Evidence Synthesis Number 158

Screening for Cervical Cancer With High-Risk Human Papillomavirus Testing: A Systematic Evidence Review for the U.S. Preventive Services Task Force

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. HHSA-290-2012-00015-I-EPC4, Task Order No. 6

Prepared by:

Kaiser Permanente Research Affiliates Evidence-based Practice Center Kaiser Permanente Center for Health Research Portland, OR

Investigators:

Joy Melnikow, MD, MPH Jillian T. Henderson, PhD Brittany U. Burda, DHSc, MPH Caitlyn A. Senger, MPH Shauna Durbin, MPH Meghan A. Soulsby, MPH

AHRQ Publication No. 17-05231-EF-1 August 2018 The literature search conducted for this systematic review report was completed in February 2017, with ongoing literature surveillance through December 2017. While preparing the manuscript based on this report, the review team was informed that the final 48-month results of the HPV-FOCAL trial (described in this report as pending final results) would be published in *JAMA* on July 3, 2018.¹ The *JAMA* manuscript based on this systematic review was therefore updated to include final results of the HPV-FOCAL trial, which are summarized in this memo. The conclusions of this report were unchanged, with the addition of the findings of the completed trial. The evidence for hrHPV primary screening remained consistent and is more robust when the final results of HPV FOCAL are considered.

The following paragraphs summarize the HPV FOCAL trial findings, including the 48-month exit round results.¹ The manuscript derived from this report has fully incorporated these results and was published in *JAMA* on August 21, 2018.

The HPV FOCAL trial was a randomized, controlled trial of 19,009 women ages 25 to 65 years. The study compared hrHPV screening with liquid-based cytology triage of abnormal hrHPV results every 4 years (intervention group) with liquid-based cytology screening every 2 years (control group). During the first round of screening, CIN3+ detection was 0.7 percent in the intervention group and 0.4 percent in the control group; the RR for CIN3+ detection was 1.61 (95% CI, 1.09 to 2.37). In the 48-month round of screening, in which both groups received cotesting, CIN3+ detection was 0.2 percent in the intervention group and 0.6 percent in the control group; the RR for CIN3+ detection was 0.42 (95% CI, 0.25 to 0.69). Cumulative CIN3+ detection over both rounds was 0.9 percent in the intervention group and 1.0 percent in the control group (relative risk [RR], 0.94 [95% CI, 0.71 to 1.26]). Among women younger than age 30 years, overall rates of CIN3+ were consistent with the overall results but not statistically significant. CIN3+ rates were higher in the first round of screening: 2.4 percent in the intervention group vs. 1.7 percent in the control group (RR, 1.43 [95% CI, 0.73 to 2.82]), and lower in the 48-month round: CIN 3+ detection was 0.7 percent in the intervention group vs. 1.8 percent in the control group (RR, 0.4 [95 % CI, 0.16 to 1.02]). Cumulative CIN3+ detection over both rounds was 3.1 percent in the intervention group and 3.5 percent in the control group (RR, 0.90 [95% CI, 0.53 to 1.51]). A similar and statistically significant pattern was found in women age 30 years and older, but CIN3+ rates were lower. In the first screening round, CIN3+ was 0.5 percent in the intervention group and 0.3 percent in the control group (RR, 1.71 [95% CI, 1.07 to 2.74]). At the 48-month screening round, rates were 0.2 percent in the intervention group vs. 0.4 percent in the control group (RR, 0.43 [95% CI, 0.24 to 0.76]). Cumulative CIN3+ detection was 0.7 percent in both intervention and control groups (RR, 0.97 [95% CI, 0.69 to 1.37]).

Consistent with the majority of studies of primary hrHPV screening, referrals to colposcopy were higher in the first screening round for women in the intervention group (5.7% vs. 3.1%). At the 48-month screening round, with cotesting of both groups, colposcopy referrals were somewhat lower in the intervention group (4.9% vs. 7.0%).

Overall, the trial findings provide evidence that primary hrHPV screening at a 4-year interval is at least as good as liquid-based cytology screening every 2 years for detecting CIN3+.

Reference

1. Ogilvie GS, van Niekerk D, Krajden M, et al. Effect of screening with primary cervical HPV testing vs. cytology testing on high-grade cervical intraepithelial neoplasia at 48 months: the HPV FOCAL randomized clinical trial. *JAMA*. 2018;320(1):43-52.

This report is based on research conducted by the Kaiser Permanente Research Affiliates Evidence-based Practice Center (EPC) and the University of California, Davis Center for Healthcare Policy and Research under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2012-00015-I-EPC4, Task Order No. 6). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Evelyn P. Whitlock, MD, MPH, for mentoring and project oversight; Jamie Thompson, MPH, for assistance with scoping; and Smyth Lai, MLS, and Katherine Essick, BS, for technical and editorial assistance at the Kaiser Permanente Center for Health Research. We also thank David Chelmo, MD, Sarah Feldman, MD, MPH, Robert Goulart, MD, Herschel Lawson, MD, L. Stewart Massad, MD, Diana Petitti, MD, MPH, Mona Saraiya, MD, MPH, Debbie Saslow, PhD, Mark Schiffman, MD, MPH, and Alan Waxman, MD, MPH, who provided expert review; Elizabeth Unger, MD, PhD, Lauri Markowitz, MD, and Elissa Meites, MD, MPH, at the Centers for Disease Control and Prevention, Carolyn Aoyama, CNM, MPH, at the Indian Health Service, Nahida Chakhtoura, MD, at the National Institute of Child Health and Human Development, and Sung Sug Yoon, PhD, RN, at the National Institute of Nursing Research, who provided federal partner review. We also thank Tracy Wolff, MD, MPH, and Elisabeth Kato, MD, at AHRQ; as well as current and former members of the U.S. Preventive Services Task Force who contributed to topic discussions.

Suggested Citation

Melnikow J, Henderson JT, Burda BU, Senger CA, Durbin S, Soulsby MA. Screening for Cervical Cancer With High-Risk Human Papillomavirus Testing: A Systematic Evidence Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 158. AHRQ Publication No. 17-05231-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2018.

Structured Abstract

Importance: Cervical cancer can be prevented with early detection and treatment of precancerous lesions that are caused primarily by infection with high-risk strains of human papillomavirus (hrHPV). Current guidelines for screening in the United States focus on cytology screening with the Papanicolaou (Pap) test, with hrHPV cotesting as an option for women ages 30 to 65 years that allows for longer rescreening intervals. Evidence from large trials evaluating screening programs involving primary hrHPV testing (hrHPV alone as the initial test) and cotesting may inform new screening strategies. Evidence supporting cytology screening is well established, so this review evaluated screening with hrHPV testing alone (i.e., primary hrHPV testing) or as cotesting with cytology compared to cytology alone to address whether these forms of screening provide better protection from cervical cancer and allow for longer rescreening intervals. Rates of cervical cancer are very low among routinely screened women in the United States, but not all women are routinely screened, and there are significant racial/ethnic disparities in morbidity and mortality from cervical cancer.

Objective: To systematically review the benefits and harms of screening for cervical cancer using hrHPV testing as the screening strategy (with or without cytology).

Data Sources: MEDLINE, PubMed, PsychINFO, and Cochrane Collaboration Registry of Controlled Trials, and the Education Resources Information Center from January 2011 through February 15, 2017.

Study Selection: English-language trials of benefits or harms of screening for cervical cancer using hrHPV testing as the screening strategy (with or without cytology) in women age 21 years or older. Cohort studies were also considered for inclusion to evaluate harms and screening performance in large, representative primary care populations and in underscreened women.

Data Extraction and Synthesis: Two investigators independently reviewed abstracts and full-text articles, and then extracted data from fair- and good-quality trials and cohort studies. Results were qualitatively synthesized.

Main Outcomes and Measures: Cervical cancer mortality, invasive cervical cancer (ICC) incidence, early detection of disease (i.e., cervical intraepithelial neoplasia [CIN] 3+), rates of false-positive and false-negative screening, colposcopy and biopsy rates, quality of life and other harms.

Results: We included eight randomized, controlled trials (RCTs) (n=410,556), five cohort studies (n=402,609), and one individual participant data (IPD) meta-analysis (n=176,464). Trials were heterogeneous with regard to type of cytology (conventional vs. liquid-based cytology), type of hrHPV test (DNA PCR enzyme immunoassay vs. Hybrid Capture 2), screening interval (2 to 5 years), followup protocols for abnormal results, number of screening rounds (1 or 2), and consistency of screening protocols between rounds. Two fair-quality trials and one good-quality trial evaluated primary hrHPV screening (hrHPV testing alone) compared with cytology alone; two good- and two fair-quality trials compared hrHPV cotesting with cytology alone.

The evidence was generally consistent across four trials with variable protocols and hrHPV test types demonstrating that primary hrHPV testing increased detection of CIN3+ in the initial round of screening (relative risk [RR] range, 1.61 [95% CI, 1.09 to 2.37] to 7.46 [95% CI, 1.02 to 54.66]). Only one trial of primary hrHPV testing, where all women with a positive hrHPV test were referred to colposcopy, had complete results from two rounds of screening (at Round 2 screening all women received cytology testing). In that study, CIN3+ detection in Round 1 was 3-fold higher in the hrHPV testing group. In the second screening round, CIN3+ detection was significantly lower among women in the intervention group (RR, 0.22 [95% CI, 0.08 to 0.58]), and cumulative detection over both screening rounds was 1.8-fold higher. Results of a large, single-arm, fair-quality cohort study of primary hrHPV testing at 3-year intervals were consistent with trial findings: CIN3+ detection in the second screening round was significantly lower compared to the first round (RR, 0.14 [95% CI, 0.06 to 0.32]).

Among four trials of hrHPV cotesting, the first round CIN3+ detection was higher in the intervention group in two trials (though not significant) and equal in two trials. Cumulative CIN3+ detection over two rounds of screening ranged from 0.3 to 1.6 percent across studies. The relative risk for cumulative CIN3+ detection ranged from 0.91 to 1.13; none were significantly different from one. Long-term followup (13-year) in one trial showed similar results.

ICC incidence was very rare. An IPD meta-analysis pooled data from five heterogeneous trials (including primary hrHPV testing and cotesting). A total of 107 cases of ICC among 176,464 women were identified in the trials, with a pooled RR of 0.60 (95% CI, 0.40 to 0.89) over one or two rounds of hrHPV screening compared to cytology alone and 5 to 12 years of followup data. Each of these trials included different patient populations and screening test protocols, adding uncertainty to interpretation of pooled findings.

Evidence on subgroups was limited to age and a single cohort study focused on previously inadequately or unscreened women. Women younger than age 35 years had consistently higher rates of hrHPV positivity and of CIN3+. Outcomes of hrHPV primary testing or cotesting by age were not notably different from the results of the overall study populations. A small cohort study of cotesting among 1,832 Spanish women not screened in the previous 5 years found 9 cases of CIN3+; of these, 3 cases of CIN3+ were detected by hrHPV testing but not by cytology alone.

The included trials did not report on potential adverse consequences of the screening tests, diagnostic procedures, or treatments and associated harms. Screening test positivity, false-positive rates (FPRs) for CIN2+ detection, and colposcopy referrals tended to be higher in the intervention groups of the trials, particularly at Round 1 screening.

FPRs were higher in the intervention arm of one completed primary hrHPV trial and less discrepant in the other trial reporting test performance. In hrHPV cotesting trials, test positivity in the intervention group ranged from 7 to 22 percent of screened women, and was approximately 2- to 3-fold higher than in the control group arm. FPRs were also consistently higher in the intervention group at Round 1 for the three cotesting trials reporting on this outcome, ranging from 6 to 20 percent, and nearly 2- to 3-fold higher than control group rates. Two cotesting trials reported test performance data from Round 2 screening; the FPR was similar between arms in one trial, but 2 times higher in the intervention arm in another.

Four hrHPV primary screening trials and two cotesting trials reported referrals to colposcopy. Rates of referral to colposcopy in the control groups ranged from 1 to 3 percent. Two primary hrHPV testing trials had more referrals among women in the intervention arms versus control group at Round 1 of screening (8% and 6% vs. 3%). Two other trials of primary hrHPV testing had similar rates of referral in both trial arms. Two hrHPV cotesting trials reported more referrals to colposcopy in the intervention group compared to the control group (11% vs. 3% and 7% vs. 5%). Round 2 colposcopy referral rates, reported only in one cotesting trial, were similar between treatment groups (IG, 3% vs. CG, 2%). Biopsy rates were reported in the IPD metaanalysis; the pooled estimate had very high heterogeneity, largely explained by the 2-fold difference in biopsy rates between intervention and control arms in the two trials that referred all hrHPV+ women to colposcopy. Biopsy rates were similar between arms for the other trials. Data were too sparse to draw conclusions regarding the risk of missed cases of cervical cancer (false negatives) for different screening strategies, given very few cases of ICC detected. Limited evidence on psychological harms from one cross-sectional study (n=428) and a substudy of one cotesting trial (n=2,508) suggested that women receiving hrHPV positive test results experienced increased anxiety and distress, and reduced satisfaction with sexual partnerships.

Conclusions and Relevance: Eight large randomized trials, four of primary hrHPV testing and four of hrHPV cotesting, contributed to the evidence comparing use of hrHPV testing as part of cervical cancer screening with cytology alone for detection of CIN3+. All trials were conducted in the context of organized screening programs, with heterogeneous screening strategies and followup protocols. Interpretation of trial findings was limited by the fact that after one round of screening, only one trial conducted further screening applying the originally assigned strategies in the control and intervention arms. In all other trials, both arms received the same test at Round 2 (either cytology alone or hrHPV cotesting). Primary hrHPV testing increased detection of CIN3+ in the initial round of screening by as much as 2- to 3-fold. Only the trial of primary hrHPV testing, where all women with a positive hrHPV test were referred to colposcopy, had results from two rounds of screening. In that study, CIN3+ detection in Round 1 was 3-fold higher in the primary hrHPV testing arm, and cumulative detection was 1.8-fold higher after the second round of screening. Evidence was mixed in cotesting trials. No trial showed a significant increase in CIN 3+ detection in Round 1 for cotesting. In two of four trials, CIN3+ detection was lower in Round 2 in the hrHPV cotesting arm and higher in the cytology alone arm. Cumulative CIN3+ detection was similar between intervention and control study arms in all trials. Because no trial sustained the intervention and control group protocols beyond two screening rounds, evidence comparing the long-term outcomes of primary hrHPV testing or cotesting with cytology was lacking.

Data to compare potential harms of different screening strategies were similarly limited, and none of the included trials or observational studies reported on harms of the screening test or treatments. False-positive rates and referrals to colposcopy were in some trials 2- to 3-fold higher with hrHPV-based screening strategies relative to cytology alone in the first screening round, and evidence was lacking to determine whether these differences might persist over multiple screening rounds. Risks of missed ICC were very low regardless of the screening strategies, but this analysis pooled data from trials with distinctly different screening strategies and hrHPV test types, adding uncertainty to interpretation of the findings.

In most trials and in a large U.S.-based observational study, women younger than age 30 to 35 years had higher rates of hrHPV positivity and CIN3+, accompanied by higher rates of colposcopy. No completed studies compared different screening intervals. All of the RCTs on hrHPV screening were conducted in countries with organized screening programs, which are not available to most women in the United States. Rigorous comparative research is needed in U.S. screening settings to examine longer screening intervals, long-term outcomes, and to identify effective strategies for outreach and screening of poorly screened and unscreened women. The higher sensitivity of hrHPV testing in a single round may have potential to improve outcomes in this high-risk population.

Table of Contents

Chapter 1. Introduction	1
Condition Definition	1
Cervical Histology	1
Cervical Cytology	1
Etiology and Natural History	2
Regression, Progression, and Persistence	2
Prevalence and Burden of Cervical Cancer and hrHPV	3
Risk Factors	4
Screening Strategies	5
U.S. Food and Drug Administration–Approved hrHPV Tests	5
Self-Collection	6
Followup Protocols	6
Prevention of hrHPV Infection	7
Current Clinical Screening Practice in the United States	8
Previous USPSTF Recommendations	9
Chapter 2. Methods	. 11
Scope and Purpose	. 11
Key Questions and Analytic Framework	. 11
Data Sources and Searches	. 11
Study Selection	. 12
Quality Assessment and Data Abstraction	. 13
Data Synthesis and Analysis	. 14
Grading the Strength of the Body of Evidence	. 15
Expert Review and Public Comment	. 16
USPSTF Involvement	. 16
Chapter 3. Results	. 17
Literature Search	. 17
KQ1. What Is the Effectiveness of hrHPV Testing, With or Without Cytology, as a Primary	
Screening Strategy for Reducing Cervical Cancer Mortality and Incidence Compared With	
Currently Recommended Screening Strategies for Women in the United States?	. 17
Summary of Results	. 17
Study Characteristics	. 18
Detailed Results	. 23
KQ1a. Does the Effectiveness of hrHPV Testing to Reduce Cervical Cancer Outcomes Var	y
by Subpopulation?	. 26
Age	. 26
Screening History	. 28
KQ1b. For Each Primary Screening Strategy, How Does the Rescreening Interval Relate to	
Future Cancer Incidence or Progression?	. 28
KQ1c. Does the Appropriate Rescreening Interval for Each Primary Screening Strategy Var	y
by Subpopulation?	. 29

as a Primary Screening Strategy Compared With Currently Recommended Screening Strategies for Women in the United States?	KQ2. What Are the Potential Adverse Effects of hrHPV Testing, With or Without Cytology,	,
Strategies for Women in the United States?29Summary29Study Characteristics30Detailed Results31KQ 2a. Do Adverse Effects of hrHPV Compared With Cytology Screening Vary bySubpopulation?35Age35KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality41hrHPV Test Types42Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Screening Intervals43Limitations of the Review43Future Research Needs43Conclusions45References47	as a Primary Screening Strategy Compared With Currently Recommended Screening	
Summary29Study Characteristics30Detailed Results31KQ 2a. Do Adverse Effects of hrHPV Compared With Cytology Screening Vary bySubpopulation?35Age35KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limitations of the Review43Future Research Needs43Conclusions43Conclusions45References47	Strategies for Women in the United States?	29
Study Characteristics30Detailed Results31KQ 2a. Do Adverse Effects of hrHPV Compared With Cytology Screening Vary bySubpopulation?35Age35KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limitations of the Review43Future Research Needs43Conclusions45References47	Summary	29
Detailed Results31KQ 2a. Do Adverse Effects of hrHPV Compared With Cytology Screening Vary by35Subpopulation?35Age35KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	Study Characteristics	30
KQ 2a. Do Adverse Effects of hrHPV Compared With Cytology Screening Vary by Subpopulation? 35 Age. 35 KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36 Chapter 4. Discussion 38 Summary of Evidence 38 hrHPV Screening Effectiveness 38 hrHPV Screening Harms 39 Limitations of the Evidence 40 Limited Data on Cervical Cancer Incidence and Mortality 40 Screening Trial Heterogeneity 41 Limited Data on Screening Intervals 41 hrHPV Test Types 42 Limited Data on Treatment Harms 42 Impact of Screening on Subpopulations 43 Future Research Needs 43 Conclusions 45 References 47	Detailed Results	31
Subpopulation?35Age35KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	KQ 2a. Do Adverse Effects of hrHPV Compared With Cytology Screening Vary by	
Age35KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	Subpopulation?	35
KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?36Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	Age	35
Chapter 4. Discussion38Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?	36
Summary of Evidence38hrHPV Screening Effectiveness38hrHPV Screening Harms39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	Chapter 4. Discussion	38
hrHPV Screening Effectiveness.38hrHPV Screening Harms.39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types.42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review.43Future Research Needs43Conclusions.45References47	Summary of Evidence	38
hrHPV Screening Harms.39Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types.42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review.43Future Research Needs43References47	hrHPV Screening Effectiveness	38
Limitations of the Evidence40Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	hrHPV Screening Harms	39
Limited Data on Cervical Cancer Incidence and Mortality40Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	Limitations of the Evidence	40
Screening Trial Heterogeneity41Limited Data on Screening Intervals41hrHPV Test Types42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	Limited Data on Cervical Cancer Incidence and Mortality	40
Limited Data on Screening Intervals41hrHPV Test Types.42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review.43Future Research Needs43Conclusions.45References47	Screening Trial Heterogeneity	41
hrHPV Test Types.42Limited Data on Treatment Harms42Impact of Screening on Subpopulations43Limitations of the Review.43Future Research Needs43Conclusions.45References47	Limited Data on Screening Intervals	41
Limited Data on Treatment Harms	hrHPV Test Types	42
Impact of Screening on Subpopulations43Limitations of the Review43Future Research Needs43Conclusions45References47	Limited Data on Treatment Harms	42
Limitations of the Review	Impact of Screening on Subpopulations	43
Future Research Needs 43 Conclusions 45 References 47	Limitations of the Review	43
Conclusions	Future Research Needs	43
References	Conclusions	45
	References	4 7

Figure

Figure 1. Analytic Framework

Tables

Table 1. Cytology Test Result Categories, 2001 Bethesda System Table 2. SEER Percent of Incident Cases and Deaths From Cervical Cancer by Age Group, 2010-2014 Table 3. SEER Average Age-Adjusted Annual Cervical Cancer Incidence and Mortality Rates per 100,000 Women by Race/Ethnicity, 2010-2014 Table 4. Weighted Prevalence of HPV Among Females Ages 18 to 59 Years, National Health and Nutrition Examination Survey, 2007-2010 and 2013-2014 Table 5. Study Design Characteristics of Included Trials, Ordered by Screening Approach Table 6. Results for Trials of hrHPV Primary Screening Strategies, All Participants Table 7. Results for Trials of hrHPV Primary Screening Strategies, Women Age ≥35 Years Table 8. Results for Trials of hrHPV Primary Screening Strategies, Women Age <35 Years Table 9. Study Design Characteristics of Included Observational Studies Table 10. Results for Italian Population-Based Cohort of Primary hrHPV Testing Over Two Rounds at a 3-Year Interval, All Participants and Results by Age Table 11. Results for Trials of hrHPV Cotesting, All Participants Table 12. Results for Trials of hrHPV Cotesting, Women Ages 30 to 35 Years

Table 13. Results for Trials of hrHPV Cotesting, Women Age <30 to 35 Years Table 14. Results of an Included Individual Participant Data Meta-Analysis of hrHPV-Based Screening Trials Table 15. Results From the KPNC Cotesting Observational Study, All Participants

Table 16. Cases and 3- and 5-Year Risk of Cervical Intraepithelial Neoplasia in the KPNC Cotesting Observational Study

Table 17. Test Positivity, Histological Results, and Referrals to Colposcopy of Other Included Observational Studies of hrHPV Cotesting

Table 18. Psychological Harms Reported in the ARTISTIC Trial

Table 19. Psychological Harms Reported in the Included Observational Studies

Table 20. Summary of Evidence on hrHPV Testing Alone (Primary Screening) or With Cytology (Cotesting) for Cervical Cancer Screening

Appendixes

Appendix A. Detailed Methods

Appendix B. Recommendations of Others

Appendix C. Excluded Studies

Appendix D. Included Studies

Appendix E. Ongoing Studies

Appendix F. Evidence Tables

Chapter 1. Introduction

Condition Definition

Two primary histologic abnormalities account for the majority of cancer of the uterine cervix squamous cell carcinoma (SCC) and adenocarcinoma. The majority of cervical cancer cases (\geq 70%) are SCC, which is thought to arise from the transformation zone of the cervix.¹ The transformation zone is the region at the junction between the squamous and columnar cells of the cervix (squamocolumnar junction), which migrates from the exocervix to the distal endocervical canal with advancing age.² Adenocarcinoma, which develops from the mucus-producing cells of the endocervix, accounts for approximately 18 percent of cervical carcinomas. Adenocarcinomas and their precursors (atypical glandular cells [AGC] and adenocarcinoma in situ) are less likely to be detected by cytology than SCC. The remainder of cervical carcinomas are adenosquamous (4%) and other carcinomas (5%) or malignancies (1.5%).²

Cervical Histology

Invasive cervical cancer (ICC) generally develops over a period of years and is preceded by precancerous changes of the cervix. Historically, precancerous changes of the cervix have been histologically defined as cervical intraepithelial neoplasia (CIN), identified at varying levels of severity: CIN1, CIN2, and CIN3. The latter includes carcinoma in situ (CIS), a preinvasive carcinomatous change of the cervix.³ The term CIN2+ is used to indicate CIN2 or worse (CIN2, CIN3, or cancer), and CIN3+ is used to indicate CIN3 or worse (CIN3 or cancer). All of the trials and cohort studies in this review used this terminology. In 2012, a consensus group of the American College of Colposcopists and the American Society for Colposcopy and Cervical Pathology recommended changes to this terminology as part of the Lower Anogenital Squamous Terminology (LAST) Standardization Project. In the revised terminology, the primary determination is low grade squamous epithelial lesion (LSIL) or high grade squamous epithelial lesion (HSIL), concordant with the terminology for cytology described below. These designations may be further classified by the applicable CIN subcategorization.⁴ In LAST terminology, CIN1 is considered LSIL, CIN3 is considered HSIL, and CIN2 is considered HSIL but with the qualification that there is less diagnostic certainty regarding this subclassification. Immunohistochemical staining for p16 is recommended to categorize CIN2 as LSIL versus HSIL when there is diagnostic uncertainty. The studies included in this systematic review predate this terminology, so the older (CIN 1, 2, 3) terminology for histology as used by the included studies is found in this review.

Cervical Cytology

Cervical cytology is a standard screening test for cervical cancer and precancerous changes. The terminology for reporting the spectrum of cervical cytologic abnormalities derives from the 2001 Bethesda Workshop⁵ and is displayed in **Table 1**.⁶ Atypical squamous cells of undetermined significance, or ASC-US, are the least reproducible of all the cytologic categories and emphasize

that a specific diagnosis cannot be made. AGC abnormalities (previously called AGUS) may be reported as endocervical, endometrial, or not otherwise specified. The percentage of AGC Pap tests associated with underlying higher-grade lesions or disease (CIN2+) is higher than for ASC-US.⁶ High-grade squamous or glandular lesions can be seen in 10 to 39 percent of cases of AGC.⁶ LSIL, as used to describe a cytology result, includes cellular high-risk human papilloma virus (hrHPV) changes and generally corresponds to histology classified as CIN1. HSIL encompasses moderate to severe neoplasia and CIS—a preinvasive carcinomatous change of the cervix—and generally corresponds to histology classified as CIN2 and CIN3. The term ASC-US+ is used to indicate ASC-US or worse cytology, LSIL+ to indicate LSIL cytology or worse, and HSIL+ to indicate HSIL cytology or worse. Cervical cytology results are not diagnostic of neoplasia or cancer; biopsy and histologic confirmation are required for diagnosis.

Etiology and Natural History

The recognition of hrHPV as a causative agent in more than 90 percent of cervical cancers has revolutionized the approach to prevention and screening.⁷ Progression from hrHPV infection to cervical cancer occurs over a series of three steps: 1) hrHPV transmission resulting in acute hrHPV infection, which may resolve or persist; 2) persistent hrHPV infection leading to precancerous changes; and 3) development of ICC.⁸ Transmission of hrHPV to the anogenital region occurs primarily as a result of skin-to-skin or mucosa-to-mucosa sexual contact.^{8, 9}

A high proportion of sexually active women become infected with HPV of all types, but most infections resolve spontaneously and only a small proportion persist. HPV infection is more than 44 percent among sexually active women younger than age 25 years, and incidence declines with increasing age.¹⁰ About 5 percent of HPV infections persist at 2 years, and persistent infection with hrHPV is responsible for most CIN and ICC.¹¹⁻¹⁴ A 2011 meta-analysis of hrHPV type-specific prevalence data reported hrHPV detection in 90 percent of cervical cancers worldwide.¹⁵ The 12 most common hrHPV types identified by the meta-analysis, in order of decreasing prevalence, were hrHPV 16, 18, 58, 33, 45, 31, 52, 35, 59, 39, 51, and 56,¹⁵ with hrHPV types 16 and 18 accounting for approximately 70 percent of cervical cancers.^{15, 16} A recent U.S.-based study detected hrHPV in 91 percent of cervical cancers (51% hrHPV 16, 16% hrHPV 18, and 24% other oncogenic types).¹⁷ Risks associated with hrHPV infection are type-specific, with types 16 and 18 conferring the highest risk for hrHPV persistence and progression to high-grade lesions, although even these types are likely to clear in young women.^{18, 19}

Regression, Progression, and Persistence

Regression of HPV infection is presumably due to a successfully mounted immune response,²⁰ and increased persistence of hrHPV infection is observed in immunocompromised populations.^{21, 22} It is unknown whether viral infections resolve as a result of complete clearance of the virus or by maintenance of the virus in a latent state.⁸ While cohort studies have demonstrated that a viral type can reappear even after it has been thought to have cleared,¹⁴ incident hrHPV infections confer a lower risk given the high probability of clearance and the long time period between hrHPV infection and cancer development, particularly among older women.²³

Regression of histologically diagnosed lesions also can occur subsequent to hrHPV infectioninduced neoplasia. Regression rates are higher for CIN1 than for CIN3, while CIN2 is a less reproducible diagnosis, and is likely a mixture of CIN1 and CIN3. In a historical cohort of about 20,000 Toronto women during a period when lesions were managed conservatively, regression from CIN2 to a second normal test occurred in 6.9 percent within 2 years, 29.0 percent within 5 years, and 53.7 percent within 10 years.

Progression of neoplasia to ICC is slow. The rate of progression of CIN3 to cancer has recently been estimated as 31.3 percent in 30 years. This rate was determined using retrospective data from an unethical clinical study in New Zealand between 1965 and 1974 that left a number of women with CIN3 disease incompletely treated or untreated.³ Other rough estimates from early studies of women with precancerous cell changes suggest a 20 to 30 percent risk of ICC over a 5-to 10-year time frame.^{24, 25} In the historical cohort described above, less than 1 percent (0.3%) of CIN2 lesions progressed to ICC within 2 years, 0.7 percent progressed within 5 years, and 1.2 percent progressed within 10 years.²⁶ Rates of CIN3 progression to ICC were considerably higher (1.6% within 2 years, 2.6% within 5 years, and 9.9% within 10 years).

Using composite data from cytology, histology, or both to define CIN lesions, a review summarized studies published between 1950 and 1990 on persistence, regression, and progression of CIN.²⁷ Over followup of 1 to 25 years, regression was most common for CIN1 (57% regressed, 32% persisted, and 1% progressed). For CIN2, 43 percent regressed, 35 percent persisted, and 5 percent progressed to cancer. For CIN3, regression rates were 32 percent, persistence rates were 56 percent, and progression rates were greater than 12 percent. Available data on CIN progression and regression have not discussed treatment for CIN3 specifically or its effect on the results reported, although factoring in treatment is clearly important.

Newer data suggest that CIN1 due to HPV infection does not predict any meaningful risk of progression to CIN3.^{8, 28} In addition, CIN1 diagnoses in the United States are poorly reproduced,^{8, 28} which has also been established recently for CIN2 diagnoses in the United States and other countries.^{29, 30} Despite poor reproducibility, data from the ASC-US-LSIL Triage Study (ALTS) have been used to estimate that up to 40 percent of CIN2 detected through colposcopy referral after positive primary screening tests (cytology and hrHPV) in younger women may regress, particularly in the presence of less severe cytology such as ASC-US+, LSIL+, or hrHPV positive tests that are not hrHPV 16 positive.³¹

Prevalence and Burden of Cervical Cancer and hrHPV

Cervical cancer incidence and mortality have substantially decreased since the introduction of screening programs more than half a century ago.³² The cumulative age-adjusted incidence from 2009 to 2013 was 7.5 cases per 100,000 women per year; the age-adjusted mortality rate over the same period was 2.3 deaths per 100,000 women per year.³² There were an estimated 12,990 new cases of cervical cancer and 4,120 deaths in 2016.³³ In Surveillance, Epidemiology, and End Results (SEER) Program data, the median age at diagnosis was 49 years,³² and 48 percent were among women ages 35 to 54 years (**Table 2**). Black (8.9 cases per 100,000 persons) and Hispanic (9.4 cases per 100,000 persons) women had higher incidence rates (**Table 3**).³² Cervical

cancer mortality was greatest among women ages 45 to 64 years (47.6%) (**Table 2**). Mortality for black (3.9 deaths per 100,000 persons) and American Indian/Alaskan Native (3.2 deaths per 100,000 persons) women was greater than for white (2.1 deaths per 100,000) women (**Table 3**).³² A recent analysis of National Center for Health Statistics data (2000-2012) that adjusted for differences in the hysterectomy rate by race/ethnicity found much higher mortality disparities than previously recognized.³⁴ For black women, the corrected mortality rate rose to 10.1 deaths per 100,000 women (uncorrected rate, 5.7 deaths per 100,000 women). In contrast, the adjusted rate for white women was 4.7 deaths per 100,000 women. The study demonstrated that without the correction for hysterectomy also indicated increasing cervical cancer mortality rates with age, particularly for black women, with corrected mortality rates greater than 30 deaths per 100,000 women for black women age 80 years and older.³⁴

Rates of incident cervical cancer in SEER 2013 data have decreased from 7.9 to 6.8 cases per 100,000 persons between 2004 and 2014, while overall cervical cancer mortality has declined only slightly in the same time frame, from 2.4 to 2.3 deaths per 100,000 women.³² The steady fatality rate primarily results from a large proportion of incident cases and deaths occurring with late presentation among unscreened women (i.e., those who have not been screened in the past 5 years), as well as those screened but lost to followup, highlighting the continued importance of improving access to cervical cancer screening and followup.^{27, 35-38} A recent age-adjusted analysis of national cancer mortality by county identified particularly high rates of cervical cancer mortality in the southern United States along the Mississippi River, in southern Alabama, and a few counties in South Carolina, Georgia, and South Dakota.³⁹

HPV is the most common sexually transmitted infection in the United States. The estimated prevalence of hrHPV among women in the United States ages 18 to 59 years was 20.4 percent based on data from the 2013 to 2014 National Health and Nutrition Examination Survey (NHANES).⁴⁰ The prevalence has been shown to vary by age, race/ethnicity, and sexual history (**Table 4**).^{40, 41} HPV infections were most common among young women ages 18 to 24 years (56.1%), black women (63.2%), women with an income-to-poverty ratio of less than 130 percent (55.3%), and women with a greater number of lifetime sexual partners (\geq 11 partners, 60.7%). Many infections regress within a few years; however, those that persist may lead to cervical cancer.²⁷

From 2004 to 2007, the estimated annual direct medical cost for routine cervical cancer screening was \$5.4 billion, with an additional \$1.2 billion in followup of abnormal results.⁴² The estimated annual direct medical cost of cervical cancer treatment was \$441 million.⁴²

Risk Factors

The risk of acquiring hrHPV dramatically increases with the number of lifetime sexual partners.^{21, 33, 41} Coinfection with other sexually transmitted agents such as chlamydia trachomatis may also be associated with risk of hrHPV infection.^{43, 44} Additional independent risk factors for cervical precancer and cancer include long-term use of oral contraception, high parity, and cigarette smoking.^{33, 45-47} Smoking is significantly associated with an increased risk of

SCC among current smokers compared with never-smokers, but not associated with the risk of cervical adenocarcinoma.⁴⁸ Geographic and racial/ethnic disparities remain, with Southern states having higher rates of cervical cancer, and non-Hispanic black and Hispanic women having higher cervical cancer incidence and mortality. Women with lower socioeconomic status have higher rates of cervical cancer mortality.⁴⁹ Cervical cancer incidence rises with age, and is believed to arise from persistent hrHPV infections from exposures earlier in life.⁵⁰ Persistent early infection, later in life incident infections, and reactivation of earlier infections could contribute to cervical cancer, but interactions between hrHPV exposure timing, infections with multiple types, and aging are not fully understood.⁵¹

Screening Strategies

Screening for cancerous or precancerous changes of the cervix in developed countries begins with two types of tests: cytology-based screening and hrHPV testing (**Appendix A**). Microscopic evaluation of cervical cells was the progenitor screening test, traditionally performed by scraping cells from the cervix and fixing them on a glass slide in a method developed by Georgios Papanicolaou. This test, commonly referred to as the Pap test, is used to identify abnormal cells (e.g., ASC-US, LSIL) immediately after collection. Liquid-based cytology (LBC), another cytology-based screening method, differs from conventional cytology in sample preparation. The cervical cells are first suspended in a liquid fixative by swirling the collection device in the fixative (ThinPrep, Hologic, Inc., Bedford, MA)⁵² or by placing the collection device in the fixative (SurePath, TriPath Imaging, Burlington, NC).⁵³ Cells are then suspended, collected by filtration, and transferred onto a monolayer for microscopic evaluation. Conventional cytology and LBC have similar test performance characteristics (e.g., sensitivity, specificity) for the detection of CIN2+ and CIN3+.⁵⁴ The effectiveness of cytology for cervical cancer screening is well established.⁵⁴

This review addresses the benefits and harms of cervical cancer screening with primary hrHPV testing (testing with hrHPV alone) or as cotesting with cytology. Assay methods for detecting hrHPV include a variety of platforms used to detect hrHPV. Most use either signal or nucleic acid amplification methods.

U.S. Food and Drug Administration–Approved hrHPV Tests

The U.S. Food and Drug Administration (FDA) has approved five different hrHPV tests (Hybrid Capture 2 [HC2],⁵⁵ cobas hrHPV [Roche Molecular Systems, Inc., Pleasanton, CA],⁵⁶ APTIMA hrHPV Assay [Gen-Probe, Inc., San Diego, CA],⁵⁷ Cervista hrHPV 16/18,⁵⁸ and Cervista high-risk hrHPV [Hologic, Inc., Bedford, MA])⁵⁹ for testing patients with abnormal cytology results to determine the need for colposcopy referral and for use in women age 30 years or older in conjunction with cytology (cotesting) to assess absence or presence of hrHPV. In 2014, the cobas hrHPV test was the first to be approved by the FDA as a primary cervical cancer screening test for women age 25 years or older.⁶⁰ Randomized trials of cotesting used the HC2 assay or the GP5+/6+ PCR enzyme immunoassay (not used in the United States), and the large Kaiser cohort reports on cotesting also used HC2. All four randomized trials of hrHPV testing alone (primary screening) used HC2, although this test has not been FDA-approved for primary screening. A

recent systematic review compared HC2 and CP5+/6+ to newer hrHPV tests, including those listed above. Of tests approved in the United States, HC2 was considered a reference standard; similar test performance characteristics were found for the APTIMA and Cervista assays, but only cobas 4800 HPV was found to fully meet 2009 international expert committee equivalency criteria.⁶¹

Because of the high frequency of transient HPV infection in women younger than age 30 years leads to many positive hrHPV tests and subsequent diagnostic and treatment interventions (with potential to cause harm) for infections that are likely to resolve spontaneously,⁶² hrHPV cotesting has not been recommended for cervical cancer screening in women younger than age 30 years.^{63, 64} However, the recent FDA approval of cobas hrHPV for primary screening in women age 25 years and older prompted the American College of Obstetrics and Gynecology to add primary hrHPV testing beginning at age 25 to its screening recommendations in 2016.⁶³

Self-Collection

Vaginal self-sampling—or self-collection—for hrHPV testing could improve screening rates among underscreened or unscreened women as it reduces some of the barriers to cervical cancer screening (e.g., discomfort, inconvenience, cost, and accessibility of a clinician visit). Selfcollection has women collect cervical or vaginal material using swabs, brushes, tampons, or lavage devices and send their samples to a health care provider or laboratory for analysis. Clinical followup is required for abnormal results. This screening alternative has not been widely evaluated in the United States and is not FDA approved. Evidence from other settings has prompted interest in its potential to reach unscreened women if the test accuracy and followup of positive test results are comparable to office-based screening. Lower accuracy and followup adherence might be viewed as sufficient, however, if self-collection increases overall screening, followup, and treatment among high-risk, unscreened women who are not responsive to other screening opportunities.

Followup Protocols

Whatever screening test is used, protocols for followup of abnormal test results will influence the frequency of both benefits and harms of cervical cancer screening. For cervical cancer screening to make a difference, once abnormal screening results are identified, followup with surveillance and/or treatment are required. Followup may include triage or subsequent testing with cytology or hrHPV testing, identification of the specific hrHPV type, and colposcopy (visualization of the cervix under magnification) with biopsy. Protocols vary depending on the severity of the abnormal result, and algorithms have been published,⁶⁵ but there is no clear consensus across organizations on preferred diagnostic and followup strategies. Followup strategies employ repeat testing with hrHPV and/or cytology at variable intervals, and differ on at what point evaluation with colposcopy and biopsy is recommended.⁶⁶ Early or more frequent use of colposcopy and biopsy leads to higher CIN detection rates but reduces opportunities for low-grade CIN to regress without intervention, and may lead to higher rates of treatment with potential for associated harms.

Prevention of hrHPV Infection

HPV vaccination helps prevent disease by reducing individual- and population-level infection with hrHPV types. HPV vaccination is most effective when administered before exposure to hrHPV.^{67, 68} Currently, three vaccines are approved in the United States that protect against hrHPV infection; however, as of late 2016, the GARDASIL® 9 vaccine was the only one being distributed.⁶⁹ Licensed in 2006, the quadrivalent HPV vaccine GARDASIL® protects against hrHPV types 16 and 18, the cause of 70 percent of cervical cancers, and HPV types 6 and 11, which cause 90 percent of genital warts.⁷⁰⁻⁷⁸ In 2009, the bivalent hrHPV vaccine (2vHPV) CERVARIX® was also licensed to protect against hrHPV types 16 and 18.⁷⁰ In 2014, the FDA approved GARDASIL® 9 (9vhrHPV), which protects against the same HPV types covered in the quadrivalent HPV vaccine (hrHPV types 16 and 18 and HPV types 6 and 11), and five additional high-risk oncogenic strains (31, 33, 45, 52, 58) that account for 15 percent of cervical cancers.⁷⁹

Recommendations for routine vaccination against HPV have been issued by the Advisory Committee on Immunization Practices (ACIP), a subsidiary component of the Centers for Disease Control and Prevention's national vaccine program, which recommends routine HPV vaccination for both sexes starting at age 11 or 12 years.⁶⁹ Children as young as age 9 years may receive the vaccine. Additionally, the ACIP recommends that females and males who were not adequately vaccinated previously receive the vaccine through ages 26 and 21 years, respectively. For children younger than age 15 years, a two-dose schedule is now recommended based on evidence of sufficient immunogenicity for these ages, with the second dose administered 6 to 12 months after the first dose. For individuals who initiate the vaccine after the age of 15 years, a three-dose schedule is still recommended, with the second dose administered 1 to 2 months after the first and the third dose administered 6 months after the first dose.⁶⁹ The recent introduction of a two-dose or alternative simplified dosing schedule increases convenience for providers, parents, and vaccine recipients; reduces costs; and facilitates implementation of vaccines (i.e., reduces logistical challenges, decreases resources).^{80 81} The two-dose schedule is expected to result in an increased proportion of children younger than age 15 years who have completed the recommended series.

In 2015, the first U.S.-based cohort of vaccinated women reached 21 years of age and became eligible for cervical cancer screening. Low rates of vaccination uptake initially and the lead time needed to observe effects limit conclusions that can be drawn regarding the impact of vaccination on cervical cancer incidence in the United States, but recent studies documenting declines in hrHPV infection and high-risk lesions among vaccinated women are encouraging.⁸²⁻⁸⁵ A systematic review found that in countries with greater than 50 percent vaccination coverage, hrHPV type 16 and 18 infections decreased significantly by 68 percent (relative risk [RR], 0.32 [95% CI, 0.19 to 0.52]) in girls ages 13 to 19 years between prevaccination and postvaccination periods. There was also evidence of cross-protection against other types with higher rates of vaccine uptake.⁸³ An Italian consensus conference recently addressed the potential need for changes to screening recommendation based on broad population coverage with the HPV vaccine, and recommended a tailored screening approach, with screening at age 30 years for women vaccinated by age 12 years.⁸⁴ Based on data from 2008 to 2012, HPV was estimated to cause more than 90 percent of cervical cancers and over 24,600 hrHPV-associated cancers (e.g.,

cervical and oropharyngeal cancer) occur among women in the United States each year.^{85, 86} Since the HPV vaccine was recommended for females ages 11 to 12 years through 26 years in 2006, NHANES data (2009-2012) demonstrates a 64 percent decrease in quadrivalent vaccine HPV-type prevalence among females ages 14 to 19 years and a 34 percent decrease among females ages 20 to 24 years.⁸⁷

Although uptake of the HPV vaccine in the United States has been slow, results from the 2015 National Immunization Survey-Teen (NIS-Teen) revealed a steady increase in HPV vaccination coverage among adolescents since its introduction in 2006 for females and 2011 for males. Coverage with one or more doses of any HPV vaccine increased from 25.1 percent in 2007 to 62.8 percent in 2015 among adolescent girls, and from 8.3 percent in 2011 to 49.8 percent in 2015 among adolescent boys.^{88, 89} Coverage with three or more doses increased from 5.9 percent in 2007 to 41.9 percent in 2015 among females, and from 1.3 percent in 2011 to 28.1 percent in 2015 among males.⁸⁸

Current Clinical Screening Practice in the United States

In 2012, the U.S. Preventive Services Task Force (USPSTF) recommended initiating cervical cancer screening at age 21 years, screening women every 3 years with cytology or, among women ages 30 to 65 years, cytology in combination with hrHPV testing every 5 years, and to stop screening women with a hysterectomy or those older than age 65 years with a history of regular screening with negative results. These recommendations applied to women at average risk of cervical cancer.⁹⁰ At the same time, similar recommendations were released in a joint guideline by the American Society for Colposcopy and Cervical Pathology (ASCCP), the American Society for Clinical Pathology (ASCP), and the American Cancer Society (ACS). The recommendations of other organizations published since the 2012 USPSTF recommendation are in **Appendix B**; many endorse either the USPSTF recommendations or the joint recommendations by ASCCP/ASCP/ACS.

Interim guidance from an expert panel cosponsored by the Society of Gynecologic Oncology (SGO) and the ASCCP was published in 2015 for primary hrHPV screening, and discussed initiation of screening with hrHPV testing alone at age 25 years; this option was also included in an interim update to an ACOG Practice Bulletin in 2016.^{63, 66} Evidence supporting these revisions came from the Addressing the Need for Advanced hrHPV Diagnostics (ATHENA) study, where 30 percent of CIN3+ cases were identified in women ages 25 to 29 years, and 37 percent of cases were identified in women ages 30 to 39 years.⁹¹ In that study, 44 percent of women between ages 25 and 29 years with CIN3+ had abnormal cytology and 57 percent had a positive cobas HPV test;⁹¹ however, the AGO/ASCCP panel issuing the interim guidance noted that progression to cancer is uncommon in this age group and detection of disease in the 25- to 29-year-old age group can be safely deferred until age 30 years and older.⁶⁶ Age to stop screening was not specifically addressed.

Although cervical cancer screening programs have reduced the incidence and mortality of cervical cancer over the past 50 years, most screening in the United States is opportunistic, without population-based registries or regular invitations to screening. Organized cervical cancer

screening programs are not widely available to women in the United States, and a sizeable proportion of the U.S.-based female population is not routinely screened. An estimated 8 million (11.4%) women in the United States ages 21 to 65 years had not been screened in the previous 5 years based on data from the 2012 Behavioral Risk Factor Surveillance System; these rates varied by age, race/ethnicity, and health insurance status.⁹² The highest proportions of unscreened women among screening-eligible women were in those of younger (ages 23 to 29 years) or older (ages 60 to 65 years) ages, Asian/Pacific Islanders (19.7%) or American Indian/Alaska Natives (16.5%) and those without insurance (23.1%) or no regular health care provider (25.5%). Among women diagnosed with ICC, less than half had received a Pap test in the 5 years before diagnosis even though they had the opportunity to be screened.³⁶ Reasons for not being screened include a lack of access to health care (e.g., lack of insurance) and other barriers (e.g., discomfort with the examination, cultural or religious beliefs, or socioeconomic status limiting resources needed to access care).

Most disparities in cervical cancer incidence and mortality are postulated to be attributable to differential access to screening and inadequate followup after abnormal screening results.⁹³ In an analysis of 10,000 women in the National Breast and Cervical Cancer Early Detection Program (NBCCEDP), 44 percent with low-grade abnormalities in the two sequential Pap tests were followed up with colposcopy, while 56 percent were followed up with a third Pap test or not at all.⁹³ American Indian or Alaska Native women had the highest percentages of a third Pap test, and non-Hispanic black women had a higher percentage of no followup.⁹³ More than half of the women studied were not followed up in accordance with established guidelines for management of abnormal cervical cytology.⁹³ Even for women with access to services, clinician adherence to recommended screening varies by provider specialty, geographic location, personal characteristics, and knowledge, and can also be influenced by patient expectations and preferences.⁹⁴⁻¹⁰²

Previous USPSTF Recommendations

As mentioned previously, in 2012 the USPSTF recommended screening for cervical cancer in women ages 21 to 65 years with cytology (Pap test) every 3 years or screening with a combination of cytology and hrHPV testing every 5 years for women ages 30 to 65 years who want to lengthen the screening interval (A recommendation).⁹⁰ It also recommended against screening for cervical cancer with hrHPV testing, alone or in combination with cytology, in women younger than age 30 years (D recommendation); screening for cervical cancer in women older than age 65 years who have had adequate prior screening and are not otherwise at high risk for cervical cancer (D recommendation); and screening for cervical cancer in women who have had a hysterectomy with removal of the cervix and who do not have a history of high-grade precancerous lesion (CIN grade 2 or 3) or cervical cancer (D recommendation).

In 2003, the USPSTF strongly recommended screening for cervical cancer in women who have been sexually active and have a cervix (A recommendation).¹⁰³ It also recommended against routinely screening for cervical cancer in women older than age 65 years if they have had adequate recent screening with a normal Pap test and are not otherwise at high risk for cervical

cancer (D recommendation), and against routine screening in women who have had a total hysterectomy for benign disease (D recommendation). At the time, the evidence was insufficient to recommend for or against the routine use of new technologies (such as LBC or automated screening) to screen for cervical cancer (I statement) and to recommend for or against the routine use of hrHPV testing as a primary screening test for cervical cancer (I statement).

Chapter 2. Methods

Scope and Purpose

This systematic review evaluated the evidence for the benefits and harms of cervical cancer screening using hrHPV testing with cytology (cotesting) or alone (primary testing). The USPSTF will use this review to update the 2012 recommendation on cervical cancer screening focusing on use of a hrHPV test alone or with cotesting compared to cytology as screening strategies.⁹⁰

Key Questions and Analytic Framework

In consultation with the Agency for Healthcare Research and Quality (AHRQ) and members of the USPSTF, we developed an analytic framework (**Figure 1**) and two Key Questions (KQs) to guide our review.

- 1. What is the effectiveness of hrHPV testing, with or without cytology, as a primary screening strategy for reducing cervical cancer mortality and incidence compared with currently recommended screening strategies for women in the United States?
 - a. Does the effectiveness of hrHPV testing to reduce cervical cancer outcomes vary by subpopulation (e.g., age, race/ethnicity, screening history, hrHPV immunization status, and socioeconomic status)?
 - b. For each primary screening strategy, how does the rescreening interval relate to future cancer incidence or progression?
 - c. Does the appropriate rescreening interval for each primary screening strategy vary by subpopulation (e.g., age, race/ethnicity, screening history, hrHPV immunization status, and socioeconomic status)?
- 2. What are the potential adverse effects of hrHPV testing, with or without cytology, as a primary screening strategy compared with currently recommended screening strategies for women in the United States?
 - a. Do the adverse effects vary by subpopulation (e.g., age, race/ethnicity, and hrHPV immunization status)?
 - b. Do the adverse effects vary by screening strategy, including by rescreening interval?

Data Sources and Searches

In addition to evaluating all previously included studies for inclusion in the current review, we conducted an initial search of existing systematic reviews related to cervical cancer screening in the following databases: MEDLINE, PubMed, Cochrane Database of Systematic Reviews, and the Database of Abstracts of Reviews of Effects, and the databases or Web sites of various organizations, including AHRQ, the Canadian Agency for Drugs and Technologies in Health, DynaMed, First Consult (via Clinical Key), Health Technology Assessment, the Institute for Clinical Systems Improvement, the Institute of Medicine, the NHS Health Technology

Assessment Programme, and the National Institute for Health and Care Excellence from January 2010 through February 25, 2015. The search strategies are listed in **Appendix A**.

We searched for newly published literature in the following databases: MEDLINE/PubMed, Cochrane Central Register of Controlled Trials, and PsycINFO from January 2011 through February 15, 2017, bridging from the previous USPSTF review with a 1-year overlap. After February 2017, ongoing surveillance continued through article alerts and targeted searches of high-impact journals to identify major studies published in the interim that could affect the conclusions or understanding of the evidence and the related USPSTF recommendation. The last surveillance was conducted on May 25, 2018, and resulted in the addition of the initial results of the Compass trial.¹⁰⁴ The search strategies are listed in **Appendix A**. We managed literature search results using EndNoteTM version 7.3.1 (Thomson Reuters, New York, NY).

Study Selection

Two investigators independently reviewed titles/abstracts using an online platform (Abstrackr)¹⁰⁵ and full-text articles against prespecified inclusion and exclusion criteria (**Appendix A Table 1**). Disagreements were resolved through discussion and consensus or consultation with the other investigators. A list of excluded studies after full-text review, including the reasons for exclusion, is available in **Appendix C**.

