Screening for Cardiovascular Disease Risk With Electrocardiography
US Preventive Services Task Force
Recommendation Statement

IMPORTANCE Cardiovascular disease (CVD), which encompasses atherosclerotic conditions such as coronary heart disease, cerebrovascular disease, and peripheral arterial disease, is the most common cause of death among adults in the United States. Treatment to prevent CVD events by modifying risk factors is currently informed by CVD risk assessment with tools such as the Framingham Risk Score or the Pooled Cohort Equations, which stratify individual risk to inform treatment decisions.

OBJECTIVE To update the 2012 US Preventive Services Task Force (USPSTF) recommendation on screening for coronary heart disease with electrocardiography (ECG).

EVIDENCE REVIEW The USPSTF reviewed the evidence on whether screening with resting or exercise ECG improves health outcomes compared with the use of traditional CVD risk assessment alone in asymptomatic adults.

FINDINGS For asymptomatic adults at low risk of CVD events (individuals with a 10-year CVD event risk less than 10%), it is very unlikely that the information from resting or exercise ECG (beyond that obtained with conventional CVD risk factors) will result in a change in the patient’s risk category as assessed by the Framingham Risk Score or Pooled Cohort Equations that would lead to a change in treatment and ultimately improve health outcomes. Possible harms are associated with screening with resting or exercise ECG, specifically the potential adverse effects of subsequent invasive testing. For asymptomatic adults at intermediate or high risk of CVD events, there is insufficient evidence to determine the extent to which information from resting or exercise ECG adds to current CVD risk assessment models and whether information from the ECG results in a change in risk management and ultimately reduces CVD events. As with low-risk adults, possible harms are associated with screening with resting or exercise ECG in asymptomatic adults at intermediate or high risk of CVD events.

CONCLUSIONS AND RECOMMENDATION The USPSTF recommends against screening with resting or exercise ECG to prevent CVD events in asymptomatic adults at low risk of CVD events. (D recommendation) The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening with resting or exercise ECG to prevent CVD events in asymptomatic adults at intermediate or high risk of CVD events. (I statement)
The US Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific clinical preventive services for patients without obvious related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment.

The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms.

Summary of Recommendations and Evidence

The USPSTF recommends against screening with resting or exercise electrocardiography (ECG) to prevent cardiovascular disease (CVD) events in asymptomatic adults at low risk of CVD events (D recommendation) (Figure 1).

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening with resting or exercise ECG to prevent CVD events in asymptomatic adults at intermediate or high risk of CVD events. (I statement)

See the Clinical Considerations section for suggestions for practice regarding the I statement.

Rationale

Importance

Cardiovascular disease, which encompasses atherosclerotic conditions such as coronary heart disease, cerebrovascular disease, and peripheral arterial disease, is the most common cause of death among adults in the United States. Treatment to prevent CVD events by modifying risk factors is currently informed by CVD risk assessment with tools such as the Framingham Risk Score or the Pooled Cohort Equations, which stratify individual risk to inform treatment decisions. If existing CVD risk assessment tools could be improved, treatment might be better targeted, thereby maximizing the benefits of and minimizing the harms of screening.

Detection

The USPSTF found inadequate evidence to determine whether adding resting or exercise ECG to conventional risk factor assessment leads to improved risk stratification of persons to inform treatment decisions.

Benefits of Early Detection and Intervention and Treatment

The USPSTF found inadequate evidence to determine whether the incremental information offered by resting or exercise ECG (beyond that obtained with traditional CVD risk factors) can be used to guide treatment decisions and ultimately reduce CVD events.

Based on the epidemiology and natural history of CVD and established treatment strategies based on risk stratification, it is unlikely that the benefits of screening with resting or exercise ECG in asymptomatic adults at low risk of CVD events are greater than small.

See the Clinical Considerations section for definition of risk categories and assessment of risk.

Harms of Early Detection and Intervention and Treatment

The USPSTF found adequate evidence that screening with resting or exercise ECG in asymptomatic adults leads to harms that are at least small and may be moderate, including unnecessary invasive procedures, overtreatment, and labeling.

USPSTF Assessment

The USPSTF concludes with moderate certainty that the potential harms of screening with resting or exercise ECG to prevent CVD events equal or exceed the potential benefits in asymptomatic adults at low risk of CVD events.

