 (0.20 to 0.71)	—	
					/				

0.125 0.250 0.5001.0002.0004.000

Risk Ratio (95% CI)

* Per 1,000 women-years.

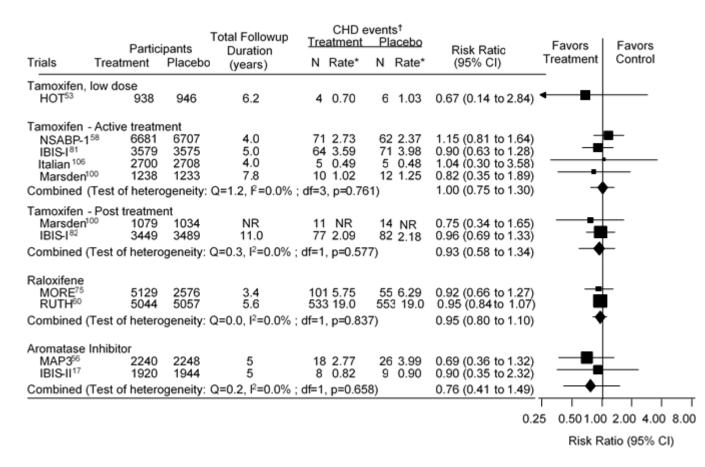
[†] For Grady 2008, total n=1670 for age < 60 years and 8431 for age ≥60 years.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

			Total	Vend	ous Thro	mbo	emboli			
	Partici	pants	Followup Duration	Tre	atment	Pli	acebo	Risk Ratio	Favors	Favors
Trials	Treatment	Placebo	(years)	Ν	Rate*	Ν	Rate*	(95% CI)	Treatment	Control
Tamoxifen, HOT ⁵³	low dose† 938	946	6.2	4	0.70	2	0.34	2.02 (0.29 to 22.4)		
NSABP-1 Italian ⁸⁴ IBIS-I ⁸² Marsden	2700 3579 100 1238	6707 2708 3575 1233	4.0 5.0 7.8 =2.0, I ² =0.0%	10 52 8	2.03 1.02 2.91 0.82 , p=0.56	9 23 3	1.29	1.90 (1.20 to 3.00) 1.09 (0.44 to 2.68) 2.26 (1.36 to 3.87) 2.62 (0.69 to 9.87) 1.93 (1.33 to 2.68)	_	
Marsderf IBIS-I ⁸²	3449	1034 3489	NR 11.0 [‡])=0.1, I ² =0.0%	28	NR 0.76 1, p=0.7		NR 9 0.75	0.80 (0.24 to 2.61) 1.02 (0.58 to 1.79) 0.98 (0.48 to 1.80)	_	
Raloxifene [†] MORE ⁹³ RUTH ⁶⁰	5129 5044	2576 5057	3.3 5.6 =1.3, I ² =22.39	10	3.50 33.67	71	1.70 2.53	2.10 (1.20 to 3.80) 1.44 (1.06 to 1.95) 1.56 (1.11 to 2.60)		_∎ ₩
Combined	(Test of neter	ogeneity. G	-1.3, 1-22.3	70 , ui-	1, p=0.2	257)		1.56 (1.11 to 2.60)		•
Aromatase MAP3 ⁵⁶ IBIS-II ¹⁷ Combined	2240 1920	2248 1944 ogeneity: C	5 5 2=0.3, I ² =0.0%	19	1.69 1.95 , p=0.6	17	1.07 1.76	1.58 (0.56 to 4.80) 1.13 (0.59 to 2.17) 1.24 (0.65 to 2.61)		■
									0.25 0.50 1	.00 2.00 4.00 8.0
										Ratio (95% CI)

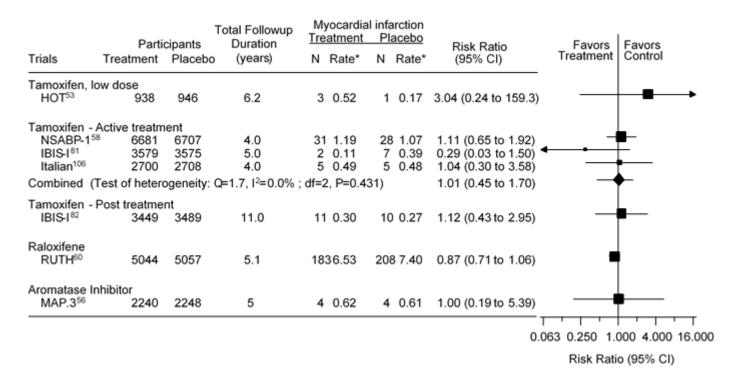
[†] For tamoxifen and IBIS-II trials, venous thromboembolic events include deep-vein thrombosis (DVT) and pulmonary embolism (PE) only. For other trials, other events such as retinal vein thrombosis may be included, depending on the reported overall category.

[‡] Events were reported from at least 3 months after treatment was stopped until the end of followup.


Abbreviations: CI=confidence interval; DVT=deep vein thrombosis; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; PE=pulmonary embolism; RUTH=Raloxifene Use for the Heart.

	Partici		Total Followup Duration	Treatm			cebo		k Rat		Favors	Favors	
Trials	Treatment	Placebo	(years)	N Ra	ite* 1	<u> </u>	Rate*	(9	<u>5% CI</u>	<u>) </u>	reatment	Contro	
Tamoxifen - Active treatment DVT													
NSABP-1		6707	4.0	35 1.3		22	0.84	1 60	0 91 1	o 2.86)			
Italian ⁸⁴	2700	2708	5.0	9 0.			0.83			0 2.86)			
			Q=0.4, I ² =0.0% ;			-	0.00			o 2.59)	-		
	(resconnecero	geneny. v	2-0.4,1 -0.070,	ui-1, p-	-0.515			1.40	(0.701	02.00)		•	
Raloxifene	5400	0570	0.0	40.0	50	-	0.00	2 4 2		0 6.95)			
MORE ⁹³ RUTH ⁶⁰	5129 5044	2576 5057	3.3 5.6	43 2. 65 2.		-	0.80 1.67			0 0.95)			
							1.07		1	0 5.14)			_
Combined	(Test of netero	geneity: (Q=3.4, P=70.1% ;	af = 1, p	5=0.06	()		1.00	0.791	0 5.14)		•	
					DE								
Tamoxifen -	 Active treatm 	ent			PE							_	
NSABP-1		6707	4.0	18 0.			0.23			to 9.27)			
Italian ⁸⁴	2700	2708	5.0	1 0.		-	0.10			to 15.7)	•		
Combined ((Test of hetero	geneity: (Q=0.6, I ² = 0.0% ;	df =1, p	o=0.45	2)		2.69 (0.54 t	to 8.13)		•	
Raloxifene													
MORE ⁹³	5129	2576	3.3	18 1.	05	2	0.23	3.45 (1.71 t	to 6.94)			——
RUTH ⁶⁰	5044	5057	5.6	36 1.			0.85	1.49 (0.89 t	to 2.49)			
Combined	(Test of hetero	aeneity: (Q=3.6, P =72.1%	: df = 1.	p=0.0	58)		2.11 (0.82 t	to 6.12)		++	
		J	,	,,		,				,			
T	A	4		- Supe	rficial F	Phle	bitis -						
I amoxiten - Italian ⁸⁴	 Active treatm 2700 	ent 2708	5.0	34 3.4	40	7	1.77	1 06 /	1 10 4	to 3.51)			
IBIS-I ⁸¹		3575	5.0 5.0	17 0.			0.34			to 8.78)			
	3579 Tost of betero		Q=0.4, I ² = 0.0% ;			-	0.54			to 4.42)		-	-
		• •	2-0.4, 1 0.0%,	ui-1, p-	-0.540			2.14 (1.17	(04.42)		•	
IBIS-I ⁸²	 Post treatmen 3449 	nt 3489	11.0	7 0.	10	5	0.83	1 /3 /	0.30 1	to 5.71)		┤▆───	
		3409	11.0	7 0.	19	5	0.03	1.45 (0.55 1	0 0.7 1)		-	
Aromatase			-		~~	~	4 70	4.40	0.50	0.475			
IBIS-II ¹⁷	1920	1944	5	9 0.	93	8	1.76	1.13 (0.591	to 2.17)			
										0	.25 0.50 1	.00 2.00 4	4.008.0016.00
											Ris	k Ratio (95	5% CI)

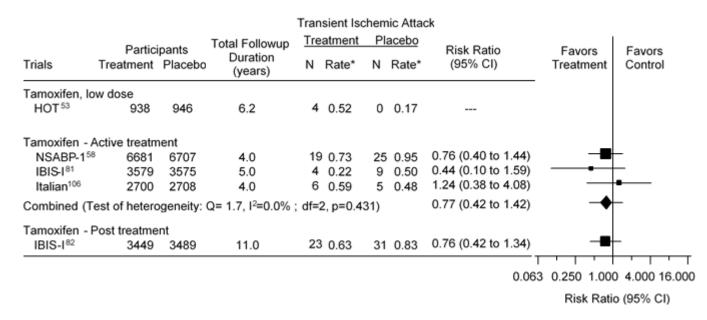
Risk Ratio (95% CI)


* Per 1,000 women-years.

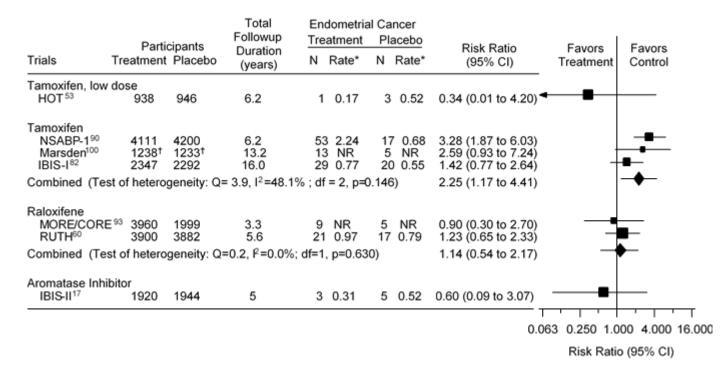
Abbreviations: CI=confidence interval; DVT=deep vein thrombosis; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; PE=pulmonary embolism; RUTH=Raloxifene Use for the Heart.

[†] CHD events includes any reported coronary heart disease, such as myocardial infarction, angina, acute ischemic syndrome and other CHD events.

Abbreviations: CHD=coronary heart disease; CI=confidence interval; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

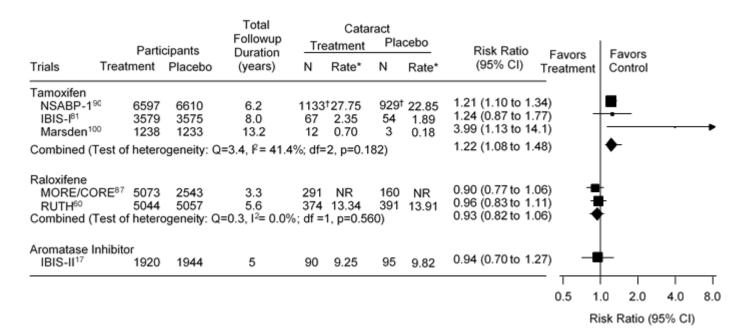

Abbreviations: CI=confidence interval; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; MAP.3=Mammary Prevention.3 trial; N=number; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

	Part	Te	otal Followup Duration	Tre	Stro atment		acebo	Risk Ratio	Favors	Favors
Trials	Treatment	Placebo	(years)	Ν	Rate*	Ν	Rate*	(95% CI)	Treatment	Control
Tamoxifen, lo HOT ⁵³	ow dose 938	946	6.2	1	0.17	2	0.34	0.51 (0.01 to 9.72)		
Tamoxifen - / NSABP-1 ⁵⁴ IBIS-I ⁸¹ Italian ¹⁰⁶ Marsden ¹⁰⁰ Combined (T	6681 3579 2700 1238	6707 3575 2708 1233	4.0 5.0 4.0 5.0 3.0, 1 ² = 0.0% ;	8 6 7	0.59 0.72	8 2 9	0.19	1.59 (0.93 to 2.77) 1.00 (0.33 to 3.06) 3.11 (0.63 to 15.4) 0.76 (0.28 to 2.05) 1.36 (0.78 to 2.20)		₽ _ ◆
Tamoxifen - I Marsden ¹⁰⁰ IBIS-I ⁸² Combined (T	1079 3449	1034 3489	NR† 11.0 1.5, I²= 33.8%	22	NR 0.60 =1, p=0		0.53	0.41 (0.11 to 1.58) 1.12 (0.59 to 2.17) 0.92 (0.25 to 2.09)		_
Raloxifene MORE ⁷⁵ RUTH ⁶⁰ Combined (1	3510 5044 est of hetero	1703 5057 geneity: Q=	4 5.1 1.8, I²= 43.5%	249	2.73 9 8.88 =1, p=0	224	3.66 4 7.97	0.75 (0.48 to 1.17) 1.10 (0.92 to 1.32) 1.04 (0.64 to 1.36)	-= -	•
Aromatase Ir MAP.3 ^{‡56} IBIS-II ¹⁷ Combined (T	2240 1920	2248 1944 geneity: Q弌	5 5 0.8, I ² = 0.0% ;	3	2.00 0.31 1, p=0.3	6	1.69 0.62	1.19 (0.49 to 2.92) 0.50 (0.08 to 2.33) 0.98 (0.27 to 2.56) T 0.0	63 0.250 1.0	000 4.000 16.000
									Risk Rati	o (95% CI)


[†] Events were reported from at least 3 months after treatment was stopped until the end of followup.

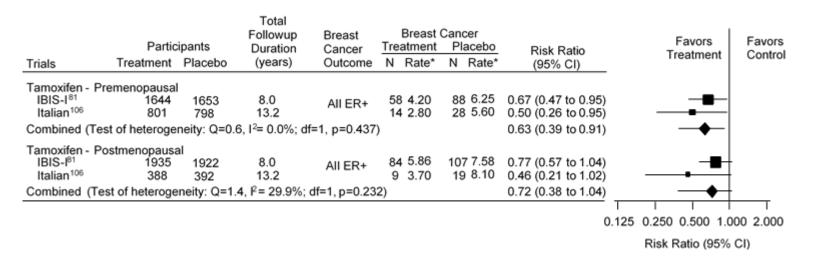
[‡] MAP3. trial reported cerebrovascular events including both stroke and transient ischemic attack.

Abbreviations: CI=confidence interval; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.


Abbreviations: CI=confidence interval; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; N=number; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study.

* Per 1,000 women-years, based on number of women with an intact uterus.

[†] The number of women at risk (non-hysterectomized) was not reported and risk ratio is calculated based on the number of randomized subjects at baseline.


Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

* Per 1,000 women-years, based on number of women with an intact uterus.

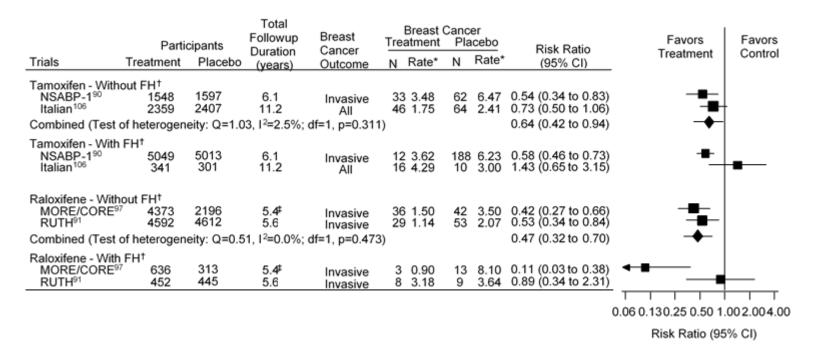
[†] The numbers of cataract events are calculated based on the report follow-up women years and the rates of cataract.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Breast and Bowel Project P-1 study; RUTH=Raloxifene Use for the Heart.

Abbreviations: CI=confidence interval; ER+=estrogen receptor positive; IBIS-I=International Breast Cancer Intervention Study; N=number.

Trials	Participants Treatment Placebo	Total Followup Duration (years)	Breast Cancer Category	Treatment	Cancer Placebo N Rate*	Risk Ratio (95% Cl)	Favors Favors Treatment Control
Tamoxifen - HR Marsden ¹⁰⁰ Italian ¹⁰⁶ IBIS-I ⁸² Combined (Tes	T=Yes [†] 450 464 311 289 1462 1414 st of heterogeneity: Q=3	13.2 11.2 16.0 .07, I ² =34.8%:	ER+ All All df=2, p=0.2	12 3.60 6 1.71 1104.70	25 7.90 6 1.82 124 5.48	0.46 (0.23 to 0.91) 0.94 (0.30 to 2.92) 0.88 (0.68 to 1.13) 0.82 (0.46 to 1.14)	
Tamoxifen		13.2 11.2 16.0	ER+ All All	11 2.70 56 2.12 141 4.17	22 5.30 68 2.56 225 6.57	0.51 (0.25 to 1.05) 0.83 (0.58 to 1.18) 0.62 (0.50 to 0.76) 0.66 (0.51 to 0.87)	
Raloxifene - HR MORE/CORE [‡] RUTH ⁹¹ Combined (Tes		5.4 5.6 .04, I ² =67.1%;	Invasive Invasive d=1, p=0.08	12 1.50 14 2.57 81)	20 5.40 21 3.68	0.29 (0.14 to 0.59) 0.70 (0.35 to 1.37) 0.46 (0.16 to 1.30)	e
Raloxifene - HR MORE/CORE [‡] RUTH ⁹¹ Combined (Tes		5.4 5.6 .31, I ² =23.5%;	Invasive Invasive d=1, p=0.25	28 1.40 26 1.15 53)	38 3.80 48 2.14	0.36 (0.22 to 0.59) 0.54 (0.33 to 0.87) 0.44 (0.27 to 0.73)	- e
MAP.356 IBIS-II17	bitor - HRT=Yes [†] 1310 1327 893 910 t of heterogeneity: Q=1	2.9 5 .54, I ² =34.9%;	Invasive Invasive df=1, p=0.2	NR NR 23 5.08 15)	NR NR 38 8.39	0.30 (0.11 to 0.81) 0.61 (0.37 to 1.03) 0.53 (0.21 to 0.97)	
Aromatase Inhib MAP.3 ⁵⁶ IBIS-II ¹⁷ Combined (Tes	bitor - HRT=No [†] 975 796 1027 1034 t of heterogeneity: Q=0	2.9 5 .05, 1²=0.0%; c	Invasive Invasive If=1, p=0.810	NR NR 17 3.27 6)	NR NR 47 9.14	0.41 (0.16 to 1.05) 0.36 (0.20 to 0.62) 0.38 (0.21 to 0.68)	
						(0.1250.2500.5001.0002.0004.000

Risk Ratio (95% CI)


* Per 1,000 women-years.

⁺ For tamoxifen trials, hormone replacement therapy (HRT) use refers to HRT use during the trial period only.

For raloxifene and aromatase inhibitor trials, HRT use refers to prior HRT use.

[‡] The total followup time is averaged over both MORE and CORE for the 7705 participants.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; ER+=estrogen receptor positive; HOT=Hormone replaced therapy Opposed by low-dose Tamoxifen study; HRT=hormone replacement therapy; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; RUTH=Raloxifene Use for the Heart.

[†] With family history (FH) is defined as having at least one first-degree relative with breast cancer, and otherwise it is without FH.

[‡] The total followup time is averaged over both MORE and CORE for the 7705 participants.

Abbreviations: CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; FH=family history; MORE=Multiple Outcomes of Raloxifene; N=number; RUTH=Raloxifene Use for the Heart.

	Dadi	oinanta	Total Followup	Breast	Tre	Breast				-	_
Trials	Treatment	cipants Placebo	Duration (years)	Cancer Category			Rate*	Risk Ratio (95% CI)	٦	Favors Freatment	Favors Control
Raloxifene - BI MORE/CORE RUTH ^{†,91}		1334 NR	5.4‡ 5.6	Invasive Invasive	16 9	1.10 NR	3.60 NR	0.29 (0.16 to 0.55) 0.84 (0.35 to 2.03)		••	
Combined (Te	st of heteroge	eneity: Q=3.	77, I ² =73.4%	%; df=1, p=0	0.052)		0.47 (0.14 to 1.43)		•	
Raloxifene - BN MORE/CORE RUTH ^{†,91}		1241 NR	5.4‡ 5.6	Invasive Invasive	26 31	1.80 NR	4.90 NR	0.37 (0.22 to 0.63) 0.52 (0.30 to 0.90)	-		
Combined (Te	st of heteroge	neity: Q=0	73, I ² =0.0%	; df=2, p=0.3	394)			0.43 (0.27 to 0.72)		-• -	
Aromatase Inh MAP.356 IBIS-II ¹⁷ Combined (Te	NR 581	NR 568	2.9 5 07, I ² =0.0%	Invasive Invasive ; df=1, p=0.3	10	NR 3.40	NR 8.09	0.35 (0.09 to 1.29) 0.43 (0.20 to 0.90) 0.41 (0.18 to 0.89)	•	•	_
Aromatase Inh MAP.3 ⁵⁶ IBIS-II ¹⁷ Combined (Te	NR 699	NR 732	2.9 5 48 1 ² =0.0%	Invasive Invasive	14	NR 3.95	NR 7.64	0.31 (0.10 to 0.94) 0.49 (0.26 to 0.94) 0.44 (0.20 to 0.85)	•	• •	
Aromatase Inh MAP.3 ⁵⁶ IBIS-II ¹⁷ Combined (Te	ibitor - BMI >3 NR 640	30 NR 644	2.9 5	Invasive Invasive	NR 16	NR 4.93	NR 10.6	0.41 (0.13 to 1.30) 0.47 (0.26 to 0.85) 0.46 (0.23 to 0.86)			_
	st of neteroge	menty. Q=0.	.04, 1- =0.0%	₀, u=1, p=0	.000)	,	 	. ,	0.1250.2	2500.5001.0	0002.0004.0

Risk Ratio (95% CI)

* Per 1,000 women-years.

[†] For Grady 2008, total n=2416 for BMI ≤25, and 7655 for BMI > 25.

[‡] The total followup time is averaged over both MORE and CORE for the 7705 participants.

Abbreviations: BMI=body mass index; CI=confidence interval; CORE=Continuing Outcomes Relevant to Evista; IBIS-II=International Breast Cancer Intervention Study II; MAP.3=Mammary Prevention.3 trial; MORE=Multiple Outcomes of Raloxifene; N=number; NR=not reported; RUTH=Raloxifene Use for the Heart.

Author, Year	Model	Population	Participants	Study Type	Comparison Group	Inclusion Criteria	Quality Rating
Adams- Campbell et al., 2007 ²⁸	Gail African American (invasive breast cancer)	BWHS; black women; age ≥ 35 years from 1995 to 2003	725 cases; 725 age-matched controls	Validation; nested case-control; 8 year followup	SEER	Incident invasive breast cancer; must have complete data available	Good
Amir et al., 2003 ²⁹	Tyrer-Cuzick (10-year risk of invasive breast cancer)	Family history clinic at University Hospital of South Manchester, high- risk population; total population age 21 to 73 years (median 44); screened population age 25 to 73 years (median age 46); from 1987 to 2001	64 cases among 3150 women; subanalysis on screening population; 52 cases among 1933 woman cohort	Women whose risk estimate could be derived by all the models were compared and only incident cases included	U.K. Northwest cancer registry	Complete risk data for all models being compared (Gail, Claus, Ford, Tyrer-Cuzick); excluded incomplete data	Fair
Barlow et al., 2006 ³⁰	BCSC Barlow (1-year risk of DCIS or invasive breast cancer)	BCSC; women without breast cancer age 35 to 84 years; from 1996 to 2001	11,638 cases from 2,392,998 woman cohort	Cases within cohort of women being screened with mammography; 1 year followup	BSCS (compared with SEER)	DCIS or invasive breast cancer in women age 35 to 84 years who had previous mammography within the last 5 years; no previous breast cancer, no breast augmentation, no previous mammography but detected breast cancer within 1 year of first mammography; if no data on menopause, excluded from subgroup analysis	Fair
Boughey et al., 2010 ³¹	Tyrer-Cuzick (10-year risk of invasive breast cancer)	Mayo benign breast disease cohort including women with benign breast biopsy results; 1967 to 1991; mean age 58.1 years; 1967 to 2009; median followup, 14.6 years (86.7% >5 years)	311 cases with atypical hyperplasia in 9376 woman cohort with benign breast disease	Validation; nested case-control	Not reported	Women aged 18 to 85 years with diagnosis of atypical hyperplasia at time of biopsy	Good

Author, Year	Model	Deputation	Dertisinente	Ctudy Type	Comparison	Inclusion Critoria	Quality
Boyle et al., 2004 ³²	Italian 1-Gail Model (all breast cancer)	Population Derivation: Italian multicenter case-control study of diet and breast cancer, 1991 to 1994; age of cases 23 to 74 years (mean age 55); controls 20 to 74 years (mean age 56). Validation: Italian Tamoxifen Prevention Study, 1992 to 1997; age of cases 35 to 70 years (median age 51)	Participants Derivation: 2569 cases with 2588 controls; Validation: 2700 tamoxifen, 2708 placebo	Study Type Derivation: case control; Validation: cases in cohort	Group Regional Cancer Registry Data	Inclusion Criteria Women admitted with breast cancer diagnosed within 1 year of the study interview with no prior history of cancer; no admissions for gynecological, neoplastic, hormonal diseases or those related to increased risk for breast cancer in controls	Rating Fair
Brentnall et al., 2015 ³³	Tyrer-Cuzick plus breast density vs. Gail plus breast density (invasive breast cancer)	Screening areas in Greater Manchester, U.K.; data collected 2009 to 2014	697 cases among 50,628 woman cohort	Cases within cohort of women screened	Not compared	Women invited for routine mammographic screening 2009 to 2013	Fair
Chen et al., 2006 ³⁴	Gail plus breast density (invasive breast cancer)	BCDDP; primarily white women age > 40 years; invasive or noninvasive cancer vs. control; data collected 1973 to 1979	2852 cases (1235 with mammography density); 3146 age-matched controls (1656 with breast density)	Case-control; followup through 1998	SEER	Cases with missing data excluded	Good
Chlebowski et al., 2007 ³⁵	Expanded and simplified models versus Gail 2; (ER+ versus ER- invasive breast cancer)	WHI; age 50 to 79 years (mean age 63)	3236 cases, 363 excluded due to missing data; 2873 for subgroup analysis; 2412 ER+ cases; 461 ER- cases; 144,680 controls	Derivation and validation; case-control; 5 years followup	SEER	Unlikely to move or die within 3 years; no history of breast cancer or mastectomy	Good

Author, Year	Model	Population	Participants	Study Type	Comparison Group	Inclusion Criteria	Quality Rating
Colditz and Rosner, 2000 ³⁶	Colditz- Rosner, Model 2 (invasive breast cancer)	NHS; age 35 to 70 years; 1980 to1994	1761 cases among 58,520 women	Derivation; cases within cohort of NHS; derivation; 14 years followup	Not compared	Incident invasive breast cancer; exclusions include pregnancy/offspring history discrepancies; inaccurate age of menarche; unknown age of menopause or death; missing height, weight, or hormone use data; hysterectomy with 1 or no ovaries removed; or missing menopause data	Good
Colditz et al., 2004 ³⁷	Rosner- Colditz, Model 2 (invasive breast cancer)	NHS; age 35 to 79 years; 1980 to 2000	2096 cases (1281 ER+/PR+, 417 ER-/PR-, 318 ER+/PR-, 80 ER-/PR+) among 66,145 women	Validation; cases within cohort of NHS	Not reported	Invasive breast cancer with reported estrogen receptor status	Good
Costantino et al., 1999 ³⁸	Gail (invasive breast cancer)	BCPT; white women between 1992 to 1998	5969 women in placebo group of BCPT; 204 incident cases	Validation study of Gail-1 and 2 comparing BCDDP, CASH, NHS, BCPT cohorts; followup 1 to 70 months (mean 48.4)	BCDDP rates for invasive or noninvasive cancer (Gail-1); SEER data for invasive cancer (Gail-2)	10-year life expectancy, no history of breast cancer, negative mammogram within 180 days, negative clinical breast exam, no history of DCIS, LCIS	Good

Author, Year	Model	Population	Participants	Study Type	Comparison Group	Inclusion Criteria	Quality Rating
DeCarli et al., 2006 ³⁹	Italian Gail Model; Italian 1-Gail Model* (all breast cancer)	Derivation: Italian multicenter case-control study of diet and breast cancer; Florence European Prospective Investigation into Cancer and Nutrition; 1991 to 1994; age of cases 23 to 74 years (mean age 55); age of controls 20 to 74 years (mean age 56); Validation: age 35 to 64 years	Derivation: 2569 cases with 2588 controls Validation: 194 cases in 10,031 woman cohort	Derivation: case-control Validation: cases in cohort	Florence Cancer Registry	Women admitted with breast cancer diagnosed within 1 year of the study interview with no previous history of cancer. No admissions for gynecologic, neoplastic, hormonal diseases or those related to increased risk of breast cancer in controls	Good
Gail et al., 1989 ⁴¹	Gail (invasive breast cancer and LCIS)	BCDDP; white women age 35 to 79 years with invasive or noninvasive cancer and women without cancer between 1973 to 1979	2582 cases, 3146 controls	Derivation; case-control; abstracted risk factor information from 80% of eligible cases and 83% of eligible controls; followup through 1998	243,221 white women in BCDDP registry	10-year life expectancy, no history of breast cancer, negative mammography within 180 days, negative clinical breast exam, no history of DCIS	Fair
Gail et al., 2007 ⁴⁰	Gail African American (invasive breast cancer)	CARE; black women; age 35 to 64 years; 1994 to 1998 and 1993 to 1998	1607 cases; 1647 controls; women matched for 5-year age group, location, and race; 14,059 from WHI	Derivation: CARE Validation: WHI case-control; WHI Followup 7.57 years	SEER	First primary incident invasive breast cancer in black women age 35 to 64 years; must have complete data available	Fair
Li et al., 2018 ⁴²	Model _{ER+}	EPIC study; age 40 to 70 years; 1992 to 2000	6572 cases in 281,330 EPIC cohort of women; 2951 cases in 82,319 WHI cohort of women	Derivation: EPIC Validation: WHI	WHI	Women age 40 to 70 years not diagnosed with cancer before recruitment	Fair

Author, Year	Model	Population	Participants	Study Type	Comparison Group	Inclusion Criteria	Quality Rating
Matsuno et al., 2011 ⁴³	NCI Breast Cancer Risk Assessment Tool and Gail (invasive breast cancer)	Asian American Breast Cancer Study Derivation: age 20 to 55 years; 1983 to 1987; Validation: age 50 to 79 years; 1993 to 1998	589 cases; 952 controls; same ethnicity, age, and residence	Derivation: case-control Validation: cohort	SEER	Histologically confirmed, first primary incident breast cancer diagnosed between the ages of 20 to 55 years in Asian Americans	Fair
Petracci et al., 2011 ⁴⁴	Italian-2* (invasive breast cancer)	Florence registry of the EPIC study Derivation: age 23 to 74 years; 1991 to 1994 Validation: age 35 to 64 years; 1998 to 2004	Derivation: 2569 cases and 2588 controls Validation: 10,083 participants	Derivation: case-control Validation: cohort	Florence EPIC cohort	Women age 23 to 74 years with invasive breast cancer served as cases; women age 20 to 74 years without breast cancer and admitted for acute conditions to hospitals in the same catchment areas as cases served as controls	Good
Rockhill et al., 2001 ⁴⁶	Gail 5-year risk (invasive breast cancer)	NHS; white women age 45 to 71 years in 1992; study duration from 1992 to 1997	1354 cases in 82,109 woman cohort	Validation; prospective cohort; followup 60 months	SEER	White women with complete risk factor data	Good
Rockhill et al., 2003 ⁴⁵	Rosner- Colditz, Model (invasive breast cancer)	NHS; age 45 to 73 years; 1992 to 1997	757 cases among 45,210 women	Validation; cases within cohort of NHS	Not reported	Invasive breast cancer; no previous cancer, natural menopause or hysterectomy without oophorectomy, complete data	Good
Tamimi et al., 2010 ⁴⁷	Rosner- Colditz, adapted to include category of benign breast disease (invasive breast cancer)	NHS; age 35 to 79 years; 1980 to 2000	240 cases; 1036 controls	Derivation; nested case-control within cohort of cohort of NHS	Not reported	Women with biopsy-proven benign breast disease; incident invasive breast cancer within this cohort with age and year of biopsy-matched control	Good

Author, Year	Model	Population	Participants	Study Type	Comparison Group	Inclusion Criteria	Quality Rating
Tice et al., 2008 ⁴⁸	BCSC-Tice (invasive breast cancer)	BCSC; women without breast cancer age 35 to 84 years; 71% white	1,095,484 in cohort; 14,766 cases of invasive breast cancer; 629,229 for clinical risk factor analysis	Cases within cohort of women screened with mammography; median followup 5.3 years	SEER (BCSC vs. SEER, state tumor registries, and path databases)	Women age 35 years or older with 1 previous mammography with BI-RAD measurement in BCSC; excluded women with diagnosis of breast cancer, women diagnosed within 6 months of index mammography, and women with breast implants	Good
Tice et al., 2015 ⁴⁹	BCSC-Tice + benign breast disease (invasive breast cancer)	BCSC; women without breast cancer age 35 to 74 years; 75% white	1,135,977 in cohort; 17,908 cases of invasive breast cancer	Cases within cohort of women screened with mammography; mean followup 6.9 years	SEER (BCSC vs. SEER, state tumor registries, and path databases)	Women age 35 to 74 years with ≥1 mammography with BI-RAD measurement in BCSC between 1994 and 2010; excluded women with diagnosis of breast cancer before first eligible mammography, women diagnosed in the first 3 months of followup, women with breast implants or mastectomy	Fair
Tyrer et al., 2004 ⁵⁰	Tyrer-Cuzick (invasive breast cancer)	U.K. national statistics of breast cancer incidence rates in general population; BRCA risk tables from U.K.	Not reported	Derivation; data from other sources	U.K. rates of breast cancer and positive BRCA	Not reported	Fair
Vacek et al., 2011 ⁵¹	Gail vs. Tice vs. Barlow vs. Vermont (invasive and noninvasive breast cancer)	VBCSS; women age 70 years or older, 97.7% white	821 cases (668 invasive) among 19,779 women cohort	Cases within cohort of women screened	SEER	Women age ≥70 years with mammography in the VBCSS between 1996 and 2001; not previously diagnosed with breast cancer; and did not decline the use of their data for research. Excluded those diagnosed with cancer or lost to followup within a year of their entry mammography	Fair

Author,					Comparison		Quality
Year	Model	Population	Participants	Study Type	Group	Inclusion Criteria	Rating
Warwick et al., 2014 ⁵²	Tyrer-Cuzick plus breast density (invasive breast cancer)	IBIS-I; age 35 to 70 years (mean age 49)	72 cases in 558 woman cohort	Cases within cohort; median followup to diagnosis 5.1 years for cases, 11.6 years followup for controls	Not reported	Women from the placebo arm of the IBIS-I trial; breast cancer free but with a risk at least twice the population average	Poor

* Italian-Gail Model: 1) calibration varies from Gail by only 1 ordinal value for 1 variable; 2) varies by using categorical rather than ordinal.

Abbreviations: BCDDP=Breast Cancer Detection and Demonstration Project; BCPT=Breast Cancer Prevention Trial; BCSC=Breast Cancer Surveillance Consortium; BRCA=breast cancer susceptibility genes; CARE=Women's Contraceptive and Reproductive Experiences; DCIS=ductal carcinoma in situ; EPIC=European Prospective Investigation into Cancer and Nutrition; ER+=estrogen receptor positive; ER-=estrogen receptor negative; FHESP=Family History and Evaluation Screening Program- University Hospital of South Manchester; IBIS=International Breast Cancer Intervention Study; IMCCSDBC=Italian Multicenter Case-Control Study of Diet and Breast Cancer; LCIS=lobular carcinoma in situ; NHS=Nurses' Health Study; SEER=Surveillance, Epidemiology, and End Results Program; VBCSS=Vermont Breast Cancer Surveillance System; WHI=Women's Health Initiative.

