Evidence Synthesis
Number 155

Hormone Therapy for the Primary Prevention of Chronic Conditions in Postmenopausal Women: An Evidence Review for the U.S. Preventive Services Task Force

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
5600 Fishers Lane
Rockville, MD 20857
www.ahrq.gov

Contract No. HHSA-290-2012-00015-I, Task Order No. 6

Prepared by:
RTI International–University of North Carolina Evidence-based Practice Center
Research Triangle Park, NC

Investigators:
Gerald Gartlehner, MD, MPH
Sheila V. Patel, BSPH
Meera Viswanathan, PhD
Cynthia Feltner, MD, MPH
Rachel Palmieri Weber, PhD, MSPH
Rachel Lee, PharmD, BCPS, CPP
Kelly Mullican, PharmD, CPP
Erin Boland, BS
Linda Lux, MPA
Kathleen Lohr, PhD

AHRQ Publication No. 15-05227-EF-1
December 2017
This report is based on research conducted by the RTI International–University of North Carolina Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2012-00015-I, Task Order No. 6). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

Acknowledgments

The authors acknowledge the following individuals for their contributions to this project and appreciate their considerable support, commitment, and contributions: Tina Fan, MD, MPH, AHRQ Medical Officer; Howard Tracer, MD, AHRQ Medical Officer; Tracy Wolff, MD, MPH, AHRQ Associate Scientific Director, U.S. Preventive Services Task Force; current and former members of the U.S. Preventive Services Task Force who contributed to topic deliberations; expert reviewers Cindy Farquhar, MD, MPH, The University of Auckland, JoAnn Manson, MD, MPH, DrPH, Brigham and Women’s Hospital, Anita Nelson, MD, and Susan Reed, MD, MPH, University of Washington School of Medicine; four federal partner reviewers from the National Institutes of Health; Evelyn Whitlock, MD, MPH, former Director of the Kaiser Permanente Research Affiliates EPC; RTI International–University of North Carolina EPC staff: Dan Jonas, MD, MPH, Co-Director, Carol Woodell, Project Manager, research assistants Emmanuel Coker-Schwimmer, MPH, Catherine Aspden Grodensky, MPH, Huiling Pan, BA, Stephanie Scope, BS, Lynn Whitener, DrPH, MSPH, librarian, Sharon Barrell, MA, editor, and Loraine Monroe, publications specialist.
Suggested Citation

Structured Abstract

Background: Hormone therapy plays an important role in the clinical management of menopausal symptoms. Because of an increased risk of harms, hormone therapy is currently not recommended for the primary prevention of chronic conditions.

Purpose: To update evidence on the effectiveness of hormone therapy in reducing risk of chronic conditions, its adverse effects, and differences among population subgroups for the U.S. Preventive Services Task Force.

Data Sources: We searched MEDLINE, the Cochrane Library, and Embase for English-language articles (through August 1, 2016). We conducted searches for unpublished literature by searching ClinicalTrials.gov, HSRProj, the World Health Organization’s International Clinical Trials Registry Platform, and NIH RePORTER. In addition, we reviewed reference lists of pertinent review articles and studies meeting our inclusion criteria.

Study Selection: We dually reviewed the literature and included randomized, placebo-controlled trials that provided information on the primary prevention of chronic conditions with hormone therapy and reported health outcomes.

Data Extraction: We abstracted details about participants, study design, analysis, followup, and results; study quality and strength of evidence were rated using established criteria.

Data Synthesis: Seventeen fair-quality trials met eligibility criteria. The Women’s Health Initiative (WHI) was the largest study and most applicable to the target population.

Results of our review indicate differences in the risk-benefit profile between treatment formulations. Women using estrogen only had statistically significantly lower risk (per 10,000 women over 6.8 to 7.2 years) of diabetes (137 fewer cases) and fractures (382 fewer cases) than women taking placebo. However, risk (per 10,000 women over 5.4 to 7.1 years) was statistically significantly increased for gallbladder disease (213 more cases), stroke (79 more cases), and venous thromboembolism (78 more cases). The risk of urinary incontinence (1,261 more cases per 10,000 women) was increased during a followup of 1 year.

Women using estrogen plus progestin therapy experienced statistically significantly lower risk (per 10,000 women over 5.0 to 5.6 years) for colorectal cancer (33 fewer cases), diabetes (77 fewer cases), and fractures (222 fewer cases) than women taking placebo. Risk (per 10,000 women over 4 to 5.6 years) of invasive breast cancer (52 more cases), probable dementia (88 more cases), gallbladder disease (116 more cases), stroke (53 more cases), and venous thromboembolism (120 more cases) was statistically significantly increased compared with women taking placebo. The risk of urinary incontinence (876 more cases per 10,000 women) was increased during a followup of 1 year.

Limitations: Few trials or subgroup analyses were powered for prevention outcomes. No comparative evidence on type, dose, and mode of delivery of hormone therapy is available. The
applicability of results to younger women who initiate hormone therapy for the management of menopausal symptoms and to women with nonwhite ethnic backgrounds might be limited.

Conclusions: Women undergoing hormone therapy for the primary prevention of chronic conditions experience some beneficial effects but also an increased risk of harms.
Table of Contents

Chapter 1. Introduction

- Scope and Purpose ... 1
- Condition Definition .. 1
- Prevalence and Burden ... 2
- Interventions ... 2
 - Hormone Therapy ... 2
 - Current Clinical Practice .. 3
 - Summary of Guidelines From Other Groups 4

Chapter 2. Methods

- Key Questions and Analytic Framework 5
- Search Strategies ... 5
- Study Selection ... 6
 - Populations ... 6
 - Interventions ... 6
 - Comparators .. 7
 - Outcomes .. 7
 - Timing ... 7
 - Settings ... 7
 - Study Designs ... 8
- Data Abstraction and Quality Rating 8
- Data Synthesis and Analysis ... 8
- Expert Review and Public Comment 9
- USPSTF Involvement .. 10

Chapter 3. Results

- Results of Literature Searches ... 11
- Description of Trials ... 11
- Summary of Evidence .. 12
 - KQ 1. What Are the Benefits of Menopausal Hormone Therapy When Used for Primary Prevention of Chronic Conditions? ... 13
 - KQ 2. What Are the Harms of Menopausal Hormone Therapy When Used for Primary Prevention of Chronic Conditions? .. 13
 - KQ 3. Do the Benefits and Harms of Menopausal Hormone Therapy Differ by Subgroup or by Timing of Intervention? .. 14
- Detailed Presentation of the Evidence 14
 - Estrogen Only: Cancer .. 15
 - Estrogen Only: Other Chronic Conditions 18
 - Estrogen Plus Progestin: Cancer ... 25
 - Estrogen Plus Progestin: Other Chronic Conditions 29

Chapter 4. Discussion

- Summary of Review Findings .. 38
 - Benefits and Harms of Hormone Therapy (KQs 1 and 2) 38
 - Information About Subgroups of Women (KQ 3) 39
- Limitations and Future Research ... 40
Conclusions .. 42
References .. 43

Figures
Figure 1. Analytic Framework
Figure 2. Absolute Risk Reductions or Increases for Women Treated With Estrogen Only
Figure 3. Absolute Risk Reductions or Increases for Women Treated With Estrogen Plus Progestin

Tables
Table 1. Hormone Therapies Approved by the U.S. Food and Drug Administration
Table 2. Clinical Practice Guidelines and Recommendations About Use of Hormone Therapy for Prevention of Chronic Conditions
Table 3. Characteristics of Randomized Controlled Trials of Use of Hormone Therapy
Table 4. Baseline Characteristics of Participants in Randomized Controlled Trials of Hormone Therapy to Prevent Chronic Conditions
Table 5. Results of WHI at the End of the Intervention Phase, by Category and Subcategory of Outcome
Table 6. Summary of Evidence: Estrogen-Only Trials
Table 7. Summary of Evidence: Estrogen Plus Progestin Trials
Table 8. Summary of Evidence: Subgroups

Appendixes
Appendix A. Search Strategies
Appendix B. Inclusion and Exclusion Criteria
Appendix C. U.S. Preventive Services Task Force Quality Rating Criteria for Randomized Controlled Trials
Appendix D. Literature Flow Diagram
Appendix E. Excluded Studies
Appendix F. Ratings for Domains of Quality Ratings of Randomized Controlled Trials
Appendix G. Data on Outcomes for All Trials Reporting on That Outcome
Appendix H. Forest Plots of Meta-Analyses
Chapter 1. Introduction

Scope and Purpose

The U.S. Preventive Services Task Force (USPSTF) will use this report to update its 2012 recommendation on use of hormone therapy for postmenopausal women to prevent chronic health conditions such as cardiovascular disease, types of cancer, and osteoporotic fractures. In 2012, the USPSTF recommended against the use of estrogen plus progestin for the prevention of chronic conditions in postmenopausal women (grade D recommendation) and against the use of estrogen for the prevention of chronic conditions in postmenopausal women who have had a hysterectomy (grade D recommendation). These recommendations do not apply to women younger than age 50 years who have had surgical menopause.

The purposes of this report are to update evidence about the benefits and harms of hormone therapy for preventing chronic conditions in postmenopausal women and to examine whether outcomes vary among women in different subgroups. Use of hormone therapy for treating women with menopausal symptoms, such as vasomotor hot flashes or vulvovaginal complaints (e.g., dryness or dyspareunia), or for other indications is outside the scope of this review.

Condition Definition

Menopause is the cessation of the menstrual cycle and the end of a woman’s reproductive years; it is defined retrospectively, 12 months after the final menstrual period. Natural menopause results from the relative depletion of ovarian follicles responsive to the gonadotropins and the consequent decline in estrogen and progesterone concentration. The Stages of Reproductive Aging Workshop describes menopause as a series of four stages along a reproductive continuum. Early perimenopause results from anovulatory menstrual cycles and is characterized by irregularity in menstrual cycle length and duration. Late perimenopause is marked by progressive menstrual irregularity. Early postmenopause is the interval within 4 years of the final menstrual period, and late postmenopause is 5 or more years after the final menstrual period.

In the past, menopause was viewed as a risk factor for several chronic conditions attributable primarily to two (related) bodies of evidence: 1) large observational studies showing an increased risk of chronic conditions in relationship to age at natural menopause (as well as increased incidence of biomarkers associated with chronic conditions, such as elevated lipid levels) and 2) observational data showing that estrogen may have a positive effect on both the incidence of chronic conditions and intermediate outcomes related to the risk of chronic conditions (e.g., increase in arterial wall thickness).

“Chronic conditions” refers to common, preventable diseases and conditions treated in primary care settings. These can include heart disease, osteoporosis (and subsequent fractures), cognitive impairment, some types of cancer, and others. These conditions all have multiple risk factors, such as lack of physical activity, poor nutrition, tobacco use, and others. Before 2002, hormone therapy was believed to help prevent these conditions based on evidence from observational
studies, and it was commonly prescribed for primary prevention in women with and without menopausal symptoms.

Prevalence and Burden

Natural menopause occurs at a median age of 51.3 years. Surgery (bilateral oophorectomy), chemotherapy, or radiation can induce premature menopause (defined as menopause that occurs before the age of 40 years). In the absence of a known cause (e.g., radiation), menopause before age 40 years is considered to be abnormal and is referred to as primary ovarian insufficiency. In some women, menopause is associated with its own morbidity. Approximately 85 percent of women transitioning through menopause report experiencing symptoms such as vasomotor symptoms (hot flashes, sleep disturbances, psychological symptoms [depressive symptoms, anxiety, or mood disturbances]), urogenital problems, and sexual dysfunction.

The prevalence and incidence of most chronic diseases increase with age, and the average U.S. woman who reaches menopause is expected to live another 30 years. However, the excess risk that can be attributed to menopause alone is uncertain for at least two reasons: 1) the hormone events associated with natural menopause and aging do not happen in isolation and 2) chronic conditions are multifactorial. The evidence supporting menopause as a risk factor for chronic disease is strongest for cardiovascular disease and osteoporosis. Currently, the American College of Cardiology/American Heart Association Guidelines recognize the postmenopausal state as a risk factor for cardiovascular disease, assigning it the same weight as male sex. However, data are conflicting on whether the type of menopause (surgical or natural) affects cardiovascular risk; in a large cohort of U.S. women (N=121,700), bilateral oophorectomy, but not natural menopause, was associated with an increased risk of cardiovascular disease.

Interventions

Hormone Therapy

Currently, hormone therapy is approved by the U.S. Food and Drug Administration only for treatment of menopausal symptoms and prevention and treatment of osteoporosis, with the advice that “estrogens and progestins should be used at the lowest doses for the shortest duration to reach treatment goals, although it is not known at what dose there may be less risk of serious side effects.” Hormone therapy includes the use of various forms, doses, and regimens of estrogen with or without progestin. Hormone therapy can be taken orally, vaginally, or intranasally or as an implant, skin patch, cream, or gel. Women who have not had a previous hysterectomy use a combination therapy of estrogen plus progestin (sometimes denoted combined hormone therapy, but hereafter in this report specified as estrogen plus progestin) to prevent endometrial proliferation and endometrial cancer, whereas women with a previous hysterectomy use only estrogen (estrogen-only hormone therapy). Products approved for use in the United States are listed in Table 1.

Formulations of oral estrogen may include estradiol (derived from Mexican yam), estradiol
valerate (a prodrug for estradiol), synthetic conjugated estrogen, ethinyl estradiol, or conjugated equine estrogen (derived from horse mare urine). The progestogens include synthetic derivatives of progesterone or progestins (e.g., norethindrone, norethindrone acetate, levonorgestrel, drospirenone, norgestimate, and medroxyprogesterone acetate) and natural progesterones derived from plants (e.g., orally administered micronized progesterone). Natural progesterones are identical to the steroid produced by the corpus luteum.

For estrogen plus progestin therapy, progestin can be taken either every day (continuous combined therapy) or cyclically with estrogens taken daily and progestins taken for part of the month (sequentially combined hormone therapy). Progestins and natural progesterones differ in their metabolic action and risk of harms such as adverse effects on blood lipids, breast tenderness, or headaches.19

A recent review supported by the Agency for Healthcare Research and Quality (AHRQ) synthesized evidence from 283 randomized, controlled trials (RCTs), published through January 2014, analyzing the effectiveness of treatments for menopausal symptoms. Symptoms of interest included vasomotor, psychological, and urogenital symptoms; quality of life; sexual function; and sleep disturbance.20 The authors concluded that although estrogens are the most effective treatment for vasomotor symptom relief and confer the greatest improvement in quality-of-life measures, they are also associated with potential long-term harms. Potential harms of long-term hormone therapy include increased risk of venous thromboembolism, stroke, breast cancer, and other conditions. Finally, the authors concluded that compared with placebo, nonhormonal treatments show similar effects as estrogens for other common symptoms, such as psychological symptoms, urogenital symptoms, and sleep disturbance.20

Current Clinical Practice

The number of women using hormone therapy has declined significantly in recent years.21 Between 1988 and 1994, an estimated 44 percent of postmenopausal women in the United States reported current or past use of at least one form of hormone therapy.22 Results from the Women’s Health Initiative (WHI),23, 24 a large U.S.-based RCT of hormone therapy versus placebo, were first released in 2002; findings indicated that hormone therapy use is associated with important adverse health effects. Between 2003 and 2004, use of all formulations of hormone therapy decreased to 11.9 percent among non-Hispanic white women; however, among non-Hispanic black and Hispanic women, prevalence did not decline substantially until 2005 to 2006. In 2010, the prevalence of hormone therapy use was estimated at 4.7 percent overall—2.7 percent for estrogen only and 1.7 percent for estrogen plus progestin.25

Despite the results of the WHI and an overall decline in hormone therapy use, current recommendations by professional societies are inconsistent. Some guidelines recommend hormone therapy for women at increased risk of osteoporosis and fracture.26, 27 Data also suggest that the overall net benefit of hormone therapy use may be increased for women who initiate treatment during the menopause transition or early postmenopause rather than late postmenopause. This approach is often referred to as the “timing hypothesis” (i.e., a critical window for favorable outcomes of hormone therapy treatment).28 The hypothesis proposes that hormone therapy given at or soon after menopause reduces the risk of cardiovascular disease but
the potential beneficial effects will be attenuated or not experienced when hormone therapy is initiated several years after menopause.29

The timing hypothesis arose initially from data from the Framingham study, which indicated that natural menopause increases the risk of cardiovascular disease. Studies in female monkeys30 and large observational studies in women8, 31, 32 corroborated the hypothesis that early commencement of hormone therapy prevents the progression of atherosclerosis. The purported health benefits of early hormone therapy have been extended to lower mortality,33 reduced risk of dementia, and better cognition.34 Most of these claims are based on observational studies; post hoc subgroup analyses of the WHI also reported benefits of an early commencement of hormone therapy.35

Summary of Guidelines From Other Groups

Several organizations have issued clinical practice guidelines related to using hormone therapy in postmenopausal women for the prevention of chronic conditions (Table 2). No current guidelines recommend the routine use of hormone therapy for primary or secondary prevention of heart disease, and most recommend against the use of hormone therapy for prevention of any chronic conditions. Both the American College of Obstetricians and Gynecologists guidelines26 and the American Association of Clinical Endocrinologists guidelines27 note that hormone therapy is approved for women at increased risk of osteoporosis and fracture. The American College of Obstetricians and Gynecologists guidelines also mention the uncertainty about whether the potential cardiovascular benefits for women may differ based on early versus late initiation of hormone therapy.26, 36 The North American Menopause Society guidelines37 focus primarily on considerations for women with symptoms; they note that the balance of potential health benefits and risks should be weighed individually for each woman.
Chapter 2. Methods

The methods for this review follow the guidance provided in the USPSTF Procedure Manual.38

Key Questions and Analytic Framework

The investigators, USPSTF members, and AHRQ Medical Officers developed the scope, Key Questions (KQs), and analytic framework (Figure 1) that guided our literature search and review. Specifically, the KQs are:

1. What are the benefits of menopausal hormone therapy when used for the primary prevention of chronic conditions?
2. What are the harms of menopausal hormone therapy when used for the primary prevention of chronic conditions?
3. Do the benefits and harms of menopausal hormone therapy differ by subgroup (race/ethnicity; women with premature menopause; women with surgical menopause; age during hormone therapy use; duration of use; type, dose, and mode of delivery of hormone therapy; and presence of comorbid conditions) or by timing of intervention (initiation of hormone therapy during perimenopause vs. postmenopause)?

We will also answer the following contextual questions:

1. What is the average treatment duration of hormone therapy in women who initiate its use for the treatment of menopausal symptoms?
2. Does the use of hormone therapy differ by subgroup?

Appendix A documents our various search strategies; Appendix B lists the inclusion and exclusion criteria based on relevant populations, interventions, comparators, outcomes, timing, and settings (PICOTS) and other elements such as study designs; Appendix C gives the criteria for rating the quality of RCTs according to the USPSTF approach; Appendix D is the flowchart for the literature review, based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidance; Appendix E lists all studies excluded at the full-text review stage; Appendix F documents our critical appraisal decisions, specifically the ratings for each domain of the quality ratings for each trial; Appendix G includes outcome-specific tables containing all data reported for a given outcome from the included trials used for our main analyses; and Appendix H includes forest plots for outcomes with sufficient data to complete meta-analysis.

Search Strategies

We searched MEDLINE® (via PubMed), the Cochrane Library, Embase, and International Pharmaceutical Abstracts for English-language articles published from June 1, 2011, through August 1, 2016. We used Medical Subject Headings as search terms when available and
keywords when appropriate, focusing on terms to describe relevant PICOTS elements. Appendix A describes all the search strategies.

We conducted targeted searches for unpublished literature by searching ClinicalTrials.gov, HSRProj, the World Health Organization’s International Clinical Trials Registry Platform, NIH RePORTER, and Drugs@FDA.gov. To supplement electronic searches, we reviewed the reference lists of pertinent review articles and studies meeting our inclusion criteria and added all previously unidentified relevant articles. We also manually reviewed all literature suggested by peer reviewers or public comment respondents and, if appropriate, incorporated it into the final review.

Between August 2016 and August 2017, we conducted ongoing surveillance through article alerts and targeted searches of high-impact journals to ensure inclusion of major studies affecting the conclusions or understanding of the evidence and the related USPSTF recommendation.

Study Selection

We selected hormone therapy studies on the basis of inclusion and exclusion criteria developed for each KQ based on the PICOTS approach and other elements such as study designs. The basic criteria are described below, and Appendix B provides more details. We imported all citations identified through searches and other sources into EndNote Version 7 (Clarivate Analytics, Philadelphia).

Two investigators independently reviewed titles and abstracts. We then dually and independently reviewed the full text of all articles that either reviewer marked for potential inclusion. We resolved disagreements by discussion and consensus; if necessary, we sought adjudication of conflicts from other experienced members of the review team. Appendix E lists studies that we excluded at the full-text review stage.

In addition to the searches for the updated literature, we incorporated all included citations from the previous report, which covered the publication period of January 2002 through November 2011. Additionally, to ensure that our update was cumulative of all relevant evidence, we reviewed all included citations from three recent systematic reviews and included all relevant citations that met our criteria for fair or good quality.

Populations

We included studies of generally healthy perimenopausal and postmenopausal women who were eligible for hormone therapy. Women with and without menopausal symptoms were included if the focus of the analysis was either on the primary prevention of chronic conditions or on the harms of hormone therapy. In some cases, we included studies that may have had populations for which hormone therapy use was intended for secondary prevention (e.g., for slowing the progression of coronary artery atherosclerosis). We excluded postmenopausal women with contraindications for hormone therapy use.
Interventions

We searched for studies that examined the use of systemic therapy with estrogen-only formulations or combination preparations of estrogen plus progestin for the primary prevention of chronic conditions. We limited our evaluation to medications that have been approved by the U.S. Food and Drug Administration for this purpose and that are available for use in the United States. Table 1 lists the drugs in these two classes by generic name and gives the brand names, the type of product (i.e., patch, pill, or injection), and information on dosage. We focused our analysis on studies that present the effect of the intervention by type of hormone therapy (i.e., estrogen only or estrogen plus progestin). We included studies that do not differentiate between type of hormone therapy in the evidence tables, but we do not discuss them in detail in the results.

Comparators

We included placebo-controlled trials and studies with inactive treatments as a comparator.

Outcomes

Because of the main focus on primary prevention of chronic conditions, we included trials that measured various metrics for the following array of such diagnoses or events: several types of cancer (breast, cervical, endometrial, ovarian, colorectal, and lung), coronary heart disease, stroke, and thromboembolism. We also included trials that assessed cognitive functioning and dementia, diabetes (new diagnoses requiring medication), fractures, gallbladder disease (cholecystitis and cholelithiasis), and urinary incontinence (stress, urge, and overall). Finally, we included studies that measured all-cause mortality. If we encountered studies on the secondary prevention of, for instance, myocardial infarction, we still included them for other primary outcomes (e.g., fractures) but not for the specific secondary prevention target.

With respect to harms, we sought information on adverse events, unanticipated negative consequences, or side effects attributable to hormone therapy.

Our analysis prioritized outcomes that were prespecified. We generally do not present the full results for multiple measures of a single construct (e.g., for cognitive function), unless the results were statistically significant. We also elected to prioritize individual rather than composite outcomes, when both were available.

Timing

We searched for studies that reported on outcomes of 1 year or more of hormone therapy for the outcomes outlined above (duration of the intervention). We also evaluated the effect of the timing of the intervention relative to menopause when such data were available but did not base inclusion or exclusion decisions on this criterion.
Settings

For all KQs, we included trials conducted in all primary care or primary care–like settings but not in inpatient, hormone specialist, or institutional settings such as nursing homes or similar facilities. With respect to geography, we searched for studies conducted in the United States or in countries designated by the United Nations Development Programme as having a very high Human Development Index.42

Study Designs

In our searches, we included the following study designs: RCTs, controlled trials, and systematic reviews. We also included large controlled cohort studies (>10,000 women) for outcomes for which we had no evidence from trials or systematic reviews. We included data from long-term followup studies of trials if they provided information on how elevated or reduced risk changed after women had stopped hormone therapy. We present these findings in the context of results from the randomized trials.

Because we had sufficient evidence from randomized trials, we did not use any observational studies to address the KQs. Systematic reviews were used only to identify studies (from their reference lists) that we might otherwise have missed.

Data Abstraction and Quality Rating

We abstracted pertinent information from each included study; details included methods and the PICOTS elements. A second investigator checked all data abstractions for completeness and accuracy. We resolved differences by consensus or adjudication by a third senior investigator.

Using predefined criteria developed by the USPSTF, two investigators independently assessed the quality of each study as good, fair, or poor.43 The USPSTF criteria are listed in Appendix C; Appendix F lists our ratings for each domain for each eligible study. Disagreements were resolved by discussion and consensus. We rated trials with fatal flaws as poor quality (i.e., high risk of bias). Fatal flaws that resulted in poor-quality ratings included initially assembled groups that were not close to being comparable or were not maintained throughout the study, overall attrition of at least 20 percent or differential attrition of at least 15 percentage points between groups, and use of unreliable or invalid measurement instruments or unequal application among groups (including not masking outcome assessment). For RCTs, the lack of intention-to-treat analysis was also a reason for rating a trial as poor quality.

Data Synthesis and Analysis

We qualitatively synthesized findings for each KQ by summarizing the characteristics and results of included studies in tabular or narrative format. To determine whether meta-analyses were appropriate, we assessed both the number of trials available and their clinical and methodological heterogeneity following established guidance.44 To do this, we qualitatively assessed the
populations, similarities and differences in treatments used, and similarities in outcomes and timing of outcomes assessed.

When at least three similar trials were available, we conducted quantitative synthesis of studies with random-effects models using the inverse-variance weighted method (DerSimonian and Laird).45

For all quantitative syntheses, we calculated the chi-squared statistic and the I^2 statistic (the proportion of variation in study estimates attributable to heterogeneity rather than due to chance) to assess statistical heterogeneity in effects between studies.46, 47 An I^2 from 0 to 40 percent might not be important, 30 to 60 percent may represent moderate heterogeneity, 50 to 90 percent may represent substantial heterogeneity, and 75 percent or greater represents considerable heterogeneity.48 The importance of the observed value of I^2 depends on the magnitude and direction of effects and on the strength of evidence (SOE) for heterogeneity (e.g., p-value from the chi-squared test or a confidence interval [CI] for I^2). However, as precision and the number of subjects increase, I^2 may become inflated toward 100 percent and may not reflect clinically relevant heterogeneity.49

We conducted all the quantitative analyses using Comprehensive Meta-Analysis Version 3 (Biostat, Englewood, NJ).

We rated the SOE for each major outcome for each KQ using the domains set out in the AHRQ guidance:50 study limitations,51 consistency,52 precision,53 directness,54 and reporting bias.55 We also considered other optional domains that may be relevant for some scenarios, such as a dose-response association, plausible confounding that would decrease the observed effect, and strength of association (magnitude of effect).56

Two reviewers assessed each SOE domain for each key outcome and developed the overall SOE grades. The reviewers were two senior members of the review team (including at least one subject matter expert and one methodologist); they resolved any differences by consensus discussion.

SOE grades reflect the confidence that the reviewers have that various estimates of effect are close to true effects with respect to the KQs in a systematic review. A high grade indicates confidence that the estimate of effect lies close to the true effect for this outcome, the body of evidence has few or no deficiencies, and the findings are stable. A moderate grade suggests that although the estimate of effect lies close to the true effect for this outcome, the body of evidence has some deficiencies, and some doubt persists as to the stability of the findings. A low grade suggests limited confidence about the estimate of effect, with the need for additional studies. Insufficient evidence means that we have no evidence, we are unable to estimate an effect, or we have no confidence in the estimate of effect for this outcome.

Expert Review and Public Comment

The draft analytic framework and draft research questions were made available for public
comment and subsequently revised. A draft of this report was made available for public comment and reviewed by content experts, USPSTF members, and AHRQ Medical Officers. It was revised based on comments received.

USPSTF Involvement

This review was funded by AHRQ. AHRQ staff and members of the USPSTF participated in developing the scope of the work and reviewed draft manuscripts, but the authors are solely responsible for the content.
Chapter 3. Results

This chapter begins with the results of our literature searches and a general description of the included trials that form the basis of our analyses and findings. As noted, we used systematic reviews only for finding trials of hormone therapy that our searches might have missed. Furthermore, because we had adequate evidence based on trials, we do not present information on controlled cohort studies.

Following those sections, we present a summary of the available trial evidence regarding benefits and harms (KQ 1 and KQ 2) and differences of effects in subgroups (KQ 3). We then document the evidence in more detail for each outcome of interest stratified by the hormone therapy treatment (estrogen only or estrogen plus progestin).

Because results of the WHI have been published in multiple publications, we chose articles that focused on specific outcomes (e.g., gallbladder disease, urinary incontinence) over more general publications, when available.

Results of Literature Searches

The update of this report identified 2,241 citations. Of these, 1,989 abstracts were excluded and investigators reviewed 252 full-text articles. We retained 17 articles reporting on 13 trials that met inclusion criteria (Appendix B). Overall, 68 articles from the previous review and this update represented a total of 18 good- or fair-quality trials. Appendix D documents the disposition of the articles identified from searches (i.e., the flowchart of the literature). Appendix E lists articles excluded at full-text review.

Description of Trials

Included articles provided data on 40,058 perimenopausal and postmenopausal women comparing the effects of estrogen, either alone or in combination with progestin, versus placebo for the prevention of chronic conditions. These trials specifically were the following: Estrogen Memory Study (EMS), Estrogen in the Prevention of Atherosclerosis Trial (EPAT), Estonian Postmenopausal Hormone Therapy Trial (EPHT), Estrogen Replacement and Atherosclerosis Study (ERA), Oestrogen in the Prevention of Reinfarction Trial (ESPRIT), Greenspan et al, 2005, Heart and Estrogen Replacement Study (HERS), Kronos Early Estrogen Prevention Study–Cognitive and Affective Study (KEEPS-Cog), Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial, STOP-IT, Ultra-Low-Dose Transdermal Estrogen Assessment (ULTRA), Women’s Angiographic Vitamin and Estrogen (WAVE) Trial, WHI estrogen plus progestin trial, WHI estrogen-only trial, WHI Memory Study (WHIMS), WHI Memory Study of Younger Women (WHIMSY), WHI Study of Cognitive Aging (WHISCA), and Women’s International Study of Long Duration Oestrogen After Menopause (WISDOM).
Of the 18 included trials, 13 were conducted in the United States. The remaining trials were conducted in Australia, Canada, Estonia, New Zealand, and the United Kingdom. The duration of followup in the trials averaged 3.5 years. The mean age of women participating in trials ranged from 53 (KEEPS-Cog) to 79 years (EMS). The majority of women were white; the proportions of nonwhite women ranged from 1 (WISDOM) to 41 percent (EPHT). The proportions of women with previous or current hormone therapy use ranged from 2 to 54.5 percent. A range of 3.7 to 58 percent of women in the trials were current smokers.

Of the 18 included studies, the WHI trials were the only studies powered to assess the effectiveness of hormone therapy for the primary prevention of various chronic conditions. They enrolled generally healthy postmenopausal women ages 50 to 79 years and compared 0.625 mg/day of oral conjugated equine estrogen, with or without 2.5 mg/day of medroxyprogesterone, with placebo. The WHI trials also had the longest durations of followup among included trials (median of 7.2 years for the estrogen-only trial and 5.6 years for the estrogen plus progestin trial).

Table 3 summarizes the main characteristics and quality ratings of the eligible trials named above. Of these, all but five were rated fair quality. We rated four trials as poor quality and do not include them in these tables or analyses. Three trials (described in Table 3) met eligibility criteria but did not stratify results by regimen (i.e., whether women used estrogen only or estrogen plus progestin). Table 4 presents baseline characteristics of participants in included trials. Outcomes data from included trials are presented in Appendix G.

Summary of Evidence

Eighteen fair- and good-quality trials met eligibility criteria. The WHI reported most of the results and was most applicable to the target population. This summary section provides an overview of results. More detailed findings by chronic condition and regimen follow the summary.

Figures 2 and 3 depict the absolute risk reductions or increases for various outcomes of interest for women who received hormone therapy for 5 to 7 years compared with those who received placebo. Results are depicted as point estimates (fewer or more events per 10,000 women) with 95 percent CIs based on meta-analyses of included trials or, if meta-analyses were not feasible, based on results from the largest and most reliable trial (usually the WHI).

Figures 2 and 3 also present the relative risk (RR) and the SOE for each outcome. We calculated RRs based primarily on the latest publication summarizing results of the WHI trials. Therefore, effect estimates might differ slightly from hazard ratios (HRs) reported in WHI publications. We chose RR because it is more intuitive to interpret than HR.

For several outcomes of interest we did not find any statistically significant differences between women using hormone therapy and women taking placebo. For estrogen-only therapy, outcomes that were not statistically significant include probable dementia, breast cancer, colorectal cancer, lung cancer, coronary heart disease, quality of life, and all-cause mortality. For estrogen plus
progestin therapy, we did not find statistically significant differences for cervical cancer, endometrial cancer, lung cancer, ovarian cancer, coronary heart disease, quality of life, and all-cause mortality.

Some of these nonstatistically significant outcomes, however, had wide CIs that encompassed both clinically relevant benefits and harms leading to inconclusive results. Specifically for cervical cancer, endometrial cancer, lung cancer, and ovarian cancer, event rates in studies were too low to draw firm conclusions about differences in benefits and harms.

KQ 1. What Are the Benefits of Menopausal Hormone Therapy When Used for Primary Prevention of Chronic Conditions?

Overall, trials reported several statistically significant benefits for women using hormone therapy. For women using estrogen only, risk of fractures (382 fewer cases per 10,000 women over 7.2 years [95% CI, 283 to 495]) and diabetes (137 fewer cases per 10,000 women over 7.1 years [95% CI, 21 to 248]) were statistically significantly reduced compared with women taking placebo (Figure 2). The risk of breast cancer was numerically reduced but did not reach statistical significance (HR, 0.79 [95% CI, 0.61 to 1.02]). Women using estrogen plus progestin therapy experienced statistically significantly reduced risk of colorectal cancer (33 fewer cases per 10,000 women over 5.6 years [95% CI, 8 to 52]), fractures (222 fewer cases per 10,000 women over 5.0 years [95% CI, 67 to 354]), and diabetes (77 fewer cases per 10,000 women over 5.6 years [95% CI, 21 to 206]) compared with women in the placebo groups (Figure 3).

Long-term followup studies of the WHI showed that most beneficial effects dissipated after stopping hormone therapy. An exception was the risk of invasive breast cancer in women who received estrogen-only therapy. Specifically, 3.9 years after women stopped hormone therapy treatment, the risk remained numerically (but not statistically) lower for women who had been treated with estrogen only during the trial phase (HR, 0.75 [95% CI, 0.51 to 1.09]). We did not find any evidence on functional capacity.

KQ 2. What Are the Harms of Menopausal Hormone Therapy When Used for Primary Prevention of Chronic Conditions?

Results of trials and our meta-analyses indicate several important harms for hormone therapy. They differ by treatment formulation (i.e., estrogen only or estrogen plus progestin).

Women receiving estrogen-only therapy had statistically significantly increased risk of gallbladder disease (213 more cases per 10,000 women over 7.1 years [95% CI, 236 to 538]), stroke (79 more cases per 10,000 women over 7.1 years [95% CI, 14 to 160]), urinary incontinence (1,261 more cases per 10,000 women over 1 year [95% CI, 880 to 1,689]), and venous thromboembolism (78 more cases per 10,000 women over 7.1 years [95% CI, 20 to 153]; [Figure 2]). Likewise, for women receiving estrogen plus progestin therapy, risk of invasive breast cancer (52 more cases per 10,000 women over 5.6 years [95% CI, 6 to 107]), probable dementia (88 more cases per 10,000 women over 4 years [95% CI, 15 to 213]), gallbladder
disease (116 more cases per 10,000 women over 5.6 years [95% CI, 167 to 366]), stroke (53 more cases per 10,000 women over 5.6 years [95% CI, 12 to 104]), urinary incontinence (876 more cases per 10,000 women over 1 year [95% CI, 606 to 1,168]), and venous thromboembolism (120 more cases per 10,000 women over 5.6 years [95% CI, 68 to 185]) were statistically significantly increased compared with women taking placebo (Figure 3). We did not find any evidence on other harms or on the effect of harms on functional capacity.