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening with resting or exercise ECG to prevent CVD events in asymptomatic adults at intermediate or high risk of CVD events.

Clinical Considerations

Patient Population Under Consideration

This recommendation applies to adults without symptoms of or a diagnosis of CVD (Figure 2).

Suggestions for Practice Regarding the I Statement

In deciding whether to screen with resting or exercise ECG in asymptomatic adults at intermediate or high risk of CVD events, clinicians should consider the following information.

Potential Preventable Burden

Although evidence is insufficient to determine whether screening with ECG in adults is beneficial, those who may be at increased risk of CVD events might have the greatest potential for net benefit. Reclassification into a higher-risk category might lead to more intensive medical management that could lower the risk of CVD events but might also result in harms, including adverse medication effects such as gastrointestinal bleeding and hepatic injury. Regardless of ECG findings, persons who are already at high risk of CVD events should receive intensive risk factor modification. Persons who are classified as low risk are unlikely to benefit from screening with ECG.

For persons in certain occupations, such as pilots and operators of heavy equipment, for whom sudden incapacitation or death may endanger the safety of others, considerations other than the health benefit to the patient may influence the decision to screen with ECG to prevent CVD events.

Potential Harms

In all risk groups, an abnormal ECG finding (a true-positive or false-positive result) can lead to invasive confirmatory testing and treatment that have the potential for serious harm, including unnecessary radiation exposure. Two studies of asymptomatic adults with diabetes reported that 6% and 12% of patients who were screened with exercise ECG subsequently underwent angiography, and 3% to 5% underwent revascularization, without evidence of benefit to the study patients.1,2 Angiography and revascularization are associated with harms, including bleeding, contrast-induced nephropathy, cardiac...
Current Practice

Although many guideline groups recommend cardiovascular risk assessment, there are few data on how this is applied in clinical practice. Only 41% of respondents in a survey of more than 900 US clinicians reported using cardiovascular risk prediction equations in practice. There are few data on the use of ECG to assess CVD risk assessment tools. Persons with a 10-year CVD event risk greater than 10% assessed by the Framingham Risk Score, is one of the first widely used CVD risk assessment tools. Persons with a 10-year CVD event risk greater than

Assessment of Risk

Accurate identification of persons at high risk of CVD events provides the opportunity for more intensive risk factor management to reduce the likelihood of such an event. In addition, identifying persons at low risk may allow for a reduction in interventions among patients not likely to benefit from them.

Several factors are associated with an increased risk of CVD events, including older age, male sex, high blood pressure, current smoking, abnormal lipid levels, diabetes, obesity, and physical inactivity. Risk factors are combined in many ways to estimate a person’s risk of a CVD event. Several calculators and models are available to quantify a person’s 10-year risk of CVD events. The Framingham Risk Score, based on data from the Framingham Heart Study, was one of the first widely used CVD risk assessment tools. Persons with a 10-year CVD event risk greater than

Table: USPSTF Levels of Certainty Regarding Net Benefit

<table>
<thead>
<tr>
<th>Level of Certainty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>The available evidence usually includes consistent results from well-designed, well-conducted studies in representative primary care populations. These studies assess the effects of the preventive service on health outcomes. This conclusion is therefore unlikely to be strongly affected by the results of future studies.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The available evidence is sufficient to determine the effects of the preventive service on health outcomes, but confidence in the estimate is constrained by such factors as the number, size, or quality of individual studies. Inconsistency of findings across individual studies. Limited generalizability of findings to routine primary care practice. Lack of coherence in the chain of evidence. As more information becomes available, the magnitude or direction of the observed effect could change, and this change may be large enough to alter the conclusion.</td>
</tr>
<tr>
<td>Low</td>
<td>The available evidence is insufficient to assess effects on health outcomes. Evidence is insufficient because of the limited number or size of studies. Important flaws in study design or methods. Inconsistency of findings across individual studies. Gaps in the chain of evidence. Findings not generalizable to routine primary care practice. Lack of information on important health outcomes. More information may allow estimation of effects on health outcomes.</td>
</tr>
</tbody>
</table>

The USPSTF defines certainty as “likelihood that the USPSTF assessment of the net benefit of a preventive service is correct.” The net benefit is defined as benefit minus harm of the preventive service as implemented in a general, primary care population. The USPSTF assigns a certainty level based on the nature of the overall evidence available to assess the net benefit of a preventive service.