Model	Age (years)	Menarche Age (years)	Age at Birth of First Child (years)	First Degree Relatives With Breast Cancer, <i>n</i>	Previous Breast Biopsy, n	Other Factors	Discriminatory Accuracy C-Statistic (95% Cls)*
Gail-2 (5-year risk)	<50; ≥50	<12; 12–13; ≥14	<20; 20- 24; 25- 29; ≥30; or none	0; 1; ≥2	0; 1; ≥2; AH: 0; ≥1	Not included	$\begin{array}{c} 0.55 \; (0.51 \; to \; 0.60); ^{28} \; 0.60; ^{38} \\ 0.58 \; (0.56 \; to \; 0.60); ^{46} \; 0.58; ^{32} \\ 0.59 \; (0.54 \; to \; 0.63); ^{39} \; 0.60; ^{34} \\ 0.61 \; (0.60 \; to \; 0.62) ^{48} \end{array}$
Gail-2 (10-year risk)	<50; ≥50	<12; 12–13; ≥14	<20; 20- 24; 25- 29; ≥30; or none	0; 1; ≥2	0; 1; ≥2; AH: 0; ≥1	Not included	0.74 (0.67 to 0.80); ²⁹ 0.54 (0.52 to 0.56) ³³
African American Gail (5-year risk)	<50; ≥50	≤13; >13	Not included	0; 1; ≥2	0; 1; ≥2	African American race	0.56 (0.54 to 0.58); ⁴⁰ 0.56 (0.51 to 0.60) ²⁸
Asian American Gail (5-year risk)	<50; ≥50	≤13; >13	Not included	0; 1; ≥2	0; 1; ≥2	Asian American race	0.61 (0.59 to 0.64) ⁴⁷
Gail + density (10-year risk)	<50; ≥50	<12; 12–13; ≥14	<20; 20- 24; 25- 29; ≥30; or none	0; 1; ≥2	Yes; no	Breast density (%); BMI	0.59 (0.57 to 0.61) ³³
Gail + density (5-year risk)	<50; ≥50	<12; 12–13; ≥14	<20; 20- 24; 25- 29; ≥30; or none	0; 1; ≥2	0; 1; ≥2	Breast density (%); BMI	0.64 ³⁴
BCSC [†] (premenopausal; 1-year risk)	45-84 by 5-year groups	Not included	Not included	0; 1; ≥2; unknown	Yes; no; unknown	Breast density (BIRADS)§	0.63 (0.60 to 0.66) ³⁰
BCSC [†] (postmenopausal; 1-year risk)	45-84 by 5-year groups	Not included	<30; ≥30; none; unknown	0; 1; ≥2; unknown	0; ≥1; unknown	Breast density (BIRADS), prior false-positive mammogram, BMI, menopause type, HT, race or ethnicity	0.62 (0.62 to 0.63) ³⁰
BCSC (5-year risk)	45-84 by 5-year groups	Not included	Not included	Yes; no	Yes; no	Breast density (BIRADS), race or ethnicity	0.66 (0.65 to 0.66); ⁴⁸ 0.664 ⁴⁹
BCSC + BBD [†] (5-year risk)	45-84 by 5-year groups	Not included	Not included	Yes; no	Yes; no	Breast density (BIRADS), race or ethnicity, benign breast disease	0.665 ⁴⁹

Model	Age (years)	Menarche Age (years)	Age at Birth of First Child (years)	First Degree Relatives With Breast Cancer, <i>n</i>	Previous Breast Biopsy, n	Other Factors	Discriminatory Accuracy C-Statistic (95% Cls)*
Rosner-Colditz‡	<50; ≥50	<12; 12–13; ≥14	<20; 20–24; 25-29; ≥30; or none	Yes; no	Not included	BMI, benign breast disease, menopause type, menopause age, HT use and duration, height, alcohol use, parity	0.57 (0.55 to 0.59); ⁴⁵ 0.64 (0.63 to 0.66) (ER+/PR+); ³⁷ 0.61 (0.58 to 0.64) (ER-/PR-) ³⁷
Rosner-Colditz-2 [‡]	<50; ≥50	<12; 12–13; ≥14	<20; 20–24; 25-29; ≥30; or none	Yes; no	AH: 0; ≥1	Benign breast disease presence or type	0.63 (0.61 to 0.65); ⁴⁵ 0.64 (type) ⁴⁵
Tyrer-Cuzick (10-year risk)	<50; ≥50	≤12; >12	≤30; >30; none	1; 2; ≥3	0; 1; ≥2; LCIS: 0; ≥1	BMI, height, menopause age, family history of ovarian or other cancer, age of cancer onset, bilateral or male breast cancer	0.76 (0.70 to 0.82); ²⁹ 0.54 (0.42 to 0.65); ³¹ 0.57 (0.55 to 0.59) ³³
Tyrer-Cuzick + density (10-year risk)	<50; ≥50	≤12; >12	≤30; >30; none	1; 2; ≥3	Yes; no	BMI, height, menopause age, family history of ovarian or other cancer, age of cancer onset, bilateral or male breast cancer; breast density (%)	0.61 (0.58 to 0.63) ³³
Italian-1 (5-year risk)	<50; ≥50	<12; 12–13; ≥14	<20; 20–24; 25-29; ≥30; or none	0; 1; ≥2	Not included	Age of relative at diagnosis, diet score, alcohol use, BMI, HT use, physical activity	0.59 (vitamin); ³² 0.60 (diet) ³²
Italian-2 ^{ll} (20-year risk)	<50; ≥50	<12; 12–13; ≥14	<20; 20–24; 25-29; ≥30; or none	0; 1; ≥2	0; 1; ≥2	Occupational and leisure physical activity, education, alcohol use, BMI	0.62 (0.56 to 0.69) (age <50 years); ⁴⁴ 0.57 (0.52 to 0.61) (age ≥50 years) ⁴⁴
Chlebowski (5-year risk)	50-59; 60-69; 70-79	<12; 12–13; ≥14	<20; 20–24; 25-29; ≥30 or none	0; ≥1	0; 1; ≥2	BMI, menopause age, HT use and duration, race, alcohol use, parity, breast-feeding, smoking status, physical activity	0.61 (0.59 to 0.63); ³⁵ 0.62 (0.60 to 0.64) (ER+); ³⁵ 0.53 (0.47 to 0.58) (ER-) ³⁵
Chlebowski- simplified (5-year risk)	<50; ≥50	Not included	Not included	0; ≥1	0; 1; ≥2	Not included	0.58 (0.56 to 0.60) (ER+) ³⁵

Model	Age (years)	Menarche Age (years)	Age at Birth of First Child (years)	First Degree Relatives With Breast Cancer, <i>n</i>	Previous Breast Biopsy, n	Other Factors	Discriminatory Accuracy C-Statistic (95% Cls)*
Model _{ER+}	Not included	<12; 12; 13; 14; >14	≤20; 20.1-25; 25.1-30; 30.1-35; >35	Not included	Not included	BMI, menopause status and age, alcohol use, HT use, breast-feeding duration, parity	0.59 (0.58 to 0.60) ⁴²

* For invasive breast cancer, other outcomes are specifically indicated.

[†] Includes nonproliferative, proliferative without atypia, proliferative with atypia, and lobular carcinoma in situ.

[‡] Invasive and noninvasive breast cancer.

[§] BI-RADS categories include 0=unknown; 1=entirely fat; 2=scattered fibroglandular densities; 3=heterogeneously dense; 4=extremely dense.

^{II} Includes an Italian population and used incidence rates from the Italian Multicenter case-control study of Diet and Breast Cancer and from Italian cancer registries.

Abbreviations: AH=atypical hyperplasia; BBD=benign breast disease; BCSC=Breast Cancer Surveillance Consortium; BI-RADS=Breast Imaging Reporting and Data System; BMI=body mass index (mg/kg²); DCIS=ductal carcinoma in situ; ER-=estrogen receptor negative; ER+=estrogen receptor positive; HT=hormone therapy; LCIS=lobular carcinoma in situ.

Table 3. Randomized, Controlled Trials of Medications to Reduce Risk for Breast Cancer

Trial	Treatment (n); Comparison (n)	Breast Cancer Risk Criteria	Participants, Setting	Age, Median (years)	White (%)	Post Hyster- ectomy (%)	Used Estrogen During Trial (%)	Primary Outcomes	Follow- up, Median (years)	Exposure, Median (years)	Quality Rating
STAR ^{61,96,123}	Tamoxifen 20 mg/day (9872); raloxifene 60 mg/day (9875)	5-year predicted breast cancer risk ≥1.66% based on the modified Gail model*	Postmeno- pausal, age ≥35 years, U.Sbased with sites in North America	58.5 [†]	18204 (93.5)	10027 (51.5)	0 (0)	Invasive breast cancer	3.9 [†] initial; 6.8 [†] long-term	3.6-3.9 [†]	Good
IBIS-I ^{54,81-82}	Tamoxifen 20 mg/day (3573); placebo (3566)	2-fold relative risk for breast cancer for ages 45-70 years, 4-fold for ages 40-44 years, 10-fold for ages 35-39 years based on family history criteria. [‡]	35-70 years, U.K., Australia, New Zealand, Europe	50.8 [†]	Not reported	2515 (35)	2844 (40)	Invasive and noninvasive breast cancer	4.2 initial; 8.0 long- term; 16 longer term	5	Good
NSABP- P1 ^{58,83,90}	Tamoxifen 20 mg/day (6576); placebo (6599)	Age ≥60 years or 35-59 years with a 5-year predicted breast cancer risk ≥1.66% based on the modified Gail model,* or history of LCIS	≥35 years, U.Sbased with sites in North America	Median not reported; 5177 (39.3%) <50	12706 (96.4)	4884 (37)	0 (0)	Invasive and noninvasive breast cancer	4.6 initial; 7.0 long-term	4.0 when unblinded	Good
Royal Marsden Hospital Trial ^{59,100}	Tamoxifen 20 mg/day (1238); placebo (1233)	Family history of breast cancer§	30-70 years, U.K.	47	Not reported	Not reported	389 (15.6)	Invasive breast cancer	5.8 initial; 13.2 long-term	Not reported	Good
Italian Tamoxifen Prevention Study 55,84,106-107	Tamoxifen 20 mg/day (2700); placebo (2708)	None	35-70 years, Italy-based with in Europe and South America	51	Not reported	100 (100)	751 (14)	Breast cancer incidence and mortality	3.8 initial; 11.2 long-term	4	Fair; dropout rate 26.3%
HOT ⁵³	Tamoxifen 5 mg/day (938); placebo (946)	None	Post- menopausal, Italy-based	53 [†]	Not reported	Not reported	100 (100)	Invasive breast cancer	6.2†	5†	Good

Table 3. Randomized, Controlled Trials of Medications to Reduce Risk for Breast Cancer

Trial	Treatment (n); Comparison (n)	Breast Cancer Risk Criteria	Participants, Setting	Age, Median (years)	White (%)	Post Hyster- ectomy (%)	Used Estrogen During Trial (%)	Primary Outcomes	Follow- up, Median (years)	Exposure, Median (years)	Quality Rating
MORE and CORE 57,74-75,78,80, 85-87,89, 93-95,103-104	MORE: raloxifene 60 or 120 mg/day (5129); placebo (2576); CORE: raloxifene 60 mg/day (2725); placebo (1286)	None	Post- menopausal, age 31-80 years, with osteo- porosis, ^{II} U.Sbased with sites in 25 countries; CORE includes a subset of MORE participants	66.9	Not reported (96)	Not reported (23)	0 (0)	MORE: Incident radiographic vertebral fractures and clinical nonvertebral fractures CORE: Breast cancer	MORE: 3, 4; CORE: 4, 8 (combines data)	Not reported	Good
RUTH ^{60,88,91}	Raloxifene 60 mg/day (5044); placebo (5057)	None	Post- menopausal, age ≥55 years, CHD or risk factors, [¶] U.Sbased with sites in 26 countries	67.5	8481 (84)	2319 (23)	0 (0)	Coronary events, invasive breast cancer	5.6	5.1	Good
IBIS- II ^{17,102,105}	Anastrozole 1 mg/day (1920); placebo (1944)	Increased risk for breast cancer: age 45-60 years ≥2 times higher than the general population; age 60-70 years 1.5 times higher; age 40-44 years 4 times higher	Post- menopausal, age 40-70 years, U.Kbased with sites in 18 countries	59.5	Not reported	1287 (33.3)	0 (0)	Invasive and noninvasive breast cancer	5	5	Good
MAP.3 ^{56,99}	Exemestane 25 mg/day (2285); placebo (2275)	Risk factors for breast cancer: age ≥60 years; Gail risk score >1.66%*; prior ADH, ALH, LCIS or DCIS	Post- menopausal, ≥35 years, U.Sbased with sites in 4 countries	62.5	4261 (93.4)	Not reported	0 (0)	Invasive breast cancer	2.9	3	Good

Table 3. Randomized, Controlled Trials of Medications to Reduce Risk for Breast Cancer

* STAR, NSABP-1, MAP.3: The Gail model includes age, number of first-degree relatives with breast cancer, nulliparity or age at first live birth, number of benign breast biopsies, pathologic diagnosis of atypical hyperplasia, and age at menarche. The original model was further modified to predict expected rates of invasive breast cancer only (not invasive and noninvasive as originally designed) and to allow for race-specific determinations of risk.

[†] Values are means.

[‡] IBIS: All criteria permit entry to trial at age 45 years: first-degree relative with breast cancer age \leq 50 years; first-degree relative with bilateral breast cancer (permits entry from age 40 years; if relative age \leq 40 years, permits entry at age 35 years); \geq 2 first-degree or second-degree relatives with breast cancer (permits entry from age 40 years if both developed breast cancer before age 50 years; permits entry at age 35 years if both relatives are first-degree and both developed breast cancer before age 50 years; benign breast biopsy and first-degree relative with breast cancer; lobular carcinoma in situ (permits entry from age 40); nulliparous and a first-degree relative who developed breast cancer; risk equivalent (strong family history, not fitting specific categories, but judged to be at higher risk than eligibility category by the study chairman).

[§] Family history criteria for Royal Marsden Hospital Trial: one first-degree relative age <50 y with breast cancer, or one first-degree relative with bilateral breast cancer, or one affected first-degree of any age plus another affected first-degree or second-degree relative; benign breast biopsy and a first-degree relative with breast cancer.

^{||} MORE: Study Group 1, femoral neck or lumbar spine bone mineral density (BMD) T-score < -2.5; Study Group 2, low BMD and one or more moderate or severe vertebral fractures or \geq 2 milder vertebral fractures (20-25% reduction in height); or \geq 2 moderate fractures (25-40% reduction from expected vertebral height), regardless of BMD.

[¶] Cardiovascular risk score \geq 4: established coronary heart disease (4 points), arterial disease of the leg (4 points), age \geq 70 y (2 points), diabetes mellitus (3 points), cigarette smoking (1 point), hypertension (1 point), and hyperlipidemia (1 point).

Abbreviations: ADH=atypical ductal hyperplasia; ALH=atypical lobular hyperplasia; CHD=coronary heart disease; CORE=Continuing Outcomes Relevant to Evista; DCIS=ductal carcinoma in situ; HOT=Hormone replacement therapy Opposed by low-dose Tamoxifen; IBIS-I=International Breast Cancer Intervention Study; IBIS-II=International Breast cancer Intervention Study II; LCIS=lobular carcinoma in situ; MAP.3=Mammary Prevention.3 trial; mg=milligram; MORE=Multiple Outcomes of Raloxifene Evaluation; NSABP-P1=National Surgical Adjuvant Breast and Bowel Project P-1 Study; RUTH=Raloxifene Use for the Heart; STAR=Study of Tamoxifen and Raloxifene; UK=United Kingdom; US=United States.

Table 4. Outcomes Reported in Trials

Outcomes	Placebo-Controlled Trials Reporting Outcomes	Included in Meta-Analysis	Reported in STAR Trial
Benefits	Flacebo-controlled mais Reporting Outcomes	Meta-Analysis	
All breast cancer	NSABP-1, Marsden, IBIS-I, Italian, MORE, RUTH, MAP.3, HOT,	Х	NR
Invasive breast cancer	IBIS-II NSABP-1, Marsden, IBIS-I, Italian, MORE, RUTH, MAP.3, IBIS-II	Х	Х
ER+ breast cancer	NSABP-1, Marsden, IBIS-I, Italian, MORE, RUTH, MAP.3, IBIS-II	X	NR
ER- breast cancer	NSABP-1, Marsden, IBIS-I, Italian, MORE, RUTH, MAP.3, IBIS-II	X	NR
Noninvasive breast cancer	NSABP-1, Marsden, IBIS-I, Italian, MORE, RUTH, MAP.3, IBIS-II	X	X
DCIS	Marsden, IBIS-I, MORE, MAP.3, IBIS-II		X
Breast cancer mortality	NSABP-1, Marsden, IBIS-I, Italian, MORE, MAP.3, IBIS-II	Х	NR
All-cause mortality	NSABP-1, Marsden, IBIS-I, Italian, MORE, RUTH, MAP.3, IBIS-II	Х	Х
All fractures	Marsden, IBIS-I, MAP.3, HOT, IBIS-II	Х	NR
Hip, wrist, spine fractures	NSABP-1, IBIS-I, MAP.3	Х	Х
Vertebral fractures	NSABP-1, MORE, RUTH, MAP.3, IBIS-II	Х	Х
Nonvertebral fractures	NSABP-1, MORE, RUTH, MAP.3, IBIS-II	Х	NR
Hip fractures	NSABP-1, MORE, MAP.3		Х
Wrist fractures	NSABP-1, MORE, MAP.3		Х
Harms			-
Thromboembolic events	NSABP-1, Marsden, IBIS, Italian, MORE, RUTH, MAP.3, HOT, IBIS-II	Х	X
Deep vein thrombosis	NSABP-1, Italian, MORE, RUTH	Х	Х
Pulmonary embolus	NSABP-1, Italian, MORE, RUTH	Х	Х
Superficial phlebitis	Italian, IBIS-I, IBIS-II	Х	NR
Coronary heart events	NSABP-1, Marsden, IBIS-I, Italian, MORE, RUTH, MAP.3, HOT, IBIS-II	Х	X
Myocardial infarction	NSABP-1, IBIS-I, Italian, MAP.3, IBIS-II	Х	Х
Stroke	NSABP-1, Marsden, IBIS-I, Italian, RUTH, MORE, MAP.3, HOT, IBIS-II	Х	X
Transient ischemic attack	NSABP-1, IBIS, Italian, MAP.3	Х	Х
Endometrial cancer	NSABP-1, Marsden, IBIS-I, MORE, RUTH, MAP.3, HOT, IBIS-II	Х	Х
Cataracts	NSABP-1, Marsden, IBIS-I, MORE, RUTH, IBIS-II	Х	Х
Quality of life			-
Depression	NSABP-1, IBIS-II, MAP.3		Х
Anxiety	IBIS-II		NR
Sleep disturbances	Marsden, MAP.3		NR
Sexual functioning	NSABP-1, Marsden, MAP.3		Х
Vasomotor symptoms	IBIS, Marsden, IBIS-II, MAP.3		Х
Vaginal dryness	Italian, IBIS, IBIS-II, MAP.3, HOT		Х
Vaginal discharge	NSABP-1, IBIS, Marsden, Italian, HOT		Х
Hot flashes or flushes	NSABP-1, Italian, Marsden, MORE, RUTH, IBIS-II, MAP.3, HOT		Х
Night sweats	NSABP-1, MAP.3, HOT		NR

Table 4. Outcomes Reported in Trials

Outcomes	Placebo-Controlled Trials Reporting Outcomes	Included in Meta-Analysis	Reported in STAR Trial
Gynecological conditions	IBIS-II		X
Leiomyomas	NSABP-1		Х
Ovarian cysts	NSABP-1, IBIS		Х
Uterine fibroids	IBIS		NR
Endometrial polyps	IBIS, HOT		NR
Cervical polyps	IBIS		NR
Uterine polyps	MORE		NR
Polyps, unspecified	NSABP-1		Х
Endometriosis	NSABP-1, IBIS		Х
Endometritis	NSABP-1		NR
Gynecological procedu	ires		-
Currettage	NSABP-1		Х
Hysterectomy	NSABP-1, Marsden, IBIS		Х
Oophorectomy	NSABP-1, IBIS		Х
Laparoscopy	NSABP-1		Х
Hysteroscopy	NSABP-1, IBIS		Х

Abbreviations: DCIS=ductal carcinoma *in situ*; ER+=estrogen receptor positive; ER-=estrogen receptor negative; HOT=Hormone replacement therapy Opposed by low dose Tamoxifen; IBIS=International Breast Cancer Intervention Study; MAP.3=Mammary Prevention.3 Trial; MORE=Multiple Outcomes of Raloxifene Evaluation; NR=not reported; NSABP-1=National Surgical Adjuvant Brest and Bowel Project P-1 Study; RUTH=Raloxifene Use for the Heart; STAR=Study of Tamoxifen and Raloxifene.

Table 5. Results of the STAR Trial—Relative and Absolute Effects

	RR for Raloxifene vs.	
Outcome	Tamoxifen (95% CI)	Events Reduced or Increased (95% CI), n*
Benefits		
Invasive breast cancer	1.24 (1.05 to 1.47) [†]	5 (1 to 9) fewer with tamoxifen
ER+ breast cancer	0.93 (0.72 to 1.24) [‡]	_
ER- breast cancer	1.15 (0.75 to 1.77) [‡]	_
Noninvasive breast cancer	1.22 (0.95 to 1.59) [†]	_
Breast cancer mortality	0.36 (0.08 to 1.21) [†]	_
All-cause mortality	0.84 (0.70 to 1.02) [†]	_
Vertebral fracture	0.98 (0.65 to 1.46) [‡]	_
Nonvertebral fracture	Not reported	_
Harms		
Thromboembolic events§	0.75 (0.60 to 0.93) [†]	4 (1 to 7) more with tamoxifen
DVT	0.72 (0.54 to 0.95) [†]	3 (1 to 5) more with tamoxifen
PE	0.80 (0.57 to 1.11) [†]	—
CHD events	1.10 (0.85 to 1.43) [‡]	_
Stroke	0.96 (0.64 to 1.43) [‡]	_
Endometrial cancer	0.55 (0.36 to 0.83) [†]	5 (2 to 9) more with tamoxifen
Cataracts	0.80 (0.72 to 0.95) [†]	15 (8 to 22) more with tamoxifen

* Numbers of events reduced for benefits or increased for harms compared with raloxifene per 1000 women, [†] Updated results from STAR, 2010.¹²³
 [‡] Initial results from STAR, 2006.⁶¹

§ Includes DVT and PE.

Abbreviations: CHD=coronary heart disease; CI=confidence interval; DVT=deep vein thrombosis; ER-=estrogen receptor negative; ER+=estrogen receptor positive; n=number; PE=pulmonary embolism; RR=risk ratio; STAR=Study of Tamoxifen and Raloxifene.

Outcome	RR for Tamoxifen vs. Placebo (95% Cl)	Trials, <i>n</i> *	Placebo Rate (±SE) [†]	Events Reduced or Increased With Tamoxifen (95% CI), n [‡]	RR for Taloxifene vs. Placebo (95% Cl)	Trials, n*	Placebo Rate (±SE) [†]	Events Reduced or Increased With Raloxifene (95% CI), n [‡]	RR for Als vs. Placebo (95% Cl)	Trials, <i>n</i> *	Placebo Rate (±SE) [†]	Events Reduced or Increased With Als (95% CI), n [‡]
Breast cand	er											
Invasive	0.69 (0.59 to 0.84)	4	4.58 ± 0.96	7 (4 to 12) fewer	0.44 (0.24 to 0.80)	2	3.19 ± 0.59	9 (3 to 15) fewer	0.45 (0.26 to 0.70)	2	5.90 ± 0.64	16 (8 to 24) fewer
ER+	0.58 (0.42 to 0.81)	4	3.62 ± 0.76	8 (4 to 13) fewer	0.33 (0.15 to 0.70)	2	2.45 ± 0.42	8 (4 to 13) fewer	0.37 (0.19 to 0.63)	2	4.55 ± 0.53	15 (8 to 20) fewer
ER-	1.18 (0.93 to 1.53)	4	_	_	1.25 (0.60 to 2.58)	2	-	-	0.79 (0.35 to 1.79)	2	-	-
Non- invasive	0.72 (0.56 to 1.41) [§]	4	_	_	1.47 (0.61 to 3.85)	2	-	-	0.46 (0.16 to 1.42)	2	_	-
Mortality	. ,				. ,				. ,			•
Breast cancer	1.20 (0.79 to 1.79)	4	_	_	NR [∥]	-	-	_	NR	_	_	_
All-cause	1.07 (0.91 to 1.23)	4	_	_	0.90 (0.63 to 1.05)	2	_	_	1.02 (0.58 to 1.82)	2	-	_
Fracture												
Vertebral	0.75 (0.48 to 1.15) [¶]	1	-	_	0.61 (0.53 to 0.73)	2	3.45 ± 0.35**	7 (5 to 9) fewer	1.28 (0.59 to 2.75)	2	_	_
Non- vertebral	0.66 (0.45 to 0.98) [¶]	1	1.55 ± 0.20	3 (0.2 to 5) fewer	0.97 (0.86 to 1.12)	2	_	_	1.05 (0.87 to 1.28)	2	-	_

* Number of trials included in meta-analysis.

[†] Per 1000 women, estimated from a meta-analysis of rates from the placebo groups from the same trials included in the RRs.

[‡] Numbers of events reduced for benefits or increased for harms compared with placebo per 1000 women assuming 5 y of use.

[§] The RR was significantly reduced in NSABP P-1, 2005 (60 vs. 93 events; RR, 0.63 [95% CI, 0.45–0.89]).⁹⁰

2 breast cancer deaths in 7601 women for raloxifene vs. 0 in 7633 women for placebo.91,93

[¶] NSABP P-1, 2007.⁹⁰

** Estimated from the placebo group of the RUTH trial, 2006.60

Abbreviations: Als=aromatase inhibitors; CI=confidence interval; ER=estrogen receptor-negative; ER+=estrogen receptor-positive; n=number; NR=not

Table 6. Meta-Analysis of Results of Placebo-Controlled Trials—Relative and Absolute Effects for Beneficial Outcomes

reported; NSABP=National Surgical Adjuvant Breast and Bowel Project; PE=pulmonary embolism; RR=risk ratio; RUTH=Raloxifene Use for the Heart; SE=standard error.

Table 7. Methods of Followup for Adverse Events in Trials

Trial	References	Methods
Tamoxifen (20 mg/day) vs. ralo		
Study of Tamoxifen and Raloxifene (STAR)	Vogel, 2006; Land, 2006; Vogel, 2010	Participants were followed every 6 months for 5 years and annually thereafter. Gynecologic examinations, complete blood counts, and routine serum chemistry tests were obtained annually. Information about the occurrence of all protocol-defined endpoints (endometrial cancer, cardiovascular disease, stroke, pulmonary embolism, deep vein thrombosis, transient ischemic attack, osteoporotic fracture, cataracts, death, quality of life, other cancers) was ascertained at each followup visit and verified by reviewing medical records. Self-reported symptoms were also collected at each visit.
Tamoxifen (20 mg/day) vs. pla		
International Breast Cancer Intervention Study (IBIS-I)	IBIS, 2002; Cuzick, 2007; 2015	Adverse effects were assessed using a checklist of predefined outcomes with a free text field. These included myocardial infarction, cardiovascular disease events, thromboembolic events, osteoporotic fractures, any non-breast cancer, nausea, vomiting, hot flushes, headaches, vaginal discharge, vaginal dryness, and vaginal bleeding. During the active treatment phase, these questions were asked directly to participants, while during the followup phase, a less detailed version of the checklist was mailed to participants. For postal replies, adverse outcomes were confirmed by medical record review. Approximately 85% of women returned at least one questionnaire during followup.
National Surgical Adjuvant Breast and Bowel Project P-1 Study (NSABP-1)	Fisher, 1998; 2005; Day, 2001; Brisson, 2000; Chalas, 2005; Abramson, 2006	Adverse effects were documented by using a global index modeled after the Women's Health Initiative. Followup visits occurred at 3 and 6 months, and then every 6 months thereafter. Endometrial cancer and thromboembolic events were considered secondary end points. Gynecologic symptoms of hot flashes, vaginal discharge, vaginal dryness, and abnormal vaginal bleeding were monitored, and clinical sites reported additional uterine and ovarian disorders and gynecologic procedures. Medical records for participants with suspected cardiovascular disease events were collected by the clinical sites and adjudicated by investigators blinded to treatment assignment.
Royal Marsden Hospital Trial	Powles, 1998; 2007	Followup visits occurred every 6 months during the course of the trial and acute toxicity and other conditions were assessed at each visit. Further details of the followup procedures for adverse effects were not reported.
Italian Tamoxifen Prevention Study	Veronesi, 1998; 2003; 2007; Decensi, 2005; Bruno, 2005	Adverse effects were evaluated at visits and physical examinations every 6 months. After completion of treatment, or in the case of dropouts, women were followed on an annual basis, although only adverse events that occurred during study treatment were reported. Information about major endpoints, such as death, serious adverse events, or cancer, was collected and submitted to the data center. Secondary endpoints included cardiovascular disease, psychological measures, and cognitive function. Surveillance for onset of acute or chronic liver injury based on blood levels of transaminases was also included.
Tamoxifen (5 mg/day) vs. plac	ebo	
Hormone replacement therapy Opposed by low-dose Tamoxifen (HOT) study	DeCensi, 2013	Clinical examinations were repeated every 6 months during treatment. Transvaginal ultrasounds were obtained at baseline and repeated if atypical bleeding was reported, followed by hysteroscopy if clinically indicated. Clinical visits were repeated annually up to 10 years during the followup period, although he details of the visits were not specified.

Trial	References	Methods
Raloxifene (60 or 120 mg/day)	vs. placebo	
Multiple Outcomes of Raloxifene Evaluation (MORE) and Continuing Outcomes Relevant to Evista (CORE)	Ettinger, 1999; Cummings, 1999; Cauley, 2001; Barrett-Connor, 2002; Delmas, 2002; 2003; Grady, 2004; Grady, 2010; Barrett-Connor, 2004; Silverman, 2004; Johnell, 2004; Martino, 2005; Duvernoy, 2005; Keech, 2005; Siris, 2005; Lippman, 2006	Participants were followed every 6 months in the MORE trial and were queried about potential adverse effects at every visit. Fasting plasma glucose levels were evaluated annually. Endometrial changes were monitored with transvaginal ultrasound, however some of the 17 centers only performed transvaginal ultrasound on a subset of women. Three physicians who were blinded to treatment assignment (the outcome adjudication panel) reviewed medical records of any patient with a reported case of endometrial cancer to confirm the diagnosis.
Raloxifene Use for the Heart (RUTH)	Barrett-Connor, 2006; Grady, 2008; Ensrud, 2008	Participants reported adverse events every 6 months at either a visit or by a telephone call. Electrocardiograms were performed at baseline, years 2 and 4, and the final visit. Serum lipids were measured at baseline, years 1 and 5, and the final visit. Committees of experts blinded to treatment assignment adjudicated coronary events, breast cancer, stroke, thromboembolism, and death outcomes.
Anastrozole (1 mg/day) vs. pla	icebo	
International Breast cancer Intervention Study II (IBIS-II)	Cuzick, 2014; Sestak, 2014; Spagnolo, 2016	Secondary end points included other cancer, cardiovascular disease, fractures, adverse events, and deaths. Participants had clinical visits at baseline, 6 months, 12 months, and annually until the 5-year visit. Followup after 5 years varied and included clinic visits, annual questionnaires, and record linkage systems in the United Kingdom.
Exemestane (25 mg/day) vs. p	lacebo	
Mammary Prevention.3 trial (MAP.3)	Goss, 2011; Maunsell, 2014	Secondary end points included adverse cardiovascular events, incidence of other cancer, side effect profile and safety, and health-related and menopause-specific qualities of life. Clinical assessments occurred at 6 and 12 months after randomization and then yearly during the trial. These included physical examinations, symptoms, adverse events, and quality of life assessments. Safety data across study sites were reviewed every 6 months by an independent data and safety monitoring committee.

	RR for Tamoxifen vs. Placebo (95% Cl)	Trials,	Placebo Rate (±SE) [†]	Events Reduced or Increased With Tamoxifen (95% CI), n [‡]	RR for Raloxifene vs. Placebo (95% Cl)	Trials,	Placebo Rate (±SE) [†]	Events Reduced or Increased With Raloxifene (95% CI), n [‡]	RR for Als vs. Placebo (95% Cl)	Trials,	Placebo Rate (±SE) [†]	Events Reduced or Increased With Als (95% CI), <i>n</i> [‡]
Vascular		•								•		
VTE	1.93 (1.33 to 2.68)	4	0.91 ± 0.19	5 (2 to 9) more	1.56 (1.11 to 2.60)	2	2.34 ± 0.25	7 (0.3 to 17) more	1.24 (0.65 to 2.16)	2	-	-
DVT	1.45 (0.73 to 2.59)	2	-	_	1.66 (0.79 to 5.14)	2	-	-	NR	-	-	-
PE	2.69 (0.54 to 8.13)	2	-	_	2.11 (0.82 to 6.12)	2	-	-	NR	-	-	-
CHD events	1.00 (0.75 to 1.30)	4	-	-	0.95 (0.80 to 1.10)	2	-	-	0.76 (0.41 to 1.49)	2	-	-
Stroke	1.36 (0.78 to 2.20)	4	-	-	1.04 (0.64 to 1.36)	2	-	-	0.98 (0.27 to 2.56)	2	-	-
Other	•				•				•	•		
Endometrial cancer	2.25 (1.17 to 4.41)	3	0.62 ± 0.10	4 (1 to 8) more	1.14 (0.54 to 2.17)	2	-	_	0.60 (0.09 to 3.07)	1	-	-
Cataracts	1.22 (1.08 to 1.48)	3	22.85 ± 0.75¶	26 (5 to 50) more	0.93 (0.82 to 1.06)	2	_	_	0.94 (0.70 to 1.27)	1	_	-

* Number of trials included in meta-analysis.

⁺ Per 1000 women, estimated from a meta-analysis of rates from the placebo groups from the same trials included in the RRs.

[‡] Number of events reduced for benefits or increased for harms compared with placebo per 1000 women assuming 5 years of use.

|| Includes DVT and PE.

[¶] The placebo rate was from NSABP P-1, 2005.90

Abbreviations: Al=aromatase inhibitors; CHD=coronary heart disease; Cl=confidence interval; DVT=deep vein thrombosis; n=number; NR=not reported; NSABP=National Surgical Adjuvant Breast and Bowel Project; PE=pulmonary embolism; RR=risk ratio; SE=standard error; VTE=venous thromboembolism.

Table 9. Facilitators and Barriers to Uptake of Risk-Reducing Medications for Breast Cancer

Facilitators	Barriers
Patients	·
Higher objective or perceived risk of	Concern for side effects of medication
breast cancer	
Healthcare provider recommendation	Concern for contraindications with estrogen
Knowing others with a good experience	Knowing others with a poor experience with medications
with medications	
Positive attitude and perception of	Perception that medication is for treatment and not
medication effectiveness	risk reduction
Higher level of anxiety or worry	Perception that medication is a daily reminder of illness
Abnormal breast biopsy*	Preference for other preventive management such as
	mastectomy
Enrollment in a trial of risk-reducing	Being better informed about benefits and harms of medications
medications	
Physicians	
More breast cancer diagnoses in	Lack of training, experience, or comfort with medications
clinical practice	
Perception that benefits of	Negative perception of benefit of medications in relation
medications outweigh harms	to harms
Patients asking about medications	Perception that patients lack interest in medications
Personal experience with breast cancer in self	Perception that prescribing medications should be initiated
or a relative	by specialists
Perception that eligibility for medications is	Lack of comfort or certainty with identifying women eligible
easy to determine	for medications
· ·	Time constraints at visits for discussion of medications

* Including atypical hyperplasia and lobular carcinoma in situ.