KQ 3. Do the Benefits and Harms of Menopausal Hormone Therapy Differ by Subgroup or by Timing of Intervention?

Subgroups specified for this KQ included the following: race/ethnicity; women with premature menopause; women with surgical menopause; age; duration of use; type, dose, and mode of delivery of hormone therapy; and presence of comorbid conditions. Trials did not report results for most of these subgroups. Subgroup analyses of trial results based on these characteristics were restricted to age, race/ethnicity, and a limited number of coexisting conditions or risk factors.

Some subgroup analyses indicate that age may modify the effects of hormone therapy. Analyses that compared younger (ages 50 to 59 years) with older (ages 70 to 79 years) women using estrogen-only therapy yielded a statistically significant trend for increasing risk by age of myocardial infarction (HR, 0.55 [95% CI, 0.31 to 1.00] vs. HR, 1.24 [95% CI, 0.88 to 1.75]; p=0.02 for trend), colorectal cancer (HR, 0.71 [95% CI, 0.30 to 1.67] vs. HR, 2.24 [95% CI, 1.16 to 4.30]; p=0.02 for trend), and all-cause mortality (HR, 0.70 [95% CI, 0.46 to 1.09] vs. HR, 1.21 [95% CI, 0.95 to 1.56]; p=0.04 for trend). Post-hoc subgroup analyses regarding the effects of time since menopause were inconclusive.

Findings also indicated an increased risk of breast cancer in women taking estrogen plus progestin who initiated therapy within 5 years of menopause (p=0.03). Older women had an increased risk of colorectal cancer attributable to estrogen-only hormone therapy. Some of these subgroup differences, however, are based on relatively few events and need to be interpreted cautiously. We did not find any evidence on functional capacity.

Detailed Presentation of the Evidence

In the sections below, we present benefits and harms first for estrogen-only hormone therapy and then for estrogen plus progestin by outcome of interest. Although data from the four trials that did not stratify results by treatment regimen are not analyzed in this report, they are included in Appendix G. We specifically comment on the various types of cancer (breaking out the gynecologic cancers by specific type, such as cervical or ovarian) and then turn to the various other condition-specific outcomes. Evidence about all-cause mortality is presented last. We also address differences of effects by subgroups and by the timing of the intervention, when such data were available. In one instance (the effect of timing of the intervention on cardiovascular outcomes), we present information from two trials that were not eligible for our report because they focused on intermediate outcomes. However, they are the only available evidence directly addressing this question.
Table 3 describes the main characteristics of eligible trials, including the various types and levels of estrogen or estrogen plus progestin used. Appendix G presents results of individual trials for each outcome in more detail.

Because the two WHI trials were the largest studies, we summarize results on outcomes of interest at the end of the intervention phase of the WHI trials according to treatment (estrogen only or estrogen plus progestin) in Table 5. Tables 6–8 are summary tables presenting the available evidence, effect estimates, and SOE ratings for each outcome by treatment. Effect estimates are based on meta-analyses of included trials or, if meta-analyses were not feasible, based on results from the largest and most reliable trial (usually the WHI).

Estrogen Only: Cancer

Breast Cancer

Benefits and Harms of Hormone Therapy

Five RCTs (WHI [N=10,739],24, 98, 102, 104, 105, 112 ESPRIT [N=1,017],63, 64 EPAT [N=222],60 ERA [N=205],62 and PEPI [N=349]74) comparing estrogen only with placebo reported on breast cancer incidence (Appendix G Table 1). We did not pool trial results, primarily because of heterogeneity in study duration and outcome measures. Only two trials followed women for more than 3 years (WHI and ESPRIT), and only the WHI reported on risk of invasive breast cancer (vs. any breast cancer).

In the WHI, women assigned to estrogen alone had a nonsignificant decrease in invasive breast cancer risk compared with placebo during the 7.2-year (median) intervention phase (2.0% vs. 2.5%; HR, 0.79 [95% CI, 0.61 to 1.02]).102, 112 The risk remained numerically lower during the 6.6-year (median) postintervention phase after the trial had been stopped.102 The difference between groups was statistically significant during cumulative (trial and postintervention phase; median, 13 years) followup (HR, 0.79 [95% CI, 0.65 to 0.97]).102

In the ESPRIT trial, postmenopausal women ages 50 to 69 years who survived a first myocardial infarction were randomized to estrogen only or placebo. The risk of breast cancer in women randomized to estrogen only and placebo during the 2-year intervention period was similar (0.8% vs. 0.8%; RR, 0.98 [95% CI, 0.25 to 3.91]).63

Three other trials reported on breast cancer incidence over 2 to 3 years (EPAT,60 ERA,62 and PEPI trials74), and results were inconclusive. Only 4 cases of breast cancer were reported across the trials (2 cases each in the estrogen-only and placebo groups).

Differences in Treatment Effects Based on Subgroups

In the WHI, no difference in breast cancer risk by subgroups based on age at randomization could be detected.102 Biennial analyses of invasive breast cancer risk during the intervention phase of the WHI demonstrated no evidence of a trend over time since randomization (p=0.29 for trend).104
Differences in Treatment Effects Based on Timing of the Intervention

Risk of invasive breast cancer in the WHI trial was similar in women who initiated estrogen soon after menopause (<5 years) versus later (≥5 years).98

Cervical Cancer

Benefits and Harms of Hormone Therapy

One trial (ESPRIT64 [N=1,017]) reported 1 incident case of cervical cancer, identified via data linkage to U.K. cancer records, over a mean followup of 12.6 years, among women who received placebo, and no incident cases of cervical cancer among women who received estrogen-only hormone therapy (Appendix G Table 2). None of the other trials reported on cervical cancer.

Differences in Treatment Effects Based on Subgroups

We found no evidence about differences in treatment effects by subgroups.

Colorectal Cancer

Benefits and Harms of Hormone Therapy

One trial (WHI [N=10,739]) estimated the incidence of colorectal cancer among 5,310 women with previous hysterectomy who received estrogen-only hormone therapy and 5,429 women with previous hysterectomy who received placebo (Appendix G Table 3).24, 98, 102, 112, 113

During the WHI intervention phase, 1.2 percent of women who received estrogen-only hormone therapy and 1.1 percent of women who received placebo developed colorectal cancer (HR, 1.15 [95% CI, 0.81 to 1.64]).102

Differences in Treatment Effects Based on Subgroups

In the WHI intervention phase, there was a statistically significant trend toward higher risk of developing colorectal cancer in older women compared with younger women, relative to women taking placebo (p=0.02 for trend). Among women ages 50 to 59 years and 60 to 69 years at randomization, there were no statistically significant differences in the risk of colorectal cancer between women taking estrogen-only hormone therapy and placebo (HR, 0.71 [95% CI, 0.30 to 1.67] vs. HR, 0.88 [95% CI, 0.53 to 1.47], respectively). The risk of colorectal cancer among women ages 70 to 79 years was significantly higher for those taking estrogen-only therapy than for those taking placebo (HR, 2.24 [95% CI, 1.16 to 4.30]). The significant interaction with age at randomization was no longer present after a median cumulative followup of 13.0 years.102
The WHI did not detect any statistically significant subgroup effects regarding race/ethnicity, diabetes status, previous use of menopausal hormone therapy, or bilateral oophorectomy status after a mean of 7.1 years.113

Differences in Treatment Effects Based on Timing of the Intervention

No statistically significant differences in incidence of colorectal cancer emerged between women who received estrogen-only hormone therapy and those who received placebo according to years since menopause (i.e., <10 years, 10 to <20 years, and ≥20 years since menopause) in the WHI.102 The effect of hormone therapy on the risk of invasive colorectal cancer did not differ significantly between women who initiated hormone therapy within the first 5 years after menopause and those who initiated combined hormone therapy after 5 years following menopause.98

Endometrial Cancer

Benefits and Harms of Hormone Therapy

Five trials (ERA [N=205],62 EPAT [N=222],60 ESPRIT [N=1,017],63, 64 PEPI [N=349],74 and ULTRA [N=417]77) provided data on endometrial cancer among women who received estrogen-only hormone therapy or placebo. We present results in Appendix G Table 4 but do not discuss them here because of the well-known risk of endometrial hyperplasia and cancer associated with unopposed estrogen use.

Differences in Treatment Effects Based on Subgroups

We found no evidence about differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence about differences in treatment effects based on timing of the intervention.

Lung Cancer

Benefits and Harms of Hormone Therapy

One trial (WHI [N=10,739]) estimated the incidence of lung cancer among 5,310 women with previous hysterectomy who received estrogen-only hormone therapy and 5,429 women with previous hysterectomy who received placebo ([Appendix G Table 5]).102, 108

No statistically significant differences in lung cancer incidence emerged between women who received estrogen-only hormone therapy and women who received placebo. Only 1.2% of women who received estrogen-only hormone therapy and 1.1% of women who received placebo developed lung cancer during the WHI intervention phase over a median followup period of 7.2 years (HR, 1.05 [95% CI, 0.74 to 1.49]).102 During the postintervention followup period (mean duration, 6.8 years), the risk between treatment groups remained similar.102
Differences in Treatment Effects Based on Subgroups

The WHI reported no statistically significant differences in risk among women based on age at randomization.102

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence about differences in treatment effects based on timing of the intervention.

Ovarian Cancer

Benefits and Harms of Hormone Therapy

One trial (ESPRIT [N=1,017]) of women with previously documented myocardial infarction provided the incidence of ovarian cancer among women who received estrogen-only hormone therapy or placebo during the trial’s 2-year intervention (Appendix G Table 6).64 The authors do not report ovarian cancer incidence at the end of the intervention phase.63 During long-term followup (average duration, 12.6 years) that included both the trial phase and the posttrial observational phase, there was no statistically significant difference in the incidence of ovarian cancer between the two groups (0.78% and 0.20% of women in the estrogen-only and placebo groups, respectively, developed ovarian cancer).64

Differences in Treatment Effects Based on Subgroups

We found no evidence about differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence about differences in treatment effects based on timing of the intervention.

Estrogen Only: Other Chronic Conditions

Coronary Heart Disease

Benefits and Harms of Hormone Therapy

Four trials (EPAT [N=222],60 PEPI [N=349],74 WHI [N=10,739],111 and ERA [N=205]62) provided data on the risk of coronary heart disease in women who used estrogen only (Appendix G Table 7).

Of these, three trials (EPAT,60 PEPI,74 and WHI111) were similar enough to be combined in a meta-analysis. We did not include the ERA study in the meta-analysis because only women with an elevated cardiovascular risk were eligible for enrollment.62 Studies in the meta-analysis provide information about the prevention of coronary heart disease with estrogen only based on data for 11,310 women who had previously undergone hysterectomy. Treatment duration ranged from 2 to 7.1 years. The WHI and EPAT trials defined coronary heart disease as nonfatal
myocardial infarction or coronary death; the definition used in the PEPI trial was unclear. The meta-analysis of these three trials rendered no statistically significant difference in coronary events between women taking estrogen therapy and those taking placebo (RR, 0.95 [95% CI, 0.79 to 1.14]). In the meta-analysis, 3.6 percent of women receiving estrogen-only therapy and 3.8 percent of those receiving placebo experienced a coronary event during a mean followup of 6.8 years. A sensitivity analysis including the ERA trial rendered similar results.

A long-term followup study of the WHI reported that 3.9 years after stopping the randomized treatment, the cardiovascular risk was still similar between women who received hormone therapy during the trial and those who were randomized to placebo (HR, 0.97 [95% CI, 0.75 to 1.25]).

Differences in Treatment Effects Based on Subgroups

In the WHI trial, no statistically significant difference in risk of coronary heart disease attributable to hormone therapy could be detected between subgroups based on age, race/ethnicity, hypertension, diabetes, high cholesterol requiring medication, coronary risk factors, years since bilateral oophorectomy, years since hysterectomy, or body mass index. Although risk for coronary heart disease in women taking estrogen-only therapy increased numerically with age, this trend did not reach statistical significance. The HR for women ages 50 to 59 years was 0.60 (95% CI, 0.35 to 1.04) in favor of hormone therapy. By comparison, the HRs for women ages 60 to 69 years and 70 to 79 years at baseline were 0.95 (95% CI, 0.72 to 1.24) and 1.09 (95% CI, 0.80 to 1.49), respectively (p=0.08 for trend). Analyses that focused just on myocardial infarction yielded a statistically significant trend for increasing risk by age when comparing younger (ages 50 to 59 years) with older (ages 70 to 79 years) women (p=0.02 for trend). These findings, however, need to be viewed cautiously because only 48 women in the 50- to 59-year age group experienced a myocardial infarction.

Differences in Treatment Effects Based on Timing of the Intervention

In the WHI, time since menopause did not have a statistically significant effect on the risk of coronary heart disease. Likewise, an analysis of WHI data that took the first use of hormone therapy (before enrollment into the WHI) into consideration to assess the effect of timing of hormone therapy did not find an effect of early initiation on the risk of coronary heart disease (p=0.40).

The onset of menopause in women who had undergone hysterectomy without oophorectomy, however, cannot always be determined with certainty. Results, therefore, have to be interpreted cautiously.

Cognitive Functioning and Dementia

Benefits and Harms of Hormone Therapy

The WHI trials evaluated dementia or mild cognitive impairment (Appendix G Table 8). The WHIMS trial (N=2,947), a subset of the WHI trial, was limited to women ages 65 to 79 years at
baseline, free of probable dementia, and recruited from 39 of 40 WHI trial centers. Participants in WHIMS were followed for approximately 5.2 years. WHISCA, a subset (N=434 in the estrogen arm, N=452 in the placebo arm) of the WHIMS trial, was limited to 14 of 39 trial centers and designed to evaluate changes in cognitive functioning over time, with the first assessment occurring 3 years after the start of treatment (because WHISCA was an ancillary trial to WHIMS). Participants in WHISCA were followed for approximately 3.6 years during the trial, and a further subset of WHISCA, in an extension study, was followed for 2.4 years after treatment. Neither WHIMS nor WHISCA found an elevated risk of probable dementia or mild cognitive impairment among women taking hormone therapy. When using a composite outcome measure (probable dementia or mild cognitive impairment), the study found a statistically significantly higher risk among women taking estrogen-only therapy compared with women taking placebo (6.4% vs. 4.7%; cumulative HR, 1.38 [95% CI, 1.01 to 1.89]).

Three trials (WHIMS [N=4,344], WHISCA [N=1,213], and ULTRA [N=417]) measured global cognitive functioning using the Modified Mini-Mental State (3MS) examination; heterogeneity in timing precluded meta-analysis. The WHIMS and WHISCA trials are described above. The ULTRA trial randomized women to estrogen-only or placebo transdermal patches. Additionally, all participants received 400 mg of calcium twice daily and 400 IU of vitamin D once daily. The ULTRA trial followed participants for 2 years. The WHI trials found cognitive deficits during the trial period (change in 3MS score at 3.6 years during WHISCA trial, -0.092; p=0.02; change in 3MS score at 5.4 years at the end of the WHIMS trial, -0.26 [95% CI, -0.542 to 0.000]; p=0.04). In a long-term extension of the WHISCA trial, with outcomes measured at 2.4 years after trial termination, these differences were not sustained. The ULTRA study found no differences.

Three trials (WHISCA [N=1,213], WHIMSY [N=1,326], and ULTRA [N=417]) evaluated other measures of cognitive functioning (e.g., spatial ability, verbal knowledge, verbal fluency, verbal memory, figural memory, attention, and working memory); heterogeneity in outcome measures precluded meta-analysis. The WHISCA and ULTRA trials are described above. The WHIMSY trial, an extension of the WHI trial, was limited to enrolled active participants in the WHI trials who were ages 50 to 55 years at enrollment and agreed to be contacted for recruitment (N=1,326 assessed, N by treatment regimen not reported). The WHIMSY trial followed women for 7.2 years after the end of the trial. All three trials found no differences in groups as randomized for the majority of outcomes.

Differences in Treatment Effects Based on Subgroups

The WHIMS study reported no difference in the HR for probable dementia by race/ethnicity or history of diabetes, stroke, hypertension, or cardiovascular disease.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.
Diabetes

Benefits and Harms of Hormone Therapy

The WHI (N=9,917)102,106 was the only trial that provided information about the prevention of diabetes with estrogen only among women not receiving treatment for diabetes at baseline (Appendix G Table 9). Incident diabetes was self-reported and defined as a new diagnosis of diabetes by a physician followed by treatment with oral hypoglycemic drugs or insulin.106

During a median of 7.2 years of followup, 9.2 percent of women receiving estrogen therapy and 10.5 percent of those receiving placebo reported a new diabetes diagnosis. The difference in risk between these groups reached statistical significance (HR, 0.86 [95\% CI, 0.76 to 0.98]).102 When the analysis focused on women who adhered to medication (took \geq 80\% of study pills or began open-label therapy), the difference in risk increased further (HR, 0.73 [95\% CI, 0.60 to 0.88]).106 The overall reduction in diabetes risk was no longer observed 6.6 years postintervention (HR, 1.07 [95\% CI, 0.92 to 1.25]).102

Differences in Treatment Effects Based on Subgroups

A test for interaction did not detect any statistically significant subgroup effects with respect to race/ethnicity, age at screening, hypertension, or metabolic syndrome at baseline among women in the WHI.106

Fractures

Benefits and Harms of Hormone Therapy

The WHI (N=10,739) found a reduced risk of total osteoporotic fractures in the estrogen-only arm compared with placebo during the trial (10.2\% vs. 14.1\%; HR, 0.72 [95\% CI, 0.64 to 0.80]),102 as did the ERA trial62 (Appendix G Table 10). The difference (for hip fractures) was no longer statistically significant in the postintervention phase of the WHI study (through 10.7 years).112 The ERA trial randomized women to the same treatment regimen as the WHI study and followed them for 3.2 years. The study found fewer fractures at all sites (6\% vs. 14.3\%) in the estrogen-only arm, but the RR was not statistically significant (calculated RR, 0.42 [95\% CI, 0.17 to 1.04]).62

Differences in Treatment Effects Based on Subgroups

A test for interaction did not detect any statistically significant subgroup effects with respect to age among women in the WHI.81
Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.

Gallbladder Disease

Benefits and Harms of Hormone Therapy

Two trials (PEPI [N=349] and WHI [N=8,376]) provided information about the prevention of gallbladder disease with estrogen only based on data for 8,725 women with gallbladders and without gallbladder disease (Appendix G Table 11). Treatment duration was 3 years among women in PEPI and an average of 7.1 years among those in the WHI. Although the definition of gallbladder disease used in PEPI is unclear, it included cholecystitis and calculi in the WHI. Gallbladder procedures, including biliary tract procedures such as cholecystectomy, were also reported for women in the WHI.

The larger of the two trials, WHI, reported gallbladder events (disease or procedure) during followup for 5.5 percent of women receiving estrogen therapy and 3.4 percent of those taking placebo. The difference in gallbladder events between these groups was statistically significant (HR, 1.67 [95% CI, 1.35 to 2.06]). However, risk of gallbladder disease neutralized 6.6 years postintervention (HR, 0.98 [95% CI, 0.68 to 1.41]).

The PEPI trial had few cases of gallbladder disease and reported inconclusive results.

Differences in Treatment Effects Based on Subgroups

Risk of gallbladder events attributable to estrogen therapy among women in the WHI increased with age but did not reach statistical significance. No other evidence is available in the included studies on subgroups of interest.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence about differences in treatment effects based on timing of the intervention.

Stroke

Benefits and Harms of Hormone Therapy

Three trials (WHI [N=10,739], EPAT [N=222], and ERA [N=205]) reported on risk of stroke (Appendix G Table 12). We did not pool trial results because of heterogeneity in study duration and outcome measures.

During the WHI 7.2-year (median) intervention phase, women receiving estrogen only had a statistically significantly higher risk of stroke compared with those receiving placebo (3.2% vs. 2.4%; HR, 1.35 [95% CI, 1.07 to 1.70]). During the postintervention period (3.9 years after stopping therapy), the risk between the two treatment groups became similar again; cumulatively...
(at 10.7 years of followup), stroke risk was higher in the estrogen-only group compared with the placebo group (4.4% vs. 3.8%; HR, 1.15 [95% CI, 0.97 to 1.37]).102,112

The two smaller trials (EPAT60 and ERA62) reported on stroke risk among women randomized to estrogen or placebo; few events occurred overall and results were inconclusive. In the EPAT trial, one participant (randomized to placebo) had a cerebrovascular accident at 2 years.60 In the ERA trial, the risk of stroke or transient ischemic attack was similar in the estrogen-only and placebo groups (5 vs. 6 events, respectively).62

Differences in Treatment Effects Based on Subgroups

In the WHI estrogen-only trial, no differences in stroke risk by subgroups, including race/ethnicity, age, prior cardiovascular disease, hypertension, or diabetes could be detected.110

Differences in Treatment Effects Based on Timing of the Intervention

Risk of stroke in the WHI was similar among women who initiated estrogen soon after menopause (<5 years) versus later (≥5 years).98

Urinary Incontinence

Benefits and Harms of Hormone Therapy

Two trials (WHI [N=3,073 continent]94 and ULTRA [N=239 continent]78) provided results on incident urinary incontinence (self-reported) (Appendix G Table 13). The WHI followed continent women through year 1 and then evaluated incontinence at year 2. The ULTRA study followed participants for 2 years.79 Both studies found higher risk of urinary incontinence in the treatment arms for all time points, but the only statistically significant risk was at 1 year (WHI trial, 36.5% vs. 23.8%; RR, 1.53 [95% CI, 1.37 to 1.71]).94, 102 Results drawing on smaller samples at 2 years (ULTRA trial, 39.0% vs. 36.8%; odds ratio, 1.2 [95% CI, 0.7 to 2.2])78 and 3 years of treatment did not show any statistically significant differences (WHI trial, 28.1% vs. 19.1%; RR, 1.47 [95% CI, 0.92 to 2.36]).94

Differences in Treatment Effects Based on Subgroups

We found no evidence on differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.

Venous Thromboembolism

Benefits and Harms of Hormone Therapy

Two trials (WHI [N=10,739]102,112 and EPAT [N=222]60) reported on risk of thromboembolism
Appendix G Table 14). In the WHI, women randomized to estrogen alone had an increased risk of deep vein thrombosis compared with placebo during the 7.1-year (mean) intervention phase (1.6% vs. 1.0%; HR, 1.48 [95% CI, 1.06 to 2.07]); the risk of pulmonary embolism was also higher in the estrogen group than in the placebo group, but results were not significant (0.98% vs. 0.72%; HR, 1.35 [95% CI, 0.89 to 2.05]). There was no difference between groups for risk of deep vein thrombosis or pulmonary embolism 3.9 years after stopping therapy in the postintervention period. The EPAT trial reported no venous thromboembolic events in either group during 2 years of followup.

Differences in Treatment Effects Based on Subgroups

The WHI reported no differences for subgroups by race/ethnicity, age, or history of cardiovascular disease.

Differences in Treatment Effects Based on Timing of the Intervention

Risk of venous thromboembolism in the WHI was similar among women who initiated estrogen soon after menopause (<5 years) versus later (≥5 years).

Health-Related Quality of Life

Benefits and Harms of Hormone Therapy

The WHI (N=10,739) was the only trial that reported on health-related quality of life (Appendix G Table 15). It used the RAND-36 form, which assesses physical functioning, physical role, bodily pain, general health, vitality, social functioning, emotional role, and mental health. Women in both groups had similar scores on all items except for emotional role and social functioning, for which women taking placebo had statistically significantly better scores than women taking estrogen-only therapy (p=0.04 and p=0.01, respectively).

Differences in Treatment Effects Based on Subgroups

We found no evidence on differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.

All-Cause Mortality

Benefits and Harms of Hormone Therapy

Three trials (ERA [N=205], ESPRIT [N=1,017], and WHI [N=10,739]) provided information about the risk of death from any cause among 11,961 women receiving estrogen therapy (Appendix G Table 16). The average treatment duration of these trials ranged from 2 to 7.1 years. A meta-analysis of these trials rendered no statistically significant difference in
all-cause mortality between women receiving estrogen therapy and those receiving placebo (RR, 1.01 [95% CI, 0.88 to 1.17]) during a mean followup of 6.8 years.

The WHI, the largest of the three trials, reported an HR of 1.04 (95% CI, 0.89 to 1.22), with deaths among 5.6 and 5.5 percent of women in the active and placebo groups, respectively. The difference in risk between the two groups remained similar at followup 3.9 years after stopping the randomized treatment (HR, 1.00 [95% CI, 0.84 to 1.18]).

Differences in Treatment Effects Based on Subgroups

Interaction with age reached statistical significance in the WHI, with a significant trend toward lower risk of death in younger women receiving estrogen therapy compared with older women relative to women receiving placebo (p=0.04 for trend). The HR was 0.70 (95% CI, 0.46 to 1.09) among women ages 50 to 59 years compared with 1.01 (95% CI, 0.79 to 1.29) among women ages 60 to 69 years and 1.21 (95% CI, 0.95 to 1.56) among women ages 70 to 79 years.

Differences in Treatment Effects Based on Timing of the Intervention

An analysis of WHI data considered the time between menopause and the first use of hormone therapy (before enrollment into the WHI). The effect of estrogen-only therapy on all-cause mortality did not differ significantly between women who initiated hormone therapy within the first 5 years after menopause and those who initiated hormone therapy after 5 years following menopause.

Estrogen Plus Progestin: Cancer

Breast Cancer

Benefits and Harms of Hormone Therapy

Six trials (WHI [N=16,608], HERS [N=2,763], PEPI [N=700], EPHT [N=777], ERA [N=209], and WISDOM [N=4,385]) comparing estrogen plus progestin with placebo reported on breast cancer incidence (Appendix G Table 1). We did not pool trial results because of heterogeneity in study duration and outcome measures. Only two trials followed women for more than 4 years (WHI and HERS), and only the WHI reported on the risk of invasive breast cancer (vs. any breast cancer).

The WHI is the largest trial; during the intervention phase (median, 5.6 years), women assigned to estrogen plus progestin had a significantly increased risk of invasive breast cancer compared with women taking placebo (2.4% vs. 1.9%; HR, 1.24 [95% CI, 1.01 to 1.53]). The risk of invasive breast cancer in women who took estrogen plus progestin remained significantly increased compared with women who took placebo during a median postintervention followup of 8.2 years (HR, 1.32 [95% CI, 1.08 to 1.61]). In the HERS trial, more women randomized to estrogen plus progestin developed breast cancer during the 4.1-year intervention phase than did women receiving placebo, but the results were not statistically significant (2.5% vs. 1.8%; HR, 1.38 [95% CI, 0.82 to 2.31]).
Four other trials reported on breast cancer incidence.61, 62, 74, 128 In three small trials (ERA, PEPI and EPHT), few cases occurred overall, and risk of breast cancer incidence was similar between groups randomized to estrogen plus progestin and placebo over 3 to 4 years (no cases overall in ERA and 3 vs. 3 cases, respectively, across PEPI and EPHT); few cases of breast cancer were reported overall.61, 62, 74 The fourth trial, WISDOM (N=4,385), was stopped after 1 year because of the WHI results that indicated excess breast cancer risk in women receiving estrogen plus progestin; breast cancer incidence was similar between groups at 1 year (5 vs. 7 cases, respectively).123

\textbf{Differences in Treatment Effects Based on Subgroups}

In the WHI estrogen plus progestin trial, incidence of invasive breast cancer did not differ based on age at randomization.102 Biennial analyses of invasive breast cancer risk during the intervention phase of the WHI provided evidence of a trend over time (p=0.008 for trend). The risk of invasive breast cancer increased numerically with time since randomization (2 years after: HR, 0.71 [95\% CI, 0.47 to 1.08]; 4 years after: HR, 1.36 [95\% CI, 0.95 to 1.94]; 6 years after: HR, 1.65 [95\% CI, 1.17 to 2.32]).104

\textbf{Differences in Treatment Effects Based on Timing of the Intervention}

In the WHI estrogen plus progestin trial, risk of invasive breast cancer decreased with an increasing gap in time since menopause (p=0.03 for interaction).98

\textbf{Cervical Cancer}

\textit{Benefits and Harms of Hormone Therapy}

The WHI (N=16,608) evaluated the incidence of cervical cancer among women with an intact uterus who received either estrogen plus progestin or placebo (\textit{Appendix G Table 2}).81 The incidence of cervical cancer did not differ significantly between women who received estrogen plus progestin hormone therapy and women who received placebo (HR, 1.44 [95\% CI, 0.47 to 4.42]) during a median followup period of 5.6 years; 0.09 percent of women receiving hormone therapy and 0.06 percent of women receiving placebo were diagnosed with cervical cancer.81 WHI investigators did not provide cervical cancer incidence from the postintervention and postintervention extension phases.

\textbf{Differences in Treatment Effects Based on Subgroups}

We found no evidence about differences in treatment effects by subgroups.

\textbf{Differences in Treatment Effects Based on Timing of the Intervention}

We found no evidence about differences in treatment effects based on timing of the intervention.
Colorectal Cancer

Benefits and Harms of Hormone Therapy

Four trials (WHI [N=16,608], EMS [N=142], HERS [N=2,763], and WISDOM [N=4,385]) reported on the incidence of colorectal cancer (Appendix G Table 3). In the WHI intervention phase, women receiving estrogen plus progestin were less likely to develop colorectal cancer than women in the placebo group (HR, 0.62 [95% CI, 0.43 to 0.89]); 0.59 percent of women in the estrogen plus progestin therapy group and 0.93 percent of women in the placebo group developed colorectal cancer over a median followup period of 5.6 years. Over the entire median followup period of 13.2 years, the risk of colorectal cancer remained lower in the hormone therapy arm (HR, 0.80 [95% CI, 0.63 to 1.01]). In the HERS trial, there was a numeric decrease in the risk of colorectal cancer with estrogen plus progestin use (HR, 0.69 [95% CI, 0.32 to 1.49]) over a mean of 4.1 years.

The EMS and WISDOM trials reported no statistically significant differences in risk of colorectal cancer. Event rates in these studies, however, were low (no events in EMS and 4 events in WISDOM), and very short followup time periods (i.e., <2 years) precluded them from being combined with the WHI and HERS trial data in meta-analysis.

Differences in Treatment Effects Based on Subgroups

In the WHI intervention phase, the incidence of colorectal cancer did not differ significantly between women who received estrogen plus progestin hormone therapy and women who received placebo according to the following variables: age, race/ethnicity, and family history of colorectal cancer.

Differences in Treatment Effects Based on Timing of the Intervention

The incidence of colorectal cancer in the WHI did not differ significantly between women who received hormone therapy and women who received placebo according to the number of years since menopause (i.e., <10 years, 10 to <20 years, and ≥20 years since menopause) in the WHI intervention phase. The effect of estrogen plus progestin on the risk of invasive colorectal cancer did not differ significantly between women who initiated hormone therapy within the first 5 years after menopause and those who initiated it after 5 years following menopause.

Endometrial Cancer

Benefits and Harms of Hormone Therapy

Two trials (WHI [N=16,608] and HERS [N=2,763]) estimated the incidence of endometrial cancer among a total of 9,886 women with an intact uterus who received estrogen plus progestin hormone therapy and 9,485 women with an intact uterus who received placebo (Appendix G Table 4).

In both trials, the incidence of endometrial cancer did not differ significantly between women
who received estrogen plus progestin hormone therapy and women who received placebo. During the WHI’s intervention phase (median followup, 5.6 years), 0.32 percent of women who received estrogen plus progestin and 0.37 percent of women who received placebo developed endometrial cancer (HR, 0.83 [95% CI, 0.49 to 1.40]). Likewise, during the HERS trial phase (mean followup, 4.1 years), no statistically significant differences in risk could be detected (0.14% vs. 0.36%; HR, 0.39 [95% CI, 0.08 to 2.02]).

During the WHI postintervention period, statistically significantly fewer women who were randomized to hormone therapy during the trial phase developed endometrial cancer (HR, 0.58 [95% CI, 0.40 to 0.86]) compared with women who had received placebo.

Two additional trials (ERA [N=209]62 and PEPI [N=700]74) reported no endometrial cancer cases as adverse events over a period of 3 years; the trials were too small and short in duration to draw inferences on differences in risk or to combine in meta-analysis with the WHI and HERS.

Differences in Treatment Effects Based on Subgroups

The WHI reported no significant differences among 10-year age groups at randomization in the incidence of endometrial cancer between women who received estrogen plus progestin hormone therapy and those who received placebo.

Differences in Treatment Effects Based on Timing of the Intervention

The effect of estrogen plus progestin on the risk of invasive endometrial cancer in the WHI did not differ significantly between women who started estrogen plus progestin hormone therapy within the first 5 years after menopause and women who began it after 5 years following menopause.

Lung Cancer

Benefits and Harms of Hormone Therapy

Two trials (WHI [N=16,608]86,102 and HERS [N=2,763]68) estimated the incidence of lung cancer among a total of 9,886 women with an intact uterus who received estrogen plus progestin and 9,485 women with an intact uterus who received placebo (Appendix G Table 5).

In both the WHI and HERS, lung cancer incidence did not differ significantly between women who received estrogen plus progestin and those who received placebo. In the WHI intervention phase (median followup, 5.6 years), 0.92 percent of women who received estrogen plus progestin and 0.86 percent of women who received placebo developed lung cancer (HR, 1.05 [95% CI, 0.76 to 1.45]). In the HERS trial phase (mean followup, 4.1 years), 1.74 percent of women who received estrogen plus progestin and 1.37 percent of women who received placebo developed lung cancer (HR, 1.28 [95% CI, 0.70 to 2.33]).

The risk between groups remained similar during the postintervention followup.
A small trial (EMS [N=142]) reported only a single lung cancer case among women receiving estrogen plus progestin and no cases among women receiving placebo during a comparatively short 2-year trial period, precluding it from being combined with the WHI and HERS in meta-analysis.59

Differences in Treatment Effects Based on Subgroups

In the WHI, no significant differences in the incidence of lung cancer emerged among 10-year age groups at randomization between women who received estrogen plus progestin and women who received placebo.102

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence about differences in treatment effects based on timing of the intervention.

Ovarian Cancer

Benefits and Harms of Hormone Therapy

The WHI (N=16,608) evaluated the incidence of invasive ovarian cancer among women with an intact uterus who received either estrogen plus progestin hormone therapy or placebo (Appendix G Table 6). The incidence of invasive ovarian cancer did not differ significantly between groups (HR, 1.41 [95% CI, 0.75 to 2.66]); 0.28 percent of women who received estrogen plus progestin and 0.20 percent of women who received placebo developed invasive ovarian cancer over a median followup of 5.6 years during the intervention phase.102

Risk remained similar during the postintervention followup (median followup of 8.2 years; HR, 1.12 [95% CI, 0.65 to 1.90]).102

Differences in Treatment Effects Based on Subgroups

In the WHI, there were no significant differences in the incidence of invasive ovarian cancer among 10-year age groups at randomization between women who received estrogen plus progestin and those who received placebo.102

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.

Estrogen Plus Progestin: Other Chronic Conditions

Coronary Heart Disease

Benefits and Harms of Hormone Therapy

Overall, six trials (EMS [N=142], EPHT [N=777]), PEPI [N=700], WHI [N=16,608],
WISDOM [N=4,385], and ERA [N=209] provided information about preventing coronary heart disease with estrogen plus progestin (Appendix G Table 7).

Of these, three trials (EPHT, PEPI, and WHI) were similar enough to be combined in a meta-analysis. We did not include the ERA study, which enrolled only women with an elevated cardiovascular risk, the EMS trial because its definition of cardiovascular events also included deep vein thrombosis and cerebrovascular events, and the WISDOM trial because it had a followup time of only 1 year. Trials included in the meta-analysis provided data on 18,081 women with treatment durations of 2 to 5.2 years. Results of the meta-analysis showed a numerically higher risk of coronary events in women treated with hormone therapy than in those treated with placebo (2.1% vs. 1.7%; RR, 1.23 [95% CI, 0.996 to 1.520]) during a mean followup of 5 years. Sensitivity analyses including ERA, EMS, and WISDOM rendered a statistically significant difference. The WHI reported an HR of 1.18 (95% CI, 0.95 to 1.45) for coronary events. Long-term followup of women in the WHI showed that 2.4 years after stopping the randomized hormone therapy, the cardiovascular risk was similar between women who took this hormone therapy during the trial and those who received placebo (HR, 1.04 [95% CI, 0.89 to 1.21]).