We included good- and fair-quality randomized, controlled trials (RCTs), controlled clinical trials (CCTs), individual participant data (IPD) meta-analyses and systematic reviews, and large cohort studies published in the English language that were conducted among women age 21 years or older. Women younger than age 21 years were excluded on the basis that the current recommendation to screen for cervical cancer with cytology (Pap test) applies to those age 21 years or older. Women in high-risk populations (e.g., women living with HIV), women without a cervix or who have had a hysterectomy (including removal of the cervix), and pregnant women were excluded, as these women may be managed differently with regards to cervical cancer screening. We also required studies to be conducted in primary care or other settings generalizable to primary care in countries categorized as "very high" on the 2014 Human Development Index,¹⁰⁶ as defined by the United Nations Development Programme, for greater applicability to current cervical cancer screening practices in the United States.

We required studies to evaluate hrHPV screening as either the hrHPV test alone (primary screening) or in combination with cytology (cotesting). Cervical cancer screening strategies that did not include an hrHPV test (e.g., primary cytology-based screening) or used an hrHPV test for a purpose other than primary screening (i.e., cytology with hrHPV triage of abnormal cytology) were excluded. For comparators, we included any cervical cancer screening test, including cytology-based or other hrHPV screening strategies. Studies evaluating the comparative effectiveness of cytology-based screening strategies were excluded.

For KQ1, we included studies if they reported on at least one of the following health outcomes, as defined by USPSTF procedures for evaluating potential benefits of screening:¹⁰⁷ early detection of disease (CIN2+ or CIN3+), ICC, all-cause or cervical cancer mortality, and quality

of life. Our review focused on CIN3+ to define disease, in the absence of cervical cancer or mortality outcomes, based on natural history considerations discussed above. CIN regression rates are higher for CIN1 and CIN2 lesions, and the risk of developing ICC is considerably lower for CIN1/CIN2 than for CIN3. Cervical cancer is rare in screened populations, and cervical cancer mortality even more rare in this group. Disease detection in this review focuses on detection of CIN3+ cases, which include both cancer and the category of intraepithelial neoplasia that is most likely to lead to cancer if left untreated, and have a lower chance of resolving without treatment.

For KQ1, we used the following hierarchy¹⁰⁸ of cervical cancer–related outcomes for data abstraction and analysis:

- Rank 1: Cervical cancer mortality
- Rank 2: Cervical cancer morbidity/cancer stage IB+ incidence
- Rank 3: Cervical cancer incidence (including microinvasive)
- Rank 4: Reduced CIN3+ incidence or p16 immunohistochemistry-associated high-grade squamous intraepithelial lesion incidence¹⁰⁹
- Rank 5: Increased detection of CIN3+ (or CIN2+)
 - More CIN3+ detection overall (cumulative CIN3+)
 - More CIN2+ detection followed by less CIN3+ detection at subsequent screening (note: CIN2+ detection may include overdiagnosis)
- Rank 6: Increased test positivity with increased, similar, or minimally reduced positive predictive value

For KQ2, we included studies if they reported on at least one of the following harms: rates of false-positive or false-negative screening tests for CIN or cancer; biopsy and/or colposcopy rates; and partner discord and other psychological harms (e.g., labeling, stigma, distress, quality of life). The potential harms of treatment, following screening results and diagnostic testing, are discussed, but these outcomes are not generally reported in cervical cancer screening trials.

We applied the following hierarchy to select study designs to answer our KQs: 1) RCTs, 2) comparative cohort studies that provide outcomes/analyses not represented in RCTs, and 3) single-group cohorts that provide outcomes/analyses not represented in RCTs, with priority placed on studies generalizable to U.S.-based clinical practices and health care settings. We excluded studies that were based exclusively on laboratory results and did not have the capacity to track individual women over time. We selected publications that reported on final results only (usually the most recent study publication); publications on interim and preliminary results were excluded (unless they provided detailed methodology).

Quality Assessment and Data Abstraction

Two investigators independently assessed the quality of included studies using criteria defined by the USPSTF¹¹⁰ supplemented with the Newcastle-Ottawa Scale¹¹¹ for observational studies (**Appendix A Table 2**). Each study was assigned a final quality rating of good, fair, or poor after investigators resolved any disagreements through discussion. Studies with a single "fatal flaw" (e.g., attrition >40%, differential attrition >20%) or multiple important limitations that could invalidate the results were rated as poor quality and excluded. Studies rated as good quality met all or most of the criteria for the study design (e.g., adequate randomization methods); quality ratings were downgraded if studies did not meet most of the study design–specific criteria but did not have a fatal flaw that could invalidate the results.¹¹² Studies included in previous reviews were re-evaluated and not necessarily given the same quality ratings owing to differences in the review scope (KQs and outcomes) or the availability of additional information and data published after the prior review.

One investigator abstracted data from all included studies into a Microsoft Access® database (Microsoft Corporation, Redmond, WA) and a second investigator checked the data for accuracy. We abstracted study design, population demographics, intervention characteristics, screening and round protocols, outcomes, and adverse effects. When necessary, we contacted study authors for data clarifications and requests for final data.

Data Synthesis and Analysis

Due to the heterogeneity of screening tests, screening protocols, settings, and followup protocols, we did not quantitatively pool results using meta-analysis. We instead conducted a narrative synthesis of the results by screening strategy and age. We generated summary tables and descriptive text detailing the populations, protocols, and the interventions and followup procedures at each round of screening for included studies. The prespecified outcomes were abstracted from each study by KQ, and results were presented in groups defined by the intervention type (primary hrHPV testing or hrHPV cotesting), and when possible, by age. We highlighted the absence of relevant outcomes. We drew inferences when possible, but also highlighted limitations in the evidence.

Results from the included RCTs were generally based on a 'number of women screened' denominator, rather than intention-to-treat calculations using all women randomized. These denominators are appropriate since the relative merits of the screening strategies being compared, rather than overall merits of the screening program, are being evaluated. Some results reported in the evidence and summary tables were calculated from data provided in the articles or by authors, as indicated in table annotations.

When possible, we provided data stratified by age because the prevalence of hrHPV is much lower in women age 30 years or older than in women younger than age 30 years.³² Cotesting with hrHPV tests in conjunction with cytology is the only FDA-approved strategy in women age 30 years or older.⁶⁰ We defined two age categories: women younger than ages 30 to 35 years and women older than ages 30 to 35 years.

The definition of test positive for this review was defined based on the trial protocol (**Appendix F Table 2**). Test findings that would lead to a clinical action, based on the study protocol, such as colposcopy or more intensive followup (e.g., retest in 6 months), were defined as test positive. Thus, in some trials, the test positivity rate in the intervention group is simply the rate of hrHPV test positivity, whereas in others it is the rate of hrHPV+ with ASC-US+. We used Bethesda

system terminology throughout the review and converted cytological results reported in other terminology systems to the Bethesda system, although there is not exact equivalence (e.g., borderline or mild dyskaryosis is comparable to ASC-US) (**Table 1**).

For evaluating potential harms or burden of screening, the false-positive rate (FPR) quantifies the chance that a patient experiences a positive screening test result, but histology results are not indicative of precancerous lesions or cervical cancer that would necessitate treatment or active surveillance if detected (CIN2+). Differences in the FPR associated with different screening strategies were estimated by comparing the number of women who do not have histologically confirmed CIN2+ diagnosed prior to or in the screening round following a test positive result (as defined above). FPR was defined as histologically confirmed CIN2+ because this degree of CIN is usually acted on clinically once detected. This definition of FPR is a pragmatic one and relies on colposcopy as a reference standard; however, there is variability in the accuracy of colposcopy and biopsy to detect CIN2+ based on colposcopist training and experience as well as the biopsy protocol.¹¹²

Differences in colposcopy rates for different screening strategies tested in trials are related to both the test positivity rate and the triage protocols used. Colposcopy is uncomfortable, anxiety provoking, and time consuming. While it is also a necessary step toward diagnosis and treatment, colposcopy due to a false-positive screening test may be considered a harm. Colposcopy may lead to treatments that are associated with an uncommon risk of serious harms. A screening protocol equally effective at identifying CIN3+ cases and preventing ICC, but with more colposcopies, would be evaluated as having greater potential harm.

The false-negative rate was another test performance characteristic evaluated in our analysis of potential screening harms. False-negative rates were defined in this review as the proportion of women with ICC who had negative screening findings at a previous round of screening. Although this is a rare outcome, evidence of differences in the rate of missed cases among screened women is important to consider. Since trials do not generally conduct colposcopies in women with negative screening results, we are not able to accurately estimate the false-negative rates of CIN2 or CIN3. At followup rounds of screening, it is not possible to distinguish between newly emerging CIN2/CIN3 versus cases that were missed on previous screenings. ICC generally evolves slowly, so identification of ICC after a negative screen likely reflects a false-negative result. In addition, cancer registries can be used to identify missed cases.

Grading the Strength of the Body of Evidence

We graded the strength of the overall body of evidence for each KQ. We adapted the Evidencebased Practice Center approach,¹¹³ which is based on a system developed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group.¹¹⁴ Our method explicitly addresses four of the five Evidence-based Practice Center–required domains: consistency (similarity of effect direction and size), precision (degree of certainty around an estimate), reporting bias (potential for bias related to publication, selective outcome reporting, or selective analysis reporting), and study quality (i.e., study limitations). We did not address the fifth required domain—directness—as it is implied in the structure of the KQs (i.e., pertains to whether the evidence links the interventions directly to a health outcome).

Consistency was rated as reasonably consistent, inconsistent, or not applicable (e.g., single study). Precision was rated as reasonably precise, imprecise, or not applicable (e.g., no evidence). Reporting bias was rated as suspected, undetected, or not applicable (e.g., when there is insufficient evidence for a particular outcome). Study quality reflects the quality ratings of the individual trials and indicates the degree to which the included studies for a given outcome have a high likelihood of adequate protection against bias. The body of evidence limitations field highlights important restrictions in answering the overall KQ (e.g., lack of replication of interventions, nonreporting of outcomes important to patients).

We graded the overall strength of evidence as high, moderate, or low. "High" indicates high confidence that the evidence reflects the true effect and that further research is very unlikely to change our confidence in the estimate of effects. "Moderate" suggests moderate confidence that the evidence reflects the true effect and that further research may change our confidence in the estimate of effect and may change the estimate. "Low" indicates low confidence that the evidence reflects the true effect and that further research is likely to change our confidence in the estimate of effect and is likely to change the estimate. A grade of "insufficient" indicates that evidence is either unavailable or does not permit estimate of an effect. Two independent reviewers rated each KQ according to consistency, precision, reporting bias, and overall strength of evidence grade. We resolved discrepancies through consensus discussion involving more reviewers.

Expert Review and Public Comment

A draft Research Plan for this review was available for public comment from May 28, 2015, to June 28, 2015. The draft version of this report was reviewed by experts and USPSTF federal partners. Comments received during any period were reviewed, considered, and addressed as appropriate. A draft version of this report was reviewed by invited external experts and federal partners listed in the acknowledgements. Reviewer comments were presented to the USPSTF during its deliberations and subsequently addressed in revisions of this report. Additionally, a draft of the full report was posted on the USPSTF Web site from September 12, 2017, through October 13, 2017. Clarifications of the report were made and an additional report on the Kaiser cotesting cohort was included.¹¹⁵

USPSTF Involvement

This systematic review was funded by AHRQ under a contract to support the USPSTF. We consulted with USPSTF liaisons at key points in the review, including the development of the research plan (i.e., KQs, analytic framework, and inclusion and exclusion criteria) and the finalization of the systematic review. An AHRQ Medical Officer provided project oversight, reviewed the draft and final versions of the review, and assisted with expert review and public comment on the research plan and draft evidence review. The USPSTF and AHRQ had no role in the study selection, quality assessment, or writing of the systematic review.

Chapter 3. Results

Literature Search

We screened 2,972 abstracts and 164 full-text articles for inclusion (**Appendix A Figure 1**). We included 13 studies^{104, 116-126} that reported results in 33 publications (**Appendix D**). Five studies were included for the effectiveness of hrHPV primary screening strategy, ^{104, 119, 124, 125, 127-130} seven studies were included for screening with cotesting, ^{116, 118-120, 131-138} and an IPD meta-analysis that pooled results from studies of both primary hrHPV screening and cotesting (KQ1) and 13 studies¹¹⁶⁻¹²⁶ of harms (KQ2) were included.¹³⁹

KQ1. What Is the Effectiveness of hrHPV Testing, With or Without Cytology, as a Primary Screening Strategy for Reducing Cervical Cancer Mortality and Incidence Compared With Currently Recommended Screening Strategies for Women in the United States?

Summary of Results

The primary outcome of KQ1 was cervical cancer mortality, but this is a rare outcome in countries with organized cervical cancer screening programs. Although large numbers of women were recruited, none of the seven included trials reported on or were powered to assess mortality. Trials were heterogeneous with regard to type of cytology (conventional vs. LBC), type of hrHPV test (PCR vs. HC2), screening interval (2 to 5 years), followup protocols for abnormal results, number of screening rounds, and protocols for screening beyond the first screening round. No trials directly compared primary hrHPV testing with hrHPV cotesting; in all cases, comparisons were made to cytology screening. Trials reported outcomes after one or two rounds comparing alternative screening strategies.

The evidence was generally consistent across trials with variable protocols and hrHPV test types in demonstrating that primary hrHPV testing increased detection of CIN3+ in the initial round of screening (RR range, 1.61 [95% CI, 1.09 to 2.37]^{125, 128-130} to 7.46 [95% CI, 1.02 to 54.66]).¹⁰⁴ Only the NTCC Phase II trial of primary hrHPV testing, where all women with a positive hrHPV test were referred to colposcopy, had complete results from two rounds of screening (at Round 2 screening all women received cytology testing).^{119, 127} In that study, CIN3+ detection in Round 1 was 3-fold higher in the hrHPV testing arm, and cumulative detection was 1.8-fold higher after the second round of screening. Results of a large, single-arm, fair-quality cohort study of primary hrHPV testing at 3-year intervals were consistent with trial findings. CIN3+ detection in the second screening round was significantly lower: the RR for CIN3+ detection at Round 2 compared to Round 1 was 0.14 (95% CI, 0.06 to 0.32).

None of the cotesting trials demonstrated significantly higher detection of CIN3+ in the first

round of screening, with the RR ranging from 1.04 to 1.31. By the second round of screening 3 to 5 years later, in two trials, CIN3+ detection in the second round of screening was significantly lower, with RRs ranging from 0.53^{118, 135} to 0.73.^{120, 133, 134}

The large, single-group cohort studies of cotesting were consistent with the pattern of higher detection of CIN3+ in the first screening round relative to a followup round.^{122, 126, 140} Without a comparison group, it is unknown how these cohort study findings would compare to screening with cytology alone.

Findings of the IPD meta-analysis suggested lower incidence of ICC in the hrHPV testing arms beyond the first 2.5 years from the initial screening round.¹³⁹ While this finding is encouraging, it was based on pooling studies of both primary hrHPV testing and cotesting, using different test protocols and screening intervals with a cumulative total of only 107 ICC cases. Because no trial sustained the intervention and control group protocols beyond two screening rounds, evidence comparing the long-term outcomes of hrHPV primary testing or cotesting with cytology only is lacking. The evidence was not sufficient to draw conclusions about the outcomes of strategies including hrHPV testing compared with strategies involving cytology repeated multiple times at regular intervals over the recommended screening age range.

Evidence on subpopulation outcomes from the RCTs and cohort studies described above focused on outcomes by age group. Studies reported variable age groups, with break points at age 25 years, 29 to 30 years, or 34 to 35 years. Women younger than age 35 years had consistently higher rates of hrHPV positivity and of CIN3+. Outcome differences between screening strategies by age group were not notably different from the results in the study populations overall. No included studies reported on outcomes by race/ethnicity, hrHPV immunization status, or socioeconomic status. Neither trials nor the Kaiser Permanente Northern California (KPNC) cohort study reported on outcomes related to screening history, and all but one included study were based in organized screening programs, suggesting that most subjects were offered regular screening from Spain of women not screened in the previous 5 years, overall CIN3+ was detected in 0.5 percent of women (nine women), but loss to followup was nearly 50 percent.¹²¹ Three women with CIN3 were detected only through hrHPV testing.

Data from trials were not adequate to compare outcomes of different rescreening intervals, due to lack of direct comparisons of intervals or consistent application of initial screening strategies for more than one screening round. Similarly, no data were available to address rescreening intervals by subpopulation.

Study Characteristics

We identified eight RCTs that used hrHPV testing as part of cervical cancer screening (**Table 5**); four trials^{104, 119, 124, 129} evaluated primary hrHPV testing and four trials^{116, 118-120} evaluated cotesting with cytology. Additionally, we included four cohort studies (one of primary screening and three of cotesting) and an IPD meta-analysis of five screening trials. Additional details on baseline population characteristics and screening protocols are described in detail in **Appendix F Tables 1-3**.

Since each trial had a distinct screening protocol, with different hrHPV and cytology test types, intervals, and followup protocols, we did not pool study outcomes with meta-analysis. We focused primarily on detection of CIN3+ as the outcome of interest; all included studies reported this outcome. Although reducing cervical cancer morbidity and mortality is the target of cervical cancer screening, ICC is a rare outcome in countries where most women are regularly screened for cervical cancer by any method. Although reported separately in some studies, these outcomes were too rare for meaningful comparisons. Cervical cancer mortality is even less frequent and was not reported in any trial. CIN3+ includes all ICC and in situ precancerous changes with a high-risk of progression to invasive cancer over time.

Three of the included trials were rated good quality (NTCC Phase I and Phase II, POBASCAM) and the other five were rated fair quality. Problems with blinding of outcome assessors, adherence to study protocols, and maintenance of the randomization scheme over multiple rounds of screening contributed to risk of bias in this evidence base. Attrition and changes to the screening protocol over time limited the extent to which results from later rounds of screening could inform the KQs of this review.

Screening With Primary hrHPV Testing

RCTs

Ronco and colleagues compared primary hrHPV with HC2 to conventional cytology in the goodquality NTCC Phase II trial (**Tables 6–8**).^{119, 127} This trial, conducted in Italy, randomized 49,196 women ages 25 to 60 years invited for routine screening to either hrHPV testing with HC2 or conventional cytology. Subjects were followed for a maximum of 7 years over two rounds of screening at 3-year intervals. The second round of screening for both intervention and control groups used cytology only. Women in the intervention group were referred to colposcopy for any positive hrHPV test. Women with CIN2+ were treated, while women with CIN1 were followed with repeat colposcopy according to standard protocols, and received annual hrHPV and cytology testing. Abnormal cytology results were managed according to standard center protocols.

The fair-quality HPV FOCAL trial, conducted in Canada, evaluated HC2 hrHPV testing with LBC triage.^{125, 128, 129} This trial randomized 25,223 women ages 25 to 65 years who were eligible for routine screening determined by the centralized British Columbia cytology database. Women were randomized to three arms: a control group of 9,457 women screened with LBC every 2 years with cotesting at the 4-year exit screen, an intervention group of 9,552 women screened with hrHPV testing (HC2) at entry and with cotesting 4 years later, and a safety arm of 6,214 women screened with primary hrHPV testing at entry and screened 2 years later with LBC. In the intervention arm, women who had hrHPV positive results then had LBC done on the specimen and if cytology was abnormal they were referred for colposcopy. Women with normal cytology had repeat testing at 12 months. The control group received LBC followup according to standard protocols, including triage of ASC-US cytology results with hrHPV testing. At two years the safety arm received followup according to the same protocols.

In the fair-quality FINNISH trial, Leinonen and colleagues randomized women in Finland ages

25 to 65 years invited to participate in population-based cervical cancer screening between 2003 and 2007 for a single round of primary HC2 hrHPV testing compared with conventional cytology.⁷ Followup for a positive hrHPV screening test was with cytology. A total of 203,425 women were invited for screening, and of these about 65 percent attended screening in each arm: 66,410 women in the hrHPV arm and 65,785 women in the cytology group. Women with abnormal cytology other than ASC-US were referred for colposcopy in both arms. Women with ASC-US and women with hrHPV+ test results were followed with rescreening at 12 to 24 months. After the single round of randomized screening, followup through population based registries (Mass Screening Registry, Finnish Cancer Registry) continued for a maximum of 5 years and ended in December 2008.

The fair-quality Australian Compass trial has reported preliminary results in an RCT in which 4,995 women ages 25 to 64 years were randomized to LBC every 2.5 years or hrHPV primary screening with either HC2 or Cobas 4800 every 5 years.¹⁰⁴ Women in the LBC screening arm with results showing HSIL and those with ASC-US/LSIL positive for hrHPV 16-18 were referred to colposcopy. Women in the primary hrHPV screening arms were referred to colposcopy for hrHPV 16-18, and the rest were triaged with either LBC or p16/K67 testing in a secondary randomization. Twenty two percent of enrolled women were younger than age 33 years, an age group that would have been offered hrHPV vaccination in Australia. Investigators estimated that 70 percent would be vaccinated in that age group, based on population uptake. Recruitment and followup in the trial are ongoing.

Cohort Studies

A large, single-arm fair-quality cohort study conducted in two population-based cervical cancer screening programs in Italy reported on the results of primary hrHPV testing with HC2 and cytology triage of positive hrHPV tests, with two rounds of screening at a 3-year interval (**Tables 9** and **10**).¹²⁶ The study included 93,381 women invited for screening; 48,751 participated with completion of 48,736 hrHPV tests. Conventional cytology smears were obtained simultaneously, and processed only for positive test results. Among those with positive hrHPV screening results, women with abnormal cytology were referred to colposcopy; women with normal cytology had repeat hrHPV testing at one year. Women with negative hrHPV testing were invited for a second round of screening at three years. At the time of publication, 29,694 were invited to screening, 22,000 (74.5%) participated, and 21,827 completed HPV tests.

The ATHENA study was a single-arm observational cohort study of 47,208 women age 21 years and older (no upper age or age range is given) recruited for a single cross-sectional screening with three hrHPV test types, the HPV Amplicor and Linear Array HPV genotyping test, Hybrid Capture II, and cobas HPV test.⁹¹ LBC was also performed on all subjects. Although initial results from the cross-sectional sample were reported for women 25 years and older (41,995), 77 percent of these women had no further followup. Subsequent followup was reported only on women with abnormal cytology (ASC-US or worse), women positive for HPV with Amplicor or linear array, and the group of women with normal results who were randomly selected and agreed to colposcopy (total n=9353). Of the 9353 women who were invited to that initial colposcopy, 2685 (35%) were lost to followup after the initial colposcopy. Due to exclusion of most of the study population after cross-sectional screening, as well as high loss to followup over

3 years, this study was rated as poor quality and not included in the review.

Screening With hrHPV Cotesting

RCTs

The good-quality NTCC Phase I trial by Ronco and colleagues compared HC2 hrHPV and LBC cotesting to conventional cytology (**Tables 11–13**).^{119, 131, 132} In this trial, 45,174 Italian women ages 25 to 60 years attending a routine cervical cancer screening visit from March 2002 through December 2004 were randomized to cotesting or conventional cytology. Data from Phase II, which used hrHPV testing alone, are reported separately in the section on primary hrHPV testing above. At the 3-year followup round, all participants were screened with conventional cytology. Maximum total followup was 7 years. Women were referred to colposcopy for ASC-US+ on cytology, and women ages 25 to 60 years with a positive hrHPV test result were referred to colposcopy only if hrHPV remained positive at the 1-year followup testing.

The fair-quality SWEDESCREEN trial compared hrHPV cotesting using the GP5+/6+ PCR enzyme immunoassay combined with conventional cytology compared with conventional cytology alone in the first round of screening.^{118, 135} All women received both tests at baseline, but hrHPV samples were frozen for future testing in the control arm. A total of 12,527 Swedish women who were invited for routine cervical cancer screening agreed to randomization and were followed after the first round of screening for slightly more than 4 years through comprehensive registry data. Screening protocols for women negative in Round 1 were through usual care. After 3 years, blinding of hrHPV results was discontinued because of concerns about higher rates of CIN2 and CIN3 associated with positive hrHPV results; all women enrolled in the study were informed of their hrHPV results. According to study protocol, women with cytology results consistent with CIN2+ were referred to colposcopy in all communities, but followup for ASC-US and LSIL varied by community, with women either referred to colposcopy or undergoing a repeat Pap smear. Women with normal cytology and a positive hrHPV test was still positive at that time.

In the fair-quality ARTISTIC trial, Kitchener and colleagues compared hrHPV with LBC among women ages 20 to 64 years invited for routine cervical cancer screening in the United Kingdom.^{116, 136-138} A total of 25,078 women received LBC and hrHPV testing and were randomized in a 3-to-1 ratio to have both hrHPV and LBC results revealed to the patient and the investigator (18,386 women in the intervention group), or to have only LBC results revealed (6,124 women in the control group). LBC was processed via a ThinPrep system; hrHPV testing was conducted with HC2. Two rounds of screening were conducted, with the second round using the same screening protocol at a 3-year interval. Women with HSIL+ in either group were referred directly to colposcopy and biopsy. Women with LSIL in either group had repeat testing at 6 months and were referred to colposcopy if persistently positive. Women with borderline cytology in either group were retested at 6 and 12 months; if persistently positive, they were referred to colposcopy. Women in the intervention group with a positive hrHPV test and normal cytology were retested at 12 months. If the positive hrHPV result persisted, they were offered

colposcopy or repeat testing at 24 months. Women with positive hrHPV testing at 24 months were referred to colposcopy. Loss to followup before the second round of screening was 33.2 percent in the intervention group and 34.2 percent in the control group.

In the good-quality POBASCAM trial, Rijkaart and colleagues randomized 44,938 women ages 29 to 61 years to one round of cotesting with hrHPV with the GP5+/6+ PCR enzyme immunoassay testing and conventional cytology (19,999 women in the intervention group), or conventional cytology alone (20,106 women) with blinded hrHPV testing.^{120, 133, 134} After this single round of screening, followup testing 4 to 6 years later included cotesting with hrHPV GP5+/6+ PCR enzyme immunoassay and conventional cytology tests for all women. Women who had normal cytology with a positive hrHPV test result had repeat testing at 6 and 18 months. Women with moderate dyskaryosis or worse (HSIL+) in either group were referred for colposcopy and biopsy. Women in the intervention group with less than HSIL on cytology underwent repeat cytology and hrHPV testing at 6 months. If hrHPV was positive, they were referred to colposcopy and biopsy; if not, testing was repeated at 18 months. Overall loss to followup from all causes was 16.5 percent and was similar between arms.

Ronco and colleagues conducted an IPD meta-analysis of five trials: four trials of cotesting (NTCC Phase I, SWEDESCREEN, ARTISTIC, and POBASCAM) and a single trial of primary hrHPV testing (NTCC Phase II).¹³⁹ Participant data were pooled although these trials had distinctly different screening protocols, screening intervals, and hrHPV test types. Cancer ascertainment was performed at the individual trial level with no additional case review. Followup duration ranged from 5 to 12 years.

Cohorts

Numerous reports have been published on a cohort of women who received cotesting at KPNC, a large health maintenance organization (**Table 9; Appendix Tables 5** and **6**).^{122, 141-143} The number of women included in the cohort varied depending on the research question, the continuity of the screened population, selected characteristics of participants, and the number of rounds of screening considered. A study on cotesting over time in the same cohort of women was included to add representation of the U.S. population, and a larger but less continuous KPNC cohort substudy provided age-stratified comparisons (presented below). The cohort had no comparison group, but this large U.S.-based study did report outcomes on a group of 331,818 women age 30 years and older who underwent initial cotesting with conventional cytology and HC2 hrHPV testing between 2003 and 2005 (prevalence screen) with cumulative outcomes up to 6 years from enrollment.¹²² They reported incidence screening outcomes on a group of 195,975 women with initial negative cotesting results who underwent a second cotesting round 3 years later. A recently published report on 1,262,713 women who underwent screening one or more times in KPNC between 2003 and 2015 included both women ages 25 to 29 years undergoing cytology and ASC-US triage with hrHPV testing and women ages 30 to 77 years screened with cotesting. This analysis presented cumulative 5-year risk of CIN3+ and ICC stratified by hrHPV results and cytology results.¹¹⁵

A German prospective observational cohort study included 19,795 women who underwent cotesting with conventional cytology and HC2 testing with a 5-year screening interval.^{123, 140} No

comparison group was included. Women with abnormal cytology and negative hrHPV testing and those with positive hrHPV testing and normal cytology underwent repeat cytology at 6 months and hrHPV testing at 12 months with referral to colposcopy for any abnormal results. The investigators reported interim outcomes of 4,067 women screened in the first and second rounds for the same time interval beyond screening.

Detailed Results

CIN2+ and CIN3+ Detection

Screening With Primary hrHPV Testing

In the NTCC Phase II trial, over two rounds of screening, detection rates for CIN3+ were 0.4 percent in the intervention group and 0.2 percent in the control group, with an RR for CIN3+ detection of 1.81 (95% CI, 1.31 to 2.51).¹¹⁹ In the HPV FOCAL trial, during the first round of screening, CIN3+ detection was 0.8 percent in the intervention group and 0.5 percent in the control group; the RR for CIN3+ detection was 1.61 (95% CI, 1.09 to 2.37). After 2 years, CIN3+ detection was 0.06 percent in the safety arm (screened in Round 1 with hrHPV) and 0.25 percent in the control arm.¹⁴⁴ Final results, including cumulative CIN3+ detection rates over the full 4 years of the trial, are pending publication. In the FINNISH trial, the RR for detection of CIN3+ among women in the hrHPV group was 1.64 (95% CI, 1.30 to 2.06), with 195 (0.3%) women in the intervention group found to have CIN3+ compared with 118 (0.2%) in the group screened with conventional cytology.¹²⁴ In the Compass trial's first round of screening, CIN3+ detection was 0.8 percent in the intervention group and 0.1 percent in the control group; the RR for CIN3+ detection was 0.8 percent in the intervention group and 0.1 percent in the control group; the RR for CIN3+ detection was 0.8 percent in the intervention group and 0.1 percent in the control group; the RR for CIN3+ detection was 0.8 percent in the intervention group and 0.1 percent in the control group; the RR for CIN3+ detection was 7.46 (95% CI, 1.02 to 54.66).¹⁰⁴ Detailed results for randomized trials of primary hrHPV testing are summarized in **Table 6**.

In the Italian cohort study at Round 1, detection rates including 1-year followup were 215 cases of CIN2+, 95 cases of CIN3+, and 6 cases of ICC (CIN3+, 0.2%).¹²⁶ Detection rates at Round 2 including 1-year followup were 23 cases of CIN2+, 6 cases of CIN3+, and no cases of cervical cancer (CIN3+, 0.03%). The RR for CIN3+ detection at Round 2 compared to Round 1 was 0.14 (95% CI, 0.06 to 0.32).

Screening With hrHPV Cotesting

In the NTCC Phase I trial in the first round of screening, 0.3 percent of 22,708 women had CIN3+ detected in the intervention group compared with 0.3 percent of 22,466 women in the control group, with an RR of 1.28 (95% CI, 0.91 to 1.80).¹³² In Round 2, CIN3+ detection was 0.06 percent of 22,093 women in the intervention group compared with 0.08 percent of 22,330 women in the control group, with an RR of 0.96 (95% CI, 0.34 to 1.40). Cumulatively, the RR for detection of CIN3+ was 1.13 (95% CI, 0.83 to 1.53), with 88 (0.4%) of 22,708 women in the intervention group compared with 77 (0.3%) women in the comparison group found to have CIN3+ (**Table 11**).

In the SWEDESCREEN trial, Round 1 screening detected CIN3+ in 1.2 percent of 6,257 women in the intervention group compared with 0.9 percent of 6,270 women in the control group, with

an RR of 1.31 (95% CI, 0.92 to 1.87).¹¹⁸ Registry followup of usual care screening identified CIN3+ in 0.3 percent of 6,257 women in the intervention group compared with 0.5 percent of 6,270 women in the control group. The RR for detection of CIN3+ was lower for the intervention group in the second round of screening at 0.53 (95% CI, 0.29 to 0.98). Cumulative detection of CIN3+ over one round of screening with subsequent usual care followup was similar between arms: 88 (1.4%) in the cotesting arm and 85 (1.4%) in the cytology group, with an RR of 1.04 (95% CI, 0.77 to 1.39). Long-term followup was reported at up to 13 years based on tracking study participants in the National Quality Registry for Cervical Cancer Prevention, a national Swedish registry including cervical cytology and biopsy results from all sources in Sweden (Appendix F Table 4).¹³⁵ No statistical difference remained in cumulative CIN3+ rates between the intervention and control arms of the study. Cumulative rates of CIN3+ were examined for both baseline test results for both the combined study arms (cytology, hrHPV, and hrHPV/cytology combined). Among women in either group with negative cytology, CIN3+ rates were lowest for women with negative hrHPV tests at baseline in both the intervention and control arms and highest in women with negative cytology without consideration (i.e., no knowledge) of hrHPV test results.

In the ARTISTIC trial, Round 1 screening detected CIN 3+ in 1.3 percent of women in the intervention group and 1.3 percent of women in the control group.¹¹⁶ The RR for CIN3+ during Round 1 was 0.96 (95% CI, 0.74 to 1.23). Round 2 detection of CIN3+ was 0.3 percent of women in the intervention group and 0.4 percent of women in the control group, with an RR of 0.76 (95% CI, 0.43 to 1.34). Cumulative detection of CIN3+ was 1.5 percent of women in the intervention group and 1.6 percent in the control group. The cumulative RR for CIN3+ after two rounds of cotesting was 0.91 (95% CI, 0.73 to 1.15) (**Table 11**). After the second round of screening, all results were revealed; under a revised consent and protocol, a third round of testing was conducted. Due to loss of randomization, protocol changes, and further loss to followup, those results were not included in this review.¹³⁷

During the first round of screening in POBASCAM, CIN3+ was detected in 0.9 percent of women in the intervention group compared with 0.7 percent of women in the control group. The RR was 1.15 (95% CI, 0.92 to 1.43).¹²⁰ At Round 2, CIN3+ was detected in 0.4 percent of women in the intervention group compared with 0.6 percent of women in the control group, with an RR of 0.73 (95% CI, 0.55 to 0.96). With 9 years of followup after the two rounds of screening, and the second round including hrHPV testing for all subjects, the cumulative RR for CIN3+ in the intervention group was 0.96 (95% CI, 0.81 to 1.13) (Table 11). Detection of CIN3+ was 259 (1.3%) women in the intervention group compared with 272 (1.3%) women in the control group. Additional followup data from the POBASCAM trial was recently published in a report by Dijkstra and colleagues.¹³⁴ Outcomes for initially hrHPV negative women (intervention group) and cytology negative women (control group) were reported after 14 years of followup, through the National Network of Cervical Histology and Cytology. At Round 3 of screening, participants in both groups were managed based on cytology results. The authors reported outcomes of analyses that were not prespecified for women who were cytology negative/hrHPV negative and cytology positive/hrHPV negative in the intervention group, and compared them to cytology negative women in the control group; HPV negative women had lowest rates of CIN3+ (Appendix F Table 4). The RRs for these subsets in the intervention versus control groups for CIN3+ were not significantly different from 1.0.

The KPNC cohort reported incidence screening outcomes on 331,818 women: 24,849 women (7.5%) had a positive hrHPV test result or abnormal cytology result, and 834 (0.3%) cases of CIN3+ were detected (Table 15).¹²² Among the 195,975 women with initial negative cotesting who had repeat screening 3 years later, 102 (0.05%) cases of CIN3+ were detected. A subsequent report on women with positive hrHPV test results and negative cytology in the Kaiser cohort extended inclusion through 2010. In this group of 32,374 women who were followed for variable durations after testing, CIN3+ was detected in 753 (2.3%) women.¹⁴² A recently published followup paper from 2003–2015 of 1,262,713 women with median followup of 3 years reported 2,106 CIN3+ cases among women with normal cytology results, with a 5-year cumulative risk of 0.25 percent (95% CI, 0.24 to 0.27). Among women with a negative hrHPV test, regardless of cytology results, there were 1,003 cases of CIN3+, a 5-year cumulative risk of 0.12 percent (95% CI. 0.11 to 0.12).¹¹⁵ These results add evidence of the very low risk of CIN3+ among women testing negative for hrHPV. In the German cohort, CIN3+ was detected in 0.87 percent of women in Round 1 compared with 0.05 percent of women in Round 2, suggesting a declining risk over cotesting screening rounds. However, without a cytology-only comparison group, the incremental benefit of cotesting could not be assessed.

ICC

Trials had low rates of ICC and not all trials reported on ICC cases. For hrHPV primary testing, the FINNISH trial reported 17 cases of ICC among 66,410 women (0.03%) in the intervention group compared with 9 cases among 65,784 women (0.01%) in the control group in one round of screening. Among the cotesting trials, POBASCAM and ARTISTIC reported on ICC detection over two rounds of screening. In POBASCAM, the intervention group ICC detection was 12/19,999 women (0.06%) in Round 1 and 4/19,579 (0.02%) women in Round 2. In the control group, ICC detection was 6/20,109 women (0.03%) in Round 1, and 14/19,731 women (0.07%) in Round 2. In ARTISTIC, ICC detection in the intervention group was 5/18,386 women (0.03%) in Round 1, and 8/18,386 women (0.04%) in Round 2. ICC detection in the control group was 4/6,124 women (0.07%) in Round 1, and 0/3,514 women (0%) in Round 2.

The IPD meta-analysis of four trials of cotesting (NTCC Phase I, SWEDESCREEN, ARTISTIC, and POBASCAM) and a single trial of primary hrHPV testing (NTCC Phase II)¹³⁹ included a total of 176,464 women with 1,214,415 person-years of followup, with 107 cases of ICC in a median followup period of 6.5 years (**Table 14**). After 8 years of followup, cumulative detection of ICC was 0.047 percent in the hrHPV screened women compared with 0.094 percent women in the control groups. With a fixed effects model, the overall pooled rate ratio for ICC in the hrHPV screened women was 0.60 (95% CI, 0.40 to 0.89). The I^2 test for statistical heterogeneity was not significant (0.0%; p=0.52). A random effects model gave a similar estimate of 0.61 (95% CI, 0.41 to 0.91).

In the KPNC cohort, of the 331,818 women, there were 87 (0.03%) cases of ICC; 13 (0.01%) of those cases were detected among the 195,975 women with initial negative cotesting who had repeat screening 3 years later. In the cohort of 1,262,713 women with median 3 years followup, there were 452 ICC cases.
KQ1a. Does the Effectiveness of hrHPV Testing to Reduce Cervical Cancer Outcomes Vary by Subpopulation?

Age

Screening With Primary hrHPV Testing

In the trials of primary hrHPV testing, subjects were eligible to start screening at age 25 years. Screening ended at age 60 years for NTCC Phase II and at age 65 years for the HPV FOCAL and FINNISH trials (Table 5). Results for these trials were stratified by age for women older (Table 7) and younger than age 35 years (Table 8). The NTCC Phase II trial included 13,725 women younger than age 35 years and 35,471 women age 35 years or older who were followed over two rounds of screening at 3-year intervals for a maximum followup of 7 years.^{1, 2} hrHPV test positivity rates were substantially higher in women younger than age 35 years (13.1%) compared with women age 35 years or older (5.8%). In contrast, rates of abnormal cytology were more similar across age groups, although still higher in women younger than age 35 years (4% vs. 3.1%). Cumulative CIN3+ rates were also higher in women younger than age 35 years (intervention group [IG], 0.7%; control group [CG], 0.3%) compared with women age 35 years or older (IG, 0.3%; CG, 0.2%). Detection of CIN3+ was highest in the intervention group in Round 1, particularly for women younger than age 35 years (RR, 4.00 [95% CI, 2.07 to 7.73]) (Table 8) compared with women age 35 years and older (RR, 2.37 [95% CI, 1.44 to 3.89]) (Table 7). In Round 2, it was similarly lower for the intervention group in both age groups, with an RR of 0.20 (95% CI, 0.05 to 0.93) for women younger than age 35 years (Table 8) and an RR of 0.23 (95% CI, 0.07 to 0.82) for women age 35 years and older (Table 7). Over both rounds of screening, the RR for CIN3+ was 2.19 (95% CI, 1.31 to 3.66) in women younger than age 35 years (Table 8) and 1.57 (95% CI, 1.03 to 2.40) in women older than age 35 years (Table 7).

The HPV FOCAL trial has published results from the initial round of screening and from the safety arm at 24 months.^{125, 128, 129} Among the 4,849 women younger than age 35 years, Round 1 CIN3+ detection rates were 2.4 percent in the intervention group compared with 1.7 percent in the control group (**Table 8**). Round 1 CIN3+ rates among women ages 25 to 29 years were 3.1 percent in the intervention group, the highest of all age groups within the HPV FOCAL trial, compared to 1.7 percent in the control group. No other trial reported specifically on this age group. Among the 20,394 women age 35 years or older, CIN3+ detection rates were 0.5 percent in the intervention group compared with 0.3 percent in the control group (**Table 7**). When stratified by age, differences in Round 1 CIN3+ detection between the intervention and control groups were not statistically significant. At 2 years, cumulative CIN3+ detection rates for women ages 25 to 29 years were 3.0 and 1.4 percent for women ages 30 to 34 years in the safety arm compared to 2.7 percent for women ages 25 to 29 years and 0.3 percent, respectively.

The FINNISH trial included 22,262 women younger than age 35 years and 109,932 women ages 35 to 65 years who were screened with one round of hrHPV testing with cytology triage compared with conventional cytology, and followed up for 5 years.¹²⁴ CIN3+ rates were higher

in the intervention group for women younger than 35 years (2.3% vs. 1.9%) (**Table 8**). The RR for CIN3+ detection in the intervention group among the younger age group was 1.83 (95% CI, 1.21 to 2.78). CIN3+ rates were much lower overall in women age 35 years and older (<0.3% in both the intervention and control groups) but still more frequently detected in the intervention group (RR, 1.56 [95% CI, 1.18 to 2.04]) (**Table 7**).

No studies provided data on race/ethnicity, screening history, hrHPV immunization status, and socioeconomic status for primary hrHPV testing.

Screening With hrHPV Cotesting

Three trials of hrHPV cotesting reported on outcomes by age group (**Tables 12** and **13**). The SWEDESCREEN trial recruited only women ages 32 to 38 years; overall results of that trial are reported above.^{118, 135} NTCC Phase I included 11,810 women ages 25 to 34 years.^{119, 131, 132} Over two rounds of screening, 17.4 percent of 6,002 women in the intervention group had a positive hrHPV or ASC-US test result compared with an ASC-US positive rate of 4.5 percent of 5,808 women in the control group. Rates of CIN3+ were similar between groups in all rounds: 0.4 percent in Round 1 and 0.1 percent in Round 2 in both groups. Cumulative CIN3+ rates were 0.5 percent of 0.91 (95% CI, 0.56 to 1.48) (**Table 13**). Among the 33,364 women enrolled from ages 35 to 60 years, 17.1 percent of 16,706 women in the intervention group were hrHPV or ASC-US positive compared with 3.6 percent of 16,658 women who were ASC-US positive in the control group) and lower in Round 2 (0.03% vs. 0.07% in the control group). Cumulative CIN3+ rates were 0.3 percent in both the intervention group in Round 1 (0.3% vs. 0.2% in the control group) and lower in Round 2 (0.03% vs. 0.07% in the control group). Cumulative CIN3+ rates were 0.3 percent in both the intervention and control groups, with an RR of 1.30 (95% CI, 0.87 to 1.19) (**Table 12**).

The ARTISTIC trial reported outcomes of 5,166 women ages 20 to 29 years.^{116, 136-138} Only results of Round 1 were reported by age group. CIN3+ detection was 3.0 percent of 3,879 women in the intervention group compared with 3.3 percent in the control group. The CIN3+ RR for Round 1 in women ages 20 to 29 years was 0.92 (95% CI, 0.65 to 1.31) (**Table 13**). Among 19,344 women ages 30 to 64 years, 10.6 percent of 14,507 women in the intervention group tested hrHPV positive. The Round 1 detection of CIN3+ was 0.8 percent of 14,507 women in the intervention group and 0.8 percent of 4,837 women in the control group, with an RR of 1.12 (95% CI, 0.71 to 1.47) (**Table 12**).

The POBASCAM trial reported outcomes for 6,267 women ages 29 to 33 years over two rounds of screening at 4- to 5-year intervals.^{120, 133, 134} Of 3,139 women in the intervention group, 12 percent had a positive hrHPV test result. In Round 1, CIN3+ detection was 2.2 percent of 3,139 women in the intervention group compared with 1.9 percent of women in the control group. In Round 2, CIN3+ detection was 1.1 percent for women in the intervention group compared with 1.3 percent in the control group. Cumulative CIN3+ detection was 3.3 percent in the intervention group compared with 3.4 percent in the control group, with an RR of 0.97 (95% CI, 0.74 to 1.27) (**Table 13**). Among 33,838 women ages 34 to 56 years, 4 percent of women in the intervention group were hrHPV positive. CIN3+ was detected among 0.6 percent of 16,860 women in the intervention group in Round 1.

In Round 2, CIN3+ was detected in 0.3 percent of the intervention group compared with 0.5 percent in the control group. Cumulative CIN3+ rates were 0.9 percent in the intervention group compared with 1.0 percent in the control group, with an RR of 0.95 (95% CI, 0.76 to 1.18) (**Table 12**).

A large (n=1,307,528) age-stratified cohort of KPNC patients screened with hrHPV cotesting found 5-year CIN3+ risk was highest among women ages 35 to 39 years and 60 to 64 years (**Table 16**). Gage and colleagues recently published an age-stratified analysis of 1,313,128 women at KPNC who were screened for cervical cancer from 2003 to 2013.¹⁴¹ Women ages 21 to 29 years were screened with conventional cervical cytology while women ages 30 to 64 years were screened with cotesting. Cumulative risks of CIN3+ were reported based on age and cytology finding (**Table 16**). Women with normal cytology and positive hrHPV test results had repeat cotesting at 12 months. The cumulative incidence of CIN3+ (including baseline screening results) was higher for women ages 21 to 29 years at 3 and 5 years (0.4%) compared to women ages 30 to 64 years (0.3%). The 5-year relative risk of CIN3+ was highest for women ages 25 to 29 years (1.23 [95% CI, 1.09 to 1.39]) and lowest for women ages 50 to 64 years (0.25 [95% CI, 0.22 to 0.28]).

Screening History

Screening history was not described for the RCT participants or the Italian or KPNC cohort studies. Only one study of unscreened women met inclusion criteria. A prospective single cohort study from Spain described the outcomes of initial cotesting with HC2 and cytology (primarily conventional) in a population of 1,832 women older than age 39 years with no record of cervical cytology in the previous 5 years.¹²¹ Women were referred to colposcopy if either test was positive. No comparison group was included. Followup continued over 5 years; 338 women older than age 65 years with negative testing were excluded from further followup. Of 1,494 remaining women, 767 (51.3%) completed followup. Of the initial group, 101 women had a positive hrHPV test result at baseline and 40 women had abnormal cytology (16 of these also were hrHPV positive) (**Table 17**). By the last followup, seven women were diagnosed with CIN3, and two women had been diagnosed with ICC (CIN3+ rate, 9/1,832 [0.5%]). All nine women had a positive hrHPV test result at baseline; six had abnormal cytology results at baseline, including both women with ICC. Forty-nine percent of women were lost to followup; loss to followup was greater among women who tested negative on initial screening (p<0.05).

No studies of cotesting provided data on race/ethnicity, hrHPV immunization status, and socioeconomic status.

KQ1b. For Each Primary Screening Strategy, How Does the Rescreening Interval Relate to Future Cancer Incidence or Progression?

Data from trials are not adequate to address outcomes of different rescreening intervals, due to lack of data from direct comparisons of intervals or consistent application of initial screening

strategies for more than one screening round. Only one trial (HPV FOCAL) directly compared different rescreening intervals (2-year interval of cytology alone or primary hrHPV testing vs. 4-year interval of primary hrHPV testing), and findings of the interval comparisons have not yet been published. Rescreening intervals in the completed trials ranged from 2 to 4 years for primary hrHPV testing; in trials of cotesting, rescreening intervals were 3 years with the exception of POBASCAM, with a rescreening interval of 5 years. CIN3+ outcomes in POBSCAM were within the range of outcomes from cotesting trials with 3-year screening intervals. No included trials had more than two rounds of screening. Only the ARTISTIC trial had two screening rounds using the assigned screening protocol for each group. All other trials did one round of randomized screening and at subsequent rounds women either all received cervical cytology or all received cotesting.

KQ1c. Does the Appropriate Rescreening Interval for Each Primary Screening Strategy Vary by Subpopulation?

No data were available to address rescreening intervals by subpopulation.

KQ2. What Are the Potential Adverse Effects of hrHPV Testing, With or Without Cytology, as a Primary Screening Strategy Compared With Currently Recommended Screening Strategies for Women in the United States?

Summary

None of the included trials reported on or were adequately powered to assess uncommon harms that can occur as a result of biopsy of a positive screening result or treatments of cervical lesions diagnosed after colposcopy. Colposcopy rates were at least twice as high with hrHPV testing, indicating a higher relative burden of testing and potential differences in the downstream consequences of treatment. Similarly, the test positivity rates and FPR of different screening interventions can be an indication of the burden of screening and the risk of downstream harms of treatment. Because of the potential for CIN to regress, the concept of overdetection is relevant to cervical cancer screening.

Test positivity rates were higher in the intervention arm for both hrHPV primary and hrHPV cotesting, particularly for the first screening round (i.e., prevalence round). The FPR was also higher in the intervention arm for the first screening round in the five trials reporting sufficient data for this comparison. The FPR at a second round of screening was similar between arms in one trial of cotesting, but remained higher in the intervention group for another cotesting trial (with high loss to followup). One trial of cotesting reported colposcopy referral rates for more than one round of screening, with higher rates in the intervention arm at Round 1, and more comparable rates at Round 2 (with high loss to followup). Two of the four trials that tested a hrHPV primary screening strategy had similar rates of colposcopy in the intervention and control arms, but in two hrHPV primary screening trial and all trials of cotesting, colposcopy referrals

were higher for the intervention arm. None of the trials that tested a hrHPV primary screening strategy reported the test positivity or colposcopy rates for a second round of screening, and initial screening strategies were not maintained for a second round of testing. This limited comparative evaluation of harms beyond a prevalence screen. None of the included studies reported harms occurring from the screening test itself or the diagnostic testing that followed a positive screen.

There was evidence that a hrHPV positive screening result is associated with greater psychological harm than a positive cytology result, including increased anxiety and distress, and lower satisfaction with past and current sexual partners.

The included studies did not provide evidence on differences in adverse effects by any patient characteristic or risk factor other than age. Test positivity and colposcopy rates were higher for younger women (younger than 30 to 35 years) with hrHPV screening strategies; the difference was even more pronounced in one trial reporting rates of colposcopy for women ages 25 to 29 years.

The available trial evidence did not address differences in adverse effects by rescreening interval because none of the included studies was designed to directly compare intervals, and the between-study differences in design, screening strategies, and followup protocols are too great to support inferences about the effects of interval on harms. We could not ascertain from the available evidence how the screening interval and the type of screening strategy related to the potential harms of missed cancer cases and overdetection.

Study Characteristics

The same eight RCTs, an IPD meta-analysis, and three observational cohort studies described above^{110,122, 123, 126} and included for KQ1 also reported harms outcomes included for KQ2 (**Tables 5** and **9**). An additional cross-sectional study on psychological harms was also included.¹¹⁷ Harms or adverse events associated with hrHPV screening strategies were compared to those associated with cytology-only screening programs. We sought evidence on harms associated with the screening test itself, the test performance of screening (i.e., false-negative and false-positive results), and the procedures conducted as a result of screening (i.e., colposcopy and biopsy). The test positivity for different screening strategies is also presented because the definition of a positive screening test employed in a screening program has implications for referrals to followup, which eventually may include colposcopy and biopsy. Evidence on the psychological effects of screening was also included, such as potential harms of screening related to reduced quality of life, anxiety and distress, partner discord, stigma, and labeling.

As reported for KQ1, the quality of many of the included studies was rated as fair due to problems with attrition, protocol changes, and blinding of outcome assessors. In addition, the overall body of evidence has shortcomings for drawing conclusions due to the limited number of randomized rounds of screening available for comparisons. Several of the trials changed screening or followup protocols after the first round of screening, making it impossible to draw conclusions about harms of screening beyond the prevalence screen. Outcome reporting on colposcopy and biopsy rates was also inconsistent, and none of the trials reported on adverse

events associated with the screening tests or the diagnostic and treatment procedures undertaken as a consequence of screening.

Detailed Results

Test Positivity, FPR, Colposcopy, and Biopsy

Screening With Primary hrHPV Testing

In NTCC Phase II, any woman with a positive hrHPV test result in the intervention screening condition was referred to colposcopy, as were women in the cytology-alone control condition with ASC-US+ or LSIL+, according to the study protocol.^{119, 127} The test positivity rate at the first round of screening was 7.9 percent (1,936/24,661) for the hrHPV screening intervention arm. In the control group, 3.4 percent (825/24,353) had positive cytology results (ASC-US+). The FPR for CIN2+ was higher (IG, 7.4%; CG, 3.2%) (Table 6). Accordingly, 7.9 percent of women in the intervention group were referred to colposcopy, compared with 2.8 percent of women in the control group (Table 6; Appendix F Table 8). The rate of referrals to colposcopy for the cytology arm was lower than would be expected per trial protocol but was not explained. Most women referred to colposcopy underwent the procedure (IG, 93.6%; CG, 90.6%). Biopsies were taken from 44 percent of colposcopies in the hrHPV screening arm and 52 percent of colposcopies in the cytology control group. More women in the intervention arm had a biopsy based on Round 1 screening (IG, 3.2%; CG, 1.3%). At Round 2, both groups received conventional cytology alone and colposcopy rates were not reported; therefore, the NTCC Phase II trial does not provide evidence on hrHPV-related colposcopy and biopsy harms beyond one round of screening and followup.