Key Question	Interventions	Studies (k) Observations (n) Study Designs	Summary of Findings	Consistency and Precision	Other Limitations	Strength of Evidence	Applicability
KQ 1. Diagnostic accuracy of risk assessment methods	Breast cancer risk assessment	24 discriminatory accuracy studies of 17 risk stratification models (n>5,000,000)	Most models have low discriminatory accuracy in predicting the probability of breast cancer in individuals (c-statistics 0.55 to 0.65)	Consistent; precise	While some studies used inappropriate reference groups, enrolled small numbers, or inadequately described methods, most studies met criteria for good quality	High	High
KQ 1a. Optimal age at which to begin risk assessment	Breast cancer risk assessment	No studies	Not applicable	Not applicable	Not applicable	Insufficient	Not applicable
KQ 1b. Optimal frequency of risk assessment	Breast cancer risk assessment	No studies	Not applicable	Not applicable	Not applicable	Insufficient	Not applicable
KQ 2. Benefits of risk reducing medications	Tamoxifen vs. raloxifene	1 RCT (n=19,747)	Tamoxifen reduced invasive breast cancer compared with raloxifene (RR 1.24; 95% CI, 1.05 to 1.47; 5 fewer cases [95% CI, 1 to 9]*). No differences for ER+, ER-, or noninvasive breast cancer; all-cause or breast cancer-specific mortality; or fractures	Not applicable	None	High; 1 large definitive trial	High

Key Question	Interventions	Studies (k) Observations (n) Study Designs	Summary of Findings	Consistency and Precision	Other Limitations	Strength of Evidence	Applicability
KQ 2. Benefits of risk reducing medications, continued	Tamoxifen vs. placebo	4 RCTs (n=28,193)	Tamoxifen reduced invasive breast cancer (RR 0.69; 95% CI, 0.59 to 0.84; 7 fewer cases; 95% CI, 4 to 12*); ER+ breast cancer (RR 0.58; 95% CI, 0.42 to 0.81; 8 fewer cases [95% CI, 0.42 to 0.81; 8 fewer cases [95% CI, 4 to 1]*); and nonvertebral fractures (RR 0.66; 95% CI, 0.45 to 0.98; 3 fewer cases [95% CI, 0.2 to 5]*) compared with placebo. No differences for ER- or noninvasive breast cancer; all-cause or breast cancer-specific mortality; or vertebral fractures	Consistent; precise	Clinical heterogeneity across trials from varying eligibility criteria, adherence, and ascertainment of certain outcomes	High for all outcomes except fractures (based on one trial)	High
KQ 2. Benefits of risk reducing medications, continued	Raloxifene vs. placebo	2 RCTs (n=17,806)	Raloxifene reduced invasive breast cancer (RR 0.44; 95% CI, 0.24 to 0.80; 9 fewer cases [95% CI, 3 to 15]*); ER+ breast cancer (RR 0.33; 95% CI, 0.15 to 0.70; 8 fewer cases [95% CI, 4 to 13]*); and vertebral fractures (RR 0.61; 95% CI, 0.53 to 0.73; 7 fewer cases [95% CI, 5 to 9]*) compared with placebo. No differences for ER- or noninvasive breast cancer; all-cause or breast cancer-specific mortality; or nonvertebral fractures	Consistent; precise	Trials were primarily designed for osteoporosis and cardiovascular outcomes; participants were not selected based on breast cancer risk	High for all outcomes	High
KQ 2. Benefits of risk reducing medications, continued	Aromatase inhibitors (anastrozole; exemestane) vs. placebo	2 RCTs (n=8,424)	Aromatase inhibitors reduced invasive breast cancer (RR 0.45; 95% CI, 0.26 to 0.70; 16 fewer cases [95% CI, 8 to 24]*); and ER+ breast cancer (RR 0.37; 95% CI, 0.19 to 0.63; 15 fewer cases [95% CI, 8 to 20]*) compared with placebo. No differences for ER- or noninvasive breast cancer; all-cause or breast cancer-specific mortality; or fractures	Consistent; precise	Trials use different medications and exposure durations	High for all outcomes	High

Key Question	Interventions	Studies (k) Observations (n) Study Designs	Summary of Findings	Consistency and Precision	Other Limitations	Strength of Evidence	Applicability
KQ 2a. Benefits of risk reducing medications —timing and duration	Tamoxifen, raloxifene, aromatase inhibitors (anastrozole; exemestane)	9 RCTs (n=74,170)	No significant differences in breast cancer outcomes by age. Despite variations in exposure time from 3 to 5 years, comparisons across similar medications indicated consistency in risk reduction for invasive breast cancer	Consistent; precise	No trials compared timing and duration directly. Age categories and durations varied across trials.	Moderate for tamoxifen; insufficient for other medications	High
KQ 2a. Benefits of risk reducing medications —persistence of effects	Tamoxifen, raloxifene, aromatase inhibitors (anastrozole; exemestane)	2 RCTs of tamoxifen (n=9,610); no trials of other medications	Tamoxifen reduced invasive and ER+ breast cancer 8 years after discontinuation	Consistent; precise	Long term followup data are lacking from most trials	Moderate for tamoxifen; insufficient for other medications	High
KQ 3. Harms of risk reducing medications	Tamoxifen vs. raloxifene	1 RCT (n=19,747)	Tamoxifen increased thromboembolic events (RR 0.75; 95% Cl, 0.60 to 0.93; 4 more cases [95% Cl, 1 to 7]*); DVT (RR 0.72; 95% Cl, 0.54 to 0.95; 3 more cases [95% Cl, 1 to 5]*); endometrial cancer (RR 0.55; 95% Cl, 0.36 to 0.83; 5 more cases [95% Cl, 2 to 9*); and cataracts (RR 0.80; 95% Cl, 0.72 to 0.95; 15 more cases [95% Cl, 8 to 22]*) compared with raloxifene. No differences for PE; CHD events; or stroke	Not applicable	None	High; 1 large definitive trial	High
KQ 3. Harms of risk reducing medications, continued	Tamoxifen vs. placebo	4 RCTs (n=28,193)	Tamoxifen increased thromboembolic events (RR 1.93; 95% CI, 1.33 to 2.68; 5 more cases [95% CI, 2 to 9]*); endometrial cancer (RR 2.25; 95% CI, 1.17 to 4.41; 4 more cases [95% CI, 1 to 8]*); and cataracts (RR 1.22; 95% CI, 1.08 to 1.48; 26 more cases [95% CI, 5 to 50]*) compared with placebo. No differences for DVT; PE; CHD events; or stroke	Consistent; precise	Clinical heterogeneity across trials from varying eligibility criteria, adherence, and ascertainment of certain outcomes	High for all outcomes except DVT, PE (based on 2 trials)	High

Key Question	Interventions	Studies (k) Observations (n) Study Designs	Summary of Findings	Consistency and Precision	Other Limitations	Strength of Evidence	Applicability
KQ 3. Harms of risk reducing medications, continued	Raloxifene vs. placebo	2 RCTs (n=17,806)	Raloxifene increased thromboembolic events (RR 1.56; 95% CI, 1.11 to 2.60; 7 more cases [95% CI, 0.3 to 17]*); endometrial cancer (RR 2.25; 95% CI, 1.17 to 4.41; 4 more cases [95% CI, 1 to 8]*); and cataracts (RR 1.22; 95% CI, 1.08 to 1.48; 26 more cases [95% CI, 5 to 50]*) compared with placebo. No differences for DVT; PE; CHD events; stroke; endometrial cancer; or cataracts	Consistent; precise	Trials were primarily designed for osteoporosis and cardiovascular outcomes; participants were not selected based on breast cancer risk	High for all outcomes	High
KQ 3. Harms of risk reducing medications, continued	Aromatase inhibitors (anastrozole; exemestane) vs. placebo	2 RCTs (n=8,424)	No differences between aromatase inhibitors and placebo for thromboembolic events; DVT; PE; CHD events; stroke; endometrial cancer; or cataracts	Consistent; precise	Trials use different medications and exposure durations	Low to moderate; followup inadequate for several outcomes	High
KQ 3a. Harms of risk reducing medication— timing and duration	Tamoxifen, raloxifene, aromatase inhibitors (anastrozole; exemestane)	2 RCTs of tamoxifen for thromboembolic events (n=18,583); 1 RCT of tamoxifen (n=13,175) for endometrial cancer; no trials of other medications	Risks for thromboembolic events and endometrial cancer with tamoxifen were higher for older compared with younger women	Consistent; precise	No trials compared timing and duration directly. Age categories and durations varied across trials.	Moderate for tamoxifen; insufficient for other medications	High

Key Question	Interventions	Studies (k) Observations (n) Study Designs	Summary of Findings	Consistency and Precision	Other Limitations	Strength of Evidence	Applicability
KQ 3a. Harms of risk reducing medication — persistence of effects	Tamoxifen, raloxifene, aromatase inhibitors (anastrozole; exemestane)	2 RCTs of tamoxifen for thromboembolic events (n=9,610); 1 RCT of tamoxifen (n=7,139) for endometrial cancer; no trials of other medications	Risks for thromboembolic events and endometrial cancer with tamoxifen declined to normal after discontinuation	Consistent; precise	Long term followup data are lacking from most trials	Moderate for tamoxifen; insufficient for other medications	High
KQ 4. Variability by sub- populations	Tamoxifen, raloxifene, aromatase inhibitors (anastrozole; exemestane)	2 RCTs for menopausal status (n=12,547); 5 RCTs for family history (n=56,136); 4 RCTs for BMI (n=26,230); 4 RCTs for breast lesions (n=41,346); 4 RCTs for risk categories (n=13,965); 1 RCT for reproductive factors (n=10,101)	Reduced risk for invasive cancer: Tamoxifen in both pre and postmenopausal women. Tamoxifen and raloxifene in women with or without family history of breast cancer, but inconsistent results, with sometimes more reduction in women without family histories. Raloxifene, anastrozole, and exemestane in all BMI categories. Tamoxifen and anastrozole had more effect when previous breast lesions (LCIS, ADH, ALH). Tamoxifen, raloxifene, and anastrozole in all modified Gail model risk categories. Raloxifene regardless of age at menarche, parity, or age at first live birth.	Inconsistent; imprecise	Trials were not designed for subgroup comparisons and analysis of differences between groups may be underpowered	Low and insufficient	High

* Per 1000 women over 5 years of use.

Abbreviations: ADH=atypical ductal hyperplasia; ALH=atypical lobular hyperplasia; CHD=coronary heart disease; CI=confidence interval; DVT=deep vein thrombosis; ER+=estrogen receptor positive; ER-=estrogen receptor negative; KQ=key question; LCIS=lobular carcinoma in situ; PE=pulmonary embolism; RCT=randomized control trial; RR=risk ratio.

Database: Database: Ovid MEDLINE[®]

Search Strategy:

1 exp Breast Neoplasms/pc [Prevention & Control]

2 exp aromatase inhibitors/ad, ae, tu, to

3 1 and 2

4 exp breast neoplasms/

5 Chemoprevention/

6 4 and 5

7 2 and 6

8 ((prevent* or chemoprev* or prophyla* or risk*) adj10 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj7 (exemestane or Aromasin or anastrozole or Arimidex or letrozole or Femara or (aromatas* adj3 (block* or interfer* or inhibit* or antagoni*))))).mp.

9 (chemoprev* adj7 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*))).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

10 (risk* adj5 (reduc* or lower* or adjust* or assess* or compar* or alter* or chang* or calculat*) adj7 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*))).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

11 9 or 10
12 2 and 11
13 3 or 7 or 8
14 3 or 7 or 8 or 12
15 limit 14 to english language
16 limit 14 to abstracts

17 15 or 16

Database: Database: Ovid MEDLINE® without Revisions

Search Strategy:

1 exp Breast Neoplasms/pc [Prevention & Control]

2 exp Tamoxifen/ad, ae, tu, to

3 1 and 2

4 exp breast neoplasms/

5 Chemoprevention/

6 4 and 5

7 2 and 6

8 ((prevent* or chemoprev* or prophyla*) adj10 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj7 (tamoxif* or raloxif* or serm* or (selectiv* adj3 estrogen* adj3 receptor* adj3 modulat*)))).mp.

9 (chemoprev* adj7 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*))).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

10 (risk* adj5 (reduc* or lower* or adjust* or assess* or compar* or alter* or chang* or calculat*) adj7 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*))).mp.

11 9 or 10

12 2 and 4 and 11

13 3 or 7 or 8 or 12

14 limit 13 to humans

15 limit 14 to english language

16 limit 14 to abstracts

17 15 or 16

Database: EBM Reviews - Cochrane Database of Systematic Reviews

Search Strategy:

1 ((prevent* or chemoprev* or prophyla*) adj10 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj7 (exemestane or Aromasin or anastrozole or Arimidex or letrozole or Femara or (aromatas* adj3 (block* or interfer* or inhibit* or antagoni*))))).mp.

2 ((prevent* or chemoprev* or prophyla*) adj10 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj7 (tamoxif* or raloxif* or serm* or (selectiv* adj3 estrogen* adj3 receptor* adj3 modulat*)))).mp.

3 limit 2 to yr="2013 -Current"

4 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj10 ((drug* or pharmac* or prescri* or dose* or dosag*) adj7 (risk* adj5 (reduc* or lower* or adjust* or assess* or compar* or alter* or chang* or calculat*)))).mp. [mp=title, abstract, full text, keywords, caption text]

5 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj10 chemoprev*).mp. [mp=title, abstract, full text, keywords, caption text]

6 1 or 3 or 4 or 5

7 1 or 3 or 4 or 5

Database: Cochrane Central Register of Controlled Trials

Search Strategy:

1 ((prevent* or chemoprev* or prophyla*) adj10 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj7 (exemestane or Aromasin or anastrozole or Arimidex or letrozole or Femara or (aromatas* adj3 (block* or interfer* or inhibit* or antagoni*))))).mp.

2 ((prevent* or chemoprev* or prophyla*) adj10 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj7 (tamoxif* or raloxif* or serm* or (selectiv* adj3 estrogen* adj3 receptor* adj3 modulat*)))).mp.

3 limit 2 to yr="2013 -Current"

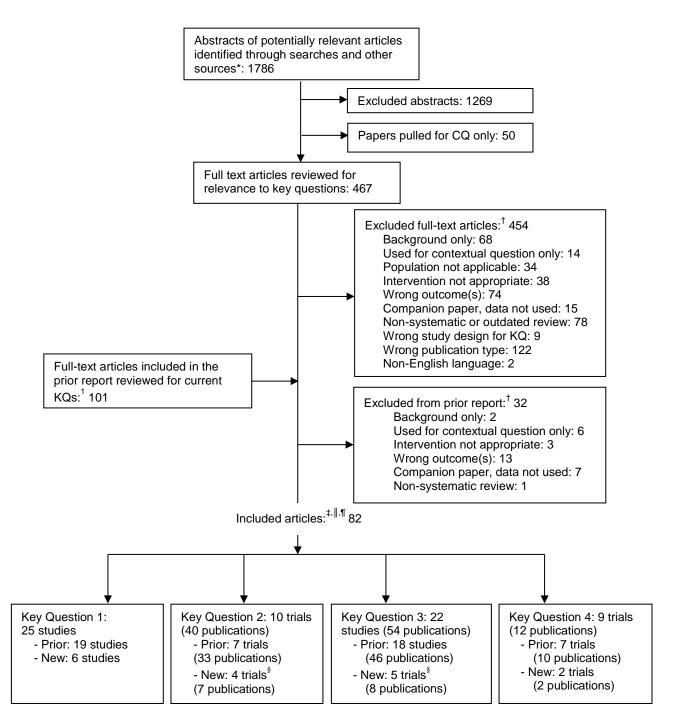
4 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj10 ((drug* or pharmac* or prescri* or dose* or dosag*) adj7 (risk* adj5 (reduc* or lower* or adjust* or assess* or compar* or alter* or chang* or calculat*)))).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword]

5 ((breast* or mammar*) adj5 (cancer* or neoplas* or tumor* or tumour* or carcino* or adenocarcin* or malig*) adj10 chemoprev*).mp. [mp=title, original title, abstract, mesh headings, heading words, keyword]

6 1 or 3 or 4 or 5

Database: Elsevier Embase®

Search Strategy:



(((('tamoxifen'/exp OR 'tamoxifen'/exp OR tamoxifen OR 'raloxifene'/exp OR 'raloxifene'/exp OR raloxifene) AND 'breast cancer'/exp AND 'risk reduction'/exp OR 'breast cancer'/exp) AND 'chemoprophylaxis'/exp AND [embase]/lim NOT [medline]/lim OR 'aromatase inhibitor'/exp OR 'aromatase inhibitor' OR 'aminoglutethimide'/exp OR 'aminoglutethimide'/exp OR 'aminoglutethimide OR 'testolactone'/exp OR 'testolactone'/exp OR testolactone OR 'anastrozole'/exp OR 'anastrozole'/exp OR anastrozole OR 'letrozole'/exp OR 'letrozole'/exp OR letrozole'/exp OR 'exemestane'/exp OR exemestane OR 'vorozole'/exp OR 'raloxifene'/exp OR 'formestane'/exp OR 'formestane OR 'raloxifene'/exp OR 'fadrozole'/exp OR fadrozole OR 'fadrozole'/exp OR fadrozole'/exp OR fadrozole'/exp AND 'risk reduction'/exp OR 'breast cancer'/exp AND 'risk reduction'/exp OR 'breast cancer'/exp AND 'risk reduction'/exp OR 'breast cancer'/exp AND 'chemoprophylaxis'/exp AND [embase]/lim NOT [medline]/lim AND [english]/lim AND [humans]/lim

Appendix A2. Inclusion and Exclusion Criteria

	Included	Excluded
Populations	Women without preexisting breast cancer, including women who are known carriers of BRCA genetic mutations and women with previous nonmalignant breast biopsies (e.g., atypical hyperplasia)	Women with preexisting breast cancer (invasive or ductal carcinoma in situ); men; populations dissimilar to those in the U.S.
Interventions	KQ 1: Risk assessment KQs 2–4: Tamoxifen, raloxifene, and aromatase inhibitors	KQ 1: Risk assessment done by a specialist or not able to be completed in primary care setting KQs 2–4: Medications not used or available in the U.S.; other medications not listed as included
Comparisons	KQ 1: Risk assessment methods vs. usual care or an alternative risk assessment method KQs 2–4 : Medication vs. placebo; tamoxifen vs. raloxifene, tamoxifen vs. aromatase inhibitors, and raloxifene vs. aromatase inhibitors	Comparisons with other types of medications
Outcomes	 KQ 1: Measures of risk assessment test performance (sensitivity, specificity; positive and negative likelihood ratio; c-statistic) KQs 2, 4: Invasive and noninvasive breast cancer incidence; breast cancer and all-cause mortality; other beneficial outcomes (e.g., reduced fractures caused by certain medications) KQs 3, 4: Adverse effects (including but not limited to: thromboembolic events, cardiovascular events, metabolic disorders, musculoskeletal symptoms, mental health, genitourinary outcomes, adverse breast outcomes, other malignancies, ophthalmologic disorders, gastrointestinal/hepatobiliary disorders, other adverse events affecting quality of life) 	Other outcomes
Setting Study Design	Primary care settings; settings comparable to U.S. practice KQ 1: Discriminatory accuracy studies KQs 1a, 1b, 2–4: Randomized, controlled trials; observational studies, with or without comparison	Practice settings dissimilar to those in the U.S. Other study designs
Study Quality	groups, except for efficacy (KQ 2) Good- and fair-quality studies for meta-analyses	Poor-quality studies

Abbreviations: BRCA=breast cancer susceptibility gene; KQ=key questions; U.S.=United States.

* Other sources include reference lists of relevant articles, studies, and systematic reviews, suggestions from reviewers, etc. and Cochrane databases include the Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews

[†] See Appendix A4 for the list of excluded studies and Appendix A2 for the list of exclusion criteria.

[‡] Studies that provided data and contributed to the body of evidence were considered 'included.'

^I Studies may have been used to answer more than one question.

[¶] This includes 46 studies in 82 publications.

Appendix A3. Literature Flow Diagram

[§] This includes 1 new publication of long-term results for the International Breast Cancer Intervention Study (IBIS-I), which was included in the prior report and 3 new trials (2 of aromatase inhibitors and 1 of low dose tamoxifen).

1. Nelson HD, Smith ME, Griffin JC, Fu R. Use of medications to reduce risk for primary breast cancer: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2013;158(8):604-614.

Exclusions From Key Questions Code: 2: background information only; 3: contextual information only; 4: ineligible population; 5: ineligible intervention; 6: ineligible outcome; 7; ineligible publication type; 9: ineligible study design; 10: non-English paper; 11: nonsystematic review or companion paper not used for evidence.

Excluded From Prior Report

- Archer DF, Pinkerton JV, Utian WH, et al. Bazedoxifene, a selective estrogen receptor modulator: effects on the endometrium, ovaries, and breast from a randomized controlled trial in osteoporotic postmenopausal women. Menopause. 2009;16(6):1109-115. doi: 10.1097/gme.0b013e3181a818db PMID: 19543129 Exclusion: 5
- 2. Armstrong K, Quistberg DA, Micco E, et al. Prescription of tamoxifen for breast cancer prevention by primary care physicians. Arch. Intern. Med. 2006 Nov 13;166(20):2260-5. doi: 10.1001/archinte.166.20.2260. PMID: 17101945. Exclusion: 3
- Bastian LA, Lipkus IM, Kuchibhatla MN, et al. Women's interest in chemoprevention for breast cancer. Arch. Intern. Med. 2001 Jul 9;161(13):1639-44. PMID: 11434796. Exclusion: 6
- Bober SL, Hoke LA, Duda RB, et al. Decision-making about tamoxifen in women at high risk for breast cancer: Clinical and psychological factors. J. Clin. Oncol. 2004;22(24):4951-7. doi: 10.1200/JCO.2004.05.192. PMID: 15598980. Exclusion: 3
- Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007 Jan 18;356(3):227-36. doi: 10.1056/NEJMoa062790. PMID: 17229950. Exclusion: 6
- Coopey SB, Mazzola E, Buckley JM, et al. The role of chemoprevention in modifying the risk of breast cancer in women with atypical breast lesions. Breast Cancer Res. Treat. 2012 Dec;136(3):627-33. doi: 10.1007/s10549-012-2318-8. PMID: 23117858. Exclusion: 2
- Cramer JA, Roy A, Burrell A, et al. Medication compliance and persistence: terminology and definitions. Value Health. 2008 Jan-Feb;11(1):44-7. doi: 10.1111/j.1524-4733.2007.00213.x. PMID: 18237359. Exclusion: 6
- Cummings SR, Ettinger B, Delmas PD, et al. The effects of tibolone in older postmenopausal women. N. Engl. J. Med. 2008;359(7):697-708. doi: 10.1056/NEJMoa0800743. PMID: 18703472. Exclusion: 5
- Day R. Quality of life and tamoxifen in a breast cancer prevention trial: a summary of findings from the NSABP P-1 study. National Surgical Adjuvant Breast and Bowel Project. Ann. N. Y. Acad. Sci. 2001 Dec;949:143-50. PMID: 11795346. Exclusion: 11

- Day R, Ganz PA, Costantino JP, et al. Health-related quality of life and tamoxifen in breast cancer prevention: a report from the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Clin. Oncol. 1999 Sep;17(9):2659-69. PMID: 10561339. Exclusion: 11
- Ensrud K, Riccardo Genazzani A, Geiger MJ, et al. Effect of Raloxifene on cardiovascular adverse events in postmenopausal women with osteoporosis. Am. J. Cardiol. 2006;97(4):520-7. PMID: 16461049. Exclusion: 11
- Fagerlin A, Dillard AJ, Smith DM, et al. Women's interest in taking tamoxifen and raloxifene for breast cancer prevention: response to a tailored decision aid. Breast Cancer Res. Treat. 2011 Jun;127(3):681-8. doi: 10.1007/s10549-011-1450-1. PMID: 21442198. Exclusion: 6
- Fagerlin A, Zikmund-Fisher BJ, Nair V, et al. Women's decisions regarding tamoxifen for breast cancer prevention: responses to a tailored decision aid. Breast Cancer Res. Treat. 2010 Feb;119(3):613-20. doi: 10.1007/s10549-009-0618-4. PMID: 19908143. Exclusion: 3
- Freedman M, San Martin J, O'Gorman J, et al. Digitized mammography: a clinical trial of postmenopausal women randomly assigned to receive raloxifene, estrogen, or placebo. J. Natl. Cancer Inst. 2001 Jan 3;93(1):51-6. PMID: 11136842. Exclusion: 6
- Gail MH, Costantino JP, Pee D, et al. Projecting individualized absolute invasive breast cancer risk in African American women. J. Natl. Cancer Inst. 2007;99(23):1782-92. doi: 10.1093/jnci/djm223 PMID: 18042936. Exclusion: 5
- Goldstein SR, Johnson S, Watts NB, et al. Incidence of urinary incontinence in postmenopausal women treated with raloxifene or estrogen. Menopause. 2005 Mar;12(2):160-4. PMID: 15772563. Exclusion: 11
- Iqbal J, Ginsburg OM, Wijeratne TD, et al. Endometrial cancer and venous thromboembolism in women under age 50 who take tamoxifen for prevention of breast cancer: a systematic review. Cancer Treat. Rev. 2012 Jun;38(4):318-28. doi: 10.1016/j.ctrv.2011.06.009. PMID: 21775065. Exclusion: 7
- Kaplan CP, Kim SE, Wong ST, et al. Willingness to use tamoxifen to prevent breast cancer among diverse women. Breast Cancer Res. Treat. 2012 May;133(1):357-66. doi: 10.1007/s10549-012-1960-5. PMID: 22315131. Exclusion: 3
- Land SR, Cronin WM, Wickerham DL, et al. Cigarette smoking, obesity, physical activity, and alcohol use as predictors of chemoprevention adherence in the National Surgical Adjuvant Breast and Bowel Project P-1 Breast Cancer Prevention Trial. Cancer Prev. Res. (Phila.). 2011 Sep;4(9):1393-400. doi: 10.1158/1940-6207.CAPR-11-0172. PMID: 21862698. Exclusion: 6

- 20. Lee EO, Ahn SH, You C, et al. Determining the main risk factors and high-risk groups of breast cancer using a predictive model for breast cancer risk assessment in South Korea. Cancer Nurs. 2004 Sep-Oct;27(5):400-6. PMID: 15525868. Exclusion: 6
- 21. Martino S, Costantino J, McNabb M, et al. The role of selective estrogen receptor modulators in the prevention of breast cancer: comparison of the clinical trials. Oncologist. 2004;9(2):116-25. PMID: 15047916. Exclusion: 11
- 22. McKay A, Martin W, Latosinsky S. How should we inform women at higher risk of creast cancer about tamoxifen? An approach with a decision guide. Breast Cancer Res. Treat. 2005;94(2):153-9. doi: 10.1007/s10549-005-6932-6. PMID: 16261414. Exclusion: 3
- Melnikow J, Paterniti D, Azari R, et al. Preferences of Women Evaluating Risks of Tamoxifen (POWER) study of preferences for tamoxifen for breast cancer risk reduction. Cancer. 2005 May 15;103(10):1996-2005. doi: 10.1002/cncr.20981. PMID: 15825209. Exclusion: 3
- Ozanne EM, Wittenberg E, Garber JE, et al. Breast cancer prevention: patient decision making and risk communication in the high risk setting. Breast J. 2010 Jan-Feb;16(1):38-47. doi: 10.1111/j.1524-4741.2009.00857.x. PMID: 19889168. Exclusion: 6
- Port ER, Montgomery LL, Heerdt AS, et al. Patient reluctance toward tamoxifen use for breast cancer primary prevention. Ann. Surg. Oncol. 2001 Aug;8(7):580-5. PMID: 11508619. Exclusion: 6
- Schonfeld SJ, Pee D, Greenlee RT, et al. Effect of Changing Breast Cancer Incidence Rates on the Calibration of the Gail Model. J. Clin. Oncol. 2010;28(14):2411-7. doi: 10.1200/JCO.2009.25.2767. PMID: 20368565. Exclusion: 2
- Taylor R, Taguchi K. Tamoxifen for breast cancer chemoprevention: low uptake by high-risk women after evaluation of a breast lump. Ann. Fam. Med. 2005 May-Jun;3(3):242-7. doi: 10.1370/afm.284. PMID: 15928228. Exclusion: 6
- Veronesi A, Pizzichetta MA, Ferlante MA, et al. Tamoxifen as adjuvant after surgery for breast cancer and tamoxifen or placebo as chemoprevention in healthy women: different compliance with treatment. Tumori. 1998 May-Jun;84(3):372-5. PMID: 9678620. Exclusion: 6
- 29. Veronesi U, Maisonneuve P, Sacchini V, et al. Tamoxifen for breast cancer among hysterectomised women. Lancet. 2002 Mar 30;359(9312):1122-4. doi: 10.1016/s0140-6736(02)08159-x. PMID: 11943263. Exclusion: 11
- 30. Vogel VG, Costantino JP, Wickerham DL, et al. Carcinoma in situ outcomes in National Surgical Adjuvant Breast and Bowel Project Breast Cancer Chemoprevention Trials.
 J. Natl. Cancer Inst. Monogr. 2010;2010(41):181-6. doi: 10.1093/jncimonographs/lgq041. PMID: 20956826. Exclusion: 11

- Walsh BW, Kuller LH, Wild RA, et al. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA.
 1998 May 13;279(18):1445-51. PMID: 9600478. Exclusion: 6
- 32. Yeomans Kinney A, Vernon SW, Shui W, et al. Validation of a model predicting enrollment status in a chemoprevention trial for breast cancer. Cancer Epidemiol. Biomarkers Prev. 1998 Jul;7(7):591-5. PMID: 9681527. Exclusion: 6

Excludes From Searches

- 1. Raloxifene reduces risk of invasive estrogen-receptor positive breast cancer. J. Natl. Cancer Inst. 2008;100(12):829. doi: 10.1093/jnci/djn220. Exclusion: 7
- 2. Exemestane reduces breast cancer risk in high-risk postmenopausal women. J. Natl. Med. Assoc. 2012;104(1-2):118. Exclusion: 7
- 3. NICE guidelines back preventive therapy. Cancer Discov. 2013;3(3):OF5. doi: 10.1158/2159-8290.CD-NB2013-018. Exclusion: 7
- 4. Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet. 2015 Oct 3;386(10001):1341-52. doi: 0.1016/s0140-6736(15)61074-1. PMID: 26211827. Exclusion: 2
- 5. Aapro MS. The safety profile of aromatase inhibitors used in adjuvant treatment of breast cancer. European J. Clin. Med. Oncol. 2010;2(4). Exclusion: 10
- Abu-Rustum NR, Herbolsheimer H. Breast cancer risk assessment in indigent women at a public hospital. Gynecol. Oncol. 2001 May;81(2):287-90. doi: 10.1006/gyno.2001.6160. PMID: 11330964. Exclusion: 6
- Advani P, Moreno-Aspitia A. Current strategies for the prevention of breast cancer. Breast Cancer (London). 2014;6:59-71. doi: 10.2147/BCTT.S39114. PMID: 24833917. Exclusion: 10
- Agrawal A, Fentiman IS. NSAIDs and breast cancer: a possible prevention and treatment strategy. Int. J. Clin. Pract. 2008 Mar;62(3):444-9. doi: <u>https://dx.doi.org/10.1111/j.1742-1241.2007.01668.x</u>. PMID: 18194278. Exclusion: 5
- 9. Ahmad I, Shagufta. Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer. Eur. J. Med. Chem. 2015 Sep 18;102:375-86. doi: <u>https://dx.doi.org/10.1016/j.ejmech.2015.08.010</u>. PMID: 26301554. Exclusion: 2
- Ales-Martinez JE, Ruiz A, Chacon JI, et al. Preventive treatments for breast cancer: recent developments. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societes & of the National Cancer Institute of Mexico. 2015 Apr;17(4):257-63. doi: <u>https://dx.doi.org/10.1007/s12094-014-1250-2</u>. PMID: 25445174. Exclusion: 10

- Allen S, Levine EA, Lesko N, et al. Is Excisional Biopsy and Chemoprevention Warranted in Patients With Atypical Lobular Hyperplasia on Core Biopsy? Am. Surg. 2015 Sep;81(9):876-8. PMID: 26350664. Exclusion: 8
- 12. American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society, Inc.; 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf. Accessed March 27 2019. Exclusion: 2
- 13. American Cancer Society. Breast Cancer Facts & Figures 2017-2018. Atlanta: American Cancer Society, Inc.; 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/ breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf. Accessed March 27 2019. Exclusion: 2
- 14. Amir E, Freedman OC, Seruga B, et al. Assessing women at high risk of breast cancer: a review of risk assessment models. J. Natl. Cancer Inst. 2010 May 19;102(10):680-91. doi: 10.1093/jnci/djq088. PMID: 20427433. Exclusion: 2
- Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA. 2004 Apr 14;291(14):1701-12. doi: 10.1001/jama.291.14.1701. PMID: 15082697. Exclusion: 5
- Anderson K, Jacobson JS, Heitjan DF, et al. Cost-effectiveness of preventive strategies for women with a BRCA1 or a BRCA2 mutation. Ann. Intern. Med. 2006 Mar 21;144(6):397-406. PMID: 16549852. Exclusion: 6
- Anonymous. Anastrozole may aid breast cancer prevention. Cancer Discov.
 2014 Feb;4(2):OF4. doi: <u>https://dx.doi.org/10.1158/2159-8290.CD-NB2013-179</u>.
 PMID: 24501316. Exclusion: 7
- Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 2003 May;72(5):1117-30. doi: 10.1086/375033. PMID: 12677558. Exclusion: 6
- Antoniou AC, Cunningham AP, Peto J, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br. J. Cancer. 2008 Apr 22;98(8):1457-66. doi: 10.1038/sj.bjc.6604305. PMID: 18349832. Exclusion: 5
- 20. Arun B, Gong Y, Liu D, et al. Phase I prevention study of atorvastatin in women at increased risk for breast cancer. Cancer Prev. Res. (Phila.). 2012 Annual AACR International Conference on Frontiers in Cancer Prevention Research Anaheim, CA United States;5(11 SUPPL. 1):CONFERENCE START: 2012 Oct 16 CONFERENCE END: Oct 19. Exclusion: 2

- Arun BK, Gong Y, Liu D, et al. Phase I biomarker modulation study of atorvastatin in women at increased risk for breast cancer. Breast Cancer Res. Treat. 2016;158(1):67-77. doi: 10.1007/s10549-016-3849-1. PMID: 27287781. Exclusion: 6
- 22. Astley SM, Harkness EF, Sergeant JC, et al. A comparison of five methods of measuring mammographic density: a case-control study. Breast Cancer Res. 2018 Feb 5;20(1):10. doi: 10.1186/s13058-018-0932-z. PMID: 29402289. Exclusion: 6
- AstraZeneca Pharmaceuticals LP. NOLVADEX (tamoxifen) Medication Guide. Wilmington, DE; 2004. <u>https://www.fda.gov/downloads/drugs/drugsafety/ucm088661.pdf</u>. Accessed March 27 2019. Exclusion: 2
- 24. Attri AK. Risk stratification of breast cancer. JIMSA. 2011;24(4):161. Exclusion: 7
- 25. Bagchi S. Education about tamoxifen lowers its appeal. Lancet Oncol. 2005;6(6):362. doi: 10.1016/S1470-2045(05)70193-5. Exclusion: 7
- Bambhroliya A, Chavez-MacGregor M, Brewster AM. Barriers to the Use of Breast Cancer Risk Reduction Therapies. J. Natl. Compr. Canc. Netw. 2015 Jul;13(7):927-35. PMID: 26150584. Exclusion: 10
- 27. Bandera B, Voci A, Lee J, et al. Disparities in endocrine risk reduction for young adult women with lobular carcinoma in situ. Ann. Surg. Oncol. 2016;23(3):324-5. doi: 10.1245/s10434-016-5195-2. Exclusion: 7
- Banegas MP, McClure JB, Barlow WE, et al. Results from a randomized trial of a web-based, tailored decision aid for women at high risk for breast cancer. Patient Educ. Couns. 2013 Jun;91(3):364-71. doi: <u>https://dx.doi.org/10.1016/j.pec.2012.12.014</u>. PMID: 23395006. Exclusion: 6
- Barron TI, Connolly R, Bennett K, et al. Early discontinuation of tamoxifen: a lesson for oncologists. Cancer. 2007 Mar 01;109(5):832-9. doi: 10.1002/cncr.22485. PMID: 17243168. Exclusion: 6
- 30. Bartels PH, Fabian CJ, Kimler BF, et al. Karyometry of breast epithelial cells acquired by random periareolar fine needle aspiration in women at high risk for breast cancer. Anal. Quant. Cytol. Histol. 2007 Apr;29(2):63-70. PMID: 17484269. Exclusion: 5
- Barton MK. Exemestane is effective for the chemoprevention of breast cancer. CA Cancer J. Clin. 2011 Nov-Dec;61(6):363-4. doi: <u>https://dx.doi.org/10.3322/caac.20131</u>. PMID: 21898372. Exclusion: 7
- 32. Behan LA, Amir E, Casper RF. Aromatase inhibitors for prevention of breast cancer in postmenopausal women: a narrative review. Menopause. 2015 Mar;22(3):342-50. doi: <u>https://dx.doi.org/10.1097/GME.00000000000426</u>. PMID: 25692874. Exclusion: 10

- Bellcross CA, Lemke AA, Pape LS, et al. Evaluation of a breast/ovarian cancer genetics referral screening tool in a mammography population. Genet. Med. 2009 Nov;11(11):783-9. doi: 10.1097/GIM.0b013e3181b9b04a. PMID: 19752737. Exclusion: 5
- 34. Bevers TB. Breast cancer prevention: An update of the STAR trial. Curr. Treat. Options Oncol. 2010;11(3-4):66-9. doi: 10.1007/s11864-010-0124-2. PMID: 21061192. Exclusion: 7
- 35. Bevers TB, Ward JH, Arun BK, et al. Breast cancer risk reduction, version 2.2015 clinical practice guidelines in oncology clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2015;13(7):880-915. Exclusion: 2
- 36. Bevilacqua G, Silingardi V, Marchetti P. Exemestane for the prevention of breast cancer in postmenopausal unaffected carriers of BRACA 1/2 mutations- aromasin prevention study (ApreS). Breast Cancer Res. Treat. 2001;69(3):226. Exclusion: 7
- 37. Biglia N. Phamacological strategies to prevent breast cancer. Maturitas. 2012;71:S2. doi: 10.1016/S0378-5122(12)70012-9. Exclusion: 7
- 38. Bilotto S, Spagnuolo C, Russo M, et al. Dietary phytochemicals in chemoprevention of cancer: An update. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry. 2013;13(1):2-24. doi: 10.2174/1871522211313010002. Exclusion: 5
- Blakeslee SB, McCaskill-Stevens W, Parker PA, et al. Deciding on breast cancer risk reduction: The role of counseling in individual decision-making A qualitative study. Patient Educ. Couns. 2017 Dec;100(12):2346-54. doi: 10.1016/j.pec.2017.06.033. PMID: 28734560. Exclusion: 5
- 40. Blakeslee SB, Parker PA, Gunn CM, et al. Decision-making in breast cancer risk reduction: Results from a nested qualitative study from NRG Oncology/NSABP protocol DMP-1. J. Clin. Oncol. 2015;33(15). Exclusion: 7
- Body JJ. Increased fracture rate in women with breast cancer: a review of the hidden risk.
 BMC Cancer. 2011 Aug 29;11:384. doi: <u>https://dx.doi.org/10.1186/1471-2407-11-384</u>.
 PMID: 21875433. Exclusion: 4
- 42. Bosetti C, Rosato V, Gallus S, et al. Aspirin and cancer risk: a quantitative review to 2011. Ann. Oncol. 2012 Jun;23(6):1403-15. doi: 10.1093/annonc/mds113. PMID: 22517822. Exclusion: 4
- 43. Bozovic-Spasojevic I, Azambuja E, McCaskill-Stevens W, et al. Chemoprevention for breast cancer. Cancer Treat. Rev. 2012 Aug;38(5):329-39. doi: <u>https://dx.doi.org/10.1016/j.ctrv.2011.07.005</u>. PMID: 21856081. Exclusion: 7
- 44. Braithwaite RS, Chlebowski RT, Lau J, et al. Meta-analysis of vascular and neoplastic events associated with tamoxifen. J. Gen. Intern. Med. 2003 Nov;18(11):937-47. PMID: 14687281. Exclusion: 10

- 45. Brentnall A. Relationship of ZNF423 and CTSO with breast cancer risk in two randomised tamoxifen prevention trials. Breast Cancer Res. Treat. 2016;158(3):591-6. PMID: 27400912. Exclusion: 2
- Brentnall AR, Cuzick J, Buist DSM, et al. Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density. JAMA oncology. 2018 Apr 5:e180174. doi: 10.1001/jamaoncol.2018.0174. PMID: 29621362. Exclusion: 6
- 47. Brewer NT, Defrank JT, Chiu WK, et al. Patients' understanding of how genotype variation affects benefits of tamoxifen therapy for breast cancer. Public Health Genomics. 2014;17(1):43-7. doi: <u>https://dx.doi.org/10.1159/000356565</u>. PMID: 24457521. Exclusion: 6
- 48. Brewster AM, Christo DK, Lai H, et al. Breast carcinoma chemoprevention in the community setting. Estimating risks and benefits. Cancer. 2005 Mar 15;103(6):1147-53. doi: 10.1002/cncr.20882. PMID: 15674856. Exclusion: 6
- Brewster AM, Davidson NE, McCaskill-Stevens W. Chemoprevention for breast cancer: overcoming barriers to treatment. Am Soc Clin Oncol Educ Book. 2012:85-90. doi: 10.14694/EdBook_AM.2012.32.85. PMID: 24451714. Exclusion: 7
- Bryan T, Snyder E, Estrada C, et al. Education in delivering patient-centered care: Provider comfort level in counseling women ages 40-49 regarding breast cancer.
 J. Investig. Med. 2013;61(2):524. Exclusion: 5
- 51. Burns RB, Schonberg MA, Tung NM, et al. Should we offer medication to reduce breast cancer risk Grand rounds discussion from beth Israel deaconess medical center. Ann. Intern. Med. 2016;165(3):194-204. doi: 10.7326/M16-0940. PMID: 27479221. Exclusion: 2
- 52. Burstein HJ. Aromatase inhibitor-associated arthralgia syndrome. Breast. 2007 Jun;16(3):223-34. doi: 10.1016/j.breast.2007.01.011. PMID: 17368903. Exclusion: 10
- 53. Buzdar A, Jonat W, Howell A, et al. Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Arimidex Study Group. J. Clin. Oncol. 1996 Jul;14(7):2000-11. doi: 10.1200/jco.1996.14.7.2000. PMID: 8683230. Exclusion: 4
- 54. Cameron DA. Breast cancer chemoprevention: little progress in practice? Lancet. 2014 Mar 22;383(9922):1018-20. doi: <u>https://dx.doi.org/10.1016/S0140-6736(13)62555-6</u>. PMID: 24333008. Exclusion: 7
- Castagnetta LA, Granata OM, Traina A, et al. Tissue content of hydroxyestrogens in relation to survival of breast cancer patients. Clin. Cancer Res. 2002 Oct;8(10):3146-55. PMID: 12374682. Exclusion: 4