The WISDOM trial was prematurely closed because of findings of the WHI. However, after 1 year of followup (6,498 women-years), women taking estrogen plus progestin had a statistically significantly higher risk of cardiovascular events (0.3% vs. 0.0%; p=0.016) than women taking placebo.

Differences in Treatment Effects Based on Subgroups

WHI subgroup analyses indicated no significant differences in subgroups based on race/ethnicity, age, years since menopause, hypertension, diabetes, or cardiovascular disease at baseline.

Differences in Treatment Effects Based on Timing of the Intervention

Subgroup analysis in the WHI indicated that women who had started hormone therapy closer to menopause (within 10 years of menopause) did not have the same elevated risk of coronary heart disease as women who had initiated hormone therapy later. The HR for coronary heart disease in women with less than 10 years of menopause was 0.90 (95% CI, 0.56 to 1.45). In women with more than 20 years of menopause, the HR was 1.52 (95% CI, 1.07 to 2.17) (p=0.08 for trend). When the analyses focused just on myocardial infarction, women who initiated estrogen plus progestin therapy closer to menopause did not have the elevated risk of myocardial infarction that women who started therapy more than 20 years after menopause experienced (p=0.01). Findings, however, need to be viewed cautiously because only 67 women who initiated hormone therapy within 10 years of menopause experienced a myocardial infarction.

An additional analysis based on WHI data took into consideration the time between menopause and the first use of hormone therapy (before enrollment into the WHI) to assess the effect of timing. This analysis, therefore, addresses the effect of timing better than analyses that focus exclusively on the time between menopause and randomization. The effect of estrogen plus
progestin on the risk of cardiovascular events did not differ significantly between women who initiated hormone therapy within the first 5 years after menopause and those who started it after 5 years following menopause (p=0.42 for interaction).98

Two other trials did not meet our eligibility criteria because they assessed only surrogate endpoints for cardiovascular disease. They did, however, address the timing hypothesis. Specifically, the KEEPS (Kronos Early Estrogen Prevention Study) and ELITE (Early versus Late Intervention Trial with Estradiol) trials used change in carotid artery intima-media thickness as the primary outcome.29, 129 Secondary endpoints included changes in markers of cardiovascular risk. KEEPS and ELITE enrolled women free from cardiovascular disease and stratified them according to time since menopause.

KEEPS enrolled healthy women ages 42 to 58 years within 3 years of menopause. It compared women receiving low-dose daily oral conjugated equine estrogen (0.45 mg/day) or transdermal estrogen (17β-estradiol, 50 μg/day), both with cyclic progesterone (200 mg for 12 days) treatment, with women receiving placebo. After 4 years of followup, investigators did not detect any statistically significant differences in the primary endpoint and found only mixed results for secondary endpoints.129

By contrast, ELITE used a higher oral estrogen dose (17β-estradiol, 1 mg/day) than KEEPS and vaginal micronized progesterone (45 mg/day for 10 days) for 5 years. Compared with placebo, hormone therapy resulted in a significantly lower rate of atherosclerosis progression among early postmenopausal women (<6 years since menopause) but not among late postmenopausal women (>10 years since menopause). The clinical significance of this difference, however, is unclear.

Cognitive Functioning and Dementia

Benefits and Harms of Hormone Therapy

One WHI trial (WHIMS [N=4,532]118) evaluated the risk of probable dementia or mild cognitive impairment among women taking estrogen plus progestin (Appendix G Table 8). WHIMS, a subset of the WHI trial, was limited to women ages 65 to 79 years at baseline, free of probable dementia, and recruited from 39 of 40 WHI trial centers. Participants in WHIMS were followed for approximately 5.4 years. Women using estrogen plus progestin had a higher risk of probable dementia than those taking placebo (1.8% vs. 0.9%; HR, 2.05 [95% CI, 1.21 to 3.48]). The trial did not find an elevated risk of mild cognitive impairment.118

Three studies (HERS, KEEPS-Cog, and WHI) comprising four trials (HERS [N=1,328],72 KEEPS-Cog [N=693],73 WHIMS [N=4,532],115, 116 and WHISCA [N=1,213]) measured global cognitive functioning using the Modified Mini-Mental Status Examination (MMSE). The HERS trial had a treatment regimen similar to that used in the WHI studies. It included 662 women randomized to estrogen plus progestin and 666 women randomized to placebo; participants were followed for 4.2 years. HERS found no cognitive deficits through 4 years of followup.72

WHISCA was a subset (N=690 in the estrogen plus progestin arm, N=726 in the placebo arm) of the WHIMS trial. It was limited to 14 of 39 trial centers and designed to evaluate changes in
cognitive functioning over time; the first assessment occurred 3 years after the start of treatment. Participants in WHISCA were followed for approximately another 2 years; a further subset of WHISCA, in an extension study, were followed for 4 years after treatment. Deficits in cognitive functioning measured during the trial period (2 years) among WHIMS participants for the active arm were not sustained for women in WHISCA.

KEEPS-Cog, an ancillary study to KEEPS, comprised women who consented to participate in a study of cognitive function. Women were age 52.6 years on average and 1.4 years past their last menstrual period. The study randomized women to either oral or transdermal estrogen plus progestin or placebo pills and patches. The study found no differences between women randomized to estrogen plus progestin therapy and those randomized to placebo in change in 3MS score over a 4-year period of observation. Four trials (EMS [N=142], HERS [N=1,328], WHISCA [N=1,416], and WHIMSY [N=1,326]) evaluated other measures of cognitive functioning; heterogeneity in outcome measures precluded meta-analysis. The HERS and WHISCA trials are described above. The WHIMSY trial, an extension of the WHI trial, was limited to 1,326 enrolled active participants in treatment or placebo arms in the WHI trials who were ages 50 to 55 years at enrollment and agreed to be contacted for recruitment (N=1,326 assessed, N by treatment regimen not reported). The WHIMSY trial followed women for 7.2 years after the end of the trials. The EMS trial randomized 70 women to estrogen plus progestin and 72 women to placebo and followed them for 2 years. Women in HERS were followed for 4.2 years. All trials found no differences in groups as randomized for the majority of outcomes.

Differences in Treatment Effects Based on Subgroups

WHIMS found no difference in possible dementia by history of diabetes, stroke, hypertension, cardiovascular disease, or race/ethnicity. It also found no difference in the rate of change in three MMSE scores by race/ethnicity, body mass index, history of cardiovascular disease, hypertension, diabetes, or length of use.

Differences in Treatment Effects Based on Timing of the Intervention

WHIMS found no difference in the rate of change in three MMSE scores by time to initiation of hormone therapy after the last menstrual period.

Diabetes

Benefits and Harms of Hormone Therapy

Two trials (HERS [N=2,029] and WHI [N=15,874]) provided information about the prevention of diabetes with estrogen plus progestin among 17,903 women without diabetes or not receiving treatment for diabetes at baseline (Appendix G Table 9). Incident diabetes was defined in HERS as having a fasting glucose level of 6.9 mmol/L or greater (≥126 mg/dL), self-report of new diabetes or diabetes-related complications (diabetic neuropathy, diabetic retinopathy, diabetic foot ulcer, diabetic renal disease, or hypoglycemia if reported by a woman taking an antidiabetic medication), or initiation of hypoglycemic medication; this analysis was conducted post hoc and should be considered cautiously. In the WHI, incident diabetes was
limited to self-reported new diagnoses of diabetes by a physician followed by treatment with oral hypoglycemic drugs or insulin.97

Estrogen plus progestin therapy protected against incident diabetes among women in HERS (mean followup, 4.1 years; HR, 0.65 [95\% CI, 0.48 to 0.89]) and WHI (mean followup, 5.6 years; HR, 0.81 [95\% CI, 0.70 to 0.94]).70, 97 In the WHI, the larger trial of the two, new diabetes diagnoses were reported during followup by 4.0 percent of women randomized to active treatment and 4.8 percent of those taking placebo.97, 102 However, this reduction in risk of diabetes was no longer observed 8.2 years postintervention (HR, 1.19 [95\% CI, 1.05 to 1.34]).102

\textit{Differences in Treatment Effects Based on Subgroups}

A test for interaction did not detect any statistically significant subgroup effects with respect to race/ethnicity, age at screening, or hypertension at baseline for women in the WHI.97

\textit{Differences in Treatment Effects Based on Timing of the Intervention}

We found no evidence on differences in treatment effects based on timing of the intervention.

\textbf{Fractures}

\textit{Benefits and Harms of Hormone Therapy}

Five trials (EMS [N=142],59 EPHT [N=777],61 ERA [N=209],62 HERS [N=2,763],68 and WHI [N=16,608]23, 83, 92, 102) provided information on the rate of fractures (Appendix G Table 10). These trials spanned reporting periods from 2 through 5.2 years. The studies varied widely in sample size, from a total of 142 patients in the smallest study (EMS) to 16,608 in the largest (WHI). Studies defined fractures in varying ways; some specified hip or vertebral fractures only, while others included all osteoporotic or all fractures, regardless of site.

A random-effects meta-analysis of these five trials measuring outcomes during or at the end of the trial period (N=20,499) yielded an RR of 0.80 (95\% CI, 0.68 to 0.94). In the meta-analysis, 8.6 percent of women taking estrogen plus progestin and 10.9 percent of women taking placebo experienced fractures.

\textit{Differences in Treatment Effects Based on Subgroups}

We found no evidence on differences in treatment effects by subgroups.

\textit{Differences in Treatment Effects Based on Timing of the Intervention}

We found no evidence on differences in treatment effects based on timing of the intervention.
Gallbladder Disease

Benefits and Harms of Hormone Therapy

Two trials (PEPI [N=700] and WHI [N=14,203]) provided information about the prevention of gallbladder disease with estrogen plus progestin among 14,903 women with gallbladders and without gallbladder disease (Appendix G Table 11). Treatment duration was 3 years for women in PEPI and 5.6 years, on average, for women in the WHI. The WHI’s definition of gallbladder disease included cholecystitis and calculi; the definition used in PEPI is unclear.74, 88 Gallbladder procedures were also reported in the WHI, which included biliary tract procedures such as cholecystectomy.88

The WHI, which is the larger of the two trials, reported gallbladder events (disease or procedure) during followup for 3.1 percent of women randomized to active treatment and 2.0 percent of those taking placebo; this difference was statistically significant (HR, 1.59 [95% CI, 1.28 to 1.97]).88 Risk of gallbladder disease decreased postintervention but continued to favor placebo over estrogen plus progestin therapy (mean 5.6 years intervention: HR, 1.61 [95% CI, 1.30 to 2.00]; median 8.2 years postintervention: HR, 1.24 [95% CI, 1.01 to 1.52]).88

The PEPI trial had few cases of gallbladder disease and reported inconclusive results.74

Differences in Treatment Effects Based on Subgroups

A test for interaction did not detect any subgroup effects with respect to age of women in the WHI.88 We found no other evidence on differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.

Stroke

Benefits and Harms of Hormone Therapy

Three trials reported on risk of stroke (WHI [N=16,608], EMS [N=142], and EPHT [N=777]) (Appendix G Table 12). We did not pool trial results because of heterogeneity in study duration and outcome measures.

During the WHI intervention phase (median, 5.6 years), stroke risk was significantly higher with estrogen plus progestin than with placebo (1.9% vs. 1.3%; HR, 1.37 [95% CI, 1.07 to 1.76]); during postintervention followup, stroke risk was similar for these two groups (HR, 1.04 [95% CI, 0.86 to 1.26]).102 Cumulatively, stroke risk was higher in the estrogen plus progestin group compared with placebo (HR, 1.16 [95% CI, 1.00 to 1.35]).102

The two other trials comparing estrogen plus progestin and placebo reported on the incidence of various cerebrovascular events as harms of treatment.59, 61 In EMS, few events occurred over 2
years (3 events total), and the results were inconclusive. In EPHT, risk of any cerebrovascular event (composite stroke, transient ischemic attack, and subarachnoid hemorrhage) was higher among women randomized to estrogen plus progestin than placebo (5.7% vs. 2.4%; HR, 2.46 [95% CI, 1.14 to 5.34]).

Differences in Treatment Effects Based on Subgroups

No difference was seen in stroke risk in the WHI based on subgroups of women by age, race/ethnicity, or coexisting condition.

Differences in Treatment Effects Based on Timing of the Intervention

Risk of stroke in the WHI was similar for women who started estrogen plus progestin soon after menopause (<5 years) and those who started later (≥5 years).

Urinary Incontinence

Benefits and Harms of Hormone Therapy

Two trials (WHI [N=5,182] and HERS [N=1,208]) provided results on incident urinary incontinence (self-reported) in women who had been continent at baseline (Appendix G Table 13). The WHI followed continent women through year 1 and then evaluated incontinence at year 2 for those continent at year 1. The HERS trial had a similar treatment regimen as the WHI studies and followed women for 4.2 years. Both studies showed a consistently higher risk of urinary incontinence at all time points for the estrogen plus progestin group compared with placebo. In the WHI, 31.2 percent of women taking hormone therapy reported incident incontinence at year 1 compared with 22.5 percent of women taking placebo (RR, 1.39 [95% CI, 1.27 to 1.52]). At year 3, the risk remained statistically significantly elevated (RR, 1.81 [95% CI, 1.16 to 2.84]). In the HERS trial, women taking estrogen plus progestin had a higher risk of incontinence compared with women taking placebo at the 4.2-year followup (odds ratio, 1.6 [95% CI, 1.3 to 1.9]).

Differences in Treatment Effects Based on Subgroups

We found no evidence on differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.

Venous Thromboembolism

Benefits and Harms of Hormone Therapy

Four trials (WHI [N=16,608], ERA [N=209], EMS [N=142], and EPHT [N=777]) reported on the incidence of venous thromboembolism (Appendix G Table 14). We did not pool
trials because of heterogeneity in study duration and outcome measures.

In the WHI, women randomized to estrogen plus progestin had an increased risk of pulmonary embolism (1.0% vs. 0.5%; HR, 1.98 [95% CI, 1.36 to 2.87]) and deep vein thrombosis (1.4% vs. 0.8%; HR, 1.87 [95% CI, 1.37 to 2.54]) compared with women in the placebo group over a median followup of 5.6 years. The groups did not differ for risk of deep vein thrombosis or pulmonary embolism during the 2.4-year postintervention period after women stopped therapy.

In three smaller trials (N=142 to 777), groups did not differ in risk of venous thromboembolism among participants randomized to estrogen plus progestin or placebo over 2 to 3 years (2 vs. 0 events across all three trials).

Differences in Treatment Effects Based on Subgroups

In the WHI, risk of pulmonary embolism or deep vein thrombosis did not differ for the treatment and placebo groups by subgroups based on age.

Differences in Treatment Effects Based on Timing of the Intervention

Risk of venous thromboembolism in the WHI was similar for women who began hormone therapy soon after menopause (<5 years) and for those who started later (≥5 years).

Health-Related Quality of Life

Benefits and Harms of Hormone Therapy

The WHI (N=16,608) was the only trial that reported on health-related quality of life (Appendix G Table 15). It used the RAND-36 form, which assesses physical functioning, physical role, bodily pain, general health, vitality, social functioning, emotional role, and mental health. Women in both groups had similar scores on all items except for physical functioning (p<0.001), physical role (p=0.02), bodily pain (p<0.001), and general health (p=0.02), for which women taking hormone therapy had statistically significantly better scores than did women taking placebo.

Differences in Treatment Effects Based on Subgroups

We found no evidence on differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

We found no evidence on differences in treatment effects based on timing of the intervention.
All-Cause Mortality

Benefits and Harms of Hormone Therapy

Three trials (ERA [N=209],62 HERS [N=2,763],68 and WHI [N=16,608]92) provided information about the risk of death from any cause (i.e., all-cause mortality) among 19,580 women with treatment of estrogen plus progestin (Appendix G Table 16). The average length of treatment for these trials ranged from 3.2 to 5.6 years (weighted mean, 5.2 years).62, 68, 92 A meta-analysis of these trials yielded no statistically significant difference in all-cause mortality between women taking hormone therapy or placebo (RR, 1.01 [95% CI, 0.88 to 1.17]).

The WHI, the largest of the three trials, reported an HR of 0.97 (95% CI, 0.81 to 1.16); 2.9 percent of women in both treatment groups died.92 The risk of death among women who had received estrogen plus progestin and those who had received placebo at followup 2.4 years after stopping hormone therapy was not significantly different (HR, 1.15 [95% CI, 0.95 to 1.39]).92 However, when the analysis focused on women in the postintervention phase without prior hormone therapy use who adhered to medication (took ≥80% of study pills), the difference in risk of death was statistically significant (HR, 1.53 [95% CI, 1.04 to 2.24]).92

Risk of death from breast cancer (HR, 1.96 [95% CI, 1.00 to 4.04])84 and lung cancer (HR, 1.71 [95% CI, 1.16 to 2.52])86 was higher among women randomized to estrogen plus progestin than among those taking placebo 2.4 years after stopping hormone therapy.

Differences in Treatment Effects Based on Subgroups

We found no evidence on differences in treatment effects by subgroups.

Differences in Treatment Effects Based on Timing of the Intervention

An analysis of WHI data considered the time between menopause and the first use of hormone therapy (before enrollment into the WHI).98 The effect of estrogen plus progestin on all-cause mortality did not differ significantly between women who initiated hormone therapy within the first 5 years after menopause and those who started it after 5 years following menopause.
Chapter 4. Discussion

This chapter begins with a summary of review findings for each KQ. Following those sections, we present limitations of the evidence and the review, and end with conclusions. Our searches also addressed two contextual questions on the duration of hormone therapy use and differences in use by subgroups (see the Methods section for detailed contextual questions). For both questions, we did not find any studies of interest and, therefore, do not discuss contextual questions any further in this chapter.

Summary of Review Findings

Benefits and Harms of Hormone Therapy (KQs 1 and 2)

Eighteen trials (reported in 68 publications) comparing the effects of estrogen only or estrogen plus progestin versus placebo for preventing chronic conditions in postmenopausal women met our eligibility criteria. Tables 6 and 7 summarize findings, SOE, and applicability for various outcomes for both KQs 1 and 2.

The WHI was the only trial designed and powered to evaluate the effectiveness of hormone therapy for the primary prevention of the multiple conditions that are the focus of this review. The WHI met criteria for fair quality, and it provided most of the estimates of benefits and harms. Including the posttrial phases, it had up to 13 years of followup to assess how risk of chronic conditions change after women stopped hormone therapy.

Results of our review indicate some benefits of hormone therapy regarding the prevention of chronic conditions (KQ 1). For women using estrogen only, risk of diabetes (137 fewer cases per 10,000 women over 7.1 years) and fractures (382 fewer cases per 10,000 women over 6.8 years) was statistically significantly reduced compared with women taking placebo. Women using estrogen plus progestin therapy experienced statistically significantly reduced risk of colorectal cancer (33 fewer cases per 10,000 women over 5.6 years), diabetes (77 fewer cases per 10,000 women over 5.6 years), and fractures (222 fewer cases per 10,000 women over 5.0 years) compared with women in the placebo groups.

Our review also documented several important harms of hormone therapy (KQ 2). Women taking estrogen-only therapy had statistically significantly increased risk of gallbladder disease (213 more cases per 10,000 women over 7.1 years), stroke (79 more cases per 10,000 women over 7.1 years), urinary incontinence (1,261 more cases per 10,000 women over 1 year), and venous thromboembolism (78 more cases per 10,000 women over 7.1 years) compared with women in the placebo groups.

Likewise, for women taking estrogen plus progestin therapy, risk of invasive breast cancer (52 more cases per 10,000 women over 5.6 years), probable dementia (88 more cases per 10,000 women over 4 years), gallbladder disease (116 more cases per 10,000 women over 5.6 years), stroke (53 more cases per 10,000 women over 5.6 years), urinary incontinence (876 more cases...
per 10,000 women over 1 year), and venous thromboembolism (120 more cases per 10,000 women over 5.6 years) was statistically significantly increased compared with women taking placebo.

The WHI used a global index based on beneficial and harmful events to assess the tradeoff between advantages and disadvantages of hormone therapy. Overall, estrogen plus progestin led to 20 additional adverse events per 10,000 person-years (HR, 1.12 [95% CI, 1.02 to 1.24]). For women who were randomized to estrogen-only therapy, the global index did not show a statistically significant difference in overall beneficial or harmful events (HR, 1.03 [95% CI, 0.93 to 1.13]).

Information About Subgroups of Women (KQ 3)

Subgroups (KQ 3) of interest for this report include the following characteristics: race/ethnicity; women with premature menopause; women with surgical menopause; age; duration of use; type, dose, and mode of delivery of hormone therapy; and presence of coexisting conditions. Table 8 summarizes findings, SOE, and applicability for subgroups for both treatment regimens (KQ 3).

Trials did not report results for most of these subgroups. Subgroup analyses of trial results based on these characteristics were restricted to race/ethnicity, age, and a limited number of comorbid conditions or risk factors. In general, tests of interactions did not detect any statistically significant subgroup effects that are of interest for this report. An exception is the influence of age on myocardial infarction, colorectal cancer, and all-cause mortality. Analyses that compared younger (ages 50 to 59 years) with older (ages 70 to 79 years) women using estrogen-only therapy yielded a statistically significant trend for increasing risk by age for myocardial infarction (p=0.02 for trend), colorectal cancer (p=0.02 for trend), and all-cause mortality (p=0.04 for trend).

These findings, however, have to be interpreted cautiously. For example, only 489 women died in the WHI estrogen-only trial, which could lead to chance findings when assessing differences in subgroups.

Recent subgroup analyses of the WHI regarding the effect of timing on risk of coronary events provide consistent findings. Time since menopause did not have a statistically significant effect on the risk of coronary heart disease in women using estrogen-only therapy. Women who initiated combination therapy within 10 years of menopause did not have an increased coronary risk compared with those who initiated later. Early initiation in this group, however, also did not lead to any beneficial effects regarding cardiovascular risk. It remains unclear whether a shorter time interval than 10 years might have been a more appropriate measure to assess the effect of timing. An additional subgroup analysis took hormone therapy use before enrollment into the WHI into consideration (e.g., about 40% of women in the estrogen-only trial used hormone therapy before enrollment) and also found no difference in coronary risk between early and late initiation of hormone therapy.

Two recent trials, KEEPS and ELITE, addressed whether timing of therapy initiation affected either benefits or harms of hormone therapy. Both trials enrolled women who were
younger than participants in the WHI. Both trials assessed surrogate outcomes of cardiovascular disease (primary outcome in both trials was carotid artery intima-media thickness). They provided mixed results regarding beneficial effects of early initiation of hormone therapy on carotid artery intima-media thickness.

A recent Cochrane review assessed the timing hypothesis by stratifying trials in a meta-analysis according to when any hormone therapy treatment was started (the review did not stratify between estrogen-only and combination hormone therapy, which is a substantial limitation of this review).19 If this information was not available, the authors used the mean age of participants at baseline as a surrogate. Results provided some support of the timing hypothesis. All-cause mortality was lower in the subgroup of studies in which treatment was started within 10 years of menopause compared with studies in which more than 10 years had elapsed (p=0.01). Likewise, the risk of coronary heart disease was lower in women who initiated hormone therapy early (p=0.02). Nevertheless, because of issues of potential ecological fallacy, findings of such study-level analyses have to be viewed cautiously.

Another study that is sometimes viewed as supporting the timing hypothesis is the Danish Osteoporosis Prevention Study.58 We did not consider this study because of poor quality due to lack of blinding of outcomes assessors. The study included 1,006 women who, on average, were younger than those in the WHI; it reported that hormone therapy given to early postmenopausal women reduced the risk of cardiovascular disease without any significant increase in harms after 10 years of treatment and 16 years of cumulative followup. These findings would support the timing hypothesis, but they are limited by the small number of events and the precision of the estimates. For example, during 10 years of treatment, only 49 cardiovascular events took place.

To date, the evidence regarding the effect of dose and mode of delivery of hormone therapy on benefits and risks is still insufficient to draw firm conclusions. In treatment studies, progestins and natural progesterones differ in their metabolic action and risk of harms such as adverse effects on blood lipids, breast tenderness, and headaches. The risk-benefit profile of each type of progestin and progesterone for use in hormone therapy is currently still unclear.19

For this report, the PEPI trial was the only eligible study that used different types (regular synthetic and micronized progestins) and regimens of progestins (continuous and sequential progestin regimens) within the same study.74 Results reported no differences in benefits and harms between different types and regimens. The sample size of the PEPI trial (N=875) was too small to detect potential differences in outcomes that are of interest for this report. All the other studies included in this review used continuous progestin regimens.

Limitations and Future Research

In our analyses, we stratified results by regimen because findings from the WHI suggested that the risk-benefit profiles for estrogen-only and estrogen plus progestin therapy are different. As a consequence, we were not able to include three trials that did not report results stratified by treatment regimen in our analyses.65, 75, 80
The WHI provided the best and most applicable information for many of our outcomes of interest. To date, more than 130 articles have been published on the WHI trials. During our review, we noticed that effect estimates were not always consistent across various publications. Because it was impossible for us to discern which were the most correct estimates, in general, we relied on articles that focused on specific outcomes (e.g., gallbladder disease, urinary incontinence), when available. In general, differences in effect estimates affected the magnitude of risks and benefits but never the direction of effects. For each effect estimate that we present in the report, we provide the respective citation of the WHI publication.

Low event rates also limited conclusions for some outcomes in the report. For example, in the WHI estrogen plus progestin trial, only 40 women developed ovarian cancer. Likewise, event rates for cervical and endometrial cancer were low, rendering wide CIs that encompassed clinically meaningful differences in risk. The confidence in conclusions about benefits and risks of hormone therapy regarding these outcomes is low.

A recent analysis of individual patient data from 52 epidemiological studies on more than 21,000 women with ovarian cancer detected a higher risk of ovarian cancer in women who used hormone therapy (RR, 1.37 [95% CI, 1.29 to 1.46]).130 The risk was similar between estrogen-only and estrogen plus progestin therapies. Even 10 years after stopping long-duration hormone therapy, risk of serious and endometrioid ovarian tumors were still elevated (RR, 1.25 [95% CI, 1.07 to 1.46]).

Some outcomes that relied on self-reporting (e.g., diabetes and urinary incontinence) might be affected by potential biases, or limited by disparate adherence rates (e.g., cognitive function) (WHIMS: 61.4% vs. 32.3% for placebo vs. estrogen plus progestin, respectively). Trials often used different measures for ascertaining outcomes, which limited comparisons across trials. For cognitive function, WHIMS was the only trial to use a thorough adjudication process for probable dementia and mild cognitive impairment, whereas other trials used batteries of cognitive tests. For diabetes, the WHI relied on participants’ self-reports of new diagnoses or new treatment for diabetes, whereas HERS used fasting glucose levels. For urinary incontinence, all trials relied on self-reported measures.

In addition, we did not find any evidence on functional capacity.

The main limitation of our review process was that we restricted our review to trials published in English-language journals. However, we did not identify any relevant trials from English-language abstracts of non-English journals, additional citation searches, or expert reviewers. Given the large number of eligible trials for this report, the effect of potentially missed non-English publications on the overall effect estimates and conclusions is probably negligible.

Most trials had high attrition or low adherence to medications; this was true even for the WHI, in which 40 to 50 percent of participants discontinued their medications during the trial. Nevertheless, secondary analyses of the WHI limited to adherent women (i.e., censoring women within 6 months of reporting with <80% compliance with study pills) were generally similar to intention-to-treat results102 but with accentuated findings. For example, the adherence-adjusted HRs for breast cancer were 0.58 (95% CI, 0.39 to 0.84) for women taking estrogen-only therapy.
and 1.52 (95% CI, 1.15 to 2.00) for women taking estrogen plus progestin (compared with HR, 0.79 [95% CI, 0.61 to 1.02] and HR, 1.26 [95% CI, 1.02 to 1.55], respectively, in the intention-to-treat analyses).102

The applicability of our findings may be limited by three main aspects. First, the average age of women in the included studies ranged from 50 to 79 years, which is older than the average age of women experiencing menopause (51 years). For example, in the WHI, the average age of women was 64 years; approximately 30 percent of women in the WHI were ages 50 to 59 years at the time of enrollment. Second, the majority of women (around 80%) were white. Subgroup analyses did not reveal differences in beneficial or harmful effects among racial/ethnic groups, but such analyses might have been underpowered. Third, the majority of findings came from the WHI, which tested only one dose, formulation, and route of administration of hormone therapy in each trial (0.625 mg/day of oral conjugated equine estrogen, with or without 2.5 mg/day of medroxyprogesterone). The PEPI trial was the only study that directly compared different formulations of estrogen and progestin combinations. To date, however, the evidence regarding the effect of different formulations, doses, and modes of delivery of hormone therapy on benefits and risks is insufficient to draw firm conclusions.

Continuing research on long-term outcomes, such as cancer and mortality, will be important to provide a full understanding of the implications of hormone therapy. In the WHI studies, some of the risk reductions and increases disappeared after women had stopped treatment. Other risk, such as risk of invasive breast cancer, were still elevated years after women had stopped estrogen plus progestin treatment. Given that most women who use hormone therapy start treatment of menopausal symptoms during perimenopause or early postmenopause, future research needs to further explore the effect of early initiation on health outcomes and the primary prevention of chronic diseases. Future studies also need to explore the comparative benefits and harms of different formulations and treatment durations of hormone therapy.

Finally, most subgroup analyses of the WHI were probably not powered to detect clinically relevant differences between subgroups of interest. Combining individual patient data from all trials to conduct individual patient data meta-analyses could probably overcome this issue and provide more definitive answers.

Conclusions

Depending on the treatment regimen, the risk-benefit profile of hormone therapy for the prevention of chronic conditions differs for women ages 50 to 79 years. Women undergoing hormone therapy experience some beneficial effects (e.g., reduced risk of fractures or diabetes) but also an increased risk of harms (e.g., higher risk of stroke, thromboembolic events, gallbladder disease, and urinary incontinence), particularly among women older than age 60 years. Some evidence suggests that age at the initiation of hormone therapy can modify the risk-benefit profile, particularly for overall mortality and cardiovascular events. To date, however, the available evidence regarding benefits and harms of early initiation of hormone therapy is inconclusive.
References

2. Col NF; Fairfield KM; Ewan-Whyte C; Miller H. In the clinic. Menopause. Ann Intern Med. 2009 Apr 7;150(7):ITC4-1-15; quiz ITC4-6. PMID: 19349628.

3. Harlow SD; Gass M; Hall JE; Lobo R; Maki P; Rebar RW; Sherman S; Sluss PM; de Villiers TJ; Group SC. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. Menopause. 2012 Apr;19(4):387-95. doi: 10.1097/gme.0b013e31824d8f40. PMID: 22343510.

8. Grady D; Rubin SM; Petitti DB; Fox CS; Black D; Ettinger B; Ernster VL; Cummings SR. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med. 1992 Dec 15;117(12):1016-37. PMID: 1443971.

19. Boardman Henry MP; Hartley L; Eisinga A; Main C; Roqué i Figuls M; Bonfill Cosp X; Gabriel Sanchez R; Knight B. Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database of Systematic Reviews: John Wiley & Sons, Ltd; 2015.

23. Rossouw JE; Anderson GL; Prentice RL; LaCroix AZ; Kooperberg C; Stefanick ML; Jackson RD; Beresford SA; Howard BV; Johnson KC; Kotchen JM; Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002 Jul 17;288(3):321-33. PMID: 12117397.
24. Anderson GL; Limacher M; Assaf AR; Bassford T; Beresford SAA; Black H; Bonds D; Brunner R; Brzyski R; Caan B; Chlebowski R; Curb D; Gass M; Hays J; Heiss G; Hendrix S; Howard BV; Hsia J; Hubbell A; Jackson R; Johnson KC; Judd H; Kotchen JM; Kuller L; LaCroix AZ; Lane D; Langer RD; Lasser N; Lewis CE; Manson J; Margolis K; Ockene J; O'Sullivan MJ; Phillips L; Preintice RL; Ritenbaugh C; Robbins J; Rossouw JE; Sarto G; Stefanick ML; Van Horn L; Wactawski-Wende J; Wallace R; Wassertheil-Smoller S; Women's Health Initiative Steering Committee. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA. 2004 Apr 14;291(14):1701-12. PMID: 15082697.

32. Grodstein F; Manson JE; Colditz GA; Willett WC; Speizer FE; Stampfer MJ. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann Intern Med. 2000 Dec 19;133(12):933-41. PMID: 11119394.

35. Rossouw JE; Prentice RL; Manson JE; Wu L; Barad D; Barnabei VM; Ko M; LaCroix AZ; Margolis KL; Stefanick ML. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause.[Erratum appears in JAMA. 2008 Mar 26;299(12):1426]. JAMA. 2007 Apr 4;297(13):1465-77. PMID: 17405972.

44. West SL; Gartlehner G; Mansfield AJ; Poole C; Tant E; Lenfestey N; Lux LJ; Amoozegar J; Morton SC; Carey TC; Viswanathan M; Lohr KN. Comparative Effectiveness Review Methods: Clinical Heterogeneity Methods Research Paper. AHRQ Publication No. 10-EHC070-EF. Rockville, MD: Agency for Healthcare Research and Quality; Sep 2010. http://effectivehealthcare.ahrq.gov/

45. Sutton A; Abrams KR; Jones DR; Sheldon T; Song F. Methods for Meta-Analysis in Medical Research. Chichester: John Wiley & Sons, Ltd.; 2014.

50. Berkman ND; Lohr KN; Ansari MT; Balk EM; Kane R; McDonagh M; Morton SC; Viswanathan M; Bass EB; Butler M; Gartlehner G; Hartling L; McPhee M; Morgan LC; Reston J; Sista P; Whitlock E; Chang S. Grading the strength of a body of evidence when assessing health care interventions: an EPC update. J Clin Epidemiol. 2015 Nov;68(11):1312-24. doi: 10.1016/j.jclinepi.2014.11.023. PMID: 25721570.

56. Guyatt GH; Oxman AD; Sultan S; Glasziou P; Akl EA; Alonso-Coello P; Atkins D; Kunz R; Brozek J; Montori V; Jaeschke R; Rind D; Dahm P; Meerpohl J; Vist G; Berliner E; Norris S; Falck-Ytter Y; Murad MH; Schunemann HJ; Group GW. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol. 2011 Dec;64(12):1311-6. doi: 10.1016/j.jclinepi.2011.06.004. PMID: 21802902.

57. Mosekilde L; Beck-Nielsen H; Sorensen OH; Nielsen SP; Charles P; Vestergaard P; Hermann AP; Gram J; Hansen TB; Abrahamsen B; Ebbesen EN; Stilgren L; Jensen LB; Brot C; Hansen B; Tofteng CL; Eiken P; Kolthoff N. Hormonal replacement therapy reduces forearm fracture incidence in recent postmenopausal women - results of the Danish Osteoporosis Prevention Study. Maturitas. 2000 Oct 31;36(3):181-93. PMID: 11063900.
58. Schierbeck LL; Rejnmark L; Tofteng CL; Stilgren L; Eiken P; Mosekilde L; Kober L; Jensen JE. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ. 2012;345:e6409. PMID: 23048011.

60. Hodis HN; Mack WJ; Lobo RA; Shoupe D; Sevanian A; Mahrer PR; Selzer RH; Liu Cr CR; Liu Ch CH; Azen SP. Estrogen in the prevention of atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2001 Dec 4;135(11):939-53. PMID: 11730394.

63. Cherry N; Gilmour K; Hannaford P; Heagerty A; Khan MA; Kitchener H; McNamee R; Elstein M; Kay C; Seif M; Buckley H; team E. Oestrogen therapy for prevention of reinfarction in postmenopausal women: a randomised placebo controlled trial. Lancet. 2002 Dec 21-28;360(9350):2001-8. doi: 10.1016/S0140-6736(02)10690-5. PMID: 12504310.

64. Cherry N; McNamee R; Heagerty A; Kitchener H; Hannaford P. Long-term safety of unopposed estrogen used by women surviving myocardial infarction: 14-year follow-up of the ESPRIT randomised controlled trial. BJOG. 2014 May;121(6):700-5; discussion 5. doi: 10.1111/1471-0528.12598. PMID: 24533510.

67. Grady D; Herrington D; Bittner V; Blumenthal R; Davidson M; Hlatky M; Hsia J; Hulley S; Herd A; Khan S; Newby LK; Waters D; Vittinghoff E; Wenger N; Group HR. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II).[Erratum appears in JAMA 2002 Sep 4;288(9):1064]. JAMA. 2002 Jul 3;288(1):49-57. PMID: 12090862.