The HPV FOCAL trial reported test positivity, colposcopy, and biopsy rates over one round of screening with 4 years of followup data, providing a comparison between hrHPV primary screening and LBC primary screening.^{125, 128-130} More women randomized to the hrHPV primary screening intervention had a positive initial test: 8.2 percent (1,290/15,744) had positive hrHPV results in the intervention, and 3.6 percent (334/9,408) had positive ASC-US results in the LBC comparison arm (**Table 6**). Nearly twice as many women in the intervention group were referred to colposcopy than in the control group (5.9% vs. 3.1%) on the basis of initial results or hrHPV/LBC triage, and nearly all attended (IG, 97%; CG, 96%). The number of women undergoing a biopsy and the FPR for CIN2+ has not been reported for this trial (**Appendix F Table 8**).

In the FINNISH trial, hrHPV test positivity was 8 percent (4,971/62,106) in the intervention group and 7 percent (4506/65,747) for ASC-US+ in the cytology comparison group.¹²⁴ The FPR for CIN2+ was similar between the two study arms (IG, 7.2%; CG, 6.5%) (**Appendix F Table 7**). Of women screened, 1.2 percent (796/66,410) of those in the intervention arm were referred for colposcopy compared with 1.1 percent (755/65,784) in the cytology comparison group (**Table 6; Appendix F Table 8**). The number of colposcopies attended and biopsies conducted were not reported.

The Compass trial had similar rates of test positivity, with 6.9 percent (277/4,000) in the

intervention group and 6.7 percent (67/995) in the control group.¹⁰⁴ Referrals to colposcopy were 3.8 percent (154/4,000) in the intervention group and 2.7 percent (27/995) in the control group. FPRs were not reported.

An Italian population-based cohort (n=48,751) provides supplemental observational evidence on test positivity and colposcopy referrals for primary hrHPV screening with cytology triage and a 3-year screening interval.¹²⁶ The results are qualitatively consistent with trial evidence, finding that hrHPV test positivity was halved at the second round of screening overall (6.4% vs. 3.5%) (**Table 10**). Similarly, following ASC-US triage (with 1-year retesting for hrHPV positive/cytology negative), colposcopy referrals were halved from Round 1 to Round 2 (4.4% vs. 2.2%). The rural study setting was thought to account for the lower rates of hrHPV positivity in this study population.

Screening With hrHPV Cotesting

Test positivity rates were higher in the hrHPV cotesting arms compared with cytology alone after one round of screening for all included trials testing this comparison (**Table 11**). The protocol for positive test results differed between trials such that different combinations of results from cotesting had different implications for followup (**Appendix F Table 2**). In ARTISTIC, for example, positive cytology resulted in immediate colposcopy for HSIL+ or retesting (ASC-US or LSIL), and hrHPV+ test results with normal cytology had a repeat hrHPV test at 12 months.^{116, 136-138} In contrast, the SWEDESCREEN trial referred hrHPV+ with normal cytology to a repeat screen but referred ASC-US or LSIL to immediate colposcopy or a repeat screen at 12 months, depending on the community practice.^{118, 135}

All trials reported test positivity at the first round of screening, and two of the trials, ARTISTIC and POBASCAM, also reported test positivity at a second round of screening (**Table 11**). In the NTCC Phase I trial, 12.5 percent (2,830/22,708) of women in the intervention group tested positive (hrHPV+ or ASC-US+); 9 percent were hrHPV+ (2,021/22,708).^{119, 131, 132} The test positivity rate (ASC-US+) in the control group was 4 percent (855/22,466) of screened women. The FPR for CIN2+ was higher in the intervention group (IG, 12.3%; CG, 3.5%) (**Appendix F Table 7**). In SWEDESCREEN, the test positivity (for hrHPV+) was 7 percent (433/6,257) in the intervention group and 2 percent (150/6,270) in the control group. The FPR in the control group was 1.2 percent, and was not calculable for the intervention group. In ARTISTIC, the test positivity rate in the intervention group was 22 percent (4,019/18,386), with 16 percent (2,860/18,386) testing hrHPV positive. In the control group, test positivity was 13 percent (786/6,124). At the second round of screening, after 3 years, 11 percent (1,258/11,862) tested positive in the intervention group, and 5 percent (210/3,928) screened positive in the control group. The FPR in ARTISTIC was also higher in the intervention arm at Round 1 (IG, 19.9%; CG, 10.9%) and at Round 2 (IG, 11.2%; CG, 4.6%) (**Appendix F Table 7**).

In POBASCAM, test positivity was 7 percent (1,406/19,999) in the intervention group and 4 percent (706/20,106) in the control group.^{120, 133, 134} At Round 2, test positivity was the same for both study arms, at approximately 4 percent (IG, 3.8% [742/19,579]; CG, 3.9% [774/19,731]) (**Table 11**). The FPR was higher in the intervention arm than the control arm at Round 1 (IG, 5.8%; CG, 2.6%) but similar at Round 2 screening, and slightly higher in magnitude than at

Round 1 (IG, 6.4%; CG, 6.5%) (Appendix F Table 7).

In the NTCC Phase I trial, colposcopy referral rates were higher in the intervention arm than in the control cytology-only arm (IG, 10.9%; CG, 3.3%) (**Appendix F Table 8**).^{119, 131, 132} Of those referred, 94 percent in the intervention group and 91 percent in the control group received a colposcopy. In the ARTISTIC trial, referral to colposcopy was similar between study arms at Round 1 (IG, 6.8%; CG, 5.2%) and lower at Round 2 but similar between groups (IG, 2.7%; CG, 2.1%).^{116, 136-138} The proportion of women attending colposcopy and undergoing biopsy was not reported (**Appendix F Table 8**). Colposcopies and biopsies were not reported in the SWEDESCREEN or POBASCAM trials.

The IPD meta-analysis, which obtained additional data from these cotesting trials, suggests that the overall biopsy rates for all screened women were similar in the intervention and control groups.¹³⁹ In the NTCC trials (combining Phase I and II results), however, biopsy rates were twice as high in the intervention arm where hrHPV+ results were referred directly to colposcopy. The meta-analysis did not report colposcopy rates.

Data published on a cohort of women who received cotesting at KPNC provided U.S. estimates of screening test performance observed in a population with access to coordinated health care (**Table 9**).^{122, 141-143} The authors reported test positivity rates in a group of 195,975 women with initial negative cotesting results who underwent a second cotesting Round 3 years later. Of the 331,818 women, 24,849 women (7.5%) had a positive hrHPV test result or abnormal cytology result, but the colposcopy rates for test positives were not reported (**Table 15**). A German prospective observational cohort study included 19,795 women who underwent cotesting with conventional cytology and HC2 testing with a 5-year screening interval.^{123, 140} No comparison group was included. Women with abnormal cytology and negative hrHPV testing and those with positive hrHPV testing and normal cytology underwent repeat cytology at 6 months and hrHPV testing at 12 months, with referral to colposcopy for any abnormal results. At the first round of screening, 4 percent (765/19,795) of women were referred to colposcopy and at Round 2, with a much diminished followup population, an additional 1 percent (41/4,067) of women were referred to colposcopy (**Table 17**).

False-Negative Rates

The occurrence of ICC among women who screened negative in earlier rounds of screening provides some indication of the extent to which a screening program might miss cases, owing to a host of factors that comprise the strategy, including the triage approach, rescreening intervals, and underlying features of the screened population (age, disease prevalence), as well as technical factors relating to test sensitivity and laboratory quality. Estimating false-negative rates is a challenge since women with negative results from hrHPV and cytology screening do not undergo colposcopy. Future rounds of screening may detect ICC, but otherwise identification of false negatives relies on registry data, with cases of cancer more likely to be captured after longer followup periods.

Screening With Primary hrHPV Testing

The incidence of ICC among women with negative screening test results was reported at each screening round for two of four included trials (**Appendix F Table 9**). In NTCC Phase II there were no ICC cases (and no CIN3) among screen-negative women in either group in followup on the first round of screening (3.5 years maximum).^{119, 127} The FINNISH trial reported ICC among screen-negative women in 0.01 percent (5/57,135) of the intervention group and 0.003 percent (2/61,241) of the control group participants after one round of screening with 5 years of followup.¹²⁴ Data on ICC among screen-negative women were not yet available for HPV FOCAL or Compass.

Screening With hrHPV Cotesting

In NTCC Phase I, no ICC cases were observed among screen-negative women in either screening arm after the first round of screening and 3.5 years of followup.^{119, 131, 132} SWEDESCREEN did not report ICC rates among screen-negative women.^{118, 135} For ARTISTIC, with 3-year intervals, there were no cases of ICC among screen-negative women in either trial arm for either round of screening.^{116, 136-138} In POBASCAM, which had longer screening intervals than ARTISTIC (5 years), there was 1 case of ICC detected in a screen-negative woman in the control group and no cases in the intervention group during the trial.^{120, 133, 134} Long-term followup data on ICC among screen-negative women in trials was available only from POBASCAM (Appendix F Table 4). With 14 years of followup, there was not a statistically significant difference between study arms in the cumulative incidence of ICC among screennegative women. In the KPNC cohort, of 1,262,713 women with median 3 years of followup, there were 144 ICC cases that occurred among women with negative cytology, and 95 cases among women with negative hrHPV testing. The cumulative 5-year risk for ICC among women with negative cytology results (regardless of hrHPV test results) was 0.018 percent (95% CI, 0.01 to 0.02), and among women with negative hrHPV testing (regardless of cytology results) it was 0.013 percent (95% CI, 0.01 to 0.02).¹¹⁵ In the meta-analysis, among women testing negative at study entry, 12/592,060 women in the pooled intervention group were later diagnosed with ICC compared to 35/525,303 women in the pooled control group. Among these women whose baseline (entry) screening test was negative, the pooled rate ratio in a fixed effects model was 0.30 (95% CI, 0.15 to 0.60). The I^2 test for statistical heterogeneity was not significant (21.4%; p=0.23).¹³⁹

Psychological Effects

We identified two studies that reported on the psychological effects of hrHPV cotesting (i.e., anxiety and distress).^{117, 138} We did not identify any studies that addressed labeling, stigma, partner discord, or quality of life. No studies reported on the psychological effects of primary hrHPV testing.

In ARTISTIC, samples of consecutive women ages 20 to 64 years received information leaflets and questionnaires approximately 2 weeks after receiving cervical screening results. Women randomized to the revealed arm (intervention group) received their hrHPV and cytology results while women in the concealed arm (control group) only received their cytology results. Of 3,582

questionnaires sent, 2,508 (70.0%) were returned (1,904/2,700 in the intervention group and 604/882 in the control group). Measures collected were the General Health Questionnaire (GHQ-28) to measure psychological distress, the Sexual Rating Scale (SRS) to measure sexual satisfaction, and the Spielberger State-Trait Anxiety Inventory (STAI) to measure anxiety. The two groups did not differ in distress or anxiety after receiving their screening results (Table 18), however, women in the intervention group reported lower sexual satisfaction than women in the control group (p=0.042). There were also no differences between groups among women with ASC-US/LSIL cytology in anxiety, distress, or sexual satisfaction. Women with normal cytology who were hrHPV+ in the intervention group had lower sexual satisfaction ratings than women with normal cytology who were hrHPV+ (concealed) in the control group (p=0.003). Observational comparisons of women in the intervention arm showed hrHPV+ (revealed) women with normal cytology were at higher risk of psychological distress (odds ratio [OR], 1.70 [95% CI, 1.33 to 2.17]) with higher GHQ scores (age-adjusted mean difference, 1.43 [95% CI, 0.75 to 2.10]) than women who were hrHPV- with normal cytology; they also reported higher scores for state (age-adjusted mean difference, 2.90 [95% CI, 1.40 to 4.39]) and trait (ageadjusted mean difference, 1.53 [95% CI, 0.16 to 2.92]) anxiety than hrHPV- women with normal cytology. Women who were hrHPV+ with ASC-US/LSIL cytology reported lower sexual satisfaction ratings than women who were hrHPV- with ASC-US/LSIL cytology (age-adjusted mean difference, 8.66 [95% CI, 4.30 to 130.2]). Similar trends were seen between control group women who were hrHPV+ (concealed) and hrHPV- (data not shown).

A cross-sectional study by McCaffery and colleagues evaluated the psychological effects of hrHPV cotesting in 428 women ages 20 to 64 years.¹¹⁷ All women were mailed the results of their tests and provided a self-report questionnaire 1 week after receiving test results to assess psychosocial outcomes, including anxiety (STAI), distress (Cervical Screening Questionnaire), and feelings about sexual relationships. Three hundred and eleven (71%) women returned the questionnaires and 271 (63%) were included in the analyses; 69 (25.5%) screened positive for hrHPV and 40 (14.8%) had an abnormal or unsatisfactory cytology smear. Among women with normal cytology, women who were hrHPV+ were significantly more distressed (p<0.0001) than women who were hrHPV- (**Table 19**). Among women with an abnormal or unsatisfactory cytology smear, women who were hrHPV+ were significantly more distressed (p=0.002) but similarly anxious (no significant difference between groups). Women who were hrHPV+ also tended to have worse feelings about their current, past, and future sexual partners than women who were hrHPV-, regardless of cytology result.

KQ 2a. Do Adverse Effects of hrHPV Compared With Cytology Screening Vary by Subpopulation?

Age

Test positivity rates were higher at younger ages for hrHPV primary and cotesting interventions, as described above in the results for KQ1. Age-stratified data on colposcopy was available for all three primary hrHPV screening trials, but only one of the hrHPV cotesting trials.

Screening With Primary hrHPV Testing

In trials of primary hrHPV screening, differences in colposcopy referral between study arms were more pronounced among younger women. Among women ages 35 to 60 years in the NTCC Phase II trial, 6 percent (1,029/17,724) of women in the hrHPV screening intervention and 3 percent (435/17,747) of women in the cytology-alone control condition were referred to colposcopy at Round 1 screening (**Table 7**).^{119, 127} In the younger age group (25 to 34 years) in the NTCC Phase II trial, referral to colposcopy was more likely, particularly in the hrHPV screening arm: 13 percent (970/6.937) of women in the intervention group and 4 percent (270/6,788) in the control group were referred to colposcopy (Table 8). The HPV FOCAL trial provided additional data on the youngest women, with colposcopy rates reported for women ages 25 to 29 years and ages 30 to 34 years.^{125, 128-130} Rates of colposcopy were highest among the youngest women assigned to the intervention group (hrHPV with LBC triage) in HPV FOCAL (19.9% of women screened) compared to those ages 30 to 34 years (174/1,612 [10.8%]) and ages 35 to 65 years (487/12,810 [3.8%]). In the FINNISH trial, colposcopy referrals were not as disparate between study arms, possibly owing to the cytology triage protocol.¹²⁴ Two percent of women ages 25 to 34 years were referred to colposcopy (IG, 257/11,191 [2.3%]; CG, 210/11,071 [1.9%]) and 1 percent of women ages 35 to 65 years were referred (IG, 506/55,219 [0.9%]; CG, 544/54,713 [1.0%]). In the Italian cohort,¹²⁶ higher test positivity rates were observed at Round 1 among women ages 25 to 29 years (14.8%) compared to women ages 30 to 64 years (5.5%), and colposcopy referrals were not reported by age (Table 9). More than half of participants in both age groups and in both screening rounds were no longer hrHPV+ when retested at 1 year following an hrHPV+ result with negative triage cytology.

Screening With hrHPV Cotesting

Among the trials of hrHPV cotesting screening strategies, colposcopy referrals were reported by age only in NTCC Phase I (estimated from a figure) and only for Round 1 screening.^{119, 131, 132} In the cotesting arm, 12 percent of women ages 25 to 34 years and 11 percent of women ages 35 to 60 years were referred to colposcopy, whereas in the cytology arm, 4 percent of women ages 25 to 34 years and 3 percent of women ages 35 to 60 years were referred. Notably, in this trial detection rates were not significantly different between arms by Round 2, and for the younger age group, were also not significant at Round 1 screening.

No included studies provided data on adverse effects of screening with hrHPV primary or cotesting by race/ethnicity or hrHPV immunization status.

KQ 2b. Do Adverse Effects Vary by Screening Strategy, Including by Rescreening Interval?

The screening intervals of included trials ranged from 3 to 5 years, but none were designed to test differences in colposcopy rates or false negatives with shorter and longer intervals within a trial (**Appendix F Table 9**). The longest maximum screening intervals tested were in the FINNISH trial¹²⁴ (5 years) and the POBASCAM trial^{120, 133, 134} (4 to 5 years). The shortest intervals were tested in the ARTISTIC trial with two screening rounds at approximately 3-year

intervals.^{116, 136-138} There were no ICC cases among women who had screened negative at the previous round. The longer interval trials did identify ICC cases among women who had tested negative, but attribution to the interval is not certain because these trials had larger samples than ARTISTIC, and there were very few ICC cases overall. Specifically, in the FINNISH trial, there were 5 ICC cases (of 57,135 screened) in the intervention group and 2 ICC cases (of 61,241 screened) in the control group after a negative screening result at the first round of screening and 5 years of followup (maximum). The POBASCAM trial reported 13 cases of ICC among women with normal cytology in the control arm, and 2 cases of ICC among women with normal cotesting results (i.e., cytology normal, hrHPV negative) over two rounds of screening. In 14 additional years of trial followup there were no statistical differences in ICC cumulative incidence among screen-negative women, but numbers were low, with 4 ICC cases observed among women who were hrHPV- in the intervention group.

Chapter 4. Discussion

Summary of Evidence

hrHPV Screening Effectiveness

Eight randomized trials, four of primary hrHPV testing and four of hrHPV cotesting, contributed to the evidence comparing use of hrHPV testing for cervical cancer screening to cytology alone for detection of CIN3+ (**Table 20**). All trials were conducted in the context of organized screening programs, with heterogeneous screening strategies and followup protocols. Interpretation of trial findings was limited by the fact that only one trial (ARTISTIC) maintained the same strategy over two rounds of screening. The trial evidence was supplemented with results of large cohort studies of hrHPV primary testing or cotesting over two screening rounds; however, none of the cohort studies had a comparison group screened with cytology only.

The evidence was generally consistent across trials with variable protocols and hrHPV test types in demonstrating that primary hrHPV testing increased detection of CIN3+ in the initial round of screening by as much as 2- to 3-fold. Only the NTCC Phase II trial of primary hrHPV testing, where all women with a positive hrHPV test were referred to colposcopy, had complete results from two rounds of screening (all women received cytology testing in the second round).^{119, 127} In that study, CIN3+ detection in the first round was 3-fold higher in the hrHPV testing arm, and cumulative detection was 1.8-fold higher after the second round of screening.

Among four trials of hrHPV cotesting, the first round CIN3+ detection was higher in the intervention group in two trials (though not significant) and equal in two trials. Cumulative CIN3+ detection over two rounds of screening ranged from 0.3 to 1.6 percent across studies. The relative risk for cumulative CIN3+ detection ranged from 0.91 to 1.13; none were significantly different from 1. Because no trial sustained the intervention and control group protocols beyond two screening rounds, evidence comparing the long-term outcomes of hrHPV primary testing or cotesting with cytology is lacking.

Evidence on subgroups was limited to age and a single cohort study focused on previously inadequately screened or unscreened women. Women younger than age 35 years had consistently higher rates of hrHPV positivity and of CIN3+. Outcomes of hrHPV primary testing or cotesting between screening strategies by age were not notably different from the results of the overall study populations. In the relatively small single-cohort study of hrHPV cotesting for women in Spain not screened for at least 5 years, CIN3+ was detected in nine women; all were hrHPV positive but three women diagnosed with CIN3 on biopsy had normal cytology findings.

The primary purpose of screening for cervical cancer is to reduce ICC morbidity and mortality. Because ICC is a rare outcome in countries with organized screening programs, no trial had sufficient power to examine cervical cancer incidence rates, and no trials reported on cervical cancer mortality. The IPD meta-analysis performed by Ronco et al pooled patients from five trials (combining one primary and four cotesting trials) and found a 40 percent lower incidence of ICC among patients screened with some form of hrHPV screening compared to cytology screening.¹³⁹ Each of these trials included different patient populations and employed different screening test and followup protocols, adding uncertainty to interpretation of pooled findings.

hrHPV Screening Harms

The same four hrHPV primary screening trials and four trials of hrHPV cotesting were the primary source of evidence for the comparative harms of cervical cytology screening relative to hrHPV testing. False-negative rates (which lead to ICC that could have potentially been prevented had precursors of ICC been discovered sooner) are approximated by assessing the proportion of women with invasive cancer in the screening interval or at subsequent screening rounds. There were few missed cases of ICC for any of the screening protocols evaluated, and rates of ICC did not statistically differ between control and intervention groups during the trials. Cumulative incidence rates also did not differ in the long-term followup in the POBASCAM trial, although the comparison was based on few cases (10 ICC cases among women who screened hrHPV-, regardless of cytology grouping, and 27 cases among cytology-negative cases in the control group, regardless of hrHPV results). While evidence is limited due to the rarity of ICC and differences among trials, there is some evidence that a negative hrHPV screening result may confer greater confidence that ICC is unlikely to occur. Long-term followup in two trials and the large U.S. cohort study of cotesting suggest that women who test hrHPV negative have very low rates of subsequent CIN3+ regardless of cytology results. In the IPD meta-analysis, rates of ICC after a negative test were lower in the pooled intervention group (12 cases) compared to the pooled cytology-only control group (35 cases) (RR, 0.30 [95% CI, 0.15 to 0.601).

False-positive results can lead to unnecessary investigations with colposcopy and biopsy, and can result in women with CIN1 or CIN2 undergoing treatments and risking associated complications when these cervical changes might have regressed spontaneously. For primary hrHPV screening, FPRs during the first round of screening could not be calculated for two of the trials, were similar between arms in another trial, and 2- to 3-fold higher for the other. For hrHPV cotesting, FPRs were reported in three of four trials, and were 2 to 3 times higher in the intervention groups compared to cytology alone. Only two trials (of cotesting) reported false-positive results from a second round of screening; in one the rates equalized and in the other they remained elevated in the intervention group.

Rates of treatment or treatment harms were not reported in the screening trials, and few reported biopsy rates. Colposcopies rates provide an indication of potential differences in patient experienced interventions undertaken on the basis of screening. The trial-specific protocols for followup of positive screening results can also influence colposcopy rates. Rates of colposcopy were similar in the hrHPV and cytology arms in two of the primary hrHPV screening trials in the first round of screening. The other two primary hrHPV trials reported higher colposcopy rates for hrHPV screening relative to cytology alone. Of the four cotesting trials, only two reported colposcopy rates, and there were more colposcopies in the cotesting arms relative to women screened with cytology alone. Biopsy rates available from the IPD meta-analysis of cotesting suggest that these higher colposcopy rates led to higher rates of biopsy with cotesting compared to cytology alone.

Once CIN2+ cervical abnormalities are identified, treatment generally follows, although the level of CIN for which treatment is recommended and the type of treatment may vary depending on the clinical setting. Recommendations for treatment from the ASCCP and ACOG outline management algorithms depending on screening test results and abnormalities detected.^{64, 145} A simplified description of these management strategies identifies women as having low, moderate, or high levels of CIN2+ risk based on initial colposcopy results, hrHPV type test results, and patient age.¹⁴⁶ Generally, for women at low risk, retesting in 3 years is recommended; for women at moderate risk, retesting in 12 months is recommended; and for women at high risk, treatment is recommended. Harms resulting from overtreatment can also be a consequence of screening, but the studies included in the review did not report on subsequent treatments or treatment harms.

Our review included evidence on comparative psychological harms of screening strategies from two studies. Findings of these studies suggested that women undergoing hrHPV screening strategies had lower sexual satisfaction and greater psychological distress related to positive hrHPV test results compared to women with abnormal cytology. It is possible that women find it more distressing to be informed that they have a sexually transmitted virus than to be told that they have abnormal cells on their cervix; the connection to a sexually transmitted infection may not always be communicated or apparent to patients receiving cytology results. Increased education of patients about the cause of abnormal cytology could reduce the observed differences by increasing the distress level for abnormal cytology. A recent systematic review on the psychological consequences of CIN diagnosis and treatment also reported worse psychological and sexual function outcomes for women with CIN diagnosis and treatment compared with women with normal test results and for longitudinal comparisons of women before and after diagnosis and treatment.¹⁴⁷

Evidence on potential harms of test positivity, diagnosis, and treatment are important to consider when evaluating the differences in detection rates of hrHPV screening strategies. Overall, the evidence from eight RCTs was consistent that hrHPV primary testing or cotesting will detect more CIN3+ in a single screening round compared to cytology. In most trials where these outcomes were reported, hrHPV primary testing or cotesting led to higher test positivity rates and higher FPRs. The evidence on these outcomes is strengthened by the studies' high subject enrollment numbers and randomized design. Although not fully documented, it is likely that hrHPV testing led to higher rates of diagnostic testing and subsequent treatments.

Limitations of the Evidence

Limited Data on Cervical Cancer Incidence and Mortality

Important limitations of the evidence include lack of data on the primary outcome of cervical cancer mortality and limited data on cervical cancer incidence. Since cervical cancer is generally slow to develop and progress, and mortality from cervical cancer is a very rare outcome in countries with organized screening, the required size and duration of trials to study this outcome are impractical. A cluster RCT conducted in India did find a reduction in cervical cancer mortality after a single round of hrHPV testing compared with cytology, visual inspection with

acetic acid, or a nonscreening control group.¹⁴⁸ This trial was excluded from this review as it was not conducted in a highly developed country.

As cervical cancer screening has become more widespread, the proportion of adenocarcinoma of the cervix appears to have increased.^{149, 150} Some have proposed that hrHPV testing may improve early detection of adenocarcinoma and its precursors,¹⁵⁰ which is suggested by a lower RR for adenocarcinoma in the IPD meta-analysis,¹³⁰ while others have suggested that cytology may be more effective.¹⁵¹ Due to the low incidence of cervical cancer in the included studies, it was not possible to evaluate any differences in detection of squamous cell versus adenocarcinoma of the cervix. The overall incidence of adenocarcinoma and its relative proportion among cervical cancer screening.¹⁵² Whether early detection of adenocarcinoma will be reduced by increased use of hrHPV testing for cervical cancer screening remains unclear.

Screening Trial Heterogeneity

Heterogeneity of trial screening strategies and followup protocols prevented quantitative synthesis of the trial outcomes, including harms. In addition to screening strategies, followup protocols for abnormal results have important influence on rates of false-positive results and colposcopies. Comparative studies are needed of alternative followup protocols for abnormal screening results, which may influence the frequency of false-positive and false-negative results from screening.

Because evidence on comparative outcomes of screening strategies over more than two rounds of screening is lacking, conclusions based on the existing trial data do not provide insight into the effects of regular hrHPV testing as an ongoing screening strategy on outcomes in women screened at consistent intervals over many years. Whether one-time or intermittent hrHPV testing as a supplement to cytology screening could improve CIN3+ detection and reduce overall false-positive results and unnecessary followup testing is unknown. Additional data on extended followup from trials in which subjects returned to regular screening cytology at the end of the trial could help to inform this question.

Limited Data on Screening Intervals

Evidence on the effects of screening at longer intervals (≥5 years) is limited to a single trial (POBASCAM). Only the FOCAL trial directly compared screening outcomes of hrHPV testing at different screening intervals (2 vs. 4 years), but final results of this trial have not been published. All other trials of primary testing or cotesting screened at 2- to 3-year intervals. CIN3+ rates in these trials were low (highest cumulative detection rate was 1.6%), with marked declines in detection in the second round of screening, supporting the clinical consensus on screening with hrHPV primary testing or cotesting no more frequently than every 3 to 5 years. A modeling study conducted for the USPSTF provides additional information on projected outcomes based on screening tests used, screening age range, and screening intervals.

hrHPV Test Types

All trials and cohort studies included in this review used either the HC2 hrHPV assay or the GP5+6/6+ PCR-EIA assay (not approved in the United States). HC2 is approved for cotesting but not primary testing in the United States, although all four RCTs evaluating primary hrHPV testing used HC2. Several currently FDA-approved hrHPV assays in the United States have not been evaluated in RCTs and have only partially met 2009 international expert clinical equivalency criteria, limiting the applicability of review findings to current clinical use of those assays.⁶¹

Limited Data on Treatment Harms

Treatment of CIN diagnosed through screening may result in both benefits and harms, and screening strategies with higher test positivity rates may increase both. The included trials and cohort studies provided no data on subsequent treatment and any resultant harms. In the United States, there is clinical variation in the treatment of CIN2+ lesions, but excisional treatments are most common for CIN2 and CIN3, primarily with loop electrosurgical excision procedure (LEEP) to remove lesions and obtain biopsies during colposcopic examination. Harms of treatment include pain and bleeding, which rarely requires vaginal packing or transfusion,^{154, 155} and harms related to subsequent pregnancies. Cold knife conization was common before LEEP became available and remains in practice to a lesser extent. This procedure has been most clearly associated with perinatal mortality, preterm birth, low birth weight, and higher Caesarean delivery rates.^{156, 157} While LEEP treatment was not significantly associated with adverse pregnancy outcomes in one comprehensive systematic review, the possibility of an association was not ruled out.¹⁵⁸ A recent Cochrane systematic review that included 15 studies (n=2,223,592) analyzed the effects of CIN treatment on fertility and early pregnancy outcomes. This review found significant associations between CIN treatment and later second-trimester miscarriage (RR, 2.60 [95% CI, 1.45 to 4.67]), ectopic pregnancy (RR, 1.89 [95% CI, 1.50 to 2.39]), and elective terminations (RR, 1.71 [95% CI, 1.31 to 2.22]). Notably, the authors of the review rated the evidence available to estimate these relationships as very low or low quality.¹⁵⁹ Authors of another systematic review have suggested that women with a history of CIN have a greater risk of preterm birth regardless of treatment type.¹⁶⁰

A recent population-based cohort study in Norway estimated rates of preterm birth and spontaneous abortion associated with prior excisional procedures for cervical lesions.¹⁵⁶ In a cohort of women with at least one singleton birth between 1998 and 2014, (n=545,243; births=943,321), the majority of treatments were excisional (99%), in women younger than age 30 years (72%), and performed for grade CIN2 or CIN3 (95%). Preterm birth was more common among women who had treatment before childbirth (9.7%) compared with those without treatment (5.3%), with an adjusted hazard ratio (HR) of 1.8 (95% CI, 1.7 to 2.0). The HR for LEEP was 1.5 (95% CI, 1.3 to 1.7), and was higher for laser conization (HR, 2.3 [95% CI, 2.0 to 2.5]) and cold knife conization (HR, 2.6 [95% CI, 1.3 to 5.3]).

Impact of Screening on Subpopulations

Finally, none of the trials or cohort studies included in this review provided outcomes for subgroups of women who had previously received the HPV vaccine. Applicability of these studies is limited for well-vaccinated populations of women who have only recently entered the age group for screening. Limited data from comparative registry studies of younger women (who had the opportunity for vaccination) suggest lower rates of CIN2+ in women previously vaccinated.^{161, 162}

Limitations of the Review

This review was restricted by protocol to studies from highly developed countries (to increase applicability to the U.S. population) and to studies published in English. All of the RCTs included in this review were conducted in countries with robust, organized screening programs. Although screening history was not provided in any of the trials, it is likely that women enrolled in the trials were previously regularly screened with cytology. Organized screening programs are well suited for comparative trials of screening strategies; however, the generalizability of findings from this review to women in the United States is limited by the lack of organized screening programs for the majority of women in the United States. For women in the United States participating in organized screening programs, the findings of this review are applicable; however, more than 50 percent of women diagnosed with cervical cancer in the United States have not been screened in the prior 3 to 5 years. The higher detection of CIN3+ in an initial screening round with hrHPV testing may provide a more important benefit to women not able to participate in organized screening programs, since without such programs women may be less likely to return at regular intervals for screening. Mortality from cervical cancer in the United States is highest among black women and women of low socioeconomic status.^{49, 163} Studies included in this review did not provide evidence on race/ethnicity or socioeconomic status of participants, so we were not able to examine any relevant subgroup effects other than those based on age.

Future Research Needs

The performance of hrHPV testing alone or with cytology cotesting over multiple screening rounds is not clear. Research is needed to further define the use of hrHPV testing alone and as cotesting at longer screening intervals over several rounds of screening, and to evaluate the effectiveness of intermittent cotesting combined with regular cytology screening. A potential risk of hrHPV testing alone for cervical cancer screening is failure of early detection of HPV-negative cancers.¹⁶⁴ Such cancers appear to be very rare, and a large observational study of women with negative hrHPV tests documented a lower risk of future cervical cancer compared to women who were cytology negative,¹²² but ongoing research on the outcomes of hrHPV primary screening in large populations over multiple screening rounds will further clarify this risk. Modeling will also be useful to project outcomes of hrHPV screening strategies at varying intervals over longer time frames. As new hrHPV tests become available, head-to-head comparisons with tests used in the large RCTs and cohort studies will be helpful for

extrapolation of effectiveness. Additional research comparing alternative followup protocols is needed to define the followup protocols most effective for maximizing detection of high-grade abnormalities while minimizing harms from unnecessary testing. More recently recommended biomarkers, including p16 staining of cervical biopsies to clarify the level of CIN, deserve evaluation in population-based screening studies.⁴

Ongoing research has led to modifications in cervical cancer screening guidelines. These shifts in recommendations may lead to confusion among both women and clinicians, resulting in potential harms from overuse of screening and diagnostic tests, or harms from failure to recognize and follow up important abnormal findings. Studies are needed to define optimal strategies for dissemination and implementation of guideline modifications.

We found very limited evidence on how vaccination against specific hrHPV types is affecting outcomes of screening with hrHPV primary testing or cotesting in age groups recommended for screening. As HPV vaccination coverage increases, it is unknown whether shifts in hrHPV type prevalence will occur over time. Studies to date have not supported substitution of nonvaccine hrHPV types,¹⁶⁵ and newer vaccines cover additional hrHPV types. An overall reduction in hrHPV prevalence would affect the positive predictive value of hrHPV testing. Ongoing studies of hrHPV prevalence and outcomes of screening in vaccinated populations are needed. If vaccination results in an overall lower incidence of cervical cancer precursors and incidence, studies will be needed of screening strategies that have been modified to maintain screening efficiency and reduce harms from investigation of false-positive results. Final results of the Compass trial,¹⁰⁴ which includes younger women drawn from a population with relative high vaccination rates, will be helpful in addressing these questions.

Because of the predominance of cervical cancer among underscreened women, any substantial impact on cervical cancer incidence and mortality requires the identification of effective strategies to reach poorly screened and unscreened women in the United States. Very limited evidence from a single cohort study of poorly screened women in Spain suggests that the increased sensitivity of hrHPV testing may offer particular advantages in this population. Rigorous comparative studies are needed to evaluate both the impact of hrHPV testing in this population and to identify and disseminate effective strategies to increase screening coverage and followup of abnormal results. Such strategies could include population-based screening programs with registries, outreach programs, low- or no-cost access to screening and followup evaluation, and options for self-collected samples.

There is evidence that hrHPV testing via self-collection may be an acceptable and important strategy to reach underscreened and unscreened populations.¹⁶⁶⁻¹⁶⁸ A number of ongoing studies of hrHPV self-sampling were identified in ClinicalTrials.gov (**Appendix E**). A 2014 meta-analysis of 36 studies comparing the accuracy of hrHPV testing via self-collected samples to clinician-collected samples suggested slightly lower sensitivity and specificity for self-collection regardless of threshold (CIN2+ or CIN3+) (compared to clinician-collected samples, sensitivity was 0.88 [95% CI, 0.85 to 0.91] for CIN2+ and 0.89 [95% CI, 0.83 to 0.96] for CIN3+; specificity was 0.96 [95% CI, 0.95 to 0.97] for CIN2+ and 0.96 [95% CI, 0.93 to 0.99] for CIN3+).¹⁶⁹ The implications of slightly lower test performance, particularly for sensitivity, might be different for a self-collection option among underscreened women.

Several systematic reviews summarize evidence on the effects of self-collection on screening participation. Most trials to date have been conducted in European countries, and usually randomize women with persistent missed screening to a control condition, such as a mailed reminder letter or telephone call, or the intervention (a mailed self-collection kit). Self-collection kits in these settings are consistently associated with higher screening rates. A 2013 systematic review of 10 trials examined the use of hrHPV self-testing on cervical cancer screening participation compared to a clinician letter. The overall RR of participation in screening using self-testing was 2.14 (95% CI, 1.30 to 3.52), with substantial heterogeneity observed between the studies (I^2 =99.5%); reported use of hrHPV self-testing ranged from 10.2 to 98.2 percent among those invited to hrHPV self-test.¹⁶⁷ Similar significant beneficial effects on screening compliance have been observed in trials published since the 2013 review.¹⁷⁰⁻¹⁷⁸

One trial (n=601) of self-sampling to increase screening has been completed in the United States. The trial focused on low-income, uninsured Latina immigrants and Haitian women, and had three study arms. Culturally-tailored health education materials were compared to a community health navigator or to a third intervention where the community health worker also offered a self-collection option. Rates of screening were highest when self-collection was offered, and the involvement of community health workers strengthened linkages to followup of abnormal self-collection screening results (>90%). At 6-month followup, the proportion of women presenting for screening significantly differed across the groups: 29 percent in the health education materials group, 38 percent in the health navigation only group, and 73 percent in the health navigation with self-collection option. Studies are needed to examine the effect of self-collection on overall screening rates and on adherence to followup of abnormal screening results among underscreened women.

Conclusions

Four RCTs offer consistent evidence that primary hrHPV testing will detect higher rates of CIN3+ at an initial screening round. Two of four RCTs of cotesting also found higher CIN3+ detection. This higher detection is accompanied by increased false-positive results and higher colposcopy rates. These higher rates of colposcopy are likely to lead to more treatments, which are associated with harms. Over two rounds of screening with hrHPV cotesting, most trials show similar rates of CIN3+ detection between strategies. Whether additional rounds of screening would result in a subsequent decline of CIN3+ with primary hrHPV testing strategies is unclear, since only one trial has reported on more than two rounds of screening. In most trials and a large U.S.-based observational study, women younger than ages 30 to 35 years had higher rates of hrHPV positivity and CIN3+, accompanied by higher rates of colposcopy. No completed studies compared screening intervals. An IPD meta-analysis suggested a lower rate of ICC with hrHPV screening strategies, but this analysis pooled data from trials with distinctly different screening strategies and hrHPV test types, which contributed uncertainty to interpretation of the findings. All of the evidence from RCTs on primary hrHPV testing and cotesting is from countries with organized screening programs, which are not available to most women in the United States. Rigorous comparative research is needed in U.S.-based screening settings to examine longerterm outcomes and screening intervals, and to identify effective strategies for outreach, screening, and followup of poorly screened and unscreened women. The higher sensitivity of

hrHPV testing in a single round of screening may have particular potential to improve outcomes in this high-risk population.

References

- Saraiya M, Ahmed F, Krishnan S, et al. Cervical cancer incidence in a prevaccine era in the United States, 1998-2002. Obstet Gynecol. 2007;109(2 Pt 1):360-70. PMID: 17267837. <u>http://dx.doi.org/10.1097/01.AOG.0000254165.92653.e8</u>
- Abeloff MD AJ, Niederhuber JE, Kastan MB, McKenna WG (eds). Clinical Oncology.
 3rd ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2004.
- McCredie MR, Sharples KJ, Paul C, et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol. 2008;9(5):425-34. PMID: 18407790. http://dx.doi.org/10.1016/S1470-2045(08)70103-7
- 4. Darragh TM, Colgan TJ, Thomas Cox J, et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol. 2013;32(1):76-115. PMID: 23202792. <u>http://dx.doi.org/10.1097/PGP.0b013e31826916c7</u>
- Nayar R, Wilbur DC. The Pap Test and Bethesda 2014. "The reports of my demise have been greatly exaggerated." (after a quotation from Mark Twain). Acta Cytol. 2015;59(2):121-32. PMID: 25997404. <u>http://dx.doi.org/10.1159/000381842</u>
- 6. Solomon D, Davey D, Kurman R, et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA. 2002;287(16):2114-9. PMID: 11966386 http://dx.doi.org/10.1001/jama.287.16.2114
- 7. Bosch FX, Lorincz A, Munoz N, et al. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55(4):244-65. PMID: 11919208. None
- Schiffman M, Castle PE, Jeronimo J, et al. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890-907. PMID: 17826171. <u>http://dx.doi.org/10.1016/S0140-6736(07)61416-0</u>
- 9. Ziegert C, Wentzensen N, Vinokurova S, et al. A comprehensive analysis of HPV integration loci in anogenital lesions combining transcript and genome-based amplification techniques. Oncogene. 2003;22(25):3977-84. PMID: 12813471. http://dx.doi.org/10.1038/sj.onc.1206629
- Dunne EF, Unger ER, Sternberg M, et al. Prevalence of HPV infection among females in the United States. JAMA. 2007;297(8):813-9. PMID: 17327523. <u>http://dx.doi.org/10.1001/jama.297.8.813</u>
- Plummer M, Schiffman M, Castle PE, et al. A 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. J Infect Dis. 2007;195(11):1582-9. PMID: 17471427. <u>http://dx.doi.org/10.1086/516784</u>
- Park IU, Wojtal N, Silverberg MJ, et al. Cytology and human papillomavirus co-test results preceding incident high-grade cervical intraepithelial neoplasia. PLoS One. 2015;10(3):e0118938. PMID: 25793987. <u>http://dx.doi.org/10.1371/journal.pone.0118938</u>
- Chen HC, Schiffman M, Lin CY, et al. Persistence of type-specific human papillomavirus infection and increased long-term risk of cervical cancer. J Natl Cancer Inst. 2011;103(18):1387-96. PMID: 21900119. <u>http://dx.doi.org/10.1093/jnci/djr283</u>

- Schiffman M, Kjaer SK. Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr. 2003(31):14-9. PMID: 12807940. None
- Li N, Franceschi S, Howell-Jones R, et al. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. Int J Cancer. 2011;128(4):927-35. PMID: 20473886. <u>http://dx.doi.org/10.1002/ijc.25396</u>
- 16. de Sanjose S, Quint WG, Alemany L, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048-56. PMID: 20952254. <u>http://dx.doi.org/10.1016/S1470-2045(10)70230-8</u>
- Hopenhayn C, Christian A, Christian WJ, et al. Prevalence of human papillomavirus types in invasive cervical cancers from 7 US cancer registries before vaccine introduction. J Low Genit Tract Dis. 2014;18(2):182-9. PMID: 24477171. <u>http://dx.doi.org/10.1097/LGT.0b013e3182a577c7</u>
- Khan MJ, Castle PE, Lorincz AT, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. J Natl Cancer Inst. 2005;97(14):1072-9. PMID: 16030305. http://dx.doi.org/10.1093/jnci/dji187
- Insinga RP, Dasbach EJ, Elbasha EH, et al. Incidence and duration of cervical human papillomavirus 6, 11, 16, and 18 infections in young women: an evaluation from multiple analytic perspectives. Cancer Epidemiol Biomarkers Prev. 2007;16(4):709-15. PMID: 17416761. <u>http://dx.doi.org/10.1158/1055-9965.EPI-06-0846</u>
- Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006;110(5):525-41. PMID: 16597322. http://dx.doi.org/10.1042/CS20050369
- 21. Cox JT. The development of cervical cancer and its precursors: what is the role of human papillomavirus infection? Curr Opin Obstet Gynecol. 2006;18 Suppl 1:s5-s13. PMID: 16520683. <u>http://dx.doi.org/10.1097/01.gco.0000216315.72572.fb</u>
- 22. De Vuyst H, Lillo F, Broutet N, et al. HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy. Eur J Cancer Prev. 2008;17(6):545-54. PMID: 18941376. http://dx.doi.org/10.1097/CEJ.0b013e3282f75ea1
- 23. Schiffman M, Wentzensen N, Wacholder S, et al. Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst. 2011;103(5):368-83. PMID: 21282563. http://dx.doi.org/10.1093/jnci/djq562
- 24. Chang AR. Carcinoma in situ of the cervix and its malignant potential. A lesson from New Zealand. Cytopathology. 1990;1(6):321-8. PMID: 2101679. http://dx.doi.org/10.1111/j.1365-2303.1990.tb00369.x
- 25. Kinlen LJ, Spriggs AI. Women with positive cervical smears but without surgical intervention. A follow-up study. Lancet. 1978;2(8087):463-5. PMID: 79818. https://doi.org/10.1016/S0140-6736(78)91457-5
- 26. Holowaty P, Miller AB, Rohan T, et al. Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst. 1999;91(3):252-8. PMID: 10037103. None
- 27. Ostor AG. Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol. 1993;12(2):186-92. PMID: 8463044. None

- 28. Cox JT, Schiffman M, Solomon D, et al. Prospective follow-up suggests similar risk of subsequent cervical intraepithelial neoplasia grade 2 or 3 among women with cervical intraepithelial neoplasia grade 1 or negative colposcopy and directed biopsy. Am J Obstet Gynecol. 2003;188(6):1406-12. PMID: 12824970. <u>https://doi.org/10.1067/mob.2003.461</u>
- 29. Dalla Palma P, Giorgi Rossi P, Collina G, et al. The reproducibility of CIN diagnoses among different pathologists: data from histology reviews from a multicenter randomized study. Am J Clin Pathol. 2009;132(1):125-32. PMID: 19864243. http://dx.doi.org/10.1309/AJCPBRK7D1YIUWFP
- Carreon JD, Sherman ME, Guillen D, et al. CIN2 is a much less reproducible and less valid diagnosis than CIN3: results from a histological review of population-based cervical samples. Int J Gynecol Pathol. 2007;26(4):441-6. PMID: 17885496. http://dx.doi.org/10.1097/pgp.0b013e31805152ab
- 31. Castle PE, Schiffman M, Wheeler CM, et al. Evidence for frequent regression of cervical intraepithelial neoplasia-grade 2. Obstet Gynecol. 2009;113(1):18-25. PMID: 19104355. http://dx.doi.org/10.1097/AOG.0b013e31818f5008
- 32. SEER Cancer Statistics Factsheets: Cervix Uteri Cancer. https://seer.cancer.gov/statfacts/html/ld/cervix.html. Accessed.
- 33. American Cancer Society. American Cancer Society: Cancer Facts & Figures 2016. <u>https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html</u>. Accessed: June 27, 2017.
- 34. Beavis AL, Gravitt PE, Rositch AF. Hysterectomy-corrected cervical cancer mortality rates reveal a larger racial disparity in the United States. Cancer. 2017;123(6). PMID: 28112816. <u>http://dx.doi.org/10.1002/cncr.30507</u>
- 35. National Institutes of Health. Cervical cancer. http://consensus.nih.gov/1996/1996CervicalCancer102html.htm. Accessed: June 27, 2017.
- Decker K, Demers A, Chateau D, et al. Papanicolaou test utilization and frequency of screening opportunities among women diagnosed with cervical cancer. Open Med. 2009;3(3):e140-7. PMID: 21603052. None
- 37. Subramaniam A, Fauci JM, Schneider KE, et al. Invasive cervical cancer and screening: what are the rates of unscreened and underscreened women in the modern era? J Low Genit Tract Dis. 2011;15(2):110-3. PMID: 21263352. http://dx.doi.org/10.1097/LGT.0b013e3181f515a2
- Sawaya GF, Sung HY, Kearney KA, et al. Advancing age and cervical cancer screening and prognosis. J Am Geriatr Soc. 2001;49(11):1499-504. PMID: 11890589. <u>http://dx.doi.org/10.1046/j.1532-5415.2001.4911243.x</u>
- Mokdad AH, Dwyer-Lindgren L, Fitzmaurice C, et al. Trends and Patterns of Disparities in Cancer Mortality Among US Counties, 1980-2014. JAMA. 2017;317(4):388-406.
 PMID: 28118455. <u>http://dx.doi.org/10.1001/jama.2016.20324</u>
- 40. McQuillan G, Kruszon-Moran D, Markowitz LE, et al. Prevalence of HPV in Adults Aged 18-69: United States, 2011-2014. NCHS Data Brief. 2017(280):1-8.
- 41. Shi R, Devarakonda S, Liu L, et al. Factors associated with genital human papillomavirus infection among adult females in the United States, NHANES 2007-2010. BMC Res Notes. 2014;7:544. 10.1186/1756-0500-7-544
- 42. Chesson HW, Ekwueme DU, Saraiya M, et al. Estimates of the annual direct medical costs of the prevention and treatment of disease associated with human papillomavirus in

the United States. Vaccine. 2012;30(42):6016-9. PMID: 22867718. http://dx.doi.org/10.1016/j.vaccine.2012.07.056

- 43. Panatto D, Amicizia D, Bianchi S, et al. Chlamydia trachomatis prevalence and chlamydial/HPV co-infection among HPV-unvaccinated young Italian females with normal cytology. Hum Vaccin Immunother. 2015;11(1):270-6. PMID: 25483545. http://dx.doi.org/10.4161/hv.36163
- 44. Vriend HJ, Bogaards JA, van Bergen JE, et al. Incidence and persistence of carcinogenic genital human papillomavirus infections in young women with or without Chlamydia trachomatis co-infection. Cancer Med. 2015. PMID: 26194784. http://dx.doi.org/10.1002/cam4.496
- Munoz N, Franceschi S, Bosetti C, et al. Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet. 2002;359(9312):1093-101. PMID: 11943256. <u>http://dx.doi.org/10.1016/S0140-6736(02)08151-5</u>
- 46. Louie KS, Castellsague X, de Sanjose S, et al. Smoking and passive smoking in cervical cancer risk: pooled analysis of couples from the IARC multicentric case-control studies. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1379-90. PMID: 21610224. http://dx.doi.org/10.1158/1055-9965.EPI-11-0284
- 47. Plummer M, Herrero R, Franceschi S, et al. Smoking and cervical cancer: pooled analysis of the IARC multi-centric case--control study. Cancer Causes Control. 2003;14(9):805-14. PMID: 14682438. None
- 48. International Collaboration of Epidemiological Studies of Cervical C, Appleby P, Beral V, et al. Carcinoma of the cervix and tobacco smoking: collaborative reanalysis of individual data on 13,541 women with carcinoma of the cervix and 23,017 women without carcinoma of the cervix from 23 epidemiological studies. Int J Cancer. 2006;118(6):1481-95. PMID: 16206285. http://dx.doi.org/10.1002/ijc.21493
- Singh GK, Williams SD, Siahpush M, et al. Socioeconomic, Rural-Urban, and Racial Inequalities in US Cancer Mortality: Part I-All Cancers and Lung Cancer and Part II-Colorectal, Prostate, Breast, and Cervical Cancers. J Cancer Epidemiol. 2011;2011:107497. PMID: 22496688. <u>http://dx.doi.org/10.1155/2011/107497</u>
- 50. Rositch AF, Burke AE, Viscidi RP, et al. Contributions of recent and past sexual partnerships on incident human papillomavirus detection: acquisition and reactivation in older women. Cancer Res. 2012;72(23):6183-90. PMID: 23019223. http://dx.doi.org/10.1158/0008-5472.CAN-12-2635
- Yang Z, Cuzick J, Hunt WC, et al. Concurrence of multiple human papillomavirus infections in a large US population-based cohort. Am J Epidemiol. 2014;180(11):1066-75. PMID: 25355446. <u>http://dx.doi.org/10.1093/aje/kwu267</u>
- 52. Cytyc Corporation. ThinPrep Pap test quick reference guide: endocervical brush/spatula protocol. <u>https://www.cmmc.org/cmmclab/specimenfiles/ThinPrep_Collection_Guide.pdf</u>. Accessed: April 6, 2015.
- 53. TriPath Imaging. SurePath technology is changing cervical cancer screening for the better. <u>http://www.bmpath.com/documents/Surepath%20Visual%20Sheet.pdf</u>. Accessed: June 28, 2017.
- 54. Vesco KK, Whitlock EP, Eder M, et al. Screening for Cervical Cancer: A Systematic Evidence Review for the U.S. Preventive Services Task Force. Rockville, MD: Agency for Healthcare Research and Quality; 2011.

