Evidence Synthesis

Number 139

Statins for Prevention of Cardiovascular Disease in Adults: Systematic Review for the U.S. Preventive Services Task Force

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
5600 Fishers Lane
Rockville, MD 20857
www.ahrq.gov

Contract No.: HHSA-290-2012-00015-I, Task Order No. 2
Prepared by:
Pacific Northwest Evidence-Based Practice Center
Oregon Health \& Science University
3181 SW Sam Jackson Park Road
Portland, OR 97239
www.ohsu.edu/epc

Investigators:

Roger Chou, MD, FACP
Tracy Dana, MLS
Ian Blazina, MPH
Monica Daeges, BA
Christina Bougatsos, MPH
Sara Grusing, BS
Thomas L. Jeanne, MD, MPH
AHRQ Publication No. 14-05206-EF-2
December 2015

This report is based on research conducted by the Pacific Northwest Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2012-00015-I, Task Order No. 2). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decisionmakers-patients and clinicians, health system leaders, and policymakers, among others-make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

The final report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

This document is in the public domain and may be used and reprinted without permission except those copyrighted materials that are clearly noted in the document. Further reproduction of those copyrighted materials is prohibited without the specific permission of copyright holders.

None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report.

Acknowledgements

The authors thank AHRQ Medical Officer Jennifer Croswell, MD, MPH, as well as current and former members of the U.S. Preventive Services Task Force who contributed to topic deliberations.

Structured Abstract

Background: Cardiovascular disease (CVD) is the leading cause of mortality and morbidity in the United States, but is potentially preventable with statin therapy. The U.S. Preventive Services (USPSTF) commissioned this review to inform the development of new recommendations on use of statin therapy for prevention of CVD in adults.

Purpose: To evaluate benefits and harms of statin therapy for prevention of CVD in adults without prior cardiovascular events.

Data Sources: We searched the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews, and MEDLINE to November 2015, and manually reviewed reference lists.

Study Selection: Randomized controlled trials on the benefits and harms of statin therapy versus placebo or no statin in adults without prior cardiovascular events.

Data Extraction: One investigator abstracted data and a second investigator checked data abstraction for accuracy. Two investigators independently assessed study quality using methods developed by the USPSTF.

Data Synthesis (Results): Eighteen trials with duration of followup from 6 months to 5 years compared statin therapy versus placebo or no statin. Statin therapy was associated with decreased risk of all-cause mortality (risk ratio [RR] $0.83,95 \%$ CI 0.76 to 0.92 ; absolute risk difference [ARD] -0.41%, number needed to treat [NNT] 244), cardiovascular mortality (RR 0.64, 95\% CI 0.49 to 0.84 ; ARD -0.46%; NNT 217), stroke (RR $0.72,95 \%$ CI 0.61 to 0.84 ; ARD -0.37%, NNT 270), myocardial infarction (RR $0.63,95 \%$ CI 0.56 to 0.71 ; ARD -0.93%, NNT 108) and composite cardiovascular outcomes (RR $0.69,95 \%$ CI 0.61 to 0.77 ; ARD -1.47%, NNT 68). Benefits appeared consistent in subgroups defined by demographic and clinical characteristics, including populations with cardiovascular risk factors without marked hyperlipidemia. Statin therapy was not associated with significantly increased risk of serious adverse events, musclerelated harms, liver-related harms, or diabetes based on pooled analysis. No trial directly compared titrated versus fixed-dose statin therapy. Based on an analysis of individual patient data from randomized trials, greater reductions in low-density lipoprotein cholesterol levels with statin therapy are associated with reduced risk of CVD events, providing some indirect evidence that higher intensity therapy may be associated with better clinical outcomes than lower intensity therapy.

Limitations: Restricted to English language, statistical heterogeneity in some pooled analyses, limited formal assessments for publication bias.

Conclusions: In adults at increased CVD risk but without prior CVD events, statin therapy is associated with reduced risk of all-cause and cardiovascular mortality and CVD events. Benefits appear present across diverse demographic and clinical subgroups, with greater absolute benefits in patients at higher baseline risk, and do not appear to be restricted to patients with marked hyperlipidemia.