68. Hulley S; Furberg C; Barrett-Connor E; Cauley J; Grady D; Haskell W; Knopp R; Lowery M; Satterfield S; Schrott H; Vittinghoff E; Hunninghake D; Group HR. Noncardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA. 2002 Jul 3;288(1):58-66. PMID: 12090863.

69. Hulley S; Grady D; Bush T; Furberg C; Herrington D; Riggs B; Vittinghoff E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart

71. Steinauer JE; Waetjen LE; Vittinghoff E; Subak LL; Hulley SB; Grady D; Lin F; Brown JS. Postmenopausal hormone therapy: does it cause incontinence? Obstet Gynecol. 2005 Nov;106(5 Pt 1):940-5. PMID: 16260510.

73. Gleason CE; Dowling NM; Wharton W; Manson JE; Miller VM; Atwood CS; Brinton EA; Cedars MI; Lobo RA; Merriam GR; Neal-Perry G; Santoro NF; Taylor HS; Black DM; Budoff MJ; Hodis HN; Naftolin F; Harman SM; Asthana S. Effects of Hormone Therapy on Cognition and Mood in Recently Postmenopausal Women: Findings from the Randomized, Controlled KEEPS-Cognitive and Affective Study. PLoS Med. 2015 Jun;12(6):e1001833; discussion e. doi: 10.1371/journal.pmed.1001833 [doi]; PMEDICINE-D-14-01484 [pii]. PMID: 26035291.

80. Waters DD; Alderman EL; Hsia J; Howard BV; Cobb FR; Rogers WJ; Ouyang P; Thompson P; Tardif JC; Higginson L; Bittner V; Steffes M; Gordon DJ; Proshan M; Younes N; Verte J. Effects of hormone replacement therapy and antioxidant vitamin

82. Canonico M; Plu-Bureau G; O'Sullivan MJ; Stefaniak ML; Cochrane B; Scarabin PY; Manson JE. Age at menopause, reproductive history, and venous thromboembolism risk among postmenopausal women: the Women's Health Initiative Hormone Therapy clinical trials. Menopause. 2014 Mar;21(3):214-20. doi: 10.1097/GME.0b013e31829752e0 [doi]. PMID: 23760439.

83. Cauley JA; Robbins J; Chen Z; Cummings SR; Jackson RD; LaCroix AZ; LeBoff M; Lewis CE; McGowan J; Neuner J; Pettinger M; Stefanick ML; Wactawski-Wende J; Watts NB; Women's Health Initiative I; Cauley JA; Robbins J; Chen Z; Cummings SR; Jackson RD; LaCroix AZ; LeBoff M; Lewis CE; McGowan J; Neuner J; Pettinger M; Stefanick ML; Wactawski-Wende J; Watts NB. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women's Health Initiative randomized trial. JAMA. 2003 Oct 1;290(13):1729-38. PMID: 14519707.

84. Chlebowski RT; Anderson GL; Gass M; Lane DS; Aragaki AK; Kuller LH; Manson JE; Stefanick ML; Ockene J; Sarto GE; Johnson KC; Wactawski-Wende J; Ravdin PM; Schenken R; Hendrix SL; Rajkovic A; Rohan TE; Yasmineh S; Prentice RL; Investigators WHI. Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA. 2010 Oct 20;304(15):1684-92. PMID: 20959578.

85. Chlebowski RT; Hendrix SL; Langer RD; Stefanick ML; Gass M; Lane D; Rodabough RJ; Gilligan MA; Cyr MG; Thomson CA; Khandekar J; Petrovitch H; McTiernan A; Investigators WHI. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. JAMA. 2003 Jun 25;289(24):3243-53. PMID: 12824205.

86. Chlebowski RT; Schwartz AG; Wakelee H; Anderson GL; Stefanick ML; Manson JE; Rodabough RJ; Chien JW; Wactawski-Wende J; Gass M; Kotchen JM; Johnson KC; O'Sullivan MJ; Ockene JK; Chen C; Hubbell FA; Women's Health Initiative I. Oestrogen plus progestin and lung cancer in postmenopausal women (Women's Health Initiative trial): a post-hoc analysis of a randomised controlled trial. Lancet. 2009 Oct 10;374(9697):1243-51. PMID: 19767090.

87. Chlebowski RT; Wactawski-Wende J; Ritenbaugh C; Hubbell FA; Ascensao J; Rodabough RJ; Rosenberg CA; Taylor VM; Harris R; Chen C; Adams-Campbell LL; White E; Women's Health Initiative I; Chlebowski RT; Wactawski-Wende J; Ritenbaugh C; Hubbell FA; Ascensao J; Rodabough RJ; Rosenberg CA; Taylor VM; Harris R; Chen C; Adams-Campbell LL; White E. Estrogen plus progestin and colorectal cancer in postmenopausal women. N Engl J Med. 2004 Mar 4;350(10):991-1004. PMID: 14999111.

88. Cirillo DJ; Wallace RB; Rodabough RJ; Greenland P; LaCroix A; Limacher MC; Larson JC. Effect of estrogen therapy on gallbladder disease. JAMA. 2005;293:330-9. PMID: 15657326.
89. Cushman M; Kuller LH; Prentice R; Rodabough RJ; Psaty BM; Stafford RS; Sidney S; Rosendaal FR; Women's Health Initiative I. Estrogen plus progestin and risk of venous thrombosis. JAMA. 2004 Oct 6;292(13):1573-80. PMID: 15467059.
90. Gramling R; Eaton CB; Rothman KJ; Cabral H; Silliman RA; Lash TL. Hormone replacement therapy, family history, and breast cancer risk among postmenopausal women. Epidemiology. 2009 Sep;20(5):752-6. PMID: 19451819.
91. Hays J; Ockene JK; Brunner RL; Kotchen JM; Manson JE; Patterson RE; Aragaki AK; Shumaker SA; Brzyski RG; LaCroix AZ; Granek IA; Valanis BG; Women's Health Initiative I. Effects of estrogen plus progestin on health-related quality of life. N Engl J Med. 2003 May 8;348(19):1839-54. PMID: 12642637.
92. Heiss G; Wallace R; Anderson GL; Aragaki A; Beresford SAA; Brzyski R; Chlebowski RT; Gass M; LaCroix A; Manson JE; Prentice RL; Rossouw J; Stefanick ML; Investigators WHI. Health risks and benefits 3 years after stopping randomized treatment with estrogen and progestin. JAMA. 2008 Mar 5;299(9):1036-45. PMID: 18319414.
94. Hendrix SL; Cochrane BB; Nygaard IE; Handa VL; Barnabei VM; Iglesia C; Aragaki A; Naughton MJ; Wallace RB; McNeelley SG; Hendrix SL; Cochrane BB; Nygaard IE; Handa VL; Barnabei VM; Iglesia C; Aragaki A; Naughton MJ; Wallace RB; McNeelley SG. Effects of estrogen with and without progestin on urinary incontinence. JAMA. 2005 Feb 23;293(8):935-48. PMID: 15728164.
95. Hsia J; Criqui MH; Rodabough RJ; Langer RD; Resnick HE; Phillips L; Allison M; Bonds D; Masaki K; Caralis P; Kotchen JM. Estrogen plus progestin and the risk of peripheral arterial disease. Circulation. 2004;109(5):620-26. PMID: 14769684.
96. Manson JE; Hsia J; Johnson KC; Rossouw JE; Assaf AR; Lasser NL; Trevisan M; Black HR; Heckbert SR; Detrano R; Strickland OL; Wong ND; Crouse JR; Stein E; Cushman M; Women's Health Initiative I. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003 Aug 7;349(6):523-34. doi: 10.1093/aje/kwp115. PMID: 12904517.
97. Margolis KL; Bonds DE; Rodabough RJ; Tinker L; Phillips LS; Allen C; Bassford T; Burke G; Torrens J; Howard BV; Women's Health Initiative I. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women's Health Initiative Hormone Trial. Diabetologia. 2004 Jul;47(7):1175-87. PMID: 15252707.
98. Prentice RL; Manson JE; Langer RD; Anderson GL; Pettinger M; Jackson RD; Johnson KC; Kuller LH; Lane DS; Wactawski-Wende J; Brzyski R; Allison M; Ockene J; Sarto G; Rossouw JE. Benefits and risks of postmenopausal hormone therapy when it is initiated soon after menopause. Am J Epidemiol. 2009 Jul 1;170(1):12-23. doi: 10.1093/aje/kwp115. PMID: 19468079.
100. Toh S; Hernandez-Diaz S; Logan R; Rossouw JE; Hernan MA. Coronary heart disease in postmenopausal recipients of estrogen plus progestin therapy: does the increased risk

101. Wassertheil-Smoller S; Hendrix SL; Limacher M; Heiss G; Kooperberg C; Baird A; Kotchen T; Curb JD; Black H; Rossouw JE; Aragaki A; Safford M; Stein E; Laowattana S; Mysiw WJ; Investigators WHI. Effect of estrogen plus progestin on stroke in postmenopausal women: the Women's Health Initiative: a randomized trial. JAMA. 2003 May 28;289(20):2673-84. PMID: 12771114.

102. Manson JE; Chlebowski RT; Stefanick ML; Aragaki AK; Rossouw JE; Prentice RL; Anderson G; Howard BV; Thomson CA; LaCroix AZ; Wactawski-Wende J; Jackson RD; Limacher M; Margolis KL; Wassertheil-Smoller S; Beresford SA; Cauley JA; Eaton CB; Gass M; Hsia J; Johnson KC; Kooperberg C; Kuller LH; Lewis CE; Liu S; Martin LW; Ockene JK; O'Sullivan MJ; Powell LH; Simon MS; Van Horn L; Vitolins MZ; Wallace RB. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women's Health Initiative randomized trials. JAMA. 2013 Oct 2;310(13):1353-68. doi: 10.1001/jama.2013.278040 [pii]. PMID: 24084921.

103. Chlebowski RT; Anderson GL; Sarto GE; Haque R; Runowicz CD; Aragaki AK; Thomson CA; Howard BV; Wactawski-Wende J; Chen C; Rohan TE; Simon MS; Reed SD; Manson JE. Continuous combined estrogen plus progestin and endometrial cancer: The Women's Health Initiative Randomized Trial. J Natl Cancer Inst. 2016 Mar;108(3). doi: djv350 [pii]; 10.1093/jnci/djv350 [doi]. PMID: 26668177.

104. Chlebowski RT; Rohan TE; Manson JE; Aragaki AK; Kaunitz A; Stefanick ML; Simon MS; Johnson KC; Wactawski-Wende J; O'Sullivan MJ; Adams-Campbell LL; Nassir R; Lessin LS; Prentice RL. Breast cancer after use of estrogen plus progestin and estrogen alone: analyses of data from 2 women's health initiative randomized clinical trials. JAMA Oncol. 2015 Jun;1(3):296-305. doi: 2250347 [pii]; 10.1001/jamaoncol.2015.0494 [doi]. PMID: 26181174.

105. Anderson GL; Chlebowski RT; Aragaki AK; Kuller LH; Manson JE; Gass M; Bluhm E; Connelly S; Hubbell FA; Lane D; Martin L; Ockene J; Rohan T; Schenken R; Wactawski-Wende J. Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women's Health Initiative randomised placebo-controlled trial. Lancet Oncol. 2012 May;13(5):476-86. doi: 10.1016/s1470-2045(12)70075-x. PMID: 22401913.

106. Bonds DE; Lasser N; Qi L; Brzyski R; Caan B; Heiss G; Limacher MC; Liu JH; Mason E; Oberman A; O'Sullivan MJ; Phillips LS; Prineas RJ; Tinker L. The effect of conjugated equine oestrogen on diabetes incidence: the Women's Health Initiative randomised trial. Diabetologia. 2006 Mar;49(3):459-68. PMID: 16440209.

107. Brunner RL; Gass M; Aragaki A; Hays J; Granek I; Woods N; Mason E; Brzyski R; Ockene J; Assaf A; LaCroix A; Matthews K; Wallace R; Women's Health Initiative I. Effects of conjugated equine estrogen on health-related quality of life in postmenopausal women with hysterectomy: results from the Women's Health Initiative Randomized Clinical Trial. Arch Intern Med. 2005 Sep 26;165(17):1976-86. PMID: 16186467.

108. Chlebowski RT; Anderson GL; Manson JE; Schwartz AG; Wakelee H; Gass M; Rodabough RJ; Johnson KC; Wactawski-Wende J; Kotchen JM; Ockene JK; O'Sullivan MJ; Hubbell FA; Chien JW; Chen C; Stefanick ML. Lung cancer among postmenopausal

109. Curb JD; Prentice RL; Bray PF; Langer RD; Van Horn L; Barnabei VM; Bloch MJ; Cyr MG; Gass M; Lepine L; Rodabough RJ; Sidney S; Uwaifo GI; Rosendaal FR. Venous thrombosis and conjugated equine estrogen in women without a uterus. Arch Intern Med. 2006 Apr 10;166(7):772-80. PMID: 16606815.

110. Hendrix SL; Wasserman-Smoller S; Johnson KC; Howard BV; Kooperberg C; Rossouw JE; Trevisan M; Aragaki A; Baird AE; Bray PF; Buring JE; Criqui MH; Herrington D; Lynch JK; Rapp SR; Torner J; Investigators WHI. Effects of conjugated equine estrogen on stroke in the Women's Health Initiative. Circulation. 2006 May 23;113(20):2425-34. PMID: 16702472.

111. Hsia J; Langer RD; Manson JE; Kuller L; Johnson KC; Hendrix SL; Pettinger M; Heckbert SR; Greep N; Crawford S; Eaton CB; Kostis JB; Caralis P; Prentice R. Conjugated equine estrogens and coronary heart disease: the Women's Health Initiative. Arch Intern Med. 2006 Feb 13;166(3):357-65. doi: 10.1001/archinte.166.3.357. PMID: 16476878.

112. LaCroix AZ; Chlebowski RT; Manson JE; Aragaki AK; Johnson KC; Martin L; Margolis KL; Stefanick ML; Brzyski R; Curb JD; Howard BV; Lewis CE; Wactawski-Wende J; Investigators WHI. Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA. 2011 Apr 6;305(13):1305-14. PMID: 21467283.

113. Ritenbaugh C; Stanford JL; Wu L; Shikany JM; Schoen RE; Stefanick ML; Taylor V; Garland C; Frank G; Lane D; Mason E; McNeely SG; Ascensao J; Chlebowski RT; Women's Health Initiative I. Conjugated equine estrogens and colorectal cancer incidence and survival: the Women's Health Initiative randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 2008 Oct;17(10):2609-18. PMID: 18829444.

115. Espeland MA; Rapp SR; Shumaker SA; Brunner R; Manson JE; Sherwin BB; Hsia J; Margolis KL; Hogan PE; Wallace R; Dailey M; Freeman R; Hays J; Women's Health Initiative Memory S. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women's Health Initiative Memory Study. JAMA. 2004 Jun 23;291(24):2959-68. PMID: 15213207.

116. Rapp SR; Espeland MA; Shumaker SA; Henderson VW; Brunner RL; Manson JE; Gass MLS; Stefanick ML; Lane DS; Hays J; Johnson KC; Coker LH; Dailey M; Bowen D; Investigators W. Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA. 2003 May 28;289(20):2663-72. PMID: 12771113.

117. Shumaker SA; Legault C; Kuller L; Rapp SR; Thal L; Lane DS; Fillit H; Stefanick ML; Hendrix SL; Lewis CE; Masaki K; Coker LH; Women's Health Initiative Memory S. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. JAMA. 2004 Jun 23;291(24):2947-58. PMID: 15213206.

118. Shumaker SA; Legault C; Rapp SR; Thal L; Wallace RB; Ockene JK; Hendrix SL; Jones BN, 3rd; Assaf AR; Jackson RD; Kotchen JM; Wassertheil-Smoller S; Wactawski-Wende J; Investigators W. Estrogen plus progestin and the incidence of dementia and

119. Espeland MA; Shumaker SA; Leng I; Manson JE; Brown CM; LeBlanc ES; Vaughan L; Robinson J; Rapp SR; Goveas JS; Wactawski-Wende J; Stefanick ML; Li W; Resnick SM. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA internal medicine; 2013. p. 1429-36.

120. Espeland MA; Brunner RL; Hogan PE; Rapp SR; Coker LH; Legault C; Granek I; Resnick SM; Women's Health Initiative Study of Cognitive Aging Study G. Long-term effects of conjugated equine estrogen therapies on domain-specific cognitive function: results from the Women's Health Initiative study of cognitive aging extension. J Am Geriatr Soc. 2010 Jul;58(7):1263-71. PMID: 20649689.

121. Resnick SM; Espeland MA; An Y; Maki PM; Coker LH; Jackson R; Stefanick ML; Wallace R; Rapp SR; Women's Health Initiative Study of Cognitive Aging Investigators. Effects of conjugated equine estrogens on cognition and affect in postmenopausal women with prior hysterectomy. J Clin Endocrinol Metab. 2009 Nov;94(11):4152-61. PMID: 19850684.

122. Resnick SM; Maki PM; Rapp SR; Espeland MA; Brunner R; Coker LH; Granek IA; Hogan P; Ockene JK; Shumaker SA; Women's Health Initiative Study of Cognitive Aging I. Effects of combination estrogen plus progestin hormone treatment on cognition and affect. J Clin Endocrinol Metab. 2006 May;91(5):1802-10. PMID: 16522699.

123. Vickers MR; MacLennan AH; Lawton B; Ford D; Martin J; Meredith SK; DeStavola BL; Rose S; Dowell A; Wilkes HC; Darbyshire JH; Meade TW. Main morbidities recorded in the women's international study of long duration oestrogen after menopause (WISDOM): a randomised controlled trial of hormone replacement therapy in postmenopausal women. BMJ. 2007 Aug 4;335(7613):239. doi: 10.1136/bmj.39266.425069.AD. PMID: 17626056.

128. Vickers MR; Martin J; Meade TW; Arasaratnum N; Collins N; Furness P; Ghali M; Gordon E; Huppert F; Islam Z; Knott C; Meredith S; Prince M; Purdon S; Richards M; Taylor L; Welton A; Zhu CQ; Zuhrie R; Dowell A; Lawton B; MacLennon A. The
129. Harman SM; Black DM; Naftolin F; Brinton EA; Budoff MJ; Cedars MI; Hopkins PN; Lobo RA; Manson JE; Merriam GR; Miller VM; Neal-Perry G; Santoro N; Taylor HS; Vittinghoff E; Yan M; Hodis HN. Arterial imaging outcomes and cardiovascular risk factors in recently menopausal women: a randomized trial. Ann Intern Med. 2014 Aug 19;161(4):249-60. doi: 10.7326/m14-0353. PMID: 25069991.

130. Beral V; Gaitskell K; Hermon C; Moser K; Reeves G; Peto R. Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet. 2015 May 9;385(9980):1835-42. doi: 10.1016/S0140-6736(14)61687-1. PMID: 25684585.

132. Wathen CN; Feig DS; Feightner JW; Abramson BL; Cheung AM. Hormone replacement therapy for the primary prevention of chronic diseases: recommendation statement from the Canadian Task Force on Preventive Health Care. CMAJ. 2004 May 11;170(10):1535-7. PMID: 15136543.

134. Mosca L; Benjamin EJ; Berra K; Bezanson JL; Dolor RJ; Lloyd-Jones DM; Newby LK; Pina IL; Roger VL; Shaw LJ; Zhao D; Beckie TM; Bushnell C; D'Armiento J; Kris-Etherton PM; Fang J; Ganiats TG; Gomes AS; Gracia CR; Haan CK; Jackson EA; Judelson DR; Kelepouris E; Lavie CJ; Moore A; Nussmeier NA; Ofili E; Oparil S; Ouyang P; Pinn VW; Sherif K; Smith SC, Jr.; Sopko G; Chandra-Strobos N; Urbina EM; Vaccarino V; Wenger NK. Effectiveness-based guidelines for the prevention of cardiovascular disease in women - 2011 update: a guideline from the American Heart Association. Circulation. 2011;123(11):1243-62. PMID: 21325087.

Abbreviation: KQ=key question.
Figure 2. Absolute Risk Reductions or Increases for Women Treated With Estrogen Only

- Followup periods for all outcomes are 7.1 years except: fractures, 7.2 years; dementia, 5.2 years; urinary incontinence, 1 year.
- We calculated relative risks to determine absolute risk reductions and increases presented in this figure because it is unclear whether the proportional hazards assumption is always met in long-term hormone therapy trials. Estimates of relative risks might differ from hazard ratios of trials that are presented in the text.
- Estimates are based on the best available single study.

Abbreviations: CI=confidence interval; DVT=deep vein thrombosis; PE=pulmonary embolism; RR=relative risk; SOE=strength of evidence.
Figure 3. Absolute Risk Reductions or Increases for Women Treated With Estrogen Plus Progestin

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Benefits of Hormone Therapy</th>
<th>Hazards of Hormone Therapy</th>
<th>RR (95% CI)</th>
<th># trials</th>
<th># women</th>
<th>SOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer (invasive)</td>
<td></td>
<td></td>
<td>1.27 (1.03-1.56)</td>
<td>1'</td>
<td>16,608</td>
<td>High</td>
</tr>
<tr>
<td>Cervical Cancer</td>
<td></td>
<td></td>
<td>1.52 (0.95-2.46)</td>
<td>1'</td>
<td>16,608</td>
<td>Low</td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td></td>
<td></td>
<td>0.64 (0.44-0.91)</td>
<td>1'</td>
<td>16,608</td>
<td>Moderate</td>
</tr>
<tr>
<td>Endometrial Cancer</td>
<td></td>
<td></td>
<td>0.86 (0.51-1.44)</td>
<td>1'</td>
<td>16,608</td>
<td>Low</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td></td>
<td></td>
<td>1.06 (0.77-1.46)</td>
<td>1'</td>
<td>16,608</td>
<td>Moderate</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td></td>
<td></td>
<td>1.43 (0.76-2.69)</td>
<td>1'</td>
<td>16,608</td>
<td>Low</td>
</tr>
<tr>
<td>Coronary Heart Disease</td>
<td></td>
<td></td>
<td>1.23 (1.00-1.52)</td>
<td>3</td>
<td>18,061</td>
<td>High</td>
</tr>
<tr>
<td>Dementia (probable)</td>
<td></td>
<td></td>
<td>1.97 (1.16-3.33)</td>
<td>1'</td>
<td>4,532</td>
<td>Moderate</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td>0.84 (0.72-0.97)</td>
<td>1'</td>
<td>15,874</td>
<td>Moderate</td>
</tr>
<tr>
<td>Fractures</td>
<td></td>
<td></td>
<td>0.80 (0.68-0.94)</td>
<td>5</td>
<td>20,499</td>
<td>High</td>
</tr>
<tr>
<td>Gallbladder Disease</td>
<td></td>
<td></td>
<td>1.56 (1.36-1.79)</td>
<td>1'</td>
<td>14,203</td>
<td>Moderate</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td>1.39 (1.09-1.77)</td>
<td>1'</td>
<td>16,608</td>
<td>High</td>
</tr>
<tr>
<td>Urinary Incontinence</td>
<td></td>
<td></td>
<td>1.39 (1.27-1.52)</td>
<td>1'</td>
<td>5,182</td>
<td>Moderate</td>
</tr>
<tr>
<td>Venous Thromboembolism</td>
<td></td>
<td></td>
<td>1.95 (1.54-2.47)</td>
<td>1'</td>
<td>16,608</td>
<td>Moderate</td>
</tr>
<tr>
<td>All-cause Mortality</td>
<td></td>
<td></td>
<td>1.01 (0.88-1.17)</td>
<td>3</td>
<td>19,580</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

a Followup periods for all outcomes are 5.6 years except: fractures, 5.0 years; coronary heart disease, 5.1 years; dementia, 4 years; urinary incontinence, 1 year.

b We calculated relative risks to determine absolute risk reductions and increases presented in this figure because it is unclear whether the proportional hazards assumption is always met in long-term hormone therapy trials. Estimates of relative risks might differ from hazard ratios of trials that are presented in the text.

c Estimates are based on the best available single study.

Abbreviations: CI=confidence interval; DVT=deep vein thrombosis; PE=pulmonary embolism; RR=relative risk; SOE=strength of evidence.
<table>
<thead>
<tr>
<th>Category of Hormone Therapy and Generic Name</th>
<th>Brand Name</th>
<th>Product Type</th>
<th>Dosage<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen-Only Formulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estradiol<sup>b</sup></td>
<td>Alora</td>
<td>Patch</td>
<td>0.025–0.1 mg worn for 24 hours twice weekly</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup></td>
<td>Climara</td>
<td>Patch</td>
<td>0.025–0.1 mg worn for 24 hours once weekly</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup></td>
<td>Estrace</td>
<td>Pill</td>
<td>0.5–2 mg/day</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup></td>
<td>Estraderm</td>
<td>Patch</td>
<td>0.05–0.1 mg continuously or cyclically<sup>c</sup></td>
</tr>
<tr>
<td>Estradiol<sup>b</sup></td>
<td>Minivelle</td>
<td>Patch</td>
<td>0.025–0.1 mg worn for 24 hours twice weekly</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup></td>
<td>Vivelle</td>
<td>Patch</td>
<td>0.0375–0.1 mg/day</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup></td>
<td>Vivelle-Dot</td>
<td>Patch</td>
<td>0.025–0.1 mg worn for 24 hours twice weekly</td>
</tr>
<tr>
<td>Estradiol Acetate<sup>b</sup></td>
<td>Femtrace</td>
<td>Pill</td>
<td>0.45–1.8 mg/day</td>
</tr>
<tr>
<td>Esterifield Estrogen<sup>b</sup></td>
<td>Menest</td>
<td>Pill</td>
<td>0.3–1.25 mg/day cyclically<sup>c</sup></td>
</tr>
<tr>
<td>Estropipate<sup>b</sup></td>
<td>Ogen</td>
<td>Pill</td>
<td>0.75–3 mg/day</td>
</tr>
<tr>
<td>Conjugated Estrogens<sup>e</sup></td>
<td>Premarin</td>
<td>Pill, injection</td>
<td>0.3 mg/day cyclically,<sup>c</sup> single 25-mg injection</td>
</tr>
<tr>
<td>Synthetic Conjugated Estrogens<sup>f</sup></td>
<td>Enjuvia</td>
<td>Pill</td>
<td>0.3 mg/day</td>
</tr>
<tr>
<td>Combination Estrogen plus Progestin Formulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estradiol<sup>b</sup> + Drospirenone<sup>g</sup></td>
<td>Angeliq</td>
<td>Pill</td>
<td>Drospirenone 0.25–0.5 mg/day with estradiol 0.5–1.0 mg/day</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup> + Norethindrone Acetate<sup>g</sup></td>
<td>Activella</td>
<td>Pill</td>
<td>Estradiol 0.5–1.0 mg/day with norethindrone 0.1 mg/day</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup> + Norgestimate<sup>g</sup></td>
<td>Prefest</td>
<td>Pill</td>
<td>Repeat estradiol 1 mg/day for 3 days followed by estradiol 1 mg/day with norgestimate 0.09 mg/day for 3 days</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup> + Levonorgestrel<sup>g</sup></td>
<td>Climara Pro</td>
<td>Patch</td>
<td>Estradiol 0.045 mg with levonorgestrel 0.015 mg worn for 24 hours once weekly</td>
</tr>
<tr>
<td>Estradiol<sup>b</sup> + Norethindrone Acetate<sup>g</sup></td>
<td>Combidate</td>
<td>Patch</td>
<td>Estradiol 0.05 mg with norethindrone 0.14–0.25 mg worn for 24 hours once weekly</td>
</tr>
<tr>
<td>Conjugated Estrogene + Medroxyprogesterone Acetate<sup>g</sup></td>
<td>Prempro</td>
<td>Pill</td>
<td>Conjugated estrogen 0.625 mg/day with MPA 0.5 mg/day</td>
</tr>
<tr>
<td>Ethiny Estradiol<sup>b</sup> + Norethindrone Acetate<sup>g</sup></td>
<td>Femhrt</td>
<td>Pill</td>
<td>Ethiny estradiol 0.0025 mg/day with norethindrone acetate 0.500 mg/day</td>
</tr>
</tbody>
</table>

^a Dosages are based on the package inserts for the brand name formulations.

^b Estradiol can be from natural sources or prepared synthetically.

^c Cyclically means “within a cycle” (e.g., repeat 3 weeks of treatment and 1 week off).

^d Natural estrogenic substance prepared from purified crystalline estrone.

^e Conjugated estrogens, such as conjugated equine estrogens, are derived wholly or partially from the urine of pregnant mares or synthetic estrone and equilin.

^f Synthetic conjugated estrogens are prepared using plant sources, such as yams and soy, and use only synthetic resources.

^g Synthetic progestin.

Abbreviation: MPA = medroxyprogesterone acetate.
<table>
<thead>
<tr>
<th>Organization, Year</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Task Force on Preventive Health Care, 2004</td>
<td>Recommends against the use of estrogen only and estrogen plus progestin therapy for the primary prevention of chronic diseases in menopausal women (Grade D recommendation).</td>
</tr>
<tr>
<td>American Association of Clinical Endocrinologists, 2011</td>
<td>Recommends against the use of menopausal hormone therapy for primary or secondary prevention of cardiovascular disease (Grade D; Best Evidence Level 1). Recommends that menopausal hormone therapy should be used for the prevention and treatment of osteoporosis within the context of the overall benefit-vs-risk analysis of each patient. Recommendations note that data from multiple randomized, controlled trials substantiate the efficacy of estrogens in preserving bone mass and, less consistently, preventing fractures, but nonhormonal therapeutic options for bone health exist (Grade A; Best Evidence Level 1). Hormone therapy for the prevention or treatment (or both) of dementia is not recommended (Grade D; Best Evidence Level 1). Recommendations note that menopausal hormone therapy should be prescribed to women in conjunction with a thorough discussion of the possible relationship between menopausal hormone therapy and breast cancer. Guidelines note that current evidence suggests that combination estrogen and progestational agent regimens are associated with a possible higher risk of breast cancer than is therapy with estrogen alone (Grade A; Best Evidence Level 1). Concordant with current FDA warnings, recommends that women who are at increased risk of thromboembolic disease should not take estrogen-containing therapy while noting that there is evidence that transdermal estradiol may not increase this risk (Grade D; Best Evidence Level 1).</td>
</tr>
<tr>
<td>American Heart Association, 2011</td>
<td>Recommends against the use of hormone therapy and selective estrogen-receptor modulators for primary and secondary prevention of cardiovascular disease in women (Class III, Level of Evidence A).</td>
</tr>
<tr>
<td>American Academy of Family Physicians, 2012</td>
<td>Recommends against the use of estrogen plus progestin for the prevention of chronic conditions in postmenopausal women (Grade: D recommendation). Recommends against the use of estrogen for the prevention of chronic conditions in postmenopausal women who have had a hysterectomy (Grade: D recommendation).</td>
</tr>
<tr>
<td>American College of Obstetricians and Gynecologists, 2013–2014</td>
<td>Recommends against the use of menopausal hormone therapy for primary and secondary prevention of coronary heart disease because of insufficient evidence for benefit. The guidelines also note the following consideration: Recent evidence suggests that women in early menopause who are in good cardiovascular health and are at low risk of adverse cardiovascular outcomes should be considered candidates for the use of estrogen therapy or conjugated equine estrogen plus a progestin for relief of menopausal symptoms. There is some evidence that lends support to the “timing hypothesis,” which posits that cardiovascular benefit may be derived when estrogen therapy or hormone therapy is used close to the onset of menopause, but the relationship of duration of therapy to cardiovascular outcomes awaits further study. Hormone therapy (i.e., estrogen only or estrogen plus progestin) positively affects bone health; it is approved for use in women with an increased risk of osteoporosis and fracture.</td>
</tr>
</tbody>
</table>

Abbreviation: FDA = U.S. Food and Drug Administration.
<table>
<thead>
<tr>
<th>Trial Name (Acronym)</th>
<th>Author, Year</th>
<th>Country; Participants</th>
<th>Intervention; Duration</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen Memory Study (EMS)</td>
<td>Tierney et al, 2009<sup>39</sup></td>
<td>Canada; Ages 61-87 years; Last menstrual cycle >12 months before screening; Fluent in English and could read normal print and hear normal speech</td>
<td>17β-estradiol 1 mg/day for 4 days then 17β-estradiol 1 mg plus norethindrone 0.35 mg/day for 3 days, repeated every week (N=70) Placebo (N=72)</td>
<td>Fair</td>
</tr>
<tr>
<td>Estrogen in the Prevention of Atherosclerosis (EPAT)</td>
<td>Hodis et al, 2011<sup>40</sup></td>
<td>United States; Postmenopausal women; Ages 46–80 years; Low-density lipoprotein cholesterol level ≥130 mg/dL</td>
<td>Micronized 17β-estradiol 1 mg/day (N=111) Placebo (N=111)</td>
<td>Fair</td>
</tr>
<tr>
<td>Estonian Postmenopausal Hormone Therapy Trial (EPHT)</td>
<td>Veerus et al, 2003<sup>41</sup></td>
<td>Estonia; Ages 50–64 years; An elapsed ≥12 months since last period at the randomization stage</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=404) Placebo (N=373) Mean 3.4 years</td>
<td>Fair</td>
</tr>
<tr>
<td>Effects of Estrogen Replacement on the Progression of Coronary-Artery Atherosclerosis (ERA)</td>
<td>Herrington et al, 2000<sup>42</sup></td>
<td>United States; Ages 41–79 years; Postmenopausal women not currently receiving estrogen replacement therapy; With >1 epicardial coronary stenosis of ≥30% of the luminal diameter</td>
<td>CEE 0.625 mg/day (N=100) CEE 0.625 mg/day plus MPA 2.5 mg/day (N=104) Placebo (N=105) 3 years</td>
<td>Fair</td>
</tr>
<tr>
<td>Oestrogen in the Prevention of Reinfarction Trial (ESPRIT)</td>
<td>Cherry et al, 2002<sup>43</sup></td>
<td>United Kingdom; Ages 50–69 years; Admitted to coronary care units or general medical wards in participating hospitals; Met diagnostic criteria for initial myocardial infarction; Discharged from hospital within 31 days of admission</td>
<td>Estradiol valerate 2 mg/day (N=513) Placebo (N=504) 2 years</td>
<td>Fair</td>
</tr>
<tr>
<td>Greenspan et al</td>
<td>Greenspan et al, 2005<sup>44</sup></td>
<td>United States; Ages 65–90 years; Community-dwelling women</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=187) Placebo (N=186) Mean 4.1 years</td>
<td>Good</td>
</tr>
<tr>
<td>Heart and Estrogen/ Progestin Replacement Study (HERS)</td>
<td>Grady et al, 1998;<sup>45</sup> Hulley et al, 1998;<sup>46</sup> Kanaya et al, 2003;<sup>47</sup> Steinauer et al, 2005<sup>48</sup></td>
<td>United States; Age ≤80 years (mean, 66.7); Intact uterus; Postmenopausal; Established coronary artery disease</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=1,380) Placebo (N=1,383) Mean 4.1 years</td>
<td>Good</td>
</tr>
<tr>
<td>Kronos Early Estrogen Prevention Study–Cognitive and Affective Study (KEEPS-Cog)</td>
<td>Gleason et al, 2015<sup>49</sup></td>
<td>United States; Ages 42–58 years; Intact uterus; Recently postmenopausal; At risk for cardiovascular disease</td>
<td>CEE 0.45 mg/day plus MP 200 mg/day for 12 days/month (N=220) Transdermal estradiol 50 μg/day plus MP 200 mg/day for 12 days/month (N=211) Placebo (N=262) 4 years</td>
<td>Fair</td>
</tr>
<tr>
<td>Trial Name (Acronym)</td>
<td>Author, Year</td>
<td>Country; Participants</td>
<td>Intervention; Duration</td>
<td>Quality Rating</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Postmenopausal Estrogen and Progestin Interventions Trial (PEPI)</td>
<td>PEPI, 1995<sup>8</sup></td>
<td>• United States • Ages 45–64 years • With or without a uterus • Naturally or surgically menopausal</td>
<td>CEE 0.625 mg/day (N=175) CEE 0.625 mg/day plus MPA 10 mg/day for 12 days/month (N=174) CEE 0.625 mg/day plus MP 200 mg/day for 12 days/month (N=178) Placebo (N=174)</td>
<td>Fair</td>
</tr>
<tr>
<td>STOP-IT</td>
<td>Gallagher et al, 2001<sup>77</sup></td>
<td>• United States • Ages 65–77 years • Femoral neck density within normal range for age</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=121) CEE 0.625 mg/day plus MPA 2.5 mg/day plus calcitriol 0.25 μg twice daily (N=122) Calcitriol 0.25 μg twice daily (N=123) Placebo (N=123)</td>
<td>Fair</td>
</tr>
<tr>
<td>Ultra-Low-Dose Transdermal Estrogen Assessment (ULTRA)</td>
<td>Ettinger et al, 2004<sup>76</sup> Johnson et al, 2005<sup>77</sup> Waetjen et al, 2005<sup>78</sup> Yaffe et al, 2006<sup>79</sup></td>
<td>• United States • Ages 60–80 years • Intact uterus • ≥5 years past menopause • Bone mineral density normal for age</td>
<td>Unopposed transdermal estradiol 0.014 mg/day (N=208) Placebo (N=209)</td>
<td>Good</td>
</tr>
<tr>
<td>Women’s Angiographic Vitamin and Estrogen Trial (WAVE)</td>
<td>Waters et al, 2002<sup>80</sup></td>
<td>• United States, Canada • Postmenopausal • Mean age of 65 years • Coronary angiogram performed within 4 months of study entry</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=210) Placebo (N=213)</td>
<td>Fair</td>
</tr>
<tr>
<td>Women’s Health Initiative (WHI) E Trial</td>
<td>Anderson et al, 2004<sup>24</sup> Bonds et al, 2006<sup>106</sup> Brunner et al, 2005<sup>107</sup> Chlebowski et al, 2010<sup>108</sup> Cirillo et al, 2005<sup>46</sup> Curb et al, 2006<sup>109</sup> Hendrix et al, 2005<sup>83</sup> Hendrix et al, 2006<sup>110</sup> Hsia et al, 2006<sup>111</sup> Manson et al, 2013<sup>102</sup> Ritenbaugh et al, 2008<sup>113</sup> Rossouw et al, 2007<sup>36</sup></td>
<td>• United States • Postmenopausal • Ages 50–79 years • Prior hysterectomy • 3-month washout period required for women using hormone therapy at baseline</td>
<td>CEE 0.625 mg/day (N=5,310) Placebo (N=5,429)</td>
<td>Fair</td>
</tr>
<tr>
<td>WHI E Post-intervention and Postintervention Extension Phases</td>
<td>Chlebowski et al, 2010<sup>48</sup> LaCroix et al, 2011<sup>112</sup> Manson et al, 2013<sup>102</sup></td>
<td>9,666 participants from WHI (90%) had any postintervention followup and 7,645 (71%) consented to participate in the extension phase</td>
<td>CEE 0.625 mg/day (N=5,310) Placebo (N=5,429)</td>
<td>Fair</td>
</tr>
<tr>
<td>WHI E+P Trial</td>
<td>Anderson et al, 2012<sup>105</sup> Anderson et al, 2003<sup>107</sup> Canonico et al, 2014<sup>45</sup> Cauley et al, 2003<sup>84</sup> Chlebowski et al, 2003<sup>85</sup> Chlebowski et al, 2004<sup>87</sup> Cirillo et al, 2005<sup>88</sup> Cushman et al, 2004<sup>46</sup> Hays et al, 2003<sup>93</sup> Hendrix et al, 2003<sup>93</sup> Hendrix et al, 2004<sup>87</sup></td>
<td>• United States • Postmenopausal • Ages 50–79 years • 3-month washout period for women using hormone therapy at baseline</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=8,506) Placebo (N=8,102)</td>
<td>Fair</td>
</tr>
</tbody>
</table>
Table 3. Characteristics of Randomized, Controlled Trials of Use of Hormone Therapy