- 56. Castillo-Fernandez O, Cabreja A, Arauz E, et al. Do patients and nurses outside clinical trial prefer subcutaneous trastuzumab over conventional intravenous infusion? Instituto Oncologico Nacional experience. Cancer Res. 2017;77(4)doi: 10.1158/1538-7445.SABCS16-P5-11-16. Exclusion: 6
- 57. Cauley JA. Bone loss associated with prevention of breast cancer. Lancet Oncol. 2012 Mar;13(3):221-2. doi: <u>https://dx.doi.org/10.1016/S1470-2045(12)70030-X</u>. PMID: 22318094. Exclusion: 7
- 58. Cazzaniga M, Bonanni B. Breast cancer chemoprevention: old and new approaches.
 J. Biomed. Biotechnol. 2012;2012:985620. doi: <u>https://dx.doi.org/10.1155/2012/985620</u>.
 PMID: 22851887. Exclusion: 10
- 59. Centers for Disease Control and Prevention. What are the risk factors for breast cancer? Atlanta, GA: U.S Department of Health and Human Services 2016. <u>http://www.cdc.gov/cancer/breast/basic_info/risk_factors.htm</u>. Accessed March 27 2019. Exclusion: 2
- 60. Chen S, Masri S, Wang X, et al. What do we know about the mechanisms of aromatase inhibitor resistance? J. Steroid Biochem. Mol. Biol. 2006 Dec;102(1-5):232-40. doi: 10.1016/j.jsbmb.2006.09.012. PMID: 17055257. Exclusion: 7
- 61. Cheung AM, Tile L, Cardew S, et al. Bone density and structure in healthy postmenopausal women treated with exemestane for the primary prevention of breast cancer: a nested substudy of the MAP.3 randomised controlled trial. Lancet Oncol. 2012 Mar;13(3):275-84. doi: <u>https://dx.doi.org/10.1016/S1470-2045(11)70389-8</u>. PMID: 22318095. Exclusion: 11
- 62. Chlebowski RT. Changing paradigms for breast cancer chemoprevention? Cancer Res.
 2011 Annual CTRC-AACR San Antonio Breast Cancer Symposium San Antonio, TX
 United States;71(24 SUPPL. 3):CONFERENCE START: 2011 Dec 6 CONFERENCE
 END: Dec 10. Exclusion: 7
- 63. Chlebowski RT. Current concepts in breast cancer chemoprevention. Pol. Arch. Med. Wewn. 2014;124(4):191-9. PMID: 24618912. Exclusion: 10
- 64. Chlebowski RT. IBIS-I tamoxifen update: maturity brings questions. Lancet Oncol. 2015 Jan;16(1):7-9. doi: <u>https://dx.doi.org/10.1016/S1470-2045(14)71184-2</u>. PMID: 25497695. Exclusion: 7
- 65. Chlebowski RT, Kim J, Haque R. Adherence to endocrine therapy in breast cancer adjuvant and prevention settings. Cancer Prev Res (Phila Pa). 2014 Apr;7(4):378-87. doi: <u>https://dx.doi.org/10.1158/1940-6207.CAPR-13-0389</u>. PMID: 24441675. Exclusion: 4
- 66. Chlebowski RT, McTiernan A, Wactawski-Wende J, et al. Diabetes, metformin, and breast cancer in postmenopausal women. J. Clin. Oncol. 2012 Aug 10;30(23):2844-52. doi: 10.1200/jco.2011.39.7505. PMID: 22689798. Exclusion: 5

- 67. Cigler T, Richardson H, Yaffe MJ, et al. A randomized, placebo-controlled trial (NCIC CTG MAP.2) examining the effects of exemestane on mammographic breast density, bone density, markers of bone metabolism and serum lipid levels in postmenopausal women. Breast Cancer Res. Treat. 2011 Apr;126(2):453-61. doi: https://dx.doi.org/10.1007/s10549-010-1322-0. PMID: 21221773. Exclusion: 6
- Claus EB, Risch N, Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res. Treat. 1993 Nov;28(2):115-20. PMID: 8173064. Exclusion: 6
- 69. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer. 1994 Feb 01;73(3):643-51. PMID: 8299086. Exclusion: 6
- Clauser P, Marino MA, Baltzer PAT, et al. Management of atypical lobular hyperplasia, atypical ductal hyperplasia, and lobular carcinoma in situ. Expert Rev. Anticancer Ther. 2016;16(3):335-46. doi: 10.1586/14737140.2016.1143362. PMID: 26780850. Exclusion: 4
- Collins IM, Steel E, Mann GB, et al. Assessing and managing breast cancer risk: clinicians' current practice and future needs. Breast. 2014 Oct;23(5):644-50. doi: 10.1016/j.breast.2014.06.014. PMID: 24998452. Exclusion: 6
- 72. Coombes RC, Kilburn LS, Snowdon CF, et al. Survival and safety of exemestane versus tamoxifen after 2-3 years' tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet. 2007 Feb 17;369(9561):559-70. doi: 10.1016/s0140-6736(07)60200-1. PMID: 17307102. Exclusion: 4
- 73. Coopey S, Mazzola E, Cauley CE, et al. Breast cancer characteristics with and without chemoprevention in patients with atypical breast lesions. Ann. Surg. Oncol. 2014;21(1):S47. doi: 10.1245/s10434-013-3474-8. Exclusion: 7
- 74. Corbelli J, Borrero S, Bonnema R, et al. Use of the Gail model and breast cancer preventive therapy among three primary care specialties. J Womens Health (Larchmt). 2014 Sep;23(9):746-52. doi: 10.1089/jwh.2014.4742. PMID: 25115368. Exclusion: 3
- 75. Cossetti R, Gelmon KA. Exemestane for breast cancer risk reduction. Breast Cancer Management. 2015;4(3):159-64. doi: 10.2217/bmt.15.2. Exclusion: 11
- 76. Costa A. Breast cancer chemoprevention with retinoids and tamoxifen [abstract no: 985]. Eur. J. Cancer. 1995;31A(Suppl 5):S206. Exclusion: 7
- 77. Costa A, Sacchini V, Bonanni B, et al. Breast cancer chemoprevention with tamoxifen: The Italian trial. Breast Cancer Res. Treat. 1996;37(Suppl):99-9. Exclusion: 7
- 78. Costa A, Sacchini V, Luini A, et al. The Italian chemoprevantion study of breast cancer with tamoxifen. Breast Cancer Res. Treat. 1994;32(Suppl):68-8. Exclusion: 7

- 79. Costantino JP. Tamoxifen reduced the incidence of breast cancer in women at increased risk, but had more adverse events. Evidence-based Obstetrics and Gynecology. 2003;5(3):141-2. doi: 10.1016/S1361-259X(03)00101-6. Exclusion: 7
- Craig Jordan V, McDaniel R, Agboke F, et al. The evolution of nonsteroidal antiestrogens to become selective estrogen receptor modulators. Steroids. 2014 Nov;90:3-12. doi: <u>https://dx.doi.org/10.1016/j.steroids.2014.06.009</u>. PMID: 24949934. Exclusion: 10
- Crandall C. Raloxifene reduced vertebral fractures and breast cancer regardless of prior hormone therapy use in women. Evid. Based Med. 2005;10(3):84. doi: 10.1136/ebm.10.3.84. Exclusion: 7
- Cummings SR, Ensrud K, Delmas PD, et al. Lasofoxifene in postmenopausal women with osteoporosis. N. Engl. J. Med. 2010 Feb 25;362(8):686-96. PMID: 20181970. Exclusion: 5
- Cummings SR, McClung M, Reginster JY, et al. Arzoxifene for prevention of fractures and invasive breast cancer in postmenopausal women. J. Bone Miner. Res. 2011 Feb;26(2):397-404. doi: 10.1002/jbmr.191. PMID: 20658564. Exclusion: 5
- 84. Cummings SR, Tice JA, Bauer S, et al. Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J. Natl. Cancer Inst. 2009 Mar 18;101(6):384-98. doi: 10.1093/jnci/djp018. PMID: 19276457. Exclusion: 10
- 85. Cunnick GH, Mokbel K. Radiotherapy but not tamoxifen reduced the risk of invasive breast cancer after excision of ductal carcinoma in situ. Evidence-based Obstetrics and Gynecology. 2004;6(1):39-40. doi: 10.1016/j.ebobgyn.2003.12.003. Exclusion: 7
- 86. Curtis HJ, Walker AJ, Goldacre B. Impact of NICE guidance on tamoxifen prescribing in England 2011–2017: an interrupted time series analysis. Br. J. Cancer. 2018 May 01;118(9):1268-75. doi: 10.1038/s41416-018-0065-2. PMID: 29681615. Exclusion: 6
- 87. Cuzick, Edwards. Drop-outs in tamoxifen prevention trials. The Lancet. 1999(353):(9156):930. PMID: 10094016. Exclusion: 2
- 88. Cuzick J. A brief review of the current breast cancer prevention trials and proposals for future trials. Eur. J. Cancer. 2000 Jun;36(10):1298-302. PMID: 10882870. Exclusion: 10
- 89. Cuzick J. A brief review of the International Breast Cancer Intervention Study (IBIS), the other current breast cancer prevention trials, and proposals for future trials. Ann. N. Y. Acad. Sci. 2001 Dec;949:123-33. PMID: 11795344. Exclusion: 10
- 90. Cuzick J. Aromatase inhibitors for breast cancer prevention. J. Clin. Oncol.
 2005 Mar 10;23(8):1636-43. doi: <u>https://dx.doi.org/10.1200/JCO.2005.11.027</u>.
 PMID: 15755971. Exclusion: 10

- 91. Cuzick J. IBIS II: a breast cancer prevention trial in postmenopausal women using the aromatase inhibitor anastrozole. Expert Rev. Anticancer Ther. 2008 Sep;8(9):1377-85. doi: 10.1586/14737140.8.9.1377. PMID: 18759690. Exclusion: 10
- 92. Cuzick J. Selecting women for breast cancer chemoprevention and what agents should be used. Hered. Cancer Clin. Pract. 2012;10. Exclusion: 7
- 93. Cuzick J. Erratum: Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): An international, double-blind, randomised placebo-controlled trial[Lancet 383 (2014);: 1041-48]. Lancet. 2014;383(9922):1040. Exclusion: 11
- 94. Cuzick J. Progress in breast cancer prevention. Eur. J. Cancer. 2014;50:S7. doi: 10.1016/S0959-8049(14)50026-3. Exclusion: 7
- 95. Cuzick J. Erratum: anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet. 2014;383(9922):1040. Exclusion: 7
- 96. Cuzick J, Brentnall AR, Segal C, et al. Impact of a Panel of 88 Single Nucleotide Polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials. J. Clin. Oncol. 2017 Mar;35(7):743-50. doi: 10.1200/jco.2016.69.8944. PMID: 28029312. Exclusion: 5
- 97. Cuzick J, Chouinard E. Tamoxifen reduced breast cancer risk but increased risks of thromboembolic events and all cause mortality in women. Evid. Based Med. 2003;8(4):110. doi: 10.1136/ebm.8.4.110. Exclusion: 7
- 98. Cuzick J, DeCensi A, Arun B, et al. Preventive therapy for breast cancer: a consensus statement. Lancet Oncol. 2011 May;12(5):496-503. doi: https://dx.doi.org/10.1016/S1470-2045(11)70030-4. PMID: 21441069. Exclusion: 2
- 99. Cuzick J, Powles T, Veronesi U, et al. Overview of the main outcomes in breast-cancer prevention trials. Lancet. 2003 Jan 25;361(9354):296-300. doi: 10.1016/s0140-6736(03)12342-2. PMID: 12559863. Exclusion: 10
- 100. Cuzick J, Sestak I, Bonanni B, et al. Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet. 2013 May 25;381(9880):1827-34. doi: 10.1016/s0140-6736(13)60140-3. PMID: 23639488. Exclusion: 2
- 101. Cuzick J, Sestak I, Cawthorn S, et al. 16 year long-term follow-up of the IBIS-I breast cancer prevention trial. Cancer Res. 2014 Annual CTRC-AACR San Antonio Breast Cancer Symposium San Antonio, TX United States;75(9 SUPPL. 1):CONFERENCE START: 2014 Dec 9 CONFERENCE END: Dec 13. Exclusion: 7

- 102. Cuzick J, Sestak I, Forbes JF, et al. Breast cancer prevention using anastrozole in postmenopausal women at high risk. Cancer Res. 2013 Annual CTRC-AACR San Antonio Breast Cancer Symposium San Antonio, TX United States;73(24 SUPPL. 1):CONFERENCE START: 2013 Dec 10 CONFERENCE END: Dec 14. Exclusion: 7
- 103. Cuzick J, Sestak I, Thorat MA. Impact of preventive therapy on the risk of breast cancer among women with benign breast disease. Breast. 2015 Nov;24 Suppl 2:S51-5. doi: <u>https://dx.doi.org/10.1016/j.breast.2015.07.013</u>. PMID: 26255741. Exclusion: 2
- 104. Cuzick J, Thorat M. Preventing invasive breast cancer in women at high risk based on benign/in situ pathology. Breast. 2015;24:S11. doi: 10.1016/S0960-9776(15)70024-X. Exclusion: 7
- Cuzick J, Warwick J, Pinney E, et al. Tamoxifen and breast density in women at increased risk of breast cancer. J. Natl. Cancer Inst. 2004 Apr;96(8):621-8. PMID: 15100340. Exclusion: 6
- 106. Cuzick J, Zito R. Genotoxicity of tamoxifen [1]. J. Exp. Clin. Cancer Res. 1994;13(4):417-8. Exclusion: 7
- 107. Cykert S, Caine GJ, Blann AD, et al. Tamoxifen for breast-cancer prevention [3] (multiple letters). Lancet. 2003;361(9352):177-8. Exclusion: 7
- Cyrus-David MS, Strom SS. Chemoprevention of breast cancer with selective estrogen receptor modulators: views from broadly diverse focus groups of women with elevated risk for breast cancer. Psychooncology. 2001 Nov-Dec;10(6):521-33. PMID: 11747064. Exclusion: 6
- 109. Dahhan T, Balkenende E, van Wely M, et al. Tamoxifen or letrozole versus standard methods for women with estrogen-receptor positive breast cancer undergoing oocyte or embryo cryopreservation in assisted reproduction. Cochrane Database of Systematic Reviews. 2014(1) PMID: 24213953. Exclusion: 4
- 110. Day S, Bevers TB. Cost-effectiveness of chemoprevention of breast cancer using tamoxifen in a postmenopausal US population: Noah-Vanhoucke J, Green LE, Dinh TA, et al (Archimedes Inc, San Francisco, CA; et al) Cancer 117:3322-3331, 2011. Breast Diseases. 2012;23(2):195-6. doi: 10.1016/j.breastdis.2012.03.009. Exclusion: 6
- 111. Day S, Bevers TB. Quality of life in MAP.3 (mammary prevention 3): A randomized, placebo-controlled trial evaluating exemestane for prevention of breast cancer. Breast Diseases. 2014;26(2):123-4. Exclusion: 7
- 112. Day S, Bevers TB. Guidelines challenge current practice and perceptions of breast cancer risk reduction therapy. Breast Diseases. 2014;25(3):203-5. doi: 10.1016/j.breastdis.2014.07.043. Exclusion: 7

- Deal CL, Draper MW. Raloxifene: A selective estrogen-receptor modulator for postmenopausal osteoporosis - A clinical update on efficacy and safety. Womens Health. 2006;2(2):199-210. doi: 10.2217/17455057.2.2.199. Exclusion: 8
- 114. Decensi A, Dunn BK, Puntoni M, et al. Exemestane for breast cancer prevention: a critical shift? Cancer Discov. 2012 Jan;2(1):25-40. doi: https://dx.doi.org/10.1158/2159-8290.CD-11-0248. PMID: 22585166. Exclusion: 10
- 115. DeCensi A, Puntoni M, Branchi D, et al. Randomized, placebo-controlled, phase III trial of low-dose tamoxifen in women with intraepithelial neoplasia. Cancer Prev Res (Phila Pa). 2010;3(12)doi: 10.1158/1940-6207.PREV-10-A70. Exclusion: 4
- 116. DeCensi A, Thorat MA, Bonanni B, et al. Barriers to preventive therapy for breast and other major cancers and strategies to improve uptake. Ecancermedicalscience. 2015;9:595. doi: 10.3332/ecancer.2015.595. PMID: 26635899. Exclusion: 10
- 117. den Hollander P, Savage MI, Brown PH. Targeted therapy for breast cancer prevention. Front. Oncol. 2013;3 SEPdoi: 10.3389/fonc.2013.00250. PMID: 24069582. Exclusion: 2
- 118. Detre SI, Ashley S, Mohammed K, et al. Immunohistochemical phenotype of breast cancer during 25-year follow-up of the royal marsden tamoxifen prevention trial. Cancer Prev Res (Phila Pa). 2017;10(3):171-6. doi: 10.1158/1940-6207.CAPR-16-0247-T. PMID: 28100469. Exclusion: 6
- 119. Donnelly LS, Evans DG, Wiseman J, et al. Uptake of tamoxifen in consecutive premenopausal women under surveillance in a high-risk breast cancer clinic. Br. J. Cancer. 2014 Apr 02;110(7):1681-7. doi: <u>https://dx.doi.org/10.1038/bjc.2014.109</u>. PMID: 24594998. Exclusion: 6
- Doughty JC. When to start an aromatase inhibitor: now or later? J. Surg. Oncol.
 2011 Jun 01;103(7):730-8. doi: <u>https://dx.doi.org/10.1002/jso.21801</u>. PMID: 21360530.
 Exclusion: 10
- 121. Dowsett M, Cuzick J, Ingle J, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J. Clin. Oncol. 2010 Jan 20;28(3):509-18. doi: 10.1200/jco.2009.23.1274. PMID: 19949017. Exclusion: 4
- 122. Dragnev K, You M, Wang Y, et al. Lung cancer chemoprevention: difficulties, promise and potential agents? Expert Opinion on Investigational Drugs. 2013 Jan;22(1):35-47. doi: <u>https://dx.doi.org/10.1517/13543784.2013.731392</u>. PMID: 23167766. Exclusion: 6
- 123. Dubin-Rhodin A, Greenlee H, Terry MB, et al. Development of the Breast Cancer Family-Based Intervention Trial (BFIT) Database. American Society of Preventive Oncology 36th Annual Meeting; 2012 Washington, DC. Exclusion: 7
- 124. Eastell R, Hannon R. Long-term effects of aromatase inhibitors on bone. J. Steroid Biochem. Mol. Biol. 2005 May;95(1-5):151-4. doi: 10.1016/j.jsbmb.2005.04.009. PMID: 15970439. Exclusion: 10

- 125. Eli Lilly and Company. EVISTA (raloxifene) Medication Guide. Indianapolis, IN; 2007. <u>https://www.fda.gov/downloads/Drugs/DrugSafety/ucm088593.pdf</u>. Accessed March 27 2019. Exclusion: 2
- 126. Ellis AJ, Hendrick VM, Williams R, et al. Selective estrogen receptor modulators in clinical practice: a safety overview. Expert Opin. Drug Saf. 2015 Jun;14(6):921-34. doi: <u>https://dx.doi.org/10.1517/14740338.2015.1014799</u>. PMID: 25936229. Exclusion: 10
- 127. Errico A. Breast cancer: tamoxifen offering a long-term prevention option. Nature Reviews Clinical Oncology. 2015 Feb;12(2):66. doi: https://dx.doi.org/10.1038/nrclinonc.2014.236. PMID: 25583681. Exclusion: 7
- 128. Espina VA, Gallagher RI, Mariani BD, et al. DCIS neoadjuvant therapy: Targeting the autophagy pathway in malignant precursor cells. J. Clin. Oncol. 2010;28(15). Exclusion: 7
- 129. Euhus DM, Diaz J. Breast cancer prevention. Breast J. 2015 Jan-Feb;21(1):76-81. doi: <u>https://dx.doi.org/10.1111/tbj.12352</u>. PMID: 25413630. Exclusion: 7
- 130. Evans DG, Astley S, Stavrinos P, et al. Improvement in risk prediction, early detection and prevention of breast cancer in the NHS Breast Screening Programme and family history clinics: a dual cohort study. Programme Grants for Applied Research. 2016;4(11)doi: 10.3310/pgfar04110. PMID: 27559559. Exclusion: 10
- 131. Evans DG, Brentnall AR, Harvie M, et al. Breast cancer risk in young women in the national breast screening programme: implications for applying NICE guidelines for additional screening and chemoprevention. Cancer Prev Res (Phila Pa). 2014 Oct;7(10):993-1001. doi: <u>https://dx.doi.org/10.1158/1940-6207.CAPR-14-0037</u>. PMID: 25047362. Exclusion: 5
- 132. Evans DG, Howell A. Can the breast screening appointment be used to provide risk assessment and prevention advice? Breast Cancer Res. 2015;17(1)doi: 10.1186/s13058-015-0595-y. PMID: 26155950. Exclusion: 10
- 133. Fabian CJ, Kimler BF. Incorporating biomarkers in studies of chemoprevention. Adv. Exp. Med. Biol. 2016;882(pp 69-94) PMID: 26987531. Exclusion: 2
- 134. Fabian CJ, Kimler BF, Anderson J, et al. Breast cancer chemoprevention phase I evaluation of biomarker modulation by arzoxifene, a third generation selective estrogen receptor modulator. Clin. Cancer Res. 2004 Aug 15;10(16):5403-17. PMID: 15328178. Exclusion: 5
- Fabian CJ, Kimler BF, Anderson JR, et al. Phase II breast cancer chemoprevention trial of the third generation selective estrogen receptor modulator arzoxifene. J. Clin. Oncol. 2006;24(18 Suppl):49s. Exclusion: 7

- Fabian CJ, Zalles C, Kamel S, et al. Breast cytology and biomarkers obtained by random fine needle aspiration: Use in risk assessment and early chemoprevention trials. J. Cell. Biochem. 1997;67(Suppl 28/29):101-10. PMID: 9589354. Exclusion: 6
- 137. Facina G, Nazario ACP, Kemp C, et al. Effects of different tamoxifen doses on Ki-67 labeling index in normal mammary epithelium from premenopausal women. Breast Cancer Res. Treat. 2004. Exclusion: 6
- 138. Fallowfield L, Fleissig A, Edwards R, et al. Tamoxifen for the prevention of breast cancer: psychosocial impact on women participating in two randomized controlled trials. J. Clin. Oncol. 2001 Apr 1;19(7):1885-92. doi: 10.1200/jco.2001.19.7.1885. PMID: 11283119. Exclusion: 11
- Fasching PA, Ekici AB, Adamietz BR, et al. Breast Cancer Risk Genes, Environment and Clinics. Geburtshilfe Frauenheilkd. 2011 Dec;71(12):1056-66. doi: 10.1055/s-0031-1280437. PMID: 25253900. Exclusion: 10
- Felson DT, Cummings SR. Aromatase inhibitors and the syndrome of arthralgias with estrogen deprivation. Arthritis Rheum. 2005 Sep;52(9):2594-8. doi: 10.1002/art.21364. PMID: 16142740. Exclusion: 10
- 141. Files JA, Stan DL, Allen SV, et al. Chemoprevention of breast cancer. Womens Health (Lond). 2012 Nov;8(6):635-46. doi: 10.2217/whe.12.56. PMID: 23181529. Exclusion: 7
- 142. Fisher B, Costantino JP, Redmond CK, et al. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J. Natl. Cancer Inst. 1994 Apr 06;86(7):527-37. PMID: 8133536. Exclusion: 4
- 143. Flanagan MR, Rendi MH, Gadi VK, et al. Adjuvant Endocrine Therapy in Patients with Ductal Carcinoma In Situ: A Population-Based Retrospective Analysis from 2005 to 2012 in the National Cancer Data Base. Ann. Surg. Oncol. 2015 Oct;22(10):3264-72. doi: <u>https://dx.doi.org/10.1245/s10434-015-4668-z</u>. PMID: 26202556. Exclusion: 6
- 144. Foster SA, Shi N, Curkendall S, et al. Fractures in women treated with raloxifene or alendronate: a retrospective database analysis. BMC Womens Health. 2013 Mar 23;13:15. doi: <u>https://dx.doi.org/10.1186/1472-6874-13-15</u>. PMID: 23521803. Exclusion: 4
- 145. Francis PA, Regan MM, Fleming GF, et al. Adjuvant ovarian suppression in premenopausal breast cancer. N. Engl. J. Med. 2015 Jan 29;372(5):436-46. doi: 10.1056/NEJMoa1412379. PMID: 25495490. Exclusion: 4
- 146. Frank DH, Kimler BF, Fabian CJ, et al. Digital image analysis of breast epithelial cells collected by random periareolar fine-needle aspirates (RPFNA) from women at high risk for breast cancer taking hormone replacement and the aromatase inhibitor, letrozole, for six months. Breast Cancer Res. Treat. 2009 Jun;115(3):661-8. doi: 10.1007/s10549-008-0274-0. PMID: 19125322. Exclusion: 6

- 147. Freedman AN, Graubard BI, McCaskill-Stevens W, et al. E2. Tamoxifen use for breast cancer chemoprevention among U.S. women. EJC Suppl. 2004;2(9 SPEC. ISS.):17-8. doi: 10.1016/j.ejcsup.2004.08.002. Exclusion: 7
- 148. Freedman AN, Graubard BI, Rao SR, et al. Estimates of the number of US women who could benefit from tamoxifen for breast cancer chemoprevention. J. Natl. Cancer Inst. 2003 Apr 02;95(7):526-32. PMID: 12671020. Exclusion: 7
- 149. Freedman AN, Rivera DR, Gail MH, et al. U.S. women who could benefit from tamoxifen or raloxifene for breast cancer chemoprevention in 2010. Pharmacoepidemiol. Drug Saf. 2015;24:466. doi: 10.1002/pds.3838. Exclusion: 7
- 150. Gabriel EM, Jatoi I. Breast cancer chemoprevention. Expert Rev. Anticancer Ther.
 2012 Feb;12(2):223-8. doi: <u>https://dx.doi.org/10.1586/era.11.206</u>. PMID: 22316370.
 Exclusion: 10
- 151. Gail MH. The estimation and use of absolute risk for weighing the risks and benefits of selective estrogen receptor modulators for preventing breast cancer. Ann. N. Y. Acad. Sci. 2001 Dec;949:286-91. PMID: 11795364. Exclusion: 2
- 152. Gail MH. Twenty-five years of breast cancer risk models and their applications. J. Natl. Cancer Inst. 2015 May;107(5)doi: <u>https://dx.doi.org/10.1093/jnci/djv042</u>. PMID: 25722355. Exclusion: 7
- 153. Ganz PA, Kwan L, Somerfield MR, et al. The role of prevention in oncology practice: results from a 2004 survey of American Society of Clinical Oncology members. J. Clin. Oncol. 2006 Jun 20;24(18):2948-57. doi: 10.1200/jco.2006.05.8321. PMID: 16702579. Exclusion: 4
- 154. Garber JE. Selecting candidates for chemoprevention & choosing among the options: Tamoxifen, raloxifene & aromatase inhibitors. Menopause. 2012;19(12):1366. doi: 10.1097/gme.0b013e3182739e2f. Exclusion: 7
- 155. Garber JE. Cancer risk-reducing measures for high risk women. Breast. 2012;21:S2. Exclusion: 7
- 156. Garcia AA. Chemoprevention for breast cancer: Beyond tamoxifen. Women's Oncology Review. 2006;6(3-4):145-7. doi: 10.1080/14733400601043455. Exclusion: 7
- 157. Gasco M, Argusti A, Bonanni B, et al. SERMs in chemoprevention of breast cancer. Eur. J. Cancer. 2005 Sep;41(13):1980-9. doi: <u>https://dx.doi.org/10.1016/j.ejca.2005.04.017</u>. PMID: 15964182. Exclusion: 10
- 158. Gatti-Mays ME, Venzon D, Galbo CE, et al. Exemestane Use in Postmenopausal Women at High Risk for Invasive Breast Cancer: Evaluating Biomarkers of Efficacy and Safety. Cancer Prev. Res. (Phila.). 2016 Mar;9(3):225-33. doi: 10.1158/1940-6207.capr-15-0269. PMID: 26758879. Exclusion: 4

- 159. Geisler J, Lonning PE. Resistance to endocrine therapy of breast cancer: recent advances and tomorrow's challenges. Clin. Breast Cancer. 2001 Jan;1(4):297-308; discussion 9. doi: <u>https://dx.doi.org/10.3816/CBC.2001.n.004</u>. PMID: 11899352. Exclusion: 10
- 160. Gierach G, Lacey JJ, Schatzkin A, et al. Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Res. 2008;10(2)doi: 10.1186/bcr2089. PMID: 18447943. Exclusion: 2
- 161. Giles JT, Kennedy DT, Dunn EC, et al. Results of a community pharmacy-based breast cancer risk-assessment and education program. Pharmacotherapy. 2001 Feb;21(2):243-53. PMID: 11213861. Exclusion: 7
- 162. Gizzo S, Saccardi C, Patrelli TS, et al. Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet. Gynecol. Surv. 2013 Jun;68(6):467-81. doi: <u>https://dx.doi.org/10.1097/OGX.0b013e31828baef9</u>. PMID: 23942473. Exclusion: 10
- 163. Gogas H, Markopoulos C, Blamey R. Should women be advised to take prophylactic endocrine treatment outside of a clinical trial setting? Ann. Oncol. 2005 Dec;16(12):1861-6. doi: <u>https://dx.doi.org/10.1093/annonc/mdi302</u>. PMID: 15980159. Exclusion: 10
- 164. Goldenberg VK, Seewaldt VL, Scott V, et al. Atypia in random periareolar fine-needle aspiration affects the decision of women at high risk to take tamoxifen for breast cancer chemoprevention. Cancer Epidemiol. Biomarkers Prev. 2007 May;16(5):1032-4. doi: 10.1158/1055-9965.epi-06-0910. PMID: 17507634. Exclusion: 6
- 165. Goodwin PJ, Stambolic V, Lemieux J, et al. Evaluation of metformin in early breast cancer: a modification of the traditional paradigm for clinical testing of anti-cancer agents. Breast Cancer Res. Treat. 2011 Feb;126(1):215-20. doi: 10.1007/s10549-010-1224-1. PMID: 20976543. Exclusion: 5
- 166. Gorin MB, Costantino JP, Kulacoglu DN, et al. Is tamoxifen a risk factor for retinal vaso-occlusive disease? Retina. 2005 Jun;25(4):523-6. PMID: 15933605. Exclusion: 11
- 167. Goss PE. The promise of breast cancer prevention. Menopause (New York, N.Y.).
 2012 START: 2012 Oct 3 CONFERENCE END: 2012 Oct 6, 23rd Annual Meeting of the North American Menopause Society, NAMS 2012 Orlando, FL United States;19(12):1366. Exclusion: 7
- 168. Goss PE, Ingle JN, Ales-Martinez J, et al. Exemestane for primary prevention of breast cancer in postmenopausal women: NCIC CTG MAP.3-A randomized, placebo-controlled clinical trial. J. Clin. Oncol. 2011 Jun 20;29(18_suppl):Lba504. PMID: 27937160. Exclusion: 11

- 169. Goss PE, Ingle JN, Martino S, et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N. Engl. J. Med. 2003 Nov 06;349(19):1793-802. doi: 10.1056/NEJMoa032312. PMID: 14551341. Exclusion: 4
- 170. Goss PE, Ingle JN, Pritchard KI, et al. Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27--a randomized controlled phase III trial. J. Clin. Oncol. 2013 Apr 10;31(11):1398-404. doi: 10.1200/jco.2012.44.7805. PMID: 23358971. Exclusion: 4
- 171. Goss PE, Richardson H, Chlebowski R, et al. National Cancer Institute of Canada Clinical Trials Group MAP.3 Trial: evaluation of exemestane to prevent breast cancer in postmenopausal women. Clin. Breast Cancer. 2007 Dec;7(11):895-900. doi: <u>https://dx.doi.org/10.3816/CBC.2007.n.057</u>. PMID: 18269782. Exclusion: 11
- 172. Goss PE, Strasser K. Aromatase inhibitors in the treatment and prevention of breast cancer. J. Clin. Oncol. 2001 Feb 01;19(3):881-94. doi: https://dx.doi.org/10.1200/JCO.2001.19.3.881. PMID: 11157042. Exclusion: 10
- Goss PE, Willett LR. Exemestane prevented invasive breast cancer in postmenopausal women at moderately increased risk. Ann. Intern. Med. 2011;155(8):JC4-03. PMID: 22007062. Exclusion: 7
- 174. Gould K, Gates ML, Miaskowski C. Breast cancer prevention: a summary of the chemoprevention trial with tamoxifen. Oncol. Nurs. Forum. 1994 Jun;21(5):835-40.
 PMID: 7937245. Exclusion: 10
- 175. Gradishar, Ward. Reducing the risk of recurrence in premenopausal women with breast cancer. J. Natl. Compr. Canc. Netw. 2009;7(SPEC. ISS.):26-7. Exclusion: 4
- 176. Gradishar WJ. Raloxifene is as effective as tamoxifen in preventing primary invasive breast cancer: Comment. Oncology Report. 2006(FALL):19. Exclusion: 7
- 177. Gradishar WJ. Exemestane prevents 65% of invasive Ca post menopause: Commentary. Oncology Report. 2011(JULY-AUGUST):12. Exclusion: 7
- 178. Gradishar WJ, Anderson BO, Balassanian R, et al. Breast cancer version 2.2015: Clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2015;13(4):448-75. Exclusion: 2
- 179. Graham L. ASCO updates guideline on the use of pharmacologic interventions to reduce breast cancer risk. Am. Fam. Physician. 2010;81(6):799. Exclusion: 7
- 180. Graham PH. Anastrozole for malignant and benign conditions: present applications and future therapeutic integrations. Expert Opin. Pharmacother. 2007 Oct;8(14):2347-57. doi: <u>https://dx.doi.org/10.1517/14656566.8.14.2347</u>. PMID: 17927488. Exclusion: 10

- 181. Grana G. Shifting paradigms in hormonal therapy for breast cancer. Cancer Biol. Ther. 2004 Sep;3(9):797-805. PMID: 15467423. Exclusion: 10
- 182. Grann VR, Jacobson JS, Troxel AB, et al. Barriers to minority participation in breast carcinoma prevention trials. Cancer. 2005 Jul 15;104(2):374-9. doi: 10.1002/cncr.21164. PMID: 15937913. Exclusion: 6
- 183. Grann VR, Patel PR, Jacobson JS, et al. Comparative effectiveness of screening and prevention strategies among BRCA1/2-affected mutation carriers. Breast Cancer Res. Treat. 2011 Feb;125(3):837-47. doi: 10.1007/s10549-010-1043-4. PMID: 20644999. Exclusion: 6
- 184. Green LE, Dinh TA, Hinds DA, et al. Economic evaluation of using a genetic test to direct breast cancer chemoprevention in white women with a previous breast biopsy. Applied Health Economics & Health Policy. 2014 Apr;12(2):203-17. doi: <u>https://dx.doi.org/10.1007/s40258-014-0089-6</u>. PMID: 24595521. Exclusion: 2
- 185. Gregor MCM, Lei X, Zhao H, et al. Use and adherence to breast cancer risk-reduction agents: A population-based study. J. Clin. Oncol. 2016;34. Exclusion: 7
- 186. Guerra CE, Sherman M, Armstrong K. Diffusion of breast cancer risk assessment in primary care. J. Am. Board Fam. Med. 2009 May-Jun;22(3):272-9. doi: 10.3122/jabfm.2009.03.080153. PMID: 19429733. Exclusion: 6
- 187. Guerrieri-Gonzaga A, Galli A, Rotmensz N, et al. The Italian breast cancer prevention trial with tamoxifen: findings and new perspectives. Ann. N. Y. Acad. Sci. 2001;949:113-22. PMID: 11795343. Exclusion: 10
- 188. Guerrieri-Gonzaga A, Lazzeroni M, Botteri E, et al. Effect of low-dose tamoxifen after surgical excision of ductal intraepithelial neoplasia: results of a large retrospective monoinstitutional cohort study. Ann. Oncol. 2013 Jul;24(7):1859-66. doi: <u>https://dx.doi.org/10.1093/annonc/mdt113</u>. PMID: 23532115. Exclusion: 4
- Guidozzi F. Hormone therapy after prophylactic risk-reducing bilateral salpingo-oophorectomy in women who have BRCA gene mutation. Climacteric. 2016;19(5):419-22. doi: 10.1080/13697137.2016.1209396. Exclusion: 7
- 190. Hackett J, Thorneloe R, Side L, et al. Uptake of breast cancer preventive therapy in the UK: results from a multicentre prospective survey and qualitative interviews. Breast Cancer Res. Treat. 2018 Apr 24doi: 10.1007/s10549-018-4775-1. PMID: 29687178. Exclusion: 3
- 191. Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat. Med. 1996 Mar 30;15(6):619-29. doi: 10.1002/(sici)1097-0258(19960330)15:6<619::aid-sim188>3.0.co;2-a. PMID: 8731004. Exclusion: 2