Table: USPSTF Grades and Levels of Certainty

<table>
<thead>
<tr>
<th>Grade</th>
<th>Definition</th>
<th>Suggestions for Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The USPSTF recommends the service. There is high certainty that the net benefit is substantial.</td>
<td>Offer or provide this service.</td>
</tr>
<tr>
<td>B</td>
<td>The USPSTF recommends the service. There is high certainty that the net benefit is moderate, or there is moderate certainty that the net benefit is moderate to substantial.</td>
<td>Offer or provide this service.</td>
</tr>
<tr>
<td>C</td>
<td>The USPSTF recommends selectively offering or providing this service to individual patients based on professional judgment and patient preferences. There is at least moderate certainty that the net benefit is small.</td>
<td>Offer or provide this service for selected patients depending on individual circumstances.</td>
</tr>
<tr>
<td>D</td>
<td>The USPSTF recommends against the service. There is moderate or high certainty that the service has no net benefit or that the harms outweigh the benefits.</td>
<td>Discourage the use of this service.</td>
</tr>
<tr>
<td>I statement</td>
<td>The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of the service. Evidence is lacking, of poor quality, or conflicting, and the balance of benefits and harms cannot be determined.</td>
<td>Read the Clinical Considerations section of the USPSTF Recommendation Statement. If the service is offered, patients should understand the uncertainty about the balance of benefits and harms.</td>
</tr>
</tbody>
</table>
20% are generally considered high risk, those with a 10-year CVD event risk less than 10% are considered low risk, and those with a 10-year CVD event risk of 10% to 20% are considered intermediate risk. The Pooled Cohort Equations, introduced by the American College of Cardiology and American Heart Association in 2013, include the same variables as the Framingham Risk Score as well as race/ethnicity and diabetes. Persons with a 10-year CVD event risk less than 7.5% are considered at low risk, and those with a 10-year CVD event risk of 7.5% or greater are considered at elevated risk. The USPSTF recommends that clinicians use the Pooled Cohort Equations to assess CVD risk.

Screening Tests
Both resting and exercise ECG are used for the diagnostic evaluation of suspected CVD, which has led to the suggestion that ECG could also be used to screen asymptomatic persons to identify those who would benefit from earlier, more intensive management of modifiable risk factors, preventive interventions, or both. Resting ECG records cardiac electrical activity while the patient is at rest, over a short period. Exercise ECG records cardiac electrical activity during physical exertion, often at a prespecified intensity level. The most common method of exercise ECG is the treadmill test. Both resting and exercise ECG look for markers of previous myocardial infarction, myocardial ischemia, and other cardiac abnormalities (such as left ventricular hypertrophy, bundle branch block, or arrhythmia) that may be associated with CVD or predict future CVD events.

Resting ECG records cardiac electrical activity while the patient is at rest, over a short period. Exercise ECG records cardiac electrical activity during physical exertion, often at a prespecified intensity level. The most common method of exercise ECG is the treadmill test. Both resting and exercise ECG look for markers of previous myocardial infarction, myocardial ischemia, and other cardiac abnormalities (such as left ventricular hypertrophy, bundle branch block, or arrhythmia) that may be associated with CVD or predict future CVD events.

Treatment and Interventions
Asymptomatic adults at increased risk of CVD events are usually treated with a combination of diet and exercise modifications, lipid-lowering medications, aspirin, hypertension management, and interventions to encourage tobacco cessation. Recommendations for diet and exercise modifications, lipid-lowering medications, and aspirin are based on level of cardiovascular risk. Recent guidelines also recommend risk stratification of hypertension treatment; the recommendation for tobacco cessation applies to all persons regardless of CVD risk.

Useful Resources
The USPSTF has made recommendations on many factors related to CVD prevention, including screening for high blood pressure, use of statins, counseling on smoking cessation, and counseling to promote healthful diet and physical activity. In addition, the USPSTF recommends low-dose aspirin use in certain persons at increased risk of CVD events.