<table>
<thead>
<tr>
<th>Trial Name (Acronym)</th>
<th>Author, Year</th>
<th>Country; Participants</th>
<th>Intervention; Duration</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHI E+P Postintervention and Postintervention Extension Phases</td>
<td>Chlebowski et al, 2006; Chlebowski et al, 2010, Gramling et al, 2009, Heiss et al, 2008, Manson et al, 2013</td>
<td>15,747 participants from WHI (95%) had any postintervention followup and 12,788 (77%) consented to participate in the extension phase</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=8,506) Placebo (N=8,102)</td>
<td>Fair</td>
</tr>
<tr>
<td>Women’s Health Initiative Memory Study (WHIMS) E</td>
<td>Espeland et al, 2004, Shumaker et al, 2004</td>
<td>United States • WHI participants enrolled in the estrogen-only trial • Ages 65–79 years • Free of probable dementia • Able and willing to undergo annual cognitive assessment</td>
<td>CEE 0.625 mg/day (N=1,464) Placebo (N=1,483)</td>
<td>Good</td>
</tr>
<tr>
<td>WHIMS E+P</td>
<td>Culhane, 2003, Rapp et al, 2003, Shumaker et al, 2003</td>
<td>United States • WHI participants enrolled in the E+P trial • Age >65 years • Free of probable dementia • Able and willing to undergo annual cognitive assessment</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=2,229) Placebo (N=2,303)</td>
<td>Good</td>
</tr>
<tr>
<td>Women’s Health Initiative Memory Study of Younger Women (WHIMSY)</td>
<td>Espeland et al, 2013</td>
<td>United States • Postmenopausal • Ages 50–55 years • 3-month washout period for women using hormone therapy at baseline</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=696) Placebo (N=630)</td>
<td>Fair</td>
</tr>
<tr>
<td>Women’s Health Initiative Study of Cognitive Aging (WHISCA) E</td>
<td>Espeland et al, 2010, Resnick et al, 2009</td>
<td>United States • WHIMS E-only trial participants • Free of probable dementia • At 1 of 14 WHIMS centers</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=434) Placebo (N=452)</td>
<td>Good</td>
</tr>
<tr>
<td>WHISCA E+P</td>
<td>Espeland et al, 2010, Resnick et al, 2006</td>
<td>United States • WHIMS E+P trial participants • Free of probable dementia • At 1 of 14 WHIMS centers</td>
<td>CEE 0.625 mg/day plus MPA 2.5 mg/day (N=690) Placebo (N=726)</td>
<td>Good</td>
</tr>
<tr>
<td>Women’s International Study of Long Duration Oestrogen After Menopause (WISDOM)</td>
<td>Vickers et al, 2007</td>
<td>United Kingdom • Postmenopausal • Ages 50–69 years</td>
<td>CEE 0.625 mg/day plus MPA 2.5–5.0 mg/day (N=2,196) Placebo (N=2,189)</td>
<td>Fair</td>
</tr>
</tbody>
</table>

Abbreviations: CEE = conjugated equine estrogen; E = estrogen only; E+P = estrogen plus progesterin; MP = cyclic micronized progesterone; MPA = medroxyprogesterone acetate; N = number of subjects.
Table 4. Baseline Characteristics of Participants in Randomized, Controlled Trials of Hormone Therapy to Prevent Chronic Conditions

<table>
<thead>
<tr>
<th>Characteristic (Hormone Therapy; Placebo)</th>
<th>EMS E+P</th>
<th>EPAT</th>
<th>EPHT</th>
<th>ERA</th>
<th>ESPRIT E</th>
<th>Greenspan et al</th>
<th>HERS E+P</th>
<th>KEEPS-Cog</th>
<th>PEPI</th>
<th>STOP-JT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>70; 72</td>
<td>111; 111</td>
<td>404; 373</td>
<td>100; 104; 105</td>
<td>513; 504</td>
<td>187; 186</td>
<td>1380; 1383</td>
<td>220; 211; 262</td>
<td>175; 174; 123; 123</td>
<td>121; 122; 123; 74</td>
</tr>
<tr>
<td>Age (mean years)</td>
<td>75; 74.5</td>
<td>60.9; 62.1</td>
<td>58.5; 59.0</td>
<td>66.3; 65.5; 65.6</td>
<td>62.3; 62.9</td>
<td>71.1; 71.3</td>
<td>67; 67</td>
<td>52.8; 52.6; 52.5</td>
<td>-</td>
<td>72; 71; 72; 74</td>
</tr>
<tr>
<td>Nonwhite race (%)</td>
<td>4.3; 9.7</td>
<td>43.0; 38.0</td>
<td>49.6; 49.7</td>
<td>19.0; 16.0; 19.0</td>
<td>3; 3</td>
<td>-</td>
<td>12; 10</td>
<td>22.3; 22.7; 23.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Previous or current HT (%)</td>
<td>31.4; 23.6</td>
<td>-</td>
<td>9.2; 6.4</td>
<td>9.0; 8.0; 10.0</td>
<td>12; 10</td>
<td>-</td>
<td>1.7; 1.7</td>
<td>26.4; 20.4; 18.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hysterectomy at age <40 years (%)</td>
<td>-</td>
</tr>
<tr>
<td>Hysterectomy at ages 40–49 years (%)</td>
<td>-</td>
<td>33.0; 44.0</td>
<td>11.4; 12.9</td>
<td>56.0; 62.0; 66.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bilateral oophorectomy (%)</td>
<td>-</td>
<td>32.0; 19.0</td>
<td>-</td>
<td>25.0; 30.0; 36.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Never pregnant (%)</td>
<td>-</td>
</tr>
<tr>
<td>First pregnancy at age ≥30 years (%)</td>
<td>-</td>
</tr>
<tr>
<td>Female relative with breast cancer (%)</td>
<td>-</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>-</td>
<td>58.0; 46.0</td>
<td>16.3; 13.9</td>
<td>18.0; 16.0; 21.0</td>
<td>54; 52</td>
<td>-</td>
<td>13; 13</td>
<td>5.9; 6.6; 6.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mean BMI (kg/m²)</td>
<td>27; 26.6</td>
<td>28.7; 29.0</td>
<td>27.0; 26.9</td>
<td>-</td>
<td>26.8; 26.7</td>
<td>27.5; 27.7</td>
<td>29; 29</td>
<td>26.1; 26.1; 26.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>History of MI (%)</td>
<td>5.7; 4.2</td>
<td>-</td>
<td>0.5; 0.3</td>
<td>48.0; 41.0; 55.0</td>
<td>-</td>
<td>-</td>
<td>50; 52</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>History of stroke (%)</td>
<td>-</td>
</tr>
<tr>
<td>History of DVT or PE (%)</td>
<td>-</td>
</tr>
<tr>
<td>Mean SBP (mm Hg)</td>
<td>-</td>
<td>127.8; 128.6</td>
<td>137; 137</td>
<td>131.0; 136.2; 134.4</td>
<td>-</td>
<td>-</td>
<td>135; 135</td>
<td>119.1; 117.5; 120.1</td>
<td>115; 115; 114; 116</td>
<td>-</td>
</tr>
<tr>
<td>Mean DBP (mm Hg)</td>
<td>-</td>
<td>78.1; 77.0</td>
<td>85.7; 86</td>
<td>73.4; 74.1; 74.4</td>
<td>-</td>
<td>-</td>
<td>73; 73</td>
<td>75.3; 74.1; 75.5</td>
<td>72; 72; 73; 71</td>
<td>-</td>
</tr>
<tr>
<td>Treated for hypertension or BP >140/90 mm Hg (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.1; 12.1</td>
<td>60.0; 73.0; 69.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elevated cholesterol requiring medication (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>34.0; 38.0; 37.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prior aspirin use or use at baseline (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>67.0; 73.0; 70.0</td>
<td>-</td>
<td>-</td>
<td>79; 79</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>History of or treatment for diabetes (%)</td>
<td>7.1; 11.1</td>
<td>2.0; 4.0</td>
<td>-</td>
<td>25.0; 29.0; 30.0</td>
<td>15; 15</td>
<td>-</td>
<td>19; 18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fracture at age ≥55 years (%)</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4. Baseline Characteristics of Participants in Randomized, Controlled Trials of Hormone Therapy to Prevent Chronic Conditions

<table>
<thead>
<tr>
<th>Characteristic (Hormone Therapy; Placebo)</th>
<th>ULTRA E</th>
<th>WAVE</th>
<th>WHI E+P</th>
<th>WHI E</th>
<th>WHIMS E+P</th>
<th>WHIMS E</th>
<th>WHISCA E+P</th>
<th>WHISCA E</th>
<th>WISDOM E+P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>191; 185</td>
<td>210; 213</td>
<td>8506; 8102</td>
<td>5310; 5429</td>
<td>696; 630</td>
<td>2229; 2303</td>
<td>1464; 1483</td>
<td>690; 726</td>
<td>434; 452</td>
</tr>
<tr>
<td>Age (mean years)</td>
<td>66.8; 66.7</td>
<td>65.0; 69.0</td>
<td>63.2; 63.3</td>
<td>63.6; 63.6</td>
<td>53.0; 52.9</td>
<td>63.2; 63.3</td>
<td>63.6; 63.6</td>
<td>73.69; 73.86</td>
<td>74.01; 74.02</td>
</tr>
<tr>
<td>Nonwhite race (%)</td>
<td>7.2; 8.1</td>
<td>35.0; 32.0</td>
<td>16.1; 16.0</td>
<td>24.5; 24.9</td>
<td>20.0; 19.2</td>
<td>-</td>
<td>17.3; 16.4</td>
<td>8.4; 7.0</td>
<td>14.09; 13.08</td>
</tr>
<tr>
<td>Previous or current HT (%)</td>
<td>- -</td>
<td>26.1; 25.6</td>
<td>47.8; 48.9</td>
<td>47.9; 53.2</td>
<td>21.8; 22.4</td>
<td>45.8; 44.7</td>
<td>21.2; 22.6</td>
<td>49.54; 46.24</td>
<td>55; 54.3</td>
</tr>
<tr>
<td>Hysterectomy at age <40 years (%)</td>
<td>- -</td>
<td>-</td>
<td>39.5; 39.8</td>
<td>56.6; 57.3</td>
<td>- - - -</td>
</tr>
<tr>
<td>Hysterectomy at ages 40–49 years (%)</td>
<td>- -</td>
<td>59.0; 58.0</td>
<td>43.2; 42.2</td>
<td>20.9; 16.5</td>
<td>- - - -</td>
</tr>
<tr>
<td>Bilateral oophorectomy (%)</td>
<td>- -</td>
<td>36.0; 37.0</td>
<td>39.5; 42.0</td>
<td>- - - -</td>
</tr>
<tr>
<td>Never pregnant (%)</td>
<td>- -</td>
<td>-</td>
<td>10.1; 10.3</td>
<td>9.3; 8.5</td>
<td>- - - -</td>
</tr>
<tr>
<td>First pregnancy at age ≥30 years (%)</td>
<td>- -</td>
<td>10.6; 9.7</td>
<td>4.9; 5.9</td>
<td>- - - -</td>
</tr>
<tr>
<td>Female relative with breast cancer (%)</td>
<td>- -</td>
<td>-</td>
<td>16.0; 15.3</td>
<td>18.0; 17.1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>8; 9</td>
<td>- - - -</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>7.7; 6.2</td>
<td>19.0; 19.0</td>
<td>10.5; 10.5</td>
<td>10.3; 10.6</td>
<td>13.5; 16.3</td>
<td>6.7; 6.9</td>
<td>7.3; 8.0</td>
<td>6.2; 5.0</td>
<td>3.72; 7.59</td>
</tr>
<tr>
<td>Mean BMI (kg/m²)</td>
<td>28.3; 28.0</td>
<td>31.1; 30.3</td>
<td>28.5; 28.5</td>
<td>30.1; 30.1</td>
<td>- - - -</td>
<td>28.5; 28.1</td>
<td>29.40; 29.21</td>
<td>27.9; 28.0</td>
<td></td>
</tr>
<tr>
<td>History of MI (%)</td>
<td>- 46.0; 40.0</td>
<td>1.6; 1.9</td>
<td>3.1; 3.2</td>
<td>- - - -</td>
<td>- - - -</td>
<td>2; 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of stroke (%)</td>
<td>- -</td>
<td>0.7; 1.0</td>
<td>1.4; 1.7</td>
<td>- 1.0; 1.9</td>
<td>1.8; 2.1</td>
<td>1.1</td>
<td>1.15; 1.77</td>
<td>1; 2</td>
<td></td>
</tr>
<tr>
<td>History of DVT or PE (%)</td>
<td>- -</td>
<td>0.9; 0.8</td>
<td>1.6; 1.5</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean SBP (mm Hg)</td>
<td>- 140.0; 138.0</td>
<td>127.6; 127.8</td>
<td>130.4; 130.2</td>
<td>- - - -</td>
<td></td>
</tr>
<tr>
<td>Mean DBP (mm Hg)</td>
<td>- 76.0; 75.0</td>
<td>75.6; 75.8</td>
<td>76.5; 76.5</td>
<td>- - - -</td>
<td></td>
</tr>
<tr>
<td>Treated for hypertension or BP >140/90 mm Hg (%)</td>
<td>- 77.0; 74.0</td>
<td>35.7; 36.4</td>
<td>48.0; 47.4</td>
<td>21.0; 21.0</td>
<td>- 47.3; 42.3</td>
<td>44.4; 46.0</td>
<td>53.69; 51.11</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Elevated cholesterol requiring medication (%)</td>
<td>- -</td>
<td>12.5; 12.9</td>
<td>14.5; 15.9</td>
<td>- - - -</td>
<td></td>
</tr>
<tr>
<td>Prior aspirin use or use at baseline (%)</td>
<td>- 84.0; 86.0</td>
<td>19.1; 20.1</td>
<td>19.4; 19.7</td>
<td>- 28.1; 29.6</td>
<td>28.0; 30.9</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
</tr>
<tr>
<td>History of or treatment for diabetes (%)</td>
<td>- 42.0; 31.0</td>
<td>4.4; 4.4</td>
<td>7.7; 7.6</td>
<td>- 7.0; 6.5</td>
<td>11.3; 10.6</td>
<td>5.4; 6.2</td>
<td>10.14; 10.84</td>
<td>3; 4</td>
<td></td>
</tr>
<tr>
<td>Fracture at age ≥55 years (%)</td>
<td>- -</td>
<td>13.5; 13.6</td>
<td>14.0; 13.2</td>
<td>- - - -</td>
<td></td>
</tr>
</tbody>
</table>

a Intervention dosages are listed in Table 3 by trial.

b Participants of all ages.

Abbreviations: BMI = body mass index; BP = blood pressure; DBP = diastolic blood pressure; DOPS = Danish Osteoporosis Prevention Trial; DVT = deep vein thrombosis; E = estrogen; E+P = estrogen plus progestin; EMS = Estrogen Memory Study; EPAT = Estrogen in the Prevention of Atherosclerosis; EPHT = Estonian Postmenopausal Hormone Therapy Trial; ERA = Effects of Estrogen Replacement on the Progression of Coronary-Artery Atherosclerosis; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HERS = Heart and Estrogen/Progestin Replacement Study; HT = hormone therapy; MI = myocardial infarction; P = progestin; PE = pulmonary embolism; PEPI = Postmenopausal Estrogen and Progestin Interventions Trial; SBP = systolic blood pressure; ULTRA = Ultra-Low-Dose Transdermal Estrogen Assessment; WAVE = Women’s Angiographic Vitamin and Estrogen Trial; WHI = Women’s Health Initiative; WHIMS = Women’s Health Initiative Memory Study; WHISCA = Women’s Health Initiative Study of Cognitive Aging; WISDOM = Women’s International Study of Long Duration Oestrogen After Menopause.
Table 5. Results of WHI at the End of the Intervention Phase, by Category and Subcategory of Outcome

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Estrogen Only vs. Placebo</th>
<th>Estrogen Plus Progestin vs. Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Ratio (95% CI)</td>
<td>Hazard Ratio (95% CI)</td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast (invasive)</td>
<td>0.79 (0.61 to 1.02)</td>
<td>1.24 (1.01 to 1.53)</td>
</tr>
<tr>
<td>Cervical</td>
<td>Not reported</td>
<td>1.44 (0.47 to 4.42)</td>
</tr>
<tr>
<td>Colorectal</td>
<td>1.15 (0.81 to 1.64)</td>
<td>0.62 (0.43 to 0.89)</td>
</tr>
<tr>
<td>Endometrial</td>
<td>Not reported</td>
<td>0.83 (0.49 to 1.40)</td>
</tr>
<tr>
<td>Lung</td>
<td>1.05 (0.74 to 1.49)</td>
<td>1.05 (0.76 to 1.45)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>Not reported</td>
<td>1.41 (0.75 to 2.66)</td>
</tr>
<tr>
<td>Cardiovascular events (all)</td>
<td>1.11 (1.01 to 1.22)</td>
<td>1.13 (1.02 to 1.25)</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>0.94 (0.78 to 1.14)</td>
<td>1.18 (0.95 to 1.45)</td>
</tr>
<tr>
<td>Cognitive functioning and dementia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild cognitive impairment</td>
<td>1.34 (0.95 to 1.89)</td>
<td>1.07 (0.74 to 1.55)</td>
</tr>
<tr>
<td>Probable dementia</td>
<td>1.49 (0.83 to 2.66)</td>
<td>2.05 (1.21 to 3.48)</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-reported new diagnosis requiring treatment with drugs</td>
<td>0.86 (0.76 to 0.98)</td>
<td>0.81 (0.70 to 0.94)</td>
</tr>
<tr>
<td>Fractures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip</td>
<td>0.67 (0.46 to 0.96)</td>
<td>0.67 (0.47 to 0.95)</td>
</tr>
<tr>
<td>Vertebral</td>
<td>0.64 (0.44 to 0.93)</td>
<td>0.68 (0.48 to 0.96)</td>
</tr>
<tr>
<td>Total fractures</td>
<td>0.72 (0.64 to 0.80)</td>
<td>0.76 (0.69 to 0.83)</td>
</tr>
<tr>
<td>Gallbladder events</td>
<td>1.67 (1.35 to 2.06)</td>
<td>1.59 (1.28 to 1.97)</td>
</tr>
<tr>
<td>Gallbladder disease</td>
<td>1.79 (1.44 to 2.22)</td>
<td>1.61 (1.30 to 2.00)</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>1.93 (1.52 to 2.44)</td>
<td>1.67 (1.32 to 2.11)</td>
</tr>
<tr>
<td>Urinary incontinence (stress, urge, or mixed)</td>
<td>1.53 (1.37 to 1.71)</td>
<td>1.39 (1.27 to 1.52)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.35 (1.07 to 1.70)</td>
<td>1.37 (1.07 to 1.76)</td>
</tr>
<tr>
<td>Thromboembolic events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>1.48 (1.06 to 2.07)</td>
<td>1.87 (1.37 to 2.54)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>1.35 (0.89 to 2.05)</td>
<td>1.98 (1.36 to 2.87)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>1.04 (0.89 to 1.33)</td>
<td>0.97 (0.81 to 1.16)</td>
</tr>
</tbody>
</table>

- Assumes a constant rate of events across the study period, although rates varied depending on outcome (e.g., thromboembolic events occurred early during therapy, cancer cases later).
- Hazard ratios not reported for quality of life.
- Intervention dosages are listed in Table 3 by trial.

Abbreviations: CI = confidence interval; WHI = Women’s Health Initiative.
<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency/ Precision</th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations</th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women post-hysterectomy, Estrogen-only therapy</td>
<td>5 RCTs; 98, 102, 105, 112 239 events in 10,739 women contribute to effect estimate (based on 1 RCT)</td>
<td>Invasive breast cancer (followup 7.2 years): Nonsignificant lower risk with HT (HR, 0.79 [95% CI, 0.61 to 1.02])</td>
<td>Consistent/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>3 studies followed participants for a relatively short duration (2–3 years)</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women without intact uterus Estrogen-only therapy</td>
<td>1 RCT; 64 1 event in 1,017 women contribute to effect estimate</td>
<td>Cervical Cancer (followup 12.6 years): Relative risk not estimated due to low number of events</td>
<td>NA/imprecise</td>
<td>Suspected</td>
<td>Fair</td>
<td>1 small study followed participants to evaluate a rare cancer outcome over a period of time that included the intervention and an open-label observational period</td>
<td>Insufficient</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen-only therapy</td>
<td>1 RCT; 102, 113 123 events in 10,739 women contribute to effect estimate</td>
<td>Colorectal Cancer (followup 7.2 years): No significant risk increase/reduction with HT (HR, 1.15 [95% CI, 0.81 to 1.64])</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen-only therapy</td>
<td>1 RCT; 102, 108 123 events in 10,739 women contribute to effect estimate</td>
<td>Lung Cancer (followup 7.2 years): No significant risk increase/reduction with HT (HR, 1.05 [95% CI, 0.74 to 1.49])</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women without intact uterus Estrogen-only therapy</td>
<td>1 RCT; 98, 99 5 events in 1,017 women contribute to effect estimate</td>
<td>Ovarian Cancer (followup 12.6 years): no significant risk increase/reduction with HT (p=0.37); relative risk not reported</td>
<td>NA/imprecise</td>
<td>Suspected</td>
<td>Fair</td>
<td>1 small study followed participants to evaluate a rare cancer outcome over a period of time that included the intervention and an open-label observational period</td>
<td>Insufficient</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
</tbody>
</table>
Table 6. Summary of Evidence: Estrogen-Only Trials

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency/Precision</th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations</th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 1/KQ 2 Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>4 RCTs; 60, 62, 74, 111 422 events in 11,310 women contribute to effect estimate (based on 3 RCTs 50, 74, 111)</td>
<td>Coronary heart disease (followup 6.8 years in meta-analysis): No significant risk reduction/increase with HT (RR, 0.95 [95% CI, 0.79 to 1.14])</td>
<td>Consistent/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>High</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
<td></td>
</tr>
<tr>
<td>KQ 1/KQ 2 Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>1 RCT; 115, 117, 121 47 events in 2,947 women contribute to effect estimate</td>
<td>Probable dementia (followup 5.2 years): No significant risk increase or reduction with HT (HR, 1.49 [95% CI, 0.83 to 2.66])</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
<td></td>
</tr>
<tr>
<td>KQ 1/KQ 2 Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>1 RCT; 102, 106, 112 976 events in 9,917 women contribute to effect estimate</td>
<td>Diabetes (followup 7.1 years): Risk reduction with HT (HR, 0.86 [95% CI, 0.76 to 0.98])</td>
<td>NA/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Diabetes is self-reported</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
<td></td>
</tr>
<tr>
<td>KQ 1/KQ 2 Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>2 RCTs; 62, 81, 102, 112 1,227 events in 10,739 women contribute to effect estimate (based on 1 RCT 102)</td>
<td>Fractures (followup 6.8 years): Significant risk decrease with HT (HR, 0.70 [95% CI, 0.63 to 0.79])</td>
<td>Consistent/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>High</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
<td></td>
</tr>
<tr>
<td>KQ 1/KQ 2 Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>2 RCTs; 74, 89, 110, 114 371 events in 8,376 women contribute to effect estimate (based on 1 RCT 89)</td>
<td>Gallbladder events (followup 7.2 years): Significant risk increase with HT (HR, 1.67 [95% CI, 1.35 to 2.06])</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Gallbladder disease is self-reported</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
<td></td>
</tr>
<tr>
<td>KQ 1/KQ 2 Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>3 RCTs; 60, 62, 112 298 events in 10,739 women contribute to effect estimate (based on 1 RCT 102)</td>
<td>Stroke (followup 7.2 years): Significant increase with HT (HR, 1.35 [95% CI, 1.07 to 1.70])</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>3 studies followed participants for a relatively short duration (2–3 years)</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Summary of Evidence: Estrogen-Only Trials

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency/ Precision</th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations</th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>2 RCTs, 94 925 events in 3,073 women contribute to effect size (based on 1 RCT)</td>
<td>Urinary incontinence (followup 1 year): Significant risk increase with HT (RR, 1.53 [95% CI, 1.37 to 1.71])</td>
<td>Consistent/ precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Urinary incontinence is self-reported</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>2 RCTs, 144 (DVT) and 91 (PE) events in 10,739 women contribute to effect estimates (based on 1 RCT)</td>
<td>Venous thromboembolism (followup 7.1 years): Nonsignificant increased risk of PE (HR, 1.35 [95% CI, 0.89 to 2.05]) and significant increased risk of DVT (HR, 1.48 [95% CI, 1.06 to 2.07]) in the WHI</td>
<td>Consistent/ reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>1 RCT</td>
<td>Quality of life (followup 7.1 years): Similar scores on most items of the RAND-36</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women post-hysterectomy Estrogen-only therapy</td>
<td>3 RCTs, 682 events in 11,961 women contribute to effect estimate</td>
<td>All-cause mortality (followup 6.8 years in meta-analysis): No significant risk increase/reduction with HT (RR, 1.01 [95% CI, 0.88 to 1.17])</td>
<td>Consistent/ precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>High</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; DVT = deep vein thrombosis; EPC = evidence-based practice; HR = hazard ratio; HT = hormonal therapy; KQ = Key Question; NA = not applicable; No. = number; p=p-value; PE = pulmonary embolism; RCT = randomized, controlled trial; RR = relative risk; WHI = Women’s Health Initiative.
<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency/ Precision</th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations</th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>5 RCTs; 61, 68, 74, 84, 85, 90, 92, 102, 123</td>
<td>Invasive breast cancer (followup 4.1–5.6 years): Significant risk increase with HT (HR, 1.24 [95% CI, 1.01 to 1.53]) in WHI and nonsignificant increase with HT in HERS I (HR, 1.38 [95% CI, 0.82 to 2.31])</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>High</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>1 RCT; 13 events in 16,608 women contribute to effect estimate</td>
<td>Cervical cancer (followup 5.6 years): No significant risk increase/reduction with HT (HR, 1.44 [95% CI, 0.47 to 4.42])</td>
<td>NA, single study/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>1 study followed participants for a relatively short duration (5.6 years) to evaluate a rare cancer outcome</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with and without intact uterus Estrogen plus progestin therapy</td>
<td>4 RCTs; 61, 68, 87, 92, 98, 102, 123</td>
<td>Colorectal Cancer (followup 4.1 to 5.6 years): Significant risk reduction with HT (HR, 0.62 [95% CI, 0.43 to 0.89]) in the WHI and nonsignificant risk reduction with HT (HR, 0.69 [95% CI, 0.32 to 1.49]) in HERS</td>
<td>Reasonably consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Studies followed participants for a relatively short duration (up to 5.6 years) to evaluate a cancer outcome</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>4 RCTs; 62, 68, 74, 81, 92, 98, 102, 108</td>
<td>Endometrial Cancer (followup 4.1 to 5.6 years): No significant risk increase/reduction with HT (HR, 0.83 [95% CI, 0.49 to 1.40]) in the WHI and (HR, 0.39 [95% CI, 0.08 to 2.02]) in HERS</td>
<td>Reasonably consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Studies followed participants for a relatively short duration (up to 5.6 years) to evaluate a cancer outcome</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with and without intact uterus Estrogen plus progestin therapy</td>
<td>3 RCTs; 65, 68, 86, 102, 122</td>
<td>Lung Cancer (followup 4.1 to 5.6 years): No significant risk increase/reduction with HT (HR, 1.05 [95% CI, 0.76 to 1.45]) in the WHI and (HR, 1.28 [95% CI, 0.70 to 2.33]) in HERS</td>
<td>Reasonably consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Studies followed participants for a relatively short duration (up to 5.6 years) to evaluate a cancer outcome</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>Key Question</td>
<td>Population, Intervention</td>
<td>No. of Studies; No. of Observations</td>
<td>Summary of Findings by Outcome</td>
<td>Consistency/ Precision</td>
<td>Reporting Bias</td>
<td>Overall Quality of Studies</td>
<td>Body of Evidence Limitations</td>
<td>EPC Assessment of Strength of Evidence</td>
<td>Applicability</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>1 RCT; 102 40 events in 16,608 women contribute to effect estimate</td>
<td>Ovarian Cancer (followup 5.6 years): No significant risk increase/reduction with HT (HR, 1.41 [95% CI, 0.75 to 2.66])</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Study followed participants for a relatively short duration (5.6 years) to evaluate a rare cancer outcome</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>6 RCTs; 23, 59, 61, 62, 74, 123 341 events in 18,081 women contribute to effect estimate (based on 3 RCTs 23, 59, 61, 74)</td>
<td>Coronary heart disease (followup 5.2 years in meta-analysis): Risk increase with HT (RR, 1.23 [95% CI, 1.00 to 1.52])</td>
<td>Consistent/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>High</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>1 RCT; 102 61 events in 4,532 women contribute to effect estimate</td>
<td>Probable dementia: (followup 4 years): Significant risk increase with HT (HR, 2.05 [95% CI, 1.21 to 3.48])</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>2 RCTs; 70, 102 701 events in 15,874 women contribute to effect estimate (based on 1 RCT 102)</td>
<td>Diabetes (followup 5.6 years): Significant risk reduction with HT (HR, 0.81 [95% CI, 0.70 to 0.94])</td>
<td>Consistent/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Diabetes is self-reported</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>5 RCTs; 23, 59, 61, 62, 68, 83, 92, 102 1,995 events in 20,499 women contribute to effect estimate</td>
<td>Fractures (followup 2 to 5.2 years): Significant risk reduction with HT (RR, 0.80 [95% CI, 0.68 to 0.94])</td>
<td>Consistent/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>High</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>2 RCTs; 74, 88 363 events in 14,203 women contribute to effect estimate (based on 1 RCT 88)</td>
<td>Gallbladder events (followup 5.6 years): Significant risk increase with HT (HR, 1.59 [95% CI, 1.28 to 1.97])</td>
<td>Consistent/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>Key Question</td>
<td>Population, Intervention</td>
<td>No. of Studies; No. of Observations</td>
<td>Summary of Findings by Outcome</td>
<td>Consistency/ Precision</td>
<td>Reporting Bias</td>
<td>Overall Quality of Studies</td>
<td>Body of Evidence Limitations</td>
<td>EPC Assessment of Strength of Evidence</td>
<td>Applicability</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>3 RCTs, 61, 101, 102; 330 events in 17,385 women contribute to effect estimates (based on 2 RCTs 61, 101, 102)</td>
<td>Stroke (followup 3.4 to 5.6 years): Significant increase with HT in WHI (HR, 1.37 [95% CI, 1.07 to 1.76]) Risk of any cerebrovascular event: Significant increase with HT in EPHT (HR, 2.46 [95% CI, 1.14 to 5.34])</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Outcome measures heterogeneous; 1 trial reported on stroke incidence and 1 reported on composite risk of various cerebrovascular events (stroke, TIA)</td>
<td>High</td>
<td>Generally healthy postmenopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>2 RCTs, 71, 94; 1,397 events in 5,182 women contribute to effect size (based on 1 RCT 94)</td>
<td>Urinary incontinence (followup 1 year): Significant risk increase with HT (RR, 1.39 [95% CI, 1.27 to 1.52])</td>
<td>Consistent/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Urinary incontinence is self-reported</td>
<td>Moderate</td>
<td>Generally healthy postmenopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>4 RCTs, 59, 61, 62, 89; 182 (DVT) and 124 (PE) events in 16,602 women contribute to effect estimates (based on 1 RCT 102)</td>
<td>Venous thromboembolism (followup 5.6 years): Significant increased risk of PE (HR, 1.98 [95% CI, 1.36 to 2.87]) and DVT (HR, 1.87 [95% CI, 1.37 to 2.54]) with HT in WHI at followup of 5.6 years</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>3 studies followed participants for a relatively short duration (2–3 years)</td>
<td>Moderate</td>
<td>Generally healthy postmenopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women posthysterectomy Estrogen-only therapy</td>
<td>1 RCT 102</td>
<td>Quality of life (followup 5.2 years): Similar scores on most items of the RAND-36</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy postmenopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 1/KQ 2</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>3 RCTs, 62, 66, 92; 752 events in 19,580 women contribute to effect estimate</td>
<td>All-cause mortality (followup 5.2 years in meta-analysis): No significant risk increase/reduction with HT (RR, 1.01 [95% CI, 0.88 to 1.17])</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy postmenopausal women age ≥50 years</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; DVT = deep vein thrombosis; EPC = evidence-based practice; EPHT = Estonian Postmenopausal Hormone Therapy Trial; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; HT = hormone therapy; KQ = key question; NA = not applicable; No. = number; p = p-value; PE =
Table 7. Summary of Evidence: Estrogen Plus Progestin Trials

pulmonary embolism; RCT = randomized, controlled trial; RR = relative risk; TIA = transient ischemic attack; WHI = Women’s Health Initiative.
<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency(a) / Precision</th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations(b)</th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 3</td>
<td>Menopausal women</td>
<td>2 RCTs(^{10}) 600 events in 27,347 women</td>
<td>Invasive Breast Cancer: Age: Similar treatment effects in subgroups based on age</td>
<td>NA/ reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td>Estrogen only or estrogen plus progestin therapy</td>
<td></td>
<td>Duration: Risk of invasive breast cancer increased for women who initiated estrogen plus progestin with increasing time since randomization ((p=0.008) for trend)</td>
<td>NA/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: Women who initiated estrogen plus progestin closer to menopause had a higher risk of invasive breast cancer than those who initiated later ((p=0.03) for interaction)</td>
<td>NA/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis; for women with hysterectomy without oophorectomy, exact timing of menopause is often difficult to determine</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No difference in timing or duration of HT use for women taking estrogen-only therapy</td>
<td>NA/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis; for women with hysterectomy without oophorectomy, exact timing of menopause is often difficult to determine</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women with intact uterus</td>
<td>No evidence</td>
<td>Cervical Cancer: No evidence</td>
<td>NA</td>
<td>Undetected</td>
<td>NA</td>
<td>N</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Estrogen plus progestin therapy</td>
<td></td>
<td>Timing: No evidence</td>
<td>NA</td>
<td>Undetected</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td>Key Question</td>
<td>Population, Intervention</td>
<td>No. of Studies; No. of Observations</td>
<td>Summary of Findings by Outcome</td>
<td>Consistency/ Precision</td>
<td>Reporting Bias</td>
<td>Overall Quality of Studies</td>
<td>Body of Evidence Limitations</td>
<td>EPC Assessment of Strength of Evidence</td>
<td>Applicability</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women</td>
<td>2 RCTs<sup>11</sup>,<sup>13</sup>,<sup>102</sup></td>
<td>Colorectal Cancer: Age: For estrogen-only, there was a significant trend toward lower risk among younger vs. older women, relative to placebo (p=0.02 for interaction); similar risks for estrogen plus progestin, Race/ethnicity or family history of colorectal cancer: Similar treatment effects in subgroups for both treatment regimens. Timing: Similar treatment effects in subgroups based on timing of intervention since menopause for both treatment regimens.</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Estimates based on 2 studies with few events; lack of power to detect subgroup effects</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td>Estrogen only or estrogen plus progestin therapy</td>
<td>248 events in 27,347 women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women with intact uterus</td>
<td>1 RCT<sup>104</sup></td>
<td>Endometrial Cancer: Similar treatment effects in subgroups based on age in the estrogen plus progestin and placebo groups. Timing: No evidence</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Estimates based on a single study with few events; lack of power to detect subgroup effects</td>
<td>Insufficient</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td>Estrogen plus progestin therapy</td>
<td>57 events in 16,608 women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women</td>
<td>2 RCTs<sup>105</sup></td>
<td>Lung Cancer: Similar treatment effects in subgroups based on age for both treatment regimens. Timing: No evidence</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Estimates based on 2 studies with few events; lack of power to detect subgroup effects</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td>Estrogen only or estrogen plus progestin therapy</td>
<td>271 events in 27,347 women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women with intact uterus</td>
<td>1 RCT<sup>104</sup></td>
<td>Ovarian Cancer: No subgroup effects with respect to age for estrogen plus progestin. Timing: No evidence</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Very few events</td>
<td>Insufficient</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td>Estrogen plus progestin therapy</td>
<td>40 events in 16,608 women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Question</td>
<td>Population, Intervention</td>
<td>No. of Studies; No. of Observations</td>
<td>Summary of Findings by Outcome</td>
<td>Consistency(^a)/Precision</td>
<td>Reporting Bias</td>
<td>Overall Quality of Studies</td>
<td>Body of Evidence Limitations(^b)</td>
<td>EPC Assessment of Strength of Evidence</td>
<td>Applicability</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>------------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women</td>
<td>2 RCTs(^{10, 11}); 711 event in >27,000 women</td>
<td>Coronary Heart Disease: Risk attributable to HT increased numerically with age for estrogen plus progestin, test of interaction was not statistically significant; there was a significant trend toward lower risk among younger vs. older women taking estrogen only for myocardial infarction, relative to placebo</td>
<td>NA/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Similar treatment effects in subgroups based on race/ethnicity</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Similar treatment effects in subgroups based on: hypertension, diabetes, high cholesterol requiring medication, coronary risk factors, years since bilateral oophorectomy, years since hysterectomy, or body mass index for both treatment regimens</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: Risk attributable to HT increased with time since menopause; test of interaction was not statistically significant (p=0.40)</td>
<td>Consistent/reasonably precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis; for women with hysterectomy without oophorectomy, exact timing of menopause is often difficult to determine</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
</tbody>
</table>
Table 8. Summary of Evidence: Subgroups