- 55. Food and Drug Administration. Approval Letter: Digene Hybrid Capture 2 High-Risk HPV DNA Test. <u>https://www.accessdata.fda.gov/cdrh_docs/pdf/p890064s009b.pdf</u>. Accessed: June 27, 2017.
- 56. Food and Drug Administration. Approval Letter: Cobas HPV Test-P100020. http://www.accessdata.fda.gov/cdrh_docs/pdf10/p100020a.pdf Accessed: June 27, 2017.
- 57. Food and Drug Administration. Approval Letter: APTIMA HPV Assay. https://www.accessdata.fda.gov/cdrh_docs/pdf10/p100042a.pdf. Accessed: June 27, 2017.
- 58. Food and Drug Administration. Approval Letter: Cervista HPV 16/18-P080015. http://www.accessdata.fda.gov/cdrh_docs/pdf8/P080015a.pdf. Accessed: June 27, 2017.
- 59. Food and Drug Administration. Approval Letter: Cervista HPV HR and GenfindT DNA Extraction Kit - P080014. <u>https://www.accessdata.fda.gov/cdrh_docs/pdf8/P080014a.pdf</u>. Accessed: June 27, 2017.
- 60. Food and Drug Administration. FDA approves first human papillomaviru test for primary cervical cancer screening. <u>https://wayback.archive-it.org/7993/20161023125534/http://www.fda.gov/NewsEvents/Newsroom/PressAnnounce ments/ucm394773.htm.</u> Accessed: June 27, 2017.
- 61. Arbyn M, Snijders PJ, Meijer CJ, et al. Which high-risk HPV assays fulfil criteria for use in primary cervical cancer screening? Clin Microbiol Infect. 2015. PMID: 25936581. http://dx.doi.org/10.1016/j.cmi.2015.04.015
- 62. Hariri S, Unger ER, Sternberg M, et al. Prevalence of genital human papillomavirus among females in the United States, the National Health And Nutrition Examination Survey, 2003-2006. J Infect Dis. 2011;204(4):566-73. PMID: 21791659. http://dx.doi.org/10.1093/infdis/jir341
- 63. Practice Bulletin No. 168: Cervical Cancer Screening and Prevention. Obstet Gynecol. 2016;128(4):e111-30. PMID: 27661651. http://dx.doi.org/10.1097/aog.00000000001708
- 64. Saslow D, Solomon D, Lawson HW, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. J Low Genit Tract Dis. 2012;16(3):175-204. PMID: 22418039. http://dx.doi.org/10.1097/LGT.0b013e31824ca9d5
- 65. (ASCCP) TASfCaCP. ASCCP Guidelines. <u>http://www.asccp.org/asccp-guidelines</u>. Accessed: June 29, 2017.
- 66. Huh WK, Ault KA, Chelmow D, et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: interim clinical guidance. Obstet Gynecol. 2015;125(2):330-7. PMID: 25569009. http://dx.doi.org/10.1097/AOG.00000000000669
- 67. Schiller JT, Castellsague X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012;30 Suppl 5:F123-38. PMID: 23199956. <u>http://dx.doi.org/10.1016/j.vaccine.2012.04.108</u>
- 68. Kjaer SK, Sigurdsson K, Iversen OE, et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prev Res (Phila). 2009;2(10):868-78. PMID: 19789295. <u>http://dx.doi.org/10.1158/1940-6207.CAPR-09-0031</u>
- 69. Meites E, Kempe A, Markowitz LE. Use of a 2-Dose Schedule for Human Papillomavirus Vaccination Updated Recommendations of the Advisory Committee on Immunization

Practices. MMWR Morb Mortal Wkly Rep. 2016;65(49):1405-8. PMID: 27977643. http://dx.doi.org/10.15585/mmwr.mm6549a5

- 70. Centers for Disease C, Prevention. FDA licensure of bivalent human papillomavirus vaccine (HPV2, Cervarix) for use in females and updated HPV vaccination recommendations from the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2010;59(20):626-9. PMID: 20508593. None
- 71. Giuliano AR, Palefsky JM, Goldstone S, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med. 2011;364(5):401-11. PMID: 21288094. <u>http://dx.doi.org/10.1056/NEJMoa0909537</u>
- 72. Villa LL, Costa RL, Petta CA, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005;6(5):271-8. PMID: 15863374. http://dx.doi.org/10.1016/S1470-2045(05)70101-7
- 73. Garland SM, Hernandez-Avila M, Wheeler CM, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356(19):1928-43. PMID: 17494926. <u>http://dx.doi.org/10.1056/NEJMoa061760</u>
- 74. Group FIS. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915-27. PMID: 17494925. http://dx.doi.org/10.1056/NEJMoa061741
- 75. Hillman RJ, Giuliano AR, Palefsky JM, et al. Immunogenicity of the quadrivalent human papillomavirus (type 6/11/16/18) vaccine in males 16 to 26 years old. Clin Vaccine Immunol. 2012;19(2):261-7. PMID: 22155768 http://dx.doi.org/10.1128/CVI.05208-11
- 76. Villa LL, Costa RL, Petta CA, et al. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br J Cancer. 2006;95(11):1459-66. PMID: 17117182. http://dx.doi.org/10.1038/sj.bjc.6603469
- Block SL, Nolan T, Sattler C, et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics. 2006;118(5):2135-45. PMID: 17079588. <u>http://dx.doi.org/10.1542/peds.2006-0461</u>
- 78. Giuliano AR, Lazcano-Ponce E, Villa L, et al. Impact of baseline covariates on the immunogenicity of a quadrivalent (types 6, 11, 16, and 18) human papillomavirus virus-like-particle vaccine. J Infect Dis. 2007;196(8):1153-62. PMID: 17955433. <u>http://dx.doi.org/10.1086/521679</u>
- 79. Petrosky E, Bocchini JA, Jr., Hariri S, et al. Use of 9-Valent Human Papillomavirus (HPV) Vaccine: Updated HPV Vaccination Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep. 2015;64(11):300-4. PMID: 25811679. None
- 80. Markowitz L. 2-dose human papillomavirus (HPV) vaccination schedules. <u>http://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2014-06/HPV-04-Markowitz.pdf</u>. Accessed: April 22, 2015.
- Dobson SR, McNeil S, Dionne M, et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs. 3 doses in young women: a randomized clinical trial. JAMA. 2013;309(17):1793-802. PMID: 23632723. <u>http://dx.doi.org/10.1001/jama.2013.1625</u>
- 82. Hariri S, Bennett NM, Niccolai LM, et al. Reduction in HPV 16/18-associated high grade cervical lesions following HPV vaccine introduction in the United States 2008-2015.

Vaccine. 2015;33:1608-13. PMID: 25681664. http://dx.doi.org/10.1016/j.vaccine.2015.01.084

- Drolet M, Benard E, Boily MC, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2015. PMID: 25744474. <u>http://dx.doi.org/10.1016/S1473-3099(14)71073-4</u>
- 84. Giorgi Rossi P, Carozzi F, Federici A, et al. Cervical cancer screening in women vaccinated against human papillomavirus infection: Recommendations from a consensus conference. Prev Med. 2016. PMID: 27894910. https://dx.doi.org/10.1016/j.ypmed.2016.11.020
- 85. Centers for Disease Control and Prevention. HPV-Associated Cancer Statistics. http://www.cdc.gov/cancer/hpv/statistics/. Accessed: June 27, 2017.
- Viens LJ, Henley SJ, Watson M, et al. Human Papillomavirus-Associated Cancers -United States, 2008-2012. MMWR Morb Mortal Wkly Rep. 2016;65(26):661-6. PMID: 27387669. <u>http://dx.doi.org/10.15585/mmwr.mm6526a1</u>
- Markowitz LE, Liu G, Hariri S, et al. Prevalence of HPV After Introduction of the Vaccination Program in the United States. Pediatrics. 2016;137(3):e20151968. PMID: 26908697. <u>http://dx.doi.org/10.1542/peds.2015-1968</u>
- Stokley S, Jeyarajah J, Yankey D, et al. Human papillomavirus vaccination coverage among adolescents, 2007-2013, and postlicensure vaccine safety monitoring, 2006-2014--United States. MMWR Morb Mortal Wkly Rep. 2014;63(29):620-4. PMID: 25055185. None
- Reagan-Steiner S, Yankey D, Jeyarajah J, et al. National, Regional, State, and Selected Local Area Vaccination Coverage Among Adolescents Aged 13-17 Years - United States, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(33):850-8. PMID: 27561081. <u>http://dx.doi.org/10.15585/mmwr.mm6533a4</u>
- Moyer VA, U. S. Preventive Services Task Force. Screening for cervical cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;156(12):880-91, W312. PMID: 22711081 <u>http://dx.doi.org/10.7326/0003-4819-156-12-201206190-00424</u>
- 91. Wright TC, Stoler MH, Behrens CM, et al. Primary cervical cancer screening with human papillomavirus: End of study results from the ATHENA study using HPV as the first-line screening test. Gynecol Oncol. 2015;136(2):189-97. PMID: 25579108. http://dx.doi.org/10.1016/j.ygyno.2014.11.076
- 92. Benard VB, Thomas CC, King J, et al. Vital Signs: Cervical cancer incidence, mortality and screening United States, 2007-2012. MMWR Morb Mortal Wkly Rep. 2014;63:1-6. PMID: 25375072 None
- 93. Benard VB, Lawson HW, Eheman CR, et al. Adherence to guidelines for follow-up of low-grade cytologic abnormalities among medically underserved women. Obstet Gynecol. 2005;105(6):1323-8. PMID: 15932824. http://dx.doi.org/10.1097/01.AOG.0000159549.56601.75
- 94. Teoh DG, Marriott AE, Isaksson Vogel R, et al. Adherence to the 2012 national cervical cancer screening guidelines: a pilot study. Am J Obstet Gynecol. 2015;212(1):62 e1-9. PMID: 24992692. <u>http://dx.doi.org/10.1016/j.ajog.2014.06.057</u>

- 95. King NR, Kasper KM, Daggy JK, et al. Current practice patterns in cervical cancer screening in Indiana. Am J Obstet Gynecol. 2014;210(3):265 e1-8. PMID: 24412744. http://dx.doi.org/10.1016/j.ajog.2014.01.001
- 96. Verrilli L, Winer RL, Mao C. Adherence to cervical cancer screening guidelines by gynecologists in the Pacific Northwest. J Low Genit Tract Dis. 2014;18(3):228-34. PMID: 24633168. <u>http://dx.doi.org/10.1097/LGT.0000000000000008</u>
- 97. Corbelli J, Borrero S, Bonnema R, et al. Differences among primary care physicians' adherence to 2009 ACOG guidelines for cervical cancer screening. J Womens Health (Larchmt). 2014;23(5):397-403. PMID: 24380500. http://dx.doi.org/10.1089/jwh.2013.4475
- 98. Perkins RB, Anderson BL, Gorin SS, et al. Challenges in cervical cancer prevention: a survey of U.S. obstetrician-gynecologists. Am J Prev Med. 2013;45(2):175-81. PMID: 23867024. <u>http://dx.doi.org/10.1016/j.amepre.2013.03.019</u>
- 99. Roland KB, Benard VB, Soman A, et al. Cervical cancer screening among young adult women in the United States. Cancer Epidemiol Biomarkers Prev. 2013;22(4):580-8. PMID: 23355601. <u>http://dx.doi.org/10.1158/1055-9965.EPI-12-1266</u>
- Henderson JT, Saraiya M, Martinez G, et al. Changes to cervical cancer prevention guidelines: effects on screening among U.S. women ages 15-29. Prev Med. 2013;56(1):25-9. PMID: 23137444. http://dx.doi.org/10.1016/j.ypmed.2012.10.025
- 101. Hawkins NA, Benard VB, Greek A, et al. Patient knowledge and beliefs as barriers to extending cervical cancer screening intervals in Federally Qualified Health Centers. Prev Med. 2013;57(5):641-5. PMID: 24012831. <u>http://dx.doi.org/10.1016/j.ypmed.2013.08.021</u>
- Schneider A, Henderson JT, Harper CC, et al. Obstetrician-gynecologists' beliefs about performing less cervical cancer screening: the pendulum swings. Am J Obstet Gynecol. 2015;213(5):744-5. PMID: 26184779. <u>http://dx.doi.org/10.1016/j.ajog.2015.07.003</u>
- 103. U.S. Preventive Services Task Force. Screening for Cervical Cancer: Recommendations and Rationale. Rockville, MD: Agency for Healthcare Research and Quality; 2003.
- 104. Canfell K, Caruana M, Gebski V, et al. Cervical screening with primary HPV testing or cytology in a population of women in which those aged 33 years or younger had previously been offered HPV vaccination: Results of the Compass pilot randomised trial. PLoS Med. 2017;14(9):e1002388. 10.1371/journal.pmed.1002388
- 105. Wallace BC, Small K, Brodely CE, et al., editors. Deploying an interactive machine learning system in an evidence-based practice center: abstrackr. Proceedings of the ACM International Health Informatics Symposium; 2012. PMID: None.
- 106. Programme; UND. Human Development Report 2014: Sustaining Human Progress: Reducing Vulnerabilities and Building Resilience. <u>http://hdr.undp.org/en/content/human-development-report-2014</u>. Accessed: June 27, 2017.
- 107. Force USPST. U.S. Preventive Services Task Force Procedure Manual. Rockville, MD: Agency for Healthcare Research and Quality; 2015.
- 108. Arbyn M, Ronco G, Cuzick J, et al. How to evaluate emerging technologies in cervical cancer screening? Int J Cancer. 2009;125(11):2489-96. PMID: 19626591. <u>http://dx.doi.org/10.1002/ijc.24774</u>
- 109. Darragh TM, Colgan TJ, Cox JT, et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-Associated Lesions: background and consensus recommendations from the College of American Pathologists and the American Society

for Colposcopy and Cervical Pathology. J Low Genit Tract Dis. 2012;16(3):205-42. PMID: 22820980. <u>http://dx.doi.org/10.1097/LGT.0b013e31825c31dd</u>

- Harris RP, Helfand M, Woolf SH, et al. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001;20(3 Suppl):21-35. PMID: 11306229. <u>http://dx.doi.org/10.1016/S0749-3797(01)00261-6</u>
- 111. Wells GA, Shea BJ, O'Connell DP, J., et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analysis. <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u>. Accessed: June 27, 2017.
- Massad LS, Jeronimo J, Katki HA, et al. The accuracy of colposcopic grading for detection of high-grade cervical intraepithelial neoplasia. J Low Genit Tract Dis. 2009;13(3):137-44. PMID: 19550210. http://dx.doi.org/10.1097/LGT.0b013e31819308d4
- 113. Berkman ND, Lohr KN, Ansari MT, et al. Grading the strength of a body of evidence when assessing health care interventions: an EPC update. J Clin Epidemiol. 2015;68(11):1312-24. PMID: 25721570. <u>http://dx.doi.org/10.1016/j.jclinepi.2014.11.023</u>
- 114. Atkins D, Eccles M, Flottorp S, et al. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. BMC Health Serv Res. 2004;4(1):38. PMID: 15615589. http://dx.doi.org/10.1186/1472-6963-4-38
- 115. Demarco M, Lorey TS, Fetterman B, et al. Risks of CIN 2+, CIN 3+, and Cancer by Cytology and Human Papillomavirus Status: The Foundation of Risk-Based Cervical Screening Guidelines. J Low Genit Tract Dis. 2017;21(4):261-7. 10.1097/LGT.00000000000343
- 116. Kitchener HC, Almonte M, Gilham C, et al. ARTISTIC: a randomised trial of human papillomavirus (HPV) testing in primary cervical screening. Health Technol Assess. 2009;13(51):1-150, iii-iv. PMID: 19891902. <u>http://dx.doi.org/10.3310/hta13510</u>
- McCaffery K, Waller J, Forrest S, et al. Testing positive for human papillomavirus in routine cervical screening: examination of psychosocial impact. BJOG. 2004;111(12):1437-43. PMID: 15663132. <u>http://dx.doi.org/10.1111/j.1471-0528.2004.00279.x</u>
- 118. Naucler P, Ryd W, Tornberg S, et al. Human papillomavirus and Papanicolaou tests to screen for cervical cancer. N Engl J Med. 2007;357(16):1589-97. PMID: 17942872. <u>http://dx.doi.org/10.1056/NEJMoa073204</u>
- 119. Ronco G, Giorgi-Rossi P, Carozzi F, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 2010;11(3):249-57. PMID: 20089449. <u>http://dx.doi.org/10.1016/S1470-2045(09)70360-2</u>
- 120. Rijkaart DC, Berkhof J, Rozendaal L, et al. Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial. Lancet Oncol. 2012;13(1):78-88. PMID: 22177579. <u>http://dx.doi.org/10.1016/S1470-2045(11)70296-0</u>
- 121. Ibanez R, Autonell J, Sarda M, et al. Protecting the underscreened women in developed countries: the value of HPV test. BMC Cancer. 2014;14:574. PMID: 25102758. http://dx.doi.org/10.1186/1471-2407-14-574
- 122. Katki HA, Kinney WK, Fetterman B, et al. Cervical cancer risk for women undergoing concurrent testing for human papillomavirus and cervical cytology: a population-based study in routine clinical practice.[Erratum appears in Lancet Oncol. 2011 Aug;12(8):722].

Lancet Oncol. 2011;12(7):663-72. PMID: 21684207. <u>http://dx.doi.org/10.1016/S1470-2045(11)70145-0</u>

- 123. Luyten A, Buttmann-Schweiger N, Luyten K, et al. Early detection of CIN3 and cervical cancer during long-term follow-up using HPV/Pap smear co-testing and risk-adapted follow-up in a locally organised screening programme. Int J Cancer. 2014;135(6):1408-16. PMID: 24519782. <u>http://dx.doi.org/10.1002/ijc.28783</u>
- 124. Leinonen MK, Nieminen P, Lonnberg S, et al. Detection rates of precancerous and cancerous cervical lesions within one screening round of primary human papillomavirus DNA testing: prospective randomised trial in Finland. BMJ. 2012;345:e7789. PMID: 23197596. <u>http://dx.doi.org/10.1136/bmj.e7789</u>
- 125. Coldman A. Preliminary 48 month exit results from HPV FOCAL cervical cancer screening trial: outcomes in subjects negative at baseline. 2016. PMID: None. None
- 126. Zorzi M, Frayle H, Rizzi M, et al. A 3-year interval is too short for re-screening HPV negative women: a population-based cohort study. BJOG. 2017. PMID: 28120382. https://dx.doi.org/10.1111/1471-0528.14575
- 127. Ronco G, Giorgi-Rossi P, Carozzi F, et al. Results at recruitment from a randomized controlled trial comparing human papillomavirus testing alone with conventional cytology as the primary cervical cancer screening test. J Natl Cancer Inst. 2008;100(7):492-501. PMID: 18364502. <u>http://dx.doi.org/10.1093/jnci/djn065</u>
- 128. Cook DA, Mei W, Smith LW, et al. Comparison of the Roche cobas 4800 and Digene Hybrid Capture 2 HPV tests for primary cervical cancer screening in the HPV FOCAL trial. BMC Cancer. 2015;15:968. PMID: 26674353. <u>http://dx.doi.org/10.1186/s12885-015-1959-5</u>
- 129. Ogilvie G, Krajden M, van Niekerk D, et al. HPV for cervical cancer screening (HPV FOCAL): complete Round 1 results of a randomized trial comparing HPV-based primary screenign to liquid-based cytology for cervical cancer. Int J Cancer. 2017;140(2):440-8. PMID: 27685757 <u>http://dx.doi.org/10.1002/ijc.30454</u>
- 130. Ogilvie GS, van Niekerk DJ, Krajden M, et al. A randomized controlled trial of Human Papillomavirus (HPV) testing for cervical cancer screening: trial design and preliminary results (HPV FOCAL Trial). BMC Cancer. 2010;10:111. PMID: 20334685. <u>http://dx.doi.org/10.1186/1471-2407-10-111</u>
- 131. Ronco G, Giorgi-Rossi P, Carozzi F, et al. Human papillomavirus testing and liquid-based cytology in primary screening of women younger than 35 years: results at recruitment for a randomised controlled trial. Lancet Oncol. 2006;7(7):547-55. PMID: 16814206. <u>http://dx.doi.org/10.1016/S1470-2045(06)70731-8</u>
- 132. Ronco G, Segnan N, Giorgi-Rossi P, et al. Human papillomavirus testing and liquid-based cytology: results at recruitment from the new technologies for cervical cancer randomized controlled trial. J Natl Cancer Inst. 2006;98(11):765-74. PMID: 16757701. http://dx.doi.org/10.1093/jnci/djj209
- 133. Bulkmans NW, Rozendaal L, Snijders PJ, et al. POBASCAM, a population-based randomized controlled trial for implementation of high-risk HPV testing in cervical screening: design, methods and baseline data of 44,102 women. Int J Cancer. 2004;110(1):94-101. PMID: 15054873. <u>http://dx.doi.org/10.1002/ijc.20076</u>
- 134. Dijkstra MG, van Zummeren M, Rozendaal L, et al. Safety of extending screening intervals beyond five years in cervical screening programmes with testing for high risk human papillomavirus: 14 year follow-up of population based randomised cohort in the

Netherlands. BMJ. 2016;355:i4924. PMID: 27702796. http://dx.doi.org/10.1136/bmj.i4924

- Elfstrom KM, Smelov V, Johansson AL, et al. Long term duration of protective effect for HPV negative women: follow-up of primary HPV screening randomised controlled trial. BMJ. 2014;348:g130. PMID: 24435414. <u>http://dx.doi.org/10.1136/bmj.g130</u>
- 136. Kitchener HC, Almonte M, Thomson C, et al. HPV testing in combination with liquidbased cytology in primary cervical screening (ARTISTIC): a randomised controlled trial. Lancet Oncol. 2009;10(7):672-82. PMID: 19540162. <u>http://dx.doi.org/10.1016/S1470-2045(09)70156-1</u>
- 137. Kitchener HC, Canfell K, Gilham C, et al. The clinical effectiveness and costeffectiveness of primary human papillomavirus cervical screening in England: extended follow-up of the ARTISTIC randomised trial cohort through three screening rounds. Health Technol Assess. 2014;18(22):1-196. PMID: 24762804. <u>http://dx.doi.org/10.3310/hta18230</u>
- 138. Kitchener HC, Fletcher I, Roberts C, et al. The psychosocial impact of human papillomavirus testing in primary cervical screening-a study within a randomized trial. Int J Gynecol Cancer. 2008;18(4):743-8. PMID: 17944916. <u>http://dx.doi.org/10.1111/j.1525-1438.2007.01113.x</u>
- Ronco G, Dillner J, Elfstrom KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524-32. PMID: 24192252. <u>http://dx.doi.org/10.1016/S0140-6736(13)62218-7</u>
- 140. Petry KU, Luyten A, Scherbring S. Accuracy of colposcopy management to detect CIN3 and invasive cancer in women with abnormal screening tests: results from a primary HPV screening project from 2006 to 2011 in Wolfsburg, Germany. Gynecol Oncol. 2013;128(2):282-7. PMID: 23088926. <u>http://dx.doi.org/10.1016/j.ygyno.2012.10.017</u>
- 141. Gage JC, Hunt WC, Schiffman M, et al. Similar risk patters after cervical screening in two large U.S. populations. 2016;128(6):1248-57. PMID: 27824767. <u>http://dx.doi.org/10.1097/AOG.00000000001721</u>
- 142. Katki HA, Schiffman M, Castle PE, et al. Five-year risks of CIN 3+ and cervical cancer among women who test Pap-negative but are HPV-positive. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S56-63. PMID: 23519306. http://dx.doi.org/10.1097/LGT.0b013e318285437b
- Gage JC, Schiffman M, Katki HA, et al. Reassurance against future risk of precancer and cancer conferred by a negative human papillomavirus test. J Natl Cancer Inst. 2014;106(8). PMID: 25038467. <u>http://dx.doi.org/10.1093/jnci/dju153</u>
- 144. Coldman AJ, Gondara L, Smith LW, et al. Disease detection and resource use in the safety and control arms of the HPV FOCAL cervical cancer screening trial. Br J Cancer. 2016;115(12):1487-94. PMID: 27855441. <u>https://dx.doi.org/10.1038/bjc.2016.368</u>
- 145. American College of Obstetricians Gynecologists. Practice Bulletin No. 140: management of abnormal cervical cancer screening test results and cervical cancer precursors. Obstet Gynecol. 2013;122(6):1338-67. PMID: 24264713. <u>http://dx.doi.org/10.1097/01.AOG.0000438960.31355.9e</u>
- 146. Sawaya GF, Smith-McCune K. Cervical Cancer Screening. Obstet Gynecol. 2016;127(3):459-67. PMID: 26855089. <u>http://dx.doi.org/10.1097/AOG.00000000001136</u>

- 147. Frederiksen ME, Njor S, Lynge E, et al. Psychological effects of diagnosis and treatment of cervical intraepithelial neoplasia: a systematic review. Sex Transm Infect. 2015;91(4):248-56. PMID: 25512668. http://dx.doi.org/10.1136/sextrans-2014-051754
- 148. Sankaranarayanan R, Nene BM, Shastri SS, et al. HPV screening for cervical cancer in rural India. N Engl J Med. 2009;360(14):1385-94. PMID: 19339719. http://dx.doi.org/10.1056/NEJMoa0808516
- 149. Adegoke O, Kulasingam S, Virnig B. Cervical cancer trends in the United States: a 35year population-based analysis. J Womens Health. 2012;21(10):1031-7. PMID: 22816437. http://dx.doi.org/10.1089/jwh.2011.3385
- van der Horst J, Siebers AG, Bulten J, et al. Increasing incidence of invasive and in situ cervical adenocarcinoma in the Netherlands during 2004-2013. Cancer Med. 2017. PMID: 28102052. <u>https://dx.doi.org/10.1002/cam4.971</u>
- 151. Zheng B, Li Z, Griffith CC, et al. Prior high-risk HPV testing and Pap test results for 427 invasive cervical cancers in China's largest CAP-certified laboratory. Cancer Cytopathol. 2015;123(7):428-34. PMID: 25954852. <u>http://dx.doi.org/10.1002/cncy.21557</u>
- Lonnberg S, Hansen BT, Haldorsen T, et al. Cervical cancer prevented by screening: Long-term incidence trends by morphology in Norway. Int J Cancer. 2015;137(7):1758-64. PMID: 25833121. <u>http://dx.doi.org/10.1002/ijc.29541</u>
- Kim JJB, E.A.; Regan, C.; Sy, S. Decision Analysis on Screening for Cervical Cancer in Primary Care (in process). Rockville, MD: Agency for Healthcare Research and Quality; 2017.
- 154. Martin-Hirsch PP, Paraskevaidis E, Bryant A, et al. Surgery for cervical intraepithelial neoplasia. Cochrane Database Syst Rev. 2010(6):CD001318. PMID: 20556751. http://dx.doi.org/10.1002/14651858.CD001318.pub2
- 155. Nuovo J, Melnikow J, Willan AR, et al. Treatment outcomes for squamous intraepithelial lesions. Int J Gynaecol Obstet. 2000;68(1):25-33. PMID: 10687833. <u>http://dx.doi.org/10.1016/S0020-7292(99)00162-9</u>
- 156. Bjorge T, Skare GB, Bjorge L, et al. Adverse Pregnancy Outcomes After Treatment for Cervical Intraepithelial Neoplasia. Obstet Gynecol. 2016;128(6):1265-73. PMID: 27824756. <u>http://dx.doi.org/10.1097/AOG.000000000001777</u>
- 157. Kyrgiou M, Koliopoulos G, Martin-Hirsch P, et al. Obstetric outcomes after conservative treatment for intraepithelial or early invasive cervical lesions: systematic review and metaanalysis. Lancet. 2006;367(9509):489-98. PMID: 16773126. http://dx.doi.org/10.1016/S0140-6736(06)68181-6
- 158. Arbyn M, Kyrgiou M, Simoens C, et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: metaanalysis. BMJ. 2008;337:a1284. PMID: 18801868. <u>http://dx.doi.org/10.1136/bmj.a1284</u>
- 159. Kyrgiou M, Mitra A, Arbyn M, et al. Fertility and early pregnancy outcomes after conservative treatment for cervical intraepithelial neoplasia. Cochrane Database Syst Rev. 2015(9):CD008478. PMID: 26417855. <u>http://dx.doi.org/10.1002/14651858.CD008478.pub2</u>
- 160. Conner SN, Frey HA, Cahill AG, et al. Loop electrosurgical excision procedure and risk of preterm birth: a systematic review and meta-analysis. Obstet Gynecol. 2014;123(4):752-61. PMID: 24785601. http://dx.doi.org/10.1097/AOG.00000000000174

- 161. Herweijer E, Feldman AL, Ploner A, et al. The Participation of HPV-Vaccinated Women in a National Cervical Screening Program: Population-Based Cohort Study. PLoS ONE [Electronic Resource]. 2015;10(7):e0134185. PMID: 26218492. http://dx.doi.org/10.1371/journal.pone.0134185
- 162. Dorton BJ, Vitonis AF, Feldman S. Comparing Cervical Cytology and Histology Among Human Papillomavirus-Vaccinated and -Unvaccinated Women in an Academic Colposcopy Clinic. Obstet Gynecol. 2015;126(4):785-91. PMID: 26348184. <u>http://dx.doi.org/10.1097/aog.000000000001011</u>
- 163. Rositch AF, Nowak RG, Gravitt PE. Increased age and race-specific incidence of cervical cancer after correction for hysterectomy prevalence in the United States from 2000 to 2009. Cancer. 2014;120(13):2032-8. PMID: 24821088. http://dx.doi.org/10.1002/cncr.28548
- 164. Rodriguez-Carunchio L, Soveral I, Steenbergen RD, et al. HPV-negative carcinoma of the uterine cervix: a distinct type of cervical cancer with poor prognosis. BJOG. 2015;122(1):119-27. PMID: 25229645. <u>http://dx.doi.org/10.1111/1471-0528.13071</u>
- 165. Mesher D, Soldan K, Lehtinen M, et al. Population-Level Effects of Human Papillomavirus Vaccination Programs on Infections with Nonvaccine Genotypes. Emerg Infect Dis. 2016;22(10):1732-40. 10.3201/eid2210.160675
- 166. Snijders PJ, Verhoef VM, Arbyn M, et al. High-risk HPV testing on self-sampled versus clinician-collected specimens: a review on the clinical accuracy and impact on population attendance in cervical cancer screening. Int J Cancer. 2013;132(10):2223-36. PMID: 22907569. <u>http://dx.doi.org/10.1002/ijc.27790</u>
- 167. Racey CS, Withrow DR, Gesink D. Self-collected HPV testing improves participation in cervical cancer screening: a systematic review and meta-analysis. Can J Public Health. 2013;104(2):e159-66. PMID: 23618210. None
- 168. Huynh J, Howard M, Lytwyn A. Self-collection for vaginal human papillomavirus testing: systematic review of studies asking women their perceptions. J Low Genit Tract Dis. 2010;14(4):356-62. PMID: 20885165. <u>http://dx.doi.org/10.1097/LGT.0b013e3181dc115b</u>
- 169. Arbyn M, Verdoodt F, Snijders PJ, et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol. 2014;15(2):172-83. PMID: 24433684. http://dx.doi.org/10.1016/S1470-2045(13)70570-9
- 170. Giorgi Rossi P, Fortunato C, Barbarino P, et al. Self-sampling to increase participation in cervical cancer screening: An RCT comparing home mailing, distribution in pharmacies, and recall letter. Br J Cancer. 2015;112(4):667-75. PMID: 25633037. http://dx.doi.org/10.1038/bjc.2015.11
- 171. Cadman L, Wilkes S, Mansour D, et al. A randomized controlled trial in non-responders from Newcastle upon Tyne invited to return a self-sample for Human Papillomavirus testing versus repeat invitation for cervical screening. J Med Screen. 2015;22(1):28-37. PMID: 25403717. <u>http://dx.doi.org/10.1177/0969141314558785</u>
- 172. Broberg G, Jonasson JM, Ellis J, et al. Increasing participation in cervical cancer screening: telephone contact with long-term non-attendees in Sweden. Results from RACOMIP, a randomized controlled trial. International journal of cancer Journal international du cancer. 2013;133(1):164-71. PMID: 23233356. <u>http://dx.doi.org/10.1002/ijc.27985</u>
- 173. Darlin L, Borgfeldt C, Forslund O, et al. Comparison of use of vaginal HPV self-sampling and offering flexible appointments as strategies to reach long-term non-attending women

in organized cervical screening. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology [serial on the Internet]. 2013 [cited Search 1 CENTRAL 20150806; 58(1): Available from:

http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/776/CN-00918776/frame.html http://ac.els-cdn.com/S1386653213002618/1-s2.0-S1386653213002618-

- $\frac{\text{main.pdf?_tid=d6a18a10-a8d0-11e5-9af7-}{00000aab0f02&acdnat=1450805241_1369673b4c2d76ca0eccd7c946ba5da0}.$
- 174. Sancho-Garnier H, Tamalet C, Halfon P, et al. HPV self-sampling or the Pap-smear: a randomized study among cervical screening nonattenders from lower socioeconomic groups in France. International journal of cancer Journal international du cancer [serial on the Internet]. 2013 [cited Search 1 CENTRAL 20150806; 133(11): Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/669/CN-00963669/frame.html
- <u>http://onlinelibrary.wiley.com/store/10.1002/ijc.28283/asset/ijc28283.pdf?v=1&t=iihnxwbr&s=9</u> cc8923bd455830b95f8eedfe11a6322e49b1647.
- 175. Sultana F, English DR, Simpson JA, et al. Home-based HPV self-sampling improves participation by never-screened and under-screened women: Results from a large randomized trial (iPap) in Australia. Int J Cancer. 2016;139(2):281-90. PMID: 26850941. http://dx.doi.org/10.1002/ijc.30031
- 176. Sultana F, English DR, Simpson JA, et al., editors. Randomized controlled trial of homebased HPV self-sampling for improving participation in cervical screening by never- and underscreened women in Australia. 15th Biennial Meeting of the International Gynecologic Cancer Society; 2014; Melbourne, VIC Australia. PMID: None.
- 177. Enerly E, Bonde J, Schee K, et al. Self-Sampling for Human Papillomavirus Testing among Non-Attenders Increases Attendance to the Norwegian Cervical Cancer Screening Programme. PLoS ONE [Electronic Resource]. 2016;11(4):e0151978. PMID: 27073929. http://dx.doi.org/10.1371/journal.pone.0151978
- 178. Carrasquillo O, Kobetz- Kerman EN, Alonzo Y, editors. A randomized trial of selfsampling for human papilloma virus among minority immigrant women in need of cervical cancer screening: Findings from the South Florida center for reducing cancer disparities. Journal of general internal medicine; 2015 2015 Apr 25; Toronto, ON Canada. PMID: None.
- Castle PE, Fetterman B, Poitras N, et al. Variable risk of cervical precancer and cancer after a human papillomavirus-positive test. Obstet Gynecol. 2011;117(3):650-6. PMID: 21343769. <u>http://dx.doi.org/10.1097/AOG.0b013e318209da59</u>
- Gage JC, Katki HA, Schiffman M, et al. Age-stratified 5-year risks of cervical precancer among women with enrollment and newly detected HPV infection. Int J Cancer. 2015;136(7):1665-71. PMID: 25136967. <u>http://dx.doi.org/10.1002/ijc.29143</u>
- 181. Katki HA, Schiffman M, Castle PE, et al. Benchmarking CIN 3+ risk as the basis for incorporating HPV and Pap cotesting into cervical screening and management guidelines. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S28-35. PMID: 23519302. <u>http://dx.doi.org/10.1097/LGT.0b013e318285423c</u>
- 182. Jeronimo J, Castle PE, Temin S, et al. Secondary Prevention of Cervical Cancer: American Society of Clinical Oncology Resource-Stratified Clinical Practice Guideline Summary. J Oncol Pract. 2017;13(2):129-33. 10.1200/JOP.2016.017889

- 183. Sawaya GF, Kulasingam S, Denberg T, et al. Cervical cancer screening in average-risk women: best practice advice from the clinical guidelines committee of the American College of Physicians. Ann Intern Med. 2015. PMID: 25928075. 10.7326/M14-2426
- 184. Partridge EE, Abu-Rustum N, Giuliano A, et al. Cervical cancer screening. J Natl Comp Canc Netw. 2014;12(3):333-41; quiz 41. PMID: 24616539.
- 185. Partridge EE, Abu-Rustum NR, Campos SM, et al. Cervical cancer screening. J Natl Comp Canc Netw. 2010;8(12):1358-86. PMID: 21147902.
- 186. Canadian Task Force on Preventive Health C, Dickinson J, Tsakonas E, et al. Recommendations on screening for cervical cancer. CMAJ. 2013;185(1):35-45. PMID: 23297138. <u>http://dx.doi.org/10.1503/cmaj.121505</u>
- 187. Wilkinson J, Bass C, Diem S, et al. Preventive services for adults. Bloomington, MI: Institute for Clinical Systems Improvement; 2013.
- 188. WHO Guidelines for Screening and Treatment of Precancerous Lesions for Cervical Cancer Prevention. Geneva: World Health Organization 2013.; 2013.
- 189. American Academy of Family Physicians. Clinical Preventive Service Recommendation: Cervical Cancer. <u>http://www.aafp.org/patient-care/clinical-recommendations/all/cervical-cancer.html</u>. Accessed: June 27, 2017.
- 190. Committee on Practice Bulletins-Gynecology. ACOG Practice Bulletin Number 131: Screening for cervical cancer. Obstet Gynecol. 2012;120(5):1222-38. PMID: 23090560. http://dx.doi.org/10.1097/AOG.0b013e318277c92a
- 191. Aoki D. CervIcal Cancer Screening Trial by Randomization of HPV Testing Intervention for Upcoming Screening (CITRUS Study). <u>https://clinicaltrials.gov/ct2/show/NCT01895517?term=NCT01895517&rank=1</u>. Accessed: June 27, 2017.
- 192. Cantfell K, Darlington-Brown JB. Compass Randomized Controlled Trial of Primary HPV Testing for Cervical Screening in Australia. <u>https://clinicaltrials.gov/ct2/show/NCT02328872?term=NCT02328872&rank=1</u>. Accessed: June 27, 2017.
- 193. Murphy JK. Pap Smear Research Study. <u>https://clinicaltrials.gov/ct2/show/NCT00743626?term=NCT00743626&rank=1</u>. Accessed: June 27, 2017.
- 194. Ngan HYS. HPT-cytology Testing Versus Cytology Testing for the Detection of High Grade CIN (COCY). <u>https://clinicaltrials.gov/ct2/results?term=NCT01058460&Search=Search</u>. Accessed: June 27, 2017.
- 195. Haguenoer K, Giraudeau B, Gaudy-Graffin C, et al. Accuracy of dry vaginal selfsampling for detecting high-risk human papillomavirus infection in cervical cancer screening: a cross-sectional study. Gynecol Oncol. 2014;134(2):302-8. PMID: 24905772. 10.1016/j.ygyno.2014.05.026
- 196. Haguenoer K, Sengchanh S, Gaudy-Graffin C, et al. Vaginal self-sampling is a costeffective way to increase participation in a cervical cancer screening programme: a randomised trial. Br J Cancer. 2014;111(11):2187-96. PMID: 25247320. 10.1038/bjc.2014.510
- 197. Haguenoer K. Self-sampling and human papillomavirus (HPV)-testing for unscreened women in cervical cancer prevention (APACHE-2).
https://clinicaltrials.gov/ct2/show/NCT01588301?term=NCT01588301&rank=1. Accessed: June 27, 2017.

- 198. Haguenoer K, Foulon C. Vaginal self-sampling and human papillomavirus testing in unscreened women (APACHE-3). <u>https://clinicaltrials.gov/ct2/show/NCT02255084?term=NCT02255084&rank=1</u>. Accessed: June 27, 2017.
- 199. Kiviat N. Home-based or clinic-based human papillomavrius (HPV) screening. <u>https://clinicaltrials.gov/ct2/show/NCT01550783?term=NCT01550783&rank=1</u>. Accessed: June 27, 2017.
- 200. Lytwyn A. Randomized trial of vaginal self-sampling for human papillomavirus (HPV). <u>https://clinicaltrials.gov/ct2/show/NCT01095198?term=NCT01095198&rank=1</u>. Accessed: June 27, 2017.
- 201. Svanholm H. Cervix cytological screening-comparison of tampon self-test and routine smear. <u>https://clinicaltrials.gov/ct2/show/NCT00377845?term=NCT00377845&rank=1</u>. Accessed: June 27, 2017.
- 202. Szarewski A, Cadman L, Mesher D, et al. HPV self-sampling as an alternative strategy in non-attenders for cervical screening - a randomised controlled trial. Br J Cancer. 2011;104(6):915-20. PMID: 21343937. 10.1038/bjc.2011.48
- 203. Virtanen A, Nieminen P, Luostarinen T, et al. Self-sample HPV tests as an intervention for nonattendees of cervical cancer screening in Finland: a randomized trial. Cancer Epidemiol Biomarkers Prev. 2011;20(9):1960-9. PMID: 21752985. 10.1158/1055-9965.EPI-11-0307
- 204. Winer RL. Randomized trial of in-home cervical cancer screening in underscreened women. <u>https://clinicaltrials.gov/ct2/show/NCT02005510?term=NCT02005510&rank=1</u>. Accessed: June 27, 2017.
- 205. Maar M, Wakewich P, Wood B, et al. Strategies for Increasing Cervical Cancer Screening Amongst First Nations Communities in Northwest Ontario, Canada. Health Care Women Int. 2014:1-18. PMID: 25375661. 10.1080/07399332.2014.959168
- 206. Wood B, Burchell AN, Escott N, et al. Using community engagement to inform and implement a community-randomized controlled trial in the anishinaabek cervical cancer screening study. Front Oncol. 2014;4:27. PMID: 24600584. 10.3389/fonc.2014.00027
- 207. Zorzi M, Del Mistro A, Farruggio A, et al. Use of a high-risk human papillomavirus DNA test as the primary test in a cervical cancer screening programme: a population-based cohort study. BJOG. 2013;120(10):1260-7; discussion 7-8. PMID: 23786222. http://dx.doi.org/10.1111/1471-0528.12272
- 208. Ogilvie GS, Krajden M, van Niekerk DJ, et al. Primary cervical cancer screening with HPV testing compared with liquid-based cytology: results of round 1 of a randomised controlled trial -- the HPV FOCAL Study. Br J Cancer. 2012;107(12):1917-24. PMID: 23169286. <u>http://dx.doi.org/10.1038/bjc.2012.489</u>

Table 1. Cytology Test Result Categories, the 2001 Bethesda System

Acronym	Description
ASC-US	Atypical Squamous Cells of Undetermined Significance
ASC-H	Atypical Squamous Cells – cannot exclude HSIL
	Low-grade Squamous Intraepithelial Lesion
LOIL	Includes human papillomavirus infection/mild dysplasia/CIN 1
	High-grade Squamous Intraepithelial Lesion
	Includes moderate and severe dysplasia, CIN2/3, and carcinoma in situ
AGC	Atypical Glandular Cells (specify endocervical or not otherw ise specified [NOS])
	Atypical Glandular Cells, favor neoplastic (specify endocervical or not otherwise specified
	[NOS])
AIS	Endocervical Adenocarcinoma In Situ
AdenoCa	Adenocarcinoma
SCC	Squamous Cell Carcinoma

Table 2. SEER Percent of Incident Cases and Deaths From Cervical Cancer by Age Group, 2010-2014

Age Group (years)	Incident Cases	Deaths
<20	0.1	0.0
20-34	13.9	5.2
35-44	23.8	13.4
45-54	23.8	23.3
55-64	18.7	23.9
65-74	11.2	16.5
75-84	5.8	11.2
>84	2.7	6.4

Table 3. SEER Average Age-Adjusted Annual Cervical Cancer Incidence and Mortality Rates per100,000 Women by Race/Ethnicity, 2010-2014³²

Race/Ethnicity	Incidence*	Mortality*
All Races	7.4	2.3
White	7.4	2.1
Black	8.7	3.8
American Indian/Alaska Native	7.7	2.8
Asian/Pacific Islander	6.1	1.7
Hispanic	9.1	2.6

*Rates not adjusted for hysterectomy status.

	Veriekle		High-Risk* HPV
Characteristic	variable	ANY HPV, %	(With or Without Low-RISK HPV), %
All women ⁴⁰		39.9	20.4
Age, years ⁴¹	18-24	56.1	
	25-29	50.8	
	30-34	40.1	
	35-39	38.3	
	40-44	34.5	
	45-49	44.4	
	50-54	33.4	
	55-59	34.0	
Race/ethnicity ⁴⁰	White, non-Hispanic	36.5	18.7
	Black, non-Hispanic	63.2	28.2
	Asian, non-Hispanic	23.2	11.6
	Hispanic	38.5	21.6
Education ⁴¹	Less than high school	48.0	
	High school graduate	47.5	
	Some college	43.5	
	≥ college graduate	31.4	
Ratio of family	≥350%	33.3	
income to	130-349%	43.0	
poverty ⁴¹	<130%	55.3	
Total lifetime	0-1	14.8	
sexual partners ⁴¹	2-3	31.2	
	4-5	45.8	
	6-10	54.3	
	11+	60.7	
Total sexual	0	33.7	
partners within	1	37.3	
the past year41	2	74.8	
	≥3	85.2	

Table 4. Weighted Prevalence of HPV Among Females Ages 18 to 59 Years, National Health andNutrition Examination Survey, 2007-201041 and 2013-201440

Note: 2007-2010 survey: n=3,738; 2013-2014 survey: n=NR.

*High-risk HPV types: 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68.

Abbreviations: HPV = human papillomavirus; NR = not reported

Table 5. Study Design Characteristics of Included Trials, Ordered by Screening Approach

						Follow	HPV	# of
Author, Year						up	Screening	Rounds
Quality	Country	N Rand	Inclusion Criteria	Exclusion Criteria	Recruitment	(years)	Strategy	(Interval)
Ronco, 2010 ^{120,}	Italy	49,196	Women ages 25-60	Pregnant, had undergone a	Population-based	7	HPV alone	2 (3
129			years attending a	hysterectomy, been treated	screening	(max)		years)
			new routine cervical	for CIN in the last 5 years			Hybrid Capture	
NTCC Phase II			cancer screening		March 2002 to December		2 (Digene)	
			episode		2004, two recruitment			
Good					phases as part of nine			
					population-based cervical			
Ociliuio	Canada	25.000	Mamon agos 25 65	Listony of histologically	Cancer screening programs	4		1 (0 4
Ogilivie, 2017 ^{126, 130-132}	Canada	25,223	women ages 25-65	nistory of histologically	Population-based	4 (mov)	HPV W/LBC	1 (2-4 Voors)
2017 9, 55			Modical Sorvices	requiring treatment in the	screening	(max)	ulage	years)
			Plan in British	last 5 years history of	January 2008 to January		Hybrid Capture	2 (2 vear
			Columbia who	histologically proven	2011: women invited to		2 (Digene) and	"safety
Fair			receive care from a	invasive cervical cancer a	participate when they		ThinPrep	round" 4
			participating family	Pap smear within the	present for cervical cancer		PreservCvt	vears)*
			physician for routine	preceding 12 months, no	screening and deemed		(Hologic Inc)	<i>y</i> ea. e <i>y</i>
			cervical screening	cervix, pregnant at the time	eligible by family physician		(
			5	of enrollment, HIV positive	or preidentified as being			
				or on immunosuppressive	due for screening from the			
				treatments	centralized provincial			
					cytology database			
					(invitation requests woman			
					schedule a cervical cancer			
					screening appointment)			
Leinonen,	Finland	203,425	Women ages 25-65	NR	Population-based	5	HPV w/CC	1 (5
2012125			years invited for		screening	(max)	triage	years)
			cervical cancer					
FINNISH			screening between		vyomen invited for		Hyprid Capture	
Fair			from the Population		and 2007 from the			
1 011			Information System by		Population Information			
			hirth vear		System by personal letter			
			birtir year		from eight municipalities			
1 011			Information System by birth year		Population Information System by personal letter;			

Table 5. Study Design Characteristics of Included Trials, Ordered by Screening Approach

Author Year						Follow	HPV Screening	# of Rounds
Quality	Country	N Rand	Inclusion Criteria	Exclusion Criteria	Recruitment	(years)	Strategy	(Interval)
Canfell, 2017 ¹²⁸	Australia	4,995	Women ages 25-64 years attending	Previous total hysterectomy, presence of	Population-based screening	5 (max)	HPV w/LBC triage	1 (5 years)
Fair			screening or follow up of a prior unsatisfactory smear for routine screening	cervical cancer is excluded, currently undergoing treatment for cervical precancer or cancer, attending follow up of a previously-identified cervical abnormality, pregnancy	Women recruited from 47 primary health care practices across Victoria, Australia w hen presenting for routine screening in line with national screening program recommendations. This pilot recruitment is part 1 of a tw o-phase recruitment process.			1 (2.5 year screening with CC)
Ronco, 2010 ^{120,} ^{133, 134} NTCC Phase I Good	Italy	45,174	Women ages 25-60 years attending a new routine cervical cancer screening episode	Pregnant, had undergone a hysterectomy, been treated for CIN in the last 5 years	Population-based screening March 2002 to December 2004, tw o recruitment phases as part of nine population-based cervical cancer screening programs	7 (max)	HPV cotesting Hybrid Capture 2 (Digene) and ThinPrep PreservCyt (Hologic Inc)	2 (3 years)
Naucler, 2007 ^{119, 137} SWEDESCREEN Fair	Sw eden	12,527	Women ages 32-38 years w ho participated in the screening program from May 1997 through November 2000 in five cities	Women who are recorded in cytologic test registries as having had a recent Pap smear outside the screening program were not invited to participate in the screening program	Population-based screening Screening program recruited w omen ages 23- 50 years to undergo cervical cancer screening at 3-year intervals and w omen ages 51-60 years to be screened at 5-year intervals; w omen chosen from the population registry, w hich lists all w omen in Sw eden	4.1	HPV cotesting PCR/GP5+/6+ and CC	1 (3 years) [†]

Table 5. Study Design Characteristics of Included Trials, Ordered by Screening Approach

Author, Year						Follow up	HPV Screening	# of Rounds
Quality	Country	N Rand	Inclusion Criteria	Exclusion Criteria	Recruitment	(years)	Strategy	(Interval)
Kitchener,	United	25,078	Women ages 20-64	NR	Population-based	4.5	HPV cotesting	2 (3
2009 ^{117, 138-140}	Kingdom		years undergoing		screening	(max)		years)
			routine cervical cancer				Hybrid Capture	
ARTISTIC			screening in the NHS		Invitations to attend routine		2 (Digene) and	
			program in Greater		screening contained trial		ThinPrep	
Fair			Manchester		information leaflet; enrolled		T3000 (Hologic	
					betw een July 2001 and		Inc)	
					September 2003	-		
Rijkaart,	Netherlands	44,938	Women ages 30-60	Women who had a history of	Population-based	9	HPV cotesting	2 (5
2012 ^{121, 135, 136}			years invited every 5	CIN2+, had abnormal	screening	(max)		years)
			years to population-	cytology in the preceding 2			PCR/GP5+/6+	
POBASCAM			based screening	years, or whohadhada	Enrolled betw een January		and CC	
			program; eligible if	hysterectomy; women age 57	1999 and September 2002			
Good			they lived in a defined	years or older at baseline	as part of a nationwide			
			semiurbanized region	(not be routinely screened at	screening program; women			
			demarcated according	second round); if HPV	invited to screening every 5			
			to the District Health	sample taken at baseline	years starting at age 30			
			Authority SW of	w as lost	and ending at age 60.			
			Amsterdam, having a		Invited by GP or directly by			
			uterus in situ		District Health Authority (if			
					no GP)			

*Results are preliminary; publication of 2nd round results are pending

[†]Registry followup in an organized screening program

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; btwn = between; CIN = cervical intraepithelial neoplasia; GP = general practitioner; HIV = human immunodeficiency virus; NHS = National Health Service; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; POBASCAM = Population Based Screening Study Amsterdam Program; SW = southwest; w/ = with

Parameter	Round	NTCC Phase II ^{120, 129}	HPV FOCAL ^{[126, 130-132}	FINNISH ¹²⁵	Compass ¹²⁸
Quality		Good	Fair	Fair	Fair
Ν		49,196	25,223	203,425	4,995
Randomized					
Ages		25-60 years	25-65 years	25-65 years	25-64 years
Recruited					
# of Rounds		2 (3 years)	1 (2-4 years) [§]	1 (5 years)	1 (5 years)
(Interval)					
Screening	1	hrHPV alone vs.CC	hrHPV w/LBC triage vs. LBC	hrHPV w/CC triage vs. CC	HPV w/LBC triage vs. LBC
Approach (IG			w/hrHPV triage		
vs.CG)	2	CC vs. CC (both arms received	LBC w/hrHPV triage vs.LBC		
		same testing strategy)	w/hrHPV triage (both arms		
			received same testing strategy)		
Follow up	1	3.5 years (maximum)	2-4 years (maximum) [§]	5 years (maximum) registry	5 years (maximum)
				follow up	
	2	3.5 years (maximum)	2 years (maximum) [§]		
	С	7 years (maximum)	4 years (maximum)		
Test Positivity	1	IG (hrHPV+): 1,936/24,661 (7.9%)	IG (hrHPV+): 1,290/15,744	IG (hrHPV+): 4,971/62,106	IG (hrHPV+): 277/4000 (6.9%)
		CG (ASC-US+): 825/24,353 (3.4%)	(8.2%)	(8.0%)*	CG (ASC-US+): 67/995 (6.7%)
			CG (ASC-US+): 334/9,408	CG (ASC-US+): 4,506/65,747	
			(3.6%)	(6.9%)*	
	2	NR			
Colposcopy	1	IG: 1,936/24,661 (7.9%)	IG: 5.9% (95% Cl, 5.5 to 6.3) ∥	IG: 796/66,410 (1.2%)	IG: 154/4000 (3.8%)
Referrals		CG: 679/25,435 (2.8%)	CG: 3.1% (95% Cl, 2.8 to 3.5)	CG: 755/65,784 (1.1%)	CG: 27/995 (2.7%)
	2	NR			
False-Positive	1	IG: 1,799/24,428 (7.4%)	NR	IG: 4,462/61,597 (7.2%)	NR
Rate for		CG: 770/24,038 (3.2%)		CG: 4,239/65,480 (6.5%)	
CIN2+	2	NR			
Absolute	1	IG: 97/24,661 (0.4%)*	IG: 67/9,540 (0.7%)	IG: 195/66,410 (0.3%)	IG: 30/4,000 (0.8%)
Detection for		CG: 33/24,535 (0.1%)*	CG: 41/9,408 (0.4%)	CG: 118/65,784 (0.2%)	CG: 1/995 (0.1%)
CIN3+	2	IG: 5/23,978 (0.02%)*			
		CG: 23/24,372 (0.09%)*			
	С	IG: 102/24,661 (0.4%)*			
		CG: 56/24,535 (0.2%)*			
Relative Risk	1	2.92 (95% Cl, 1.97 to 4.34) [†]	1.61 (95% Cl, 1.09 to 2.37)	1.64 (95% Cl, 1.30 to 2.06) [↑]	7.46 (95% Cl, 1.02 to 54.66)
for CIN3+	2	0.22 (95% Cl, 0.08 to 0.58) [†]			
	С	1.81 (95% Cl, 1.31 to 2.51) [†]			
Absolute	1	IG: 218/24,661 (0.8%)*	IG: 147/9,540 (1.5%)	IG: 540/66,410 (0.8%)	IG: 44/4,000 (1.1%)
Detection for		CG: 73/24,535 (0.3%)*	CG: 90/9,408 (1.0%)	CG: 319/65,784 (0.5%)	CG:1/995 (0.1%)
CIN2+	2	IG: 12/23,978 (0.05%)*			
		CG: 38/24,372 (0.2%)*			
	С	IG: 230/24,661 (0.9%)*			
		CG: 111/24,535 (0.5%)*			

Table 6. Results for Trials of hrHPV Primary Screening Strategies, All Participants

Parameter	Round	NTCC Phase II ^{120, 129}	HPV FOCAL ^{[126, 130-132}	FINNISH ¹²⁵	Compass ¹²⁸
Relative	1	2.97 (95% Cl, 2.28 to 3.87) [†]	1.63 (95% Cl, NR) [†]	1.68 (95% Cl, 1.46 to 1.92) [†]	10.94 (95% Cl, 1.51 to 79.34)
Risk for	2	0.32 (95% Cl, 0.17 to 0.61) [†]			
CIN2+	С	2.06 (95% Cl, 1.64 to 2.58) [†]			
Invasive	1	NR	NR	IG: 17/66,410 (0.03%)	IG: 0/4,000 (0%)
Cervical				CG: 9/65,784 (0.01%)	CG: 0/995 (0%)
Cancer	2	NR			
	С	NR			

*From author inquiry

[†]Calculated (unadjusted)

[§]HPV FOCAL had two randomized hrHPV arms: safety arm (screening every 2 years) and intervention arm (screening every 4 years); control arm screened every 2 years Percent of women; converted from rate per 1,000 participants

[¶]Results are preliminary; publication of 2nd round results are pending

Abbreviations: C = cumulative; CC = conventional cytology; CIN = cervical intraepithelial neoplasia; CG = control group; hrHPV = high risk human papillomavirus; IG = intervention group; LBC = liquid-based cytology; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening

Parameter	Round	NTCC Phase II ^{120, 129}	HPV FOCAL ^{¶126, 130-132}	FINNISH ¹²⁵	Compass ¹²⁸
Quality		Good	Fair	Fair	Fair
N Randomized		35,471	20,394	109,932	3,917
Ages Recruited		35-60 years	35-65 years	35-65 years	34-64 years
# of Rounds		2 (3 years)	1 (2-4 years)§	1 (5 years)	1 (5 years)
(Interval)					
Screening	1	hrHPV alone vs.CC	hrHPV w/LBC triage vs. LBC	hrHPV w/CC triage vs. CC	HPV w/LBC triage vs. LBC**
Approach (IG vs.			w/hrHPV triage		
CG)	2	CC vs. CC (both arms received	LBC w/hrHPV triage vs.LBC		
		same testing strategy)	w/hrHPV triage (both arms		
			received same testing strategy)		
Follow up	1	3.5 years (maximum)	2-4 years (maximum)§	5 years (maximum) registry	5 years (maximum)
				follow up	
	2	3.5 years (maximum)	2 years (maximum)§		
	С	7 years (maximum)	4 years (maximum)		
Test Positivity	1	IG (hrHPV+): 1,029/17,724 (5.8%)	NR	NR	NR
		CG (ASC-US+): 555/17,747 (3.1%)			
	2	NR			
Colposcopy	1	IG: 1,029/17,724 (5.8%)	IG: 3.8 (95% Cl, 3.5 to 4.2)∥	IG: 506/55,219 (0.9%)	IG: 80/3133 (2.6%)
Referrals	-	CG: 435/17,747 (2.5%)	CG: 2.1 (95% Cl, 1.8 to 2.4)	CG: 544/54,713 (1.0%)	CG: 17/784 (2.2%)
	2	NR			
False-Positive	1	IG: 960/17,655 (5.4%)	NR	NR	NR
Rate for CIN2+	-	CG: 519/17,711 (2.9%)			
	2	NR			
Absolute	1	IG: 52/17,724 (0.3%)*	IG: 47/8,714 (0.5%)	IG: 132/55,219 (0.2%)	IG: 12/3133 (0.4%)
Detection for		CG: 22/17,747 (0.1%)*	CG: 27/8,580 (0.3%)	CG: 84/54,713 (0.2%)	CG: 0/784 (0%)
CIN3+	2	IG: 3/17,401 (0.02%)*			
	-	CG: 13/17,658 (0.07%)*			
	С	IG: 55/17,724 (0.3%)*			
		CG: 35/17,747 (0.2%)*			
Relative Risk for	1	2.37 (95% Cl, 1.44 to 3.89)*	1.71 (95% Cl, 1.07 to 2.75)†	1.56 (95% Cl, 1.18 to	6.26 (95% Cl, 0.37 to 105.6)
CIN3+	0			2.04)†	
	2	0.23 (95% Cl, 0.07 to 0.82)*			
	C	1.57 (95% Cl, 1.03 to 2.40)*			
Absolute	1	IG: $102/17,724$ (0.6%)*	IG: 102/8,714 (1.2%)	IG: $322/55,219$ (0.6%)	IG: 20/3133 (0.6%)
Detection for	-	$CG: 48/17,747 (0.3\%)^{\circ}$	CG: 64/8,580 (0.8%)	CG: 200/54,713 (0.4%)	CG: 0/784 (0%)
CIN2+	2	IG: 5/17,401 (0.03%)*			
	-	CG: 20/17,658 (0.1%)*			
	С	IG: $107/17,724$ (0.6%)*			
		CG: 68/17,747 (0.4%)^			
Relative Risk for	1	2.13 (95% Cl, 1.51 to 3.00)*	1.57 (95% Cl, 1.15 to 2.14)†	1.59 (95% Cl, 1.34 to 1.90)†	10.27 (95% Cl, 0.62 to 169.61)
CIN2+	2	0.25 (95% Cl, 0.10 to 0.68)*			
	С	1.58 (95% Cl, 1.16 to 2.13)*			

Table 7. Results for Trials of hrHPV Primary Screening Strategies, Women Age ≥35 Years

Parameter	Round	NTCC Phase II ^{120, 129}	HPV FOCAL ^{[126, 130-132}	FINNISH ¹²⁵	Compass ¹²⁸
Invasive	1	NR	NR	IG: 16/55,219 (0.03%)	NR
Cervical Cancer				CG: 7/54,713 (0.01%)	
	2	NR			
	С	NR			

*From author inquiry

*Calculated (unadjusted)

\$HPV FOCAL had two randomized hrHPV arms: safety arm (screening every 2 years) and intervention arm (screening every 4 years); control arm screened every 2 years. Results above are from the safety and control arms.