- 192. Harper-Wynne C, Ross G, Sacks N, et al. Effects of the aromatase inhibitor letrozole on normal breast epithelial cell proliferation and metabolic indices in postmenopausal women: a pilot study for breast cancer prevention. Cancer Epidemiol. Biomarkers Prev. 2002 Jul;11(7):614-21. PMID: 12101108. Exclusion: 6
- 193. Hartmann LC, Lindor NM. The Role of Risk-Reducing Surgery in Hereditary Breast and Ovarian Cancer. N. Engl. J. Med. 2016 Feb 04;374(5):454-68. doi: <u>https://dx.doi.org/10.1056/NEJMra1503523</u>. PMID: 26840135. Exclusion: 7
- Hartmann LC, Radisky DC, Frost MH, et al. Understanding the premalignant potential of atypical hyperplasia through its natural history: a longitudinal cohort study. Cancer Prev. Res. (Phila.). 2014 Feb;7(2):211-7. doi: 10.1158/1940-6207.capr-13-0222. PMID: 24480577. Exclusion: 6
- 195. Harvey S, Francis J, Pillips K. Medical prevention of breast cancer in women at increased familial risk: let's make it personal Asia Pac. J. Clin. Oncol. 2010;6(S3):e213. Exclusion: 7
- 196. Heisey R, Pimlott N, Clemons M, et al. Women's views on chemoprevention of breast cancer: qualitative study. Can. Fam. Physician. 2006 May;52:624-5. PMID: 17327893. Exclusion: 6
- 197. Hendrix SL, Wassertheil-Smoller S, Johnson KC, et al. Effects of conjugated equine estrogen on stroke in the Women's Health Initiative. Circulation. 2006 May 23;113(20):2425-34. doi: 10.1161/circulationaha.105.594077. PMID: 16702472. Exclusion: 5
- 198. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002 Jun 15;21(11):1539-58. doi: 10.1002/sim.1186. PMID: 12111919. Exclusion: 2
- Hoerger M, Scherer LD, Fagerlin A. Affective forecasting and medication decision making in breast-cancer prevention. Health Psychol. 2016 Jun;35(6):594-603. doi: 10.1037/hea0000324. PMID: 26867042. Exclusion: 6
- 200. Hoffman A, Pellenberg R, Drendall CI, et al. Comparison of Random Periareolar Fine Needle Aspirate versus Ductal Lavage for Risk Assessment and Prevention of Breast Cancer. Curr. Breast Cancer Rep. 2012;4(3):180-7. doi: 10.1007/s12609-012-0081-9. PMID: 22924092. Exclusion: 5
- 201. Holmberg C, Bandos H, Fagerlin A, et al. NRG oncology/national surgical adjuvant breast and bowel project decision-making project-1 results: Decision making in breast cancer risk reduction. Cancer Prev. Res. (Phila.). 2017 Nov;10(11):625-34. doi: 10.1158/1940-6207.capr-17-0076. PMID: 28978566. Exclusion: 3
- 202. Homer D, Lemeshow S. Applied logistic regression. 2nd ed. New York, NY: John Wiley & Sons Inc.; 2000. Exclusion: 2

- 203. Honig SF. Tamoxifen for the reduction in the incidence of breast cancer in women at high risk for breast cancer. Ann. N. Y. Acad. Sci. 2001 Dec;949:345-8. PMID: 11795374. Exclusion: 8
- 204. Howell A, Anderson AS, Clarke RB, et al. Risk determination and prevention of breast cancer. Breast Cancer Res. 2014 Sep 28;16(5):446. doi: <u>https://dx.doi.org/10.1186/s13058-014-0446-2</u>. PMID: 25467785. Exclusion: 2
- 205. Huiart L, Bouhnik AD, Rey D, et al. Early discontinuation of tamoxifen intake in younger women with breast cancer: is it time to rethink the way it is prescribed? Eur. J. Cancer. 2012 Sep;48(13):1939-46. doi: 10.1016/j.ejca.2012.03.004. PMID: 22464016. Exclusion: 4
- 206. Ingle JN, Liu M, Wickerham DL, et al. Selective estrogen receptor modulators and pharmacogenomic variation in ZNF423 regulation of BRCA1 expression: individualized breast cancer prevention. Cancer Discov. 2013 Jul;3(7):812-25. doi: <u>https://dx.doi.org/10.1158/2159-8290.CD-13-0038</u>. PMID: 23764426. Exclusion: 6
- 207. Jadav S, Sansgiry SS. Economic evaluation of breast cancer prevention agents: Comparing tamoxifen, raloxifene and exemestane. Value Health. 2013;16(3):A140-A1. doi: 10.1016/j.jval.2013.03.688. Exclusion: 7
- 208. Jatoi I, Benson JR. Management of women with a hereditary predisposition for breast cancer. Future Oncology. 2016;12(19):2277-88. doi: 10.2217/fon-2016-0186. PMID: 27384952. Exclusion: 10
- 209. Johansson H, Bonanni B, Gandini S, et al. Circulating hormones and breast cancer risk in premenopausal women: a randomized trial of low-dose tamoxifen and fenretinide. Breast Cancer Res. Treat. 2013 Dec;142(3):569-78. doi: https://dx.doi.org/10.1007/s10549-013-2768-7. PMID: 24241787. Exclusion: 6
- Johansson H, DeCensi A, Gandini S, et al. Effects of cytochrome P450 2D6 polymorphisms on tamoxifen metabolism in a pooled analysis of breast cancer prevention trials designed to define the minimal active dose of the drug. Cancer Res. 2011;71(8)doi: 10.1158/1538-7445.AM2011-3675. Exclusion: 6
- 211. Johansson H, Gandini S, Serrano D, et al. A pooled analysis of CYP2D6 genotype in breast cancer prevention trials of low-dose tamoxifen. Breast Cancer Res. Treat. 2016;159(1):97-108. PMID: 27484880. Exclusion: 6
- 212. Jones A. Feasibility of tamoxifen in chemoprevention of breast cancer (meeting abstract).Br. J. Cancer. 1990;62(Suppl 12):3. Exclusion: 7
- 213. Jones A, Powles TJ, Ashley S, et al. Feasibility of Tamoxifen in chemoprevention of breast cancer. Br. J. Cancer. 1990;62(Suppl 12):3. Exclusion: 7

- 214. Jones AL. Chemoprevention of breast cancer (The British tamoxifen trials).
 Journal canadien des maladies infectieuses [Can J Infect Dis Med Microbiol].
 1995;6(Suppl C):193C. Exclusion: 7
- 215. Jones S, Vogel C, Arkhipov A, et al. Multicenter, phase II trial of exemestane as third-line hormonal therapy of postmenopausal women with metastatic breast cancer. Aromasin Study Group. J. Clin. Oncol. 1999 Nov;17(11):3418-25. doi: 10.1200/jco.1999.17.11.3418. PMID: 10550136. Exclusion: 4
- 216. Jordan VC. Differing Perspectives on Breast Cancer Chemoprevention. JAMA oncology.
 2016 Feb;2(2):276. doi: <u>https://dx.doi.org/10.1001/jamaoncol.2015.3906</u>. PMID: 26868999. Exclusion: 7
- 217. Jubelirer SJ. Quality-of-life considerations in selecting raloxifene or tamoxifen. Community Oncol. 2006;3(11):700+3. Exclusion: 7
- 218. Juraskova I, Bonner C. Decision aids for breast cancer chemoprevention. Breast Cancer Res. 2013;15(5):106. doi: 10.1186/bcr3479. PMID: 24050596. Exclusion: 7
- 219. Kaplan CP, Haas JS, Perez-Stable EJ, et al. Factors affecting breast cancer risk reduction practices among California physicians. Prev. Med. 2005 Jul;41(1):7-15. doi: 10.1016/j.ypmed.2004.09.041. PMID: 15916987. Exclusion: 3
- 220. Keogh LA, Hopper JL, Rosenthal D, et al. Australian clinicians and chemoprevention for women at high familial risk for breast cancer. Hered. Cancer Clin. Pract. 2009;7(1)doi: 10.1186/1897-4287-7-9. PMID: 19409108. Exclusion: 5
- 221. King MC, Wieand S, Hale K, et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA. 2001 Nov 14;286(18):2251-6. PMID: 11710890. Exclusion: 6
- 222. Kinney AY, Richards C, Vernon SW, et al. The effect of physician recommendation on enrollment in the Breast Cancer Chemoprevention Trial. Prev. Med. 1998 Sep-Oct;27(5 Pt 1):713-9. doi: 10.1006/pmed.1998.0349. PMID: 9808803. Exclusion: 6
- 223. Koslow S, Park A, Muhsen S, et al. Lobular carcinoma in situ (LCIS): What happens after chemoprevention (CP)? Ann. Surg. Oncol. 2014;21(1):S55. doi: 10.1245/s10434-013-3474-8. Exclusion: 7
- 224. Kote-Jarai Z, Powles TJ, Mitchell G, et al. BRCA1/BRCA2 mutation status and analysis of cancer family history in participants of the Royal Marsden Hospital tamoxifen chemoprevention trial. Cancer Lett. 2007 Mar 18;247(2):259-65. doi: 10.1016/j.canlet.2006.05.003. PMID: 16777318. Exclusion: 2

- 225. Kukafka R, Yi H, Xiao T, et al. Why Breast Cancer Risk by the Numbers Is Not Enough: Evaluation of a Decision Aid in Multi-Ethnic, Low-Numerate Women. J. Med. Internet Res. 2015 Jul 14;17(7):e165. doi: 10.2196/jmir.4028. PMID: 26175193. Exclusion: 5
- 226. Kulacoglu DN, Costantino J, Demirci FY, et al. Tamoxifen and Retinal Vaso-Occlusive Disease. Iovs. 2004;45. Exclusion: 7
- 227. Kurian AW, Munoz DF, Rust P, et al. Online tool to guide decisions for BRCA1/2 mutation carriers. J. Clin. Oncol. 2012 Feb 10;30(5):497-506. doi: 10.1200/jco.2011.38.6060. PMID: 22231042. Exclusion: 5
- 228. Kurz-Milcke E, Gigerenzer G, Martignon L. Transparency in risk communication: graphical and analog tools. Ann. N. Y. Acad. Sci. 2008;18(28)doi: 10.1196/annals.1399.004. PMID: 8469211 Exclusion: 2
- 229. LaCroix A, Powles T, Osborne C. Breast cancer incidence in the randomized PEARL trial of lasofoxifene in postmenopausal osteoporotic women. Breast Diseases. 2011;22(2):178-80. doi: 10.1016/j.breastdis.2011.03.052. Exclusion: 5
- 230. LaCroix AZ, Powles T, Osborne CK, et al. Breast cancer incidence in the randomized PEARL trial of lasofoxifene in postmenopausal osteoporotic women. J. Natl. Cancer Inst. 2010 Nov 17;102(22):1706-15. PMID: 21051656. Exclusion: 5
- 231. Laroche M, Borg S, Lassoued S, et al. Joint pain with aromatase inhibitors: abnormal frequency of Sjogren's syndrome. J. Rheumatol. 2007 Nov;34(11):2259-63. PMID: 17937464. Exclusion: 4
- 232. Layeequr Rahman R, Crawford S. Chemoprevention Indication Score: a user-friendly tool for prevention of breast cancer pilot analysis. Breast. 2009 Oct;18(5):289-93. doi: 10.1016/j.breast.2009.08.001. PMID: 19716702. Exclusion: 6
- 233. Lazarus P, Sun D. Potential role of UGT pharmacogenetics in cancer treatment and prevention: focus on tamoxifen and aromatase inhibitors. Drug Metab. Rev. 2010 Feb;42(1):182-94. doi: <u>https://dx.doi.org/10.3109/03602530903208652</u>. PMID: 19821643. Exclusion: 10
- 234. Lazzeroni M, DeCensi A. Breast cancer prevention by antihormones and other drugs: where do we stand? Hematology Oncology Clinics of North America. 2013 Aug;27(4):657-72, vii. doi: <u>https://dx.doi.org/10.1016/j.hoc.2013.05.009</u>. PMID: 23915737. Exclusion: 10
- 235. Leader JB, Bengier A, Darer J, et al. Identifying women at increased risk for breast cancer using the electronic health record in an integrated health system. Cancer Res. 2012;72(24)doi: 10.1158/0008-5472.SABCS12-P4-13-12. Exclusion: 6

- 236. Lee AJ, Cunningham AP, Kuchenbaecker KB, et al. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br. J. Cancer. 2014 Jan 21;110(2):535-45. doi: 10.1038/bjc.2013.730. PMID: 24346285. Exclusion: 5
- 237. Li F, Dou J, Wei L, et al. The selective estrogen receptor modulators in breast cancer prevention. Cancer Chemother. Pharmacol. 2016 05;77(5):895-903. doi: <u>https://dx.doi.org/10.1007/s00280-016-2959-0</u>. PMID: 26787504. Exclusion: 10
- 238. Li Y, Brasky TM, Nie J, et al. Use of nonsteroidal anti-inflammatory drugs and survival following breast cancer diagnosis. Cancer Epidemiol. Biomarkers Prev. 2012 Jan;21(1):239-42. doi: 10.1158/1055-9965.epi-11-1012. PMID: 22068285. Exclusion: 4
- Liede A, Mansfield CA, Metcalfe KA, et al. Preferences for breast cancer risk reduction among BRCA1/BRCA2 mutation carriers: a discrete-choice experiment. Breast Cancer Res. Treat. 2017 Sep;165(2):433-44. doi: 10.1007/s10549-017-4332-3. PMID: 28624978. Exclusion: 3
- Litton JK, Arun BK, Brown PH, et al. Aromatase inhibitors and breast cancer prevention. Expert Opin. Pharmacother. 2012 Feb;13(3):325-31. doi: <u>https://dx.doi.org/10.1517/14656566.2012.651459</u>. PMID: 22242911. Exclusion: 7
- 241. Litzenburger BC, Brown PH. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): An international, double-blind, randomised placebo-controlled trial. Breast Diseases. 2014;25(3):214-6. Exclusion: 7
- 242. Litzenburger BC, Brown PH. Advances in preventive therapy for estrogen-receptor-negative breast cancer. Curr. Breast Cancer Rep. 2014;6(2):96-109. doi: 10.1007/s12609-014-0144-1. PMID: 24829621. Exclusion: 10
- Loehberg CR, Jud SM, Haeberle L, et al. Breast cancer risk assessment in a mammography screening program and participation in the IBIS-II chemoprevention trial. Breast Cancer Res. Treat. 2010 May;121(1):101-10. doi: 10.1007/s10549-010-0845-8. PMID: 20306293. Exclusion: 6
- Lopez AM, Pruthi S, Boughey JC, et al. Double-Blind, Randomized Trial of Alternative Letrozole Dosing Regimens in Postmenopausal Women with Increased Breast Cancer Risk. Cancer Prev. Res. (Phila.). 2016 Feb;9(2):142-8. doi: 10.1158/1940-6207.capr-15-0322. PMID: 26667449. Exclusion: 6
- 245. Mahoney MC, Bevers T, Linos E, et al. Opportunities and strategies for breast cancer prevention through risk reduction. CA Cancer J. Clin. 2008 Nov-Dec;58(6):347-71. doi: 10.3322/ca.2008.0016. PMID: 18981297. Exclusion: 10
- 246. Mallick S, Benson R, Julka PK. Breast cancer prevention with anti-estrogens: review of the current evidence and future directions. Breast cancer (Tokyo, Japan). 2016;23(2):170-7. PMID: 26439380. Exclusion: 10

- 247. Mann GJ, Thorne H, Balleine RL, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1):R12. doi: 10.1186/bcr1377. PMID: 16507150. Exclusion: 8
- 248. Mannucci PM, Bettega D, Chantarangkul V, et al. Effect of tamoxifen on measurements of hemostasis in healthy women. Arch. Intern. Med. 1996 Sep 9;156(16):1806-10. PMID: 8790074. Exclusion: 6
- 249. Marsden J, Jacobs C. Breast cancer chemoprevention: A challenge for doctors and patients. Prescriber. 2013;24(21):7-8. doi: 10.1002/psb.1125. Exclusion: 10
- 250. Martinez KA, Fagerlin A, Witteman HO, et al. What matters to women when making decisions about breast cancer chemoprevention? Patient. 2016 Apr;9(2):149-59. doi: 10.1007/s40271-015-0134-z. PMID: 26115846. Exclusion: 3
- 251. Maunsell E, Richardson H, Ingle JN, et al. Menopause-specific and health-related qualities of life among post-menopausal women taking exemestane for prevention of breast cancer: Results from the NCIC CTG MAP.3 placebo-controlled randomized controlled trial. Cancer Res. 2011 Annual CTRC-AACR San Antonio Breast Cancer Symposium San Antonio, TX United States;71(24 SUPPL. 3):CONFERENCE START: 2011 Dec 6 CONFERENCE END: Dec 10. Exclusion: 7
- 252. Maurice A, Howell A, Evans DG, et al. Predicting compliance in a breast cancer prevention trial. Breast J. 2006 Sep-Oct;12(5):446-50. PMID: 16958964. Exclusion: 2
- 253. McCaskill-Stevens W, Wilson JW, Cook ED, et al. National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene trial: advancing the science of recruitment and breast cancer risk assessment in minority communities. Clinical Trials. 2013 Apr;10(2):280-91. doi: <u>https://dx.doi.org/10.1177/1740774512470315</u>. PMID: 23335675. Exclusion: 6
- 254. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2006 Jun;15(6):1159-69. doi: 10.1158/1055-9965.epi-06-0034. PMID: 16775176. Exclusion: 5
- 255. McTiernan, Wang, Sorensen. No effect of aspirin on mammographic density in a randomized controlled clinical trial. Cancer Epidemiol. Biomarkers Prev. 2009;18(5):1524-30. PMID: 19423529. Exclusion: 2
- 256. Meiser B, Butow P, Price M, et al. Attitudes to prophylactic surgery and chemoprevention in Australian women at increased risk for breast cancer. J Womens Health (Larchmt). 2003 Oct;12(8):769-78. doi: 10.1089/154099903322447738. PMID: 14588127. Exclusion: 6

- 257. Meiser B, Wong WKT, Peate M, et al. Motivators and barriers of tamoxifen use as risk-reducing medication amongst women at increased breast cancer risk: a systematic literature review. Hered. Cancer Clin. Pract. 2017;15:14. doi: 10.1186/s13053-017-0075-8. PMID: 28943990. Exclusion: 3
- 258. Metcalfe KA, Dennis CL, Poll A, et al. Effect of decision aid for breast cancer prevention on decisional conflict in women with a BRCA1 or BRCA2 mutation: A multisite, randomized, controlled trial. Genet. Med. 2017;19(3):330-6. doi: 10.1038/gim.2016.108. PMID: 27584910. Exclusion: 6
- 259. Metcalfe KA, Foulkes WD, Kim-Sing C, et al. Family history as a predictor of uptake of cancer preventive procedures by women with a BRCA1 or BRCA2 mutation. Clin. Genet. 2008 May;73(5):474-9. doi: 10.1111/j.1399-0004.2008.00988.x. PMID: 18341607. Exclusion: 6
- Metcalfe KA, Poll A, O'Connor A, et al. Development and testing of a decision aid for breast cancer prevention for women with a BRCA1 or BRCA2 mutation. Clin. Genet. 2007 Sep;72(3):208-17. doi: 10.1111/j.1399-0004.2007.00859.x. PMID: 17718858. Exclusion: 5
- 261. Metcalfe KA, Snyder C, Seidel J, et al. The use of preventive measures among healthy women who carry a BRCA1 or BRCA2 mutation. Fam. Cancer. 2005;4(2):97-103. doi: 10.1007/s10689-005-4215-3. PMID: 15951959. Exclusion: 3
- Micallef S, Micallef D, Schembri-Wismayer P, et al. Chemoprevention of breast cancer among women at elevated risk as defined by Gail Score. Minerva Ginecol. 2015 Aug;67(4):335-52. PMID: 25668503. Exclusion: 10
- 263. Miller WR, Dixon JM. Local endocrine effects of aromatase inhibitors within the breast. J. Steroid Biochem. Mol. Biol. 2001 Dec;79(1-5):93-102. PMID: 11850212. Exclusion: 4
- 264. Millstine D, David P, Pruthi S. Tools of the trade: individualized breast cancer risk assessment. J. Womens Health. 2014 May;23(5):434-6. doi: https://dx.doi.org/10.1089/jwh.2014.4761. PMID: 24707809. Exclusion: 7
- 265. Mocellin S, Pilati P, Briarava M, et al. Breast Cancer Chemoprevention: A Network Meta-Analysis of Randomized Controlled Trials. J. Natl. Cancer Inst. 2016 Feb;108(2)doi: <u>https://dx.doi.org/10.1093/jnci/djv318</u>. PMID: 26582062. Exclusion: 8
- 266. Mokbel K. Risk-reducing strategies for breast cancer--a review of recent literature. Int. J. Fertil. Womens Med. 2003 Nov-Dec;48(6):274-7. PMID: 15646397. Exclusion: 10
- 267. Monnier A. FACE: The barefaced facts of AI potency. 2010. p. 267-76. Exclusion: 4
- 268. Moon KT. Effectiveness of medications to prevent primary breast cancer. Am. Fam. Physician. 2010;81(9):1149-50. Exclusion: 7

- 269. Mouridsen H. Aromatase inhibitors in the early adjuvant setting the latest evidence. EJC Suppl. 2006;4(9):3-9. doi: 10.1016/j.ejcsup.2006.06.001. Exclusion: 10
- 270. Moy B, Richardson H, Johnston D. NCIC CTG MAP.3: enrollment and study drug adherence of ethnic minority women in a breast cancer prevention trial. Breast Cancer Res. Treat. 2007;106(1):S141-S2. Exclusion: 7
- Moyer. Using medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013 Nov 19;159(10):I-28. doi: <u>https://dx.doi.org/10.7326/0003-4819-159-10-201311190-00717</u>. PMID: 24400336. Exclusion: 7
- 272. Moyer VA. Medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2013 Nov 19;159(10):698-708. doi: 10.7326/0003-4819-159-10-201311190-00717. PMID: 24061412. Exclusion: 2
- 273. Moyer VA. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2014 Feb 18;160(4):271-81. doi: 10.7326/m13-2747. PMID: 24366376. Exclusion: 2
- 274. Moyer VA, Force USPST. Medications to decrease the risk for breast cancer in women: recommendations from the U.S. Preventive Services Task Force recommendation statement.[Summary for patients in Ann Intern Med. 2013 Nov 19;159(10):I-28; PMID: 24400336]. Ann. Intern. Med. 2013 Nov 19;159(10):698-708. doi: <u>https://dx.doi.org/10.7326/0003-4819-159-10-201311190-00717</u>. PMID: 24061412. Exclusion: 7
- 275. Muhammad A, Ibrahim MA, Erukainure OL, et al. Metabolism and toxicological implications of commonly used chemopreventive drugs against breast cancer/carcinogenesis. Curr. Drug Metab. 2016;17(10):930-6. PMID: 27848887. Exclusion: 4
- 276. Nabholtz JM. Role of anastrozole across the breast cancer continuum: from advanced to early disease and prevention. Oncology. 2006;70(1):1-12. doi: <u>https://dx.doi.org/10.1159/000091180</u>. PMID: 16439860. Exclusion: 10
- 277. Namburi S, Coe AM, Thomas P, et al. Effect of chemoprevention uptake on mammographic density over time in women at high risk for breast cancer. Cancer Res. 2016;76(4)doi: 10.1158/1538-7445.SABCS15-P6-10-09. Exclusion: 8
- 278. Namer M. Breast cancer prevention. Medecine Nucleaire. 2010;34(1):3-13. doi: 10.1016/j.mednuc.2009.11.005. Exclusion: 9

- 279. Narod SA. Tamoxifen Chemoprevention--End of the Road? JAMA oncology.
 2015 Nov;1(8):1033-4. doi: <u>https://dx.doi.org/10.1001/jamaoncol.2015.2247</u>. PMID: 26247918. Exclusion: 2
- 280. Narod SA. Breast cancer prevention in the era of precision medicine. J. Natl. Cancer Inst. 2015 May;107(5)doi: <u>https://dx.doi.org/10.1093/jnci/djv078</u>. PMID: 25855708. Exclusion: 7
- 281. National Cancer Institute. Breast cancer risk assessment tool. National Institutes of Health 2011. <u>https://www.cancer.gov/bcrisktool/</u>. Accessed March 27 2019. Exclusion: 2
- 282. National Cancer Institute. NCI dictionary of cancer terms: breast cancer. National Institute of Health; 2016. <u>https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=444971</u>. Accessed March 27 2019. Exclusion: 2
- 283. National Cancer Institute. NCI dictionary of cancer terms: lobular carcinoma. National Institute of Health; 2016. <u>https://www.cancer.gov/publications/dictionaries/</u> <u>cancer-terms?search=lobular%20carcinoma</u>. Accessed March 27 2019. Exclusion: 2
- 284. National Cancer Institute. Cancer stat facts: female breast cancer. National Institute of Health; 2016. <u>https://seer.cancer.gov/statfacts/html/breast.html</u>. Accessed March 27 2019. Exclusion: 2
- 285. National Cancer Institute. Cancer Stat Facts: Female Breast Cancer. National Institute of Health; 2018. <u>https://seer.cancer.gov/statfacts/html/breast.html</u>. Accessed March 27 2019. Exclusion: 2
- 286. National Comprehensive Cancer Network. Breast Cancer Risk Reduction. 2016. Exclusion: 2
- 287. Nattinger AB, Mitchell JL. Breast cancer screening and prevention. Ann. Intern. Med. 2016;164(11):ITC81-ITC94. doi: 10.7326/AITC201606070. Exclusion: 7
- 288. Nazarali SA, Narod SA. Tamoxifen for women at high risk of breast cancer. Breast Cancer (London). 2014;6:29-36. doi: 10.2147/BCTT.S43763. PMID: 24648767. Exclusion: 2
- 289. Neibergs H. Molecular genetics and cancer: The role of BRCA1 and BRCA2. Women's Oncology Review. 2002;2(1):19-29. Exclusion: 10
- 290. Nelson HD, Fu R, Griffin JC, et al. Systematic review: comparative effectiveness of medications to reduce risk for primary breast cancer. Ann. Intern. Med. 2009 Nov 17;151(10):703-15, w-226-35. doi: 10.7326/0003-4819-151-10-200911170-00147. PMID: 19920271. Exclusion: 2

- 291. Nelson HD, Fu R, McDonagh M, et al. Medication use for the risk reduction of primary breast cancer in women: a systematic review for the U.S. Preventive Services Task Force [in press]. Rockville, MD: Agency for Healthcare Research and Quality; 2019. Exclusion: 2
- 292. Nelson HD, Smith ME, Griffin JC, et al. Use of medications to reduce risk for primary breast cancer: a systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013 Apr 16;158(8):604-14. doi: 10.7326/0003-4819-158-8-201304160-00005. PMID: 23588749. Exclusion: 2
- 293. Nelson HD, Zakher B, Cantor A, et al. Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Ann. Intern. Med. 2012 May 01;156(9):635-48. doi: 10.7326/0003-4819-156-9-201205010-00006. PMID: 22547473. Exclusion: 2
- 294. Nelson NJ. Breast cancer prevention in high-risk women: searching for new options.
 J. Natl. Cancer Inst. 2011 May 04;103(9):710-1. doi: https://dx.doi.org/10.1093/jnci/djr159. PMID: 21515834. Exclusion: 7
- 295. Nichols HB, DeRoo LA, Sandler DP. Characteristics associated with tamoxifen use for chemoprevention after age 50: Results from the sister study. Am. J. Epidemiol. 2012;175:S45. doi: 10.1093/aje/kws258. Exclusion: 7
- 296. Nichols HB, DeRoo LA, Scharf DR, et al. Risk-benefit profiles of women using tamoxifen for chemoprevention. J. Natl. Cancer Inst. 2015 Jan;107(1):354. doi: <u>https://dx.doi.org/10.1093/jnci/dju354</u>. PMID: 25475563. Exclusion: 6
- 297. Nimmons S, Bambhroliya A, Teresa B, et al. The evaluation of breast cancer chemoprevention uptake in a high-risk cohort. Cancer Prev Res (Phila Pa). 2013;6(11). Exclusion: 7
- 298. Niravath P, Rimawi MF, Osborne CK. Aromatase inhibitor adverse effects: are we sweeping them under the rug? J. Clin. Oncol. 2014 Nov 20;32(33):3779. doi: <u>https://dx.doi.org/10.1200/JCO.2014.56.9640</u>. PMID: 25154832. Exclusion: 7
- 299. Nyante SJ, Sherman ME, Pfeiffer RM, et al. Patterns of longitudinal change in mammographic density among tamoxifen users. Cancer Prev Res (Phila Pa). 2013;6(11). Exclusion: 7
- 300. Obiorah I, Jordan VC. Progress in endocrine approaches to the treatment and prevention of breast cancer. Maturitas. 2011 Dec;70(4):315-21. doi: https://dx.doi.org/10.1016/j.maturitas.2011.09.006. PMID: 21982237. Exclusion: 10
- 301. Olin JL, St Pierre M. Aromatase inhibitors in breast cancer prevention. Ann. Pharmacother. 2014 Dec;48(12):1605-10. doi: <u>https://dx.doi.org/10.1177/1060028014548416</u>. PMID: 25159003. Exclusion: 10

- 302. Oliveira VM, Aldrighi JM, Rinaldi JF. [Current status of breast cancer chemoprevention]. Rev. Assoc. Med. Bras. 2006 Nov-Dec;52(6):453-9. PMID: 17242785. Exclusion: 9
- Oppong BA, King TA. Recommendations for women with lobular carcinoma in situ (LCIS). Oncology (Williston Park). 2011 Oct;25(11):1051-6, 8. PMID: 22106556. Exclusion: 10
- 304. O'Regan RM. Chemoprevention of breast cancer. Lancet.
 2006 Apr 29;367(9520):1382-3. doi: <u>https://dx.doi.org/10.1016/S0140-6736(06)68594-2</u>.
 PMID: 16650636. Exclusion: 7
- 305. Owens WL, Gallagher TJ, Kincheloe MJ, et al. Implementation in a large health system of a program to identify women at high risk for breast cancer. J. Oncol. Pract. 2011;7(2):85-8. doi: 10.1200/JOP.2010.000107. PMID: 21731514. Exclusion: 6
- 306. Ozanne EM, Annis C, Adduci K, et al. Pilot trial of a computerized decision aid for breast cancer prevention. Breast J. 2007 Mar-Apr;13(2):147-54. doi: 10.1111/j.1524-4741.2007.00395.x. PMID: 17319855. Exclusion: 5
- 307. Ozanne EM, Howe R, Omer Z, et al. Development of a personalized decision aid for breast cancer risk reduction and management. BMC Med. Inform. Decis. Mak. 2014 Jan 14;14:4. doi: 10.1186/1472-6947-14-4. PMID: 24422989. Exclusion: 5
- 308. Ozanne EM, Klemp JR, Esserman LJ. Breast cancer risk assessment and prevention: a framework for shared decision-making consultations. Breast J. 2006 Mar-Apr;12(2):103-13. doi: 10.1111/j.1075-122X.2006.00217.x. PMID: 16509834. Exclusion: 6
- 309. Padamsee TJ, Wills CE, Yee LD, et al. Decision making for breast cancer prevention among women at elevated risk. Breast Cancer Res. 2017;19(1)doi: 10.1186/s13058-017-0826-5. PMID: 28340626. Exclusion: 10
- 310. Palomares MR, Banzet M, Lu K, et al. Breast cancer risk reduction among patients with DCIS. J. Clin. Oncol. 2012;30(15). Exclusion: 7
- 311. Paluch-Shimon S, Cardoso F, Sessa C, et al. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO clinical practice guidelines for cancer prevention and screening. Ann. Oncol. 2016;27:v103-v10. doi: 10.1093/annonc/mdw327. PMID: 27664246. Exclusion: 2
- 312. Palva T, Ranta H, Koivisto AM, et al. A double-blind placebo-controlled study to evaluate endometrial safety and gynaecological symptoms in women treated for up to 5 years with tamoxifen or placebo a substudy for IBIS I Breast Cancer Prevention Trial. Eur. J. Cancer. 2013 Jan;49(1):45-51. doi: <u>https://dx.doi.org/10.1016/j.ejca.2012.06.015</u>. PMID: 22832202. Exclusion: 11

- 313. Pankratz VS, Hartmann LC, Degnim AC, et al. Assessment of the accuracy of the Gail model in women with atypical hyperplasia. J. Clin. Oncol. 2008 Nov 20;26(33):5374-9. doi: 10.1200/jco.2007.14.8833. PMID: 18854574. Exclusion: 8
- 314. Park HL, Tran SM, Lee J, et al. A pilot study comparing breast cancer risk scores using models with and without breast density among women of different race/ethnicities undergoing breast screening in the University of California, Irvine Athena Breast Health Network cohort. Cancer Res. 2014;74(19)doi: 10.1158/1538-7445.AM2014-3243. Exclusion: 7
- 315. Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am. J. Hum. Genet. 1998 Jan;62(1):145-58. PMID: 9443863. Exclusion: 6
- 316. Parsons H, Stearns V. ACP Journal Club. Tamoxifen for 5 years reduced 16-year risk for breast cancer in women at increased risk. Ann. Intern. Med. 2015 May 19;162(10):JC11. doi: <u>https://dx.doi.org/10.7326/ACPJC-2015-162-10-011</u>. PMID: 25984872. Exclusion: 7
- 317. Patel RR, Sharma CG, Jordan VC. Optimizing the antihormonal treatment and prevention of breast cancer. Breast Cancer. 2007;14(2):113-22. PMID: 17485895. Exclusion: 10
- 318. Paterniti DA, Melnikow J, Nuovo J, et al. "I'm going to die of something anyway": women's perceptions of tamoxifen for breast cancer risk reduction. Ethn. Dis. 2005 Summer;15(3):365-72. PMID: 16108294. Exclusion: 3
- 319. Peck S, O'Shaughnessy JA, Mariani S. Advances in the use of aromatase inhibitors: Updates from San Antonio and St. Gallen. Clin. Breast Cancer. 2005;6(1):23-6. Exclusion: 10
- 320. Pepe S, Pensabene M, Condello C. Modifiers of risk in BRCA1/2 mutation carriers. Current Women's Health Reviews. 2012;8(1):23-9. doi: 10.2174/157340412799079246. Exclusion: 2
- 321. Perez EA, Weilbaecher K. Aromatase inhibitors and bone loss. Oncology (Williston Park). 2006 Aug;20(9):1029-39; discussion 39-40, 42, 48. PMID: 16986348. Exclusion: 10
- 322. Phillips KA, Lindeman GJ. Breast cancer prevention for BRCA1 and BRCA2 mutation carriers: is there a role for tamoxifen? Future Oncology. 2014 Mar;10(4):499-502. doi: <u>https://dx.doi.org/10.2217/fon.13.278</u>. PMID: 24754577. Exclusion: 7
- 323. Pinsky P, Miller E, Heckman-Stoddard B, et al. Use of raloxifene and tamoxifen by breast cancer risk level in a Medicare-eligible cohort. Am. J. Obstet. Gynecol. 2018doi: 10.1016/j.ajog.2018.03.031. PMID: 29630889. Exclusion: 2
- 324. Ponzone R, Mininanni P, Cassina E, et al. Aromatase inhibitors for breast cancer: different structures, same effects? Endocr. Relat. Cancer. 2008 Mar;15(1):27-36. doi: <u>https://dx.doi.org/10.1677/ERC-07-0249</u>. PMID: 18310273. Exclusion: 5

- 325. Powles T. Tamoxifen and bone: Data from breast cancer prevention studies. Obstet. Gynecol. Surv. 1998;53(10 SUPPL.):S45-S6. PMID: 9672274. Exclusion: 7
- 326. Powles TJ. Chemoprevention of breast cancer a randomised trial. Ann-Oncol. 1992;3(Suppl 1):60. Exclusion: 7
- 327. Powles TJ. Chemoprevention of breast cancer with tamoxifen [abstract no: 984]. Eur. J. Cancer. 1995;31A(Suppl 5):S206. Exclusion: 7
- 328. Powles TJ. Chemoprevention of breast cancer using tamoxifen. Endocrine related cancer. 1997;4:255-60. Exclusion: 10
- 329. Powles TJ. Ii.1 Tamoxifen's oestrogen-like effects in a breast cancer chemoprevention trial. Eur. J. Cancer. 1998;34(Suppl 4):S17-S8. Exclusion: 7
- 330. Powles TJ. Use of tamoxifen for chemoprevention of breast cancer. Ann-Oncol. 1998;9(Suppl 2):1. Exclusion: 7
- 331. Powles TJ. Prevetion of breast cancer using selective oestrogen receptor modulators (SERMs). Breast Cancer Res. 2006;8(5)doi: 10.1186/bcr1601. PMID: 17049068. Exclusion: 7
- 332. Powles TJ. Selective oestrogen receptor modulators (SERMs) for prevention of breast cancer. Natl. Med. J. India. 2013 Jul-Aug;26(4):194-6. PMID: 24758440. Exclusion: 10
- 333. Powles TJ, Bourne T, Athanasiou S, et al. The effects of norethisterone on endometrial abnormalities identified by transvaginal ultrasound screening of healthy post-menopausal women on tamoxifen or placebo. Br. J. Cancer. 1998;78(2):272-5. PMID: 9683306. Exclusion: 5
- 334. Powles TJ, Diem SJ, Fabian CJ, et al. Breast cancer incidence in postmenopausal women with osteoporosis or low bone mass using arzoxifene. Breast Cancer Res. Treat. 2012 Jul;134(1):299-306. doi: 10.1007/s10549-012-2041-5. PMID: 22484799. Exclusion: 4
- 335. Powles TJ, Eeles R, Salmon A, et al. Update of the Royal Marsden Hospital tamoxifen breast cancer chemoprevention trial. Proceedings of American Society of Clinical Oncology. 2003;22(94). Exclusion: 7
- 336. Powles TJ, Hardy JR, Ashley SE, et al. Chemoprevention of breast cancer. Breast Cancer Res. Treat. 1989 Oct;14(1):23-31. Exclusion: 8
- 337. Powles TJ, Hardy JR, Ashley SE, et al. A pilot trial to evaluate the acute toxicity and feasibility of tamoxifen for prevention of breast cancer. Br. J. Cancer. 1989 Jul;60(1):126-31. PMID: 2679843. Exclusion: 11