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency(^a) / Precision</th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations(^b)</th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 3</td>
<td>Menopausal women with intact uterus Estrogen only or estrogen plus progestin therapy</td>
<td>1 RCT(^{115-118}) 108 events in 7,479 women</td>
<td>Probable Dementia: Similar treatment effects in subgroups based on race, history of diabetes, stroke, hypertension, or cardiovascular disease for estrogen only</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Estimates based on a single study</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: Similar treatment effects in subgroups based on timing of intervention since menopause for estrogen plus progestin</td>
<td>NA/imprecise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis; for women with hysterectomy without oophorectomy, exact timing of menopause is often difficult to determine</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women Estrogen only or estrogen plus progestin therapy</td>
<td>1 RCT(^{102-103}) 1,677 events in 25,791 women</td>
<td>Diabetes: Similar treatment effects in subgroups based on age, race/ethnicity for both treatment regimens</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Similar treatment effects in subgroups based on hypertension, metabolic syndrome for estrogen only</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis</td>
<td>Low</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: No evidence</td>
<td>NA</td>
<td>Undetected</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women with intact uterus Estrogen only or estrogen plus progestin therapy</td>
<td>1 RCT(^{61}) 1,227 events in 10,739 women Timing: 1 RCT(^{61}) 40 events in 777 women (^{61})</td>
<td>Fractures: No significant difference by age for estrogen only</td>
<td>NA</td>
<td>Undetected</td>
<td>NA</td>
<td>None</td>
<td>Moderate</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: Similar treatment effects based on timing of intervention since menopause for estrogen plus progestin</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis; for women with hysterectomy without oophorectomy, exact timing of menopause is often difficult to determine</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women Estrogen only or estrogen plus progestin therapy</td>
<td>2 RCTs(^{58}) 734 events in 22,579 women</td>
<td>Gallbladder disease: Similar treatment effects in subgroups based on age for both treatment regimens</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: No evidence</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 8. Summary of Evidence: Subgroups

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency/ Precision</th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations</th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 3</td>
<td>Menopausal women</td>
<td>2 RCTs(^{1}) 567 events in 27,347 women</td>
<td>Stroke: Similar treatment effects in subgroups based on age, race/ethnicity</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td>Estrogen only or estrogen plus progestin therapy</td>
<td></td>
<td>Similar treatment effects in subgroups based on hypertension for both treatment regimens</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: Similar treatment effects in subgroups based on timing of intervention since menopause for both treatment regimens</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis; for women with hysterectomy without oophorectomy, exact timing of menopause is often difficult to determine</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women with intact uterus</td>
<td>No evidence</td>
<td>Urinary incontinence: No evidence</td>
<td>NA</td>
<td>Undetected</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Estrogen plus progestin therapy</td>
<td></td>
<td>Timing: No evidence</td>
<td>NA</td>
<td>Undetected</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td>KQ 3</td>
<td>Menopausal women</td>
<td>2 RCTs(^{1}) 546 events in 27,347 women</td>
<td>Venous Thromboembolism: Similar treatment effects in subgroups based on age and race/ethnicity for both treatment regimens</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Moderate</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td>Estrogen only or estrogen plus progestin therapy</td>
<td></td>
<td>Similar treatment effects in subgroups based on history of cardiovascular disease for estrogen only</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Timing: Similar treatment effects in subgroups based on timing of intervention since menopause for both treatment regimens</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>Post-hoc analysis; for women with hysterectomy without oophorectomy, exact timing of menopause is often difficult to determine</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
</tbody>
</table>
Table 8. Summary of Evidence: Subgroups

<table>
<thead>
<tr>
<th>Key Question</th>
<th>Population, Intervention</th>
<th>No. of Studies; No. of Observations</th>
<th>Summary of Findings by Outcome</th>
<th>Consistency<sup>a</sup></th>
<th>Reporting Bias</th>
<th>Overall Quality of Studies</th>
<th>Body of Evidence Limitations<sup>b</sup></th>
<th>EPC Assessment of Strength of Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>KQ 3</td>
<td>Menopausal women with intact uterus Estrogen plus progestin therapy</td>
<td>No evidence</td>
<td>Quality of life: No evidence</td>
<td>NA</td>
<td>Undetected</td>
<td>NA</td>
<td>NA</td>
<td>Insufficient</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All-cause mortality: There was a significant trend toward lower risk among younger vs. older women using estrogen only, relative to placebo (p=0.04 for interaction); in women using estrogen plus progestin difference did not reach statistical significance. Timing: Similar treatment effects in subgroups based on timing of intervention since menopause for both treatment regimens</td>
<td>NA/precise</td>
<td>Undetected</td>
<td>Fair</td>
<td>None</td>
<td>Low</td>
<td>Generally healthy post-menopausal women age ≥50 years</td>
</tr>
</tbody>
</table>

^a Ratings of consistency pertain to effects of the same treatment regimen (i.e., either estrogen only or combination therapy). In situations where only a single study is available for each regimen, consistency was rated as not applicable (NA).

^b We downgraded all subgroup analyses for multiplicity; in addition, we further downgraded post-hoc subgroup analyses.

Abbreviations: EPC = Evidence-based Practice Center; HT = hormone therapy; KQ = Key Question; NA = not applicable; No. = number; RCT = randomized, controlled trial.
Appendix A. Search Strategies

August 1, 2016

#17 Search (#15 AND #16) 18650

#21 Search (#15 AND #16) Filters: Publication date from 2015/06/01 223

#22 Search (#15 AND #16) Filters: Publication date from 2015/06/01; Humans 216

#23 Search (#15 AND #16) Filters: Publication date from 2015/06/01; Humans; English 204

#30 Search (#21 NOT #23) 19

#32 Search (#21 NOT #23) Filters: Humans 12

PubMed (English)= 204 = 189 NEW
PubMed (non-English) = 12

Cochrane
'hormone replacement therapy' AND (menopause OR perimenopause OR climacteric)
Reviews =3 =3 NEW
Other reviews = 0 = 0 NEW
Trials =26 = 22 NEW

Embase
'hormone replacement therapy' AND (menopause OR perimenopause OR climacteric) =29 = 19 NEW

ClinicalTrials.gov
'hormone replacement therapy' AND (menopause OR perimenopause OR climacteric) = 2

WHO ICTRP
'hormone replacement therapy' AND (menopause OR perimenopause OR climacteric) = 2 NEW

TOTAL NON-DUPLICATE DATABASE = 237

Drugs@FDA.gov
Will do targeted searches for “harms” as indicated

NON ENGLISH
PubMed (non-English) = 12
Embase = 0 = NEW
Total = 12

IPA
IPA (held as separate file) = 0 New
'hormone replacement therapy' AND (menopause OR perimenopause OR climacteric)
Appendix A. Search Strategies

Sept. 28, 2015

PubMed

<table>
<thead>
<tr>
<th>Search</th>
<th>Results (PubMed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 Search "Perimenopause”[Mesh] OR “Climacteric”[Mesh] OR “Menopause”[Mesh]</td>
<td>50740</td>
</tr>
<tr>
<td>#3 Search (#1 AND #2)</td>
<td>18187</td>
</tr>
<tr>
<td>#4 Search (#1 AND #2) Filters: Humans</td>
<td>17486</td>
</tr>
<tr>
<td>#5 Search (#4) AND (“2011/06/01”[Date-Entrez]: “3000”[Date-Entrez]) Filters: Humans</td>
<td>1558</td>
</tr>
<tr>
<td>#6 Search (#4) AND (“2011/06/01”[Date-Entrez]: “3000”[Date-Entrez]) Filters: Humans; English</td>
<td>1449</td>
</tr>
<tr>
<td>#9 Search (#5 NOT #6) NON ENGLISH</td>
<td>109</td>
</tr>
</tbody>
</table>

PubMed (English) = 1449 = (2 appeared in the original report and have been removed)
PubMed (English) = 1447

Cochrane

‘hormone replacement therapy’ AND (menopause OR perimenopause OR climacteric)
Reviews = 9 = 4 NEW
Other reviews = 5 = 1 NEW
Trials = 62 = 33 NEW

Embase

‘hormone replacement therapy’ AND (menopause OR perimenopause OR climacteric) = 459 = 327 NEW

ClinicalTrials.gov

‘hormone replacement therapy’ AND (menopause OR perimenopause OR climacteric) = 12

WHO ICTR

‘hormone replacement therapy’ AND (menopause OR perimenopause OR climacteric) = 7 = 4 NEW

TOTAL NON-DUPLICATE DATABASE = 1828

Drugs@FDA.gov

Will do targeted searches for “harms” as indicated

NON ENGLISH

PubMed (non-English) = 109 = NEW
Embase = 16 = 13 NEW
Total - 122

IPA

IPA (held as separate file) =
‘hormone replacement therapy’ AND (menopause OR perimenopause OR climacteric) = 6 = 4 NEW
Appendix B. Inclusion and Exclusion Criteria

<table>
<thead>
<tr>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Generally healthy perimenopausal and postmenopausal women who are eligible for menopausal hormone therapy; women with and without menopausal symptoms will be included if the focus of the analysis is on the prevention of chronic conditions</td>
</tr>
<tr>
<td>Interventions</td>
<td>Systemic therapy with estrogen-only formulations or estrogen plus progestin for the prevention of chronic conditions; U.S. Food and Drug Administration–approved medications that are available for use in the United States</td>
</tr>
<tr>
<td>Comparators</td>
<td>Placebo, no treatment</td>
</tr>
</tbody>
</table>
| **Outcomes** | KQ 1/2: Benefits and harms
Cancer (breast, cervical, colorectal, endometrial, nonsmall cell lung, and ovarian)
Coronary heart disease
Cognitive functioning and dementia
Diabetes
Gallbladder disease
Fractures
Stroke
Urinary incontinence
Venous thromboembolism
Quality of life (if related to chronic conditions of interest)
Functional capacity
All-cause mortality
Disease-specific mortality (if related to chronic conditions of interest)
KQ 3: Any of the outcomes listed above by subgroups of interest | Any outcomes that are not health outcomes of chronic conditions associated with hormone therapy (e.g., intermediate outcomes, such as bone density and cholesterol level) |
| **Timing: Duration of intervention** | ≥1 year of treatment | <1 year of treatment |
| **Setting** | Primary care or primary care–like settings | Inpatient facilities, nursing homes, and specialist settings (such as endocrinology) |
| **Geography** | U.S. adult population or comparable populations (i.e., those categorized as “Very High” on the Human Development Index, as defined by the United Nations Development Programme) | Settings not comparable or applicable to U.S. adult population |
| **Study design** | All outcomes:
Randomized controlled trials
Controlled clinical trials
Systematic reviews
Large cohort studies (>10,000 women) for outcomes with no evidence from trials or systematic reviews | All other study designs |
| **Publication language** | English | Non-English language |
| **Publication type** | Published or unpublished original research | Nonsystematic review article, letter, or editorial; results reported elsewhere; no original data |
| **Start date of search** | January 2011 onward | Before January 2011 |
Appendix C. U.S. Preventive Services Task Force Quality Rating Criteria for Randomized, Controlled Trials

Criteria:

- Initial assembly of comparable groups: adequate randomization, including concealment and whether potential confounders were distributed equally among groups.
- Maintenance of comparable groups (includes attrition, cross-overs, adherence, contamination).
- Important differential loss to followup or overall high loss to followup.
- Measurements: equal, reliable, and valid (includes masking of outcome assessment).
- Clear definition of interventions.
- Important outcomes considered.
- Analysis: intention-to-treat analysis; for cluster randomized controlled trials, correction for correlation coefficient.

Definition of ratings based on above criteria:

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (followup at least 80%); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; important outcomes are considered; and appropriate attention to confounders in analysis.

Fair: Any or all of the following problems occur, without the important limitations noted in the “poor” category below: generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred in followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for.

Poor: Any of the following major limitations exist: groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied at all equally among groups (including not masking outcome assessment); and key confounders are given little or no attention.

Source: Harris et al, 2001[^43]
Appendix D. Literature Flow Diagram

Abstracts of potentially relevant articles identified through PubMed, MEDLINE, Cochrane, and other sources:\(^a\)
N=6,765 (2,241)

Excluded abstracts and background articles:
N=5,809 (1,989)

Full-text articles reviewed for relevance to Key Questions: N=956 (252)

Excluded articles: N=888 (235)

By reason of exclusion for update search results:
Non-English publication: N=8
Ineligible publication type: N=92
Ineligible population: N=14
Ineligible intervention: N=22
Ineligible indication: N=4
Ineligible duration: N=13
Ineligible design: N=43
Superseded by more recent review: N=2
Ineligible sample size: N=6
Irrelevant outcomes: N=14
Intermediate outcomes: N=5
Ineligible setting: N=5
Review does not answer KQs: N=2
Poor quality: N=5

Included trials: N=18 (9)
Reported in articles: N=68 (17)

\(^a\) We conducted searches of PubMed/MEDLINE, the Cochrane Library, EMBASE, International Pharmaceutical Abstracts, ClinicalTrials.gov, Drugs@FDA.gov, the Health Services Research Projects in Process (HSRProj), and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP).

Abbreviations: KQs = Key Questions; N = number.
Appendix E. Excluded Studies

<table>
<thead>
<tr>
<th>Code</th>
<th>Exclusion reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Non-English publication</td>
</tr>
<tr>
<td>X2</td>
<td>Ineligible publication type</td>
</tr>
<tr>
<td>X3</td>
<td>Ineligible publication</td>
</tr>
<tr>
<td>X4</td>
<td>Ineligible intervention</td>
</tr>
<tr>
<td>X5</td>
<td>Ineligible indication</td>
</tr>
<tr>
<td>X6</td>
<td>Ineligible duration</td>
</tr>
<tr>
<td>X7</td>
<td>Ineligible design</td>
</tr>
<tr>
<td>X8</td>
<td>Superseded by more recent review</td>
</tr>
<tr>
<td>X9</td>
<td>Ineligible sample size</td>
</tr>
<tr>
<td>X10</td>
<td>Irrelevant outcomes</td>
</tr>
<tr>
<td>X11</td>
<td>Intermediate outcomes only</td>
</tr>
<tr>
<td>X12</td>
<td>Ineligible setting</td>
</tr>
<tr>
<td>X13</td>
<td>Does not answer Key Questions</td>
</tr>
<tr>
<td>X14</td>
<td>Excluded for poor quality</td>
</tr>
<tr>
<td>X15</td>
<td>Systematic reviews handsearched and excluded</td>
</tr>
</tbody>
</table>

Appendix E. Excluded Studies

Appendix E. Excluded Studies

Appendix E. Excluded Studies

56. Close H, Mason JM, Wilson D, et al. Hormone replacement therapy is associated with gastro-oesophageal reflux disease: A retrospective cohort study. BMC Gastroenterol. 2012;12((Close H., h.j.close@durham.ac.uk; Mason J.M., j.m.mason@durham.ac.uk; Wilson D., d.w.wilson@durham.ac.uk)) Durham Clinical Trials Unit, Wolfson Research Institute, University of Durham, University Boulevard, Stockton-on-Tees, TS17 6BH, United Kingdom). Exclusion Code: X6.

Appendix E. Excluded Studies

Appendix E. Excluded Studies

Appendix E. Excluded Studies

<table>
<thead>
<tr>
<th>Study Number</th>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Publication Date</th>
<th>Volume</th>
<th>Pages</th>
<th>Exclusion Code</th>
</tr>
</thead>
</table>
Appendix E. Excluded Studies

Appendix F. Ratings for Domains of Quality Ratings of Randomized, Controlled Trials

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOPS (Denmark)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Poor</td>
</tr>
<tr>
<td>Clarke 2002 (UK)</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Poor</td>
</tr>
<tr>
<td>EMS (Canada)</td>
<td>Yes</td>
<td>Yes</td>
<td>Mostly, except for prior HT use and amnestic mild cognitive impairment</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>EPAT (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fair</td>
</tr>
<tr>
<td>EPHT (Estonia)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Poor</td>
</tr>
<tr>
<td>ERA (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Poor</td>
</tr>
<tr>
<td>ESPRIT (UK)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Poor</td>
</tr>
<tr>
<td>Greenspan 2005 (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Notelovitz 2002 (US)</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Poor</td>
</tr>
<tr>
<td>HERS (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>KEEPS-Cog (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>Pefanco 2007 (US)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Poor</td>
</tr>
<tr>
<td>PEPI (US)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Poor</td>
</tr>
<tr>
<td>STOP-IT (US)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>ULTRA (US)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>WAVE (US, Canada)</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Unclear</td>
<td>No</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>WHI (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>WHIMS (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Mostly, except for history of stroke, and hypertension</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Poor</td>
</tr>
<tr>
<td>WHIMSY (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Fair</td>
</tr>
<tr>
<td>WHISCA (US)</td>
<td>Yes</td>
<td>Yes</td>
<td>Mostly, except for smoking status</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>WISDOM (UK, Australia, New Zealand)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a High risk of selection bias and contamination. Invited participants chose whether or not to be part of randomized trial (those who preferred a treatment option where followed in the cohort study). Among those who were randomized to no-HRT and attended 5-year follow-up, 15% had initiated HRT. Among those randomized to HRT, 18% had changed the type of HRT and 22% had stopped HRT at 5 years.

b Although the trial conducted an ITT analysis, it was only for evaluable patients (199/222) from the larger set of randomized patients.

c There was a statistically significant difference between placebo and CEE in adherence.
Appendix F. Ratings for Domains of Quality Ratings of Randomized, Controlled Trials

Risk of measurement bias. Some outcomes (e.g., breast cancer) were assessed as adverse events; ascertainment of these outcomes is unclear. Although mammograms were performed as part of the study protocol, cases of breast cancer appear to have been self-reported. Some were assessed to be benign; method of determining cancer severity was not described.

Potential risk of contamination and low adherence to assigned study medications. Study authors note that in women assigned to CEE, continuation rate were lowest and potentially due to endometrial hyperplasia. Some women were also initiated on another hormone regimen (other than the one assigned at randomization); this included up to 18% in some study arms.

Abbreviations: BMD = bone mineral density; DOPS = Danish Osteoporosis Prevention Trail; EMS = Estrogen Memory Study; EPAT = Estrogen in the Prevention of Atherosclerosis; EPHT = Estonian Postmenopausal Hormone Therapy Trial; ERA = Effects of Estrogen Replacement on the Progression of Coronary-Artery Atherosclerosis; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HERS = Heart and Estrogen/Progestin Replacement Study; PEPI = Postmenopausal Estrogen and Progestin Interventions Trial; UK = United Kingdom; ULTRA = Ultra-Low-Dose Transdermal Estrogen Assessment; US = United States; WAVE = Women’s Angiographic Vitamin and Estrogen Trial; WHI = Women’s Health Initiative; WHIMS = Women’s Health Initiative Memory Study; WHIMSY = Women’s Health Initiative Memory Study of Younger Women; WHISCA = Women’s Health Initiative Study of Cognitive Aging; WISDOM = Women’s International Study of Long Duration Oestrogen After Menopause.
Appendix G Table 1. Evidence Table of Trials Reporting Incidence of Breast Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPAT Estrogen-only trial Hodis, 2001<sup>60</sup></td>
<td>111 Estrogen 111 Placebo</td>
<td>Followup: 2 years Breast cancer 0 vs. 1</td>
</tr>
<tr>
<td>EPHT Estrogen plus progestin trial Veerus, 2006<sup>61</sup></td>
<td>404 Estrogen plus progestin 373 Placebo</td>
<td>Followup: Mean 3.4 years Breast Cancer 1 vs. 2; HR, 0.55 (95% CI, 0.05 to 6.06)</td>
</tr>
<tr>
<td>ERA Estrogen-only and estrogen plus progestin trial Herrington, 2000<sup>62</sup></td>
<td>100 Estrogen alone 104 Estrogen plus progestin 105 Placebo</td>
<td>Followup: Mean 3.2 years Breast cancer (not defined) 1 vs. 0 vs. 0; p=0.35</td>
</tr>
<tr>
<td>ESPRIT Estrogen-only trial Cherry (ESPRIT Team), 2002<sup>63</sup>; Cherry, 2014<sup>64</sup></td>
<td>513 Estrogen<sup>b</sup> 504 Placebo<sup>c</sup></td>
<td>Followup: 2 years<sup>63</sup> Any breast cancer (measured via ICD codes) 4 (0.8%) vs. 4 (0.8%); RR, 0.98 (95% CI, 0.25 to 3.91); p=1.00 Cumulative followup: Mean 12.6 years<sup>64</sup> Any breast cancer (measured via ICD codes) HR, 0.47 (95% CI, 0.19 to 1.15)</td>
</tr>
<tr>
<td>Greenspan, et al Estrogen-only and estrogen plus progestin trial Greenspan, 2005<sup>65</sup></td>
<td>66 Estrogen 121 Estrogen plus progestin 186 Placebo</td>
<td>Followup: 3 years Breast Cancer Analysis did not stratify by treatment regimen 2 (hormone therapy) vs. 2; p=1.0</td>
</tr>
<tr>
<td>HERS Estrogen plus progestin trial Hulley, 2002<sup>66</sup></td>
<td>1380 Estrogen plus progestin 1383 Placebo Cumulative followup: 1156 Estrogen plus progestin 1383 Placebo</td>
<td>Followup: 4.1 years 34 (2.5%) vs. 25 (1.8%); HR, 1.38 (95% CI, 0.82 to 2.31); p=0.22 Followup: Mean 2.7 years postintervention HR, 1.08 (95% CI, 0.52 to 2.24); p=0.83 Cumulative followup: 6.8 years HR, 1.27 (95% CI, 0.84 to 1.94); p=0.26</td>
</tr>
<tr>
<td>PEPI Estrogen-only and estrogen plus progestin trial Writing Group for PEPI trial, 1995<sup>72</sup></td>
<td>175 Estrogen 174 Estrogen plus progestin (cyclic) 174 Estrogen plus progestin (continuous) 178 Estrogen plus progestin (micronized) 174 Placebo</td>
<td>Followup: 3 years Breast cancer 1 (estrogen) vs. 2 (estrogen plus progestin) vs. 4 (estrogen plus micronized progestin) vs. 1 (placebo); p=0.29</td>
</tr>
<tr>
<td>STOP-IT Estrogen-only and estrogen plus progestin trial Gallagher, 2001<sup>73</sup></td>
<td>121 Hormone therapy 122 Hormone therapy plus calcitriol 123 Calcitriol only 123 Placebo</td>
<td>Followup: 3 years Breast cancer (not defined) Analysis did not stratify by treatment regimen 0 (hormone therapy with or without calcitriol) vs. 4 (calcitriol only and placebo)</td>
</tr>
<tr>
<td>WAVE Estrogen-only and estrogen plus progestin trial Waters, 2002<sup>80</sup></td>
<td>124 Estrogen 86 Estrogen plus progestin 213 Placebo</td>
<td>Followup: Mean 2.8 years Breast Cancer (any) Analysis did not stratify by treatment regimen 3 vs. 1; p=0.37</td>
</tr>
</tbody>
</table>
Appendix G Table 1. Evidence Table of Trials Reporting Incidence of Breast Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
</table>
| **WHI Estrogen-only trial**
Anderson, 2004;24 Anderson, 2012;105 LaCroix, 2011112;
Prentice 200998; Manson, 2013102; Chlebowski, 2015104 | 5,310 Estrogen
5,429 Placebo
Postintervention extension followup:
3,778 Estrogen
3,867 Placebo | **Followup: Median 7.2 years**102, 104
Invasive breast cancer
104 (2.0%) vs. 135 (2.5%); HR, 0.79 (95% CI, 0.61 to 1.02); p=0.07
Subgroups:
No significant difference by age at randomization102
Biennial analysis (2, 4, 6, and 8 years since randomization)104
P=0.29 for trend104
Risk for invasive breast cancer based on timing of intervention:98
No significant association; p=0.20 for gap time interaction
Followup: Median 6.6 years postintervention and postintervention extension102
Invasive breast cancer
HR, 0.80 (95% CI, 0.58 to 1.11); p=0.19
Cumulative followup: Median 13.0 years102
Invasive breast cancer
HR, 0.79 (95% CI, 0.65 to 0.97); p=0.02 |
| **WHI Estrogen plus progestin trial**
Writing Group for the WHI, 2002;23
Heiss, 2008;85 Chlebowski, 2003;85 Chlebowski, 2010;84
Gramling, 2009;80 Prentice 200998; Manson, 2013102; Chlebowski, 2015104 | 8,506 Estrogen plus progestin
8,102 Placebo
Postintervention extension followup:
6,545 Estrogen plus progestin
6,243 Placebo | **Followup: Median 5.6 years**102
Invasive breast cancer
206 (2.4%) vs. 155 (1.9%); HR, 1.24 (95% CI, 1.01 to 1.53)
Overall breast cancer mortality84
25 (0.3%) vs. 12 (0.2%); HR, 1.96 (95% CI, 1.00 to 4.04); p=0.049
Subgroups:
No significant difference by age102
Time since randomization104
2 years since randomization: HR, 0.71 (95% CI, 0.47 to 1.08)
4 years since randomization: HR, 1.36 (95% CI, 0.95 to 1.94)
6 years since randomization: HR, 1.65 (1.17 to 2.32)
P=0.008 for trend
Risk for invasive breast cancer based on timing of intervention:98
Initiation of hormone therapy within 5 years of menopause: HR, 2.06 (95% CI, 1.30 to 3.27)
Initiation of hormone therapy after 5 years of menopause: HR, 1.30 (95% CI, 0.57 to 2.99)
P=0.03 for gap time interaction |
Appendix G Table 1. Evidence Table of Trials Reporting Incidence of Breast Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Followup: Mean 2.4 years postintervention(^a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invasive breast cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.27 (95% CI, 0.91 to 1.78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Followup: Median 8.2 years postintervention and postintervention extension(^b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.32 (95% CI, 1.08 vs. 1.61); p=0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cumulative followup: 13.2 years(^c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.28 (95% CI, 1.11 to 1.48); p<0.001</td>
</tr>
<tr>
<td>WISDOM Estrogen plus progestin trial</td>
<td>2,196 Estrogen plus progestin 2,189 Placebo</td>
<td>Followup: Mean 1 year</td>
</tr>
<tr>
<td>Vickers, 2007(^d)</td>
<td></td>
<td>Breast cancer incidence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 vs. 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breast cancer mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 vs. 0</td>
</tr>
</tbody>
</table>

\(^a\) Intervention dosages are listed in Table 3 by trial.
\(^b\) All women enrolled in the initial trial were followed by data linkage to UK mortality and cancer records.
\(^c\) At enrollment, 24% of women reported having a hysterectomy. After the 2-year intervention period, women with an intact uterus were sent a letter each year for the first 5 years after stopping treatment to remind them to seek medical attention if they experienced vaginal bleeding. No attempt was made after the end of the 2-year intervention to obtain medical information from women or their physicians about the use of medications or health events.

Abbreviations: CI = confidence interval; ERA = Effects of Estrogen Replacement on the Progression of Coronary-Artery Atherosclerosis; EPAT = Estrogen in the Prevention of Atherosclerosis; EPHT = Estonian Postmenopausal Hormone Therapy Trial; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; ICD = International Classification of Diseases; PEPI = Postmenopausal Estrogen and Progestin Interventions Trial; RR = relative risk; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WAVE = Women’s Angiographic Vitamin and Estrogen; WHI = Women’s Health Initiative; WISDOM = Women’s International Study of Long-Duration Oestrogen After Menopause.
Appendix G Table 2. Evidence Table of Trials Reporting Incidence of Cervical Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPRIT Estrogen-only trial<sup>a</sup> Cherry, 2014<sup>b</sup></td>
<td>513 Estrogen only<sup>c</sup> 504 Placebo<sup>b</sup></td>
<td>Cumulative followup: Mean 12.6 years 0 vs. 1</td>
</tr>
<tr>
<td>WHI Estrogen plus progestin trial<sup>a</sup> Anderson, 2003<sup>b</sup></td>
<td>8,506 Estrogen plus progestin 8,102 Placebo</td>
<td>Followup: Median 5.6 years 8 (0.09%) vs. 5 (0.06%); HR, 1.44 (95% CI, 0.47 to 4.42)</td>
</tr>
</tbody>
</table>

\(^a\) Intervention dosages are listed in Table 3 by trial.

\(^b\) At enrollment, 24% of enrolled women reported having a hysterectomy. After the 2-year intervention period, women with an intact uterus were sent a letter each year for the first 5 years after stopping treatment to remind them to seek medical attention if they experienced vaginal bleeding. No attempt was made after the end of the 2-year intervention to obtain medical information from women or their physicians about the use of medications or health events.

\(^c\) Cancer incidence was determined by data linkage to UK cancer records for a mean 12.6 years after enrollment.