Percent of women; converted from rate per 1,000 participants

Results are preliminary; publication of 2nd round results are pending

** Triage could be done via LBC or dual-stained cytology

Abbreviations: CC = conventional cytology; CIN = cervical intraepithelial neoplasia; CG = control group; hrHPV = high risk human papillomavirus; IG = intervention group; LBC = liquid-based cytology; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening

Parameter	Round	NTCC Phase II ^{120, 129}	HPV FOCAL ^{¶126, 130-132}	FINNISH ¹²⁵	Compass ¹²⁸
Quality		Good	Fair	Fair	Fair
N Randomized		13,725	4,849	22,262	1,078
			25-29 years: 2,188		
			30-34 years: 2,661		
Ages Recruited		25-34 years	25-34 years	25-34 years	25-33 years
# of Rounds		2 (3 years)	1 (2-4 years)§	1 (5 years)	1 (5 years)
(Interval)					
Screening	1	hrHPV alone vs.CC	hrHPV w/LBC triage vs.LBC	hrHPV w/CC triage vs. CC	HPV w/LBC triage vs.
Approach (IG vs.			w/hrHPV triage		LBC**
CG)	2	CC vs. CC (both arms received	LBC w/hrHPV triage vs.LBC		
		same testing strategy)	w/hrHPV triage (both arms		
			received same testing strategy)		
Follow up	1	3.5 years (maximum)	2-4 years (maximum)§	5 years (maximum) registry follow up	5 years (maximum)
	2	3.5 years (maximum)	2 years (maximum)§		
	С	7 years (maximum)	4 years (maximum)		
Test Positivity	1	IG (hrHPV+): 907/6,937 (13.1%)	NR	NR	NR
,		CG (ASC-US+): 270/6,788 (4.0%)			
	2	NR			
Colposcopy	1	IG: 970/6,937 (13.1%)	25-29 years:	IG: 290/11,191 (2.3%)	IG: 76/867 (8.5%)
Referrals		CG: 244/6,788 (3.6%)	IG: 19.9 (95% Cl, 17.9 to 22.1) ∥	CG: 211/11,071 (1.9%)	CG: 10/211 (4.7%)
			CG: 8.1 (95% Cl, 6.4 to 10.2)		
			30-34 years:		
			IG: 10.8 (95% Cl, 9.3 to 12.4)		
			CG: 6.2 (95% Cl, 4.9 to 7.9)		
	2	NR			
False-Positive	1	IG: 839/6,869 (12.2%)	NR	NR	NR
Rate for CIN2+	-	CG: 251/6,769 (3.7%)			
	2	NR			
Absolute	1	IG: 45/6,937 (0.6%)*	IG: 20/826 (2.4%)	IG: 63/11,191 (0.6%)	IG: 18/867 (2.1%)
Detection for	-	CG: 11/6,788 (0.2%)*	CG: 14/828 (1.7%)	CG: 34/11,071 (0.3%)	CG: 1/211 (0.5%)
CIN3+	2	IG: 2/6,577 (0.03%)*			
		CG: 10/6,714 (0.15%)*			
	С	IG: 47/6,937 (0.7%)*			
		CG: 21/6,788 (0.3%)*			
Relative Risk for	1	4.00 (95% Cl, 2.07 to 7.73)*	1.43 (95% Cl, 0.73 to 2.82)†	1.83 (95% Cl, 1.21 to 2.78)†	4.38 (95% Cl, 0.59 to 32.6)
CIN3+	2	0.20 (95% Cl, 0.05 to 0.93)*			
	C	2.19 (95% Cl, 1.31 to 3.66)*			
Absolute	1	IG: 116/6,937 (1.7%)*	IG: 45/826 (5.5%)	IG: 218/11,191 (1.9%)	IG: 24/867 (2.8%)
Detection for		CG: 25/6,788 (0.4%)*	CG: 26/828 (3.1%)	CG: 119/11,071 (1.1%)	CG: 1/211 (0.5%)
CIN2+	2	IG: 7/6,577 (0.1%)*			
		CG: 18/6,714 (0.3%)*			

Table 8. Results for Trials of hrHPV Primary Screening Strategies, Women Aged <35 Years

Parameter	Round	NTCC Phase II ^{120, 129}	HPV FOCAL ^{[126, 130-132}	FINNISH ¹²⁵	Compass ¹²⁸
	С	IG: 123/6,937 (1.8%)*			
		CG: 43/6,788 (0.6%)*			
Relative Risk for	1	4.54 (95% Cl, 2.95 to 6.99)*	1.73 (95% Cl, 1.08 to 2.78)†	1.81 (95% Cl, 1.45 to 2.26)†	5.84 (95% Cl, 0.79 to 42.93)
CIN2+	2	0.40 (95% Cl, 0.17 to 0.95)*			
	С	2.80 (95% Cl, 1.98 to 3.95)*			
Invasive Cervical	1	NR	NR	IG: 1/11,191 (0.01%)	NR
Cancer				CG: 2/11,071 (0.02%)	
	2	NR			
	С	NR			

*From author inquiry

[†]Calculated (unadjusted)

Percent of women; converted from rate per 1,000 participants

\$HPV FOCAL had two randomized hrHPV arms: safety arm (screening every 2 years) and intervention arm (screening every 4 years); control arm screened every 2 years. Results shown above are safety arm and control arm.

Results are preliminary; publication of 2nd round results are pending

** Triage could be done via LBC or dual-stained cytology

Abbreviations: CC = conventional cytology; CIN = cervical intraepithelial neoplasia; CG = control group; hrHPV = high risk human papillomavirus; IG = intervention group; LBC = liquid-based cytology; NR = not reported; NSD = no significant difference; NTCC = New Technologies for Cervical Cancer Screening

Table 9. Study Design Characteristics of Included Observational Studies

Author, Year & Quality	Design	Country	N	Inclusion Criteria	Exclusion Criteria	Recruitment
Katki, 2011 ^{123, 144,} 145, 181-183	Prospective Single Group Cohort	United States	331,818	Women age ≥30 years	NR	Primary Care Women enrolled in KP between 2003 and 2005
KPNC Fair						
lbanez, 2014 ¹²² Fair	Prospective Single Group Cohort	Spain	1832	Women age >39 years who had no evidence of cervical cytology in the public primary health registries in the previous 5	NR	Population-based screening Women identified in eight public primary health areas of Catalonia during 2007 and 2008
Luvton 2014 ^{124, 142}	Prospective	Germany	10 705	years Women age ≥30 years who	History of	Population-based screening
WOLPHSCREEN Fair	Comparative Cohort	Germany	19,795	were voluntarily attending routine cervical cancer screening at one of the gynecological partners in private practice	hysterectomy	Betw een February 2006 and January 2011, female members of the Deutsche BKK age ≥30 years who were voluntarily attending routine cervical cancer screening at one of the gynecological partners in private practice invited to participate
McCaffery, 2004 ¹¹⁸ Fair	Cross-sectional study	United Kingdom	428	Women attended a NHS well- woman clinic for routine cervical cancer screening	NR	Primary care Women attended a NHS well-woman clinic for routine cervical cancer screening
Zorzi, 2017 ¹²⁷ Fair	Prospective Single Group Cohort	ltaly	Round 1: 48,736 Round 2: 21,827	Women ages 25-64 years living in two areas of the Veneto region	NR	Population-based screening Women living in the two areas of interest were invited to screening from April 2009 to April 2011

Abbreviations: btwn = between; CIN = cervical intraepithelial neoplasia; hrHPV = high risk human papillomavirus; KP = Kaiser Permanente; NHS = National Health Service; NR = not reported

Table 10. Results for Italian Population-Based Cohort of Primary hrHPV Testing Over Two Rounds at a 3-year interval,¹²⁷ All Participants and Results by Age

Parameter	Round	All Participants	Women Aged 25-29	Women Aged 30-64
N Analyzed		48,736	5,103	43,647
Ages Recruited		25-64		
# of Rounds (Interval)		2 (3 years)		
Screening Approach*		hrHPV Primary (HC2)		
Test Positivity	1	3,133/48,736 (6.4%)	754/5,103 (14.8%)	2379/43,647 (5.5%)
	2	777/21,827 (3.5%)	140/1,723 (8.1%)	637/20,104 (3.1%)
	С	3,910/48,736 (8.0%)	894/5,103 (17.5%)	3,016/43,647 (6.9%)
Colposcopy Referrals	1	2,136/48,736 (4.4%)		
	2	472/21,827 (2.2%)		
	С	2,608/48,736 (5.4%)		
Absolute Detection for CIN3+	1	95/48,736 (0.2%)		
	2	6/21,827 (0.03%)		
	С	101/48,736 (0.2%)		
Relative Risk for CIN3+ (Round	1			
2 vs. Round 1)	2	0.14 (95% Cl, 0.06 to 0.32)		
Absolute Detection for CIN2+	1	215/48,736 (0.4%)	53/5,103 (1.0%)	162/43,647 (0.4%)
	2	23/21,827 (0.1%)	7/1,723 (0.4%)	16/20,104 (0.1%)
	С	238/48,736 (0.5%)	60/5,103 (1.2%)	178/43,647 (0.4%)
Relative Risk for CIN2+ (Round	1			
2 vs. Round 1)	2	0.24 (95% Cl. 0.16 to 0.37)	0.39 (95% Cl. 0.18 to 0.86)	0.21 (95% Cl. 0.13 to 0.36)

*Women with +hrHPV had conventional cytology triage: ASC-US+ were referred to colposcopy; normal cytology were rescreened at 1 year (those who remained HPV+ were referred to colposcopy); HPV- were rescreened at 3 years

Abbreviations: C = cumulative; CIN = cervical intraepithelial neoplasia; hrHPV = high risk human papillomavirus; Vs = versus

Table 11. Results for Trials of hrHPV Cotesting, All Participants

Parameter	Round	NTCC Phase I ^{120, 133, 134}	POBASCAM ^{121, 135, 136}	SWEDESCREEN ^{119, 137}	ARTISTIC ^{117, 138-140}
Quality		Good	Good	Fair	Fair
N		45,174	44,938	12,527	25,078
Randomized					
Ages		25-60 years	29-61 years	32-38 years	20-64 years
Recruited					
Number of		2 (3 years)	2 (5 years)	1 (3 years)	2 (3 years)
Rounds				Registry follow up in organized	
(Interval)				screening program	
Screening	1	hrHPV cotesting vs. CC	hrHPV cotesting vs. CC	hrHPV cotesting vs. CC	hrHPV cotesting vs. LBC
Approach	2	CC vs. CC (both arms received	hrHPV cotesting vs. hrHPV	CC vs. CC (both arms received	hrHPV cotesting vs. LBC
(IG vs.CG)		same testing strategy)	cotesting (both arms received	same testing strategy in organized	
			same testing strategy)	screening program)	
Follow up	1	3.5 years (maximum)	4 years (maximum)	3 years (maximum)	2.2 years (maximum)
	2	3.5 years (maximum)	5 years (maximum)	NR	2.3 years (maximum)
	С	7 years (maximum)	9 years (maximum)	4.1 years (average)	4.5 years (maximum)
Test	1	IG (hrHPV+ or ASC-US+):	IG (hrHPV+ or ASC-US+):	IG (hrHPV+): 433/6,257 (6.9%)	IG (hrHPV+ or ASC-US+):
Positivity		2,830/22,708 (12.5%)	1,406/19,999 (7.0%)	IG (ASC-US+): 146/6,257 (6.9%)	4,019/18,386 (21.9%)
		CG (ASC-US+): 855/22,466	CG (ASC-US+): 706/20,106	CG (ASC-US+): 150/6,270 (2.4%)	CG (ASC-US+): 786/6,124
		(3.8%)	(3.5%)		(12.8%)
	2	NR	IG (hrHPV+ or ASC-US+):	NR	IG (hrHPV+ or ASC-US+):
			742/19,579 (3.8%)		1,258/11,862 (10.6%)‡
			CG (hrHPV+ or ASC-US+):		CG (ASC-US+): 210/3,928
			774/19,731 (3.9%)		(5.3%)‡
Colposcopy	1	IG: 2,470/22,708 (10.9%)§	NR	NR	IG: 1,247/18,386 (6.8%)
Referrals	-	CG: 738/22,466 (3.3%)			CG: 320/6,124 (5.2%)
	2	NR	NR	NR	IG: 284/10,716 (2.7%)‡
					CG: 74/3,514 (2.1%)‡
False-	1	IG: 2,702/22,042 (12.3%)	IG: 1,149/19,742 (5.8%)	IG: NR	IG: 3,566/17,933 (19.9%)
Positive Rate	-	CG: 771/21,972 (3.5%)	CG: 513/19,913 (2.6%)	CG: 72/6,192 (1.2%)	CG: 653/5,991 (10.9%)
tor CIN2+	2	NR	IG: 610/9,572 (6.4%)	NR	IG: 1,178/10,512 (11.2%)
			CG: 612/9,450 (6.5%)		CG: 1/6/3,832 (4.6%)‡
Absolute	1	IG: 75/22,708 (0.3%)*	IG: 171/19,999 (0.9%)	IG: 72/6,257 (1.2%)	IG: 233/18,386 (1.3%)
Detection for	-	CG: 58/22,466 (0.3%)^	CG: 150/20,106 (0.7%)	CG: 55/6,270 (0.9%)	CG: 81/6,124 (1.3%)
CIN3+	2	IG: 13/22,093 (0.06%)*	IG: 88/19,579 (0.4%)	IG: 16/6,257 (0.3%)	IG: 36/11,862 (0.3%)‡
	-	CG: 19/22,330 (0.08%)*	CG: 122/19,731 (0.6%)	CG: 30/6,270 (0.5%)	CG: 17/3,928 (0.4%)‡
	С	IG: 88/22,708 (0.4%)*	IG: 259/19,999 (1.3%)	IG: 88/6,257 (1.4%)	IG: 269/18,386 (1.5%)‡
		CG: ///22,466 (0.3%)*	CG: 2/2/20,106 (1.3%)	CG: 85/6,270 (1.4%)	CG: 98/6,124 (1.6%)‡
Relative Risk	1	1.28 (95% Cl, 0.91 to 1.80)†	1.15 (95% Cl, 0.92 to 1.43)	1.31 (95% Cl, 0.92 to 1.87)	0.96 (95% Cl, 0.74 to 1.23)†
for CIN3+	2	0.96 (95% Cl, 0.34 to 1.40)†	0.73 (95% Cl, 0.55 to 0.96)	0.53 (95% Cl, 0.29 to 0.98)	0.76 (95% Cl, 0.43 to 1.34)†
	С	1.13 (95% Cl, 0.83 to 1.53)†	0.96 (95% Cl, 0.81 to 1.13)	1.04 (95% Cl, 0.77 to 1.39)†	0.91 (95% Cl, 0.73 to 1.15)†

Table 11. Results for Trials of hrHPV Cotesting, All Participants

Parameter	Round	NTCC Phase I ^{120, 133, 134}	POBASCAM ^{121, 135, 136}	SWEDESCREEN ^{119, 137}	ARTISTIC ^{117, 138-140}
Absolute	1	IG: 187/22,708 (0.8%)*	IG: 267/19,999 (1.3%)	IG: 144/6,257 (1.8%)	IG: 453/18,386 (2.5%)
Detection for		CG: 99/22,466 (0.4%)*	CG: 215/20,106 (1.1%)	CG: 76/6,270 (1.2%)	CG: 134/6,124 (2.2%)
CIN2+	2	IG: 22/22,093 (0.1%)*	IG: 160/19,579 (0.8%)	IG: 25/6,257 (0.4%)	IG: 88/11,862 (0.7%)‡
		CG: 34/22,330 (0.1%)*	CG: 184/19,731 (0.9%)	CG: 43/6,270 (0.7%)	CG: 35/3,928 (0.9%)‡
	С	IG: 209/22,708 (0.9%)*	IG: 427/19,999 (2.1%)	IG: 139/6,257 (2.2%)	IG: 541/18,386 (2.9%)‡
		CG: 133/22,466 (0.6%)*	CG: 399/20,106 (2.0%)	CG: 119/6,270 (1.9%)	CG: 169/6,124 (2.8%)‡
Relative Risk	1	1.87 (95% Cl, 1.46 to 2.38)†	1.25 (95% Cl, 1.05 to 1.50)	1.51 (95% Cl, 1.13 to 2.02)	1.34 (95% Cl, 1.11 to 1.62)†
for CIN2+	2	0.65 (95% Cl, 0.38 to 1.12)†	0.88 (95% Cl, 0.71 to 1.08)	0.58 (95% Cl, 0.36 to 0.96)	0.83 (95% Cl, 0.56 to 1.23)†
	С	1.55 (95% Cl, 1.25 to 1.93)†	1.08 (95% Cl, 0.94 to 1.24)	1.17 (95% Cl, 0.92 to 1.49)†	1.07 (95% Cl, 0.90 to 1.26)†
Invasive	1	NR	IG: 12/19,999 (0.06%)	NR	IG: 5/18,386 (0.03%)
Cervical			CG: 6/20,109 (0.03%)		CG: 4/6,124 (0.07%)
Cancer	2	NR	IG: 4/19,579 (0.02%)	NR	IG: 3/10,716 (0.03%)‡
			CG: 14/19,731 (0.07%)		CG: 0/3,514 (0%)‡
	С	NR	IG: 16/19,999 (0.08%)	IG: 1/6,257 (0.02%)	IG: 8/18,386 (0.04%)‡
			CG: 20/20,106 (0.10%)	CG: 5/6,270 (0.08%)	CG: 4/6,124 (0.07%)‡

*From author inquiry

[†]Calculated (unadjusted)

[‡]Preliminary or incomplete results

§Estimated data from figure

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; ASC-US = Atypical squamous cells of undetermined significance; <math>CC = conventional cytology; CIN = cervical intraepithelial neoplasia; <math>CG = control group; hrHPV = high risk human papillomavirus; IG = intervention group; LBC = liquid-based cytology; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; POBASCAM = Population Based Screening Study Amsterdam Program

Parameter	Round	NTCC Phase I ^{120, 133, 134}	POBASCAM ^{121, 135, 136}	SWEDESCREEN ^{119, 137}	ARTISTIC ^{117, 138-140}
Quality		Good	Good	Fair	Fair
N		33,364	33,838	12,527	19,344
Randomized					
Ages		35-60 years	34-56 years	32-38 years	30-64 years
Recruited					
Number of		2 (3 years)	2 (5 years)	1 (3 years)	2 (3 years)
Rounds				Registry follow up in organized	
(Interval)				screening program	
Screening	1	hrHPV cotesting vs. CC	hrHPV cotesting vs. CC	hrHPV cotesting vs. CC	hrHPV cotesting vs. LBC
Approach	2	CC vs. CC (both arms received	hrHPV cotesting vs. hrHPV	CC vs. CC (both arms received	hrHPV cotesting vs. LBC
(IG vs.CG)		same testing strategy)	cotesting (both arms received	same testing strategy in	
			same testing strategy)	organized screening program)	
Follow up	1	3.5 years (maximum)	4 years (maximum)	3 years (maximum)	2.2 years (maximum)
	2	3.5 years (maximum)	5 years (maximum)	NR	2.3 years (maximum)
	С	7 years (maximum)	9 years (maximum)	4.1 years (average)	4.5 years (maximum)
Test Positivity	1	IG (hrHPV+ or ASC-US+):	IG (hrHPV+): 684/16,860	IG (hrHPV+ or ASC-US+): NR	IG (hrHPV+ or ASC-US+):
		1,783/16,706 (10.7%)	(4%)	CG (ASC-US+): 150/6,270	2,465/14,507 (17.0%)
		CG (ASC-US+): 594/16,658	CG: NR	(2.4%)	CG (ASC-US+): 508/4,837
		(3.6%)			(10.5%)
	2	NR	NR	NR	NR
Colposcopy	1	IG: 1,773/16,706 (10.6%)§	NR	NR	NR
Referrals	-	CG: 501/16,658 (3.0%)			
	2	NR	NR	NR	NR
False-Positive	1	IG: 1,704/16,335 (10.4%)	NR	IG: NR	NR
Rate for		CG: 543/16,607 (3.3%)		CG: 72/6,192 (1.2%)	
CIN2+	2	NR	NR	NR	NR
Absolute	1	IG: 52/16,706 (0.3%)*	IG: 102/16,860 (0.6%)*	IG: 72/6,257 (1.2%)	IG: 116/14,507 (0.8%)
Detection for	-	CG: 33/16,658 (0.2%)*	CG: 90/16,978 (0.5%)*	CG: 55/6,270 (0.9%)	CG: 38/4,837 (0.8%)
CIN3+	2	IG: 5/16,332 (0.03%)*	IG: $55/16,545 (0.3\%)^*$	IG: 16/6,257 (0.3%)	NR
		CG: 11/16,561 (0.07%)^	CG: 77/16,699 (0.5%)^	CG: 30/6,270 (0.5%)	
	С	IG: 57/16,706 (0.3%)*	IG: 157/16,860 (0.9%)	IG: 88/6,257 (1.4%)	NR
Deletive Diele	4	$CG: 44/16,658 (0.3\%)^*$	CG: 167/16,978 (1.0%)	CG: 85/6,270 (85%)	
Relative RISK	1	1.57 (95% CI, 1.02 to 2.43)*	1.14 (95% CI, 0.86 to 1.51)T	1.31 (95% Cl, 0.92 to 1.87)	1.12 (95% CI, 0.71 to 1.47)†
tor CIN3+	2	0.46 (95% Cl, 0.16 to 1.33)*	0.72 (95% Cl, 0.51 to 1.02)†	0.53 (95% Cl, 0.29 to 0.98)	NR
	C	1.30 (95% Cl, 0.87 to 1.91)*	0.95 (95% CI, 0.76 to 1.18)	1.04 (95% Ci, 0.77 to 1.39)†	
Absolute	1	105: 109/16,706 (0.6%)*	IG: 166/16,860 (1.0%)*	IG: 144/6,257 (1.8%)	IG: 217/14,507 (1.5%)
Detection for		CG: 61/16,658 (0.4%)*	CG: 12//16,9/8 (0.7%)*	CG: /6/6,2/0 (1.2%)	06: 60/4,837 (1.2%)
CIN2+	2	IG: 11/16,332 (0.07%)*	IG: 108/16,545 (0.6%)*	IG: 25/6,257 (0.4%)	NR
			CG: 121/16,699 (0.7%)*		
	C	IG: 120/16,706 (0.7%)*	IG: 274/16,860 (1.6%)	IG: 139/6,257 (2.2%)	NK
		CG: 80/16,658 (0.5%)*	CG: 248/16,978 (1.5%)	CG: 119/6,270 (1.9%)	

Table 12. Results for Trials of hrHPV Cotesting, Women Age ≥30-35 Years

Parameter	Round	NTCC Phase I ^{120, 133, 134}	POBASCAM ^{121, 135, 136}	SWEDESCREEN ^{119, 137}	ARTISTIC ^{117, 138-140}
Relative Risk	1	1.78 (95% Cl, 1.30 to 2.44)*	1.32 (95% Cl, 1.05 to 1.66)†	1.51 (95% Cl, 1.13 to 2.02)	1.21 (95% Cl, 0.91 to 1.60)†
for CIN2+	2	0.59 (95% Cl, 0.28 to 1.24)*	0.90 (95% Cl, 0.70 to 1.17)†	0.58 (95% Cl, 0.36 to 0.96)	NR
	С	1.50 (95% Cl, 1.13 to 1.98)*	1.11 (95% Cl, 0.94 to 1.32)	1.17 (95% Cl, 0.92 to 1.49)†	NR
Invasive	1	NR	IG: 10/16,860 (0.06%)*	NR	IG: 5/14,507 (0.03%)
Cervical			CG: 4/16,978 (0.02%)*		CG: 3/4,837 (0.06%)
Cancer	2	NR	IG: 4/16,545 (0.02%)*	NR	IG: 2/9,037 (0.02%)‡
			CG: 9/16,699 (0.05%)*		CG: 0/2,965 (0%)‡
	С	NR	IG: 14/16,860 (0.08%)*	IG: 1/6,257 (0.02%)	IG: 7/14,507 (0.05%)‡
			CG: 13/16,978 (0.08%)§	CG: 5/6,270 (0.08%)	CG: 3/4,837 (0.06%)‡

*From author inquiry

†Calculated (unadjusted)

‡Preliminary or incomplete results

§Estimated data from figure

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; ASC-US = Atypical squamous cells of undetermined significance; <math>CC = conventional cytology; CIN = cervical intraepithelial neoplasia; <math>CG = control group; hrHPV = high risk human papillomavirus; IG = intervention group; LBC = liquid-based cytology; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; POBASCAM = Population Based Screening Study Amsterdam Program

Parameter	Round	NTCC Phase I ^{120, 133, 134}	POBASCAM ^{121, 135, 136}	SWEDESCREEN ^{119, 137}	ARTISTIC ^{117, 138-140}
Quality		Good	Good	Fair	Fair
Ν		11,810	6,267		5,166
Randomized					
Ages		25-34 years	29-33 years		20-29 years
Recruited					
# of Rounds		2 (3 years)	2 (5 years)		2 (3 years)
(Interval)					
Screening	1	hrHPV cotesting vs. CC	hrHPV cotesting vs. CC		hrHPV cotesting vs. LBC
Approach	2	CC vs. CC (both arms received	hrHPV cotesting vs. hrHPV		hrHPV cotesting vs. LBC
(IG vs.CG)		same testing strategy)	cotesting (both arms received same		
			testing strategy)		
Follow up	1	3.5 years (maximum)	4 years (maximum)		2.2 years (maximum)
	2	3.5 years (maximum)	5 years (maximum)		2.3 years (maximum)
	С	7 years (maximum)	9 years (maximum)		4.5 years (maximum)
Test Positivity	1	IG (hrHPV+ or ASC-US+):	IG (hrHPV+): 373/3,139 (12.0%)		IG (hrHPV+ or ASC-US+): 1,554/3,879
		1,047/6,002 (17.4%)	CG: NR		(40.1%)
		CG (ASC-US+): 261/5,808			CG (ASC-US+): 278/1,287 (21.6%)
		(4.5%)			
	2	NR	NR		NR
Colposcopy	1	IG: 697/6,002 (11.6%)	NR		NR
Referrals		CG: 237/5,808 (4.1%)			
	2	NR	NR		NR
False-Positive	1	IG: 998/4,980 (20.0%)			NR
Rate for		CG: 228/5,775 (3.9%)			
CIN2+	2	NR			NR
Absolute	1	IG: 23/6,002 (0.4%)*	IG: 69/3,139 (2.2%)*		IG: 117/3,879 (3.0%)
Detection for		CG: 25/5,808 (0.4%)*	CG: 60/3,128 (1.9%)*		CG: 42/1,287 (3.3%)
CIN3+	2	IG: 8/5,761 (0.1%)*	IG: 33/3,034 (1.1%)*		NR
		CG: 8/5,769 (0.1%)*	CG: 45/3,032 (1.3%)*		
	С	IG: 31/6,002 (0.5%)*	IG: 102/3,139 (3.3%)		NR
		CG: 33/5,808 (0.6%)*	CG: 105/3,128 (3.4%)		
Relative Risk	1	0.89 (95% Cl, 0.51 to 1.57)*	1.15 (95% Cl, 0.81 to 1.61)†		0.92 (95% Cl, 0.65 to 1.31)†
for CIN3+	2	1.00 (95% Cl, 0.38 to 2.67)*	0.73 (95% Cl, 0.47 to 1.15)†		NR
	С	0.91 (95% Cl, 0.56 to 1.48)*	0.97 (95% Cl, 0.74 to 1.27)		NR
Absolute	1	IG: 78/6,002 (1.3%)*	IG: 101/3,139 (3.2%)*		IG: 236/3,879 (6.1%)
Detection for		CG: 38/5,808 (0.6%)*	CG: 88/3,128 (2.8%)*		CG: 73/1,287 (5.7%)
CIN2+	2	IG: 11/5,761 (0.2%)*	IG: 52/3,034 (1.7%)*		NR
		CG: 15/5,769 (0.3%)*	CG: 63/3,032 (2.1%)*		
	С	IG: 89/6,002 (1.5%)*	IG: 153/3,139 (4.9%)		NR
		CG: 53/5,808 (0.9%)*	CG: 151/3,128 (4.8%)		

Table 13. Results for Trials of hrHPV Cotesting, Women Age <30-35 Years

Parameter	Round	NTCC Phase I ^{120, 133, 134}	POBASCAM ^{121, 135, 136}	SWEDESCREEN ^{119, 137}	ARTISTIC ^{117, 138-140}
Relative Risk	1	1.99 (95% Cl, 1.35 to 2.92)*	1.14 (95% Cl, 0.86 to 1.52)†		1.07 (95% Cl, 0.83 to 1.38)†
for CIN2+	2	0.73 (95% Cl, 0.34 to 1.60)*	0.82 (95% Cl, 0.57 to 1.19)†		NR
	С	1.63 (95% Cl, 1.16 to 2.28)*	1.01 (95% Cl, 0.81 to 1.26)		NR
Invasive	1	NR	IG: 2/3,139 (0.06%)*		IG: 0/3,879 (0%)
Cervical			CG: 2/3,128 (0.06%)*		CG: 1/1,287 (0.08%)
Cancer	2	NR	IG: 0/3,034 (0%)*		IG: 1/1,679 (0.06%)‡
			CG: 5/3,032 (0.16%)*		CG: 0/549 (0%)‡
	С	NR	IG: 2/3,139 (0.06%)*		IG: 1/3,879 (0.03%)‡
			CG: 7/3,128 (0.22%)§		CG: 1/1,287 (0.08%)‡

*From author inquiry

†Calculated (unadjusted)

‡Preliminary or incomplete results

§Estimated data from figure

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; ASC-US = Atypical squamous cells of undetermined significance; <math>CC = conventional cytology; CIN = cervical intraepithelial neoplasia; <math>CG = control group; hrHPV = high risk human papillomavirus; IG = intervention group; LBC = liquid-based cytology; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; POBASCAM = Population Based Screening Study Amsterdam Program

Table 14. Results of an Included Individual Participant Data Meta-Analysis of hrHPV-Based Screening Trials¹⁴¹

	NTCC Phases I and II	POBASCAM	SWEDESCREEN	ARTISTIC	Pooled Analysis
N Randomized	IG: 47,369 CG: 47,001	IG: 22,197 CG: 22,292	IG: 6,257 CG: 6,270	IG: 18,816 CG: 6,262	IG: 94,639 CG: 81,825
N Analyzed	IG: 47,369 CG: 47,001	IG: 21,996 CG: 22,106	IG: 6,257 CG: 6,270	IG: 18,386 CG: 6,124	IG: 94,008 CG: 81,411
Median follow up, years	5.1	9.0	12.0	7.5	6.5
Invasive cervical cancer	IG: 9 (0.02%) CG: 24 (0.05%)	IG: 20 (0.09%) CG: 28 (0.13%)	IG: 5 (0.08%) CG: 7 (0.11%)	IG: 10 (0.05%) CG: 4 (0.07%)	IG: 44 (0.05%) CG: 63 (0.08%)
Detection rate of invasive cervical cancer	0.37 (95% Cl, 0.17 to 0.80)	0.72 (95% Cl, 0.40 to 1.27)	0.71 (95% Cl, 0.23 to 2.25)	0.83 (95% Cl, 0.26 to 2.66)	0.60 (95% Cl, 0.40 to 0.89) I ² =0.0%, p=0.52
Invasive cervical cancer among w omen w ith a negative test at entry†	IG: 1 (0.002%) CG: 14 (0.3%)	IG: 6 (0.03%) CG: 17 (0.08%)	IG: 2 (0.03%) CG: 4 (0.06%)	IG: 3 (0.02%) CG: 0 (0%)	IG: 12 (0.01%) CG: 35 (0.04%)
Rate ratio for false-negative tests	0.07 (95% Cl, 0.01 to 0.56)	0.36 (95% Cl, 0.14 to 0.91)	0.50 (95% Cl, 0.09 to 2.73)	2.06 (95% Cl, 0.10 to 41.19)	0.30 (95% Cl, 0.15 to 0.60)
Biopsy procedures	IG: 2,538 (5%) CG: 1,127 (2%)	IG: 1,535 (7%) CG: 1,533 (7%)	IG: 675 (11%) CG: 701 (11%)	IG: 1,716 (9%) CG: 528 (9%)	IG: 6,464 (6.9%) CG: 3,889 (4.8%)
Rate ratio for biopsy procedures	2.24 (95% Cl, 2.09 to 2.39)	1.01 (95% Cl, 0.94 to 1.08)	0.97 (95% Cl, 0.87 to 1.07)	1.08 (95% Cl, 0.97 to 1.19)	1.35 (95% Cl, 1.30 to 1.40) P=99.1, p<0.0001*

*Sensitivity analysis excluding the NTCC Phase I and Phase II trials: Rate ratio, $1.02 (95\% \text{ CI}, 0.97 \text{ to } 1.07), I^2=30.7\%, p=0.236$ *Observations censored 2.5 years after CIN2 or CIN3

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; CG = control group; CI = confidence interval; IG = intervention group; NTCC = New Technologies for Cervical Cancer Screening; POBASCAM = Population Based Screening Study Amsterdam Program

Table 15. Results From the KPNC Cotesting Observational Study, All Participants

Parameter	Round	KPNC ¹²³
N Analyzed		331,818
Ages Recruited		≥30 years
Number of Rounds		2 (3 years)
(Interval)		
Screening Approach		hrHPV cotesting (HC2 and CC)
Follow up	1	NR
	2	2.9 years
	С	6 years
Test Positivity		hrHPV+ or ASC-US+: 24,849/331,818 (7.5%)
Colposcopy Referrals		NR
Absolute Detection for	1	NR
CIN3+	2	102/195,975 (0.05%)
	С	834/331,818 (0.3%)
Absolute Detection for	1	NR
CIN2+	2	346/195,975 (0.2%)
	С	2,310/331,818 (0.7%)
Invasive Cervical	1	NR
Cancer	2	13/195,975 (0.01%)
	С	87/331,818 (0.03%)

*Among women undergoing a colposcopy

Abbreviations: ASC-US = Atypical squamous cells of undetermined significance; C = cumulative; CC = conventional cytology; CIN = cervical intraepithelial neoplasia; hrHPV=high-risk human papillomavirus; KPNC = Kaiser Permanente Northern California; LBC = liquid-based cytology; NR = not reported

Table 16. Cases and 3-Year and 5-Year Risk of CIN in the KPNC Cotesting Observational Study^{123, 145}

		All Women*	Ages 21-29 Years	Ages 30-64 Years	HSIL	LSIL	ASC-US	hrHPV+ and ASC-US	hrHPV- and ASC-US	ASC-US-
Ν		1,307,528	284,940	1,022,588	2,771	19,096	53,107	25,336	26,191	1,232,554
CIN2+	3 years	9,689 (0.7%)	3,233 (1.1%)	6,456 (0.6%)	1,881 (67.9%)	2,081 (10.9%)	3,453 (6.5%)	3,241 (12.8%)	149 (0.6%)	2,274 (0.2%)
	5 years	11,569 (0.1%)	3,544 (1.2%)	8,025 (0.8%)	1,891 (68.2%)	2,184 (11.4%)	3,707 (7.0%)	3,446 (13.6%)	198 (0.8%)	3,787 (0.3%)
	3-year	1.12 (1.10 to	2.29 (2.22 to	1.05 (1.03 to	71.4 (69.6 to	13.71 (13.17	7.86 (7.62 to	15.69 (15.21	0.97 (0.85 to	0.47 (0.45 to
	risk	1.14)	2.37)	1.07)	73.3)	to 14.27)	8.10)	to 16.18)	1.10)	0.48)
	5-year	1.52 (1.49 to	3.20 (3.08 to	1.40 (1.37 to	74.0 (71.9 to	16.37 (15.66	9.46 (9.16 to	18.93 (18.30	1.49 (1.31 to	0.79 (0.77 to
	risk	1.54)	3.32)	1.43)	76.1)	to 17.11)	9.78)	to 19.57)	1.70)	0.82)
CIN3+	3 years	3,804 (0.3%)	986 (0.4%)	2,818 (0.3%)	1,162 (41.9%)	611 (3.2%)	1,130 (2.1%)	1,060 (4.2%)	48 (0.2%)	901 (0.1%)
	5 years	4,502 (0.3%)	1,084 (0.4%)	3,418 (0.3%)	1,168 (42.1%)	644 (3.4%)	1,240 (2.3%)	1,154 (4.6%)	64 (0.2%)	1,449 (0.1%)
	3-year	0.44 (0.42 to	0.77 (0.73 to	0.46 (0.44 to	47.5 (45.2 to	4.35 (4.02 to	2.71 (2.57 to	5.60 (5.29 to	0.31 (0.24 to	0.18 (0.17 to
	risk	0.45)	0.82)	0.47)	49.9)	4.91)	2.87)	5.92)	0.39)	0.19)
	5-year	0.29 (0.57 to	1.12 (1.05 to	0.59 (0.57 to	50.4 (47.6 to	5.36 (4.91 to	3.39 (3.20 to	7.12 (6.69 to	0.49 (0.39 to	0.30 (0.29 to
	risk	0.64)	1.19)	0.61)	53.3)	5.85)	3.59)	7.58)	0.61)	0.32)

*Excludes 5,600 women with other high-grade nonnormal result

Abbreviations: ASC-US = Atypical squamous cells of undetermined significance; CG = control group; CI = confidence interval; CIN = cervical intraepithelial neoplasia; HSIL = high-grade squamous intraepithelial lesion; hrHPV = high-risk human papillomavirus; IG = intervention group; KPNC = Kaiser Permanente Northern California; LSIL = low-grade squamous intraepithelial lesion; NR = not reported; yrs = years

Table 17. Test Positivity, Histological Results, and Referrals to Colposcopy of Other Included Observational Studies of hrHPV Cotesting

Author, Year & Quality	Outcome	Subgroup	Round or Followup	N	Results
Ibanez, 2014 ¹²²	ASC-US+ (including 1 case of suspected adenocarcinoma)	All participants	Baseline	1832	40 (2.2)
(Unscreened women)	hrHPV+	All participants	Baseline	1832	123 (6.7)
Fair	hrHPV+/ASC-US+	All participants	Baseline	1832	139 (7.6)
Luyten, 2014 ^{124, 142}	hrHPV+	All participants	1	19795	1232 (6.2)
WOLPHSCREEN		All participants	2	4067	146 (3.6)
Fair	ASC-US+	All participants	1	19795	446 (2.2)
		All participants	2	4067	46 (1.1)
	hrHPV+/ASC-US+	All participants	1	19795	201 (1.0)
		All participants	2	4067	7 (0.2)
	Referred to colposcopy	All participants, stratified by	1	19795	All participants: 765 (3.9)
		cotesting results	2	4067	All participants: 41 (1.0)
			1	201	hrHPV+/ASC-US+: 201 (100)
			1	1031	hrHPV+/ASC-US-: 536 (52.0)
			1	245	hrHPV-/ASC-US+: 28 (11.4)
			1	18318	hrHPV-/ASC-US-: 19 (0.1)
			1	1232	hrHPV+: 737 (59.8)
			1	446	ASC-US+: 229 (51.3)
	Colposcopy compliance	All participants, stratified by	1	765	712 (93.1)
		cotesting results	2	41	38 (92.7)
			1	201	hrHPV+/ASC-US+: 192 (95.5)
			1	536	hrHPV+/ASC-US-: 506 (94.4)
			1	28	hrHPV-/ASC-US+: 14 (50)

Table 17. Test Positivity, Histological Results, and Referrals to Colposcopy of Other Included Observational Studies of hrHPV Cotesting

Author, Year & Quality	Outcome	Subgroup	Round or Followup	N	Results	
			1	NR	hrHPV-/ASC-US-: NR (NR)	
			1	737	hrHPV+: 698 (94.7)	
			1	229	ASC-US+: 206 (90.0)	
	CIN2+	All participants	1	19795	309 (1.6)	
	CIN3+	All participants	1	19795	172 (0.87)	
			2	4067	2 (0.05)	
	Adenocarcinoma in situ	All participants	1	19795	13 (0.07)	
	ICC	All participants	1	19795	20 (0.1)	

Abbreviations: ASC-US = atypical squamous cells of undetermined significance CIN = cervical intraepithelial neoplasia; hrHPV = high-risk human papillomavirus; ICC = invasive cervical cancer; NR = not reported

Table 18. Psychological Harms Reported in the ARTISTIC Trial

Author, Year Quality	Outcome	Subgroup	IG n	IG Results	CG n	CG Results	Odds Ratio or Age-Adjusted Mean Difference (95% CI)	P-Value
Kitchener,	GHQ ≥4, n (%)	All responders	1872	717.0 (38.3)	593	222.9 (37.6)	1.00 (0.82 to 1.23)	0.982
2009 ^{117, 140}		hrHPV-/ASC-US-	972	286 (29.4)	331	106 (32.0)	NR	NR
		hrHPV-/ASC-US+	292	115 (39.4)	91	36 (39.6)	NR	NR
ARTISTIC		hrHPV+/ASC-US-	407	170 (41.8)	103	36 (35.0)	1.33 (0.85 to 2.09)	0.213
		hrHPV+/ASC-US+	201	84 (41.8)	68	32 (47.1)	0.80 (0.46 to 1.40)	0.437
Fair	GHQ, mean (SD)	All responders	1872	4.26 (5.73)	593	4.18 (5.71)	-0.01 (-0.65 to 0.60)	0.968
		hrHPV-/ASC-US-	972	3.31 (5.18)	331	3.22 (4.80)	NR	NR
		hrHPV-/ASC-US+	292	4.22 (5.63)	91	4.29 (5.83)	NR	NR
		hrHPV+/ASC-US-	407	4.77 (6.21)	103	4.02 (5.77)	0.74 (-0.63 to 1.91)	0.220
		hrHPV+/ASC-US+	201	4.57 (5.44)	68	5.75 (6.50)	-1.19 (-2.98 to 0.40)	0.121
	SRS, mean (SD)	All responders	1520	53.32 (23.02)	483	54.90 (23.00)	-2.40 (-4.91 to 0.16)	0.042
		hrHPV-/ASC-US-	803	51.28 (20.89)	271	50.81 (22.50)	NR	NR
		hrHPV-/ASC-US+	255	48.73 (23.34)	82	50.53 (21.26)	NR	NR
		hrHPV+/ASC-US-	311	55.32 (22.95)	76	61.10 (23.74)	-7.28 (-12.74 to -1.52)	0.007
		hrHPV+/ASC-US+	151	62.67 (23.00)	54	62.46 (22.97)	0.15 (-6.44 to 6.74)	0.965
	STAI-STATE,	All responders	1875	38.10 (12.64)	594	38.27 (12.61)	-0.31 (-1.62 to 0.92)	0.618
	mean (SD)	hrHPV-/ASC-US-	971	35.85 (11.92)	331	36.00 (11.49)	NR	NR
		hrHPV-/ASC-US+	290	37.99 (12.43)	91	40.66 (13.57)	NR	NR
		hrHPV+/ASC-US-	410	38.87 (13.33)	103	37.10 (12.58)	1.73 (-1.27 to 4.53)	0.202
		hrHPV+/ASC-US+	204	39.77 (12.5)	69	39.97 (12.35)	-0.25 (-3.79 to 3.03)	0.885
	STAI-TRAIT,	All responders	1877	40.12 (11.40)	596	40.13 (11.49)	-0.10 (-1.27 to 1.13)	0.858
	mean (SD)	hrHPV-/ASC-US-	971	38.84 (11.34)	331	39.00 (11.13)	NR	NR
		hrHPV-/ASC-US+	289	39.95 (11.08)	91	41.57 (12.43)	NR	NR
		hrHPV+/ASC-US-	413	40.54 (11.83)	105	39.39 (10.80)	1.07 (-1.30 to 3.41)	0.386
		hrHPV+/ASC-US+	204	41.28 (10.89)	69	40.88 (11.54)	0.36 (-2.80 to 3.53)	0.819

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; ASC-US = atypical cells of undetermined significance; CG = control group; CI = confidence interval; GHQ = General Health Questionnaire; hrHPV = high risk human papillomavirus; IG = intervention group; NR = not reported; SD = standard deviation

Table 19. Psychological Harms Reported in the Included Observational Studies

Author, Year Quality	Outcome	Subgroup	N Analyzed	Results	Between Group Comparisons
McCaffery,	CSQ score, mean (95% Cl)	hrHPV-/cytology-	185	8.9 (8.4 to 9.3)	hrHPV+ (cytology- vs.cytology +): p=0.0001
2004 ¹¹⁸		hrHPV-/cytology+	17	14 (12 to 15)	hrHPV- (cytology - vs. cytology +): p<0.0001
		hrHPV+/cytology-	13	13 (12 to 14)	Cytology+ (hrHPV+ vs. hrHPV-): p=0.002
Fair		hrHPV+/cytology+	23	17 (16 to 18)	Cytology - (hrHPV+ vs. hrHPV-): p<0.0001
	STAI score, mean (95% Cl)	hrHPV-/cytology-	185	29.8 (27.9 to 31.7)	hrHPV+ (cytology - vs. cytology +): p=0.55
		hrHPV-/cytology+	17	41.1 (34.9 to 47.5)	hrHPV- (cytology - vs. cytology +): p=0.0008
		hrHPV+/cytology-	46	43.5 (39.7 to 47.3)	Cytology + (hrHPV+ vs. hrHPV-): p=NSD
		hrHPV+/cytology+	23	46 (40.6 to 51.4)	Cytology - (hrHPV+ vs. hrHPV-): p<0.0001
	Feelings about current partner, worse than usual	hrHPV-/cytology-	162	2 (99)	Cytology+ (hrHPV+ vs. hrHPV-): NSD
		hrHPV-/cytology+	16	0 (0)	Cytology - (hrHPV+ vs. hrHPV-): p=0.04
		hrHPV+/cytology-	36	3 (8)	
		hrHPV+/cytology+	16	2 (13)	1
	Feelings about future	hrHPV-/cytology-	176	3 (2)	Cytology + (hrHPV+ vs. hrHPV-): p=0.02
	partners, worse than usual	hrHPV-/cytology+	15	0 (0)	Cytology - (hrHPV+ vs. hrHPV-): p<0.0001
		hrHPV+/cytology-	44	12 (27)	
		hrHPV+/cytology+	22	7 (32)	
	Feelings about previous	hrHPV-/cytology-	23	2 (99)	Cytology + (hrHPV+ vs. hrHPV-): p=0.01
	partners, worse than usual	hrHPV-/cytology+	45	0 (0)	Cytology - (hrHPV+ vs. hrHPV-): p<0.0001
		hrHPV+/cytology-	15	15 (33)	1
		hrHPV+/cytology+	169	8 (35)	

Abbreviations: CSQ = Cervical Screening Questionnaire; hrHPV= high-risk human papillomavirus; STAI = Spielberger's State Trait Anxiety Inventory

Teeting	# of Studies (k), # of	Cum monu of Findings	Consistency	Do nontin a		Body of	EPC Assessment of	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
Benefits								
KQ 1: Effectiveness of hrHPV testing or cotesting vs. cvtology alone for reducing cervical cancer incidence and mortality								
hrHPV	k=4 RCTs	In 4 RCTs reporting results	Reasonably	Not	RCTs: 1	Randomization	We are moderately	All trials were in
primary	n=282,839	over 1 to 2 rounds of	consistent	detected	good, 3	not maintained	confident that the estimate	organized
screening	1 cohort study	screening spanning 4 to 7	and precise		fair	for more than 1	of higher detection of	screening
	n=48,736	years, hrHPV testing found	for CIN3+			or 2 rounds of	CIN3+ in the initial	programs in
		more CIN3+ in the initial	detection		Cohort:	screening;	screening round for primary	European
		screening round;	over 1 to 2		1 fair	heterogeneity in	hrHPV-based screening	countries with
		cumulative rates of CIN3+	rounds of			screening and	strategies vs.cytology lies	nationalized
		werehigher in the	screening			follow up tests	close to the true effect; with	health systems.
		intervention group in the				and protocols;	considerable heterogeneity	
		single completed study	Imprecise/N			insufficient	in study design, testing	Applicability may
		with 2 rounds of screening.	A for cervical			pow er to	protocols, and follow up,	be low er for
		Overall, CIN3+ detection	cancer			assess cervical	some uncertainty remains.	women in the
		ranged from 0.3% to 0.8%	incidence			cancer		United States
		across studies. The HPV				incidence and	We have limited confidence	without access to
		FOCAL and Compass				mortality.	that the estimate of the	health care or to
		trials have not published					effect of primary hrHPV	organized
		complete results. Invasive					screening on cumulative	screening
		cancers were only reported					CIN3+ detection or ICC	programs, and
		in 1 RCT, but numbers					incidence lies close to the	higher for U.S.
		werevery small (<0.1%),					true effect for this outcome.	w omen with
		so statistical comparisons					The body of evidence has	access to care in
		were not meaningful.					numerous deficiencies.	health systems
								with organized
		Mortality data were not					Evidence is insufficient to	cervical cancer
		reported.					determine the effect of	screening
							primary hrHPV testing on	programs.
							cervical cancer incidence	
							and mortality in	
							unscreened and	
							underscreened women.	