Table of Contents

Chapter 1. Introduction 1
Purpose and Previous U.S. Preventive Services Task Force Recommendation 1
Condition Definition 1
Prevalence and Burden of Disease/Illness 2
Etiology and Natural History 2
Risk Factors 3
Rationale for Preventive Treatment 3
Interventions/Treatment 4
Current Clinical Practice 4
Recommendations of Other Groups 5
Chapter 2. Methods 6
Key Questions and Analytic Framework 6
Key Questions 6
Contextual Questions 6
Search Strategies 6
Study Selection 7
Data Abstraction and Quality Rating 7
Data Synthesis 7
External Review 8
Chapter 3. Results 9
Key Question 1a. What Are the Benefits of Treatment With Statins in Reducing the Incidence of CHD- or CVA-Related Morbidity or Mortality, or All-Cause Mortality, in Asymptomatic Adults Without Prior CVD Events? 9
Summary 9
Evidence 9
Key Question 1b. What Are the Benefits of Treatment With Statins That Target LDL Cholesterol vs. Other Treatment Strategies in Adults 40 Years or Older Without Prior CVD Events? 15
Summary 15
Evidence 15
Key Question 1c. Do the Benefits of Treatment With Statins in Adults 40 Years of Age or Older Without Prior CVD Events Vary in Subgroups Defined by Demographic or Clinical Characteristics? 16
Summary 16
Evidence 16
Key Question 2. What Are the Harms of Statins in Adults 40 Years of Age or Older Without Prior CVD Events? 20
Summary 20
Evidence 20
Key Question 3. How Do Benefits and Harms Vary According to Potency of Statin Treatment? 24
Summary 24
Evidence 24
Contextual Question 1. What Is the Comparative Accuracy of Different Cardiovascular Risk Assessment Methods? 25
Contextual Question 2. How Do Lipid Levels Change Over Time in Adults 40 Years of Age or Older? 27
Chapter 4. Discussion 29
Summary of Review Findings 29
Limitations 32
Emerging Issues/Next Steps 33
Relevance for Priority Populations 34
Future Research 34
Conclusions 35
References 36

Figure

Figure 1. Analytic Framework

Tables

Table 1. Statin Dosing and ACC/AHA Classification of Intensity
Table 2. Study Characteristics of Randomized, Controlled Trials of Statins vs. Placebo or No Statin
Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo
Table 4. Sensitivity Analysis: Pooled Estimates for Statins vs. Placebo
Table 5. Statins vs. Placebo: Effects in Subgroups Based on Demographic Characteristics
Table 6. Statins vs. Placebo: Effects in Subgroups Based on Clinical Characteristics
Table 7. Harms of Statins vs. Placebo in Randomized, Controlled Trials
Table 8. Selected Cardiovascular Risk Calculators
Table 9. Summary of Evidence

Appendixes

Appendix A. Detailed Methods
Appendix B. Abbreviations of Trial Names
Appendix C. Evidence and Quality Tables
Appendix D. Meta-Analysis Figures

Chapter 1. Introduction

Purpose and Previous U.S. Preventive Services Task Force Recommendation

This review evaluates benefits and harms of statin therapy for prevention of cardiovascular disease (CVD) in adults without prior cardiovascular events. The U.S. Preventive Services Task Force (USPSTF) has not previously addressed this issue.

Prior USPSTF reviews ${ }^{1-3}$ on lipid screening evaluated evidence on benefits of treatment with statins in patients with lipid disorders, but did not address evidence regarding use of statins in patients at higher cardiovascular risk based on other factors (e.g., 10-year individualized cardiovascular risk assessment, presence of non-lipid cardiovascular risk factors). Prior USPSTF recommendations (last updated in 2008) ${ }^{4}$ focused on who to screen for lipid disorders without addressing specific aspects of treatment, such as use of statins in patients without dyslipidemia, selection of statins, and dosing strategies.

The 2001 USPSTF review on lipid screening found strong, direct evidence that drug therapy reduces coronary heart disease (CHD) events and CHD mortality in middle-aged men (≥ 35 and ≤ 70 years of age) with abnormal lipids and a potential risk of CHD events >1 percent per year. It also found that drug therapy may reduce total mortality in patients with dyslipidemia at higher risk ($>1.5 \%$ per year). The 2001 USPSTF review also found evidence suggesting that drug therapy is also effective in other adults, including older men (>70 years of age) and middle-aged and older women (≥ 45 years of age) at similar levels of risk, though evidence was less direct.

Given the tremendous burden of CVD, its potential preventability, the widespread use of statins, recognition that lipid levels are not the only factor used to determine suitability for statin therapy, and uncertainty about optimal treatment strategies, the USPSTF commissioned this review in order to inform the development of new recommendations on use of statin therapy for prevention of CVD in adults. This review focuses on use of statins in adults 40 years of age or older. A separate evidence review has been commissioned by the USPSTF on lipid screening in younger adults. ${ }^{5}$

Condition Definition

The purpose of statin therapy is to reduce the risk of CVD and associated morbidity and mortality. The term "cardiovascular disease" is somewhat nonspecific, but in this report refers to atherosclerotic diseases that affect the heart and blood vessels, in particular ischemic CHD, cerebrovascular disease, and peripheral vascular disease. CVD can result in myocardial infarction (MI) and cerebrovascular disease, including stroke.