- 338. Powles TJ, Hickish T, Kanis JA, et al. Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J. Clin. Oncol. 1996;14(1):78-84. PMID: 8558225. Exclusion: 6
- 339. Powles TJ, Jones AL, Ashley SE, et al. The Royal Marsden Hospital pilot tamoxifen chemoprevention trial. Breast Cancer Res. Treat. 1994;31(1):73-82. PMID: 7981459. Exclusion: 11
- 340. Powles TJ, McKinna A, Davey J. Chemoprevention of breast cancer. J. Endocrinol. 1993;137(Suppl):S32. Exclusion: 6
- 341. Powles TJ, Tillyer CR, Jones AL, et al. Prevention of breast cancer with tamoxifen--an update on the Royal Marsden Hospital pilot programme. Eur. J. Cancer. 1990;26(6):680-4. PMID: 2144154. Exclusion: 11
- 342. Prasad V, Diener-West M. Primary chemoprevention of breast cancer: Are the adverse effects too burdensome? CMAJ. 2015 Jun 16;187(9):E276-8. doi: <u>https://dx.doi.org/10.1503/cmaj.141627</u>. PMID: 25802306. Exclusion: 7
- Prichard RS, Hill AD, Dijkstra B, et al. The prevention of breast cancer. Br. J. Surg. 2003 Jul;90(7):772-83. doi: <u>https://dx.doi.org/10.1002/bjs.4218</u>. PMID: 12854100. Exclusion: 10
- 344. Printz C. Developments in precision medicine: Studies highlight new applications for cancer chemoprevention, treatment. Cancer. 2016 Mar 01;122(5):661-2. doi: <u>https://dx.doi.org/10.1002/cncr.29909</u>. PMID: 26901830. Exclusion: 7
- 345. Pritchard KI, Goss PE, Shepherd L. The extended adjuvant NCIC CTG MA.17 trials: initial and rerandomization studies. Breast. 2006 Feb;15 Suppl 1:S14-20. doi: <u>https://dx.doi.org/10.1016/j.breast.2006.01.002</u>. PMID: 16500236. Exclusion: 4
- 346. Provinciali N, Suen C, Dunn BK, et al. Raloxifene hydrochloride for breast cancer risk reduction in postmenopausal women. Expert Rev. Clin. Pharmacol. 2016;9(10):1263-72. doi: 10.1080/17512433.2016.1231575. PMID: 27583816. Exclusion: 10
- 347. Pruthi S, Heisey R, Bevers T. Personalized assessment and management of women at risk for breast cancer in North America. Womens Health. 2015 Mar;11(2):213-23; quiz 23-4. doi: <u>https://dx.doi.org/10.2217/whe.14.79</u>. PMID: 25776295. Exclusion: 2
- 348. Pruthi S, Heisey RE, Bevers TB. Chemoprevention for Breast Cancer. Ann. Surg. Oncol. 2015;22(10):3230-5. doi: 10.1245/s10434-015-4715-9. PMID: 26202562. Exclusion: 2
- 349. Pujol P, Lasset C, Berthet P, et al. Uptake of a randomized breast cancer prevention trial comparing letrozole to placebo in BRCA1/2 mutations carriers: the LIBER trial. Fam. Cancer. 2012 Mar;11(1):77-84. doi: 10.1007/s10689-011-9484-4. PMID: 22076253. Exclusion: 2

- 350. Pujol P, Mijonnet S, Dugast C, et al. Abstract P1-07-02: Acceptability of Breast Cancer Medical Prevention by Letrozole in Post-Menopausal Women with a BRCA1/2 Mutation in the LIBER Trial. 2010. Exclusion: 7
- 351. Puntoni M, Decensi A. The rationale and potential of cancer chemoprevention with special emphasis on breast cancer. Eur. J. Cancer. 2009 Sep;45 Suppl 1:346-54. doi: <u>https://dx.doi.org/10.1016/S0959-8049(09)70049-8</u>. PMID: 19775631. Exclusion: 7
- Rahman RL, Pruthi S. Chemoprevention of breast cancer: The Paradox of evidence versus advocacy inaction. Cancers (Basel). 2012;4(4):1146-60. doi: 10.3390/cancers4041146. PMID: 24213502. Exclusion: 7
- Ralph AF, Ager B, Bell ML, et al. Women's preferences for selective estrogen reuptake modulators: an investigation using protection motivation theory. Patient Educ. Couns. 2014 Jul;96(1):106-12. doi: 10.1016/j.pec.2014.04.011. PMID: 24856850. Exclusion: 6
- 354. Rastogi P, Vogel VG. Update on breast cancer prevention. Oncology (Williston Park). 2003 Jun;17(6):799-805; discussion 8-10, 13. PMID: 12846124. Exclusion: 10
- 355. Ravdin PM. The lack, need, and opportunities for decision-making and informational tools to educate primary-care physicians and women about breast cancer chemoprevention. Cancer Prev. Res. (Phila.). 2010 Jun;3(6):686-8. doi: 10.1158/1940-6207.capr-10-0100. PMID: 20522798. Exclusion: 6
- Razzaboni E, Toss A, Cortesi L, et al. Acceptability and adherence in a chemoprevention trial among women at increased risk for breast cancer attending the Modena Familial Breast and Ovarian Cancer Center (Italy). Breast J. 2013 Jan-Feb;19(1):10-21. PMID: 23252601. Exclusion: 6
- 357. Refinetti AP, Chun J, Schnabel F, et al. Chemoprevention in patients with newly diagnosed breast cancers. Cancer Res. 2012;72(24)doi: 10.1158/0008-5472.SABCS12-P1-09-03. Exclusion: 7
- 358. Reimers L, Crew KD. Tamoxifen versus raloxifene versus exemestane for chemoprevention. Curr. Breast Cancer Rep. 2012;4(3):207-15. doi: 10.1007/s12609-012-0082-8. PMID: 23956815. Exclusion: 10
- 359. Reimers LL, Campbell J, Hershman D, et al. Uptake of selective estrogen receptor modulators and other breast cancer prevention strategies among high-risk women seen in a breast center. Cancer Res. 2011;71(24)doi: 10.1158/0008-5472.SABCS11-P4-11-06. Exclusion: 7
- Reimers LL, Sivasubramanian PS, Hershman D, et al. Breast cancer chemoprevention among high-risk women and those with ductal carcinoma in situ. Breast J. 2015 Jul-Aug;21(4):377-86. doi: 10.1111/tbj.12418. PMID: 25879521. Exclusion: 3

- 361. Reis SE, Costantino JP, Wickerham DL, et al. Cardiovascular effects of tamoxifen in women with and without heart disease: breast cancer prevention trial. National Surgical Adjuvant Breast and Bowel Project Breast Cancer Prevention Trial Investigators. J. Natl. Cancer Inst. 2001 Jan 3;93(1):16-21. PMID: 11136837. Exclusion: 11
- 362. Rice LW. Hormone prevention strategies for breast, endometrial and ovarian cancers. Gynecol. Oncol. 2010 Aug 01;118(2):202-7. doi: <u>https://dx.doi.org/10.1016/j.ygyno.2010.03.014</u>. PMID: 20471672. Exclusion: 10
- 363. Richardson H, Johnston D, Pater J, et al. The National Cancer Institute of Canada Clinical Trials Group MAP.3 trial: an international breast cancer prevention trial. Curr. Oncol. 2007 Jun;14(3):89-96. PMID: 17593981. Exclusion: 2
- 364. Roesch EE, Wei L, Ramaswamy B. Higher tamoxifen use as chemoprophylaxis in patients with ductal carcinoma in situ (DCIS) in the last decade. J. Clin. Oncol. 2012;30(27). Exclusion: 7
- 365. Roetzheim RG, Lee JH, Fulp W, et al. Acceptance and adherence to chemoprevention among women at increased risk of breast cancer. Breast. 2015 Feb;24(1):51-6. doi: 10.1016/j.breast.2014.11.006. PMID: 25491191. Exclusion: 3
- 366. Rondanina G, Puntoni M, Guerrieri-Gonzaga A, et al. Worry and risk perception of breast cancer in a prevention trial of low dose tamoxifen in midlife postmenopausal hormone users. Breast. 2017 Aug;34:108-14. doi: 10.1016/j.breast.2017.05.008. PMID: 28570956. Exclusion: 6
- 367. Rondanina G, Puntoni M, Severi G, et al. Psychological and clinical factors implicated in decision making about a trial of low-dose tamoxifen in hormone replacement therapy users. J. Clin. Oncol. 2008 Mar 20;26(9):1537-43. doi: 10.1200/jco.2007.13.6739. PMID: 18349406. Exclusion: 4
- 368. Ropka ME, Keim J, Philbrick JT. Patient decisions about breast cancer chemoprevention: a systematic review and meta-analysis. J. Clin. Oncol. 2010 Jun 20;28(18):3090-5. doi: 10.1200/jco.2009.27.8077. PMID: 20458026. Exclusion: 3
- 369. Roses RE, Kuerer HM. Ductal carcinoma in situ: Clinical trials update and resolving controversies. Curr. Cancer Ther. Rev. 2012;8(3):182-8. doi: 10.2174/157339412802653173. Exclusion: 10
- Ross PJ, Powles TJ. Results and implications of the Royal Marsden and other tamoxifen chemoprevention trials. Clin. Breast Cancer. 2001;2(1):33-6. PMID: 11899380.
 Exclusion: 10
- 371. RXList.com. Top 200 drugs by prescriptions. 2010. <u>https://www.rxlist.com/script/main/art.asp?articlekey=166587</u>. Accessed March 27 2019. Exclusion: 2

- Sabatino SA, McCarthy EP, Phillips RS, et al. Breast cancer risk assessment and management in primary care: provider attitudes, practices, and barriers. Cancer Detect. Prev. 2007;31(5):375-83. doi: 10.1016/j.cdp.2007.08.003. PMID: 18037249. Exclusion: 6
- 373. Sacchini V, Costa A, Bonanni B, et al. Chemoprevention of breast cancer: update of the Italian trial in hysterectomised women. Eur. J. Cancer. 1996(32):S23. Exclusion: 7
- 374. Saha D, Paul S, Emran TB, et al. Role of chemoprevention in cancers. Pharmacologyonline. 2012;2:29-35. Exclusion: 10
- 375. Salant T, Ganschow PS, Olopade OI, et al. "Why take it if you don't have anything?" breast cancer risk perceptions and prevention choices at a public hospital. J. Gen. Intern. Med. 2006 Jul;21(7):779-85. doi: 10.1111/j.1525-1497.2006.00461.x. PMID: 16808782. Exclusion: 6
- 376. Schaefer KM, Ladd E, Gergits MA, et al. Backing and forthing: the process of decision making by women considering participation in a breast cancer prevention trial. Oncol. Nurs. Forum. 2001 May;28(4):703-9. PMID: 11383184. Exclusion: 6
- 377. Schnabel FR, Pivo S, Chun J, et al. Breast cancer profile among patients with a history of chemoprevention. Int. J. Breast Cancer. 2016;2016doi: 10.1155/2016/9216375. PMID: 28078143. Exclusion: 4
- 378. Schwartz MD, Valdimarsdottir HB, DeMarco TA, et al. Randomized trial of a decision aid for BRCA1/BRCA2 mutation carriers: impact on measures of decision making and satisfaction. Health Psychol. 2009 Jan;28(1):11-9. doi: 10.1037/a0013147. PMID: 19210013. Exclusion: 6
- 379. Sestak I. Preventative therapies for healthy women at high risk of breast cancer. Cancer Manag. Res. 2014;6:423-30. doi: 10.2147/CMAR.S55219. PMID: 25378950. Exclusion: 2
- 380. Sestak I, Cuzick J. Update on breast cancer risk prediction and prevention. Curr. Opin. Obstet. Gynecol. 2015 Feb;27(1):92-7. doi: https://dx.doi.org/10.1097/GCO.00000000000153. PMID: 25517358. Exclusion: 2
- 381. Sestak I, Smith SG, Howell A, et al. Early participant-reported symptoms as predictors of adherence to anastrozole in the International Breast Cancer Intervention Studies II. Ann. Oncol. 2018;29(2):504-9. PMID: 29126161. Exclusion: 6
- 382. Sexton S. Medications for risk reduction of primary breast cancer in women: Recommendation statement. Am. Fam. Physician. 2014;90(9):652A-D. Exclusion: 10
- 383. Shen Y, Costantino JP, Qin J. Tamoxifen chemoprevention treatment and time to first diagnosis of estrogen receptor-negative breast cancer. J. Natl. Cancer Inst. 2008;100(20):1448-53. PMID: 18840821. Exclusion: 6

- 384. Shepherd JH, Chan F. III.8 Tamoxifen and endometrial cancer: How should we screen? Eur. J. Cancer. 1998;34(SUPPL. 4):S39. Exclusion: 7
- 385. Simmons S. Pharmaceutical reduction of breast cancer risk. Nurse Pract. 2010 Sep;35(9):10-1. doi: <u>https://dx.doi.org/10.1097/01.NPR.0000387149.45852.70</u>. PMID: 20720461. Exclusion: 10
- 386. Singh S, Cuzick J, Mesher D, et al. Effect of baseline serum vitamin D levels on aromatase inhibitors induced musculoskeletal symptoms: results from the IBIS-II, chemoprevention study using anastrozole. Breast Cancer Res. Treat. 2012 Apr;132(2):625-9. doi: <u>https://dx.doi.org/10.1007/s10549-011-1911-6</u>. PMID: 22198469. Exclusion: 4
- 387. Sismondi P, D'Alonzo M, Pecchio S, et al. Chemoprevention or mastectomy for women at high risk of developing breast cancer. Maturitas. 2015 Nov;82(3):271-3. doi: <u>https://dx.doi.org/10.1016/j.maturitas.2015.07.002</u>. PMID: 26276104. Exclusion: 10
- 388. Sivasubramanian PS, Crew KD. Biomarker endpoints for early-phase cancer-prevention studies. Curr. Breast Cancer Rep. 2013;5(3):194-201. doi: 10.1007/s12609-013-0116-x. Exclusion: 7
- 389. Skandarajah AR, Thomas S, Shackleton K, et al. Patient and medical barriers preclude uptake of tamoxifen preventative therapy in women with a strong family history. Breast. 2017 Apr;32:93-7. doi: 10.1016/j.breast.2017.01.002. PMID: 28107734. Exclusion: 3
- 390. Smith J, Dilawari A, Ursin G, et al. A pilot study of letrozole for one year in women at enhanced risk of developing breast cancer: effects on mammographic density. Anticancer Res. 2012 Apr;32(4):1327-31. PMID: 22493366. Exclusion: 4
- 391. Smith SG, Sestak I, Forster A, et al. Factors affecting uptake and adherence to breast cancer chemoprevention: A systematic review and meta-analysis. Cancer Res. 2016;76(4)doi: 10.1158/1538-7445.SABCS15-PD1-08. PMID: 26646754. Exclusion: 3
- 392. Smith SG, Sestak I, Howell A, et al. Participant-Reported Symptoms and Their Effect on Long-Term Adherence in the International Breast Cancer Intervention Study I (IBIS I). J. Clin. Oncol. 2017 Aug 10;35(23):2666-73. doi: 10.1200/jco.2016.71.7439. PMID: 28661758. Exclusion: 6
- 393. Sopik V, Narod S. Overdiagnosis in breast cancer chemoprevention trials. Current Oncology. 2015;22(1):e6-e10. doi: 10.3747/co.22.219. PMID: 25684995. Exclusion: 10
- 394. Sorkin M, Lapolt D, Pusztai L, et al. Clinical experience with exemestane in postmenopausal women at increased risk of breast cancer. J. Clin. Oncol. 2013;31(15). Exclusion: 7
- 395. Stacey D, Legare F, Lewis K, et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database of Systematic Reviews. 2017(4) PMID: 28402085. Exclusion: 5

- 396. Stacey D, O'Connor AM, DeGrasse C, et al. Development and evaluation of a breast cancer prevention decision aid for higher-risk women. Health Expect. 2003 Mar;6(1):3-18. PMID: 12603624. Exclusion: 6
- 397. Stakelum A, Evoy D, Rothwell J, et al. Comparison of family history risk stratification models in irish women at increased personal risk of breast cancer. Ir. J. Med. Sci. 2018;187:S147. doi: 10.1007/s11845-018-1861-7. Exclusion: 7
- 398. Staley H, McCallum I, Bruce J. Postoperative Tamoxifen for ductal carcinoma in situ: Cochrane systematic review and meta-analysis. Breast. 2014 Oct;23(5):546-51. doi: 10.1016/j.breast.2014.06.015. PMID: 25023044. Exclusion: 4
- 399. Stearns V. Raloxifene and tamoxifen had simialr efficacy for preventing invasive breast cancer in women at increased risk. Evid. Based Med. 2006;11(6):177. doi: 10.1136/ebm.11.6.177. PMID: 17213171. Exclusion: 7
- 400. Stubert J, Dieterich M, Gerber B. Medical prevention of breast cancer. Breast Care. 2014;9(6):391-6. doi: 10.1159/000369573. PMID: 25759621. Exclusion: 2
- 401. Tchou J, Hou N, Rademaker A, et al. Acceptance of tamoxifen chemoprevention by physicians and women at risk. Cancer. 2004 May 1;100(9):1800-6. doi: 10.1002/cncr.20205. PMID: 15112259. Exclusion: 6
- 402. Thacker HL. Raloxifene produced both harms and benefits in postmenopausal women, with no reduction in cardiovascular disease risk. Evid. Based Med. 2006;11(6):178. doi: 10.1136/ebm.11.6.178. PMID: 17213172. Exclusion: 7
- 403. The Lancet. NCI and the STELLAR trial. Lancet. 2007 Jun 30;369(9580):2134. doi: 10.1016/s0140-6736(07)60987-8. PMID: 17604779. Exclusion: 7
- 404. Tice JA, Cummings SR, Ziv E, et al. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res. Treat. 2005 Nov;94(2):115-22. doi: 10.1007/s10549-005-5152-4. PMID: 16261410. Exclusion: 11
- 405. Tile L, Tomlinson G, Gakhal N, et al. Skeletal health in healthy postmenopausal women treated with exemestane for the primary prevention of breast cancer: 3-year data from the nested bone strength substudy of the MAP.3 trial (MAP3BSS). J. Bone Miner. Res. 2015;30(Supplement 1). Exclusion: 6
- 406. Tiller K, Meiser B, Gaff C, et al. A randomized controlled trial of a decision aid for women at increased risk of ovarian cancer. Med. Decis. Making. 2006 Jul-Aug;26(4):360-72. doi: 10.1177/0272989x06290486. PMID: 16855125. Exclusion: 5
- 407. Toriola AT, Colditz GA. Trends in breast cancer incidence and mortality in the United States: implications for prevention. Breast Cancer Res. Treat. 2013 Apr;138(3):665-73. doi: 10.1007/s10549-013-2500-7. PMID: 23546552. Exclusion: 6

- Toss A, Sebastiani F, Razzaboni E, et al. Chemoprevention strategies for high risk women. Current Women's Health Reviews. 2012;8(1):86-93. doi: 10.2174/157340412799079174. Exclusion: 10
- 409. Trafalis DTP, Athanassiou AE. A guideline for the management of women at substantially increased risk of breast cancer development. J. BUON. 2005;10(4):443-58.
 PMID: 17357201. Exclusion: 7
- 410. Tran G, Helm M, Litton J. Current Approach to Breast Cancer Risk Reduction for Women with Hereditary Predispositions to Breast Cancer. Curr. Breast Cancer Rep. 2016;8(3):165-74. doi: 10.1007/s12609-016-0220-9. Exclusion: 10
- 411. Treadwell JR, Singh S, Talati R, et al. A framework for best evidence approaches can improve the transparency of systematic reviews. J. Clin. Epidemiol. 2012 Nov;65(11):1159-62. doi: 10.1016/j.jclinepi.2012.06.001. PMID: 23017634. Exclusion: 2
- 412. Trikalinos TA, Wieland LS, Adam GP, et al. Decision Aids for Cancer Screening and Treatment. AHRQ Comparative Effectiveness Reviews Rockville (MD): Agency for Healthcare Research and Quality (US); 2014. Exclusion: 5
- 413. Turner B, Williams S, Taichman D, et al. Breast cancer screening and prevention. Ann. Intern. Med. 2010;152(7):ITC4-1-ITC4-16. Exclusion: 10
- U.S. Department of Health and Human Services. NOLVADEX (TAMOXIFEN CITRATE). Silver Spring, MD: U.S. Food and Drug Administration; 2017. http://www.accessdata.fda.gov/scripts/cder/daf/ index.cfm?event=overview.process&ApplNo=017970. Accessed March 27 2019. Exclusion: 2
- 415. U.S. Food & Drug Administration. Drugs@FDA: FDA Approved Drug Products. Silver Spring, MD: U.S. Department of Health and Human Services; 2018. <u>https://www.accessdata.fda.gov/scripts/cder/daf/</u>. Accessed March 27 2019. Exclusion: 2
- U.S. Preventive Services Task Force. Screening for skin cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2009;150(3):188-93. PMID: 19189908. Exclusion: 2
- U.S. Preventive Services Task Force. Final Update Summary: Breast Cancer: Medications for Risk Reduction. 2013. https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/ breast-cancer-medications-for-risk-reduction. Exclusion: 2
- U.S. Preventive Services Task Force. Final Recommendation Statement: Breast Cancer: Screening.; 2016. https://www.uspreventiveservicestaskforce.org/Page/Document/ RecommendationStatementFinal/breast-cancer-screening1. Exclusion: 2

- 419. U.S. Preventive Services Task Force. Methods and processes. 2018. <u>https://www.uspreventiveservicestaskforce.org/Page/Name/methods-and-processes</u>. Accessed March 27 2019. Exclusion: 2
- 420. Vachon CM, Schaid DJ, Ingle JN, et al. The contribution of common genetic variation to breast cancer risk among women receiving tamoxifen or raloxifene within the National Surgical Adjuvant Breast and Bowel Project (NSABP) P-1 and P-2 trials. Cancer Res. 2015;75(9)doi: 10.1158/1538-7445.SABCS14-P6-10-03. Exclusion: 6
- 421. Vachon CM, Schaid DJ, Ingle JN, et al. A polygenic risk score for breast cancer in women receiving tamoxifen or raloxifene on NSABP P-1 and P-2. Breast Cancer Res. Treat. 2015 Jan;149(2):517-23. doi: <u>https://dx.doi.org/10.1007/s10549-014-3175-4</u>. PMID: 25575444. Exclusion: 6
- 422. van de Velde CJ, Rea D, Seynaeve C, et al. Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet.
 2011 Jan 22;377(9762):321-31. doi: 10.1016/S0140-6736(10)62312-4. PMID: 21247627. Exclusion: 2
- 423. van Roosmalen MS, Stalmeier PF, Verhoef LC, et al. Randomized trial of a shared decision-making intervention consisting of trade-offs and individualized treatment information for BRCA1/2 mutation carriers. J. Clin. Oncol. 2004 Aug 15;22(16):3293-301. doi: 10.1200/jco.2004.05.066. PMID: 15310772. Exclusion: 5
- 424. van Veen EM, Brentnall AR, Byers H, et al. Use of Single-Nucleotide Polymorphisms and Mammographic Density Plus Classic Risk Factors for Breast Cancer Risk Prediction. JAMA oncology. 2018 Apr 1;4(4):476-82. doi: 10.1001/jamaoncol.2017.4881. PMID: 29346471. Exclusion: 5
- 425. Veronesi U, Costa A. Prevention of breast cancer with tamoxifen: The Italian study in hysterectomized women. Breast. 1995;4(4):267-72. Exclusion: 11
- 426. Visvanathan K, Chlebowski RT, Hurley P, et al. American society of clinical oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J. Clin. Oncol. 2009 Jul 01;27(19):3235-58. doi: <u>https://dx.doi.org/10.1200/JCO.2008.20.5179</u>. PMID: 19470930. Exclusion: 7
- 427. Visvanathan K, Hurley P, Bantug E, et al. Use of pharmacologic interventions for breast cancer risk reduction: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2013 Aug 10;31(23):2942-62. doi: https://dx.doi.org/10.1200/JCO.2013.49.3122. PMID: 23835710. Exclusion: 7

Appendix A4. List of Excluded Studies

- 428. Visvanathan K, Lippman SM, Hurley P, et al. American Society of Clinical Oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction.[Erratum appears in Gynecol Oncol. 2010 Mar;116(3):592 Note: Visvanathan, Kala [added]; Lippman, Scott M [added]; Hurley, Patricia [added]]. Gynecol. Oncol. 2009 Oct;115(1):132-4. doi: <u>https://dx.doi.org/10.1016/j.ygyno.2009.06.006</u>. PMID: 19716939. Exclusion: 2
- Vogel VG. Follow-up of the breast cancer prevention trial and the future of breast cancer prevention efforts. Clin. Cancer Res. 2001 Dec;7(12 Suppl):4413s-8s; discussion 1s-2s. PMID: 11916233. Exclusion: 11
- 430. Vogel VG. Tamoxifen, raloxifene and tibolone decrease risk of invasive breast cancer in healthy women but increase risk of thromboembolism (tamoxifen, raloxifene), endometrial cancer (tamoxifen) or stroke (tibolone). Evid. Based Med. 2010;15(4):122. doi: 10.1136/ebm1044. PMID: 20682726. Exclusion: 7
- 431. Vogel VG. Role of hormones in cancer prevention. American Society of Clinical Oncology Educational Book. 2014:34-40. doi: <u>https://dx.doi.org/10.14694/EdBook_AM.2014.34.34</u>. PMID: 24857058. Exclusion: 10
- 432. Vogel VG. Chemoprevention: Who, what, when? Menopause. 2014;21(12):1320-1. doi: 10.1097/gme.0000000000370. Exclusion: 7
- 433. Vogel VG. Ongoing data from the breast cancer prevention trials: opportunity for breast cancer risk reduction. BMC Med. 2015 Mar 26;13:63. doi: https://dx.doi.org/10.1186/s12916-015-0300-0. PMID: 25888872. Exclusion: 2
- 434. Vogel VG. Update on Breast Cancer Risk Reduction Therapy. Curr. Breast Cancer Rep. 2016;8(3):175-82. doi: 10.1007/s12609-016-0221-8. Exclusion: 10
- 435. von Minckwitz G, Loibl S, Jackisch C, et al. The GISS trial: a phase II prevention trial of screening plus goserelin, ibandronate, versus screening alone in premenopausal women at increased risk of breast cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2011 Oct;20(10):2141-9. PMID: 21795500. Exclusion: 5
- 436. Vukicevic S, Grgurevi L. The PEARL trial: Lasofoxifene and incidence of fractures, breast cancer and cardiovascular events in postmenopausal osteoporotic women. Int. J. Clin. Rheumtol. 2011;6(4):387-91. doi: 10.2217/ijr.11.37. Exclusion: 5
- Walcott FL, Land SR, Costantino JP, et al. Vasomotor symptoms, BMI, and adherence to tamoxifen in the National Surgical Adjuvant Breast and Bowel Project (NSABP) Breast Cancer Prevention Trial (P-1). J. Clin. Oncol. 2015 Annual Meeting of the American Society of Clinical Oncology, ASCO Chicago, IL United States;33(15 SUPPL. 1):CONFERENCE START: 2015 May 29 CONFERENCE END: Jun 2. Exclusion: 7

- 438. Wang X, Oldani MJ, Zhao X, et al. A review of cancer risk prediction models with genetic variants. Cancer Inform. 2014;13:19-28. doi: 10.4137/CIN.S13788. PMID: 25288876. Exclusion: 10
- 439. Warner E, Lockwood G, Tritchler D, et al. The risk of breast cancer associated with mammographic parenchymal patterns: a meta-analysis of the published literature to examine the effect of method of classification. Cancer Detect. Prev. 1992;16(1):67-72. PMID: 1532349. Exclusion: 5
- Waters EA, Cronin KA, Graubard BI, et al. Prevalence of tamoxifen use for breast cancer chemoprevention among U.S. women. Cancer Epidemiol. Biomarkers Prev. 2010 Feb;19(2):443-6. doi: 10.1158/1055-9965.epi-09-0930. PMID: 20142242. Exclusion: 6
- 441. Waters EA, McNeel TS, Stevens WM, et al. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res. Treat. 2012 Jul;134(2):875-80. doi: 10.1007/s10549-012-2089-2. PMID: 22622807. Exclusion: 6
- 442. Wickerham DL, Cecchini RS, Vogel VG, et al. Final updated results of the NRG Oncology/NSABP Protocol P-2: Study of Tamoxifen and Raloxifene (STAR) in preventing breast cancer. J. Clin. Oncol. 2015 Annual Meeting of the American Society of Clinical Oncology, ASCO Chicago, IL United States;33(15 SUPPL. 1):CONFERENCE START: 2015 May 29 CONFERENCE END: Jun 2. Exclusion: 7
- 443. Wise J. NICE recommends preventive drugs for breast cancer. BMJ.
 2013 Jun 25;346:f4116. doi: <u>https://dx.doi.org/10.1136/bmj.f4116</u>. PMID:
 23801701. Exclusion: 2
- 444. Wolff T, Tai E, Miller T. Screening for skin cancer: an update of the evidence for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2009;150(3):194-8. PMID: 19189909. Exclusion: 2
- 445. Wuttke M, Phillips KA. Risk reduction strategies in familial breast and ovarian cancer. Asia Pac. J. Clin. Oncol. 2014;10:79-80. doi: 10.1111/ajco.12304. Exclusion: 7
- Wuttke M, Phillips KA. Clinical management of women at high risk of breast cancer. Curr. Opin. Obstet. Gynecol. 2015 Feb;27(1):6-13. doi: <u>https://dx.doi.org/10.1097/GCO.0000000000140</u>. PMID: 25502281. Exclusion: 10
- 447. Yaffe MJ, Boyd NF. Mammographic image analysis for breast cancer risk assessment. Semin. Breast Dis. 2002;5(4):238-46. Exclusion: 7
- 448. Yiannakopoulou E. Aspirin and NSAIDs for breast cancer chemoprevention. Eur. J. Cancer Prev. 2015 Sep;24(5):416-21. doi: https://dx.doi.org/10.1097/CEJ.00000000000008. PMID: 25380191. Exclusion: 4

- 449. Yoshida R, Yotsumoto J, Watanabe C, et al. Evaluation of the BRCA1 and BRCA2 mutation prediction models in Japanese patients with breast cancer. J. Clin. Oncol. 2014;32(26). Exclusion: 7
- 450. Zelnak AB, O'Regan RM. Chemoprevention of breast cancer. Curr. Probl. Cancer. 2004 Jul-Aug;28(4):201-17. PMID: 15318323. Exclusion: 10
- 451. Zeng YC, Xiao YP, Xue M. Exemestane for breast-cancer prevention. N. Engl. J. Med. 2011 Sep 15;365(11):1057; author reply -8. doi: https://dx.doi.org/10.1056/NEJMc1108287#SA3. PMID: 21916644. Exclusion: 2
- 452. Zhang Y, Simondsen K, Kolesar JM. Exemestane for primary prevention of breast cancer in postmenopausal women. Am. J. Health Syst. Pharm. 2012 Aug 15;69(16):1384-8. doi: <u>https://dx.doi.org/10.2146/ajhp110585</u>. PMID: 22855103. Exclusion: 8
- 453. Zhao X, Li L, Wang Z. Chemoprevention of breast cancer: current status and future prospects. Front. Biosci. 2006 Sep 01;11:2249-56. PMID: 16720311. Exclusion: 10
- 454. Ziv E, Tice JA, Sprague B, et al. Using breast cancer risk associated polymorphisms to identify women for breast cancer chemoprevention. PLoS One. 2017;12(1)doi: 10.1371/journal.pone.0168601. PMID: 28107349. Exclusion: 5

Randomized, Controlled Trials (RCTs) and Cohort Studies

Criteria:

- Initial assembly of comparable groups
- For RCTs: Adequate randomization, including first concealment and whether potential confounders were distributed equally among groups
- For cohort studies: Consideration of potential confounders, with either restriction or measurement for adjustment in the analysis; consideration of inception cohorts
- Maintenance of comparable groups (includes attrition, cross-overs, adherence, contamination)
- Important differential loss to followup or overall high loss to followup
- Measurements: equal, reliable, and valid (includes masking of outcome assessment)
- Clear definition of interventions
- All important outcomes considered
- Analysis: adjustment for potential confounders for cohort studies or intention-to treat analysis for RCTs

Single arm cohort studies were rated based on initial assembly of group, consideration of potential confounders, important outcomes considered, measurements: equal, reliable, and valid (includes masking of outcome assessment), and reporting of attrition if applicable.

Definition of ratings based on above criteria

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (followup \geq 80%); reliable and valid measurement instruments are used and applied equally to all groups; interventions are spelled out clearly; all important outcomes are considered; and appropriate attention to confounders in analysis. In addition, intention-to-treat analysis is used for RCTs.

Fair: Studies are graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: Generally comparable groups are assembled initially, but some question remains whether some (although not major) differences occurred with followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for. Intention-to-treat analysis is used for RCTs.

Poor: Studies are graded "poor" if any of the following fatal flaws exists: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. Intention-to-treat analysis is lacking for RCTs.

Diagnostic Accuracy Studies

Criteria:

- Screening test relevant, available for primary care, and adequately described
- Credible reference standard, performed regardless of test results
- Reference standard interpreted independently of screening test
- Indeterminate results handled in a reasonable manner
- Spectrum of patients included in study
- Sample size
- Reliable screening test

Definition of ratings based on above criteria

Good: Evaluates relevant available screening test; uses a credible reference standard; interprets reference standard independently of screening test; assesses reliability of test; has few or handles indeterminate results in a reasonable manner; includes large number (>100) of broad-spectrum patients with and without disease

Fair: Evaluates relevant available screening test; uses reasonable although not best standard; interprets reference standard independent of screening test; has moderate sample size (50 to 100 subjects) and a "medium" spectrum of patients

Poor: Has a fatal flaw, such as: Uses inappropriate reference standard; improperly administers screening test; biased ascertainment of reference standard; has very small sample size or very narrow selected spectrum of patients

* Reference: U.S. Preventive Services Task Force Procedure Manual. December 2015. Accessed at https://www.uspreventiveservicestaskforce.org/Page/Name/methods-and-processes

- Therese Bartholomew Bevers, MD, FAAFP, Medical Director, Cancer Prevention Center, Professor of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center; Houston, TX.
- Jack Cuzick, PhD, FRS, CBE, Director and Head of Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine; London, UK.
- Leslie Ford, MD, Associate Director for Clinical Research, Division of Cancer Prevention, National Cancer Institute; Washington DC.
- Brandy Heckman-Stoddard, PhD, MPH, Chief, Division of Cancer Prevention, National Cancer Institute; Washington DC.
- Barry Kramer, MD, MPH, Director, Division of Cancer Prevention, National Cancer Institute; Washington DC.
- Sam G. Smith, MSc, PhD, Cancer Research UK Postdoctoral Fellow, University Academic Fellow, Leeds Institute of Health Sciences; London, UK.
- Diana Petitti, MD, MPH, Department of Biomedical Informatics, University of Arizona; Tucson, AZ.
- Brandy Peaker, MD, MPH, Centers for Disease Control and Prevention; Atlanta, GA.

Note: Reviewers provided comments on a prior version of the draft report and may or may not agree with the final report findings.