	# of Studies (k), # of					Body of	EPC Assessment of	
Testing	Observations (n)	Summary of Findings	Consistency/	Reporting		Evidence	Strength of Evidence	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
hrHPV	k=4 RCTs, 2 cohort	In 4 RCTs reporting results	Reasonably	Not	RCTs: 2	Randomization	We are moderately	All trials were in
cotesting with	studies	over 1 to 2 rounds of	consistent and	detected	good, 2	not maintained	confident that the estimate	organized
cytology		screening spanning 4.5 to	precise for		fair	for more than	of no difference in the initial	screening
	n= 127,717 (RCTs)	9 years, cotesting found no	CIN3+			1 or 2 rounds	screening round or	programs in
		significant increase in	detection over		Cohorts:	of screening;	cumulative difference in	European
	n=351,613 (cohorts)	CIN3+ detection at Round	1 to 2 rounds		2 fair	heterogeneity	CIN3+ detection for hrHPV	countries with
		1 and similar cumulative	of screening			in screening	cotesting screening	nationalized health
		rates of CIN3+ between				and follow up	strategies vs. cytology lies	systems.
		treatment groups. 13-year	Imprecise/NA			tests and	close to the true effect; with	
		follow up in 1 trial did not	for cervical			protocol; trials	considerable heterogeneity	Applicability may
		detect a difference	cancer			underpow ered	in study design, testing	be low er for
		between arms. A large	incidence			to assess	protocols, and follow up,	women in the
		single cohort study				cervical cancer	some uncertainty remains.	United States
		(n=331,818) found 0.7% of				incidence and	Established in the officient to	Without access to
		women screened with				mortality	Evidence is insufficient to	nealth care or to
		cotesting had CIN3+ over 6				Cinala achart	determine the effect of	organized
		years. Among women who				Single conort	himev lesting on cervical	screening
		screened negative and				study with ho	cancer incluence and	programs, and
		were rescreened after 3				companson	montality in unscreened	higher for 0.5.
		to have CINP A nother				group.		women with
		to have Cino+. Another cohort study $(n=10,705)$					w omen.	boolth systems
		found docroasing rates of						with organized
		CIN2, detected over 2						
		screening rounds (0.57%						screening
		in round 1, 0,05% in round						programs
		2)						programo.
hrHP\/	k=1 (IPD meta-	An IPD meta-analysis	For the IPD	Not		Pooled	We have limited confidence	All trials were in
primary	analysis)	combined 5 trials (1	meta-analysis	detected		outcomes of	that the estimate of the	organized
screening or	analy olo j	primary screening trial and	findings were	actoolog		primary hrHPV	effect of hrHPV screening	screening
cotesting with	n=176 464	4 cotesting trials) with	reasonably			testing and	on cumulative CIN3+	programs in
cytology	11-170,101	different populations	statistically			cotesting trials	detection or ICC incidence	Furopean
oy tology		hrHPV test types and	consistent and			with marked	lies close to the true effect	countries with
		screening protocols. A	precise for			heterogeneity in	for this outcome.	nationalized health
		total of 107 cases of ICC	ICC detection			study design.		svstems.
		among 176,464 women	over 1 to 2			testing	Evidence is insufficient to	
		were identified in the trials.	rounds			protocols,	determine the effect of	Applicability mav
		The pooled RR for ICC	of screening			follow up, and	hrHPV testing on cervical	be low er for
		w as 0.60 (95% Cl, 0.40 to	5			ICC 1	cancer incidence and	women in the
		0.89) for hrHPV testing.				ascertainment	mortality in unscreened	United States
		, 3					-	without access to

# of Studies (k), # of Observations (n) Study Designs	Summary of Findings by Outcome	Consistency/ Precision	Reporting Bias	Quality	Body of Evidence Limitations	EPC Assessment of Strength of Evidence for That KQ and underscreened w omen.	Applicability health care or to organized screening programs, and higher for U.S. w omen with access to care in health systems w ith organized cervical cancer
							screening
pulation differences in	screening for reducing cervi	cal cancer incid	ence and mo	rtality			programb.
k=4 RCTs, 1 cohort study n=41,914	4 RCTs report absolute detection of CIN3+; 3 trials reported only 1 round of screening, 1 trial reported on 2 rounds. Women age <35 years had higher rates of cumulative CIN3+ detection across studies. Cumulative CIN3+ remained higher in the study with 2 screening rounds (RR, 2.19 [95% Cl, 1.31-3.66]). Across trials, CIN3+ rates ranged from 0.3% to 2.4%. Findings from the cohort study, with higher rates of CIN2+ in women ages 25- 29 years, were consistent with the trials.	Reasonably consistent and precise for CIN3+ detection over 1 to 2 rounds of screening Imprecise/NA for cervical cancer incidence	Not detected	RCTs: 1 good, 3 fair Cohort: 1 fair	Randomization not maintained for more than 1 or 2 rounds of screening; heterogeneity in screening and follow up tests and protocol; trials underpow ered to assess cervical cancer incidence and mortality.	We are moderately confident based on strong evidence that CIN3+ rates w ere highest in w omen ages <30-35 years but comparative performance of hrHPV primary testing vs. cytology w as similar to the overall trial results	All trials were in organized screening programs in European countries with nationalized health systems.
	<pre># of Studies (k), # of Observations (n) Study Designs</pre>	# of Studies (k), # of Observations (n) Study DesignsSum mary of Findings by Outcomepulation differences in screening for reducing cervi k=4 RCTs, 1 cohort study4 RCTs report absolute detection of CIN3+; 3 trials reported only 1 round of screening, 1 trial reported on 2 rounds. Women age <35 years had higher rates of cumulative CIN3+ detection across studies. Cumulative CIN3+ remained higher in the study with 2 screening rounds (RR, 2.19 [95% Cl, 1.31-3.66]). Across trials, CIN3+ rates ranged from 0.3% to 2.4%.Findings from the cohort study, with higher rates of CIN2+ in women ages 25- 29 years, were consistent with the trials.Mortality data were not reported.	# of Studies (k), # of Observations (n) Study DesignsSum mary of Findings by OutcomeConsistency/ Precisionpulation differences in screening for reducing cervical cancer incid k=4 RCTs, 1 cohort study4 RCTs report absolute detection of CIN3+; 3 trials reported only 1 round of screening, 1 trial reported on 2 rounds. Women age <35 years had higher rates of cumulative CIN3+ detection across studies. Cumulative CIN3+ remained higher in the study with 2 screening rounds (RR, 2.19 [95% Cl, 1.31-3.66]). Across trials, CIN3+ rates ranged from 0.3% to 2.4%.Imprecise for cancer incidenceFindings from the cohort study, with higher rates of CIN2+ in women ages 25- 29 years, were consistent with the trials.Imprecise for cancer incidence	# of Studies (k), # of Observations (n) Study Designs Sum mary of Findings by Outcome Consistency/ Precision Reporting Bias pulation differences in screening for reducing cervical cancer incidence and more k=4 RCTs, 1 cohort study 4 RCTs report absolute detection of CIN3+; 3 trials reported only 1 round of screening, 1 trial reported on 2 rounds. Women age of cumulative CIN3+ remained higher in the study with 2 screening rounds (RR, 2.19 [95% CI, 1.31-3.66]). Across trials, CIN3+ rates ranged from 0.3% to 2.4%. Imprecise/NA for cervical cancer incidence Imprecise/NA for cervical cancer incidence Findings by Outcome Imprecise/NA for cervical cancer incidence	# of Studies (k), # of Observations (n)Sum mary of Findings by OutcomeConsistency/ PrecisionReporting BiasQualityguilation differences in screening for reducing cervical cancer incidence and mortalityImage: Consistent and reported only 1 round of screening, 1 trial reported on 2 rounds. Women age <35 years had higher rates of cumulative CIN3+ detection across studes. Cumulative CIN3+ remained higher in the study with 2 screening rounds (RR, 2.19 [95% CL, 1.3.3.66]). Across trials, CIN3+ trials ranged from 0.3% to 2.4%.Not Reasonably Reasonably Not consistent and precise for to 2 rounds of screening to 2 rounds.Not ReTs: 1 good, 3 fair consistent and precise for to 2 rounds of screening to 2 rounds.Not Retrest consistent and precise for to 2 rounds of screening to 2 rounds of screening rounds (RR, 2.19 [95% CL, incidenceImprecise/NA for cervical cancer incidenceImprecise/NA for cervical cancer incidenceFindings from the cohort study with higher rates of CIN2+ in women ages 25- 29 years, were consistent with the trials.Findings from the cohort study, with higher rates of CIN2+ in women ages 25- 29 years, were consistent with the trials.Imprecise/NA for cervical cancer incidence	# of Studies (k), # of Observations (n) Study DesignsSummary of Findings by OutcomeConsistency/ PrecisionReporting BiasBody of Evidence Limitationspulation differences in screening for reducing cervical cancer incidence studyscreening for reducing cervical cancer incidence and motalityNot consistent and precise for ClN2+ in women ages 25- 29 years, were consistent with the trials.Not consistency/ PrecisionRCTs: 1 	# of Studies (k), # of Study Designs Summary of Findings by Outcome Consistency Precision Reporting Bias Body of Evidence EPC Assessment of Strength of Evidence for That KQ Juildion differences in screening for reducing cervical study screening for reducing cervical exercise for n=41,914 screening for reducing cervical exercise for n=41,914 ACTs report absolute detection of CN8+; 3 trials or zonds. Women age of screening detection across studies. Cumulative CN8+ remained higher rates of cumulative CN8+ Findings from the cohort study with 2 screening of CN8+ rates ranged from 0.3% to 2.4%. Not screening for cervical cancer RCTs: 1 god, 3 for more tailing consistency of screening for more tailing trial screening for cervical cancer We are moderately consistent and precise for consistency consistent and precise for consistency consistent and precise for consistency consistent and precise for consistency consistent and precise for consistency consistent and precise for consistent and precise for consistency consistent and precise for consistency consistent and proces for consistency consistent with the trials. Body of consistency consistent proces for consistent proces for consistent proces for consistent proces for consistent proces for consistent proces for consistent proces for consisten

Testing	# of Studies (k), # of	Ourse and Clin dia as	0	Demention		Body of	EPC Assessment of	
Testing	Observations (n) Study Designs	Summary of Findings	Consistency/ Precision	Reporting	Quality	Limitations	for That KQ	Applicability
hrHPV	k=3 RCTs	3 cotesting trials reported	Reasonably	Not	RCTs: 2	Randomization	We are moderately	All trials were in
cotesting with		on women age <30-35	consistent and	detected	good, 1	not maintained	confident based on strong	organized
cytology in	n=23,243	years; 2 reported on 2	precise for		fair	for more than 1	evidence that CIN3+ rates	screening
w omen ages		rounds of screening.	CIN3+			or 2 rounds of	were highest in women age	programs in
<30-35 years		CIN3+ detection rates were	detection over			screening;	<30-35 years but	European
-		higher in women age <30-	1 to 2 rounds			heterogeneity in	comparative performance	countries with
		35 years, rates were	of screening			screening and	of hrHPV cotesting vs.	nationalized health
		comparable betw een the				follow up tests	cytology was similar to the	systems.
		IG and CG for both rounds,	Imprecise/NA			and protocol;	overall trial results	
		w ith no significant	for cervical			trials		
		differences in cumulative	cancer			underpow ered		
		CIN3+; detection rates	incidence or			to assess		
		ranged from 0.1% to 3.3%	mortality			cervical cancer		
		across trials.				incidence and		
						mortality.		
		Mortality data were not						
hal IDV	I A IDD meete	reported.		Net		Dealad		
nrHPV	K=1 IPD meta-	reported ICC rate ratios by		NOT		Pooled		
screening or	allalysis	age The low est PP was		uelecteu		primary brHDV		
cotesting with	n-176.464 all age	for ages 30-34 years (0.36				testing and		
cytology in	arouns	[95% Cl 0 14 to 0 94] but				cotesting trials		
women ade	groups	this RR did not differ				with marked		
<30-35 years	n not broken dow n	significantly from the RR				heterogeneity in		
	by age group	for women age ≥35 years.				study design.		
						testing		
		Mortality data were not				protocols,		
		reported.				follow up, and		
		-				ICC		
						ascertainment		
hrHPV	k=4 RCTs	4 RCTs report findings	Reasonably	Not	RCTs: 1	Randomization	We are moderately	
primary	n=169,714	from a single screening	consistent and	detected	good, 3	not maintained	confident based on strong	
screening in		round (2 to 3.5 years) and	precise for		fair	for more than 1	evidence that for women	
w omen age	1 cohort study	1 reported results from 2	CIN3+			or 2 rounds of	age ≥35 years,	
≥30-35 years	n=43,647	rounds of screening.	detection over		Cohort:	screening;	comparative performance	
		CIN3+ OUTCOMES Were	1 to 2 rounds		1 fair	neterogeneity in	or nrHPV primary	
		similar to the overall group	or screening			screening and	screening vs. cytology was	
		results. Unly 1 reported				rollow up tests	similar to the overall trial	
		2 rounds of acrooning with	imprecise/INA			and protocol;	results	
		2 Tourius of screening, With				uidis		
		an KK 01 1.57 (95% Cl,	cancer			underpow ered		

	# of Studies (k), # of					Body of	EPC Assessment of	
Testing	Observations (n)	Summary of Findings	Consistency/	Reporting		Evidence	Strength of Evidence	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
		1.03 to 2.40). CIN3+	incidence or			to assess		
		detection rates ranged	mortality			cervical cancer		
		from 0.2% to 0.5%.				incidence and		
						mortality.		
		The cohort study found						
		low er rates of CIN2+ in						
		women ages 30-64 years						
		over 2 rounds of primary						
		hrHPV screening.						
		Mortality data were not						
		reported.						
hrHPV	k=4 RCTs	4 RCTs report findings	Reasonably	Not	RCTs: 2	Randomization	We are moderately	All trials were in
cotesting with		from a single screening	consistent and	detected	good, 2	not maintained	confident based on strong	organized
cytology in	n=99,073	round (2.2 to 4 years) and	precise for		fair	for more than 1	evidence that CIN3+ rates	screening
w omen age		3 report results from 2	CIN3+			or 2 rounds of	were highest in women age	programs in
≥30-35 years	1 cohort study	rounds of screening.	detection over			screening;	<30-35 years but	European
	4 000 500	CIN3+ outcomes were	1 to 2 rounds			heterogeneity in	comparative performance	countries with
	n=1,022,588	similar to the overall group	or screening			screening and	or nrHPV cotesting vs.	nationalized nealth
		differences in sumulative	Improcio o/NIA			rollow up tests	cytology was similar to the	systems.
		CIN2 detection in any	for convical			triale		
		trial CIN3+ detection rates	cancer			undernow ered		
		ranged from 0.03% to	incidence or			to assess		
		1 4%	mortality			cervical cancer		
		1.170.	mortality			incidence and		
		A large cohort study found				mortality.		
		the 5-vear risk of CIN3+						
		with cotesting in this age				Single cohort		
		group w as 0.59 (95% Cl,				study with no		
		0.57 to 0.61) compared to				comparison		
		1.12 (95% Cl, 1.05 to 1.19)				group and		
		in women age <30 years,				different		
		but cotesting in the				screening		
		younger group was				approaches		
		performed for ASC-US				limit age		
		triage.				comparisons		
		Mortality data were not						
		reported.						

	# of Studies (k), # of					Body of	EPC Assessment of	
Testing	Observations (n)	Summary of Findings	Consistency/	Reporting		Evidence	Strength of Evidence	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
hrHPV	1 IPD meta-analysis	As noted above, the IPD		Not				All trials were in
primary		meta-analysis did not find		detected				organized
screening or	n=176,464	statistical differences in						screening
cotesting with		the pooled rate ratio by						programs in
cytology in		age groups.						European
w omen ages								countries with
≥30-35 years		Mortality data were not						nationalized health
		reported.						systems.
hrHPV	k=0	NA	NA	NA	NA	NA	NA	NA
primary								
screening in								
unscreened								
women								
hrHPV	k=1 cohort study	1 single cohort study of	Imprecise	Not	1 Fair	Lack of a	We have low confidence,	Only 1 study
cotesting with		underscreened women of		detected		comparison	based on limited evidence	conducted in
cytology in	n=1,832	1-time hrHPV cotesting; of	Consistency			group,	from 1 small cohort study,	Spain
unscreened		9 CIN3+ cases, all were	NA			substantial loss	that the CIN3+ detection	
women		hrHPV+ and 6 had positive				to follow up	rate among unscreened	
		cytology.					women is improved with	
							hrHPV testing	
KQ 1b and 1c	: Relationship of rescr	eening intervals to future can	cer incidence or	progression				
HPV primary	No comparative	No completed trials	NA	NA	NA	NA	Evidence is insufficient for	NA
screening or	studies	compared screening					comparison of rescreening	
cotesting		intervals with use of hrHPV					intervals with hrHPV testing	
compared to		testing. Trials comparing					on cancer-related	
cytology		hrHPV testing to cytology					outcomes.	
		used 2- to 5-year intervals,						
		but given variability of					No evidence on	
		screening protocols,					subpopulations and	
		comparison between trials					rescreening intervals was	
		w as not meaningful.					identii lêd.	
		No evidence on						
		subnonulations						
		Suppopulations						
	# of Studies (k), # of					Body of	EPC Assessment of	
--------------	-------------------------	-------------------------------	--------------	-----------	---------	-----------------	------------------------------	---------------------
Testing	Observations (n)	Sum mary of Findings	Consistency/	Reporting		Evidence	Strength of Evidence	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
Harms		•						
KQ 2: Advers	e effects of hrHPV test	ing or cotesting vs. cytology						
hrHPV	Colposcopy, biopsy,	False-positive rates were	Reasonably	Not	RCTs: 1	Heterogeneity	We are moderately	All trials were in
primary	false positives, and	consistently higher in the	consistent	detected	good, 3	in screening	confident that the estimates	organized
screening	false negatives	IG. 3 trials had more			fair	follow up	for colposcopy referrals	screening
		referrals to colposcopy	Reasonably			protocols make	and false-positive rates of	programs in
	k=4 RCTs	among women in the IG	Precise		Cohort:	it difficult to	HPV-based screening	European
	n=282,839	vs. CG in round 1 of			1 fair	draw	strategies vs. cytology lie	countries with
		screening. 1 trial had				conclusions	close to the true effects.	nationalized health
	1 cohort study	similar rates of referral to				about relative		systems.
	n=48736	colposcopy at round 1 in				harms of	We have insufficient	
		both trial arms. The highest				different hrHPV	evidence for estimating	Applicability may
		rates of colposcopy referra				screening	differences in the false-	be low erfor
		were in the trial, which				strategies	negative rates, and no	women in the
		referred all HPV+ women				compared to	evidence on complications	United States
		to colposcopy. Data from				cytology alone.	of screening.	without access to
		an Italian conort had						health care or to
		similar round 1 false-				Limited data on		organized
		positive rates (6.4%) and				harms of		screening
		colposcopy referrals				screening and		programs, and
		(4.4%), with both				diagnostic		higher for U.S.
		approximately halved at				procedures.		women with
		the second screening				Not all tale la		access to care in
		rouna.				Not all trials		nealth systems
		Name of the included				reported		with organized
		None of the included				colposcopy and		
		studies reported adverse				biopsy rates.		screening
		events associated with						programs.
		testing or treatment of						
		CIN Cases of ICC among						
		screen-negative women						
		(false pegatives) were pot						
		consistently reported but						
		were rare with numbers too						
		small to draw comparisons						

	# of Studies (k), # of					Body of	EPC Assessment of	
Testing	Observations (n)	Summary of Findings	Consistency/	Reporting		Evidence	Strength of Evidence	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
hrHPV	Colposcopy, biopsy,	False-positive rates were	Reasonably	Not	RCTs: 2	Heterogeneity	We are moderately	All trials were in
cotesting	false positives, and	consistently higher in the	consistent	detected	good, 2	in screening	confident that the estimates	organized
w ith	false negatives	IG. 2 trials reported higher			fair	follow up	for colposcopy referrals	screening
cytology		rates of referrals to	Reasonably			protocols make	and false-positive rates of	programs in
	k=4 RCTs, 2 cohort	colposcopy at round 1.	Precise		Cohort:	it difficult to	HPV-based screening	European
	studies	Round 2 results, reported			1 fair	draw	strategies vs.cytology lie	countries with
		only in one trial, were				conclusions	close to the true effects.	nationalized health
	n=127,717 (RCTs)	similar between treatment				about relative		systems.
		groups (IG: 2.7% vs. CG:				harms of	We have insufficient	A 11 1 11.
	n=351,613 (cohorts)	2.1%). 2 trials reported				different hrHPV	evidence for estimating	Applicability may
		colposcopy referrals in the				screening	differences in the false-	be low erfor
		first round, which were				strategies	negative rates, and no	women in the
		nigner in the IG than in the				compared to	evidence on complications	United States
		CG. (10.9% VS. 3.3% and				cytology alone	of screening.	Without access to
		6.9% VS. 5.2%). One study				Lingitad data an		nealth care or to
		reported colposcopy				Limited data on		organized
		round referrals wore				corooping and		screening
		higher in the IC (2.7%) ve				diagnostic		bigbor for US
		2 1%)				procedures		women with
		2.170).				procedures.		access to care in
		Cobort data from screened				Not all trials		health systems
		women in Germany				reported		with organized
		(WOLPHSCREEN) found				colposcopy and		cervical cancer
		colposcopy referral rates				biopsy rates.		screening
		of 3.9% after 1 round of						programs
		screening with cotesting.						P 9
		and an additional 1.0% at						
		the second round.						
		None of the included						
		studies reported adverse						
		events associated with						
		screening, diagnostic						
		testing, or treatment of						
		CIN. Cases of ICC among						
		screen-negative women						
		(false negatives) were not						
		consistently reported, but						
		were rare with numbers too						
		small to draw comparisons.						

	# of Studies (k), # of					Body of	EPC Assessment of	
Testing	Observations (n)	Sum mary of Findings	Consistency/	Reporting		Evidence	Strength of Evidence	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
hrHPV	Colposcopy, biopsy,	The IPD meta-analysis did		Not		Pooled	We have limited	All trials were in
primary	false positives, and	not report colposcopy rates		detected		outcomes of	confidence that the pooled	organized
screening or	false negatives	but reported biopsy rates.				primary hrHPV	estimate for biopsy rate	screening
cotesting		Pooled biopsy rates had				testing and	and false-negative rate for	programs in
w ith	1 IPD meta-analysis	very high heterogeneity				cotesting trials	ICC lies close to the true	European
cytology		explained by the 2-fold				w ith marked	effect.	countries with
	n=176,464	difference in biopsy rates				heterogeneity in		nationalized health
		in one trial. Biopsy rates				study design,		systems.
		w ere similar betw een arms				testing		
		for the other trials. False-				protocols,		
		positive rates for CIN2+				follow up, and		
		detection were higher in				ICC		
		the IG for 5 trials reporting				ascertainment		
		sufficient data for this						
		outcome at round 1. In 2				High statistical		
		trials with data on round 2				heterogeneity in		
		false-positive rates, they				pooled estimate		
		were similar in the trial with				of biopsy rates		
		the most complete						
		follow up, and remained						
		higher in the IG for the						
		other.						
		Few er ICC cases w ere						
		reported among women						
		who screened negative at						
		entry with hrHPV-based						
		screening (n=12)						
		compared to control						
		(n=35).						
hrHPV	Psychological harms	NA	NA	NA	NA	NA	NA	NA
primary								
screening	k=0							

Testing	# of Studies (k), # of Observations (n)	Summary of Findings	Consistency/	Reporting		Body of Evidence	EPC Assessment of Strength of Evidence	
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
hrHPV cotesting w ith cytology	Psychological harms k=1 RCT, 1 cross- sectional study n=2,508 (RCT) n=428 (cross-sectional)	2 studies reported psychological effects of HPV cotesting; positive hrHPV test results were associated with higher anxiety and distress and low er satisfaction with current and past sexual partnerships, particularly when cytology findings are normal.	Reasonably consistent Reasonably Precise	Undetected	2 Fair	Limited data: one trial reporting psychological harms of screening, one cross-sectional study	We are moderately confident that the estimates for psychological effects of screening lie close to the true effect.	Psychological harms assessed in women enrolled in organized screening in the United Kingdom, findings may not be fully applicable to U.S. women
KQ 2a: Subpo	pulations (adverse eff	ect differences by age)						
hrHPV primary screening in w omen age <30-35 years	Colposcopy, biopsy, false positives, and false negatives k=4 RCTs n=41,914	Colposcopy referral rate differences varied by study but w ere consistently higher in the IG than in the CG with 1 round of screening. 1 trial reported colposcopy referrals for the youngest w omen, ages 25 to 29 years; these w ere the highest observed for any trial group (19.9% [95% Cl, 17.9% to 22.1%]). One study reported false- positive rates in w omen age <30-35 years; rates in the IG w ere higher (12.2%) than in the CG (3.7%). None of the included studies reported adverse events associated with screening, diagnostic testing, or treatment of CIN by age. Psychological harms also w ere not reported. None of the trials with more than 1 round of screening data available	Reasonably consistent Reasonably precise	Undetected	RCTs: 1 good, 2 fair		We are moderately confident that the estimates for colposcopy referrals and false-positive rates of HPV-primary screening vs. cytology lie close to the true effects for women age <35 years. We identified no evidence on psychological harms by age group or on complications related to biopsies and subsequent treatments.	All trials were in organized screening programs in European countries with nationalized health systems.

	# of Studies (k), # of			-		Body of	EPC Assessment of	
Testing	Observations (n)	Summary of Findings	Consistency/	Reporting	o "'	Evidence	Strength of Evidence	A 11 1 11/
method	Study Designs	by Outcome	Precision	Bias	Quality	Limitations	for That KQ	Applicability
		at round 2 by age. False						
		negatives by age were not						
		reported.						
hrHPV	Colposcopy, biopsy,	Colposcopy referrals were	Reasonably	Undetected	1 good,		We are moderately	All trials were in
cotesting with	false positives, and	reported by age for Round	consistent				confident that the estimates	organized
cytology in	false negatives	1, rates were higher in					for colposcopy referrals	screening
w omen age		younger women in the IG	Reasonably				and false-positive rates of	programs in
<30-35 years	k=1 RCT	vs. CG (11.6% vs. 4.1%).	precise				HPV-cotesting vs. cytology	European
							lie close to the true effects	countries with
	n=11,810	The most pronounced					forwomenage <35 years.	nationalized health
		group differences in false-						systems.
		positive rates were seen					We identified no evidence	
		among younger women;					on psychological harms by	
		20% among IG women and					age group or on	
		4% among CG women					complications related to	
		ages 25 to 34 years.					biopsies and subsequent	
							treatments.	
		None of the included						
		studies reported adverse						
		events associated with						
		screening, diagnostic						
		testing, or treatment of CIN						
		by age. Psychological						
		harms were not reported						
		by age. None of the trials						
		with more than 1 round of						
		screening data available						
		reported colposcopy rates						
		at round 2 by age. False						
		negatives by age were not						
		reported.						

Testing	# of Studies (k), # of Observations (n) Study Designs	Summary of Findings	Consistency/	Reporting	Quality	Body of Evidence	EPC Assessment of Strength of Evidence	Applicability
method	Study Designs	by Outcome	Precision	DidS	Quality	Linnations		
nrHPV	Colposcopy, blopsy,	All four trials reported	Reasonably	Undetected	1 good,		we are moderately	All trials were in
primary	faise positives, and	colposcopy referrals for	consistent		Ztair		confident that a single	organized
screening in	faise negatives	women age >30 or >35	Deservebb				round of HPV-based	screening
w omen age		years at round 1. Rates	Reasonably				screening in women age	programs in
≥30-35 years	K=4 RCIS	tended to be nigner in the	precise				>30-35 years will result in	European
		IG, Similar to the overall					nigner rates of colposcopy	countries with
	n=169,714	findings for KQ 2, but were					compared to cytology-	nationalized health
		slightly low er in magnitude.					based screening.	systems.
		One that reported faise-					We have no ovidence to	
		positive rates by age; they					we have no evidence to	
		were higher in the IG					estimate the effect of HPV-	
		(5.4%) compared with the					based screening on other	
		CG (2.9%).						
		None of the included					screening.	
		None of the included						
		studies reported adverse						
		screening, diagnostic						
		testing, or treatment or CIN						
		by age. Psychological						
		nams also were not						
hrUD\/	Coloosoony bionoy	Only one trial reported	Baaaaaabhu	Indetected	1 good		We are moderately	All triple w ore in
	folgo positivos, piopsy,	only one that reported	Reasonably	Undelected	i good		opfident that a single	All thats were in
colesting with	false positives, and	found higher referred rates	CONSISTENT				round of HDV based	organized
	raise negatives	in the IC vs. CC group	Paacapably				scrooping in women age	screening
NOMEN age	k_1 PCT 1 aphart	(10.6%) vo $2.0%$ This trial	neasonably				screening in women age	piogranis in Europeop
≥30-35 years	K=1 RC1, 1 CONOIL	(10.0% VS. 3.0%). This that	precise				>30 01 35 years will result	
	- 22.264 (DOT)	also found higher false-					in higher falles of	countries with
	n=33,304 (RCT)	CC (10.4% yrg 2.2%)					colposcopy compared to	
	n-221 919 (aphort)	CG(10.4% VS. 3.3%)					cytology-based screening.	Systems.
	n=331,818 (conort)	among women ages 35 to					We have no ovidence to	
		bu years; this was low er					we have no evidence to	
		discrepant then emerg					estimate the effect of HPV-	
							pased screening on other	
		younger women.					potential namb U	
		None of the included					screening.	
		studies reported adverse						
		events associated with						
		screening diagnostic						
		testing or treatment of CIN						
		testing, or treatment of CIN						

Testing method	# of Studies (k), # of Observations (n) Study Designs	Summary of Findings by Outcome	Consistency/ Precision	Reporting Bias	Quality	Body of Evidence Limitations	EPC Assessment of Strength of Evidence for That KQ	Applicability
		by age. Psychological harms were not reported by age.						
KQ 2b and 2c	: Relationship of rescr	eening intervals to future can	cer incidence or	progression				
HPV primary screening or cotesting compared to cytology	No comparative studies	No completed trials compared screening intervals with use of hrHPV testing. Trials comparing hrHPV testing to cytology used 2- to 5-year intervals, but given variability of screening protocols, comparison betw een trials w as not meaningful. No evidence on subpopulations.	NA	NA	NA	NA	Evidence is insufficient for comparison of rescreening intervals with hrHPV testing on cancer-related outcomes. No evidence on subpopulations and rescreening intervals was identified.	NA

Synthesized Literature Search Strategies

CDSR

- #1 (cervical or cervix):ti,ab,kw near/3 (screen* or detect*):ti,ab,kw
- #2 "liquid based cytology":ti,ab,kw
- #3 (papillomavirus or "papilloma virus" or hpv):ti,ab,kw near/3 (test* or screen* or detect*):ti,ab,kw
- #4 (papillomavirus or "papilloma virus" or hpv):ti,ab,kw near/3 vaccin*:ti,ab,kw
- #5 (or #1-#4) Publication Year from 2010 to 2015, in Cochrane Reviews (Reviews and Protocols)

DARE

Line	Search
1	(((cervical or cervix) ADJ3 (screen* or detect*))) IN DARE FROM 2010 TO 2015
2	("liquid based cytology") IN DARE FROM 2010 TO 2015
3	(papillomavirus or "papilloma virus" or hpv) ADJ3 (test* or screen or detect*) IN DARE FROM 2010 TO 2015
4	(papillomavirus or "papilloma virus" or hpv) ADJ3 vaccin*) IN DARE FROM 2010 TO 2015
5	#1 OR #2 OR #3 OR #4

HTA (via CRD)

Line	Search
1	((cervical or cervix) ADJ3 (screen* or detect*)) IN HTA FROM 2010 TO 2015
2	("liquid based cytology") IN HTA FROM 2010 TO 2015
3	((papillomavirus or "papilloma virus" or hpv) ADJ3 (test* or detect*)) IN HTA FROM 2010 TO 2015
4	((papillomavirus or "papilloma virus" or hpv) ADJ3 vaccin*) IN HTA FROM 2010 TO 2015
5	#1 OR #2 OR #3 OR #4

Medline

Database: Ovid MEDLINE(R) <1946 to February Week 2 2017>, Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations <February 24, 2015>, Ovid MEDLINE(R) Daily Update <February 15, 2017>

Search Strategy:

- 1 Cervical Intraepithelial Neoplasia/ ()
- 2 "Squamous Intraepithelial Lesions of the Cervix"/ ()
- 3 Uterine Cervical Neoplasms/()
- 4 Uterine Cervical Dysplasia/ ()
- 5 Papillomaviridae/ ()
- 6 Papillomavirus Infections/()

- 7 Alphapapillomavirus/ ()
- 8 Human papillomavirus 16/ ()
- 9 Human papillomavirus 18/ ()
- 10 Human papillomavirus 31/()
- 11 or/1-10()
- 12 Mass screening/()
- 13 Vaginal Smears/()
- 14 Papanicolaou Test/()
- 15 DNA Probes, HPV/()
- 16 Human Papillomavirus DNA Tests/()
- 17 screen\$.ti,ab. ()
- 18 vaginal smear\$.ti,ab. ()
- 19 (papanicolau or papanicolaou).ti,ab. ()
- 20 pap.ti,ab. ()
- 21 cervical smear\$.ti,ab. ()
- 22 or/12-21 ()
- 23 11 and 22 ()
- 24 ((cervical or cervix) adj3 (screen\$ or detect\$)).ti,ab. ()
- 25 liquid based cytology.ti,ab. ()
- 26 ((papillomavirus or papilloma virus) adj3 (test\$ or screen\$ or detect\$)).ti,ab. ()
- 27 (hpv adj3 (test\$ or screen\$ or detect\$)).ti,ab. ()
- 28 23 or 24 or 25 or 26 or 27 ()
- 29 Papillomavirus Vaccines/ ()
- 30 ((Papillomavirus or papilloma virus) adj3 vaccin\$).ti,ab. ()
- 31 (hpv adj3 vaccin\$).ti,ab. ()
- 32 29 or 30 or 31 ()
- 33 28 or 32 ()
- 34 limit 33 to (english language and yr="2010 -Current") ()
- 35 limit 34 to systematic reviews ()
- 36 remove duplicates from 35 ()
- 37 Animals/ not (Humans/ and Animals/) ()
- 38 36 not 37 ()

PubMed, publisher-supplied

Search	Query
<u>#8</u>	Search #7 AND systematic[sb] AND publisher[sb] AND English[Language] AND ("2010"[Date - Publication] : "3000"[Date - Publication])
<u>#7</u>	Search #1 OR #2 OR #3 OR #4 OR #5 OR #6
<u>#6</u>	Search hpv[tiab] AND vaccin*[tiab]
<u>#5</u>	Search hpv[tiab] AND (test*[tiab] OR screen*[tiab] OR detect*[tiab])
<u>#4</u>	Search (papillomavirus[tiab] or "papilloma virus"[tiab]) AND (vaccin*[tiab])
<u>#3</u>	Search (papillomavirus[tiab] or "papilloma virus"[tiab]) AND (test*[tiab] OR screen*[tiab] OR detect*[tiab])
<u>#2</u>	Search "liquid based cytology"[tiab]
<u>#1</u>	Search (cervical[tiab] OR cervix[tiab]) AND (screen*[tiab] OR detect*[tiab])

Primary Literature Search Strategies

CENTRAL

- #1 hpv*:ti,ab,kw near (test* or detect* or screen* or smear* or assay*):ti,ab,kw
- #2 papillomavir*:ti,ab,kw near (test* or detect* or screen* or smear* or assay*):ti,ab,kw
- #3 (papilloma* next vir*):ti,ab,kw near (test* or detect* or screen* or smear* or assay*):ti,ab,kw
- #4 #1 or #2 or #3
- #5 "hybrid capture":ti,ab,kw
- #6 (HC2 or "HC 2" or HCII or "HC II"):ti,ab,kw
- #7 cobas:ti,ab,kw
- #8 APTIMA:ti,ab,kw
- #9 Cervista:ti,ab,kw
- #10 digene:ti,ab,kw
- #11 amplicor:ti,ab,kw
- #12 pcr:ti,ab,kw
- #13 (polymerase next chain next reaction*):ti,ab,kw
- #14 "linear array":ti,ab,kw
- #15 #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14
- #16 (hpv* or papillomavir* or (papilloma next vir*)):ti,ab,kw
- #17 #15 and #16
- #18 #4 or #17 Publication Year from 2011 to 2017, in Trials

MEDLINE

Database: Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily Update Search Strategy:

- 1 Papillomavirus Infections/di [Diagnosis] ()
- 2 Papillomaviridae/cy, ip [Cytology, Isolation & Purification] ()
- 3 Alphapapillomavirus/ip [Isolation & Purification] ()
- 4 Human papillomavirus 16/ip [Isolation & Purification] ()
- 5 Human papillomavirus 18/ip [Isolation & Purification] ()
- 6 DNA Probes, HPV/ ()
- 7 Human Papillomavirus DNA Tests/()
- 8 (hpv\$ adj5 (test\$ or detect\$ or screen\$ or smear\$ or assay\$)).ti,ab. ()
- 9 (papillomavir\$ adj5 (test\$ or detect\$ or screen\$ or smear\$ or assay\$)).ti,ab. ()
- 10 (papilloma vir\$ adj5 (test\$ or detect\$ or screen\$ or smear\$ or assay\$)).ti,ab. ()
- 11 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 ()
- 12 Papillomavirus Infections/()
- 13 Papillomaviridae/ ()
- 14 Alphapapillomavirus/ ()
- 15 Human papillomavirus 16/ ()
- 16 Human papillomavirus 18/ ()
- 17 Human papillomavirus 31/ ()
- 18 12 or 13 or 14 or 15 or 16 or 17 ()
- 19 Mass screening/()
- 20 Early detection of cancer/()
- 21 Vaginal smears/()
- 22 Papanicolaou Test/()
- 23 "Diagnostic Techniques, Obstetrical and Gynecological"/()
- 24 Cytological Techniques/()
- 25 Histocytological Preparation Techniques/()
- 26 Cytodiagnosis/ ()
- 27 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 ()
- 28 18 and 27 ()
- 29 Hybrid Capture.ti,ab. ()
- 30 HC2.ti,ab. ()
- 31 hc 2.ti,ab. ()
- 32 hcII.ti,ab. ()
- 33 hc II.ti,ab. ()
- 34 cobas.ti,ab. ()
- 35 APTIMA.ti,ab. ()
- 36 Cervista.ti,ab. ()
- 37 digene.ti,ab. ()
- 38 amplicor.ti,ab. ()
- 39 polymerase chain reaction/ ()
- 40 Reverse Transcriptase Polymerase Chain Reaction/ ()
- 41 polymerase chain reaction\$.ti. ()
- 42 pcr.ti. ()
- 43 linear array.ti,ab. ()
- 44 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 ()
- 45 papillomavir\$.ti,ab,hw. ()

- 46 papilloma vir\$.ti,ab,hw. ()
- 47 hpv\$.ti,ab,hw. ()
- 48 45 or 46 or 47 ()
- 49 44 and 48 ()
- 50 11 or 28 or 49 ()
- 51 limit 50 to systematic reviews ()
- 52 clinical trials as topic/ or controlled clinical trials as topic/ or randomized controlled trials as topic/ or meta-analysis as topic/ ()
- 53 (clinical trial or controlled clinical trial or meta analysis or randomized controlled trial).pt. ()
- 54 Random\$.ti,ab. ()
- 55 control groups/ or double-blind method/ or single-blind method/ ()
- 56 clinical trial[§].ti,ab. ()
- 57 controlled trial\$.ti,ab. ()
- 58 meta analy\$.ti,ab. ()
- 59 cohort studies/ or longitudinal studies/ or follow-up studies/ or prospective studies/ or retrospective studies/ ()
- 60 cohort.ti,ab. ()
- 61 longitudinal.ti,ab. ()
- 62 (follow up or followup).ti,ab. ()
- 63 Registries/()
- 64 (registr\$ or register\$).ti,ab. ()
- 65 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 ()
- 66 50 and 65 ()
- 67 51 or 66 ()
- 68 Animal/ not (Animal/ and Human/) ()
- 69 67 not 68 ()
- 70 Male/ not (Female/ and Male/) ()
- 71 69 not 70 ()
- 72 limit 71 to (english language and yr="2011 -Current") ()
- 73 remove duplicates from 72 ()

PsycInfo (via Ovid)

Database: PsycINFO Search Strategy:

- 1 human papillomavirus/ ()
- 2 testing/()
- 3 Cancer Screening/()
- 4 Screening/()
- 5 exp Screening Tests/()
- 6 2 or 3 or 4 or 5 ()
- 7 1 and 6 ()
- 8 (hpv\$ adj5 (test\$ or detect\$ or screen\$ or smear\$ or assay\$)).ti,ab. ()
- 9 (papillomavir\$ adj5 (test\$ or detect\$ or screen\$ or smear\$ or assay\$)).ti,ab. ()
- 10 (papilloma vir\$ adj5 (test\$ or detect\$ or screen\$ or smear\$ or assay\$)).ti,ab. ()
- 11 7 or 8 or 9 or 10 ()
- 12 limit 11 to (english language and yr="2011 -Current") ()

PubMed

Search	Query
<u>#8</u>	Search ((#7) AND English[Language]) AND ("2011/01/01"[Date - Publication] : "3000"[Date - Publication])
<u>#7</u>	Search #6 AND publisher[sb]
<u>#6</u>	Search #5 AND (systematic[sb] OR random*[tiab] OR trial*[tiab] OR cohort*[tiab] OR longitudinal[tiab] OR follow up[tiab] OR followup[tiab] OR retrospective[tiab] OR prospective[tiab] OR register*[tiab] OR registr*[tiab])
<u>#5</u>	Search #3 AND #4
<u>#4</u>	Search HPV [tiab] OR papillomavir* [tiab] OR papilloma vir*[tiab] OR "hybrid capture*" [tiab] OR HC2 [tiab] OR HCII [tiab] OR "HC 2" [tiab] OR "HC II" [tiab] OR cobas[tiab] OR aptima[tiab] OR cervista[tiab] OR digene[tiab] OR amplicor[tiab] OR PCR[tiab] OR polymerase chain reaction*[tiab] OR "linear array"[tiab] OR ((viral [tiab] OR virolog* [tiab]) AND (DNA [tiab]))
<u>#3</u>	Search #1 AND #2
<u>#2</u>	Search (cancer* [tiab] OR carcinoma OR adenocarcinoma OR neoplas* [tiab] OR dysplas* [tiab] OR lesion*[tiab] OR dyskaryos* [tiab] OR squamous [tiab] OR CIN [tiab] OR CINII* [tiab] OR CIN2* [tiab] OR CINIII* [tiab] OR CIN3* [tiab] OR SIL [tiab] OR HSIL [tiab] OR H-SIL [tiab] OR LSIL [tiab] OR L-SIL [tiab] OR ASCUS [tiab] OR AS-CUS [tiab])
<u>#1</u>	Search (cervix [tiab] OR cervical [tiab] OR cervico* [tiab])

Appendix A Table 1. Inclusion and Exclusion Criteria

Category	Included	Excluded
Aim	KQs 1, 2: Studies targeting cervical cancer	KQs 1, 2: Use of HPV or cytology testing
	screening or development of cervical cancer over	for posttreatment surveillance or other
	time	purposes
Population	KQs 1, 2: Women age ≥21 years who have a cervix	KQs 1, 2:
		 High-risk populations (e.g., women who
		are HIV-positive)
		 Women without a cervix
		 Women who have had a hysterectomy
		with the removal of the cervix
		 Pregnant w omen
Interventions	KQs 1, 2:	KQs 1, 2: Nonprimary HPV screening
	 Primary HPV screening strategies*†: 	strategies (e.g., primary cytology-based
	 Alone 	screening, cytology with HPV triage [reflex
	 In combination with cytology (cotesting) 	HPV])
	 In combination with cytology triage of positive 	
	HPV (reflex cytology)	
	• Self- or clinician-collected HPV specimens,	
Course ou oto no	collected at home or in a clinic	Kos 1 2 Comparative offerstiveness of
Comparators	Kus 1, 2: Comparative effectiveness (i.e., cytology-	NUS 1, 2: Comparative effectiveness of
	primary HDV screening strategies [cotesting, reflex	based evidence screening strategies (inquid-
	cutology or reflex HD(/1)	alone): cytology with HPV/ triage vs
		cytology-based screening strategies
Outcomes	KO 1:	cytology-based screening strategies
Outcomes	Farly detection of disease (CIN3+)	
	Invasive cancer	
	Mortality (all-cause or cervical cancer)	
	 Improved quality of life 	
	The following hierarchy ¹⁰⁸ of outcomes for new	
	cervical cancer screening methods will be used:	
	Rank 1: Cervical cancer mortality (quality-adjusted	
	life-years gained)	
	Rank 2: Cervical cancer morbidity/stage IB+	
	incidence	
	Rank 3: Cervical cancer incidence (including	
	microinvasive)	
	Rank 4: Reduced CIN3+ incidence or p16	
	Immunonistochemistry-associated nigh-grade	
	Squamous intraepitnelial lesion incidence ¹⁰⁰	
	More CIN2 + detection overall (cumulative	
	More CIN2+ detection followed by less CIN3+	
	detection at subsequent screening (note: CIN2+	
	detection may include overdiagnosis)	
	Rank 6: Increased test positivity with increased.	
	similar, or minimally reduced positive predictive	
	value	
	Rates of false-positive and false-negative	
	screening test results	
	Rates of colposcopy and/or blopsy	
	• Stigma (e.g., sexually transmitted infection)	
	Partner discord Developing distance (a.e. any interview)	
	Psychological distress (e.g., anxiety) Deduced quality of life	
	Reduced quality of life	

Appendix A Table 1. Inclusion and Exclusion Criteria

Category	Included	Excluded
Study	KQs 1, 2:	KQs 1, 2:
Designs	 Individual patient data meta-analyses and 	 Case-control studies
	systematic reviews	Case reports
	 Randomized, controlled trials; controlled clinical 	Case series
	trials	 Narrative reviews
	 Cohort studies, including patient registries 	Editorials
Setting	KQs 1, 2: Primary care (e.g., internal medicine,	KQs 1, 2:
	family medicine, obstetrics/gynecology) or other	 Community/university research
	settings generalizable to primary care (e.g.,	laboratories or other nonmedical centers
	university-based health clinics, mobile clinics,	 Correctional facilities
	sexually transmitted infection clinics, family planning	Worksites
	clinics)	 Inpatient/residential facilities
Country	KQs 1, 2: Countries with cervical cancer screening	KQs 1, 2: Countries not categorized as
	programs comparable to those of the United States	"Very High" on the Human Development
	and categorized as "Very High" or equivalent on the	Index or not applicable to U.S. clinical
	2014 Human Development Index (as defined by the	settings or populations
	United Nations Development Programme)	
Language	KQs 1, 2: English only	KQs 1, 2: Non-English publications
Quality	KQs 1, 2: Fair- or good-quality, according to	KQs 1, 2: Poor-quality, according to
	USPSTF design-specific criteria	USPSTF design-specific criteria

*Primary screening strategies refer to the use of a certain type of test in the first step of a screening approach. †HPV tests approved by the U.S. Food and Drug Administration include: the Hybrid Capture 2 High-Risk HPV DNA Test (Digene Corp., Gaithersburg, MD), cobas HPV Test (Roche Molecular Systems, Inc., Pleasanton, CA), APTIMA® HPV Assay (E6/E7 mRNA) (Gen-Probe Inc., San Diego, CA), Cervista[™] HPV16/18 (Hologic, Inc., Madison, WI), and Cervista[™] HR HPV.

Abbreviations: CIN = cervical intraepithelial neoplasia; HPV = human papillomavirus; KQ = Key Question; USPSTF = U.S. Preventive Services Task Force

Appendix A Table 2. Quality Assessment Criteria

Study Design	Adapted Quality Criteria
Randomized and	 Was there adequate participation in the study by eligible/invited persons?
nonrandomized	 Valid random assignment?
controlled trials,	Was allocation concealed?
adapted from the	 Was eligibility criteria specified?
U.S. Preventive	• Were groups similar at baseline?
Services Task Force	 Was there a difference in attrition between groups after randomization?
methods	 Was the reading (interpretation) of the pathology results adequate?
	Were outcome assessors blinded?
	 Were measurements equal, valid and reliable?
	 Was there risk of contamination?
	 Was there adequate adherence to the intervention?
	Were the statistical methods acceptable?
	 Was the handling of missing data appropriate?
	 Was there acceptable follow up?
	 Was there evidence of selective reporting of outcomes?
Cohort studies,	 Was there representativeness of the exposed cohort?
adapted from the	 Was the non-exposed systematic selected?
New castle-Ottaw a	 Was the ascertainment of exposure reported?
Scale	 Were eligibility criteria specified?
	 Were groups similar at baseline?
	 Was the reading (interpretation) of the pathology results adequate?
	 Were outcome assessors blinded?
	 Were measurements equal, valid and reliable?
	 Was follow up long enough for outcomes to occur?
	 Were the statistical methods acceptable?
	 Was the handling of missing data appropriate?
	 Was there adjustment for confounders?
	Was there acceptable follow up?

Good quality studies generally meet all quality criteria. Fair quality studies do not meet all the criteria but do not have critical limitations that could invalidate study findings. Poor quality studies have a single fatal flaw or multiple important limitations that could invalidate study findings. Critical appraisal of studies using *a priori* quality criteria are conducted independently by at least two reviewers. Disagreements in final quality assessment are resolved by consensus, and, if needed, consultation with a third independent reviewer.