Other Considerations
Research Needs and Gaps
A considerable number of studies have reported hazard ratios and other measures of association between ECG changes and cardiovascular outcomes, so additional studies of this nature are unlikely to...
advance the field. Studies are needed that assess the incremental value of adding ECG to current CVD risk assessment tools or instruments to directly inform decision making; studies that examine patient outcomes would be most useful. Failing that, studies are needed that assess the added value of ECG for risk reclassification across clinically relevant risk thresholds. Any study of CVD risk assessment should also evaluate the harms associated with assessment as well as those related to additional testing and treatment. Studies that measure risk reclassification should report total, event, and nonevent Net Reclassification Indices, with corresponding confidence intervals, as well as measures of calibration and discrimination.

Discussion

Burden of Disease
Cardiovascular disease is the most common cause of death among adults in the United States, accounting for 1 in 3 deaths. Although CVD remains a significant cause of illness and death, mortality from CVD has been decreasing over time in the United States. Currently, the annual incidence of new cases of myocardial infarction and cerebral vascular accident in the United States is 580,000 and 610,000, respectively.16

Scope of Review
In 2012, the USPSTF recommended against screening for coronary heart disease with ECG in low-risk adults (D recommendation) and issued an I statement for intermediate- and high-risk adults.17 To update the prior recommendations, the USPSTF requested the current evidence review.18,19 In recognition of how the field has advanced, the current evidence review did not include association studies but addressed whether the addition of screening with resting or exercise ECG improves health outcomes compared with traditional CVD risk assessment in asymptomatic adults.

Accuracy of Screening Tests
The USPSTF reviewed the evidence on whether screening with resting or exercise ECG improves calibration, discrimination, or risk reclassification when added to CVD risk assessment models using traditional risk factors. The USPSTF focused on evidence that ECG adds to current CVD risk assessment with the Framingham Risk Score or the Pooled Cohort Equations, because this could lead to change in treatments for patients.

The USPSTF identified 5 cohort studies (2 of which overlap with the previous review) that evaluated whether adding exercise ECG to current CVD risk assessment models improves calibration, discrimination, or reclassification. Four studies assessed whether exercise ECG improved calibration; 2 studies evaluated adding exercise ECG to the Framingham Risk Score,20,21 and the other 2 studies evaluated adding exercise ECG to other risk assessment models.22,23 The studies used different measures and showed mixed effects on calibration. Three studies assessed whether adding exercise ECG to the Framingham Risk Score27 or other risk assessment models22,24 improved discrimination, and all found only small absolute improvements in area under the curve or C statistic (0.02-0.03). Only 1 risk assessment model development study evaluated whether adding exercise ECG improved risk reclassification. However, the study did not apply risk thresholds that currently determine treatment and only reported overall reclassification, not event and nonevent net reclassification.22

The USPSTF identified 9 cohort studies (1 of which overlapped with the previous review) that evaluated whether adding resting ECG to current CVD risk assessment models improves calibration, discrimination, or reclassification; 5 of these studies evaluated multiple ECG changes and 4 evaluated a single ECG change. Five studies evaluated adding resting ECG to the Framingham Risk Score,23-25 and 1 of these studies29 also evaluated adding resting ECG to the Pooled Cohort Equations. Adding resting ECG to existing CVD risk assessment models improved calibration for several CVD outcomes, although the strength of evidence was low and resulted in small or very small improvements in discrimination (absolute improvement in area under the curve or C statistic, 0.001-0.050). Two studies reported net reclassification when resting ECG was added to the Framingham Risk Score,18,26,27 and 1 study29 evaluated adding resting ECG to both the Framingham Risk Score and the Pooled Cohort Equations. There was a small to moderate improvement in reclassification but the studies did not present the full reclassification data, so it is difficult to determine whether the reclassification would change treatment. No 2 studies evaluated the same CVD risk assessment model, risk category threshold, or outcome.

Effectiveness of Early Detection and Treatment
The USPSTF identified no studies that directly assessed whether adding resting ECG to current CVD risk assessment models improves cardiovascular outcomes for any risk group.18,19 The USPSTF identified 2 fair-quality randomized clinical trials of screening with exercise ECG in persons with diabetes (and therefore at increased risk of CVD) that found no difference in mortality or cardiovascular events.1,2 However, both trials fell short of their intended enrollment and therefore were underpowered and had a relatively short time period (mean, 3.5 years) to detect a difference in cardiovascular outcomes.