Abbreviations: CI = confidence interval; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HR = hazard ratio; WHI = Women’s Health Initiative.
Appendix G Table 3. Evidence Table of Trials Reporting Incidence of Colorectal Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
</table>
| **EMS Estrogen plus progestin trial**
Tierney, 2009⁶⁹ | 70 Estrogen plus progestin
72 Placebo | Followup: 2 years
0 vs. 0 |
| **Greenspan, et al Estrogen-only and estrogen plus progestin trial**
Greenspan, 2005⁵⁰ | 66 Estrogen
121 Estrogen plus progestin
186 Placebo | Followup: 3 years
Analysis did not stratify by treatment regimen
3 vs. 1; p=0.62 |
| **HERS Estrogen plus progestin trial**
Hulley, 2002⁶⁸ | 1,380 Estrogen plus progestin
1,383 Placebo
Cumulative followup:
1,156 Estrogen plus progestin
1,383 Placebo | Followup: Mean 4.1 years
11 (0.80%) vs. 16 (1.16%); HR, 0.69 (95% CI, 0.32 to 1.49); p=0.43
Cumulative followup: Mean 6.8 years
HR, 0.81 (95% CI, 0.46 to 1.45); p=0.48 |
| **PEPI Estrogen-only and estrogen plus progestin trial**
Writing Group for PEPI trial, 1995⁷⁴ | 175 Estrogen only
174 Estrogen plus progestin (cyclic)
178 Estrogen plus progestin (micronized)
174 Placebo | Followup: 3 years
Analysis did not stratify by treatment regimen
2 colon cancer cases |
| **STOP-IT Estrogen-only and Estrogen plus progestin trial**
Gallagher, 2001⁷⁵ | 121 Hormone therapy
122 Hormone therapy plus calcitriol
123 Calcitriol only
123 Placebo | Followup: 3 years
Analysis did not stratify by treatment regimen
1 (hormone therapy with or without calcitriol) vs. 6 (calcitriol only and placebo) |
| **WHI Estrogen-only trial**
Anderson, 2004;²⁴ Ritenbaugh, 2008;¹¹³ Prentice, 2009;⁹⁸ LaCroix, 2011;¹¹² Manson, 2013¹⁰² | 5,310 Estrogen only
5,429 Placebo
Postintervention followup:
4,794 Estrogen only
4,872 Placebo
Postintervention extension followup:
4,851 Estrogen only
4,935 Placebo | Followup: Median 7.2 years
65 (1.22%) vs. 58 (1.07%); HR, 1.15 (95% CI, 0.81 to 1.64); p=0.44¹⁰²
Invasive colorectal cancer^{113b}
HR, 1.12 (95% CI, 0.77 to 1.63); p=0.55
Invasive colon cancer^{113b}
HR, 1.26 (95% CI, 0.84 to 1.88); p=0.26
Invasive rectal cancer^{113b}
HR, 0.53 (95% CI, 0.18 to 1.56); p=0.25
Subgroups^{113b}
No significant difference by race or ethnic group, bilateral oophorectomy status, family history of colorectal cancer, treated diabetes status
Age at randomization¹⁰²
Among women 50–59 years at randomization: HR, 0.71 (95% CI, 0.30 to 1.67)
Among women 60–69 years at randomization: HR, 0.88 (95% CI, 0.53 to 1.47)
Among women 70–79 years at randomization: HR, 2.24 (95% CI, 1.16 to 4.30)
p=0.02 for trend
Risk for colorectal cancer based on timing of intervention⁹⁸
No significant association; p for gap time interaction=0.34 |
Appendix G Table 3. Evidence Table of Trials Reporting Incidence of Colorectal Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
</table>
| **WHI Estrogen plus progestin trial** Writing Group for the Women’s Health Initiative Investigators, 2002; Chlebowski, 2004; Heiss, 2008; Prentice, 2009; Manson, 2013 | 8,506 Estrogen plus progestin 8,102 Placebo | **Followup:** Median 6.6 years postintervention and postintervention extension¹⁰²
HR, 1.10 (95% CI, 0.68 to 1.78); p=0.69
Cumulative followup: Median 13.0 years¹⁰²
HR, 1.13 (95% CI, 0.85 to 1.51); p=0.39
Subgroups:
No significant difference by age at randomization
Invasive colorectal cancer^{87d}
HR, 0.56 (95% CI, 0.38 to 0.81); p=0.003
Invasive colon cancer^{87d}
HR, 0.54 (95% CI, 0.36 to 0.82); p=0.004
Invasive rectal cancer^{87d}
HR, 0.66 (95% CI, 0.26 to 1.64); p=0.37
Risk for colorectal cancer based on timing of intervention:
No significant association; p for gap time interaction=0.42
Followup: Median 8.2 years postintervention and postintervention extension¹⁰²
HR, 0.97 (95% CI, 0.70 to 1.33); p=0.83
Cumulative followup: Median 13.2 years¹⁰²
HR, 0.80 (95% CI, 0.63 to 1.01); p=0.06
Subgroups:
No significant difference by age at randomization |
Postintervention followup:
8,060 Estrogen plus progestin
7,687 Placebo
Postintervention extension followup:
6,545 Estrogen plus progestin
6,243 Placebo |
| **WISDOM Estrogen plus progestin trial** Vickers, 2007¹²³ | 2,196 Estrogen plus progestin⁷
2,189 Placebo⁷ | **Followup:** Median 11.9 months
2 vs. 2 |

^a Intervention dosages are listed in Table 3 by trial.
^b The mean followup for some of these analyses (Ritenbaugh, 2008 and Prentice, 2009) was 7.1 years, suggesting that the results are based on an earlier adjudication of intervention phase data than the most recent intervention data from Manson, 2013.¹⁰²
^c Women were ineligible if they were deceased or provided no contact through the postintervention phase. By the end of the postintervention phase, 7,878/8,506 (93% of women randomized to estrogen plus progestin) and 7,530/8,102 (93% of women randomized to placebo) were eligible for the postintervention extension phase.
Appendix G Table 3. Evidence Table of Trials Reporting Incidence of Colorectal Cancer

The analysis was based on 122 centrally adjudicated colorectal cancers, which were diagnosed before 7/8/2002, the date participants were instructed to discontinue their study medication.

The mean follow-up for this analysis was 5.5 years, suggesting that the results are based on an earlier adjudication of intervention phase data than the most recent intervention data from Manson, 2013.102

The estrogen plus progestin arm includes 1,862 women with an intact uterus and 334 women with a prior hysterectomy who had agreed to be randomized to estrogen plus progestin, estrogen only, or placebo (the women randomized to estrogen only included women who agreed to placebo (n=341) and women who did not agree to placebo (n=485), so there is a selection bias that precludes us from including any results for the estrogen-only women.

Abbreviations: CI = confidence interval; EMS = Estrogen Memory Study; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; PEPI = Postmenopausal Estrogen/Progestin Interventions Trail; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WHI = Women’s Health Initiative; WISDOM = Women’s International Study of Long-Duration Oestrogen After Menopause.
<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPAT Estrogen-only trial</td>
<td>133 (60%) of enrolled women had an intact uterus</td>
<td>Followup: 2 years</td>
</tr>
<tr>
<td>Hodis, 2001[^60]</td>
<td>111 Estrogen only 111 Placebo</td>
<td>0 (0.0%) vs. 0 (0.0%)</td>
</tr>
<tr>
<td>ERA Estrogen only and estrogen plus progestin trial</td>
<td>120 (39%) of enrolled women had an intact uterus, including 44 (44%) women in the estrogen-only arm, 40 (38%) women in the estrogen plus progestin arm, and 36 (34%) women in the placebo arm</td>
<td>Followup: 3.2 years</td>
</tr>
<tr>
<td>Herrington, 2000[^62]</td>
<td>100 Estrogen only 104 Estrogen plus progestin 105 Placebo</td>
<td>0 (0.0%) vs. 0 (0.0%) vs. 0 (0.0%)</td>
</tr>
<tr>
<td>ESPRIT Estrogen-only trial</td>
<td>At enrollment, 24% of women had an intact uterus, including 373 (73%) of women in the active treatment arm[^63]</td>
<td>Followup: 2 years</td>
</tr>
<tr>
<td>Cherry, 2002;[^63] Cherry, 2014[^64]</td>
<td>513 Estrogen only 504 Placebo</td>
<td>0 (0.0%) vs. 0 (0.0%)</td>
</tr>
<tr>
<td>Greenspan, et al Estrogen-only and estrogen plus progestin trial Greenspan, 2005[^65]</td>
<td>243 (65%) of enrolled women had an intact uterus, including 121 (65%) in the hormone therapy arm and 122 (66%) in the placebo arm. Women with an intact uterus received estrogen plus progestin; women with a hysterectomy received estrogen only.</td>
<td>Followup: 3 years</td>
</tr>
<tr>
<td>HERS Estrogen plus progestin trial Hulley, 2002[^68]</td>
<td>All enrolled women had an intact uterus</td>
<td>Followup: Mean 4.1 years</td>
</tr>
<tr>
<td></td>
<td>1,380 Estrogen plus progestin 1,383 Placebo</td>
<td>2 (0.14%) vs. 5 (0.36%); HR, 0.39 (95% CI, 0.08 to 2.02); p=0.26</td>
</tr>
<tr>
<td></td>
<td>Cumulative followup: 1156 Estrogen plus progestin 1383 Placebo</td>
<td>Cumulative followup: Mean 6.8 years</td>
</tr>
<tr>
<td></td>
<td>HR, 0.25 (95% CI, 0.05 to 1.18); p=0.08</td>
<td>HR, 0.25 (95% CI, 0.05 to 1.18); p=0.08</td>
</tr>
<tr>
<td>PEPI Estrogen-only and estrogen plus progestin trial Writing Group for PEPI trial, 1995[^74]</td>
<td>Approximately 68% of women had an intact uterus; women with an intact uterus had to have a normal endometrial biopsy at baseline</td>
<td>Followup: 3 years</td>
</tr>
<tr>
<td></td>
<td>175 Estrogen only 174 Estrogen plus progestin (cyclic) 174 Estrogen plus progestin (continuous) 178 Estrogen plus progestin (micronized) 174 Placebo</td>
<td>1 (estrogen only) vs. 0 (estrogen plus progestin) vs. 0 (estrogen plus micronized progestin) vs. 0 (placebo)</td>
</tr>
</tbody>
</table>
Appendix G Table 4. Evidence Table of Trials Reporting Incidence of Endometrial Cancer

<table>
<thead>
<tr>
<th>Study/Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP-IT Estrogen only and estrogen plus progestin
Gallagher, 2001(^{75})</td>
<td>199 (41%) of enrolled women had an intact uterus; women with a prior hysterectomy who were randomized to receive estrogen plus progestin, with or without calcitriol, received estrogen only
121 Estrogen plus progestin
122 Estrogen plus progestin plus calcitriol
123 Calcitriol only
123 Placebo</td>
<td>Followup: 3 years
Analysis did not stratify by treatment regimen
0 (hormone therapy with or without calcitriol) vs. 1 (calcitriol only or placebo)</td>
</tr>
<tr>
<td>ULTRA Estrogen-only trial
Johnson, 2005(^{77})</td>
<td>All enrolled women had an intact uterus
208 Estrogen only
209 Placebo</td>
<td>Followup: 2 years
0 (0.0%) vs. 0 (0.0%); difference, 0.0 (95% CI, -4.2 to 3.1); p=1.000(^b)</td>
</tr>
<tr>
<td>WHI Estrogen plus progestin trial
Writing Group for the Women’s Health Initiative Investigators, 2002;(^{22}) Anderson, 2003;(^{81}) Heiss, 2008;(^{92}) Prentice, 2009;(^{98}) Chlebowski, 2010;(^{108}) Manson, 2013(^{102}, 103)</td>
<td>Women with an intact uterus
8,506 Estrogen plus progestin
8,102 Placebo
Postintervention followup: 8,060 Estrogen plus progestin
7,687 Placebo
Postintervention extension followup: 6,545 Estrogen plus progestin
6,243 Placebo</td>
<td>Followup: Median 5.6 years(^{102})
27 (0.32%) vs. 30 (0.37%); HR, 0.83 (95% CI, 0.49 to 1.40); p=0.49
Subgroups:
No significant difference by age at randomization
Followup: Median 8.2 years postintervention and postintervention extension(^{102})
HR, 0.58 (95% CI, 0.40 to 0.86); p=0.007
Cumulative followup: Median 13.2 years(^{102})
HR, 0.67 (95% CI, 0.49 to 0.91); p=0.01
Subgroups:
No significant difference by age at randomization</td>
</tr>
</tbody>
</table>

\(^{a}\) Intervention dosages are listed in Table 3 by trial.

\(^{b}\) Adverse event reporting was only among women who received uterine biopsies (30 women in the estrogen-only arm and 5 women in the placebo arm).

\(^{c}\) Women with an intact uterus were sent an annual letter for 5 years reminding them to seek medical attention if they experienced vaginal bleeding.

\(^{d}\) The mean followup was 5.5 years, suggesting that the results are based on an earlier adjudication of intervention phase data than the most recent intervention data from Manson, 2013.\(^{102}\)

\(^{e}\) Because women with an intact uterus received estrogen plus progestin if they were randomized to the hormone therapy arm, this woman had received estrogen plus progestin.

\(^{f}\) Analysis focused on women with endometrial biopsy results, including 188 women in the estrogen-only arm and 177 women in the placebo arm.

\(^{g}\) Women were ineligible if they were deceased or provided no contact through the postintervention phase. By the end of the postintervention phase, 7,878/8,506 (93% of women randomized to estrogen plus progestin) and 7,530/8,102 (93% of women randomized to placebo) were eligible for the postintervention extension phase.

Abbreviations: CI = confidence interval; EPAT = Estrogen in the Prevention of Atherosclerosis Trial; ERA = Estrogen Replacement and Atherosclerosis; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; PEPI = Postmenopausal Estrogen/Progestin Interventions Trial; STOP IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; ULTRA = Ultra-Low-Dose Transdermal Estrogen Replacement Assessment; vs. = versus; WHI = Women’s Health Initiative.
<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS Estrogen plus progestin trial Tierney, 2009<sup>59</sup></td>
<td>70 Estrogen plus progestin 72 Placebo</td>
<td>Followup: 2 years 1 vs. 0</td>
</tr>
<tr>
<td>HERS Estrogen plus progestin trial Hulley, 2002<sup>69</sup></td>
<td>1,380 Estrogen plus progestin 1,383 Placebo Cumulative followup: 1156 Estrogen plus progestin 1383 Placebo</td>
<td>Followup: Mean 4.1 years 24 (1.74%) vs. 19 (1.37%); HR, 1.28 (95% CI, 0.70 to 2.33); p=0.43 Cumulative followup: Mean 6.8 years Unadjusted ITT: HR, 1.39 (95% CI, 0.84 to 2.28); p=0.20 Adjusted ITT: HR, 1.43 (95% CI, 0.87 to 2.37) Adjusted As-Treated: HR, 1.73 (95% CI, 0.93 to 3.21)</td>
</tr>
<tr>
<td>PEPI Estrogen-only and estrogen plus progestin trial Writing Group for PEPI trial, 1995<sup>74</sup></td>
<td>175 Estrogen only 174 Estrogen plus progestin (cyclic) 174 Estrogen plus progestin (continuous) 178 Estrogen plus progestin (micronized) 174 Placebo</td>
<td>Followup: 3 years Analysis did not stratify by treatment regimen 2 lung cancer cases</td>
</tr>
<tr>
<td>WHI Estrogen-only trial Chlebowski, 2010;<sup>106</sup> Manson, 2013<sup>102</sup></td>
<td>5,310 Estrogen only 5,429 Placebo Postintervention followup: 4,794 Estrogen only 4,872 Placebo Postintervention extension followup: 4,851 Estrogen only 4,935 Placebo</td>
<td>Followup: Median 7.2 years<sup>102</sup> 62 (1.17 %) vs. 61 (1.12%); HR, 1.05 (95% CI, 0.74 to 1.49); p=0.79 Subgroups:<sup>102</sup> No significant difference by age at randomization Followup: Mean 7.9 years<sup>108,b</sup> Lung cancer HR, 1.17 (95% CI, 0.81 to 1.69); p=0.39 Non-small cell lung cancer HR, 1.10 (95% CI, 0.74 to 1.64); p=0.62 Small cell lung cancer HR, 1.57 (95% CI, 0.56 to 4.41); p=0.39 Followup: Median 6.6 years postintervention and postintervention extension<sup>102</sup> HR, 0.90 (95% CI, 0.61 to 1.34); p=0.61 Cumulative followup: Median 13.0 years<sup>102</sup> HR, 0.98 (95% CI, 0.75 to 1.27); p=0.87 Subgroups:<sup>102</sup> No significant difference by age at randomization</td>
</tr>
</tbody>
</table>
Appendix G Table 5. Evidence Table of Trials Reporting Incidence of Lung Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment<sup>a</sup> vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHI Estrogen plus progestin trial</td>
<td>8,506 Estrogen plus progestin 8,102 Placebo</td>
<td>Followup: Median 5.6 years<sup>102</sup> 78 (0.92%) vs. 70 (0.86%); HR, 1.05 (95% CI, 0.76 to 1.45); p=0.78</td>
</tr>
<tr>
<td>Chlebowski, 2009;102 Manson, 2013<sup>102</sup></td>
<td>Postintervention followup: 8,060 Estrogen plus progestin 7,687 Placebo</td>
<td>Subgroups<sup>102</sup> No significant difference by age at randomization</td>
</tr>
<tr>
<td>Postintervention extension followup:<sup>c</sup> 6,545 Estrogen plus progestin 6,243 Placebo</td>
<td>Followup: Mean 7.9 years<sup>b</sup> Lung cancer HR, 1.23 (95% CI, 0.92 to 1.63); p=0.16 Nonsmall cell HR, 1.28 (95% CI, 0.94 to 1.73); p=0.12 Small cell lung cancer HR, 0.96 (95% CI, 0.44 to 2.07); p=0.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Followup: Median 8.2 years postintervention and postintervention extension<sup>102</sup> HR, 1.13 (95% CI, 0.86 to 1.47); p=0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cumulative followup: Median 13.2 years<sup>102</sup> HR, 1.10 (95% CI, 0.89 to 1.35); p=0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subgroups<sup>102</sup> No significant difference by age at randomization</td>
<td></td>
</tr>
</tbody>
</table>

^a Intervention dosages are listed in Table 3 by trial.
^b Authors state ascertainment of lung cancer cases is through 3/31/2005, which is the end of the postintervention phase according to Manson¹⁰²; this would mean these results are for trial and posttrial phases combined together.
^c Women were ineligible if they were deceased or provided no contact through the postintervention phase. By the end of the postintervention phase, 7,878/8,506 (93% of women randomized to estrogen plus progestin) and 7,530/8,102 (93% of women randomized to placebo) were eligible for the postintervention extension phase.

Abbreviations: CI = confidence interval; EMS = Estrogen Memory Study; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; ITT = intention to treat; PEPI = Postmenopausal Estrogen/Progestin Interventions; WHI = Women’s Health Initiative.
Appendix G Table 6. Evidence Table of Trials Reporting Incidence of Ovarian Cancer

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
</table>
| **ESPRIT Estrogen-only trial** Cherry, 2014^a | 513 Estrogen only^b
504 Placebo^b | **Followup: Mean 12.6 years**
4 (0.78%) vs. 1 (0.20%); Fisher’s exact test p=0.37 |
| **WHI Estrogen plus progestin trial** Anderson, 2003;⁸¹ Manson, 2013¹⁰² | 8,506 Estrogen plus progestin
8,102 Placebo
Postintervention followup:
8,060 Estrogen plus progestin
7,687 Placebo
Postintervention extension followup:^c
6,545 Estrogen plus progestin
6,243 Placebo | **Followup: Median 5.6 years**¹⁰²
24 (0.28%) vs.16 (0.20%); HR, 1.41 (95% CI, 0.75 to 2.66); p=0.28
Subgroups:
No significant difference by age at randomization
Followup: Median 8.2 years postintervention and postintervention extension¹⁰²
HR, 1.12 (95% CI, 0.65 to 1.90); p=0.69
Cumulative followup: Median 13.2 years¹⁰²
HR, 1.24 (95% CI, 0.83 to 1.87); p=0.30
Subgroups:¹⁰²
Among women 50–59 years at randomization: HR, 0.55 (95% CI, 0.24 to 1.25)
Among women 60–69 years at randomization: HR, 1.25 (95% CI, 0.72 to 2.18)
Among women 70–79 years at randomization: HR, 3.82 (95% CI, 1.27 to 11.52)
p=0.005 for trend |

^a Intervention dosages are listed in Table 3 by trial.
^b Women were ineligible if they were deceased or provided no contact through the postintervention phase. By the end of the postintervention phase, 7,878/8,506 (93% of women randomized to estrogen plus progestin) and 7,530/8,102 (93% of women randomized to placebo) were eligible for the postintervention extension phase.
^c At enrollment, 24% of women reported having a hysterectomy. After the 2-year intervention period, women with an intact uterus were sent a letter each year for the first 5 years after stopping treatment to remind them to seek medical attention if they experienced vaginal bleeding. No attempt was made after the end of 2-year intervention to obtain medical information from women or their physicians about the use of medications or health events.

Abbreviations: CI = confidence interval; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HR = hazard ratio; WHI = Women’s Health Initiative.
Appendix G Table 7. Evidence Table of Trials Reporting Incidence of Coronary Heart Disease

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
</table>
| **EMS Estrogen plus progestin trial** Tierney, 2009\(^{59}\) | 70 Estrogen plus progestin 72 Placebo | **Followup:** Mean 2 years
Any cardiovascular event
11 (15.7%) vs. 8 (11.1%); no statistically significant differences between groups |
| **EPAT Estrogen-only trial** Hodis, 2001\(^{60}\) | 111 Estrogen 111 Placebo | **Followup:** Mean 2 years
Cardiovascular events
3 (2.7%) vs. 4 (3.6%); p>0.2 |
| **EPHT Estrogen plus progestin trial** Veerus, 2006\(^{61}\) | 404 Estrogen plus progestin 373 Placebo | **Followup:** Mean 3.4 years
CHD
66 (16.3%) vs. 62 (16.6%); HR 1.03 (95% CI, 0.73 to 1.46) |
| **ERA Estrogen-only and estrogen plus progestin trial** Herrington, 2000\(^{62}\) | Women with angiographically verified coronary disease
100 Estrogen 104 Estrogen plus progestin 105 Placebo | **Followup:** Mean 3.2 years
Cardiovascular events
29 (29.0%) vs. 28 (26.9%) vs. 34 (32.4%); p=0.69 |
| **Greenspan, et al Estrogen-only and estrogen plus progestin trial** Greenspan, 2005\(^{65}\) | 66 Estrogen 121 Estrogen plus progestin 186 Placebo | **Followup:** Mean 3 years
Myocardial infarction
Analysis did not stratify by treatment regimen
1 (0.5%) vs. 3 (1.6%); p=0.37 |
| **PEPI Estrogen-only and estrogen plus progestin trial** Writing Group for PEPI trial, 1995\(^{74}\) | 175 Estrogen only 174 Estrogen plus progestin (cyclic) 174 Estrogen plus progestin (continuous) 178 Estrogen plus progestin (micronized) 174 Placebo | **Followup:** Mean 3 years
CHD
1 (estrogen: 0.6%) vs. 1 (estrogen plus progestin: 0.3%) vs. 3 (estrogen plus micronized progestin: 1.7%) vs. 0 (placebo); p=0.29 |
| **STOP-IT Estrogen-only and estrogen plus progestin trial** Gallagher, 2001\(^{15}\) | 121 Hormone therapy 122 Hormone therapy plus calcitriol 123 Calcitriol only 123 Placebo | **Followup:** Mean 3 years
Cardiovascular events
Analysis did not stratify by treatment regimen
8 (hormone therapy with or without calcitriol: 3.3%) vs. 7 (calcitriol only or placebo: 2.8%) |
| **WAVE Estrogen-only and estrogen plus progestin trial** Waters, 2002\(^{80}\) | Women with a coronary stenosis of 15%–75%
124 Estrogen (with or without vitamin C and E) 86 Estrogen plus progestin (with or without vitamin C and E) 213 Placebo (with or without vitamin C and E) | **Followup:** Mean 2.8 years
Nonfatal myocardial infarction or cardiovascular death
Analysis did not stratify by treatment regimen
18 (8.6%) vs. 12 (5.6%) |
Appendix G Table 7. Evidence Table of Trials Reporting Incidence of Coronary Heart Disease

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatmenta vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHI Estrogen-only trial
Anderson, 2004;24 Manson, 2003;35 Rossouw, 2007;98 Hsia, 2006;111 Prentice 2009;96 LaCroix, 2011;112 Manson, 2013102</td>
<td>5,310 Estrogen
5,429 Placebo
Postintervention followup: 3,778 Estrogen
3,867 Placebo</td>
<td>Followup: Mean 7.1 years
Overall CHD (nonfatal myocardial infarction, death due to CHD)111 201 (3.8%) vs. 217 (4.0%); HR, 0.95 (95% CI, 0.79 to 1.16)
Subgroups:111,102
No significant difference by race or ethnic group, age, years since bilateral oophorectomy, hypertension, diabetes, high cholesterol requiring medication, coronary risk factors, CVD at baseline, or CHD at baseline
Younger women had a lower risk for myocardial infarction than older women relative to placebo (p=0.02)102
Risk for CHD based on timing of intervention:
No significant association; p=0.40 for gap time interaction98
No significant association; p=0.16 for trend102
Followup: Mean 3.9 years postintervention112
Overall CHD (nonfatal myocardial infarction, death due to CHD) HR, 0.97 (95% CI, 0.75 to 1.25)
Nonfatal myocardial infarction
151 (1.8%) vs. 114 (1.4%); HR, 1.28 (95% CI, 1.00 to 1.63)
CHD death
39 (0.5%) vs. 34 (0.4%); HR, 1.10 (95% CI, 0.70 to 1.75)
Subgroups:96,102
No significant difference by race or ethnic group, age, hypertension, diabetes, CVD at baseline, or CHD at baseline
Risk based on timing of intervention:
Overall CHD
No significant association; p=0.42 for gap time interaction98
No significant association; p=0.08 for trend102
Nonfatal myocardial infarction
<10 years after menopause: HR, 0.91
10−<20 years after menopause: HR, 1.16
≥20 years after menopause: HR, 1.99
p=0.01 for trend</td>
</tr>
<tr>
<td>WHI Estrogen plus progestin trial
Writing Group for the WHI, 2002;23 Manson, 2003;96 Rossouw, 2007;98 Heiss, 2008;102 Prentice 2009;98 Manson, 2013102</td>
<td>8,506 Estrogen plus progestin
8,102 Placebo
Postintervention followup: 8,052 Estrogen plus progestin
7,678 Placebo</td>
<td>Followup: Mean 5.2 years
Overall CHD (nonfatal myocardial infarction, death due to CHD)102 196 (2.0%) vs. 159 (2.0%); HR, 1.18 (95% CI, 0.95 to 1.45)
Nonfatal myocardial infarction
151 (1.8%) vs. 114 (1.4%); HR, 1.28 (95% CI, 1.00 to 1.63)
CHD death
39 (0.5%) vs. 34 (0.4%); HR, 1.10 (95% CI, 0.70 to 1.75)
Subgroups:96,102
No significant difference by race or ethnic group, age, hypertension, diabetes, CVD at baseline, or CHD at baseline
Risk based on timing of intervention:
Overall CHD
No significant association; p=0.42 for gap time interaction98
No significant association; p=0.08 for trend102
Nonfatal myocardial infarction
<10 years after menopause: HR, 0.91
10−<20 years after menopause: HR, 1.16
≥20 years after menopause: HR, 1.99
p=0.01 for trend</td>
</tr>
</tbody>
</table>
Appendix G Table 7. Evidence Table of Trials Reporting Incidence of Coronary Heart Disease

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
<th>Followup: Mean 2.4 years postintervention(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISDOM Estrogen plus progestin trial</td>
<td>826 Estrogen 2,196 Estrogen plus progestin 2,189 Placebo</td>
<td>Overall CHD HR, 1.04 (95% CI, 0.89 to 1.21)</td>
<td></td>
</tr>
<tr>
<td>Vickers, 2007(^{123})</td>
<td></td>
<td>Cardiovascular events 2 (0.2%) vs. 7 (0.3%) vs. 0 (0.0%); p=0.016</td>
<td>Followup: Mean 1 year</td>
</tr>
</tbody>
</table>

\(^a\) Intervention dosages are listed in Table 3 by trial.

Abbreviations: CHD = coronary heart disease; CI = confidence interval; CVD = cardiovascular disease; DOPS = Danish Osteoporosis Prevention Study; EMS = Estrogen Memory Study; EPAT = Estrogen in the Prevention of Atherosclerosis Trial; EPHT = Estonian Postmenopausal Hormone Therapy Trial; ERA = Estrogen Replacement and Atherosclerosis; HR = hazard ratio; PEPI = Postmenopausal Estrogen/Progestin Interventions Trial; RR = relative risk; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WHI = Women’s Health Initiative; WISDOM = Women’s International Study of Long Duration Oestrogen After Menopause.
Appendix G Table 8. Evidence Table of Trials Reporting Incidence of Cognitive Function and Dementia

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS Estrogen plus progestin trial<sup>69</sup> Tierney, 2009</td>
<td>Women with normal to just below normal scores on cognitive battery tests, but free of dementia: 70 Estrogen plus progestin 72 Placebo</td>
<td>PD Incidence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERS Estrogen plus progestin trial<sup>72</sup> Grady, 2002</td>
<td>662 Estrogen plus progestin 666 Placebo</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEEPS-Cog Estrogen plus progestin trial<sup>73</sup> Gleason, 2015</td>
<td>431 Estrogen plus progestin 262 Placebo</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULTRA Estrogen-only trial<sup>79</sup> Yaffe, 2006</td>
<td>417 Enrolled 208 Estrogen 209 Placebo</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix G Table 8. Evidence Table of Trials Reporting Incidence of Cognitive Function and Dementia

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
<th>Other Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHIMS Estrogen-only trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shumaker, 2004</td>
<td>Women without probable dementia, Dementia outcomes, WHI, 1,464 Estrogen 1,483 Placebo</td>
<td>Followup: 5.2 years 28 (1.9%) vs. 19 (1.3%); cumulative HR, 1.49 (95% CI, 0.83 to 2.66); p=0.18</td>
<td>Subgroups: No difference in the hazard rate for probable dementia by race or history of cardiovascular disease, diabetes, hypertension, or stroke</td>
</tr>
<tr>
<td>Espeland, 2004</td>
<td>General cognitive function enrolled in WHIMS >6 months after initiation of assigned WHI therapy and with >1 postrandomization 3MS score, 1,387 Estrogen 1,421 Placebo</td>
<td>Followup: 5.2 years 76 (5.2%) vs. 58 (3.9%); cumulative HR, 1.34 (95% CI, 0.95 to 1.89); p=NS</td>
<td></td>
</tr>
<tr>
<td>WHIMS Estrogen plus progestin trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shumaker, 2003</td>
<td>Women without probable dementia, Dementia and cognitive impairment outcomes, 2,229 Estrogen plus progestin 2,303 Placebo</td>
<td>Followup: ~4 years 40 (1.8%) vs. 21 (0.9%); cumulative HR, 2.05 (95% CI, 1.21 to 3.48); p=0.01</td>
<td>Subgroups: No difference in the rate of change by race or history of cardiovascular disease, diabetes, hypertension, or stroke</td>
</tr>
<tr>
<td>Shumaker, 2004</td>
<td>Cognitive function outcomes, 2,131 Estrogen plus progestin 2,213 Placebo</td>
<td>Followup: ~4 years 56 (2.5%) vs. 55 (2.4%); cumulative HR, 1.07 (95% CI, 0.74 to 1.55); p=0.72</td>
<td></td>
</tr>
<tr>
<td>Rapp, 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espeland, 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3MS Scores

- **Followup: Mean 5.4 years** 115 Mean difference in change from baseline, -0.26 (95% CI, -0.52 to 0.00); p=0.04
- **Followup: 5.4 years** 115 Mean difference in change from baseline, -0.18 (95% CI, -0.37 to 0.00); p=0.055

Subgroups:

- No difference in the rate of change by race, length of use, or history of cardiovascular disease, diabetes, or hypertension

Timing:

- No difference in the rate of change by time to initiation of therapy after last menstrual period
<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>PD Incidence</th>
<th>MCI Incidence</th>
<th>Other Dementia Diagnosis Outcomes</th>
<th>3MS Scores</th>
<th>Other Measures</th>
</tr>
</thead>
</table>
| **WHIMSLEY** Estrogen-only and estrogen plus progestin trial Espeland, 2013¹¹⁹ | 696 Hormone therapy 630 Placebo | NR | NR | NR | NR | Followup: 7.2 years postintervention
Verbal fluency 18.90 (estrogen: SE, 0.33) vs. 19.91 (placebo: SE, 0.34)
No other differences between groups for Telephone Interview for Cognitive Status–Modified, East Boston Memory Test, Verbal Memory, Attention, Executive Function, Working Memory, Composite |
| **WHIMSLEY** Estrogen-only and estrogen plus progestin trial Espeland, 2013¹¹⁹ | 696 Hormone therapy 630 Placebo | NR | NR | NR | NR | Followup: 7.2 years
Verbal fluency 21.04 (estrogen plus progestin: SE, 0.25) vs. 20.65 (placebo: SE, 0.27)
No other differences between groups for Telephone Interview for Cognitive Status–Modified, East Boston Memory Test, Verbal Memory, Attention, Executive Function, Working Memory, Composite |
| **WHISCA** Estrogen-only trial Resnick, 2009¹²¹; Espeland, 2010¹²⁰ | Dementia outcomes, WHISCA¹²¹ 434 Estrogen 452 Placebo
Cognitive measures, WHISCA extension¹²⁰ 601 Hormone therapy 612 Placebo | Followup: 2.7 years (during WHISCA, after being enrolled in WHI for 3 years)¹²¹
4 (0.9%) vs. 2 (0.4%); calculated RR, 2.08 (95% CI, 0.38 to 11.31); p=0.40 | Followup: 2.7 years (during WHISCA, after being enrolled in WHI for 3 years)¹²¹
18 (4.1%) vs. 15 (3.3%); calculated RR, 1.25 (95% CI, | | | Followup: Mean 2.4
Verbal knowledge -0.100 (SE, 0.051); p=0.05
Verbal fluency -0.118 (SE, 0.054); p=0.03
Figural memory -0.132 (SE, 0.048); |
Appendix G Table 8. Evidence Table of Trials Reporting Incidence of Cognitive Function and Dementia

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
<th>Other Dementia Diagnosis Outcomes</th>
<th>3MS Scores</th>
<th>Other Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHISCA Estrogen plus progestin trial</td>
<td>Probable dementia or cognitive impairment, WHIMS, 2006; Estrogen plus progestin, 726 Placebo</td>
<td>Followup: 1.4 years (during WHISCA, after being enrolled in WHI for 3 years) 5 (0.7%) vs. 6 (0.8%); calculated RR, 0.88 (95% CI, 0.27 to 2.86); p=0.83</td>
<td>Followup: 1.4 years (during WHISCA, after being enrolled in WHI for 3 years) 6 (0.9%) vs. 13 (1.8%); calculated RR, 0.49 (95% CI, 0.19 to 1.27); p=0.14</td>
<td>NR</td>
<td>Followup: Mean 2 years (during WHISCA, after being enrolled in WHI for 3 years)</td>
</tr>
<tr>
<td></td>
<td>Cognitive measures, WHISCA extension, 601 Hormone therapy 612 Placebo</td>
<td>Followup: Mean 2 years (during WHISCA, after being enrolled in WHI for 3 years)</td>
<td>Followup: Mean 4 years posttrial (after being enrolled in WHI for 3 years and in WHISCA for 2 years)</td>
<td></td>
<td>Spatial ability, verbal knowledge, verbal fluency, verbal memory, figural memory, attention and working memory not statistically significant at p=0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Followup: Mean 3 years (pre-WHISCA, 2 years during WHISCA trial)</td>
<td></td>
<td></td>
<td>Spatial ability, verbal knowledge, verbal fluency, verbal memory, figural memory, attention and working memory not statistically significant at p=0.05</td>
</tr>
</tbody>
</table>
Appendix G Table 8. Evidence Table of Trials Reporting Incidence of Cognitive Function and Dementia

*Intervention dosages are listed in Table 3 by trial.

Abbreviations: 3MS = Modified Mini-Mental State Examination; CI = confidence interval; EMS = Estrogen Memory Study; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; MCI = mild cognitive impairment; NR = not reported; NS = not significant; PD = probable dementia; RR = relative risk; SD = standard deviation; SE = standard error; ULTRA = Ultra-Low-Dose Transdermal Estrogen Replacement Assessment; WHI = Women’s Health Initiative; WHIMS = Women’s Health Initiative Memory Study; WHIMSY = Women’s Health Initiative Memory Study of Younger Women; WHISCA = Women’s Health Initiative Study of Cognitive Aging.
Appendix G Table 9. Evidence Table of Trials Reporting Incidence of Diabetes

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment a vs. Placebo)</th>
<th>Followup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenspan, et al Estrogen-only and estrogen plus progestin trial Greenspan, 2005</td>
<td>66 Estrogen 121 Estrogen plus progestin 186 Placebo</td>
<td>Analysis did not stratify by regimen 2 (1.1%) vs. 6 (3.2%); p=0.17</td>
<td>3 years</td>
</tr>
<tr>
<td>HERS Estrogen plus progestin trial Kanaya, 2003</td>
<td>Women without self-reported diabetes at baseline 999 Estrogen plus progestin 1,030 Placebo</td>
<td>Overall 62 (6.2%) vs. 98 (9.5%); NNT, 30 (95% CI, 18 to 103); p=0.006 Of those with normal glucose at baseline 38/904 (4.2%) vs. 52/907 (5.7%); p=0.13 Of those with impaired fasting glucose at baseline 24/95 (25.3%) vs. 46/123 (37.4%); p=0.06 Risk for incident diabetes HR, 0.65 (95% CI, 0.48 to 0.89)</td>
<td>Mean 4.1 years</td>
</tr>
<tr>
<td>WHI Estrogen-only trial Bonds, 2006; Manson, 2013</td>
<td>Women not receiving treatment for diabetes at baseline 4,900 Estrogen 5,017 Placebo</td>
<td>Overall 449 (9.2%) vs. 527 (10.5%); HR, 0.86 (95% CI, 0.76 to 0.98); p=0.02 Of those who adhered to ≥80% of medication HR, 0.73 (95% CI, 0.60 to 0.88) Subgroups: No significant difference by race/ethnicity, age at screening, hypertension, or metabolic syndrome at baseline</td>
<td>Median 6.6 years postintervention</td>
</tr>
<tr>
<td>WHI Estrogen plus progestin trial Margolis, 2004; Manson, 2013</td>
<td>Women not receiving treatment for diabetes at baseline 8,132 Estrogen plus progestin 7,742 Placebo</td>
<td>Overall 328 (4.0%) vs. 373 (4.8%); HR, 0.81 (95% CI, 0.70 to 0.94); p=0.005 Subgroups: No significant difference by race/ethnicity, age at screening, or hypertension at baseline</td>
<td>Median 8.2 years postintervention</td>
</tr>
</tbody>
</table>

* Intervention dosages are listed in Table 3 by trial.