Appendix A Figure 1. Literature Flow Diagram

Abbreviations: KQ = Key Question

Organization	Year	Recommendation Statement
American Society of Clinical Oncology (ASCO) ¹⁸²	2016	 HPV testing is recommended in all resource settings. Co-testing is an option in maximal settings (which would include the US), how ever the added value on the basis of increased costs is limited. Self-collection of samples may be used for HPV testing. In maximal settings, women aged 25-65 years should be screened every 5 years (≥ 9 screens in a lifetime). Women with abnormal triage results should receive colposcopy, follow ed by LEEP or cryotherapy/cold coagulation. 12-month post-treatment follow up is recommended.
American College of Physicians (ACP) ¹⁸³	2015	 Best practice advice: Clinicians should not screen average-risk women younger than 21 years for cervical cancer. Clinicians should start screening average-risk women for cervical cancer at age 21 years once every 3 years with cytology (cytologic tests without human papillomavirus [HPV] tests). Clinicians should not screen average-risk women for cervical cancer with cytology more often than once every 3 years. Clinicians may use a combination of cytology and HPV testing once every 5 years in average-risk women aged 30 years or older who prefer screening less often than every 3 years. Clinicians should not perform HPV testing in average-risk women younger than 30 years. Clinicians should stop screening average-risk women older than 65 years for cervical cancer if they have had 3 consecutive negative cytology results or 2 consecutive negative cytology plus HPV test results within 10 years, with the most recent test performed within 5 years. Clinicians should not screen average-risk women of any age for cervical cancer if they have had a hysterectomy with removal of the cervix.
Society for Gynecologic Oncology (SGO), the American Society for Colposcopy and Cervical Pathology (ASCCP), the American College of Obstetricians and Gynecologists (ACOG), the American Cancer Society (ACS), the American Society of Cytopathology (ASC), the College of American Pathologists (CAP) and the American Society for Clinical Pathology (ASCP) ⁶⁶	2015	Interim guidance: A negative hrHPV test provides greater reassurance of low CIN3+ risk than a negative cytology result. Because of equivalent or superior effectiveness, primary hrHPV screening can be considered as an alternative to current U.S. cytology-based cervical cancer screening methods. Cytology alone and co-testing remain the screening options specifically recommended in major guidelines. Based on limited data, triage of hrHPV-positive w omen using a combination of genotyping for HPV 16 and 18 and reflex cytology for w omen positive for the 12 other hrHPV genotypes appears to be a reasonable approach to managing hrHPV-positive w omen. Re-screening after a negative primary hrHPV screen should occur no sooner than every 3 years. Primary hrHPV screening should not be initiated before 25 years of age.
National Comprehensive Cancer Netw ork (NCCN) ^{184, 185}	2014	The NCCN endorses the 2012 ACS, ASCCP, and ASCP recommendations (see below).
Canadian Preventive Services Task Force (CPSTF) ¹⁸⁶	2013	For women younger than 20 years of age, the CPSTF recommends not routinely screening for cervical cancer (strong recommendation; high-quality evidence). For women aged 20–24 years, the CPSTF recommends not routinely screening for cervical cancer (weak recommendation; moderate- quality evidence). For women aged 25–29 years, the CPSTF recommends routine screening for cervical cancer every 3 years (weak recommendation; moderate-quality evidence). For women aged 30–69 years, the CPSTF recommends routine screening for cervical cancer every 3 years (strong recommendation; high-quality evidence). For women aged 70 years and older w ho have undergone adequate screening (i.e., 3 successive negative Pap test results in the previous 10 years), the CPSTF recommends that routine screening may end. For women aged 70 years and older w ho have not

Organization	Year	Recommendation Statement
		undergone adequate screening, the CPSTF recommends continued screening until 3 negative test results have been obtained (weak recommendation; low - quality evidence).
Institute for Clinical Systems Improvement (ICSI) ¹⁸⁷	2013	Endorses the 2012 USPSTF recommendations (see Section II).
World Health Organization (WHO) ¹⁸⁸	2013	Where resources permit, HPV screening should be done on women aged 30 years and older, follow ed by treating with cryotherapy (or LEEP when not available), over screening with visual inspection with acetic acid or screening with cryotology follow ed by colposcopy. This strategy is favored over screening with HPV testing follow ed by colposcopy.
American Cancer Society (ACS), American Society for Colposcopy and	2012	Age to Begin Screening: Cervical cancer screening should begin at age 21 years. Women aged younger than 21 years should not be screened regardless of the age of sexual initiation or other risk factors.
Cervical Pathology (ASCCP), and the American Society for Clinical Pathology		Screening Periodicity: Women at any age should NOT be screened annually by any screening method; rather, recommended screening intervals for women are based on age and clinical history.
(ASCP) ⁶⁴		Women Aged 21 to 29 Years: For women aged 21 to 29 years, screening with cytology alone every 3 years is recommended. For women aged 21 to 29 years with 2 or more consecutive negative cytology results, there is insufficient evidence to support a longer screening interval (i.e., more than 3 years). HPV testing should not be used to screen women in this age group, either as a stand-alone test or as a co-test with cytology.
		Women Aged 30 to 65 Years: Women aged 30 to 65 years should be screened with cytology and HPV testing ("co-testing") every 5 years (preferred) or cytology alone every 3 years (acceptable). There is insufficient evidence to change screening intervals in this age group following a history of negative screens.
		Management of Women With HPV-Positive, Cytology-Negative Co-tests: Women co-testing HPV positive, cytology negative should be follow ed with either (as noted in the interim ASCCP guidelines): Option 1) repeat co-testing in 12 months or Option 2) immediate HPV genotype-specific testing for HPV16 alone or for HPV16/18. If co-testing is repeated at 12 months, w omen testing positive on either test (HPV positive or LSIL or more severe cytology) should be referred to colposcopy; w omen testing negative on both tests (HPV-negative and ASC-US or negative cytology) should return to routine screening. If immediate HPV genotype-specific testing is used, w omen testing positive for HPV16 or HPV16/18 should be referred directly to colposcopy; w omen testing negative for HPV16/18 should be co-tested in 12 months, with management of results as described in option 1. Women co-testing HPV positive, cytology negative should not be referred directly to colposcopy. Furthermore, they should not be tested for individual HPV genotypes other than HPV16 and HPV18. The use of HPV genotype-specific testing for HPV16 or HPV16/18 is recommended only for the management of HPV-positive, cytology- negative women. Currently, there is insufficient evidence to support the use of non-HPV biomarkers.
		Management of Women With HPV-Negative, ASC-US Cytology Results: Women with ASC-US cytology and a negative HPV test result should continue with routine screening as per age-specific guidelines.
		Screening With HPV Testing Alone: In most clinical settings, women aged 30 years to 65 years should not be screened with HPV testing alone as an alternative to co-testing at 5-year intervals or cytology alone at 3-year intervals.
		Women Aged Older Than 65 Years: Women aged older than 65 years with evidence of adequate negative prior screening and no history of CIN2+ within

Organization	Year	Recommendation Statement
		the last 20 years should not be screened for cervical cancer with any modality (adequate negative prior screening is defined as 3 consecutive negative cytology results or 2 consecutive negative co-tests within the 10 years before ceasing screening, with the most recent test occurring within the past 5 years). Once screening is discontinued it should not resume for any reason, even if a w oman reports having a new sexual partner.
		Women Aged Older Than 65 Years With a History of CIN2, CIN3, or Adenocarcinoma In Situ: Follow ing spontaneous regression or appropriate management of CIN2, CIN3, or adenocarcinoma in situ, routine screening should continue for at least 20 years (even if this extends screening past age 65 years).
		Women Who Have Undergone Hysterectom y and Have No History of CIN2+: Women at any age following a hysterectomy with removal of the cervix w ho have no history of CIN2+ should not be screened for vaginal cancer using any modality. Evidence of adequate negative prior screening is not required. Once screening is discontinued, it should not resume for any reason, including a woman's report of having a new sexual partner.
		Screening Following Vaccination: Looking to the Future: Recommended screening practices should not change on the basis of HPV vaccination status.
American Academy of Family Physicians (AAFP) ¹⁸⁹	2012	Endorses the 2012 USPSTF recommendation (see Section II).
American College of Obstetrics and Gynecologists (ACOG) ¹⁹⁰	2012	 The follow ing recommendations are based on good and consistent scientific evidence (Level A): Cervical cancer screening should begin at age 21 years. Women younger than age 21 years should not be screened regardless of the age of sexual initiation or the presence of other behavior-related risk factors. Women aged 21–29 years should be tested with cervical cytology alone, and screening should be performed every 3 years. Co-testing should not be performed in w omen younger than 30 years. For w omen aged 30–65 years, co-testing with cytology alone every 3 years is acceptable. Annual screening should not be performed. In w omen aged 30–65 years, screening with cytology alone every 3 years is acceptable. Annual screening should not be performed. Women w ho have a history of cervical cancer, have HIV infection, are immunocompromised, or were exposed to diethylstilbestrol in utero should not follow routine screening. In w omen w ho have had a hysterectomy with removal of the cervix (total hysterectomy) and have never had CIN 2 or higher, routine cytology screening and HPV testing should be discontinued and not restarted for any reason. Screening by any modality should be discontinued after age 65 years in women with evidence of adequate negative prior screening results and no history of CIN 2 or higher. Adequate negative prior screening results are defined as three consecutive negative cytology results or two consecutive negative co-test results within the previous 10 years, with the most recent test performed within the past 5 years. The follow ing recommendations are based on limited and inconsistent scientific evidence (Level B): Women with ASC-US cytology and negative HPV co-testing results have a year with we risk of CIN 2 or higher and should continue with resulting content scientific evidence (Level B):
		very low risk of CIN 3 and should continue with routine screening as indicated for their age.

Year	Recommendation Statement
Year	 Recommendation Statement Women with a history of CIN 2, CIN 3, or adenocarcinoma in situ should continue to undergo routine age-based screening for 20 years after the initial posttreatment surveillance period, even if it requires that screening continue past age 65 years. Women should continue to be screened if they have had a total hysterectomy and have a history of CIN 2 or higher in the past 20 years or cervical cancer ever. Continued screening for 20 years is recommended in w omen w ho still have a cervix and a history of CIN 2 or higher. Therefore, screening with cytology alone every 3 years for 20 years after the initial post treatment surveillance period seems reasonable for w omen w ith a hysterectomy. Women with negative cytology and positive HPV co-testing results w ho are aged 30 years and older should be managed in one of tw o w ays:
	 Women with negative cytology and positive HPV co-testing results who are aged 30 years and older should be managed in one of two ways: Repeat co-testing in 12 months. If the repeat cervical cytology test result is LSIL or higher or the HPV test result is still positive; the patient should be referred for colposcopy. Otherwise, the patient should return to routine screening (see Figure 1 in the original guideline document). Immediate HPV genotype-specific testing for HPV-16 alone or HPV-16/18 should be performed. Women with positive results from tests for HPV-16 alone or HPV-16/18 should be referred directly for colposcopy. Women with negative results from tests for HPV-16 or HPV-16/18 should be co-tested in 12 months, with management of results as described (see Figure 2 in the original guideline document).
	 Women w ho have received the HPV vaccine should be screened according to the same guidelines as w omen w ho have not been vaccinated.
	Year

Abbre viations: ASC-US = atypical squamous cells of undetermined significance; CC = conventional cytology; CIN = cervical intraepithelis neoplasia; HIV = human immunodeficiency virus; HPV = human papillomavirus; HSIL = high-grade squamous intraepithelial lesions; LBC = liquid-based cytology; LSIL = low-grade squamous intraepithelial lesion

Reasons for exclusion

E1. Wrong aim or irrelevant
E2. Wrong setting
a. Non-HDI country
E3. Wrong comparator
a. Comparative effectiveness (e.g., liquid-based cytology vs. conventional cytology alone)
b. No comparator
E4. No relevant outcomes
a. Observational study reporting outcomes represented in RCTs
E5. Wrong population
a. Åges 18-21 years
b. Studies conducted in women with abnormal screening results (e.g., cytology with HPV triage, HPV
positive women only)
 Cohort defined by testing results (e.g., lab-based study)
E6. Wrong intervention (not an HPV primary screening strategy)
E7. Wrong study design
a. Observational study, n<10,000 participants
b. Single group cohort study with one round of screening; exceptions to the rule include addressing a
subpopulation of interest
E8. Non-English
E9. Poor quality
a. High or differential attrition
b. Other quality issues
E10. Unable to locate

 $\label{eq:abbreviations: HDI = Human Development Index; HPV = human papillomavirus; RCT = randomized controlled trial trial$

- Human papillomavirus testing for triage of women with cytologic evidence of lowgrade squamous intraepithelial lesions: baseline data from a randomized trial. The Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study (ALTS) Group. J Natl Cancer Inst. 2000;92(5):397-402. PMID: 10700419. http://dx.doi.org/10.1093/jnci/92.5.397 KQ1ESb, KQ2E5b.
- Long-term follow-up of ARTISTIC cervical screening trial cohort. http://www.nets.nihr.ac.uk/projects/hta/98 04501. Accessed PMID: None. KQ1E4, KQ2E4.
- Agorastos T, Chatzistamatiou K, Katsamagkas T, et al. Primary screening for cervical cancer based on high-risk human papillomavirus (HPV) detection and HPV 16 and HPV 18 genotyping, in comparison to cytology. PLoS One. 2015;10(3). PMID: 25793281. http://dx.doi.org/10.1371/journal.pone.011 9755 KQ1E7a, KQ2E7a.

- Amarosa EJ, Winer RL, Hong KJ, et al. Impact of Possibly Oncogenic High-Risk Human Papillomavirus (HPV) Types in Triage for ASC-US Cervical Cytology Results. J Low Genit Tract Dis. 2015;19(4):307-10. PMID: 26125096. http://dx.doi.org/10.1097/LGT.000000000 0000132 KQ1E5, KQ2E5.
- Andersson S, Dillner L, Elfgren K, et al. A comparison of the human papillomavirus test and Papanicolaou smear as a second screening method for women with minor cytological abnormalities. Acta Obstet Gynecol Scand. 2005;84(10):996-1000. PMID: 16167918. http://dx.doi.org/10.1111/j.0001-6349.2005.00702.x KO1F5b, KO2F5b.
- Anonymous. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: cohort study. BMJ. 2016;353:i2823. PMID: 27193898. http://dx.doi.org/10.1136/bmj.i2823 KQ1E1, KQ2E1.

- Anonymous. Safety of extending screening intervals beyond five years in cervical screening programmes with testing for high risk human papillomavirus: 14 year follow-up of population based randomised cohort in the Netherlands. BMJ. 2016;355:i5782. PMID: 27789534. https://dx.doi.org/10.1136/bmj.i5782 KQ1E4, KQ2E4.
- Anttila A, Hakama M, Kotaniemi-Talonen L, et al. Alternative technologies in cervical cancer screening: a randomised evaluation trial. BMC Public Health. 2006;6:252. PMID: 17042938. http://dx.doi.org/10.1186/1471-2458-6-252 KQ1E4, KQ2E4.
- Anttila A, Kotaniemi-Talonen L, Leinonen M, et al. Rate of cervical cancer, severe intraepithelial neoplasia, and adenocarcinoma in situ in primary HPV DNA screening with cytology triage: randomised study within organised screening programme. BMJ. 2010;340:c1804. PMID: 20423964. http://dx.doi.org/10.1136/bmj.c1804 KQ1E4, KQ2E4.
- Ascus-Lsil Traige Study Group. Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 2003;188(6):1383-92. PMID: 12824967. http://dx.doi.org/10.1067/mob.2003.457 KQ1E5b, KQ2E5b.
- Ascus-Lsil Traige Study Group. A randomized trial on the management of low-grade squamous intraepithelial lesion cytology interpretations. Am J Obstet Gynecol. 2003;188(6):1393-400. PMID: 12824968. http://dx.doi.org/10.1067/mob.2003.462

http://dx.doi.org/10.1067/mob.2003.462 KQ1E5b, KQ2E5b.

 Baussano I, Franceschi S, Gillio-Tos A, et al. Difference in overall and age-specific prevalence of high-risk human papillomavirus infection in Italy: evidence from NTCC trial. BMC Infect Dis. 2013;13:238. PMID: 23706168. http://dx.doi.org/10.1186/1471-2334-13-238 KQ1E6, KQ2E6, X4.

- Belinson J, Qiao YL, Pretorius R, et al. Shanxi Province Cervical Cancer Screening Study: a cross-sectional comparative trial of multiple techniques to detect cervical neoplasia. Gynecol Oncol. 2001;83(2):439-44. PMID: 11606114. http://dx.doi.org/10.1006/gyno.2001.6370 KQ1E2a, KQ2E2a.
- Bergeron C, Giorgi-Rossi P, Cas F, et al. Informed cytology for triaging HPVpositive women: substudy nested in the NTCC randomized controlled trial. J Natl Cancer Inst. 2015;107(2). PMID: 25568167. http://dx.doi.org/10.1093/jnci/dju423 KO1E1, KO2E1.
- Bergeron C, Jeannel D, Poveda J, et al. Human papillomavirus testing in women with mild cytologic atypia. Obstet Gynecol. 2000;95(6 Pt 1):821-7. PMID: 10831974. KQ1E5b, KQ2E5b.
- Bigras G, de Marval F. The probability for a Pap test to be abnormal is directly proportional to HPV viral load: results from a Swiss study comparing HPV testing and liquid-based cytology to detect cervical cancer precursors in 13,842 women. Br J Cancer. 2005;93(5):575-81. PMID: 16136031. http://dx.doi.org/10.1038/sj.bjc.6602728 KQ1E7b, KQ2E7b.
- 17. Bjerre P, Silfverdal L, Dillner L, et al. A randomized trial of basing treatment on human papillomavirus and/or cytology results in low-grade cervical lesion triage. Am J Obstet Gynecol. 2008;199(1):24 e1-7. PMID: 18295172. http://dx.doi.org/10.1016/j.ajog.2007.11.0 53 KQ1E5b, KQ2E5b.
- Blatt AJ, Kennedy R, Luff RD, et al. Comparison of cervical cancer screening results among 256,648 women in multiple clinical practices. Cancer Cytopathol. 2015;123(5):282-8. PMID: 25864682. http://dx.doi.org/10.1002/cncy.21544 KQ1E5c, KQ2E5c.

- Bowring J, Albrow R, Fisher A, et al. A prospective study of human papillomavirus (HPV) testing to resolve uncertainty in colposcopy. Cytopathology. 2013;24(5):309-13. PMID: 22925374. http://dx.doi.org/10.1111/j.1365-2303.2012.01003.x KQ1E5b, KQ2E5b.
- Budenholzer B. Adding HPV testing to cytology screening reduced > grade 3 cervical intraepithelial neoplasia at 5 years. Ann Intern Med. 2012;157(2):Jc2-6. PMID: 22801698. http://dx.doi.org/10.7326/0003-4819-157-2-201207170-02006 KO1E7, KO2E7.
- 21. Bulkmans NW, Berkhof J, Rozendaal L, et al. Human papillomavirus DNA testing for the detection of cervical intraepithelial neoplasia grade 3 and cancer: 5-year follow-up of a randomised controlled implementation trial. Lancet. 2007;370(9601):1764-72. PMID: 17919718. http://dx.doi.org/10.1016/S0140-
- 6736(07)61450-0 KQ1E4, KQ2E4.
 22. Burger EA, Nygard M, Gyrd-Hansen D, et al. Does the primary screening test influence women's anxiety and intention to screen for cervical cancer? A randomized survey of Norwegian women. BMC Public Health. 2014;14:360. PMID: 24735469. http://dx.doi.org/10.1186/1471-2458-14-360 KQ1E6, KQ2E6, X2.
- Cardenas-Turanzas M, Nogueras-Gonzalez GM, Scheurer ME, et al. The performance of human papillomavirus high-risk DNA testing in the screening and diagnostic settings. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2865-71. PMID: 18843032. http://dx.doi.org/10.1158/1055-9965.EPI-08-0137 KQ1E7a, KQ2E7a.

- 24. Carozzi F, Gillio-Tos A, Confortini M, et al. Risk of high-grade cervical intraepithelial neoplasia during follow-up in HPV-positive women according to baseline p16-INK4A results: A prospective analysis of a nested substudy of the NTCC randomised controlled trial. The Lancet Oncology.2013 Available from:http://onlinelibrary.wiley.com/o/coch rane/clcentral/articles/249/CN-00912249/frame.html. **KQ1E1, KQ2E1.**
- Carozzi F, Ronco G, Gillio-Tos A, et al. Concurrent infections with multiple human papillomavirus (HPV) types in the New Technologies for Cervical Cancer (NTCC) screening study. Eur J Cancer. 2012;48(11):1633-7. PMID: 22088483. http://dx.doi.org/10.1016/j.ejca.2011.10.0 10 KQ1E4, KQ2E4.
- Castle PE, Fetterman B, Poitras N, et al. Variable risk of cervical precancer and cancer after a human papillomaviruspositive test. Obstet Gynecol. 2011;117(3):650-6. PMID: 21343769. http://dx.doi.org/http://dx.doi.org/10.1097/ AOG.0b013e318209da59 KQ1E4, KQ2E4.
- 27. Castle PE, Hunt WC, Langsfeld E, et al. Three-year risk of cervical precancer and cancer after the detection of low-risk human papillomavirus genotypes targeted by a commercial test. Obstet Gynecol. 2014;123(1):49-56. PMID: 24463663. http://dx.doi.org/10.1097/AOG.00000000 00000013 **KQ1E3, KQ2E3.**
- Castle PE, Stoler MH, Wright TC, et al. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: a subanalysis of the ATHENA study. Lancet Oncol. 2011;12(9):880-90. PMID: 21865084. http://dx.doi.org/10.1016/S1470-2045(11)70188-7 KQ1E4, KQ2E4.

- 29. Catteau X, Simon P, Noel JC. Evaluation of the Oncogenic Human Papillomavirus DNA Test with Liquid-Based Cytology in Primary Cervical Cancer Screening and the Importance of the ASC/SIL Ratio: A Belgian Study. ISRN Obstet Gynecol. 2014;2014:536495. PMID: 24693444. http://dx.doi.org/10.1155/2014/536495 KQ1E6, KQ2E6, X4.
- Choi JW, Kim Y, Lee JH, et al. The clinical performance of primary HPV screening, primary HPV screening plus cytology cotesting, and cytology alone at a tertiary care hospital. Cancer Cytopathol. 2016;124(2):144-52. PMID: 26457676. http://dx.doi.org/10.1002/cncy.21632 KQ1E7, KQ2E7.
- 31. Cochand-Priollet B, Le Gales C, de Cremoux P, et al. Cost-effectiveness of monolayers and human papillomavirus testing compared to that of conventional Papanicolaou smears for cervical cancer screening: protocol of the study of the French Society of Clinical Cytology. Diagn Cytopathol. 2001;24(6):412-20. PMID: 11391824. KQ1E4a, KQ2E4a.
- 32. Cook DA, Smith LW, Law J, et al. Aptima HPV Assay versus Hybrid Capture 2 HPV test for primary cervical cancer screening in the HPV FOCAL trial. J Clin Virol. 2017;87:23-9. PMID: 27988420. https://dx.doi.org/10.1016/j.jcv.2016.12.0 04 KQ1E4, KQ2E4.
- 33. Coste J, Cochand-Priollet B, de Cremoux P, et al. Cross sectional study of conventional cervical smear, monolayer cytology, and human papillomavirus DNA testing for cervical cancer screening. BMJ. 2003;326(7392):733. PMID: 12676841. http://dx.doi.org/10.1136/bmj.326.7392.73 3 KQ1E4a, KQ2E4a.

- 34. Cox JT, Castle PE, Behrens CM, et al. Comparison of cervical cancer screening strategies incorporating different combinations of cytology, HPV testing, and genotyping for HPV 16/18: results from the ATHENA HPV study. Am J Obstet Gynecol. 2013;208(3):184.e1-.e11. PMID: 23174289. http://dx.doi.org/10.1016/j.ajog.2012.11.0 20 KQ1E4, KQ2E4.
- 35. Daley EM, Vamos CA, Wheldon CW, et al. Negative emotions and stigma associated with a human papillomavirus test result: A comparison between human papillomavirus-positive men and women. J Health Psychol. 2015;20(8):1073-82. PMID: 24217064. http://dx.doi.org/10.1177/1359105313507 963 KQ1E1, KQ2E1.
- 36. de Cremoux P, Coste J, Sastre-Garau X, et al. Efficiency of the hybrid capture 2 HPV DNA test in cervical cancer screening. A study by the French Society of Clinical Cytology. Am J Clin Pathol. 2003;120(4):492-9. PMID: 14560561. http://dx.doi.org/10.1309/XFUC-PP6M-5XUA-94B8 KQ1E4a, KQ2E4a.
- 37. Del Mistro A, Frayle H, Ferro A, et al. Cervical cancer screening by high risk HPV testing in routine practice: results at one year recall of high risk HPV-positive and cytology-negative women. J Med Screen. 2014;21(1):30-7. PMID: 24488593. http://dx.doi.org/10.1177/0969141314522 219 KQ1E7b, KQ2E7b.
- Del Mistro A, Frayle-Salamanca H, Trevisan R, et al. Triage of women with atypical squamous cells of undetermined significance (ASC-US): results of an Italian multicentric study. Gynecol Oncol. 2010;117(1):77-81. PMID: 20116836. http://dx.doi.org/10.1016/j.ygyno.2010.01. 003 KQ1E5b, KQ2E5b.

- Dijkstra MG, van Niekerk D, Rijkaart DC, et al. Primary hrHPV DNA testing in cervical cancer screening: how to manage screen-positive women? A POBASCAM trial substudy. Cancer Epidemiol Biomarkers Prev. 2014;23(1):55-63. PMID: 23733907. http://dx.doi.org/10.1158/1055-9965.EPI-13-0173 KQ1E7, KQ2E7.
- 40. Drolet M, Brisson M, Maunsell E, et al. The psychosocial impact of an abnormal cervical smear result. Psychooncology. 2012;21(10):1071-81. PMID: 21695747. http://dx.doi.org/10.1002/pon.2003 KQ1E6, KQ2E6.
- Ehlen T, Ogilvie G, Niekerk D, et al., editors. HPV focal: First round screen results from a randomized controlled trial in a canadian population based program. 14th Biennial Meeting of the International journal of gynecological cancer; 2012 Oct 13-16; Vancouver, BC Canada. Search 1 CENTRAL 20150806. KQ1E4, KQ2E4.
- 42. Elfgren K, Elfstrom KM, Naucler P, et al. Management of women with human papillomavirus persistence: long-term follow-up of a randomized clinical trial. Am J Obstet Gynecol. 2016. PMID: 27825977.

https://dx.doi.org/10.1016/j.ajog.2016.10. 042 **KQ1E4, KQ2E4.**

- Elfgren K, Rylander E, Radberg T, et al. Colposcopic and histopathologic evaluation of women participating in population-based screening for human papillomavirus deoxyribonucleic acid persistence. Am J Obstet Gynecol. 2005;193(3 Pt 1):650-7. PMID: 16150255. http://dx.doi.org/10.1016/j.ajog.2005.01.0 56 KQ1E4, KQ2E4.
- 44. Elfstrom KM, Smelov V, Johansson AL, et al. Long-term HPV type-specific risks for ASCUS and LSIL: a 14-year follow-up of a randomized primary HPV screening trial. Int J Cancer. 2015;136(2):350-9. PMID: 24842156. http://dx.doi.org/10.1002/ijc.28984 KQ1E4, KQ2E4.

- 45. Gage JC, Hunt WC, Schiffman M, et al. Risk Stratification Using Human Papillomavirus Testing among Women with Equivocally Abnormal Cytology: Results from a State-Wide Surveillance Program. Cancer Epidemiol Biomarkers Prev. 2016;25(1):36-42. PMID: 26518316. http://dx.doi.org/10.1158/1055-9965.EPI-15-0669 **KQ1E7, KQ2E7.**
- 46. Gage JC, Katki HA, Schiffman M, et al. Age-stratified 5-year risks of cervical precancer among women with enrollment and newly detected HPV infection. Int J Cancer. 2015;136(7):1665-71. PMID: 25136967. http://dx.doi.org/10.1002/ijc.29143

KQ1E4, KQ2E4.

47. Gillio-Tos A, De Marco L, Carozzi FM, et al. Clinical impact of the analytical specificity of the hybrid capture 2 test: data from the New Technologies for Cervical Cancer (NTCC) study. J Clin Microbiol. 2013;51(9):2901-7. PMID: 23804385. http://dx.doi.org/10.1128/JCM.01047-13

KQ1E1, KQ2E1.

- 48. Giorgi Rossi P, Carozzi F, Collina G, et al. HPV testing is an efficient management choice for women with inadequate liquidbased cytology in cervical cancer screening. Am J Clin Pathol. 2012;138(1):65-71. PMID: 22706859. http://dx.doi.org/10.1309/AJCP6J2OEFO YTRFD KQ1E1, KQ2E1.
- 49. Gok M, Heideman DA, van Kemenade FJ, et al. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: cohort study. BMJ. 2010;340:c1040. PMID: 20223872 http://dx.doi.org/10.1136/bmj.c1040 KQ1E5c, KQ2E5c.
- 50. Goodman A. HPV testing as a screen for cervical cancer. BMJ. 2015;350:h2372. PMID: 26126623. http://dx.doi.org/10.1136/bmj.h2372 KQ1E7, KQ2E7, X8.

- 51. Gyllensten U, Gustavsson I, Lindell M, et al. Primary high-risk HPV screening for cervical cancer in post-menopausal women. Gynecol Oncol. 2012;125(2):343-5. PMID: 22293044. http://dx.doi.org/10.1016/j.ygyno.2012.01.036 KQ1E9b, KQ2E9b.
- 52. Habbema D, Weinmann S, Arbyn M, et al. Harms of cervical cancer screening in the United States and the Netherlands. Int J Cancer. 2017;140(5):1215-22. PMID: 27864938. https://dx.doi.org/10.1002/ijc.30524 KO1E4, KO2E4.
- 53. Herweijer E, Feldman AL, Ploner A, et al. The Participation of HPV-Vaccinated Women in a National Cervical Screening Program: Population-Based Cohort Study. PLoS ONE. 2015;10(7):e0134185. PMID: 26218492.

http://dx.doi.org/http://dx.doi.org/10.1371/ journal.pone.0134185 **KQ1E1, KQ2E1.**

54. Huh WK, Sideri M, Stoler M, et al. Relevance of random biopsy at the transformation zone when colposcopy is negative. Obstet Gynecol. 2014. 124(4): Available from:

http://graphics.tx.ovid.com/ovftpdfs/FPD DNCOBEADEFA00/fs046/ovft/live/gv02 3/00006250/00006250-201410000-00004.pdf. **KQ1E4, KQ2E4.**

55. Ikenberg H, Bergeron C, Schmidt D, et al. Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J Natl Cancer Inst. 2013;105(20):1550-7. PMID: 24096620. http://dx.doi.org/10.1093/jnci/djt235

http://dx.doi.org/10.1093/jnci/djt235 KQ1E7b, KQ2E7b.

56. Isidean SD, Mayrand MH, Ramanakumar AV, et al. Human papillomavirus testing versus cytology in primary cervical cancer screening: End-of-study and extended follow-up results from the Canadian cervical cancer screening trial. Int J Cancer. 2016;139(11):2456-66. PMID: 27538188. https://dx.doi.org/10.1002/ijc.30385

KQ1E4, KQ2E4.

- 57. Isidean SD, Mayrand MH, Ramanakumar AV, et al. COMPARISON OF TRIAGE STRATEGIES FOR HPV POSITIVE WOMEN: CANADIAN CERVICAL CANCER SCREENING TRIAL RESULTS. Cancer Epidemiol Biomarkers Prev. 2017. PMID: 28096198. https://dx.doi.org/10.1158/1055-9965.epi-16-0705 KQ1E4, KQ2E4.
- Jin XW, Lipold L, Foucher J, et al. Cost-Effectiveness of Primary HPV Testing, Cytology and Co-testing as Cervical Cancer Screening for Women Above Age 30 Years. J Gen Intern Med. 2016;14:14. PMID: 27418345. http://dx.doi.org/10.1007/s11606-016-3772-5 KQ1E7, KQ2E7.
- 59. Katki HA, Cheung LC, Fetterman B, et al. A joint model of persistent human papillomavirus infection and cervical cancer risk: Implications for cervical cancer screening. Journal of Royal Statistical Society-Series-A. 2015;178(4):903-23. PMID: 26556961. http://dx.doi.org/10.1111/rssa.12101 KQ1E7, KQ2E7.
- 60. Katki HA, Gage JC, Schiffman M, et al. Follow-up testing after colposcopy: fiveyear risk of CIN 2+ after a colposcopic diagnosis of CIN 1 or less. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S69-77. PMID: 23519308. http://dx.doi.org/10.1097/LGT.0b013e318 28543b1 KO1E5, KO2E5.
- 61. Katki HA, Schiffman M, Castle PE, et al. Five-year risk of CIN 3+ to guide the management of women aged 21 to 24 years. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S64-8. PMID: 23519307. http://dx.doi.org/10.1097/LGT.0b013e318 2854399 KQ1E5, KQ2E5.
- 62. Katki HA, Schiffman M, Castle PE, et al. Five-year risks of CIN 3+ and cervical cancer among women with HPV-positive and HPV-negative high-grade Pap results. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S50-5. PMID: 23519305. http://dx.doi.org/10.1097/LGT.0b013e318 2854282 **KQ1E5, KQ2E5.**

- 63. Katki HA, Schiffman M, Castle PE, et al. Five-year risks of CIN 2+ and CIN 3+ among women with HPV-positive and HPV-negative LSIL Pap results. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S43-9. PMID: 23519304. http://dx.doi.org/10.1097/LGT.0b013e318 2854269 KQ1E5, KQ2E5.
- 64. Katki HA, Schiffman M, Castle PE, et al. Five-year risks of CIN 3+ and cervical cancer among women with HPV testing of ASC-US Pap results. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S36-42. PMID: 23519303. http://dx.doi.org/10.1097/LGT.0b013e318

2854253 KQ1E5b, KQ2E5b.

- 65. Katki HA, Schiffman M, Castle PE, et al. Benchmarking CIN 3+ risk as the basis for incorporating HPV and Pap cotesting into cervical screening and management guidelines. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S28-35. PMID: 23519302. http://dx.doi.org/http://dx.doi.org/10.1097/ LGT.0b013e318285423c KQ1E4, KQ2E4.
- 66. Katki HA, Wentzensen N. How might HPV testing be integrated into cervical screening? Lancet Oncol. 2012;13(1):8-10. PMID: 22177578. http://dx.doi.org/10.1016/S1470-2045(11)70334-5 KQ1E7, KQ2E7.
- 67. Kitchener HC, Almonte M, Wheeler P, et al. HPV testing in routine cervical screening: cross sectional data from the ARTISTIC trial. Br J Cancer. 2006;95(1):56-61. PMID: 16773068. http://dx.doi.org/10.1038/sj.bjc.6603210 KQ1E4, KQ2E4.
- 68. Kitchener HC, Gilham C, Sargent A, et al. A comparison of HPV DNA testing and liquid based cytology over three rounds of primary cervical screening: extended follow up in the ARTISTIC trial. European journal of cancer (Oxford, England : 1990) 2011.Available from:http://onlinelibrary.wiley.com/o/coch rane/clcentral/articles/590/CN-00801590/frame.html. KQ1E4, KQ2E4.

- 69. Kotaniemi-Talonen L, Anttila A, Malila N, et al. Screening with a primary human papillomavirus test does not increase detection of cervical cancer and intraepithelial neoplasia 3. Eur J Cancer. 2008;44(4):565-71. PMID: 18248809. http://dx.doi.org/10.1016/j.ejca.2007.12.0 02 KQ1E4, KQ2E4.
- 70. Kotaniemi-Talonen L, Nieminen P, Anttila A, et al. Routine cervical screening with primary HPV testing and cytology triage protocol in a randomised setting. Br J Cancer. 2005;93(8):862-7. PMID: 16189520. http://dx.doi.org/10.1038/sj.bjc.6602799 KO1E4, KO2E4.
- 71. Krajden M, Niekerk D, Ceballos K, et al. HPV FOCAL: Round one results of a cervical cancer screening trial. Canadian Journal of Infectious Diseases and Medical Microbiology. 2012;23:19b. PMID: None. KQ1E4, KQ2E4.
- 72. Kulasingam SL, Hughes JP, Kiviat NB, et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral. JAMA. 2002;288(14):1749-57. PMID: 12365959. http://dx.doi.org/10.1001/jama.288.14.174
 9 KO1E4a, KO2E4a.
- 73. Kwan TT, Cheung AN, Lo SS, et al. Psychological burden of testing positive for high-risk human papillomavirus on women with atypical cervical cytology: a prospective study. Acta Obstet Gynecol Scand. 2011;90(5):445-51. PMID: 21306349. http://dx.doi.org/10.1111/j.1600-0412.2011.01092.x KQ1E5b, KQ2E5b.
- 74. Lagos M, Van De Wyngard V, Poggi H, et al. HPV16/18 genotyping for the triage of HPV positive women in primary cervical cancer screening in Chile. Infectious Agents & Cancer 2015;10:43. PMID: 26600869. http://dx.doi.org/10.1186/s13027-015-0038-5 KQ1E7, KQ2E7.

- 75. Lata K, Bhatla N. HPV testing for cervical cancer screening: Time for a new paradigm. Natl Med J India. 2014. Available from:http://onlinelibrary.wiley.com/o/coch rane/clcentral/articles/936/CN-01052936/frame.html. **KO1E7, KO2E7.**
- 76. Leinonen M, Nieminen P, Kotaniemi-Talonen L, et al. Age-specific evaluation of primary human papillomavirus screening vs conventional cytology in a randomized setting. J Natl Cancer Inst. 2009;101(23):1612-23. PMID: 19903804. http://dx.doi.org/10.1093/jnci/djp367 KQ1E4, KQ2E4.
- 77. Leinonen MK, Anttila A, Malila N, et al. Type- and age-specific distribution of human papillomavirus in women attending cervical cancer screening in Finland. Br J Cancer. 2013;109(11):2941-50. PMID: 24136148. http://dx.doi.org/10.1038/bjc.2013.647 KQ1E3, KQ2E3.
- Lonnberg S, Nieminen P, Kotaniemi-Talonen L, et al. Large performance variation does not affect outcome in the Finnish cervical cancer screening programme. Cytopathology. 2012;23(3):172-80. PMID: 21255160. http://dx.doi.org/10.1111/j.1365-2303.2011.00849.x KQ1E6, KQ2E6.
- 79. Louvanto K, Chevarie-Davis M, Ramanakumar AV, et al. HPV testing with cytology triage for cervical cancer screening in routine practice. Am J Obstet Gynecol. 2014;210(5):474.e1-7. PMID: 24373948. http://dx.doi.org/10.1016/j.ajog.2013.12.0

33 **KQ1E7b, KQ2E7b.** Louwers JA, Berkhof J, Zaal A, et al.

80. Louwers JA, Berkhof J, Zaal A, et al. HrHPV-testing in a university hospital gynecology outpatient clinic: recommendations for clinical practice. Gynecol Oncol. 2012;124(3):518-24. PMID: 22115855. http://dx.doi.org/10.1016/j.ygyno.2011.11. 027 KQ1E5c, KQ2E5c.

- 81. Luquain A, Belglaiaa E, Guenat D, et al. High prevalence of abnormal cervical smears in a hospital cohort of French women beyond the upper age limit screening program. Prev Med. 2015;81:157-62. PMID: 26348451. http://dx.doi.org/10.1016/j.ypmed.2015.08 .018 KQ1E7, KQ2E7.
- Maissi E, Marteau TM, Hankins M, et al. Psychological impact of human papillomavirus testing in women with borderline or mildly dyskaryotic cervical smear test results: cross sectional questionnaire study. BMJ. 2004;328(7451):1293. PMID: 15166066. http://dx.doi.org/10.1136/bmj.328.7451.12 93 KQ1E5b, KQ2E5b.
- 83. Maissi E, Marteau TM, Hankins M, et al. The psychological impact of human papillomavirus testing in women with borderline or mildly dyskaryotic cervical smear test results: 6-month follow-up. Br J Cancer. 2005;92(6):990-4. PMID: 15785734. http://dx.doi.org/10.1038/sj.bjc.6602411

KQ1E5b, KQ2E5b.

- 84. Manos MM, Kinney WK, Hurley LB, et al. Identifying women with cervical neoplasia: using human papillomavirus DNA testing for equivocal Papanicolaou results. JAMA. 1999;281(17):1605-10. PMID: 10235153. http://dx.doi.org/10.1001/jama.281.17.160 5 KO1E5b. KO2E5b.
- 85. Mayrand MH, Duarte-Franco E, Coutlee F, et al. Randomized controlled trial of human papillomavirus testing versus Pap cytology in the primary screening for cervical cancer precursors: design, methods and preliminary accrual results of the Canadian cervical cancer screening trial (CCCaST). Int J Cancer. 2006;119(3):615-23. PMID: 16572425. http://dx.doi.org/10.1002/ijc.21897 KQ1E7b, KQ2E7b.

- 86. Mayrand MH, Duarte-Franco E, Rodrigues I, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357(16):1579-88. PMID: 17942871. http://dx.doi.org/10.1056/NEJMoa071430 KQ1E7b, KQ2E7b.
- McCaffery K, Waller J, Forrest S, et al. Testing positive for human papillomavirus in routine cervical screening: examination of psychosocial impact. BJOG. 2004;111(12):1437-43. PMID: 15663132. http://dx.doi.org/http://dx.doi.org/10.1111/ j.1471-0528.2004.00279.x KQ1E4, KQ2I1.
- McCaffery KJ, Irwig L, Turner R, et al. Psychosocial outcomes of three triage methods for the management of borderline abnormal cervical smears: an open randomised trial. BMJ. 2010;340:b4491. PMID: 20179125. http://dx.doi.org/10.1136/bmj.b4491 KQ1E5b, KQ2E5b.
- McKenna M, McMenamin MM. Human papillomavirus testing in young women: clinical outcomes of human papillomavirus triage in a UK cervical screening program. Cancer Cytopathol. 2014;122(9):702-10. PMID: 24888573. http://dx.doi.org/10.1002/cncy.21444
 KO1E6, KO2E6.
- 90. Monsonego J, Hudgens MG, Zerat L, et al. Evaluation of oncogenic human papillomavirus RNA and DNA tests with liquid-based cytology in primary cervical cancer screening: the FASE study. Int J Cancer. 2011;129(3):691-701. PMID: 20941740. http://dx.doi.org/10.1002/ijc.25726

KQ1E4a, KQ2E4a.

91. Monsonego J, Hudgens MG, Zerat L, et al. Risk assessment and clinical impact of liquid-based cytology, oncogenic human papillomavirus (HPV) DNA and mRNA testing in primary cervical cancer screening (the FASE study). Gynecol Oncol. 2012;125(1):175-80. PMID: 22233689. http://dx.doi.org/10.1016/j.ygyno.2012.01. 002 KQ1E4a, KQ2E4a.

- 92. Moy LM, Zhao FH, Li LY, et al. Human papillomavirus testing and cervical cytology in primary screening for cervical cancer among women in rural China: comparison of sensitivity, specificity, and frequency of referral. Int J Cancer. 2010;127(3):646-56. PMID: 19960441. http://dx.doi.org/10.1002/ijc.25071 KQ1E2a, KQ2E2a.
- 93. Naucler P, Ryd W, Tornberg S, et al. Efficacy of HPV DNA testing with cytology triage and/or repeat HPV DNA testing in primary cervical cancer screening. J Natl Cancer Inst. 2009;101(2):88-99. PMID: 19141778. http://dx.doi.org/10.1093/jnci/djn444 KQ1E4, KQ2E4.
- 94. Niekerk D, Ogilvie G, Krajden M, et al. hrHPV DNA testing in cervical cancer screening. First round results From the HPV for CervicAL screening (HPV FOCAL) trial. Histopathology. 2012 61: Available from: http://onlinelibrary.wiley.com/o/cochrane/ clcentral/articles/086/CN-01004086/frame.html. KQ1E4, KQ2E4.
- 95. Ogilvie G, Krajden M, Ehlen T, et al. Age specific round 1 results of a cervical cancer screening trial: HPV FOCAL. Sex Transm Infect. 2013. Available from: http://onlinelibrary.wiley.com/o/cochrane/ clcentral/articles/410/CN-01060410/frame.html. **KQ1E4**, **KQ2E4**.
- 96. Ogilvie G, Smith L, Cook D, et al. HPV focal trial: HPV infection rates at 48 month exit for women HPV negative at baseline. International Journal of Gynecology and Obstetrics (varpagings). 2015;131:E269. PMID: None. KQ1E4, KQ2E4.
- 97. Ogilvie GS, Krajden M, van Niekerk DJ, et al. Primary cervical cancer screening with HPV testing compared with liquidbased cytology: results of round 1 of a randomised controlled trial -- the HPV FOCAL Study. Br J Cancer. 2012;107(12):1917-24. PMID: 23169286. http://dx.doi.org/10.1038/bjc.2012.489 KQ1F4, KQ2F4.

- 98. Ogilvie GS, Smith LW, van Niekerk DJ, et al. Women's intentions to receive cervical cancer screening with primary human papillomavirus testing. Int J Cancer. 2013;133(12):2934-43. PMID: 23754203. http://dx.doi.org/10.1002/ijc.28324 KQ1E1, KQ2E1.
- 99. Pan Q, Belinson JL, Li L, et al. A thinlayer, liquid-based pap test for mass screening in an area of China with a high incidence of cervical carcinoma. A crosssectional, comparative study. Acta Cytol. 2003;47(1):45-50. PMID: 12585030. KO1E2a, KO2E2a.
- 100. Passamonti B, Gustinucci D, Giorgi Rossi P, et al. Cervical human papilloma virus (HPV) DNA primary screening test: Results of a population-based screening programme in central Italy. J Med Screen. 2016. PMID: 27614992. https://dx.doi.org/10.1177/096914131666 3580 KQ1E4, KQ2E4.
- 101. Petry KU, Menton S, Menton M, et al. Inclusion of HPV testing in routine cervical cancer screening for women above 29 years in Germany: results for 8466 patients. Br J Cancer. 2003;88(10):1570-7. PMID: 12771924. http://dx.doi.org/10.1038/sj.bjc.6600918
 KQ1E7, KQ2E7.
- 102. Petry KU, Rinnau F, Bohmer G, et al. Annual Papanicolaou screening for 5 years among human papillomavirusnegative women. BMC Cancer. 2013;13:379. PMID: 23937771. http://dx.doi.org/10.1186/1471-2407-13-379 KQ1E7, KQ2E7.
- 103. Phillips S, Cornall AM, Machalek DA, et al. Comparison of the Roche Cobas 4800 HPV assay to Roche Amplicor for detection of high-risk human papillomavirus. Eur J Clin Microbiol Infect Dis. 2016;35(8):1305-7. PMID: 27177752. http://dx.doi.org/10.1007/s10096-016-2665-1 KQ1E7, KQ2E7.

- 104. Poljak M, Ostrbenk A, Seme K, et al. Three-year longitudinal data on the clinical performance of the Abbott RealTime High Risk HPV test in a cervical cancer screening setting. J Clin Virol. 2016;76 Suppl 1:S29-39. PMID: 26643051. http://dx.doi.org/10.1016/j.jcv.2015.11.02 1 KQ1E7a, KQ2E7a.
- 105. Porras C, Wentzensen N, Rodriguez AC, et al. Switch from cytology-based to human papillomavirus test-based cervical screening: implications for colposcopy. Int J Cancer. 2012;130(8):1879-87. PMID: 21607948. http://dx.doi.org/10.1002/ijc.26194

KQ1E2a, KQ2E2a.

- 106. Qiao YL, Sellors JW, Eder PS, et al. A new HPV-DNA test for cervical-cancer screening in developing regions: a cross-sectional study of clinical accuracy in rural China. Lancet Oncol. 2008;9(10):929-36. PMID: 18805733. http://dx.doi.org/10.1016/S1470-2045(08)70210-9 KQ1E2a, KQ2E2a.
- 107. Reid JL, Wright TC, Jr., Stoler MH, et al. Human papillomavirus oncogenic mRNA testing for cervical cancer screening: baseline and longitudinal results from the CLEAR study. Am J Clin Pathol. 2015;144(3):473-83. PMID: 26276778. http://dx.doi.org/10.1309/AJCPHVD7MIP 3FYVV KQ1E5, KQ2E5.
- 108. Rijkaart DC, Berkhof J, van Kemenade FJ, et al. Evaluation of 14 triage strategies for HPV DNA-positive women in population-based cervical screening. Int J Cancer. 2012;130(3):602-10. PMID: 21400507. http://dx.doi.org/10.1002/ijc.26056
 KQ1E7b, KQ2E7b.
- 109. Rijkaart DC, Berkhof J, van Kemenade FJ, et al. HPV DNA testing in populationbased cervical screening (VUSA-Screen study): results and implications. Br J Cancer. 2012;106(5):975-81. PMID: 22251922.

http://dx.doi.org/10.1038/bjc.2011.581 KQ1E7b, KQ2E7b.

- 110. Ronco G, Brezzi S, Carozzi F, et al. The New Technologies for Cervical Cancer Screening randomised controlled trial. An overview of results during the first phase of recruitment. Gynecol Oncol. 2007;107(1 Suppl 1):S230-2. PMID: 17822751. http://dx.doi.org/10.1016/j.ygyno.2007.07. 021 KQ1E4, KQ2E4.
- 111. Ronco G, Cuzick J, Segnan N, et al. HPV triage for low grade (L-SIL) cytology is appropriate for women over 35 in mass cervical cancer screening using liquid based cytology. Eur J Cancer. 2007;43(3):476-80. PMID: 17223540. http://dx.doi.org/10.1016/j.ejca.2006.11.0 13 KQ1E5b, KQ2E5b.
- 112. Ronco G, Giorgi Rossi P, Giubilato P, et al. A first survey of HPV-based screening in routine cervical cancer screening in Italy. Epidemiol Prev. 2015;39(3 Suppl 1):77-83. PMID: 26405779. KQ1E7, KQ2E7.
- 113. Royer HR, Falk EC. Young women's beliefs regarding human papillomavirus. Journal of Obstetric, Gynecologic, & Neonatal Nursing: Clinical Scholarship for the Care of Women, Childbearing Families, & Newborns. 2012;41(1):92-102. PMID: 22150824. http://dx.doi.org/10.1111/j.1552-6909.2011.01309.x KQ1E1, KQ2E1.
- 114. Sankaranarayanan R, Chatterji R, Shastri SS, et al. Accuracy of human papillomavirus testing in primary screening of cervical neoplasia: results from a multicenter study in India. Int J Cancer. 2004;112(2):341-7. PMID: 15352050. http://dx.doi.org/10.1002/ijc.20396

KQ1E2a, KQ2E2a.

115. Sankaranarayanan R, Nene BM, Shastri SS, et al. HPV screening for cervical cancer in rural India. N Engl J Med. 2009;360(14):1385-94. PMID: 19339719. http://dx.doi.org/http://dx.doi.org/10.1056/ NEJMoa0808516 KQ1E2a, KQ2E2a.

- 116. Sasaki Y, Iwanari O, Arakawa I, et al. Cervical Cancer Screening With Human Papillomavirus DNA and Cytology in Japan. Int J Gynecol Cancer. 2016. PMID: 27997455. https://dx.doi.org/10.1097/igc.0000000000 000898 K01E4, K02E4.
- 117. Schiffman M, Glass AG, Wentzensen N, et al. A long-term prospective study of type-specific human papillomavirus infection and risk of cervical neoplasia among 20,000 women in the Portland Kaiser Cohort Study.[Erratum appears in Cancer Epidemiol Biomarkers Prev. 2012 Aug;21(8):1390-1]. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1398-409. PMID: 21602310. http://dx.doi.org/10.1158/1055-9965.EPI-11-0206 KQ1E7, KQ2E7.
- Schiffman M, Hyun N, Raine-Bennett TR, et al. A cohort study of cervical screening using partial HPV typing and cytology triage. Int J Cancer. 2016;139(11):2606-15. PMID: 27509172. https://dx.doi.org/10.1002/ijc.30375 KQ1E4, KQ2E4.
- 119. Shastri SS, Dinshaw K, Amin G, et al. Concurrent evaluation of visual, cytological and HPV testing as screening methods for the early detection of cervical neoplasia in Mumbai, India. Bull World Health Organ. 2005;83(3):186-94. PMID: 15798842. http://dx.doi.org/S0042-96862005000300011 KQ1E2a, KQ2E2a.
- 120. Smelov V, Elfstrom KM, Johansson ALV, et al. Long-term HPV type-specific risks of high-grade cervical intraepithelial lesions: A 14-year follow-up of a randomized primary HPV screening trial. Int J Cancer. 2015 Available from: <u>http://onlinelibrary.wiley.com/o/cochrane/ clcentral/articles/151/CN-</u> 01072151/frame.html. **KQ1E4, KQ2E4.**
- 121. Smelov V, Elfstrom M. HPV type-specific risks for high-grade lesions: Long-term follow-up of the swedescreen study. Sex Transm Infect. 2013. Available from: http://onlinelibrary.wiley.com/o/cochrane/ clcentral/articles/716/CN-01010716/frame.html. **KQ1E4, KQ2E4.**

- Sorbye SW, Fismen S, Gutteberg TJ, et al. Primary cervical cancer screening with an HPV mRNA test: a prospective cohort study. BMJ Open. 2016;6(8):e011981. PMID: 27515759. https://dx.doi.org/10.1136/bmjopen-2016-011981 KO1E4, KO2E4.
- 124. Uijterwaal MH, Polman NJ, Van Kemenade FJ, et al. Five-Year Cervical (Pre)Cancer Risk of Women Screened by HPV and Cytology Testing. Cancer Prevention Research. 2015;8(6):502-8. PMID: 25776933. http://dx.doi.org/10.1158/1940-6207.CAPR-14-0409 KQ1E7b, KQ2E7b.
- 125. Veijalainen O, Kares S, Kujala P, et al. Human papillomavirus test with cytology triage in organized screening for cervical cancer. Acta Obstet Gynecol Scand. 2016;95(11):1220-7. PMID: 27591407. https://dx.doi.org/10.1111/aogs.13013 KQ1E4, KQ2E4.
- 126. Veldhuijzen NJ, Berkhof J, Gillio-Tos A, et al. The age distribution of type-specific high-risk human papillomavirus incidence in two population-based screening trials. Cancer Epidemiol Biomarkers Prev. 2015;24(1):111-8. PMID: 25300476. http://dx.doi.org/10.1158/1055-9965.EPI-14-0628 KQ1E4, KQ2E4.
- 127. Wheeler CM, Hunt WC, Cuzick J, et al. The influence of type-specific human papillomavirus infections on the detection of cervical precancer and cancer: A population-based study of opportunistic cervical screening in the United States. Int J Cancer. 2014;135(3):624-34. PMID: 24226935. http://dx.doi.org/10.1002/ijc.28605

KQ1E5c, KQ2E5c.