Author, Year	Was a Consecutive or Random Sample of Patients Enrolled?	Was a Case-Control Design Avoided?	Did the Study Avoid Inappropriate Exclusions?	Were the Index Test Results Interpreted Without Knowledge of the Results of the Reference Standard?	If a Threshold Was Used, Was It Pre-specified?	Is the Reference Standard Likely To Correctly Classify the Target Condition?
Prior review						
Adams-Campbell, 2007	Yes	No	Yes	NR	NA, evaluated cutoff values	Yes
Amir, 2003	Yes	Yes	Yes	NR	No	Yes
Barlow, 2006	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Yes
Boughey, 2010	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Yes
Boyle, 2004	Unclear	No	Yes	NR	NA, evaluated cutoff values	Yes
Chen, 2006	Yes	No	Yes	NR	NA, evaluated cutoff values	Yes
Chlebowski, 2007	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Unclear
Colditz, 2000	Yes	No	Yes	NR	NA, evaluated cutoff values	Unclear
Colditz, 2004	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Unclear
Costantino, 1999	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Yes
DeCarli, 2006	Yes	No	Yes	NR	NA, evaluated cutoff values	Yes
Gail, 1989	Yes	No	Yes	NR	NA, evaluated cutoff values	Yes
Gail, 2007	Unclear	No	Unclear	NR	Unclear	Unclear
Petracci, 2011	Yes	No	Yes	NR	NA, evaluated cutoff values	Yes
Rockhill, 2001	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Unclear

Appendix B1. Quality Assessment of Diagnostic Accuracy Studies

Author, Year	Were the Reference Standard Results Interpreted Without Knowledge of the Results of the Index Test?	Was There an Appropriate Interval Between Index Test(s) and Reference Standard?	Did All Patients Receive a Reference Standard?	Did Patients Receive the Same Reference Standard?	Were All Patients Included in the Analysis?	Quality Rating
Prior review						
Adams-Campbell, 2007	Yes	Yes	Yes	Unclear	Yes	Good
Amir, 2003	Unclear	Yes	Yes	Unclear	Yes	Fair
Barlow, 2006	Yes	Yes	Unclear	Unclear	Yes	Fair
Boughey, 2010	NR	Yes	Yes	Yes	Yes	Good
Boyle, 2004	NR	Unclear	Yes	Yes	Yes	Fair
Chen, 2006	NR	Yes	Yes	Yes	Yes	Good
Chlebowski, 2007	NR	Yes	Yes	Yes	Yes	Good
Colditz, 2000	NR	Yes	Yes	Yes	Yes	Good
Colditz, 2004	NR	Yes	Yes	Yes	Yes	Good
Costantino, 1999	NR	Yes	Yes	Yes	Yes	Good
DeCarli, 2006	NR	Yes	Yes	Yes	Yes	Good
Gail, 1989	NR	Yes	Yes	Yes	Yes	Good
Gail, 2007	NR	Unclear	Unclear	Unclear	NR	Fair
Petracci, 2011	NR	Yes	Yes	Yes	Yes	Good
Rockhill, 2001	NR	Yes	Yes	Yes	Yes	Good

Appendix B1. Quality Assessment of Diagnostic Accuracy Studies

Author, Year	Was a Consecutive or Random Sample of Patients Enrolled?	Was a Case-Control Design Avoided?	Did the Study Avoid Inappropriate Exclusions?	Were the Index Test Results Interpreted Without Knowledge of the Results of the Reference Standard?	If a Threshold Was Used, Was It Pre-specified?	Is the Reference Standard Likely To Correctly Classify the Target Condition?
Rockhill, 2003	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Unclear
Tamimi, 2010	Yes	No	Yes	NR	NA, evaluated cutoff values	Yes
Tice, 2008	Yes	Yes	Yes	NR	NA, evaluated cutoff values	Yes
Tyrer, 2004	Yes	Unclear	Unclear	NR	NA, evaluated cutoff values	Yes
Current review					·	
Brentnall, 2015	Yes	Yes	Yes	Yes	Unclear	Yes
Li, 2018	Yes	Yes	Yes	Unclear	Yes	Yes
Matsuno, 2011	Yes	No	Yes	Unclear	Yes	Unclear
Tice, 2015	Unclear	Yes	Yes	Unclear	Unclear	Yes
Vacek, 2011	Yes	Yes	Yes	Unclear	Unclear	Yes
Warwick, 2014	No	No	Unclear	Unclear	Unclear	Unclear

Appendix B1. Quality Assessment of Diagnostic Accuracy Studies

Author, Year	Were the Reference Standard Results Interpreted Without Knowledge of the Results of the Index Test?	Was There an Appropriate Interval Between Index Test(s) and Reference Standard?	Did All Patients Receive a Reference Standard?	Did Patients Receive the Same Reference Standard?	Were All Patients Included in the Analysis?	Quality Rating
Rockhill, 2003	NR	Yes	Yes	Yes	Yes	Good
Tamimi, 2010	NR	Yes	Yes	Yes	Yes	Good
Tice, 2008	NR	Yes	Yes	Yes	Yes	Good
Tyrer, 2004	NR	NR	Yes	Yes	Yes	Fair
Current review						
Brentnall, 2015	Unclear	Yes	No, only those suspected of cancer	Yes	Yes	Fair
Li, 2018	Unclear	Yes	No, only those suspected of cancer	Yes	Yes	Fair
Matsuno, 2011	Unclear	Unclear	Unclear	Unclear	Yes	Fair
Tice, 2015	Unclear	Yes	Yes	Yes	Yes	Fair
Vacek, 2011	Unclear	Unclear	Yes	Yes	Yes	Fair
Warwick, 2014	Unclear	Unclear	Unclear	Unclear	Yes	Poor

Author, Year	Randomization Adequate?	Allocation Concealment Adequate?	Groups Similar at Baseline?	Eligibility Criteria Specified?	Outcome Assessors Masked?	Care Provider Masked?	Patient Masked?	Attrition and Withdrawals Reported?
Primary prevention trials	s .	•		•				•
STAR	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes
Vogel, 2006								
IBIS-I	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Cuzick, 2002								
NSABP-1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fisher, 1998								
Royal Marsden	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Powles, 1998								
Italian	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Veronesi, 1998								
RUTH	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Barrett-Connor, 2006								
MORE	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cummings, 1999								
CORE	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Martino, 2004								
MAP.3	Yes	Unclear	Yes	Yes	Unclear	Yes	Yes	Yes
Goss, 2011								
HOT	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
DeCensi, 2013								
IBIS-II	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cuzick, 2014								
Raloxifene trials		· · · ·						
Cohen, 2000*	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes
Delmas, 1997*	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes
Goldstein, 2005	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Johnston, 2000*	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes
Jolly, 2003*	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	No
Lufkin, 1998	Yes	Unclear	Mostly, differences in age and alcohol use	Yes	Yes	Yes	Yes	No
McClung, 2006	Unclear	Unclear	Yes	Yes	Unclear	Unclear	Yes	Yes
Meunier, 1999	Unclear	Unclear	Yes	Yes	Unclear	Unclear	Yes	Yes

* Same study participants (Cohen, 2000; Delmas, 1997; Johnston, 2000; and Jolly, 2003)

Appendix B2. Quality Assessment of Randomized, Controlled Trials

Author, Year	Loss to Followup: Differential (>10%)/High (>20%)?	Analyze Patients in the Groups in Which They Were Randomized?	Quality Rating
Primary prevention trials			
STAR	No/No	Yes	Good
Vogel, 2006			
IBIS-I	Unclear	Yes	Good
Cuzick, 2002			
NSABP-1	No/No	Yes	Good
Fisher, 1998			
Royal Marsden	No/No	Yes	Good
Powles, 1998			
Italian	No/No	Yes	Good
Veronesi, 1998			
RUTH	No/No	Yes	Good
Barrett-Connor, 2006			
MORE	No/Yes (23% overall)	Yes	Good
Cummings, 1999			
CORE	No/No	Yes	Good
Martino, 2004			
MAP.3	No/No	Yes	Good
Goss, 2011			
НОТ	No/No	Yes	Good
DeCensi, 2013			
IBIS-II	No/No	Yes	Good
Cuzick, 2014			
Raloxifene trials			
Cohen, 2000*	Unclear	Yes	Fair
Delmas, 1997*	Not reported/Yes (25% overall)	Yes	Fair
Goldstein, 2005	No/No	Yes	Good
Johnston, 2000*	Not reported/Yes (37% overall)	Yes	Fair
Jolly, 2003*	Unclear	Yes	Fair
Lufkin, 1998	Unclear	Yes	Fair
McClung, 2006	33% discontinued overall, no other information	Yes	Fair
Meunier, 1999	No/No	Yes	Fair

* Same study participants (Cohen, 2000; Delmas, 1997; Johnston, 2000; and Jolly, 2003)

Appendix B2. Quality Assessment of Randomized, Controlled Trials

Author, Year	Randomization Adequate?	Allocation Concealment Adequate?	Groups Similar at Baseline?	Eligibility Criteria Specified?	Outcome Assessors Masked?	Care Provider Masked?	Patient Masked?	Attrition and Withdrawals Reported?
Raloxifene trials								
Morii, 2003	Yes	Yes	Mostly, differences in lumbar spine bone mineral density, and serum parathyroid hormone	Yes	Unclear	Yes	Yes	Yes
Palacios, 2004	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes

Author, Year	Loss to Followup: Differential (>10%)/High (>20%)?	Analyze Patients in the Groups in Which They Were Randomized?	Quality Rating
Raloxifene trials			
Morii, 2003	No/No	Yes	Fair
Palacios, 2004	No/No	Yes	Good

Trial	Papers Used	Age (years)	Interventions	Exposure Time (years)	Followup Time (years)	Cut-off Date	N for Outcome (A vs. B)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	Mean: 58.5	A) Tamoxifen 20 mg/day B) Raloxifene	Mean: 3.1 vs. 3.2	Mean: 3.9 Median: 6.8 Median: 6.8	12/31/2005 3/31/2009 3/31/2009	9726 vs. 9745 9736 vs. 9754 4739 vs. 4717
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	Mean: 50.8	60 mg/day A) Tamoxifen 20 mg/day B) Placebo	Unclear 5 5	Median: 4.2 Median: 8.0 Median: 16.0	1/1/2002 4/1/2006 5/1/2014	3573 vs. 3566 3573 vs. 3566 3579 vs. 3575
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	All ≥35; 2.8% 35-39; 36.5% 40-49; 30.6% 50-59; 24.1% 60-69; 6.0% ≥70	A) Tamoxifen 20 mg/day B) Placebo	Median: 4.0	Median: 4.6 Median: 7.0 Mean: 4.2	3/31/1998 3/31/2005 3/31/1998	6576 vs. 6599 6597 vs. 6610 4110 vs. 4199
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	Median: 47	A) Tamoxifen 20 mg/day B) Placebo	Unclear 5 Unclear	Median: 5.8 Median: 13.2 Median: 2.9	Unclear 9/1/2006 Unclear	1238 vs. 1233
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	Median: 51	A) Tamoxifen 20 mg/day B) Placebo	Median: 2.5 Unclear Mean: 4 Unclear	Median: 3.8 Median: 6.8 Mean 11.2 Median: 6.8	Unclear 2/1/2001 12/31/2005 Unclear	2700 vs. 2708

Abbreviations: IBIS=International Breast Cancer Intervention Study; N=number; NR=not reported; NSABP-1=National Surgical Adjuvant Brest and Bowel Project P-1 Study; STAR=Study of Tamoxifen and Raloxifene.

		Woman-Years of Followup			
Trial	Papers Used	(A vs. B)	BC Deaths (A vs. B)	RR of BC Deaths (95% CI)	All-Cause Mortality (A vs. B)
STAR	Vogel, 2006	NR	4 vs. 2	NR	101 vs. 92
	Vogel, 2010		11 vs. 4		236 vs. 202
	Runowicz, 2011		NR		NR
IBIS-I	Cuzick, 2002	14,998 vs. 14,969	2 vs. 2	NR	25 vs. 11
	Cuzick, 2007	28,555 vs. 28,573	11 vs. 13	0.85 (0.34 to 2.05)	65 vs. 55
	Cuzick, 2015	55,419 vs. 54,624	31 vs. 26	1.19 (0.68 to 2.10)*	182 vs. 166
NSABP-1	Fisher, 1998	26,154 vs. 26,247	3 vs. 6	0.81 (0.56 to 1.16)	57 vs. 71
	Fisher, 2005	40,844 vs. 40,648	12 vs. 11	1.10 (0.85 to 1.43)	126 vs. 114
	Chalas, 2005	NR	NR	NR	NR
Marsden	Powles, 1998	NR	4 vs. 1	NR	9 vs. 6
	Powles, 2007		12 vs. 9		54 vs. 54
	Powles, 1994		NR		NR
Italian	Veronesi, 1998	NR	0 vs. 0	NA	NR
	Veronesi, 2002		0 vs. 0	NA	10 vs. 20
	Veronesi, 2007		2 vs. 2	NR	36 vs. 38
	Veronesi, 2003		NR	NR	NR

* OR instead of RR.

Trial	Papers Used	RR of All-Cause Mortality (95% CI)	All BC Occurrence (A vs. B)	RR of All BC Occurrence (95% Cl)	Invasive BC (A vs. B)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	0.94 (0.71 to 1.26) 0.84 (0.70 to 1.02) NR	NR	NR	163 vs. 168 -ER+: 115 vs. 109 -ER-: 44 vs. 51 247 vs. 310 NR
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	NR 1.18 (0.81 to 1.73) 1.10 (0.88 to 1.37)*	69 vs. 101 142 vs. 195 251 vs. 350	0.68 (0.50 to 0.92)* 0.73 (0.58 to 0.91) 0.71 (0.60 to 0.83) [†]	64 vs. 85 -ER+: 16 vs. 23 -ER-: 19 vs. 19 124 vs. 168 -ER+: 87 vs. 132 -ER-: 35 vs. 35 214 vs. 289 -ER+: 160 vs. 238 -ER-: 50 vs. 47
NSABP- 1	Fisher, 1998 Fisher, 2005 Chalas, 2005	0.81 (0.56 to 1.16) 1.10 (0.85 to 1.43) NR	124 vs. 244 205 vs. 343 NR	NR	89 vs. 175 -ER+: 41 vs. 130 -ER-: 38 vs. 31 145 vs. 250 -ER+: 70 vs. 182 -ER-: 56 vs. 42 NR
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR 0.99 (0.68 to 1.44) [†] NR	34 vs. 36 96 vs. 113 NR	1.06 (0.7 to 1.7) 0.84 (0.64 to 1.10) [†] NR	NR 82 vs. 104 -ER+: 53 vs. 86 -ER-: 24 vs. 17 NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR NR 0.95 (0.60 to 1.49) NR	19 vs. 22 34 vs. 45 62 vs. 74 NR	NR NR 0.84 (0.60 to 1.17) NR	NR NR 9 vs. 6 NR

* OR instead of RR.

[†] HR instead of RR.

Abbreviations: BC=breast cancer; CI=confidence interval; ER+=estrogen receptor positive; ER-=estrogen receptor negative; IBIS=International Breast Cancer Intervention Study; NR=not reported; NSABP-1=National Surgical Adjuvant Brest and Bowel Project P-1 Study; RR=risk ratio; STAR=Study of Tamoxifen and Raloxifene.

Trial	Papers Used	RR of Invasive BC (95% CI)	Noninvasive BC (A vs. B)	RR of Noninvasive BC (95% CI)	Invasive EC (A vs. B)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	1.02 (0.82 to 1.28) -ER+: 0.93 (0.72 to 1.24) -ER-: 1.15 (0.75 to 1.77) 1.24 (1.05 to 1.47) NR	57 vs. 80 -DCIS: 30 vs. 44 -LCIS: 21 vs. 29 -Mixed: 6 vs. 7 101 vs. 137 -DCIS: 70 vs. 86 -LCIS: 33 vs. 34 -Mixed: 8 vs. 17 NR	1.46 (0.90 to 2.41) -DCIS: 1.37 (0.76 to 2.54) -LCIS: 1.16 (0.33 to 4.18) -Mixed: 1.40 (0.98 to 2.00) 1.22 (0.95 to 1.59) -DCIS: 1.22 (0.88 to 1.69) -LCIS: 1.02 (0.61 to 1.70) -Mixed: 2.11 (0.86 to 5.64) NR	36 vs. 23 65 vs. 37 NR
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	0.75 (0.54 to 1.04)* -ER+: 0.69 (0.37 to 1.02* -ER-: 1.00 (0.53 to 1.87)* 0.74 (0.58 to 0.94) -ER+: 0.66 (0.50 to 0.87) -ER-: 1.00 (0.61 to 1.65) 0.73 (0.61 to 0.87) [†] -ER+: 0.66 (0.54 to 0.81) [†] -ER-: 1.05 (0.71 to 1.57) [†]	5 vs. 16 17 vs. 27 35 vs. 53 Defined as DCIS	0.31 (0.12 to 0.82)* 0.63 (0.32 to 1.20) 0.65 (0.43 to 1.00) [†]	11 vs. 5 17 vs. 11 29 vs. 20 -Note: these were not specifically invasive
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	0.51 (0.39 to 0.66) -ER+: 0.31 (0.22 to 0.45) -ER-: 1.22 (0.74 to 2.03) 0.57 (0.46 to 0.70) -ER+: 0.38 (0.28 to 0.50) -ER-: 1.31 (0.86 to 2.01) NR	35 vs. 69 60 vs. 93 NR Definition not specified	0.50 (0.33 to 0.77) 0.63 (0.45 to 0.89) NR	36 vs. 15 53 vs. 17 NR
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR 0.78 (0.58 to 1.04) [†] -ER+: 0.61 (0.43 to 0.86) [†] -ER-: 1.4 (0.7 to 2.6) [†] NR	4 vs. 4 14 vs. 9 NR Defined as DCIS	NR	4 vs. 1 13 vs. 5 NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR NR 9 vs. 6 NR Definition not specified	NR	NR

* OR instead of RR.

[†] HR instead of RR.

Abbreviations: BC=breast cancer; CI=confidence interval; DCIS=ductal carcinoma in situ; EC=endometrial cancer; ER+=estrogen receptor positive; ER-=estrogen receptor negative; IBIS=International Breast Cancer Intervention Study; NR=not reported; NSABP-1=National Surgical Adjuvant Brest and Bowel Project P-1 Study; RR=risk ratio; STAR=Study of Tamoxifen and Raloxifene.

Trial	Papers Used	RR of Invasive EC (95% CI)	DVT (A vs. B)	RR of DVT (95% CI)	PE (A vs. B)	RR of PE (95% CI)
STAR	Vogel, 2006	0.62 (0.35 to 1.08)	87 vs. 65	0.74 (0.53 to 1.03)	54 vs. 35	0.64 (0.41 to 1.00)
	Vogel, 2010	0.55 (0.36 to 0.83)	118 vs. 86	0.72 (0.54 to 0.95)	84 vs. 68	0.80 (0.57 to 1.11)
	Runowicz, 2011	NR	NR	NR	NR	NR
IBIS-I	Cuzick, 2002	2.20 (0.80 to 6.06)*	24 vs. 5	NR	13 vs. 10	NR
	Cuzick, 2007	1.55 (0.68 to 3.65)	68 vs. 37	1.84 (1.21 to 2.82)	See DVT column	See DVT column
	Cuzick, 2015	1.45 (0.79 to 2.71)*	-Note: DVT/PE	1.73 (1.07 to 2.85)*	30 vs. 22	1.37 (0.76 to 2.49)*
			combined			
			50 vs. 29			
NSABP-1	Fisher, 1998	2.53 (1.35 to 4.97)	35 vs. 22	1.60 (0.91 to 2.86)	18 vs. 6	3.01 (1.15 to 9.27)
	Fisher, 2005	3.28 (1.87 to 6.03)	49 vs. 34	1.44 (0.91 to 2.30)	28 vs. 13	2.15 (1.08 to 4.51)
	Chalas, 2005	NR	NR	NR	NR	NR
Marsden	Powles, 1998	NR	4 vs. 2	NR	3 vs. 2	NR
	Powles, 2007		NR		NR	
	Powles, 1994		NR		NR	
Italian	Veronesi, 1998	NR	6 vs. 3	NR	1 vs. 1	NR
	Veronesi, 2002		7 vs. 6		2 vs. 1	
	Veronesi, 2007		NR		NR	
	Veronesi, 2003		NR		NR	

* OR instead of RR.

Abbreviations: CI=confidence interval; DVT=deep vein thrombosis; EC=endometrial cancer; IBIS=International Breast Cancer Intervention Study; NR=not reported; NSABP-1=National Surgical Adjuvant Brest and Bowel Project P-1 Study; PE=pulmonary embolism; RR=risk ratio; STAR=Study of Tamoxifen and Raloxifene.

Trial	Papers Used	Overall Thrombo Event (A vs. B)	RR of Overall Thrombo Events (95% CI)	Stroke (A vs. B)	RR of Stroke (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	141 vs. 100 202 vs. 154 NR	0.70 (0.54 to 0.91) 0.75 (0.60 to 0.93) NR	53 vs. 51 NR NR	0.96 (0.64 to 1.43) NR NR
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	43 vs. 17 117 vs. 68 104 vs. 62	NR 1.72 (1.27 to 2.36) 1.70 (1.22 to 2.37)*	13 vs. 11 15 vs. 12 -Note: Stroke/CVA combined 30 vs. 28 -Note: stroke/CVA combined	NR 1.25 (0.55 to 2.93) 1.07 (0.62 to 1.86)
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR	NR	38 vs. 24 71 vs. 50 NR	1.59 (0.93 to 2.77) 1.42 (0.97 to 2.08) NR
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR 7 vs. 9 NR	NR	NR 7 vs. 9 NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	38 vs. 18 NR 44 vs. 28 NR	NR NR 1.63 (1.02 to 2.62) NR	5 vs. 0 NR NR	NR

* OR instead of RR.

Trial	Papers Used	TIA (A vs. B)	RR of TIA (95% CI)	Overall Cerebrovascular Events (A vs. B)	RR of Overall Cerebrovascular Events (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	41 vs. 50 NR NR	1.21 (0.79 to 1.88) NR NR	NR	NR
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	3 vs. 6 17 vs. 22 27 vs. 40	NR 0.77 (0.39 to 1.52) 0.67 (0.40 to 1.12)	16 vs. 17 32 vs. 34 62 vs. 74	NR 0.94 (0.56 to 1.57) 0.83 (0.58 to 1.19)*
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	19 vs. 25 31 vs. 34 NR	0.76 (0.40 to 1.44) 0.91 (0.54 to 1.52) NR	NR	NR
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR	NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	9 vs. 5 15 vs. 9 12 vs. 7 NR	NR NR 1.78 (0.70 to 4.52) NR

* OR instead of RR.

Trial	Papers Used	MI (A vs. B)	RR of MI (95% CI)	Angina (A vs. B)	RR of Angina (95% CI)
STAR	Vogel, 2006	48 vs. 37	0.77 (0.48 to 1.20)	51 vs. 63	1.23 (0.84 to 1.81)
	Vogel, 2010	NR	NR	NR	NR
	Runowicz, 2011	NR	NR	NR	NR
IBIS-I	Cuzick, 2002	5 vs. 5	NR	39 vs. 34	NR
	Cuzick, 2007	9 vs. 15	0.60 (0.23 to 1.46)	60 vs. 51	1.18 (0.80 to 1.74)
	Cuzick, 2015	13 vs. 17	0.76 (0.34 to 1.67)*	60 vs. 51	1.18 (0.80 to 1.75)
NSABP-1	Fisher, 1998	31 vs. 28	1.11 (0.65 to 1.92)	13 vs. 14	0.93 (0.40 to 2.14)
	Fisher, 2005	43 vs. 44	0.97 (0.62 to 1.52)	34 vs. 33	1.03 (0.62 to 1.71)
	Chalas, 2005	NR	NR	NR	NR
Marsden	Powles, 1998	NR	NR	NR	NR
	Powles, 2007				
	Powles, 1994				
Italian	Veronesi, 1998	NR	NR	NR	NR
	Veronesi, 2002	5 vs. 5			
	Veronesi, 2007	NR			
	Veronesi, 2003	NR			

* OR instead of RR.

Trial	Papers Used	Acute Ischemic Syndrome (A vs. B)	RR of Acute Ischemic Syndrome (95% CI)	Overall Cardiovascular Events (A vs. B)	RR of Overall Cardiovascular Event (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	15 vs. 26 NR NR	1.72 (0.88 to 3.50) NR NR	114 vs. 126 NR NR	1.10 (0.85 to 1.43) NR NR
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	NR	NR	73 vs. 63 122 vs. 123 141 vs. 153	NR 0.99 (0.77 to 1.29) 0.92 (0.72 to 1.17)
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	27 vs. 20 36 vs. 32 NR	1.36 (0.73 to 2.55) 1.12 (0.68 to 1.86) NR	71 vs. 62 113 vs. 109 NR	1.15 (0.81 to 1.64) 1.03 (0.79 to 1.36) NR
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR	NR 10 vs. 12 NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	NR	NR

Trial	Papers Used	Any Fractures (A vs. B)	RR of Any Fractures (95% CI)	Hip Fractures (A vs. B)	RR of Hip Fractures (95% CI)
STAR	Vogel, 2006	104 vs. 96	0.92 (0.69 to 1.22)	26 vs. 23	0.88 (0.48 to 1.60)
	Vogel, 2010	NR	NR	NR	NR
	Runowicz, 2011	NR	NR	NR	NR
IBIS-I	Cuzick, 2002	116 vs. 127	NR	45 vs. 40	NR
	Cuzick, 2007	240 vs. 235	1.02 (0.86 to 1.21)	-Note: hip, spine, wrist,	1.19 (0.89 to 1.62)
	Cuzick, 2015	NR	NR	or forearm combined	NR
				91 vs. 76	
				-Note: hip, spine, wrist,	
				or forearm combined	
				NR	
NSABP-1	Fisher, 1998	111 vs. 137	0.81 (0.63 to 1.05)	12 vs. 22	0.55 (0.25 to 1.15)
	Fisher, 2005	-Note: this includes other	0.68 (0.51 to 0.92)	24 vs. 35	0.68 (0.39 to 1.18)
	Chalas, 2005	lower radius fractures,	NR	NR	NR
		which are not			
		included below			
		80 vs. 116			
	_	NR			
Marsden	Powles, 1998	NR	NR	NR	NR
	Powles, 2007	19 vs. 22			
	Powles, 1994	NR			
Italian	Veronesi, 1998	NR	NR	NR	NR
	Veronesi, 2002				
	Veronesi, 2007				
	Veronesi, 2003				

		Spine (vertebral)	RR of Spine (vertebral)	Radius (wrist) Fractures	RR of Radius Fractures
Trial	Papers Used	Fractures (A vs. B)	Fractures (95% CI)	(A vs. B)	(95% CI)
STAR	Vogel, 2006	53 vs. 52	0.98 (0.65 to 1.46)	27 vs. 23	0.85 (0.46 to 1.53)
	Vogel, 2010	NR	NR	NR	NR
	Runowicz, 2011	NR	NR	NR	NR
IBIS-I	Cuzick, 2002	NR	NR	NR	NR
	Cuzick, 2007	See hip fracture	See hip fracture column		
	Cuzick, 2015	column NR	NR		
NSABP-1	Fisher, 1998	23 vs. 31	0.74 (0.41 to 1.32)	14 vs. 23	0.61 (0.29 to 1.23)
	Fisher, 2005	40 vs. 53	0.75 (0.48 to 1.15)	20 vs. 29	0.69 (0.37 to 1.25)
	Chalas, 2005	NR	NR	NR	NR
Marsden	Powles, 1998	NR	NR	NR	NR
	Powles, 2007				
	Powles, 1994				
Italian	Veronesi, 1998	NR	NR	NR	NR
	Veronesi, 2002				
	Veronesi, 2007				
	Veronesi, 2003				

Trial	Papers Used	Hysterectomy (A vs. B)	RR of Hysterectomy (95% CI)	Cataracts (A vs. B)	RR Cataracts (95% CI)
STAR	0 /	244 vs. 111 349 vs. 162 349 vs. 162	0.44 (0.35 to 0.56) 0.45 (0.37 to 0.54) 0.45 (0.37 to 0.54)	394 vs. 313 739 vs. 603 NR	0.79 (0.68 to 0.92) 0.80 (0.72 to 0.89) NR
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	-Pre: 76 vs. 53 -Post: 27 vs. 14 NR NR	NR	38 vs. 37 67 vs. 54 NR	NR 1.24 (0.87 to 1.77) NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR	NR NR 1.7 (1.46 to 2.02) -Pre: 1.6 (1.29 to 1.88) -Post: 2.2 (1.60 to 3.13)	574 vs. 507 NR NR	1.14 (1.01 to 1.29) 1.21 (1.10 to 1.34) NR
Marsden		NR 177 vs. 96 29 vs. 16	NR	NR 12 vs. 3 NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	NR	NR

Trial	Papers Used	Endometrial Cancer (A vs. B)	RR of Endometrial Cancer (95% CI)	Hyperplasia (A vs. B)	RR of Hyperplasia (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	36 vs. 23 65 vs. 37 65 vs. 37	0.62 (0.35 to 1.08) 0.55 (0.36 to 0.83) 0.55 (0.36 to 0.83)	84 vs. 14 126 vs. 25 126 vs. 25	0.16 (0.09 to 0.29) 0.19 (0.12 to 0.29) 0.19 (0.12 to 0.29)
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	11 vs. 5 17 vs. 11 29 vs. 20 -Note: these were not specifically invasive	2.20 (0.80 to 6.06)* 1.55 (0.68 to 3.65) 1.45 (0.79 to 2.71)*	NR	NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR 53 vs. 17 NR	NR 3.28 (1.87 to 6.03) NR	NR NR 310 vs. 183	NR NR -Pre: 1.65 (1.34 to 2.04) -Post: 2.38 (1.56 to 3.71)
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR	NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR NR 2.4 (1.5 to 4.0)*	NR	NR

* OR instead of RR.

Trial	Papers Used	Hyperplasia Without Atypia (A vs. B)	RR of Hyperplasia Without Atypia (95% CI)	Hyperplasia With Atypia (A vs. B)	RR of Hyperplasia With Atypia (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	72 vs. 13 104 vs. 21 104 vs. 21	0.18 (0.09 to 0.32) 0.19 (0.11 to 0.31) 0.19 (0.11 to 0.31)	12 vs. 1 22 vs. 4 22 vs. 4	0.08 to (0 to 0.55) 0.17 (0.04 to 0.51) 0.17 (0.04 to 0.51)
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	NR	NR	-Pre: 118 vs. 53 -Post: 27 vs. 14 NR NR	NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR NR - Simple: 224 vs. 115 -Complex: 59 vs. 47	NR NR -Simple: 2.06 (1.64 to 2.60) -Complex: 1.33 (0.89 to 1.99)	NR NR -Simple: 10 vs. 4 -Complex: 17 vs. 17	NR NR -Simple: 2.64 (0.76 to 11.54) -Complex: 1.06 (0.51 to 2.20)
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR	NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	NR	NR

Trial	Papers Used	Oophorectomy (A vs. B)	RR of Oophorectomy (95% CI)	Currettage (A vs. B)	RR of Currettage (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	NR NR 271 vs. 192 Bilateral	NR NR 0.50 (0.42 to 0.60)	NR NR 673 vs. 218	NR NR 0.30 (0.26 to 0.35)
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	-Pre: 106 vs. 76 - Post: 72 vs. 18 NR NR	NR	NR	NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR	NR NR 1.6 (1.34 to 1.98) -Pre: 1.5 (1.19 to 1.87) -Post: 2.1 (1.39 to 3.27) Bilateral	NR	NR NR 2.0 (1.74 to 2.35) -Pre: 1.5 (1.23 to 1.77) -Post: 3.8 (2.86 to 5.09)
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR	NR NR 15 vs. 19	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	NR	NR

Trial	Papers Used	Laparoscopy (A vs. B)	RR of Laparoscopy (95% CI)	Hysteroscopy (A vs. B)	RR of Hysteroscopy (95% CI)
STAR	Vogel, 2006	NR	NR	NR	NR
	Vogel, 2010	NR	NR	NR	NR
	Runowicz, 2011	14 vs. 4	0.28 (0.07 to 0.90)	493 vs. 151	0.29 (0.24 to 0.35)
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	- Pre: 136 vs. 107 -Post: 92 vs. 31 NR NR	NR	NR	NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR	NR NR 1.5 (1.17 to 1.85) -Pre: 1.3 (0.96 to 1.65) -Post: 2.2 (1.40 to 3.51)	NR	NR NR 1.9 (1.33 to 2.62) -Pre: 1.4 (0.91 to 2.09) -Post: 3.5 (1.82 to 6.99)
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR NR 4 vs. 5	NR	NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	NR	NR

Trial	Papers Used	Leiomyomas (A vs. B)	RR of Leiomyomas (95% CI)	Ovarian Cysts (A vs. B)	RR of Ovarian Cysts (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	NR NR 757 vs. 443	NR NR 0.55 (0.49 to 0.62)	NR NR 236 vs. 147	NR NR 0.60 (0.049 to 0.74)
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	-Pre: 86 vs. 33 -Post: 15 vs. 9 NR NR	NR	-Pre: 69 vs. 43 -Post: 61 vs. 22 NR NR Defined as endometrial polyps	NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR	NR NR 1.3 (1.17 to 1.54) -Pre: 1.3 (1.14 to 1.55) -Post: 1.4 (1.04 to 1.80)	NR	NR NR 1.3 (1.18 to 1.70) - Pre: 1.5 (1.20 to 1.78) -Post: 1.2 (0.76 to 1.92)
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR	NR NR -Pre: 44 vs. 40 -Post 13 vs. 4	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	NR	NR

Trial	Papers Used	Polyps (A vs. B)	RR of Polyps (95% CI)	Endometriosis (A vs. B)	RR of Endometriosis (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	NR NR 575 vs. 185 Definition not specified	NR NR 0.30 (0.25 to 0.35)	NR NR 190 vs. 64	NR NR 0.32 (0.24 to 0.43)
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	Pre: 14 vs. 16 Post: 6 vs. 5 NR NR	NR	NR	NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR Definition not specified	NR 2.1 (1.74 to 2.45) -Pre: 1.9 (1.55 to 2.41) -Post: 2.4 (1.76 to 3.24)	NR	NR NR 2.0 (1.50 to 2.78) -Pre: 1.9 (1.35 to 2.70) -Post: 2.6 (1.29 to 5.58)
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR	NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR	NR	NR

Trial	Papers Used	Endometritis (A vs. B)	RR of Endometritis (95% CI)
STAR	Vogel, 2006 Vogel, 2010 Runowicz, 2011	NR	NR
IBIS-I	Cuzick, 2002 Cuzick, 2007 Cuzick, 2015	NR	NR
NSABP-1	Fisher, 1998 Fisher, 2005 Chalas, 2005	NR	NR NR 0.8 (0.44 to 1.62) -Pre: 0.8 (0.41 to 1.64) -Post: 1.0 (0.07 to 14.26)
Marsden	Powles, 1998 Powles, 2007 Powles, 1994	NR	NR
Italian	Veronesi, 1998 Veronesi, 2002 Veronesi, 2007 Veronesi, 2003	NR	NR

Trial	Papers Used	Age (years)	Interventions	Exposure Time (years)	Followup Time (years)	Cut-off Date	N for Outcome (A vs. B)
MORE/ CORE	Cummings, 1999 Cauley, 2001	Median: 66.5	A) Raloxifene 60 or 120 mg/day	3	Median: 3.3 Median: 4	Unclear	2557 vs. 2572 vs. 2576
CORE	Martino, 2004		B) Placebo	3	Median: 8		2557 vs.
	Martino, 2005 Delmas, 2002 Siris, 2005			4	Mean: 7.8 Median: 4 Median: 8		2572 vs. 2576 3510 vs. 1703 2725 vs. 1286
	Grady, 2003 Grady, 2004 Grady, 2010			4	Median: 8		2725 vs. 1200 2557 vs. 2572 vs. 2576 2725 vs. 1286 2725 vs. 1286
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	Median: 67.5	Raloxifene 60 mg/day Placebo	Median: 5.1	Median: 5.6	2/2/2006	5044 vs. 5057
HOT	DeCensi, 2013	Mean: 53	Tamoxifen 5 mg/day Placebo	Mean: 3.5 vs. 3.6	Mean: 6.1 vs. 6.2	Unclear	938 vs. 946
MAP.3	Goss, 2011 Maunsell, 2014	Median: 62.5	Exemestane 25 mg/day Placebo	3	Median: 2.9	11/5/2010	2285 vs. 2275
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	Median: 59.5	Anastrozole 1 mg/day Placebo	5	Median: 5	5/15/2013	1920 vs. 1944

		Woman-Years of Followup			
Trial	Papers Used	(A v.s B)	BC Deaths (A vs. B)	RR of BC Deaths (95% CI)	All-Cause Mortality (A vs. B)
MORE/CORE	Cummings, 1999	NR	1 vs. 0	NR	NR
	Cauley, 2001		1 vs. 0		2 vs. 1
	Martino, 2004		1 vs. 0		CORE: 47 vs. 29
	Martino, 2005		NR		47 vs. 29
	Delmas, 2002		NR		NR
	Siris, 2005		NR		NR
	Grady, 2004		NR		NR
RUTH	Grady, 2008	NR	2 vs. 0	NR	NR
	Barrett-Connor, 2006		NR		
	Ensrud, 2008		NR		
НОТ	DeCensi, 2013	69,044 vs. 69,839	1 vs. 0	NR	6 vs. 2
MAP.3	Goss, 2011	NR	1 vs. 0	NR	19 vs. 19
	Maunsell, 2014				
IBIS-II	Cuzick, 2014	9727 vs. 9672	2 vs. 0	NR	18 vs. 17
	Sestak, 2014				
	Spagnolo, 2016				

		RR of All-Cause Mortality	All BC Occurrence	RR of All BC Occurrence	
Trial	Papers Used	(95% CI)	(A vs. B)	(95% CI)	Invasive BC (A vs. B)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	NR	22 vs. 32 33 vs. 44 CORE: 31 vs. 30 -MORE+CORE: 56 vs. 65 NR NR NR NR NR	0.35 (0.21 to 0.58) 0.38 (0.24 to 058) CORE: 0.50 (0.30 to 0.82) [†] -MORE+CORE: 0.42 (0.29 to 0.60) [†] NR NR NR NR NR	13 vs. 27 -ER+: 4 vs. 20 -ER-: 7 vs. 4 22 vs. 39 -ER+: 10 vs. 31 -ER-: 9 vs. 4 CORE: 24 vs. 28 -ER+: 15 sv. 21 -ER-: 7 vs. 3 MORE+CORE: 40 vs. 58 -ER+: 22 vs. 44 -ER-: 15 vs. 7 NR NR NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR	52 vs. 76 52 vs. 76 NR	0.67 (0.47 to 0.96) [†] 0.67 (0.47 to 0.96) [†] NR	NR 40 vs. 70 -ER+: 25 vs. 55 -ER-: 13 vs. 9 40 vs. 70 -ER+: 25 vs. 55 -ER-: 13 vs. 9NR
НОТ	DeCensi, 2013	NR	19 vs. 24	0.80 (0.44 to 1.46)	18 vs. 22 -ER+: 12 vs. 20 -ER-: 8 vs. 3
MAP.3	Goss, 2011 Maunsell, 2014	NR	20 vs. 44	0.47 (0.27 to 0.79) [†]	11 vs. 32 -ER+: 7 vs. 27 -ER-: 4 vs. 5
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	NR	40 vs. 85	0.47 (0.32 to 0.68) [†]	32 vs. 64 -ER+: 20 vs. 47 -ER-: 11 vs. 14

[†] HR instead of RR.

Abbreviations: BC=breast cancer; CHD=coronary heart disease; CI=confidence interval; ER+=estrogen receptor positive; ER-=estrogen receptor negative; HOT=Hormone replacement therapy Opposed by low dose Tamoxifen; IBIS=International Breast Cancer Intervention Study; MAP.3=Mammary Prevention.3 Trial; MORE=Multiple Outcomes of Raloxifene Evaluation; NR=not reported; RR=risk ratio; RUTH=Raloxifene Use for the Heart.