Abbreviations: CI = confidence interval; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; NNT = number needed to treat; RR = relative risk; WHI = Women’s Health Initiative.
Appendix G Table 10. Evidence Table of Trials Reporting Incidence of Fractures

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
</table>
| **EMS Estrogen plus progestin trial** Tierney 2009⁵⁹ | 70 Estrogen plus progestin 72 Placebo | **Followup: 2 years**
Hip fractures: 0 (0.0%) vs. 1 (1.4%) |
| **EPHT Estrogen plus progestin trial** Veerus, 2006⁵¹ | 404 Estrogen plus progestin 373 Placebo | **Followup: 5 years**
Bone fractures⁶
15 (3.7%) vs. 25 (6.7%) HR, 0.52 (95% CI, 0.27 to 0.98) |
| **ERA Estrogen-only and estrogen plus progestin trial** Herrington 2000⁶² | 100 Estrogen 104 Estrogen plus progestin 105 Placebo | **Followup: 3.2 years**
Fractures (all sites)
6 (6.0%) vs. 7 (6.7%) vs. 15 (14.3%)
Estrogen: Calculated RR, 0.42 (95% CI, 0.17 to 1.04); p=0.06
Estrogen plus progestin: Calculated RR, 0.47 (95% CI, 0.24 to 1.11); p=0.09 |
| **HERS Estrogen plus progestin trial** Hulley, 2002⁵⁸ | 1,380 Estrogen plus progestin 1,383 Placebo | **Followup: Mean 4.1 years**
Hip
15 vs. 13; HR, 1.16 (95% CI, 0.55 to 2.44); p=0.69
Wrist
29 vs. 29; HR, 1.01 (95% CI, 0.60 to 1.68); p=0.98
Vertebral
14 vs. 19; HR, 0.74 (95% CI, 0.37 to 1.48); p=0.40
Other
91 vs. 101; HR, 0.91 (95% CI, 0.69 to 1.21); p=0.52
Any
140 vs. 148; HR, 0.96 (95% CI, 0.76 to 1.20); p=0.70 |
| **STOP-IT Estrogen plus progestin trial** Gallagher 2001⁷⁵ | 121 Hormone therapy 122 Hormone therapy plus calcitriol 123 Calcitriol only 123 Placebo | **Followup: 3 years**
Vertebral fractures
Analysis did not stratify by regimen
2 (hormone therapy with or without calcitriol) vs. 1 (calcitriol only or placebo) |
| **WHI Estrogen-only trial** LaCroix, 2011¹¹² Anderson, 2004⁸¹ Manson, 2013¹⁰² | 5,310 Estrogen 5,429 Placebo
Postintervention followup: 3,778 Estrogen 3,867 Placebo | **Followup time: Median 7.2 years**
Vertebral
44 (0.8%) vs. 70 (1.3%); HR, 0.64 (95% CI, 0.44 to 0.93)
Hip
48 (0.9%) vs. 74 (1.4%); HR, 0.67 (95% CI, 0.46 to 0.96)
Total
544 (10.2%) vs. 767 (14.1%); HR, 0.72 (95% CI, 0.64 to 0.80)
Subgroups:
No significant difference by age
Followup: Mean 5.9 years¹¹²
Hip fractures
HR, 0.67 (95% CI, 0.46 to 0.96) |
Appendix G Table 10. Evidence Table of Trials Reporting Incidence of Fractures

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHI Estrogen plus progestin trial<sup>a</sup></td>
<td>8,506 Estrogen plus progestin 8,102 Placebo</td>
<td>Followup: Mean 10.7 years postintervention<sup>112</sup></td>
</tr>
<tr>
<td>Heiss, 2008<sup>92</sup>, Cauley, 2003<sup>83</sup>, Rossouw, 2002<sup>23</sup></td>
<td></td>
<td>Hip fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.27 (95% CI, 0.88 to 1.82)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cumulative followup: Median 13.0 years<sup>112</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hip fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 0.92 (95% CI, 0.71 to 1.18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subgroups:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No significant difference by age</td>
</tr>
<tr>
<td>Postintervention followup: 8,052 Estrogen plus progestin 7,678 Placebo</td>
<td>Followup: Mean 5.6 years<sup>92,102</sup></td>
<td>Hip fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53 vs. 75; HR, 0.67 (95% CI, 0.47 to 0.96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertebral fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56 vs. 78; HR, 0.68 (95% CI, 0.48 to 0.96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other osteoporotic fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>650 vs. 800; HR, 0.75 (95% CI, 0.68 to 0.83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total (hip, vertebral, or other osteoporotic fractures)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>741 vs. 903; HR, 0.76 (95% CI, 0.69 to 0.83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Followup: Mean 2.4 years postintervention<sup>92</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hip fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 0.92 (95% CI, 0.64 to 1.34)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertebral fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 0.96 (95% CI, 0.64 to 1.44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other osteoporotic fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 0.87 (95% CI, 0.74 to 1.03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total (hip, vertebral, or other osteoporotic fractures)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 0.91 (95% CI, 0.78 to 1.06)</td>
</tr>
</tbody>
</table>

^a Intervention dosages are listed in Table 3 by trial.

^b Bone fractures defined as diagnoses Sx2 (x=1-9) according to ICD-10 (fracture of neck, fractures of ribs, sternum and thoracic spine, fracture of lumbar spine and pelvis, fracture of shoulder and upper arm, fracture of forearm, fracture at wrist and hand level, fracture of femur, fracture of lower leg, including ankle).

Abbreviations: CI = confidence interval; EMS = Estrogen Memory Study; EPHT = Estonian Postmenopausal Hormones Therapy Trial; ERA = Estrogen Replacement and Atherosclerosis Trial; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; RR = relative risk; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WHI = Women’s Health Initiative.
Appendix G Table 12. Evidence Table of Trials Reporting Incidence of Stroke

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenspan, et al Estrogen-only and estrogen plus progestin trial Greenspan, 2005<sup>65</sup></td>
<td>66 Estrogen 121 Estrogen plus progestin 186 Placebo</td>
<td>Follow-up: 3 years Gallstones Analysis did not stratify by regimen 1 (0.5%) vs. 1 (0.5%)</td>
</tr>
<tr>
<td>PEPI Estrogen-only and estrogen plus progestin trial PEPI, 1995<sup>74</sup></td>
<td>175 Estrogen only 174 Estrogen plus progestin (cyclic) 174 Estrogen plus progestin (continuous) 178 Estrogen plus progestin (micronized) 174 Placebo</td>
<td>Followup: 3 years Gallbladder disease 2 (estrogen: 1.1%) vs. 9 (estrogen plus progestin: 2.6%) vs. 4 (estrogen plus micronized progestin: 2.2%) vs. 2 (placebo: 1.1%)</td>
</tr>
<tr>
<td>STOP-IT Estrogen-only and estrogen plus progestin trial Gallagher, 2001<sup>75</sup></td>
<td>121 Hormone therapy 122 Hormone therapy plus calcitriol 123 Calcitriol only 123 Placebo</td>
<td>Followup: 3 years Gallstones or cholecystitis Analysis did not stratify by regimen 8 (hormone therapy with or without calcitriol: 3.3%) vs. 3 (calcitriol only or placebo: 1.2%)</td>
</tr>
<tr>
<td>WHI Estrogen-only trial Cirillo, 2005<sup>88</sup> LaCroix, 2011;<sup>112</sup> Manson, 2013<sup>102</sup></td>
<td>Women without cholecystectomy or gallbladder disease at baseline 4,141 Estrogen 4,235 Placebo</td>
<td>Followup: Mean 7.1 years<sup>88</sup> Gallbladder event incidence 228 (5.5%) vs. 143 (3.4%); HR, 1.67 (95% CI, 1.35 to 2.06); p<0.001 Cholecystectomy 192 (4.6%) vs. 104 (2.6%); HR, 1.93 (95% CI, 1.52 to 2.44); p<0.001 Global gallbladder disease 223 (5.4%) vs. 130 (3.1%); HR, 1.79 (95% CI, 1.44 to 2.22); p<0.001 Cholecystitis 186 (4.5%) vs. 107 (2.5%); HR, 1.80 (95% CI, 1.42 to 2.28); p<0.001 Subgroups:<sup>88</sup> No significant difference by age Followup: Median 6.6 years postintervention<sup>102</sup> Gallbladder disease HR, 0.98 (95% CI, 0.68 to 1.41); p=0.92</td>
</tr>
<tr>
<td>WHI Estrogen plus progestin trial Cirillo, 2005<sup>88</sup> Manson, 2013<sup>102</sup></td>
<td>Women without cholecystectomy or gallbladder disease at baseline 7,308 Estrogen plus progestin 6,895 Placebo</td>
<td>Followup: Mean 5.6 years<sup>88</sup> Gallbladder event incidence 228 (3.1%) vs. 135 (2.0%); HR, 1.59 (95% CI, 1.28 to 1.97); p<0.001 Cholecystectomy 190 (2.6%) vs. 107 (1.6%); HR, 1.67 (95% CI, 1.32 to 2.11); p<0.001 Global gallbladder disease 223 (3.1%) vs. 130 (1.9%); HR, 1.61 (95% CI, 1.30 to 2.00); p<0.001 Cholecystitis 192 (2.6%) vs. 117 (1.7%); HR, 1.54 (95% CI, 1.22 to 1.94); p<0.001 Subgroups:<sup>88</sup> No significant difference by age</td>
</tr>
</tbody>
</table>
Appendix G Table 12. Evidence Table of Trials Reporting Incidence of Stroke

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Followup: Median 8.2 years postintervention(^a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gallbladder disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.24 (95% CI, 1.01 to 1.52); p=0.04</td>
</tr>
</tbody>
</table>

\(^a\) Intervention dosages are listed in Table 3 by trial.

Abbreviations: CI = confidence interval; HR = hazard ratio; PEPI = Postmenopausal Estrogen/Progestin Interventions; RR = relative risk; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WHI = Women’s Health Initiative.
Appendix G Table 12. Evidence Table of Trials Reporting Incidence of Stroke

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
</table>
| **EMS Estrogen plus progestin trial** Tierney, 2000 | 70 Estrogen plus progestin 72 Placebo | **Follow-up: 2 years**
Intracerebral hemorrhage
1 (1.4%) (fatal) vs. 0; p=NS
Transient ischemic attack
1 (1.4%) vs. 1 (1.4%); p=NS |
| **EPAT Estrogen-only trial** Hodis, 2001 | 111 Estrogen 111 Placebo | **Follow-up: 2 years**
Cerebrovascular accidents
0 vs. 1 |
| **EPHT Estrogen plus progestin trial** Veerus, 2006 | 404 Estrogen plus progestin 373 Placebo | **Follow-up: Mean 3.4 years**
Any cerebrovascular disease
23 (5.7%) vs. 9 (2.4%); HR, 2.46 (95% CI, 1.14 to 5.34)
Stroke
1 (0.2%) vs 1 (0.3%); HR, 1.06 (95% CI,0.07 to 17.2) |
| **ERA Estrogen-only and estrogen plus progestin trial** Herrington, 2000 | Women with angiographically verified coronary disease 100 Estrogen 104 Estrogen plus progestin 105 Placebo | **Follow-up: Mean 3.2 years**
Stroke or transient ischemic attack
5 vs. 6 vs. 6; p=1.0 |
| **STOP-IT Estrogen-only and estrogen plus progestin trial** Gallagher, 2001 | 121 Hormone therapy 122 Hormone therapy plus calcitriol 123 Calcitriol only 123 Placebo | **Follow-up: Mean 3 years**
Cerebrovascular accidents
Analysis did not stratify by regimen
10 (hormone therapy with or without calcitriol) vs. 7 (calcitriol only or placebo) |
| **WAVE Estrogen-only and estrogen plus progestin trial** Waters, 2002 | Women with a coronary stenosis of 15%–75% 124 Estrogen (with or without vitamin C and E) 86 Estrogen plus progestin (with or without vitamin C and E) 213 Placebo (with or without vitamin C and E) | **Follow-up: Mean 2.8 years**
Stroke
Analysis did not stratify by regimen
9 (4.3%) vs. 4 (1.9%); p=0.17 |
| **WHI Estrogen-only trial** Hendrix, 2006; LaCroix, 2011; Manson, 2013; Prentice, 2009 | 5,310 Estrogen 5,429 Placebo
Postintervention followup: 3,778 Estrogen 3,867 Placebo | **Follow-up: Median 7.2 years**
All stroke
169 (3.2%) vs. 129 (2.4%); HR, 1.35 (95% CI, 1.07 to 1.70); p=0.01
Subgroups:
No significant difference by race or ethnicity, age, prior CVD, diabetes, hypertension
Risk for stroke based on timing of intervention:
No significant association; p=0.96 for gap time interaction
Follow-up: Mean 3.9 years postintervention
All stroke
HR, 0.89 (95% CI, 0.64 to 1.24) |
Appendix G Table 12. Evidence Table of Trials Reporting Incidence of Stroke

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
</table>
| **WHI Estrogen plus progestin trial** Wassertheil-Smoller, 2003;\(^b\) Heiss, 2008;\(^c\) Cushman, 2004;\(^d\) Manson, 2013\(^e\) | 8,506 Estrogen plus progestin 8,102 Placebo Postintervention followup: 8,052 Estrogen plus progestin 7,678 Placebo | **Cumulative followup: Median 13.0 years**
All stroke
HR, 1.15 (95% CI, 0.97 to 1.37)
Followup: Mean 5.6 years
All stroke\(^f\)
159 (1.9%) vs. 109 (1.3%); HR, 1.37 (95% CI, 1.07 to 1.76)
Ischemic stroke\(^g\)
125 vs. 81; HR, 1.44 (95% CI, 1.09 to 1.90)
Hemorrhagic stroke\(^g\)
18 vs. 20; HR, 0.82 (95% CI, 0.43 to 1.56)
Subgroups:
No significant difference by race/ethnicity, age, diabetes, or hypertension
Risk for stroke based on timing of intervention:\(^h\)
No significant association; p=1.00 for gap time interaction
Followup: Mean 2.4 years postintervention\(^i\)
All Stroke
HR, 1.04 (95% CI, 0.89 to 1.23)
Cumulative followup: Median 13.2 years\(^i\)
All stroke
HR, 1.16 (95% CI, 1.00 to 1.35) |

\(^a\) Intervention dosages are listed in Table 3 by trial.
\(^b\) Unopposed micronized 17β-estradiol (1mg/d).
\(^c\) Defined as diagnoses of one of the following (ICD-10 or 160-169 codes): subarachnoid hemorrhage, intracerebral hemorrhage, cerebral infarction, stroke, occlusion and stenosis of precerebral arteries, occlusion and stenosis of cerebral arteries, other cerebrovascular diseases, cerebrovascular disorders, sequelae of cerebrovascular disease.

Abbreviations: CI = confidence interval; CVD = cardiovascular disease; EMS = Estrogen Memory Study; EPAT = Estrogen in the Prevention of Atherosclerosis; EPHT = Estonian Postmenopausal Hormone Therapy Trial; ERA = Effects of Estrogen Replacement on the Progression of Coronary-Artery Atherosclerosis; HR = hazard ratio; RR = relative risk; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WAVE = Women’s Angiographic Vitamin and Estrogen Trial; WHI = Women’s Health Initiative.
Appendix G Table 13. Evidence Table of Trials Reporting Incidence of Urinary Incontinence

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERS Estrogen plus progestin trial
Steinauer, 2005(^1)</td>
<td>Women reporting no episodes of incontinence in the past week at baseline
597 Estrogen plus progestin
611 Placebo</td>
<td>Followup: 4.2 years
Weekly urinary incontinence
382 vs. 302, OR, 1.6 (95% CI, 1.3 to 1.9); p<0.001
Stress urinary incontinence
OR, 1.7 (95% CI, 1.5 to 2.1); p<0.001
Urge urinary incontinence
OR, 1.5 (95% CI, 1.2 to 1.8); p<0.001</td>
</tr>
<tr>
<td>ULTRA Estrogen-only trial
Waetjen, 2005(^7)</td>
<td>Women who were continent at baseline
122 Estrogen (calculated)
117 Placebo (calculated)</td>
<td>Followup: 2 years
39.0% vs. 36.8%; OR, 1.2 (95% CI, 0.7 to 2.2); p=0.74</td>
</tr>
<tr>
<td>WHI Estrogen-only trial
Hendrix, 2005(^5)</td>
<td>Women with urinary incontinence data at baseline and 1 year
1,526 Estrogen (all continent at baseline, 96 continent at 1 year)
1,547 Placebo (all continent at baseline, 136 continent at 1 year)</td>
<td>Followup: 1 year
Incident urinary incontinence
557 (36.5%) vs. 368 (23.8%); RR, 1.53 (95% CI, 1.37 to 1.71)
Stress urinary incontinence
266 (17.4%) vs. 131 (8.5%); RR, 2.15 (95% CI, 1.77 to 2.62); p<0.001
Urge urinary incontinence
210 (13.8%) vs. 184 (11.9%); RR, 1.32 (95% CI, 1.10 to 1.58); p=0.003
Mixed urinary incontinence
76 (5.0%) vs. 50 (3.2%); RR, 1.79 (95% CI, 1.26 to 2.53); p=0.001</td>
</tr>
<tr>
<td>WHI Estrogen plus progestin trial
Hendrix, 2005(^5)</td>
<td>Women with urinary incontinence data at baseline and 1 year
2,675 Estrogen plus progestin (all continent at baseline, 153 continent at 1 year)
2,507 Placebo (all continent at baseline, 185 continent at 1 year)</td>
<td>Followup: 1 year
Incident urinary incontinence
834 (31.2%) vs. 563 (22.5%); RR, 1.39 (95% CI, 1.27 to 1.52)
Stress urinary incontinence
429 (16.0%) vs. 218 (8.7%); RR, 1.87 (95% CI, 1.61 to 2.18); p<0.001
Urge urinary incontinence
304 (11.4%) vs. 272 (10.8%); RR, 1.15 (95% CI, 0.99 to 1.34); p=0.06
Mixed urinary incontinence
99 (3.7%) vs. 69 (2.8%); RR, 1.49 (95% CI, 1.10 to 2.01); p=0.01</td>
</tr>
</tbody>
</table>

\(^a\) Intervention dosages are listed in Table 3 by trial.

Abbreviations: CI = confidence interval; HERS = Heart and Estrogen/Progestin Replacement Study; OR = odds ratio; RR = relative risk; ULTRA = Ultra Low-Dose Transdermal Estrogen Replacement Assessment; WHI = Women’s Health Initiative.
<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS Estrogen plus progestin trial Tierney, 2000<sup>59</sup></td>
<td>70 Estrogen plus progestin 72 Placebo</td>
<td>Followup: 2 years Deep vein thrombosis 1 vs. 0; p=NS</td>
</tr>
<tr>
<td>EPAT Estrogen-only trial Hodis, 2001<sup>60</sup></td>
<td>111 Estrogen 111 Placebo</td>
<td>Followup: 2 years Deep vein thrombosis or pulmonary embolism 0 (0.0%) vs. (0.0%)</td>
</tr>
<tr>
<td>EPHT Estrogen plus progestin trial Veerus, 2006<sup>61</sup></td>
<td>404 Estrogen plus progestin 373 Placebo</td>
<td>Followup: Mean 3.4 years Venous thromboembolism 0 (0.0%) vs. 0 (0.0%)</td>
</tr>
<tr>
<td>ERA Estrogen-only and estrogen plus progestin trial Herrington, 2000<sup>62</sup></td>
<td>100 Estrogen 104 Estrogen plus progestin 105 Placebo</td>
<td>Followup: 3.2 years 1 vs. 0 vs. 0; p=0.35</td>
</tr>
<tr>
<td>Greenspan, et al Estrogen-only and estrogen plus progestin trial Greenspan, 2005<sup>65</sup></td>
<td>66 Estrogen 121 Estrogen plus progestin 186 Placebo</td>
<td>Followup: 3 years Deep vein thrombosis Analysis did not stratify by regimen 2 vs. 1; p=1.0</td>
</tr>
<tr>
<td>STOP-IT Estrogen-only and estrogen plus progestin trial Gallagher, 2001<sup>18</sup></td>
<td>121 Hormone therapy 122 Hormone therapy plus calcitriol 123 Calcitriol only 123 Placebo</td>
<td>Followup: 3 years Deep vein thrombosis Analysis did not stratify by regimen 4 (hormone therapy with or without calcitriol) vs. 1 (calcitriol only or placebo)</td>
</tr>
<tr>
<td>WAVE Estrogen-only and estrogen plus progestin trial Waters, 2002<sup>80</sup></td>
<td>Women with a coronary stenosis of 15%–75% 124 Estrogen (with or without vitamin C and E) 86 Estrogen plus progestin (with or without vitamin C and E) 213 Placebo (with or without vitamin C and E)</td>
<td>Followup: 2.8 years Deep vein thrombosis or pulmonary embolism Analysis did not stratify by treatment regimen 4 vs. 4; p=0.93</td>
</tr>
<tr>
<td>WHI Estrogen-only trial LaCroix, 2011;<sup>112</sup> Curb, 2006;<sup>109</sup> Prentice, 2005;<sup>98</sup> Manson, 2013<sup>102</sup></td>
<td>5,310 Estrogen 5,429 Placebo Postintervention followup: 3,778 Estrogen 3,867 Placebo</td>
<td>Followup: Mean 7.1 years<sup>102, 112</sup> Deep vein thrombosis 85 (1.6%) vs. 59 (1.0%); HR, 1.48 (95% CI, 1.06 to 2.07); p=0.02 Pulmonary embolism 52 (0.98%) vs. 39 (0.72%); HR, 1.35 (95% CI, 0.89 to 2.05); p=0.15 Subgroups;<sup>109</sup> No significant difference by race or ethnicity, age, or history of CVD Risk for venous thromboembolism based on timing of intervention:<sup>98</sup> No significant association; p=0.65 for gap time interaction Followup: Mean 3.9 years postintervention<sup>112</sup> Deep vein thrombosis HR, 0.63 (95% CI, 0.41 to 0.98); p=0.003</td>
</tr>
</tbody>
</table>
Appendix G Table 14. Evidence Table of Trials Reporting Incidence of Venous Thromboembolism

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 0.98 (95% CI, 0.62 to 1.55); p=0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cumulative followup: Median 13.0 years(^102)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep vein thrombosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 1.05 (95% CI, 0.82 to 1.33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.15 (95% CI, 0.87 to 1.51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep vein thrombosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.05 (95% CI, 0.82 to 1.33)</td>
</tr>
<tr>
<td>WHI Estrogen plus progestin trial</td>
<td>8,506 Estrogen plus progestin</td>
<td>Followup: Median 5.6 years</td>
</tr>
<tr>
<td>Heiss, 2008,(^92) Cushman, 2004,</td>
<td>8,102 Placebo</td>
<td>Venous thrombosis</td>
</tr>
<tr>
<td>(^90) Manson, 2013,(^102)</td>
<td>Postintervention followup:</td>
<td>167 vs. 76; HR, 2.06 (95% CI, 1.57 to 2.70)</td>
</tr>
<tr>
<td>Prentice, 2009(^98)</td>
<td>8,052 Estrogen plus progestin</td>
<td>Deep vein thrombosis</td>
</tr>
<tr>
<td></td>
<td>7,678 Placebo</td>
<td>122 (1.4%) vs. 61 (0.8%); HR, 1.87 (95% CI, 1.37 to 2.54); p<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87 (1.0%) vs. 41 (0.5%); HR, 1.98 (95% CI, 1.36 to 2.87); p<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subgroups:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No significant difference by age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk for venous thromboembolism based on timing of intervention:(^98)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No significant association; p=0.45 for gap time interaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Followup: Mean 2.4 years postintervention(^92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep vein thrombosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.07 (95% CI, 0.66 to 1.75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 1.07 (95% CI, 0.62 to 1.86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cumulative Followup: Median 13.0 years(^89, 92, 102)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep vein thrombosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.05 (95% CI, 0.82 to 1.33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR, 1.15 (95% CI, 0.87 to 1.51)</td>
</tr>
</tbody>
</table>

\(^a\) Intervention dosages are listed in Table 3 by trial.

Abbreviations: CI = confidence interval; CVD = cardiovascular disease; EMS = Estrogen Memory Study; EPAT = Estrogen in the Prevention of Atherosclerosis; EPHT = Estonian Postmenopausal Hormone Therapy Trial; ERA = Effects of Estrogen Replacement on the Progression of Coronary-Artery Atherosclerosis; HR = hazard ratio; NS = not significant; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WAVE = Women’s Angiographic Vitamin and Estrogen Trial; WHI = Women’s Health Initiative.
Appendix G Table 15. Evidence Table of Trials Reporting Incidence of Quality of Life

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment(^a) vs. Placebo)</th>
</tr>
</thead>
</table>
| **WHI Estrogen-only trial**
Manson, 2013\(^{102}\) | 5,310 Estrogen
5,429 Placebo | **Followup: Mean 7.1 years**\(^{102}\)
RAND 36: Similar scores on all items except for emotional role (81.0 vs. 82.2; p=0.04) and social functioning (85.8 vs. 86.9; p=0.01), for which women taking placebo had statistically significantly better scores than women taking estrogen-only therapy |
| **WHI Estrogen plus progestin trial**
Manson, 2013;\(^{102}\)
Hays, 2003\(^91\) | 8,506 Estrogen plus progestin
8,102 Placebo | **Followup: Mean 5.6 years**\(^{102}\)
RAND 36: Similar scores on all items except for physical functioning (82.6 vs. 81.8; p<0.001), physical role (77.4 vs. 76.2; p=0.02), bodily pain (77.6 vs. 75.6; p<0.001), and general health (76.6 vs. 76.1; p=0.02), for which women taking hormone therapy had statistically significantly better scores than women taking placebo |

\(^a\) Intervention dosages are listed in Table 3 by trial.

Abbreviation: WHI = Women’s Health Initiative.
<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA Estrogen-only and estrogen plus progestin trial</td>
<td>100 Estrogen 104 Estrogen plus progestin 105 Placebo</td>
<td>Followup: Mean 3.2 years 8 (8.0%) vs. 3 (2.9%) vs. 6 (5.7%); p=0.28</td>
</tr>
<tr>
<td>Herrington, 2000</td>
<td>513 Estrogen 504 Placebo</td>
<td>Followup: 2 years 32 (6.2%) vs. 39 (7.7%); Rate ratio, 0.79 (95% CI, 0.50 to 1.27); p=0.34</td>
</tr>
<tr>
<td>ESPRIT Estrogen-only trial Cherry, 2002; Cherry, 2014</td>
<td>513 Estrogen 504 Placebo</td>
<td>Cumulative followup: Mean 14.1 years 64 HR, 1.07 (95% CI, 0.88 to 1.29)</td>
</tr>
<tr>
<td>HERS Estrogen plus progestin trial</td>
<td>1,380 Estrogen plus progestin 1,383 Placebo Cumulative followup: 1,156 Estrogen plus progestin 1,383 Placebo</td>
<td>Followup: Mean 4.1 years 130 (9.4%) vs. 123 (8.9%); HR, 1.06 (95% CI, 0.83 to 1.36); p=0.62</td>
</tr>
<tr>
<td>Hulley, 2002</td>
<td>121 Hormone therapy 122 Hormone therapy plus calcitriol 123 Calcitriol only 123 Placebo</td>
<td>Followup: 3 years Analysis did not stratify by regimen 3 (hormone therapy with or without calcitriol: 1.2%) vs. 2 (calcitriol only or placebo: 0.8%)</td>
</tr>
<tr>
<td>STOP-IT Estrogen-only and estrogen plus progestin trial</td>
<td>124 Estrogen (with or without vitamin C and E) 86 Estrogen plus progestin (with or without vitamin C and E) 213 Placebo (with or without vitamin C and E)</td>
<td>Followup: Mean 2.8 years Analysis did not stratify by treatment regimen 14 (6.7%) vs. 8 (3.8%)</td>
</tr>
<tr>
<td>Gallagher, 2001</td>
<td>5,310 Estrogen 5,429 Placebo</td>
<td>Followup: Mean 7.1 years 300 (5.6%) vs. 297 (5.5%); HR, 1.04 (95% CI, 0.89 to 1.22)</td>
</tr>
<tr>
<td>WHI Estrogen-only trial</td>
<td>5,310 Estrogen 5,429 Placebo</td>
<td>Subgroups:</td>
</tr>
<tr>
<td>LaCroix, 2011; Manson, 2013; Prentice, 2009</td>
<td>In women ages 50–59 years at randomization: HR, 0.73 (95% CI, 0.53 to 1.00) In women ages 60–69 years at randomization: HR, 1.04 (95% CI, 0.88 to 1.24) In women ages 70–79 years at randomization: HR, 1.12 (95% CI, 0.94 to 1.33) p=0.04 for trend</td>
<td></td>
</tr>
<tr>
<td>Risk for death based on timing of intervention:</td>
<td>98 In women without prior HT use No significant association; p=0.14 for gap time interaction</td>
<td></td>
</tr>
<tr>
<td>Followup: Mean 3.9 years postintervention</td>
<td>HR, 1.00 (95% CI, 0.84 to 1.18)</td>
<td></td>
</tr>
<tr>
<td>Cumulative followup: Mean 10.7 years</td>
<td>HR, 1.02 (95% CI, 0.91 to 1.15)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix G Table 16. Evidence Table of Trials Reporting Incidence of All-Cause Mortality

<table>
<thead>
<tr>
<th>Study Author, Year</th>
<th>Population</th>
<th>Results (Treatment vs. Placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHI Estrogen plus progestin trial</td>
<td>8,506 Estrogen plus progestin 8,102 Placebo</td>
<td>Followup: Mean 5.6 (weighted mean 5.2) years 250 (2.9%) vs. 239 (2.9%); HR, 0.97 (95% CI, 0.81 to 1.16)</td>
</tr>
<tr>
<td>Heiss, 2008;92 Manson, 2013;102 Prentice, 200998</td>
<td></td>
<td>Risk for death based on timing of intervention: No significant association; p=0.36 for gap time interaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Followup: Mean 2.4 years postintervention 92 HR, 1.15 (95% CI, 0.95 to 1.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Of those who adhered to ≥80% of medication 92 HR, 1.53 (95% CI, 1.04 to 2.24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Followup: Median 8.2 years postintervention 102 HR, 1.01 (95% CI, 0.91 to 1.11); p=0.90</td>
</tr>
</tbody>
</table>

* Intervention dosages are listed in Table 3 by trial.

Abbreviations: CI = confidence interval; ERA = Estrogen Replacement and Atherosclerosis Trial; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HERS = Heart and Estrogen/Progestin Replacement Study; HR = hazard ratio; HT = hormone therapy; STOP-IT = Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection; WAVE = Women’s Angiographic Vitamin and Estrogen Trial; WHI = Women’s Health Initiative.
Appendix H Figure 1. Forest Plot of Meta-Analyses: Estrogen Only, Coronary Heart Disease

<table>
<thead>
<tr>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Risk ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk ratio</td>
<td>Lower limit</td>
</tr>
<tr>
<td>WH II (Hsia, 2006)</td>
<td>0.95</td>
<td>0.78</td>
</tr>
<tr>
<td>EPAT (Hodis, 2001)</td>
<td>0.50</td>
<td>0.05</td>
</tr>
<tr>
<td>PEPI (1995)</td>
<td>2.98</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Random effects meta analysis; I-squared 0%

Abbreviations: CI = confidence interval; EPAT = Estrogen in the Prevention of Atherosclerosis Trial; HT = hormone therapy; PEPI = Postmenopausal Estrogen/Progestin Interventions; WHI = Women’s Health Initiative.
Appendix H Figure 2. Forest Plot of Meta-Analyses: Estrogen Only, All-Cause Mortality

<table>
<thead>
<tr>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Risk ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk ratio</td>
<td>Lower limit</td>
</tr>
<tr>
<td>WHI II (LaCroix, 2011)</td>
<td>1.03</td>
<td>0.88</td>
</tr>
<tr>
<td>ESPRIT (Cherry, 2002)</td>
<td>0.81</td>
<td>0.51</td>
</tr>
<tr>
<td>ERA (Herrington, 2000)</td>
<td>1.40</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>1.01</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Random effects meta analysis; I-squared 0%

Abbreviations: CI = confidence interval; ERA = Estrogen Replacement and Atherosclerosis Study; ESPRIT = Oestrogen in the Prevention of Reinfarction Trial; HT = hormone therapy; WHI = Women’s Health Initiative.
Study name

<table>
<thead>
<tr>
<th>Risk ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>HT</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHI (Manson, 2003)</td>
<td>1.22</td>
<td>0.98</td>
<td>1.51</td>
<td>188 / 8506</td>
</tr>
<tr>
<td>PEPI (1995)</td>
<td>2.92</td>
<td>0.16</td>
<td>53.96</td>
<td>4 / 526</td>
</tr>
<tr>
<td>EPHT (Veerus, 2006)</td>
<td>4.62</td>
<td>0.22</td>
<td>95.86</td>
<td>2 / 404</td>
</tr>
<tr>
<td></td>
<td>1.23</td>
<td>1.00</td>
<td>1.52</td>
<td>194 / 9436</td>
</tr>
</tbody>
</table>

Random effects meta analysis; I-squared 0%

Abbreviations: CI = confidence interval; EMS = Estrogen Memory Study; EPHT = Estonian Postmenopausal Hormone Therapy Trial; HT = hormone therapy; PEPI = Postmenopausal Estrogen/Progestin Interventions; WHI = Women’s Health Initiative.
Appendix H Figure 4. Forest Plot of Meta-Analyses: Estrogen Plus Progestin, Fractures

<table>
<thead>
<tr>
<th>Study name</th>
<th>Risk ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Fractures / Total</th>
<th>Risk ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA (Herrington 2000)</td>
<td>0.471</td>
<td>0.200</td>
<td>1.108</td>
<td>7 / 104</td>
<td>15 / 105</td>
</tr>
<tr>
<td>EMS (Tierney 2009)</td>
<td>0.343</td>
<td>0.014</td>
<td>0.274</td>
<td>0 / 70</td>
<td>1 / 72</td>
</tr>
<tr>
<td>EPHT (Veerus, 2006)</td>
<td>0.554</td>
<td>0.297</td>
<td>1.034</td>
<td>15 / 404</td>
<td>25 / 373</td>
</tr>
<tr>
<td>HERS I (Hulley, 2002)</td>
<td>0.946</td>
<td>0.762</td>
<td>1.180</td>
<td>140 / 1380</td>
<td>148 / 1383</td>
</tr>
<tr>
<td>WHI (Heiss, 2008)</td>
<td>0.782</td>
<td>0.713</td>
<td>0.857</td>
<td>741 / 8006</td>
<td>903 / 8102</td>
</tr>
<tr>
<td></td>
<td>0.797</td>
<td>0.676</td>
<td>0.939</td>
<td>903 / 10464</td>
<td>1062 / 10035</td>
</tr>
</tbody>
</table>

Random effects meta-analysis: I-squared 28.7%

Abbreviations: CI = confidence interval; EMS = Estrogen Memory Study; EPHT = Estonian Postmenopausal Hormone Therapy Trial; ERA = Estrogen Replacement and Atherosclerosis Study; HERS = Heart and Estrogen Replacement Study; HT = hormone therapy; WHI = Women’s Health Initiative.
Appendix H Figure 5. Forest Plot of Meta-Analyses: Estrogen Plus Progestin, All-Cause Mortality

<table>
<thead>
<tr>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Mortality / Total</th>
<th>Risk ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk ratio</td>
<td>Lower limit</td>
<td>Upper limit</td>
</tr>
<tr>
<td>WHI I (Heiss, 2008)</td>
<td>1.00</td>
<td>0.84</td>
<td>1.19</td>
</tr>
<tr>
<td>HERS (Hulley, 2002)</td>
<td>1.07</td>
<td>0.84</td>
<td>1.35</td>
</tr>
<tr>
<td>ERA (Herrington, 2000)</td>
<td>0.50</td>
<td>0.13</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td>1.01</td>
<td>0.88</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Random effects meta analysis; I-squared 0%

Abbreviations: CI = confidence interval; ERA = Estrogen Replacement and Atherosclerosis Study; HERS = Heart and Estrogen Replacement Study; HT = hormone therapy; WHI = Women’s Health Initiative.