- 128. Wright TC, Jr., Stoler MH, Behrens CM, et al. The ATHENA human papillomavirus study: design, methods, and baseline results. Am J Obstet Gynecol. 2012;206(1):46.e1-.e11. PMID: 21944226. http://dx.doi.org/10.1016/j.ajog.2011.07.0 24 KQ1E9b, KQ2E9b.
- 129. Wright TC, Jr., Stoler MH, Behrens CM, et al. Interlaboratory variation in the performance of liquid-based cytology: insights from the ATHENA trial. Int J Cancer. 2014;134(8):1835-43. PMID: 24122508. http://dx.doi.org/10.1002/ijc.28514 KQ1E1, KQ2E1.
- 130. Wright TC, Stoler MH, Behrens CM, et al. Primary cervical cancer screening with human papillomavirus: End of study results from the ATHENA study using HPV as the first-line screening test. Gynecol Oncol. 2015;136(2):189-97. PMID: 25579108. http://dx.doi.org/http://dx.doi.org/10.1016/ j.ygyno.2014.11.076 KO1E9b, KO2E9b.
- 131. Wright TC, Jr., Stoler MH, Sharma A, et al. Evaluation of HPV-16 and HPV-18 genotyping for the triage of women with high-risk HPV+ cytology-negative results. Am J Clin Pathol. 2011;136(4):578-86. PMID: 21917680. http://dx.doi.org/10.1309/AJCPTUS5EXA S6DKZ KQ1E1, KQ2E1.
- 132. Zhao C, Weng B, Li Z, et al. Follow-up outcomes of a large cohort of low-risk women with negative imaged liquid-based cytology and negative HPV test results. Am J Clin Pathol. 2013;139(1):32-8. PMID: 23270896. http://dx.doi.org/10.1309/AJCP4DF7ACL BFFGY KQ1E5c, KQ2E5c.
- 133. Zhou H, Mody RR, Luna E, et al. Clinical performance of the Food and Drug Administration-Approved high-risk HPV test for the detection of high-grade cervicovaginal lesions. Cancer Cytopathol. 2016;124(5):317-23. PMID: 26774025. http://dx.doi.org/10.1002/cncy.21687 KO1F5c, KO2F5c.

Below is a list of included studies and their ancillary publications (indented below main results publication):

- 1. Canfell K, Caruana M, Gebski V, et al. Cervical screening with primary HPV testing or cytology in a population of women in which those aged 33 years or younger had previously been offered HPV vaccination: Results of the Compass pilot randomised trial. PLoS Med. 2017;14(9):e1002388. PMID: 28926579.
- Ibanez R, Autonell J, Sarda M, et al. Protecting the underscreened women in developed countries: the value of HPV test. BMC Cancer. 2014;14:574. PMID: 25102758. <u>http://dx.doi.org/10.1186/1471-2407-14-574.</u>
- Katki HA, Kinney WK, Fetterman B, et al. Cervical cancer risk for women undergoing concurrent testing for human papillomavirus and cervical cytology: a population-based study in routine clinical practice. Lancet Oncol. 2011;12(7):663-72. PMID: 21684207. <u>http://dx.doi.org/10.1016/S1470-2045(11)70145-0.</u>
 - a. Gage JC, Hunt WC, Schiffman M, et al. Similar risk patters after cervical screening in two large U.S. populations. 2016;128(6):1248-57.
 - b. Gage JC, Schiffman M, Katki HA, et al. Reassurance against future risk of precancer and cancer conferred by a negative human papillomavirus test. J Natl Cancer Inst. 2014;106(8). PMID: 25038467. http://dx.doi.org/10.1093/jnci/dju153
 - c. Katki HA, Schiffman M, Castle PE, et al. Five-year risks of CIN 3+ and cervical cancer among women who test Pap-negative but are HPV-positive. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S56-63. PMID: 23519306. http://dx.doi.org/10.1097/LGT.0b013e318285437b
 - d. Demarco M, Lorey TS, Fetterman B, et al. Risks of CIN 2+, CIN 3+, and Cancer by Cytology and Human Papillomavirus Status: The Foundation of Risk-Based Cervical Screening Guidelines. J Low Genit Tract Dis. 2017;21(4):261-7. PMID: 28953116. 10.1097/LGT.00000000000343
- Kitchener HC, Almonte M, Thomson C, et al. HPV testing in combination with liquid-based cytology in primary cervical screening (ARTISTIC): a randomised controlled trial. Lancet Oncol. 2009;10(7):672-82. PMID: 19540162. <u>http://dx.doi.org/10.1016/S1470-</u> 2045(09)70156-1.
 - a. Kitchener HC, Almonte M, Gilham C, et al. ARTISTIC: a randomised trial of human papillomavirus (HPV) testing in primary cervical screening. Health Technol Assess. 2009;13(51):1-150, iii-iv. PMID: 19891902. <u>http://dx.doi.org/10.3310/hta13510</u>
 - b. Kitchener HC, Fletcher I, Roberts C, et al. The psychosocial impact of human papillomavirus testing in primary cervical screening-a study within a randomized trial. Int J Gynecol Cancer. 2008;18(4):743-8. PMID: 17944916. <u>http://dx.doi.org/10.1111/j.1525-1438.2007.01113.x</u>
 - c. Kitchener HC, Canfell K, Gilham C, et al. The clinical effectiveness and costeffectiveness of primary human papillomavirus cervical screening in England: extended follow-up of the ARTISTIC randomised trial cohort through three screening rounds. Health Technol Assess. 2014;18(22):1-196. PMID: 24762804.
 - d. Ronco G, Dillner J, Elfstrom KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524-32. PMID: 24192252.
- 5. Leinonen MK, Nieminen P, Lonnberg S, et al. Detection rates of precancerous and cancerous cervical lesions within one screening round of primary human papillomavirus DNA testing:

prospective randomised trial in Finland. BMJ. 2012;345:e7789. PMID: 23197596. http://dx.doi.org/10.1136/bmj.e7789.

- Luyten A, Buttmann-Schweiger N, Luyten K, et al. Early detection of CIN3 and cervical cancer during long-term follow-up using HPV/Pap smear co-testing and risk-adapted followup in a locally organised screening programme. Int J Cancer. 2014;135(6):1408-16. PMID: 24519782. <u>http://dx.doi.org/10.1002/ijc.28783</u>
 - Petry KU, Luyten A, Scherbring S. Accuracy of colposcopy management to detect CIN3 and invasive cancer in women with abnormal screening tests: results from a primary HPV screening project from 2006 to 2011 in Wolfsburg, Germany. Gynecol Oncol. 2013;128(2):282-7. PMID: 23088926. <u>http://dx.doi.org/10.1016/j.ygyno.2012.10.017</u>
- McCaffery K, Waller J, Forrest S, et al. Testing positive for human papillomavirus in routine cervical screening: examination of psychosocial impact. BJOG. 2004;111(12):1437-43. PMID: 15663132. <u>http://dx.doi.org/10.1111/j.1471-0528.2004.00279.x.</u>
- Naucler P, Ryd W, Tornberg S, et al. Human papillomavirus and Papanicolaou tests to screen for cervical cancer. N Engl J Med. 2007;357(16):1589-97. PMID: 17942872. http://dx.doi.org/10.1056/NEJMoa073204.
 - a. Elfstrom KM, Smelov V, Johansson AL, et al. Long term duration of protective effect for HPV negative women: follow-up of primary HPV screening randomised controlled trial. BMJ. 2014;348:g130. PMID: 24435414. <u>http://dx.doi.org/10.1136/bmj.g130</u>
 - Naucler P, Ryd W, Tornberg S, et al. Efficacy of HPV DNA testing with cytology triage and/or repeat HPV DNA testing in primary cervical cancer screening. J Natl Cancer Inst. 2009;101(2):88-99. PMID: 19141778. <u>http://dx.doi.org/10.1093/jnci/djn444</u>
 - c. Ronco G, Dillner J, Elfstrom KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524-32. PMID: 24192252.
- 9. Ogilvie G, Krajden M, van Niekerk D, et al. HPV for cervical cancer screening (HPV FOCAL): complete Round 1 results of a randomized trial comparing HPV-based primary screening to liquid-based cytology for cervical cancer. Int J Cancer. 2016. PMID: None.
 - Ogilvie GS, van Niekerk DJ, Krajden M, et al. A randomized controlled trial of Human Papillomavirus (HPV) testing for cervical cancer screening: trial design and preliminary results (HPV FOCAL Trial). BMC Cancer. 2010;10:111. PMID: 20334685. http://dx.doi.org/10.1186/1471-2407-10-111
 - b. Cook DA, Mei W, Smith LW, et al. Comparison of the Roche cobas 4800 and Digene Hybrid Capture 2 HPV tests for primary cervical cancer screening in the HPV FOCAL trial. BMC Cancer. 2015;15:968. PMID: 26674353. <u>http://dx.doi.org/10.1186/s12885-015-1959-5</u>
 - c. Coldman A. Preliminary 48 month exit results from HPV FOCAL cervical cancer screening trial: outcomes in subjects negative at baseline. 2016. PMID. None.
 - d. Coldman AJ, Gondara L, Smith LW, et al. Disease detection and resource use in the safety and control arms of the HPV FOCAL cervical cancer screening trial. Br J Cancer. 2016;115(12):1487-94. PMID: 27855441.
 http://dv.doi.org/https://dv.doi.org/10.1028/hip.2016.268
 - http://dx.doi.org/https://dx.doi.org/10.1038/bjc.2016.368
- Ronco G, Giorgi-Rossi P, Carozzi F, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 2010;11(3):249-57. PMID: 20089449. <u>http://dx.doi.org/10.1016/S1470-2045(09)70360-2</u> (NTCC Phase I).

- Ronco G, Giorgi-Rossi P, Carozzi F, et al. Human papillomavirus testing and liquid-based cytology in primary screening of women younger than 35 years: results at recruitment for a randomised controlled trial. Lancet Oncol. 2006;7(7):547-55. PMID: 16814206. <u>http://dx.doi.org/10.1016/S1470-2045(06)70731-8</u>
- b. Ronco G, Segnan N, Giorgi-Rossi P, et al. Human papillomavirus testing and liquidbased cytology: results at recruitment from the new technologies for cervical cancer randomized controlled trial. J Natl Cancer Inst. 2006;98(11):765-74. PMID: 16757701. http://dx.doi.org/10.1093/jnci/djj209
- c. Ronco G, Dillner J, Elfstrom KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524-32. PMID: 24192252.
- Ronco G, Giorgi-Rossi P, Carozzi F, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 2010;11(3):249-57. PMID: 20089449. http://dx.doi.org/10.1016/S1470-2045(09)70360-2 (NTCC Phase II).
 - a. Ronco G, Giorgi-Rossi P, Carozzi F, et al. Results at recruitment from a randomized controlled trial comparing human papillomavirus testing alone with conventional cytology as the primary cervical cancer screening test. J Natl Cancer Inst. 2008;100(7):492-501. PMID: 18364502. http://dx.doi.org/10.1093/jnci/djn065
 - b. Ronco G, Dillner J, Elfstrom KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524-32. PMID: 24192252.
- 12. Rijkaart DC, Berkhof J, Rozendaal L, et al. Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial. Lancet Oncol. 2012;13(1):78-88. PMID: 22177579. http://dx.doi.org/10.1016/S1470-2045(11)70296-0.
 - Bulkmans NW, Rozendaal L, Snijders PJ, et al. POBASCAM, a population-based randomized controlled trial for implementation of high-risk HPV testing in cervical screening: design, methods and baseline data of 44,102 women. Int J Cancer. 2004;110(1):94-101. PMID: 15054873. <u>http://dx.doi.org/10.1002/ijc.20076</u>
 - b. Dijkstra MG, van Zummeren M, Rozendaal L, et al. Safety of extending screening intervals beyond five years in cervical screening programmes with testing for high risk human papillomavirus: 14 year follow-up of population based randomised cohort in the Netherlands. BMJ. 2016;355:i4924. PMID: 27702796. http://dx.doi.org/10.1136/bmj.i4924
 - c. Ronco G, Dillner J, Elfstrom KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524-32. PMID: 24192252.
- 13. Zorzi M, Frayle H, Rizzi M, et al. A 3-year interval is too short for re-screening HPV negative women: a population-based cohort study. BJOG. 2017. PMID: 28120382. http://dx.doi.org/https://dx.doi.org/10.1111/1471-0528.14575
 - a. Zorzi M, Del Mistro A, Farruggio A, et al. Use of a high-risk human papillomavirus DNA test as the primary test in a cervical cancer screening programme: a population-based cohort study. BJOG. 2013;120(10):1260-7; discussion 7-8. PMID: 23786222. http://dx.doi.org/10.1111/1471-0528.12272
Appendix E. Ongoing Studies

Study	Country	Population	Interventions	Relevant Outcomes	Anticipated Completion
Cervical cancer so	reening				
Aoki, 2015 ¹⁹¹ (CITRUS Study)	Japan	Women aged 30-64 years (n=30,000)	LBC + HPV vs. LBC	CIN Colposcopy Invasive cancer	March 2020
Canfell & Saville, 2015 ¹⁹² (COMPASS)	Australia	Women aged 25-69 years (n=121,000)	HPV vs. LBC	CIN Invasive cancer	December 2022
Murphy, 2008 ^{193*}	Canada	Women aged 18 years or older (n=1,712)	HPV vs. Pap test	Colposcopy	January 2011 (no publications)
Ngan, 2011 ¹⁹⁴ *	Hong Kong	Women aged 30-60 years (n=12,000)	HPV + Pap test vs. Pap test	CIN	June 2017
Self-collection me	thods for ce	ervical cancer screen	ing		
Haguenoer, 2011 (APACHE-1) ^{195, 196} Haguenoer	France	Women age 20-65 years (n=734) Women age 30-65	Self-collection vs. clinical-collected Self-collection vs	Diagnostic accuracy Diagnostic	Completed Completed
2014 ¹⁹⁷ (APACHE-2)	Tranco	years (n=5,998)	clinician-collected	accuracy	December 2012
Haguenoer & Sengchanh, 2015 ¹⁹⁸ (APACHE-3)	France	Women age 30-65 years (n=3,612)	At-home self- sample vs. usual care	HPV	September 2016
Kiviat, 2014 ¹⁹⁹	United States	Women age ≥ 21 years (n=2,000)	Home-based HPV screening vs. usual care	Diagnostic accuracy for CIN1+	August 2016
Lytw yn, 2011 ²⁰⁰	Canada	Women age 35-69 years overdue for a Pap test (n=1,440)	Self-collection vs. reminder letter for Pap test	CIN3	Completed January 2013; no publications
Svanholm, 2008 ²⁰¹	Denmark	Women age ≥ 23 years (n=100)	Tampon self-test vs. routine Pap test	Diagnostic accuracy	Completed March 2008, no publications
Szarew ski, 2011 ²⁰² (Westminister Self- Sampling Study)	United Kingdom	Women age ≥ 25 years (n=3,000)	Self-collection vs. invitation letter	Positive test	Completed
Virtanen, 2011 ²⁰³	Finland	Women age 30-65 w ho did not take part in a screening exam (n=8,699)	Self-collection vs. reminder letter	HPV	Completed
Winer, 2014 ²⁰⁴	United States	Women age 30-64 years (n=17,600)	Mailed in-home HPV testing kit vs. usual care	CIN2+	February 2018
Zehbe, 2013 ^{205, 206} (Anishinaabek Cervical Cancer Screening Study [ACCSS])	Canada	Women age 25-69 years (n=1,200)	At-home HPV test kits vs. routine Pap test	HPV	Completed 2014
Gage, 2015	United States	Women age 26-65 years (n=1000)	Self-collection vs. clinical-collected	CIN 2+ Diagnostic accuracy	June 2015

*Identified as ongoing in the previous review

Appendix F Table 1. Baseline Population Characteristics of Included Trials, Ordered by Screening Approach

Author, Year & Quality	Mean Age (range)	Race/ Ethnicity	Smoking Status	% Vaccinate	SES	Prior History
Ronco, 2010 ^{119,} 127 NTCC Phase II Good	42 (25-60) Younger women (25-34 years): 27.9% Older women (35-60 years): 72.1%	NR	NR	NR NR	NR	Screening test registered w/in 4 years: 52.1%
Ogilivie, 2017 ^{125,} ¹²⁸⁻¹³⁰ HPV FOCAL Fair	46 (25-65) Younger women (25-34 years): 19.2% Older women (35-65 years): 80.9%	NR	Ever smoked (regularly): 36%	NR	HS or less: 17% Some university: 54% Trade school or college: 29% University graduate or higher: 47.2%	NR
Leinonen, 2012 ¹²⁴ FINNISH Fair	NR (25-65) Younger women (25-34 years): 16.8% Older women (35-65 years): 83.2%	NR	NR	NR	NR	NR
Ronco, 2010 ^{119,} ^{131, 132} NTCC Phase I Good	41.1 (25-60) Younger women (<35 years): 26.1% Older women (≥35 years): 73.9%	NR	NR	NR	NR	Previous round of cervical cancer screening in prior 4 years: 48.8%
Naucler, 2007 ^{118, 135} SWEDESCREEN Fair	35.1 (32-38)	NR	NR	NR	NR	NR
Kitchener, 2009 ^{116, 136-138} ARTISTIC Fair	NR (NR) Younger women (Age 20-29 years): 21.1% Older women (Age 30-64 years): 78.9%	NR	NR	NR	NR	NR
Rijkaart, 2012 ^{120,} ^{133, 134} POBASCAM Good	40 (29-61) Younger women (29-33 years): 14.2% Older women (34-56 years): 76.7%	NR	NR	NR	NR	Time since last cytological result for women with CIN2+, median (IQR): 5.0 (4.5-5.5)

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; CIN = cervical intraepithelial neoplasia; HS = high school; IQR = interquartile range; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; POBASCAM = Population Based Screening Study Amsterdam Program; SES = socioeconomic status; w/in = within

		Rescreening			Definition			Protocol
Author,		Intervalof	Criteriafor		of a	Next Protocol		Changes
Year &		Screened	Immediate	Treatment Threshold	Screened	Step for Screened		Between
Quality	Group	Negatives	Colposcopy	and Strategy	Positive	Positives	Detailed Subsequent Testing	Rounds
Ronco, 2010 ^{119, 127} NTCC Phase II	HPV alone	3 years	HPV+	CIN2+; CIN1 follow ed up via colposcopy NR	HPV+	Colposcopy	Women w/CIN1 follow ed up w/colposcopy; if no CIN detected, HPV+ women were actively recalled for repeat testing with HPV + LBC while HPV remained positive; referred to colposcopy if	Screened with CC in Round 2
Guu	CC	3 years	LSIL+ or ASC-US+ (7 centers)	CIN2+; CIN1 followed up via colposcopy NR	LSIL+ ASC-US	Colposcopy Colposcopy (7 centers) or repeat and refer to colposcopy if LSIL+ (2 centers)	2 centers recommended repeat cytological examination and referred LSIL+ from repeat test to colposcopy	NA
Ogilivie, 2017 ^{125, 128-} ¹³⁰ HPV FOCAL Fair	HPV LBC triage	2 years (if originally randomized to safety arm) or 4 years (if randomized to intervention arm)	HPV+/ASC- US+	CIN2+ (assumed); treatment based on colposcopy results, directed biopsy as well as endocervical curettage when appropriate Excisional treatment for CIN2+, most commonly LEEP and occasionally cone biopsy	HPV+	Triaged with LBC [HPV+/ASC-US+ referred to immediate colposcopy]	HPV+ triaged with LBC: HPV+/ ASC-US+ referred to immediate colposcopy; if HPV+/ASC-US-, recalled at 12 months (previously 6 months) for HPV and LBC testing with referral to colposcopy if positive on either. Exit screen at 4 years w/LBC: ASC-US cases triaged w/HPV testing (no further details).	NA
	LBC HPV triage	2 years	ASC-H or LSIL+	CIN2+ (assumed); treatment based on colposcopy results, directed biopsy as well as endocervical curettage when appropriate Excisional treatment for CIN2+, most commonly LEEP and occasionally cone biopsy	ASC-H or LSIL+ ASC-US	Colposcopy Triaged with HPV [HPV+/ASC-US referred to immediate colposcopy]	ASC-US triaged w/HPV testing: HPV+ referred to colposcopy; HPV- repeat cytology at 12 months. Repeat cytology of HPV-/ASC- US at 12 months: ASC-US+ referred to colposcopy; ASC-US- rescreened at 2 years.	Threshold for HPV triage ASC- US+ at Round 2

Author, Year &		Rescreening Interval of Screened	Criteria for	Treatment Threshold	Definition of a Screened	Next Protocol Step for Screened		Protocol Changes Between
Quality	Group	Negatives	Colposcopy	and Strategy	Positive	Positives	Detailed Subsequent Testing	Rounds
Leinonen, 2012 ¹²⁴ FINNISH Fair	HPV CC triage	5 years	HPV+ and mild, moderate and severe dyskaryosis, carcinoma cells; ASC- H, LSIL, HSIL and glandular atypia; after 2006, HPV+ and LSIL+	Histologically-confirmed precancerous lesions; all CIN1+ cervical lesions until December 31, 2006, after w hich CIN2+ treated and w omen age <30 years w/CIN1 w ere managed w/surveillance only until lesions regressed or w ere treated if progression occurred LEEP	HPV+	Triaged with CC [HPV+ and mild, moderate and severe dyskaryosis, carcinoma cells referred to colposcopy; ASC- H, LSIL, HSIL and glandular atypia referred to colposcopy; after 2006, HPV+/LSIL+ referred to immediate colposcopy]	HPV+ triaged to cytology: mild, moderate, and severe dyskaryosis, carcinoma cells; ASC-H, LSIL, HSIL and glandular atypia referred to colposcopy; cytological normal to benign changes recalled w/intensified screening after 12 months from initial visit. After 2006, HPV+ triaged to cytology: w omen w/LSIL+ referred to colposcopy Recalled w omen, if persistant HPV+, underw ent intensified follow up and eventually referred to colposcopy	NA
	23	5 years	Mild, moderate and severe dyskaryosis, carcinoma cells; ASC- H, LSIL, HSIL and glandular atypia; after 2006, LSIL+	Histologically-confirmed precancerous lesions; all CIN1+ cervical lesions until December 31, 2006, after w hich CIN2+ treated and w omen age <30 years w/CIN1 w ere managed w/surveillance only until lesions regressed or w ere treated if progression occurred LEEP	Mild, moderate and severe dyskaryosis, carcinoma cells or ASC-H, LSIL, HSIL and glandular atypia or LSIL+ (after 2006)	Colposcopy	Borderline changes or reactive and ASC-US recalled at 6-12 months; invited to more intensified screening after 12 months Women w/negative histological confirmation invited to intensified screening after 12 months	NA

		Rescreening			Definition			Protocol
Author,		Interval of	Criteriafor		of a	Next Protocol		Changes
Year &		Screened	Immediate	Treatment Threshold	Screened	Step for Screened		Between
Quality	Group	Negatives	Colposcopy	and Strategy	Positive	Positives	Detailed Subsequent Testing	Rounds
Ronco, 2010 ^{119, 131,} ¹³² NTCC Phase I Good	HPV cotesting	3 years	ASC-US+ and/or HPV+ among w omen age ≥35 years	CIN2+; CIN1 follow ed up via colposcopy NR	HPV+ (w omen age ≥35 years only) and/or ASC-US+	Colposcopy	Repeat colposcopy when lack of histology-confirmed CIN in the prescence of clearly abnormal cytology Women age <35 years who had normal cytology but HPV+ were advised to repeat both tests after 1 year; referred to colposcopy if repeat testing was HPV+ or ASC-LIS+	Screened with CC in Round 2
	33	3 years	LSIL+ or ASC-US+ (7 centers)	CIN2+; CIN1 follow ed up via colposcopy NR	LSIL+ ASC-US	Colposcopy Colposcopy (7 centers) or repeat and refer to colposcopy if LSIL+ (2 centers)	2 centers recommended repeat cytological examination and referred LSIL+ from repeat test to colposcopy Repeat colposcopy when lack of histology-confirmed CIN in the prescence of clearly abnormal cytology	NA
Naucler, 2007 ^{118, 135} SWEDE- SCREEN Fair	HPV cotesting	3 years	ASC-US+ (varied by site)	CIN2+. Endocervical biopsies taken from all lesions that turned white with acetic acid and lesions that were not stained by Lugol's iodine solution; if not, 2 specimens obtained at 12:00 and 6:00 on ectocervix close to the squamocolumnar-cell junction; an endocervical-cell sample taken from all women Conization, loop excision	HPV+/ASC -US+ HPV+/ASC -US- or HPV- /ASC-US+	Colposcopy Repeat testing at 12 months [HPV+ referred to colposcopy]	HPV+ and no record of referral due to an abnormal Pap test offered a second round of cotesting at 12 months; if HPV+, referred to colposcopy. Annual cotesting with colposcopy if HPV+ in addition to follow ing routine clinical practice for abnormal Pap, colposcopy, or histopathological findings.	Unblinding of HPV test 3 years after enrollment and 4 months after completion of Round 1 Screened with CC in Round 2
	20	3 years	ASC-US+ (varied by site)	CIN2+. Endocervical biopsies taken from all lesions that turned white with acetic acid and	ASC-US+	Colposcopy	NR; in Round 1, women randomly selected for a second test 12 months later and offered colposcopy (unclear protocol)	NA

		Rescreening			Definition			Protocol
Author,		Interval of	Criteriafor		of a	Next Protocol		Changes
Year &		Screened	Immediate	Treatment Threshold	Screened	Step for Screened		Between
Quality	Group	Negatives	Colposcopy	and Strategy	Positive	Positives	Detailed Subsequent Testing	Rounds
Kitchener, 2009 ^{116, 136-} 138 ARTISTIC	HPV cotesting	3 years	HSIL+	lesions that w ere not stained by Lugol's iodine solution; if not, 2 specimens obtained at 12:00 and 6:00 on ectocervix close to the squamocolumnar-cell junction; an endocervical-cell sample taken from all w omen Conization, loop excision CIN2+ Loop excision (fron CIN2+, CIN3+), punch biopsy w ithout further excision (CIN1 or less)	HSIL+ regardless of HPV test result ASC-US or	Colposcopy Repeat cotest at 6 months Repeat HPV test at 12 months	ASC-US or LSIL, repeat LBC test at 6 months, if LSIL+, referred to colposcopy; if cyto- or ASC-US, recalled for 3rd test at 12 months. If ASC-US+ at 12 months, referred to colposcopy; if outo- receiled for 4th test at 24	NA
Fair					LSIL regardless of HPV test results Normal cytology and HPV+	at 12 months	cyto-, recalled for 4th test at 24 months (a 4th test is not show n in the clinical management figures). HPV+/cyto-, repeat HPV test at 12 months; if HPV+, choice w as to undergo colposcopy, or repeat test at 24 months and if still HPV+ would be offered colposcopy.	
	LBC	3 years	HSIL+	CIN2+ Loop excision (fron CIN2+, CIN3+), punch biopsy w ithout further excision (CIN1 or less)	HSIL+ ASC-US or LSIL	Colposcopy Repeat cotest at 6 months	ASC-US or LSIL, repeat LBC test at 6 months, if LSIL+, referred to colposcopy; if cyto- or ASC-US, recalled for 3rd test at 12 months. If ASC-US+ at 12 months, referred to colposcopy; if cyto-, recalled for 4th test at 24 months (a 4th test is not show n in the clinical management figures)	NA

Author, Year & Quality	Group	Rescreening Interval of Screened Negatives	Criteria for Immediate Colposcopy	Treatment Threshold and Strategy	Definition of a Screened Positive	Next Protocol Step for Screened Positives	Detailed Subsequent Testing	Protocol Changes Between Rounds
Rijkaart, 2012 ^{120, 133,} 134 POBASCAM Good	HPV cotesting	5 years	BMD+	Histological biopsies taken when cervical abnormalities seen (regardless of HPV status) Treated according to standard protocols	BMD+ regardless of HPV result Normal cytology and HPV+	Colposcopy Repeat cotesting at 6 and 18 months	HPV+/cyto- advised to repeat at 6 and 18 months: if HPV+/cyto- or HPV+/BMD at 18 months, referred to colposcopy; if HPV-/ cyto- or HPV-/BMD at 18 months, recalled at next screening round Women HPV+/BMD at 6 months, or HPV+/BMD or HPV+/cyto- at 18 months, referred to colposcopy; if HPV-/BMD or HPV-/cyto- at 18 months, w omen recalled at next screening round.	Cytology threshold for colposcopy referral HSIL+ in Round 2
	CC	5 years	BMD+	Histological biopsies taken when cervical abnormalities seen (regardless of HPV status) Treated according to standard protocols	BMD+	Colposcopy	BMD advised to repeat at 6 and 18 months: if BMD+ after either 6 or 18 months, referred to colposcopy; if cyto- at 18 months, recalled at next screening round.	Screened w ith HPV cotesting in Round 2

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; ASC-H = atypical cells of high-grade; ASC-US = atypical cells of undetermined significance; BMD = borderline or mild dyskaryotic; CC = conventional cytology; CIN = cervical intraepithelial neoplasia; cyto = cytology; HPV = human papillomavirus; HSIL = high grade squamous intraepithelial lesion; LBC = liquid based cytology; LEEP = loop electrosurgical excision procedure; LSIL = low grade squamous intraepithelial lesion; NA = not applicable; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; w/ = with

Appendix F Table 3. Intervention and Control Group Descriptions in Included Trials, Ordered by Screening Approach

Author, Year & Quality	Arm	TestNameand Manufacturer	Sample Collection Method	Sample Collected By	Sam ple Processed By	Sample Interpreted By
Ronco, 2010 ^{119, 127} NTCC Phase II	HPV alone	Hybrid Capture 2 (Digene)	Sample of cervical cells taken by a broom- like device (Digene Cervical Sampler) and put in standard transport medium (Digene) used only for HPV testing	NR	NR	NR
Good	CC	NR	Sample taken with a plastic Ayre's spatula and cytobrush	NR	Cytoscreeners	Cytoscreeners, cytopathologists or local supervisor
Ogilivie, 2017 ^{125, 128-} ¹³⁰ HPV FOCAL Fair	HPV LBC triage	Digene Hybrid Capture 2 (Qiagen)	Two samples collected w/ThinPrep broom- like collection device during the initial screening appointment and placed in ThinPrep PreservCyt vial (Hologic); LBC collected first (see CG for details) and the second sample is collected and frozen for future use; aliquot from first specimen used for HPV testing processed w/Qiagen sample conversion kit	NR	Cytotechnologist	Pathologist
	LBC HPV triage	ThinPrep PreservCyt (Hologic Inc)	Twosamples collected w/ThinPrep broom- like collection device during the initial screening appointment and placed in ThinPrep PreservCyt vial (Hologic); LBC collected first and the second sample is collected and frozen for future use; all samples processed according to manufacturer's recommendations	NR	Cytotechnologist	Pathologist
Leinonen, 2012 ¹²⁴ FINNISH Fair	HPV CC triage	Digene Hybrid Capture 2 (Qiagen)	Two spatular subsamples of the vaginal, cervical, and endocervical smear collected with wooden or plastic Ayre's spatula (cytology); endocervical subsample by placing the tip of the sample cone-shaped cervical sample brush) of the kit to the transport medium after cytological smear	Nurse or midw ife	Cytotechnicians	Cytotechnicians or pathologist
	CC	NR	Cytology smear taken w/Ayre spatula and a cytobrush; sample prepared on a glass slide according to standard procedures; glass slide subject to routine staining	Nurse or midw ife	Cytotechnicians	Cytotechnicians or pathologist

Appendix F Table 3. Intervention and Control Group Descriptions in Included Trials, Ordered by Screening Approach

Author, Year & Quality	Arm	TestNameand Manufacturer	Sample Collection Method	Sample Collected By	Sam ple Processed By	Sample Interpreted By
Ronco, 2010 ^{119, 131, 132} NTCC Phase I Good	HPV cotesting	Hybrid Capture 2; ThinPrep (Digene Corporation; Cytyc Corporation)	Cervical cell samples collected using a plastic Ayre's spatula and cytobrush; placed in PreservCyt solution (ThinPrep); one sample used for both LBC preparation and HPV testing. One cytology slide per w oman prepared according to manufacturer's instructions; 4 mL of remaining sample processed w/Digene Sample Conversion Kit follow d by HC2 assay	NR	Cytologist	Cytologist; local supervisor or panel of cytologists
	CC	NR	Cervical cell samples collected using a plastic Ayre's spatula and cytobrush; one slide per woman prepared according to manufacturer's instructions.	NR	Cytologist	Cytologist; local supervisor or panel of cytologists
Naucler, 2007 ^{118, 135} SWEDESCREEN Fair	HPV cotesting	PCR/GP5+/6+ (NR)	Endocervical and ectocervical samples were taken with a cytologic brush (assume endocervical or Cervex brush from CG description); after a conventional smear had been prepared, the brush was swirled in 1 ml of sterile 0.9% sodium chloride to release the remaining cells for analysis of HPV DNA	Clinical personnel	Laboratory technician	ŃŔ
	22	NR	Endocervical brush (Stockholm, Gothenburg, Uppsala, and Malmo) or Cervex brush (Umea); conventional smear prepared first	Clinical personnel	NR	NR
Kitchener, 2009 ^{116,} ¹³⁶⁻¹³⁸ ARTISTIC Fair	HPV cotesting	Hybrid Capture 2 (Qiagen)	Cervical samples were collected using the Rovers Cervex-brush cervical sampler (Rovers Medical Devices) [part of the ThinPrep Cytyc kit] and rinsed into a vial containing PreservCyt transport medium; HPV test performed on liquid residue cells of the LBC sampple and read and calculated on the Digene Microplate Luminometer 2000	NR	NR	Cytoscreener; checked by biomedical scientist or cytopathologist (LBC)
	LBC	ThinPrep T3000 (Hologic)	Cervical samples were collected using the Rovers Cervex-brush cervical sampler (Rovers Medical Devices) [part of the ThinPrep Cytyc kit] and rinsed into a vial containing PreservCyt transport medium	NR	NR	Cytoscreener; checked by biomedical scientist or cytopathologist (LBC)

Appendix F Table 3. Intervention and Control Group Descriptions in Included Trials, Ordered by Screening Approach

Author, Year & Quality	Arm	TestNameand Manufacturer	Sample Collection Method	Sample Collected By	Sample Processed By	Sample Interpreted By
Rijkaart, 2012 ^{120, 133,} ¹³⁴	HPV cotesting	PCR/GP5+/6+ (NR)	Taken by GP or assistant using the Cervex- Brush or a cytobrush; after making a	GP or assistant	NR	NR
POBASCAM			conventional smear, cytobrush placed in a vial containing collection medium (5 ml phosphate buffered saline and 0.5% thiomersal) for HPV testing			
	CC	Cervex-Brush (Rovers)	Taken by GP or assistant using the Cervex- Brush or a cytobrush	GP or assistant	NR	Cytotechnologist and cytopathologist (abnormal only)

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; CC = conventional cytology; CG = control group; DNA = deoxyribonucleic acid; GP = general practitioner; HC2 = Hybrid Capture 2; HPV = human papillomavirus; hr = high-risk; LBC = liquid-based cytology; mL = milliliter(s); NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; PCR/GP = polymerase chain reaction general primer; POBASCAM = Population Based Screening Study Amsterdam Program; w/ = with

Appendix F Table 4. Cumulative Incidence of CIN and Invasive Cervical Cancer in Screen-Negative Women From the Long-Term Follow up of Two Randomized, Controlled Trials

Outcome	Study	Follow up (years)	Cumulative Incidence (%) in IG Participants Screened hrHPV- (95% CI)	Cumulative Incidence (%) in IG Participants Screened hrHPV- and ASC-US- (95% CI)	Cumulative Incidence (%) in CG Participants Screened ASC-US- (95% CI)	Between Group Difference
CIN2+	SWEDESCREEN	13	1.74 (1.24 to 2.45), n=5,866	1.63 (1.11 to 2.32), n=6,028	2.73 (2.17 to 3.44), n=6,034	NR
CIN3+	POBASCAM ¹³⁴	9	0.31 (0.24 to 0.41), n=215,308	0.27 (0.20 to 0.36), n=211,544	0.69 (0.58 to 0.82), n=219,449	NR
		14	0.56 (0.45 to 0.70), n=215,308	0.52 (0.41 to 0.66) , n=211,544	1.20 (1.01 to 1.37) , n=219,449	IG HPV- in Round 3 vs. CG ASC-US- in Round 2: RR 0.82 (0.62 to 1.09), p=0.17* IG HPV-/ASC-US- in Round 3 vs.CG ASC- US- in Round 2: RR 0.76 (0.57 to 1.03), p=0.07
	SWEDESCREEN	13	0.89 (0.53 to 1.51) , n=5,866	0.84 (0.48 to 1.47) , n=6,028	1.54 (1.10 to 2.15), n=6,034	NR
Invasive cervical	POBASCAM ¹³⁴	9	0.03 (0.01 to 0.06), n=215,308	0.01 (0.0 to 0.05), n=211,544	0.09 (0.05 to 0.14), n=219,449	NR
cancer		14	0.09 (0.04 to 0.18), n=215,308	0.07 (0.03 to 0.17), n=211,544	0.19 (0.12 to 0.28), n=219,449	IG hrHPV- in Round 3 vs. CG ASC-US- in Round 2: RR 0.97 (0.41 to 2.31), p=0.95 IG hrHPV-/ASC-US- in Round 3 vs. CG ASC- US- in Round 2: RR 0.83 (0.32 to 2.15), p=0.69

Abbreviations: ASC-US = atypical squamous cells of undetermined significance; CG = control group; CI = confidence interval; CIN = cervical intra epithelial neoplasia; hrHPV = high-risk human papillomavirus; IG = intervention group; RR = risk ratio

Appendix F Table 5. Baseline Population Characteristics of Included Observational Studies

Author, Year & Quality	Mean Age (range)	Race/Ethnicity	Smoking Status	% Vaccinated	SES	Prior History
Katki, 2011 ^{122,} 142, 143, 179-181	NR (≥30)	NR	NR	NR	NR	NR
KPNC						
Fair						
Ibanez, 2014 ¹²¹ Fair	54.1 (40-88)	NR	NR	NR	NR	Not screened in past 5 years: 100%
Luyten, 2014 ^{123,} 140	48.2 (≥ 35)	NR	NR	NR	NR	NR
WOLPHSCREEN	Older women (> 70 years): 5.5%					
Fair						
McCaffery, 2004 ¹¹⁷ Fair	32 (20-61) Younger women (< 35 years): 73.1% Older women (≥ 35 years): 26.9%	NR	Current Smoker: 30.3%	NR	Age \leq 16 w hen left full- time education: 7.4% Age 17-18 w hen left full-time education: 13.6% Age \geq 19 w hen left full- time education: 73.1%	NR
Zorzi, 2017 ¹²⁰ Fair	25-64	NR	NR	NR	NR	NR

Abbreviations: KPNC = Kaiser Permanente Northern California; NR = not reported; SES = socioeconomic status

Appendix F Table 6. Intervention and Control Group Descriptions in Included Observational Studies

Author, Year & Quality	Intervention	TestName and Manufacturer	Sample Collection Method	Sample Collected By	Sample Process By	Sample Interpreted By
Katki, 2011 ^{122, 142, 143,} 179-181	HPV cotesting	Hybrid Capture 2 (Qiagen); BD FocalPoint	NR	NR	NR	NR
KPNC		Slide Profiles or BD SurePath				
Fair						
Ibanez, 2014 ¹²¹	HPV	Hybrid Capture 2	Cytologies performed w/	NR	NR	NR
Fair	cotesting	(Qiagen)	smear; a few centers used LBC			
Luyten, 2014 ^{123, 140}	HPV	Hybrid Capture 2 (NR)	Routine pelvic	NR	NR	NR
WOLPHSCREEN	cotesting		examination w/Pap smear follow ed by a separate cervical sample			
Fair			taken w/a Medscan brush for hrHPV testing			
McCaffery, 2004 ¹¹⁷	HPV	Digene Hybrid Capture 2	NR	Clinician or clinic	NR	NR
Fair	cotesting			nurse		
Zorzi, 2017 ^{126, 207} Fair	HPV Primary with cytology triage	Hybrid Capture 2 (Qiagen)	Cytologies performed w/ conventional Pap smear	Midw ives	Cytologist	Cytologist

Abbreviations: HPV = human papillomavirus; hr = high-risk; KPNC = Kaiser Permanente Northern California; LBC = liquid-based cytology; NR = not reported; w/ = with

		NTCC	HPV		NTCC	SWEDESCREEN ^{118,}		POBASCAM ^{120, 133,}
Parameter	Rnd	Phase II ^{119, 127}	FOCAL ^{125, 128-130}	FINNISH ¹²⁴	Phase I ^{119, 131, 132}	135	ARTISTIC ^{116, 136-138}	134
Ages recruited		25-60 years	25-65 years	25-65 years	25-60 years	32-38 years	20-64 years	29-61 years
Definition	1	IG: hrHPV+	IG: hrHPV+/ASC-	IG:	IG: hrHPV+ or ASC-	IG: hrHPV+ or	IG: hrHPV+ or	IG: hrHPV+ or
of screened		CG: ASC-US+	US+	hrHPV+/ASC-	US+	ASC-US+	ASC-US+	BMD+
positive			CG: ASC-US+	US+ CG: ASC-US+	CG: ASC-US+	CG: ASC-US+	CG: ASC-US+	CG: BMD+
	2	IG: ASC-US+			IG: ASC-US+	IG: ASC-US+	IG: hrHPV+ or	IG: hrHPV+ or
		CG: ASC-US+			CG: ASC-US+	CG: ASC-US+	ASC-US+	BMD+
							CG: ASC-US+	CG: hrHPV+ or BMD+
Follow up	1	3.5 years	2-4 years	5 years	3.5 years	3 years	2.2 years	4 years
(years)		(maximum)	(maximum)	(maximum)	(maximum)	(maximum)	(maximum)	(maximum)
	2	3.5 years	2 years (maximum)		3.5 years	NR	2.3 years	5 years
		(maximum)			(maximum)		(maximum)	(maximum)
Number of	1	IG: 137/1,936	NR	IG: 509/4,971	IG: 120/2,822 (4.3%)	IG: NR	IG: 453/4,019	IG: 257/1,406
screened		(7.1%)		(10.2%)*	CG: 84/855 (9.8%)	CG: 78/150 (52.0%)	(11.3%)	(18.3%)
positive		CG: 55/825 (6.7%)		CG: 267/4,506			CG: 133/786	CG: 193/706
women				(5.9%)*			(16.9%)	(27.3%)
with CIN2+	2	NR			NR	NR	IG: 80/1,258	IG: 132/742
(PPV)							(6.4%)*	(17.8%)
							CG: 34/210	CG: 162/774
						10.115	(16.2%)*	(20.9%)
Number of	1	IG: 137/137	NR	IG: 509/540	IG: 120/120 (100%)	IG: NR	G: 453/453 (100%)	IG: 257/267
CIN2+ in		(100%)		(94.3%)	CG: 84/84 (100%)	CG: 78/119 (65.5%)	CG: 133/133	(96.3%)
screened		CG: 55/55 (100%)		CG: 267/319			(100%)	CG: 193/215
positive	0	ND		(83.7%)		ND		(89.8%)
women	2	INF			INFC	INIK	10.00/85 (94.1%)	(92 E9/)
								(02.0%) CC: 162/194
								(88.0%)
Falso	1	IC: 1 700/24 428	NP	IC: 1 162/61 507	IC: 2 702/22 042		IC: 3 566/17 033	(00.076)
nositive		(7 1%)		(7.2%)	(12.3%)	$CG \cdot 72/6102(12\%)$	(10.0%)	(5.8%)
rate for		$CG^{-}770/24038$		(7.270) CG:	(12.370) CG: 771/21 972 (3.5%)	OO. 72/0,132 (1.270)	CG: 653/5 991	CG: 513/19 913
CIN2+		(3.2%)		4 239/65 480	00. 11 1/21,012 (0.070)		(10.9%)	(2.6%)
0		(0.270)		(6.5%)			(10.070)	(2.070)
	2	NR			NR	NR	IG: 1.178/10.512	IG: 610/9.572
							(11.2%)*	(6.4%)
							CG: 176/3,832	CG: 612/9,450
							(4.6%)*	(6.5%)

		NTCC	HPV		NTCC	SWEDESCREEN ^{118,}		POBASCAM ^{120, 133,}
Parameter	Rnd	Phase II ^{119, 127}	FOCAL ^{125, 128-130}	FINNISH ¹²⁴	Phase I ^{119, 131, 132}	135	ARTISTIC ^{116, 136-138}	134
Number of	1	IG: 59/1,936	NR	IG: 184/4,971	IG: 53/2,822 (1.9%)	IG: NR	IG: 233/4,019	IG: 168/1,406
screened		(3.0%)		(3.7%)	CG: 53/855 (6.2%)	CG: 56/150	(5.8%)	(11.9%)
positive		CG: 26/825		CG: 97/4,506		(37.3%)	CG: 80/786	CG: 138/706
w omen		(3.2%)		(2.2%)			(10.2%)	(19.5%)
w ith	2	NR			NR	NR	IG: 34/1,258	IG: 80/742
CIN3+							(2.7%)*	(10.8%)
(PPV)							CG: 18/210 (8.6%)*	CG: 110/774
								(14.2%)
Number of	1	IG: 59/59 (100%)	NR	IG: 184/195	IG: 53/53 (100%)	IG: NR	IG: 233/233	IG: 168/171
CIN3+ in		CG: 26/26 (100%)		(94.4%)	CG: 53/53 (100%)	CG: 56/85	(100%)	(98.2%)
screened				CG: 97/118		(65.9%)	CG: 80/80 (100%)	CG: 138/150
positive				(82.2%)				(92.0%)
w omen	2	NR			NR	NR	IG: 34/35 (97.1%)*	IG: 80/88 (90.9%)
							CG: 18/19	CG: 110/130
							(94.7%)*	(84.6%)
False	1	IG: 1,877/24,506	NR	IG: 4,787/61,922	IG: 2,769/22,109	IG: NR	IG: 3,786/18,153	IG: 1,235/19,831
positive		(7.7%)		(7.7%)	(12.5%)	CG: 94/6,214 (1.5%)	(20.9%)	(6.2%)
rate for		CG: 799/24,067		CG:	CG: 802/22,003 (3.6%)		CG: 706/6,044	CG: 568/19,968
CIN3+		(3.3%)		4,409/65,650			(11.7%)	(2.8%)
				(6.7%)				
	2	NR			NR	NR	IG: 1,224/10,558	IG: 662/9,624
							(11.6%)*	(6.9%)
							CG: 192/3,848	CG: 664/9,502
							(5.0%)*	(7.0%)
Number of	1	NR	NR	NR	NR	NR	IG: 5/4,019 (0.1%)	IG: 12/1,406 (0.8%)
screened							CG: 4/786 (0.5%)	CG: 5/706 (0.7%)
positive	2	NR			NR	NR	IG: 3/1,258	IG: 3/742 (0.4%)
w omen							(0.2%)*	CG: 10/774 (1.3%)
w ith ICC							CG: 0/210 (0%)*	
Number of	1	NR	NR	NR	NR	NR	IG: 5/5 (100%)	IG: 12/12 (100%)
women							CG: 4/4 (100%)	CG: 5/6 (83.3%)
diagnosed	2	NR			NR	NR	IG: 3/3 (100%)*	IG: 3/4 (75%)
w ith ICC							CG: 0/0 (0%)*	CG: 9/14 (64.3%)
that had								
screened								
positive								

Test positivity was based on referral to colposcopy or more intensive screening

*From author inquiry

[†]Preliminary or incomplete results

Abbreviations: ASC-US = atypical cells of undetermined significance; BMD = borderline or mild dyskaryotic; CG = control group; CIN = cervical in traepithelial neoplasia; hrHPV = high risk human papillomavirus; ICC = invasive cervical cancer; IG = intervention group; NR = not reported; Rnd = round.

Appendix F Table 8. Colposcopies and Biopsies of Included Randomized, Controlled Trials

		NTCC Phase			NTCC Phase	SWEDESC REEN		
Parameter	Round	II ¹¹⁹	HPV FOCAL ²⁰⁸	FINNISH ¹²⁴	I ¹¹⁹	118	ARTISTIC ¹¹⁶	POBASCAM ¹²⁰
Number of	1	IG: 1,936/24,661	IG: 5.9% (95%	IG: 796/66,410	IG: 2,470/22,708	NR	IG:	NR
women		(7.9%)†	Cl, 5.5 to 6.3)*	(1.2%)	(10.9%)†		1,247/18,386	
referred to		CG: 679/25,435	CG: 3.1% (95%	CG: 755/65,784	CG: 738/22,466		(6.8%)	
colposcopy		(2.8%)†	Cl, 2.8 to 3.5)*	(1.1%)	(3.3%)†		CG: 320/6,124	
					. ,		(5.2%)	
	2	NR			NR	NR	IG: 284/10,716	NR
							(2.7%)‡	
							CG: 74/3,514	
							(2.1%)‡	
Number of	1	IG: 1,813/1,936	IG: 340/361	NR	IG: 2,319/2,470	NR	NR	NR
women		(93.6%)†	(94.1%)†		(93.9%)†			
undergoing		CG: 615/679	CG: 185/196		CG: 674/738			
colposcopy		(90.6%)†	(94.1%)†		(91.3%)†			
	2	NR			NR	NR	NR	NR
Number of	1	IG: 788/1,813	NR	NR	NR	NR	NR	NR
women		(43.5%)						
undergoing a		CG: 323/617						
biopsy		(52.4%)						
	2	NR			NR	NR	NR	NR

*Converted from rate per 1,000 women

†Estimated data from figure

[‡]Preliminary or incomplete results

Abbreviations: ARTISTIC = A Randomised Trial in Screening to Improve Cytology; CG = control group; HPV = human papillomavirus; IG = intervention group; NR = not reported; NTCC = New Technologies for Cervical Cancer Screening; POBASCAM = Population Based Screening Study Amsterdam Program

Parameter	Rnd	NTCC Phase II ^{119,} 127	HPV FOCAL ^{125,} 128-130‡	FINNISH ¹²⁴	NTCC Phase I ^{119,} 131, 132	SWEDESC RE EN ^{118,} 135	ARTISTIC ^{116, 136-138}	POBASCAM ^{120, 133,} 134
Ages recruited		25-60 years	25-65 years	25-65 years	25-60 years	32-38 years	20-64 years	29-61 years
Definition of screened negative	1	IG: hrHPV- CG: ASC-US-	IG: hrHPV- CG: ASC-US-	IG: hrHPV- CG: ASC-US-	IG: hrHPV-/ASC- US- CG: ASC-US-	IG: hrHPV-/ASC- US- CG: ASC-US-	IG: hrHPV-/ASC- US- CG: ASC-US-	IG: hrHPV-/BMD- CG: BMD-
	2	IG: ASC-US- CG: ASC-US-			IG: ASC-US- CG: ASC-US-	IG: ASC-US- CG: ASC-US-	IG: hrHPV-/ASC- US- CG: ASC-US-	IG: hrHPV-/BMD- CG: hrHPV-/BMD-
Follow up (years)	1	3.5 years (maximum)	2-4 years (maximum)§	5 years (maximum)	3.5 years (maximum)	3 years (maximum)	2.2 years (maximum)	4 years (maximum)
	2	3.5 years (maximum)	2 years (maximum)		3.5 years (maximum)	NR	2.3 years (maximum)	5 years (maximum)
Number of screened negative w omen w ith ICC	1	IG: 0/22,725 (0%) CG: 0/23,710 (0%)	NR	IG: 5/57,135 (0.01%) CG: 2/61,241 (0.003%)	IG: 0/20,687 (0%) CG: 0/21,611 (0%)	NR	IG: 0/14,367 (0%) CG: 0/5,338 (0%)	IG: 0/18,593 (0%) CG: 1/19,400 (0.005%)
	2	NR			NR	NR	IG: 0/9,334 (0%)* CG: 0/3,656 (0.0%)*	IG: 0/8,962 (0%) CG: 0/8,838 (0%)
Number of w omen diagnosed w ith ICC that had been screened negative	1	NR	NR	IG: 5/17 (29.4%) CG: 2/9 (22.2%)	IG: 0/ NR (0%) [∥] CG: 0/ NR (0%) [∥]	NR	IG: 0/5 (0%) CG: 0/4 (0%)	IG: 0/12 (0%) CG: 1/6 (16.7%)
	2	NR			NR	NR	IG: 0/3 (0%)* CG: 0/0 (0%)*	IG: 0/4 (0%) CG: 0/14 (0%)

*Preliminary or incomplete results

†In the control group, this is the second round of screening 4 years after enrollment; the first round of screening occurred 2 years after enrollment identified 17/6,447 [0.3%] women with CIN3+

‡From author inquiry

SHPV FOCAL had two randomized hrHPV arms: safety arm (screening every 2 years) and intervention arm (screening every 4 years); control arm screened every 2 years The total number of ICC was NR, but it is reported that there were zero cases of ICC in screened negative women.

Abbreviations: ASC-US = atypical cells of undetermined significance; BMD = borderline or mild dyskaryotic; CG = control group; CIN = cervical intraepithelial neoplasia; hrHPV = high risk human papillomavirus; ICC = invasive cervical cancer; IG = intervention group; NR = not reported