			Noninvasive BC		Invasive EC
Trial	Papers Used	RR of Invasive BC (95% CI)	(A vs. B)	RR of Noninvasive BC (95% CI)	(A vs. B)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	0.24 (0.13 to 0.44) -ER+: 0.10 (0.04 to 0.24) -ER-: 0.88 (0.26 to 3.00) 0.28 (0.17 to 0.46) -ER+: 0.16 (0.09 to 0.30) -ER-: 1.13 (0.35 to 3.66) CORE: 041 (0.24 to 0.71) [†] -ER+: 0.34 (0.18 to 0.66) [†] -ER-: 1.13 (0.29 to 4.35) [†] MORE+CORE: 0.34 (0.22 to 0.50) [†] -ER+: 0.24 (0.15 to 0.40) [†] -ER-: 1.06 (0.43 to 2.59) [†] NR NR NR NR	7 vs. 5 9 vs. 5 CORE: 7 vs. 2 -MORE+CORE: 16 vs. 7 NR NR NR All were DCIS in MORE Unspecified in CORE	NR 0.90 (0.30 to 2.69) CORE: 1.78 (0.37 to 8.61) [†] -MORE+CORE: 1.12 (0.46 to 2.73) [†] NR NR NR NR NR	6 vs. 4 9 vs. 5 CORE: 4 vs. 3 -MORE+CORE: 7 vs. 4 7 vs. 4 NR NR NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	0.56 (0.38 to 0.83) [†] -ER+: 0.45 (0.28 to 0.72) [†] - ER-: 1.44 (0.61 to 3.36) [†] 0.56 (0.38 to 0.83) [†] -ER+: 0.45 (0.28 to 0.72) [†] - ER-: 1.44 (0.61 to 3.36) [†] NR	11 vs. 5 11 vs. 5 NR All were DCIS	2.17 (0.75 to 6.24) [†] 2.17 (0.75 to 6.24) [†] NR	NR 21 vs. 17 NR
HOT	DeCensi, 2013	NR	NR	NR	1 vs. 3
MAP.3	Goss, 2011 Maunsell, 2014	0.35 (0.18 to 0.70) [†] -ER+: 0.27 (0.12 to 0.60) [†] -ER-: 0.80 (0.21 to 2.98) [†]	9 vs. 14 Defined as DCIS	0.65 (0.28 to 1.51) [†]	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	0.50 (0.32 to 0.76) [†] -ER+: 0.42 (0.25 to 0.71) [†] -ER-: 0.78 (0.35 to 1.72) [†]	6 vs. 20 Defined as DCIS	0.30 (0.12 to 0.74) [†]	3 vs. 5

[†] HR instead of RR.

Abbreviations: BC=breast cancer; CHD=coronary heart disease; CI=confidence interval; DCIS=ductal carcinoma in situ; EC=endometrial cancer; ER+=estrogen receptor positive; ER-=estrogen receptor negative; HOT=Hormone replacement therapy Opposed by low dose Tamoxifen; IBIS=International Breast Cancer Intervention Study; MAP.3=Mammary Prevention.3 Trial; MORE=Multiple Outcomes of Raloxifene Evaluation; NR=not reported; RR=risk ratio; RUTH=Raloxifene Use for the Heart.

		RR of Invasive EC				
Trial	Papers Used	(95% CI)	DVT (A vs. B)	RR of DVT (95% CI)	PE (A vs. B)	RR of PE (95% CI)
MORE/	Cummings, 1999	0.80 (0.20 to 2.70)	38 vs. 5	NR	17 vs. 3	NR
CORE	Cauley, 2001	NR	44 vs. 8		22 vs. 4	
	Martino, 2004	NR	CORE: 17 vs. 5		CORE: 9 vs. 0	
	Martino, 2005	NR	-MORE+CORE:		-MORE+CORE: 17 vs. 2	
	Delmas, 2002	NR	31		17 vs. 2	
	Siris, 2005	NR	vs. 10		NR	
	Grady, 2004	NR	31 vs. 10		NR	
			NR		NR	
			NR			
			NR			
RUTH	Grady, 2008	NR	NR	NR	NR	NR
	Barrett-Connor, 2006		65 vs. 47	1.37 (0.94 to 1.99) [†]	36 vs. 24	1.49 (0.89 to 2.49) [†]
	Ensrud, 2008		NR	NR	NR	NR
HOT	DeCensi, 2013	0.34 (0.04 to 3.25	NR	NR	NR	NR
MAP.3	Goss, 2011	NR	NR	NR	NR	NR
	Maunsell, 2014					
IBIS-II	Cuzick, 2014	0.61 (0.15 to 2.54)	NR	NR	NR	NR
	Sestak, 2014					
	Spagnolo, 2016					

[†] HR instead of RR.

Abbreviations: CI=confidence interval; DVT=deep vein thrombosis; EC=endometrial cancer; HOT=Hormone replacement therapy Opposed by low dose Tamoxifen; IBIS=International Breast Cancer Intervention Study; MAP.3=Mammary Prevention.3 Trial; MORE=Multiple Outcomes of Raloxifene Evaluation; NR=not reported; PE=pulmonary embolism; RR=risk ratio; RUTH=Raloxifene Use for the Heart.

Trial	Papers Used	Overall Thrombo Event (A vs. B)	RR of Overall Thrombo Events (95% CI)	Stroke (A vs. B)	RR of Stroke (95% CI)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	49 vs. 8 59 vs. 12 CORE: 23 vs. 5 -MORE+CORE: 47 vs. 13 47 vs. 13 NR NR NR	NR	NR NR 78 vs. 32 NR NR NR	NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR 103 vs. 71 NR	1.44 (1.06 to 1.95) [↑] NR	NR 249 vs. 224 -Hemorrhagic: 18 vs. 30 -Ischemic: 198 vs. 171 -Undetermined: 39 vs. 30 NR	NR 1.10 (0.92 to 1.32) [†] -Hemorrhagic: 0.59 (0.33 to 1.06) [†] -Ischemic: 1.15 (0.93 to 1.41) [†] -Undetermined: 1.28 (0.80 to 2.07) [†] NR
НОТ	DeCensi, 2013	5 vs. 2	2.64 (0.51 to 13.6)	1 vs. 2	0.51 (0.01 to 9.72)
MAP.3	Goss, 2011 Maunsell, 2014	11 vs. 7	NR	13 vs. 11 -Note: stroke/TIA combined	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	19 vs. 17	1.13 (0.59 to 2.17)	3 vs. 6	0.50 (0.08 to 2.33)

[†] HR instead of RR.

Trial	Papers Used	TIA (A vs. B)	RR of TIA (95% CI)	Overall Cerebrovascular Events (A vs. B)	RR of Overall Cerebrovascular Events (95% CI)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	NR	NR	NR	NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR	NR	NR	NR
HOT	DeCensi, 2013	NR	NR	5 vs. 2	2.11 (0.39 to 11.5)
MAP.3	Goss, 2011 Maunsell, 2014	See stroke column	NR	NR	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	NR	NR	3 vs. 6 -Note: cerebrovascular accident	0.51 (0.13 to 2.02)

Trial	Papers Used	MI (A vs. B)	RR of MI (95% CI)	Angina (A vs. B)	RR of Angina (95% CI)
MORE/ CORE	Cummings, 1999 Cauley, 2001	NR NR	NR	NR	NR
	Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	NR 74 vs. 34 NR NR NR			
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR 183 vs. 208 -Note: only nonfatal MI here NR	NR 0.87 (0.71 to 1.06) [†] NR	NR	NR
HOT	DeCensi, 2013	NR	NR	NR	NR
MAP.3	Goss, 2011 Maunsell, 2014	4 vs. 4	NR	5 vs. 13 -Note: ongoing, no surgical intervention	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	8 vs. 9 -Note: includes cardiac failure	0.90 (0.35 to 2.32)	NR	NR

[†] HR instead of RR.

Trial	Papers Used	Acute Ischemic Syndrome (A vs. B)	RR of Acute Ischemic Syndrome (95% CI)	Overall Cardiovascular Events (A vs. B)	RR of Overall Cardiovascular Event (95% Cl)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	NR	NR	NR	NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR	NR	NR 533 vs. 553 -Note: this seems to include everything, stroke, VTE, etc. NR	NR 0.95 (0.84 to 1.07) NR
НОТ	DeCensi, 2013	NR	NR	4 vs. 6 -Note: coronary heart syndrome	0.70 (0.20 to 2.50)
MAP.3	Goss, 2011 Maunsell, 2014	NR	NR	106 vs. 111	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	NR	NR	NR	NR

Trial	Papers Used	Any Fractures (A vs. B)	RR of Any Fractures (95% CI)	Hip Fractures (A vs. B)	RR of Hip Fractures (95% CI)
MORE/	Cummings, 1999	NR	NR	NR	NR
CORE	Cauley, 2001	NR	NR	NR	NR
	Martino, 2004	NR	NR	NR	NR
	Martino, 2005	NR	NR	NR	NR
	Delmas, 2002	NR	NR	NR	NR
	Siris, 2005	-Nonvertebral: 621 vs.	-Nonvertebral: 1.00 (0.82	27 vs. 10	1.28 (0.47 to 3.53) [†]
	Grady, 2004	292	to 1.21)	NR	NR
		NR	NR		
RUTH	Grady, 2008	NR	NR	NR	NR
	Barrett-Connor, 2006	NR	NR		NR
	Ensrud, 2008	492 vs. 535	NR		0.85 (0.64 to 1.13) [†]
		-Nonvertebral: 428 vs.	-Nonvertebral: 0.96 (0.84		
		438	to 1.10) [†]		
HOT	DeCensi, 2013	NR	NR	NR	NR
MAP.3	Goss, 2011	149 vs. 143	NR	7 vs. 3	NR
	Maunsell, 2014				
IBIS-II	Cuzick, 2014	164 vs. 149	1.11 (0.90 to 1.38)	9 vs. 10	0.91 (0.37 to 2.24)
	Sestak, 2014			-Note: includes pelvic	
	Spagnolo, 2016				

[†] HR instead of RR.

Trial	Papers Used	Spine (vertebral) Fractures (A vs. B)	RR of Spine (vertebral) Fractures (95% CI)	Radius (wrist) Fractures (A vs. B)	RR of Radius Fractures (95% CI)
MORE/	Cummings, 1999	NR	NR	NR	NR
CORE	Cauley, 2001		NR	NR	NR
	Martino, 2004		NR	NR	NR
	Martino, 2005		NR	NR	NR
	Delmas, 2002		0.60 (0.53 to 0.69) [†]	NR	NR
	Siris, 2005		NR	98 vs. 51	0.88 (0.55 to 1.41) [†]
	Grady, 2004		NR	NR	NR
RUTH	Grady, 2008	NR	NR	NR	NR
	Barrett-Connor, 2006	NR	NR		NR
	Ensrud, 2008	Clinical vertebral:	Clinical vertebral:		0.95 (0.73 to 1.24) [†]
		64 vs. 97	0.65 (0.47 to 0.89) [†]		
НОТ	DeCensi, 2013	NR	NR	NR	NR
MAP.3	Goss, 2011	5 vs. 4	NR	26 vs. 18	NR
	Maunsell, 2014				
IBIS-II	Cuzick, 2014	23 vs. 18	1.29 (0.70 to 2.39)	NR	NR
	Sestak, 2014	-Note: includes rib			
	Spagnolo, 2016	or collarbone			

[†] HR instead of RR.

Trial	Papers Used	Hysterectomy (A vs. B)	RR of Hysterectomy (95% CI)	Cataracts (A vs. B)	RR Cataracts (95% CI)
MORE/	Cummings, 1999	NR	NR	NR	NR
CORE	Cauley, 2001			NR	NR
	Martino, 2004			NR	NR
	Martino, 2005			NR	NR
	Delmas, 2002			NR	NR
	Siris, 2005			NR	NR
	Grady, 2004			291 vs. 160	0.9 (0.8 to 1.1)
RUTH	Grady, 2008	NR	NR	NR	NR
	Barrett-Connor, 2006			374 vs. 391	NR
	Ensrud, 2008			NR	NR
HOT	DeCensi, 2013	18 vs. 7	5.27 (1.15 to 24.1)	NR	NR
		-Note: for benign disease			
MAP.3	Goss, 2011	NR	NR	NR	NR
	Maunsell, 2014				
IBIS-II	Cuzick, 2014	NR	NR	90 vs. 95	0.96 (0.72 to 1.27)
	Sestak, 2014				
	Spagnolo, 2016				

Trial	Papers Used	Endometrial Cancer (A vs. B)	RR of Endometrial Cancer (95% CI)	Hyperplasia (A vs. B)	RR of Hyperplasia (95% Cl)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	6 vs. 4 9 vs. 5 CORE: 4 vs. 3 -MORE+CORE: 7 vs. 4 7 vs. 4 NR NR 9 vs. 5	0.80 (0.20 to 2.70) NR NR NR NR 0.9 (0.3 to 2.7)	NR NR CORE: 1 vs. 2 -MORE+CORE: 8 vs. 3 8 vs. 3 NR NR 8 vs. 3 -Simple: 3 vs. 2 -Complex: 2 vs. 1	NR NR NR NR NR 1.3 (0.4 to 5.1) -Simple: NR -Complex: NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR 21 vs. 17 NR	NR	NR	NR
НОТ	DeCensi, 2013	1 vs. 3	0.34 (0.04 to 3.25)	NR	NR
MAP.3	Goss, 2011 Maunsell, 2014	NR	NR	NR	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	3 vs. 5	0.61 (0.15 to 2.54)	NR	NR

Trial	Papers Used	Hyperplasia Without Atypia (A vs. B)	RR of Hyperplasia Without Atypia (95% CI)	Hyperplasia With Atypia (A vs. B)	RR of Hyperplasia With Atypia (95% Cl)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	NR	NR	NR	NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR	NR	NR	NR
HOT	DeCensi, 2013	NR	NR	NR	NR
MAP.3	Goss, 2011 Maunsell, 2014	NR	NR	NR	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	NR	NR	NR	NR

Trial	Papers Used	Oophorectomy (A vs. B)	RR of Oophorectomy (95% CI)	Currettage (A vs. B)	RR of Currettage (95% CI)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005	NR	NR	NR	NR
RUTH	Grady, 2004 Grady, 2008 Barrett-Connor,2006 Ensrud, 2008	NR	NR	NR	NR
HOT	DeCensi, 2013	NR	NR	NR	NR
MAP.3	Goss, 2011 Maunsell, 2014	NR	NR	NR	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	NR	NR	NR	NR

Trial	Papers Used	Laparoscopy (A vs. B)	RR of Laparoscopy (95% CI)	Hysteroscopy (A vs. B)	RR of Hysteroscopy (95% CI)
MORE/	Cummings, 1999	NR	NR	NR	NR
CORE	Cauley, 2001				
	Martino, 2004				
	Martino, 2005				
	Delmas, 2002				
	Siris, 2005				
	Grady, 2004				
RUTH	Grady, 2008	NR	NR	NR	NR
	Barrett-Connor, 2006				
	Ensrud, 2008				
HOT	DeCensi, 2013	NR	NR	NR	NR
MAP.3	Goss, 2011	NR	NR	NR	NR
	Maunsell, 2014				
IBIS-II	Cuzick, 2014	NR	NR	NR	NR
	Sestak, 2014				
	Spagnolo, 2016				

Trial	Papers Used	Leiomyomas (A vs. B)	RR of Leiomyomas (95% CI)	Ovarian Cysts (A vs. B)	RR of Ovarian Cysts (95% CI)
MORE/	Cummings, 1999	NR	NR	NR	NR
CORE	Cauley, 2001				
	Martino, 2004				
	Martino, 2005				
	Delmas, 2002				
	Siris, 2005				
	Grady, 2004				
RUTH	Grady, 2008	NR	NR	NR	NR
	Barrett-Connor, 2006				
	Ensrud, 2008				
HOT	DeCensi, 2013	NR	NR	NR	NR
MAP.3	Goss, 2011	NR	NR	NR	NR
	Maunsell, 2014				
IBIS-II	Cuzick, 2014	NR	NR	NR	NR
	Sestak, 2014				
	Spagnolo, 2016				

Trial	Papers Used	Polyps (A vs. B)	RR of Polyps (95% CI)	Endometriosis (A vs. B)	RR of Endometriosis (95% CI)
MORE/ CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	NR NR 70 vs. 19 NR NR NR Defined as uterine polyps	NR	NR	NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR	NR	NR	NR
HOT	DeCensi, 2013	27 vs. 6 Endometrial polyps	4.74 (1.96 to 11.5)	NR	NR
MAP.3	Goss, 2011 Maunsell, 2014	NR	NR	NR	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	NR	NR	NR	NR

Trial	Papers Used	Endometritis (A vs. B)	RR of Endometritis (95% CI)
MORE/CORE	Cummings, 1999 Cauley, 2001 Martino, 2004 Martino, 2005 Delmas, 2002 Siris, 2005 Grady, 2004	NR	NR
RUTH	Grady, 2008 Barrett-Connor, 2006 Ensrud, 2008	NR	NR
HOT	DeCensi, 2013	NR	NR
MAP.3	Goss, 2011 Maunsell, 2014	NR	NR
IBIS-II	Cuzick, 2014 Sestak, 2014 Spagnolo, 2016	NR	NR

Tamoxifen vs. Raloxifene

Study of Tamoxifen and Raloxifene (STAR)

- At least a 5-year predicted breast cancer risk of 1.66% based on the Gail model.
- At least 35 years old and postmenopausal.
- Not taking tamoxifen, raloxifene, hormone therapy, oral contraceptives, or androgens for a least the previous 3 months.
- Not currently taking either warfarin or cholestyramine.
- No history of stroke, pulmonary embolism, or deep vein thrombosis and no history of any malignancy diagnosed less than 5 years before randomization except basal or squamous cell carcinoma of the skin or carcinoma in situ of the cervix.
- No uncontrolled atrial fibrillation, uncontrolled diabetes, or uncontrolled hypertension.
- No psychiatric condition that would interfere with adherence or a performance status that would restrict normal activity for a significant portion of each day.

Tamoxifen vs. Placebo

National Surgical Adjuvant Breast and Bowel Project P-1 (NSABP-1)

- 60 years of age or older or between the ages of 35 and 59 with a 5-year predicted risk for breast cancer of at least 1.66% or had a history of lobular carcinoma in situ.
- Life expectancy of at least 10 years.
- Breast exam demonstrated no clinical evidence of cancer.
- Mammogram within 180 days before randomization had no evidence of breast cancer.
- Normal white blood cell and platelet counts and normal hepatic and renal function tests.
- Not pregnant upon entry into the study or planned not to become pregnant while on protocol therapy.
- Accessible for follow up.
- Underwent endometrial sampling before randomization if they had a uterus and were randomly assigned after July 8, 1994.
- No estrogen or progesterone replacement therapy, oral contraceptives, or androgens for at least 3 months before randomization.
- No history of deep vein thrombosis or pulmonary embolism.

International Breast Cancer Intervention Study (IBIS-I)

Increased risk for breast cancer based on family history criteria:

- 35 to 39 years with 10-fold relative risk
- 40 to 44 years with 4-fold relative risk
- 45 to 70 years with 2-fold relative risk

All criteria permit entry to trial at age 45 years:

- First-degree relative who developed breast cancer at or before age 50.
- First-degree relative with bilateral breast cancer (permits entry from age 40; if relative diagnosed before age 40, permits entry at age 35).

- Two or more first-degree or second-degree relatives with breast cancer (permits entry from age 40 if both developed breast cancer before age 50, permits entry at age 35 if both relatives are first-degree and both developed breast cancer before age 50).
- Benign breast biopsy and first-degree relative with breast cancer.
- Lobular carcinoma in situ (permits entry from age 35).
- Atypical hyperplasia (permits entry from age 40).
- Nulliparous and a first-degree relative who developed breast cancer.
- Risk equivalent (strong family history, not fitting specific categories, but judged to be at higher risk than eligibility category by the study chairman).

Royal Marsden

Between the ages of 30 to 70 with no clinical or screening evidence of breast cancer and with an increased risk of breast cancer because of family history:

- At least 1 first degree relative under 50 with breast cancer, or
- One first degree relative with bilateral breast cancer, or
- One affected first degree relative of any age plus another affected first degree or second degree relative, or
- History of a benign breast biopsy and had a first-degree relative with breast cancer

Italian Trial

Healthy women aged 35 to 70 years at average risk for breast cancer who had had a total hysterectomy to avoid the risk of endometrial cancer associated with tamoxifen use.

Raloxifene vs. Placebo

Multiple Outcomes of Raloxifene (MORE/CORE)

- At least 2 years postmenopausal and no older than 80 years.
- Osteoporosis defined as bone density at least 2.5 SDs below mean for normal young women at either the lumbar spine or femoral neck, or had at least 1 moderate or 2 mild vertebral fractures that were detected by lateral spine radiography.
- Women with a history of breast cancer, invasive endometrial cancer, or history of stroke or venous thromboembolism during the past 10 years were excluded.

Raloxifene Use for the Heart (RUTH)

- 1 year or more postmenopausal and age 55 years and older.
- Have established CHD or at increased risk for CHD based on a cardiovascular risk score of 4 or more according to a point system that takes into account the presence of:
 - Established CHD (4 points)
 - Arterial disease of the leg (4 points)
 - Age of at least 70 years (2 points)
 - Diabetes mellitus (3 points)
 - Cigarette smoking (1 point)

- Hypertension (1 point)
- Hyperlipidemia (1 point)

Exemestane vs. Placebo

Mammary Prevention.3 (MAP.3)

Women who were 35 years and older, postmenopausal, and at least 1 of the following risk factors:

- 60 years or older
- Gail risk score greater than 1.66%
- Prior atypical ductal or lobular hyperplasia or lobular carcinoma in situ on breast biopsy or prior ductal carcinoma in situ treated with mastectomy.

Prior menopausal hormone therapies, luteinizing hormone-releasing hormone analogues, prolactin inhibitors, antiandrogens, or selective estrogen receptor modulators were allowable but not within 3 months of randomization.

Anastrozole vs. Placebo

International Breast Cancer Intervention Study (IBIS-II)

Postmenopausal with increased risk for breast cancer:

- 40 to 44 years with risk 4 times higher than in the general population
- 45 to 60 years with risk 2 times higher
- 60 to 70 with risk 1.5 times higher

40-44, meeting at least one of the criteria:

- Two or more first or second degree relatives who developed breast cancer or ovarian cancer at age 50 or less
- First degree relative with bilateral breast cancer who developed first breast cancer at age 50 or less
- Nulliparous or age 30 or above at first birth, and first degree relative who developed breast cancer at age 40 or less
- Benign biopsy with proliferative disease and first degree relative who developed breast cancer at 40 or less

45-70 years, meeting at least one of the criteria:

- First degree relative who developed breast cancer at age 50 or less
- First degree relative who developed bilateral cancer
- Two or more first degree relatives who developed breast or ovarian cancer
- Nulliparous or age 30 or above at first birth, and first degree relative who developed breast cancer

Appendix C1. Detailed Inclusion Criteria for Primary Prevention Trials

- Benign biopsy with proliferative disease and first degree relative who developed breast cancer
- Mammographic opacity covering at least 50% of the breast
- First degree relative with breast cancer at any age
- Age at menopause 55 years or more
- Nulliparous or age 30 or above at first birth

Women in all age groups

- Lobular carcinoma in situ (LCIS)
- Atypical ductal or lobular hyperplasia in a benign lesion
- DCIS (ER-positive) diagnosed within last 6 months with completed adequate local treatment
- Women with a clearly apparent family history indicating appropriate increased risk

Appendix C2. Summary of Inclusion Criteria for Primary Prevention Trials

Comparators	Primary Prevention Trial	Age	Post- menopausal	>1.66% 5-Year Gail	Family History	Breast Pathology	Other BC Risk Factors	
Tamoxifen vs. Raloxifene	Study of Tamoxifen & Raloxifene (STAR)	Х	Х	Х				
Tamoxifen vs. Placebo	National Surgical Adjuvant Breast and Bowel Project P-1 (NSABP-1)	Х		Х		LCIS		
	International Breast Cancer Intervention Study (IBIS-I)	Х			Х	Х	Х	
	Royal Marsden Hospital Trial	Х			Х	Х		
	Italian Trial	Х						
Raloxifene vs. Placebo	Multiple Outcomes of Raloxifene (MORE/CORE)		Х	Osteoporosis				
	Raloxifene Use for the Heart (RUTH)	Х	Х		CHD or risk factors			
Exemestane vs. Placebo	Mammary Prevention.3 (MAP.3)	Х	Х	Х		Х		
Anastrozole vs. Placebo	International Breast Cancer Intervention Study (IBIS-II)	Х	Х		X	Х	Х	

Abbreviation: CHD=coronary heart disease.

Appendix C2. Summary of Inclusion Criteria for Primary Prevention Trials

	Primary	N (drug	Mean Age (SD) or		Age, n (%)	Age, n (%)	Age, n (%)	Age, n (%)
Comparators	Prevention Trial	vs. comparator)	Range (years)	≤ 50 Years	50-59 Years	60-69 Years	≥60 Years	≥70 Years
Tamoxifen vs. Raloxifene	STAR	9872	58.5	884 (9.1)	4850 (49.9)	3133 (32.2)		859 (8.8)
		9875		877 (9.0)	4848 (49.7)	3173 (32.6)		847 (8.7)
Tamoxifen vs. Placebo	NSABP-1	6681	53	2581 (39.2)	2031 (30.9)	1571 (23.9)		393 (6.0)
		6707		2596 (39.3)	2017 (30.6)	1590 (24.1)		396 (6.0)
	IBIS-I	3579	50.7 (7.0)					
		3575	50.8 (6.7)					
	Royal Marsden	1238	47 (30-70)	774 (61.9)				
		1233	47 (31-70)	749 (60.2)				
	Italian	2700	51	1062 (39.3)	1317 (48.8)		321 (11.9)	
		2708		1011 (37.3)	1395 (51.5)		302 (11.2)	
Raloxifene vs. Placebo	MORE/CORE	2725	65.7 (6.8)					
		1286	65.9 (6.7)					
	RUTH	5044	67.5 (6.6)					1952 (38.7)
		5057	67.5 (6.7)					1982 (39.2)
Exemestane vs. Placebo	MAP.3	2285	62.5 (38.5-88.2)				1545 (67.6)	
		2275	62.4 (37.1-89.9)				1572 (69.1)	
Anastrozole vs. Placebo	IBIS-II	1920	59.5 (55.0-63.5)*					
		1944	59.4 (55.1-63.3)*					

* Data presented as median IQR.

			No	One 1 ⁰	Two 1 ⁰	Three 1 ⁰			≥3 1 ⁰
	Primary Prevention	N (drug vs.	1 ⁰ Relatives With Breast		Relatives With Breast		≥1 1 ⁰ Relatives With Breast	≥2 1 ⁰ Relatives With Breast	
Comparators	Trial	comparator)	Cancer, n (%)		Cancer, n (%)		Cancer, n (%)		Cancer, n (%)
Tamoxifen vs. Raloxifene	STAR	9726	2835 (29.1)	5041 (51.8)	1532 (15.8)	318 (3.3)			
		9745	2789 (28.6)	5130 (52.6)	1559 (16.0)	267 (2.7)			
Tamoxifen vs. Placebo	NSABP-1	6576	1540 (23.4)	3754 (57.1)	1069 (16.3)				213 (3.2)
	-	6599	1595 (24.2)	3731 (56.5)	1092 (16.5)				181 (2.7)
	IBIS-I	3573						2204 (61.7)	, <i>, , , , , , , , , , , , , , , , , , </i>
		3566						2206 (61.9)	
	Royal Marsden	1250	2359 (87.4)				341 (12.6)	225 (18)	
		1244	2407 (88.9)				301 (11.1)	205 (16.5)†	
	Italian	2700							
		2708							
Raloxifene vs. Placebo	MORE/ CORE	2725							
		1286							
	RUTH	5044							
		5057							
Exemestane vs. Placebo	MAP.3	2285							
		2275							
Anastrozole vs. Placebo	IBIS-II	1920							
		1944							

[†]Each participant had at least one first-degree relative aged under 50 with breast cancer, or one first-degree relative with bilateral breast cancer, or one affected first-degree relative of any age plus another affected first-degree or second-degree relative but data not shown for all.

			1 ⁰ Relative With	1º Relative With	1 ⁰ Relative		Family History of
	Primary	N (drug vs.	Breast Cancer at	Breast Cancer	With Bilateral	≥2 1 ⁰ or 2 ⁰ Relatives With	Breast Cancer
Comparators	Prevention Trial	comparator)	A ny Age	at ≤50	Breast Cancer	Breast or Ovarian Cancer	(not defined)
Tamoxifen vs.	STAR	9726					
Raloxifene	-	0745					
T		9745					
Tamoxifen vs. Placebo	NSABP-1	6576					
		6599					
	IBIS-I	3573		1689 (47.3)	579 (16.2)	2204 (61.7)	
	-	3566		1744 (48.9)	601 (16.9)	2206 (61.9)	
	Royal Marsden	1250		698 (55.8)			
		1244		668 (53.7)†			
	Italian	2700					
		2708					
Raloxifene vs. Placebo	MORE/CORE	2725					636 (12.4) [‡]
		1286					312 (12.1) [‡]
	RUTH	5044					494 (9.8)
		5057					491 (9.7)
Exemestane vs. Placebo	MAP.3	2285					
		2275					
Anastrozole vs. Placebo	IBIS-II	1920	488 (25.4%)	675 (35%)	164 (9%)	956 (50%)	
		1944	499 (25.7%)	653 (34%)	141 (7%)	938 (48%)	

[†]Each participant had at least one first-degree relative aged under 50 with breast cancer, or one first-degree relative with bilateral breast cancer, or one affected first-degree relative of any age plus another affected first-degree or second-degree relative but data not shown for all. [‡] Data from MORE study, MORE-CORE is a subset of MORE, n=4011 of 7705.

			5-Year Predicted Risk	5-Year Predicted	5-Year Predicted	5-Year Predicted	5-Year Predicted	5-Year	10-Year Risk,
			Score (Gail	Risk ≥1.66	Risk ≤ 2.00	Risk 2.01-3.00	Risk 3.01-5.00	Predicted Risk	
Comparators	Primary Prevention Trial	N (drug	model), Mean (SD)	(Gail model), n (%)	(Gail model), n (%)	(Gail model), n (%)	(Gail model), n (%)	≥5.01 (Gail model), n (%)	(Tyrer-Cuzick model)
Tamoxifen vs. Raloxifene	STAR	9726	(02)		1055 (10.8)	2988 (30.7)	3039 (31.2)	2644 (27.2)	meacij
		9745			1097 (11.3)	2893 (29.7)	3082 (31.6)	2673 (27.4)	
Tamoxifen vs. Placebo	NSABP-1	6576			1636 (24.9)	2057 (31.3)	1714 (26.1)	1169 (17.8)	
		6599			1660 (25.2)	2031 (30.8)	1791 (27.1)	1117 (16.9)	
	IBIS-I	3573							
		3566							
	Royal Marsden	1250							
		1244							
	Italian	2700							
		2708							
Raloxifene vs. Placebo	MORE/ CORE	2725							
		1286							
	RUTH	5044	1.73 (0.76)	2103 (41.7)					
		5057		2083 (41.2)					
Exemestane vs. Placebo	MAP.3	2285		929 (40.7)					
		2275		905 (39.8)					
Anastrozole vs. Placebo	IBIS-II	1920							7.6 (5.8-9.9)
		1944							7.8 (5.1-10.2)

Comparators	Primary Prevention Trial	N (drug vs. comparator)	Prior ADH, ALH, LCIS on Biopsy, n (%)		Prior Atypical Hyperplasia, n (%)	Benign Biopsy and 1 ⁰ Relative, n (%)	Prior DCIS Treated With Mastectomy, n (%)	DCIS (ER-positive), n (%)
Tamoxifen vs. Raloxifene	STAR	9726						
		9745						
Tamoxifen vs. Placebo	NSABP-1	6576		415 (6.3)	579 (8.8)			
		6599		411 (6.2)	614 (9.3)			
	IBIS-I	3573		44 (1.2)	97 (2.7)	123 (3.4)		
		3566		44 (1.2)	104 (2.9)	132 (3.7)		
	Royal Marsden	1250						
		1244						
	Italian	2700						
		2708						
Raloxifene vs. Placebo	MORE/CORE	2725						
		1286						
	RUTH	5044						
		5057						
Exemestane vs. Placebo	MAP.3	2285	185 (8.1)	56 (2.5)				
		2275	188 (8.3)	56 (2.5)	1			
Anastrozole vs. Placebo	IBIS-II	1920		50 (2.6)	55 (2.8)			160 (8.3)
		1944		55 (2.8)	135 (6.9)			166 (8.5)

Abbreviation: LCIS=lobular carcinoma in situ.

Appendix C2. Summary of Inclusion Criteria for Primary Prevention Trials

	Brimony	N (drug	Nulliparous or ≥30 at First Birth and a 1 ⁰ Relative With Breast		
Comparators	Primary Prevention Trial	vs. comparator)		Hysterectomy, n (%)	No Hysterectomy, n (%)
Tamoxifen vs. Raloxifene	STAR	9726		4994 (51.3)	4732 (48.7)
		9745		5033 (51.6)	4712 (48.4)
Famoxifen vs. Placebo	NSABP-1			2479 (37.7)	4097 (62.3)
		6599		2554 (71.6)	4194 (63.6)
	IBIS-I	3573	314 (8.8)	2453 (68.7)	1120 (31.3) [§]
		3566	325 (9.1)	2554 (71.6)	1012 (28.4)§
	Royal Marsden	1250		, í	
		1244			
	Italian	2700		2700 (100)	0
		2708		2708 (100)	0
Raloxifene vs. Placebo	MORE/CORE	2725		559 (20.5)	2166 (79.5) [§]
		1286		260 (20.2)	1026 (79.8) [§]
	RUTH	5044		1178 (23.3)	3879 (76.7) [§]
		5057		1145 (22.7)	3899 (77.3) [§]
Exemestane vs. Placebo	MAP.3	2285			
		2275			
Anastrozole vs. Placebo	IBIS-II	1920	207 (10.6)	631 (33)	1289 (67)
		1944	211 (11.0)	656 (34)	1288 (66) [§]

§ Calculated from available data.

Appendix C3. Distribution of Risk Factors in Primary Prevention Trials

Comparators	Primary Prevention Trial	N (drug vs. comparator)	Mean Age (years)	Menopause	Increased Breast Cancer Risk	Active Duration (years)	Followup Duration (years)
Tamoxifen vs. Raloxifene	Study of Tamoxifen & Raloxifene (STAR)	9872 vs. 9875	58.5	post	Х	3.6 to 3.9	6.8
Tamoxifen vs. Placebo	National Surgical Adjuvant Breast and Bowel Project P-1 (NSABP-1)	6681 vs.6707	53	pre/post	Х	4	7
	International Breast Cancer Intervention Study (IBIS-I)	3579 vs. 3575	51	pre/post	X	5	16
	Royal Marsden Hospital Trial	1238 vs. 1233	47	pre/post	Х	5	13
	Italian Trial	2700 vs. 2708	51	pre/post		4	11
Raloxifene vs. Placebo	Multiple Outcomes of Raloxifene (MORE/CORE)	5129 vs. 2576	67	post		4 to 8	5 to 8
	Raloxifene Use for the Heart (RUTH)	5044 vs. 5057	67.5	post		5	5.6
Exemestane vs. Placebo	Mammary Prevention.3 (MAP.3)	2285 vs. 2275	62.5	post	Х	3	3
Anastrozole vs. Placebo	International Breast Cancer Intervention Study (IBIS-II)	1920 vs. 1044	59.5	post	Х	5	5

Appendix C4. Summary of Treatment Trials of Aromatase Inhibitors With Fracture and Cardiovascular Disease Outcomes

Study	Comparison	N	Method	Analysis	Major Adverse Outcomes
EBCTCG, 2015	AI vs. tamoxifen for early breast cancer (meta-analysis)	31,920	 Individual-level data on postmenopausal women with ER+ early breast cancer in treatment RCTs: AI (5 year) vs. tamoxifen (5 year) AI (5 year) vs. tamoxifen (2-3 year), then AI to year 5 Tamoxifen (2-3 year), then AI to year 5 vs. tamoxifen (5 year) 	Intention-to-treat; log-rank analyses, stratified by age, nodal status, and trial, yielded aromatase inhibitor versus tamoxifen first-event rate ratios (RRs).	 Fractures: 5-year risk for AI 8.2% vs. 5.5% (RR 1.42; 95% CI, 1.28 to1.57 years 0-4; RR 1.29; 95% CI, 1.09 to 1.53 years 5-9) CVD: no differences for VTE, CVA, CAD deaths
Forbes, 2016	Anastrozole vs tamoxifen for DCIS (RCT)	2980	Multicenter RCT of women with locally excised ER+ DCIS given 1 mg oral anastrozole or 20 mg oral tamoxifen every day for 5 years. Median followup 7.2 years (IQR 5.6 to 8.9).		 Fractures: 9% AI vs. 7% tamoxifen (OR 1.36; 95% CI, 1.03 to 1.80) CVD: increased VTE with tamoxifen; no CHD differences TIA: AI OR 2.69 (95% CI, 0.90 to 9.65) CVA: AI OR 3.36 (95% CI, 1.04 to 14.18)
Goldvaser, 2018	Extended Als vs. placebo or no treatment for early ER+ breast cancer (meta-analysis)	16,349	7 RCTs that compared extended Als with placebo or no treatment published between 2013 and 2016.	Odds ratios (ORs), absolute risks, and the number needed to harm were computed for prespecified safety and tolerability outcomes.	 Fractures: 6.3% AI vs. 4.8% (OR 1.34; 95% CI, 1.16 to 1.55) CVD events: 7% AI vs. 6% (OR 1.18; 95% CI, 1.00 to 1.40) Treatment discontinuation for adverse events: (OR 1.45, 95% CI, 1.25 to 1.68)

References:

- 1. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level metaanalysis of the randomised trials. *Lancet* 2015; 386: 1341–52.
- 2. Forbes JF, Sestak I, Howell A, Bonanni B, et al., on behalf of the IBIS-II investigators. Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomized controlled trial. *Lancet* 2016; 387: 866–73.
- 3. Goldvaser H, Barnes TA, Seruga B, Cescon DW, Ocana A, Ribnikar D, Amir E. Toxicity of extended adjuvant therapy with aromatase inhibitors in early breast cancer: A systematic review and meta-analysis. *J Natl Cancer Inst* 2018; 110(1): djx141.