Potential Harms of Screening and Treatment
Resting ECG has the potential for anxiety and labeling; however, the USPSTF was unable to find relevant studies on these harms. Exercise ECG has more potential for direct harms (eg, triggering a cardiovascular event or musculoskeletal injury), but survey data of asymptomatic patients suggests that these harms are very rare.30,31 The primary concern for both types of ECG screening is the harm of subsequent procedures or interventions initiated as a result of screening (eg, angiography or revascularization procedures). Only 1 study reported harms of subsequent testing (1/12 patients referred for revascularization had a nonfatal myocardial infarction); therefore, the USPSTF included a broader range of study designs in its evaluation to estimate potential harms.

Angiography rates after screening with exercise ECG in asymptomatic populations are generally less than 3% (range, 0.6%-13%). The majority of patients undergoing angiography in these studies did not have angiographically demonstrable coronary artery stenosis, but some did undergo revascularization (0.1%-0.5%).8 Based on large population-based registries that include asymptomatic persons, angiography is associated with a serious harm rate of 1.7%, including arrhythmia (0.40%), death (0.10%), stroke (0.07%), and myocardial infarction (0.05%). Revascularization increases the risk of periprocedural myocardial infarction (1.7%), coronary artery dissection (1.3%), bleeding events within 72 hours (1.3%), vascular complications (0.4%),
renal failure (0.4%), stroke (0.1%), and death on day of procedure (<0.01%). The USPSTF did not find any recent studies that directly addressed the potential harms of anxiety or labeling.

Estimate of Magnitude of Net Benefit

For asymptomatic adults at low risk of CVD events (defined as 10-year CVD event risk <10%), it is very unlikely that the information from resting or exercise ECG (beyond that obtained with conventional CVD risk factors) will result in a change in the patient’s risk category that would lead to a change in treatment and ultimately improve health outcomes. Serious possible harms are associated with screening with resting or exercise ECG, specifically the potential adverse effects of subsequent invasive testing. Therefore, the USPSTF concludes with moderate certainty that screening with ECG in asymptomatic adults at low risk of CVD events has no net benefit.

For asymptomatic adults at intermediate or high risk of CVD events (defined as a 10-year CVD event risk of 10%-20% or >20%, respectively), there is insufficient evidence to determine the extent to which information from resting or exercise ECG adds to current CVD risk assessment models (ie, Pooled Cohort Equations) and whether it results in a change in risk management and ultimately reduces CVD events. As with low-risk adults, serious possible harms are associated with screening with resting or exercise ECG in asymptomatic adults at intermediate or high risk of CVD events. The USPSTF concludes that there is insufficient evidence to estimate the net benefit of screening with ECG in asymptomatic adults at intermediate or high risk of CVD events.

How Does Evidence Fit With Biological Understanding?

There is substantial and consistent evidence that identifying and treating traditional, modifiable CVD risk factors such as high blood pressure, abnormal lipid levels, diabetes, current smoking, physical inactivity, and diet improve cardiovascular outcomes. These risk factors are linked to the biological understanding of the pathophysiology of CVD. Electrocardiography measures the electrical activity in the heart and results can be abnormal for many reasons, only some of which are attributable to atherosclerotic CVD. In low-risk patients, these abnormalities are unlikely to result from atherosclerotic CVD; in intermediate- and high-risk patients, they are more likely to result from atherosclerotic CVD, but there is no evidence that targeting these abnormalities in addition to modifiable risk factors has benefit.

Response to Public Comment

A draft version of this recommendation statement was posted for public comment on the USPSTF website from December 19, 2017, to January 22, 2018. In response to public comments, the USPSTF clarified the definition of CVD and the preferred CVD risk assessment tool.

Update of Previous USPSTF Recommendation

This recommendation is an update of the 2012 USPSTF recommendation. As in 2012, the USPSTF continues to recommend against screening with ECG in adults at low risk, and the evidence remains insufficient on screening in adults at increased risk.

Recommendations of Others

The American College of Physicians recommends against screening for CVD with resting or exercise ECG in asymptomatic, low-risk adults.

The American College of Cardiology concludes that exercise ECG is rarely appropriate in asymptomatic adults at low global risk of CVD events, may be an appropriate option for adults at intermediate risk, and is appropriate for adults at high risk.

In 2012, the American Academy of Family Physicians recommended against screening with ECG in asymptomatic, low-risk persons.

The American College of Preventive Medicine recommends against routinely screening with resting or exercise ECG in the general adult population.