Prevalence and Burden of Disease/lliness

CVD is the leading cause of morbidity and mortality in the United States, responsible for one out of every three deaths. ${ }^{6}$ CHD alone accounts for more than half of all cardiovascular events in adults <75 years of age and is the single leading cause of death. ${ }^{7-9}$ In 2011, there were an estimated 375,000 deaths due to CHD and 130,000 deaths due to cerebrovascular disease. ${ }^{10}$ CHD caused 12 percent of deaths in persons aged 25 to 44 years, 21 percent of deaths in persons aged 45 to 64 years, and 26 percent of deaths in persons aged 65 years and older. ${ }^{8}$ Estimates based on Framingham Heart Study participants from 1971 to 1996 indicate that the lifetime risks (through age 80 years) of CHD for 40 -year old men with a total cholesterol (TC) of 200, 200 to 239 , and $\geq 240 \mathrm{mg} / \mathrm{dL}$ were 31,43 , and 57 percent, respectively, with respective 10 -year cumulative risks of 3 , 5 , and 12 percent. In 2008, heart disease and stroke accounted for nearly 300 billion dollars in health care costs. ${ }^{11}$

Prevalence of CHD increases with age, ranging from 1 percent in 18 to 44 year olds, 7 percent in 45 to 64 year olds, and 20 percent in those over age 65 years, and is higher in men (8%) than in women (5\%). ${ }^{12}$ Prevalence of CHD varies by race, with 12 percent of American Indians/Alaska Natives, 7 percent of blacks, 6 percent of Hispanics, 6 percent of whites, and 4 percent of Asian/Pacific Islanders affected. In 2010, heart disease was associated with 972 age-adjusted potential life-years lost per 100,000 persons <75 years of age. ${ }^{13,14}$

Etiology and Natural History

The etiology of CVD is multifactorial and is affected by well-established risk factors, such as age, sex, family history of early CVD, smoking status, and presence and severity of obesity, dyslipidemia, hypertension, and diabetes.

Cholesterol is a lipid that is present in all animal cells; it is vital to cell membrane structure and acts as a precursor to vitamin D , adrenal and gonadal steroid hormones, and bile acids. ${ }^{15}$ Cholesterol is a primary contributor to plaque formation and the main target of statin therapy. Cholesterol is transported in the body as particles of lipid and protein (lipoproteins). ${ }^{16}$ There are three main classes of lipoproteins: high-density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and very low density lipoproteins (VLDL-C). LDL-C makes up 60 to 70 percent of total serum cholesterol, HDL-C contributes 20 to 30 percent, and VLDL-C contributes 10 to 15 percent. LDL-C is the main atherogenic lipoprotein and is the primary target of cholesterol-lowering therapy, though some forms of VLDL-C are precursors to LDL-C and also promote atherosclerosis. HDL-C is inversely related to risk for CHD. The risk of CVD increases as LDL-C levels increase. However, CVD can occur in patients with relatively low or normal lipid levels, depending on the presence and severity of other risk factors.

The natural history of CVD is variable but often involves a long asymptomatic stage of gradual build-up of atherosclerotic plaque in affected arterial vessels. An important challenge in preventing the negative consequences of CVD is that its first clinical manifestation can be catastrophic, including sudden cardiac death, acute MI, or stroke. ${ }^{14}$ Among those who die suddenly of CHD, over half had no antecedent symptoms. ${ }^{9}$ In addition, MI is frequently silent,
causing no recognized symptoms, but negatively impacting prognosis. ${ }^{17,18}$

Risk Factors

Modifiable risk factors for CHD include dyslipidemia (high LDL-C, low HDL-C, high triglycerides [TG]), hypertension, smoking, thrombogenic/hemostatic state, diabetes, obesity, physical inactivity, and an atherogenic diet (high in saturated fatty acids, cholesterol, and sodium). ${ }^{16}$ Non-modifiable risk factors include older age (male ≥ 45 years or female ≥ 55 years), male sex, and family history of early CHD.

Risk factors for dyslipidemia include physical inactivity, obesity, abdominal obesity, metabolic syndrome, hypertension, an atherogenic diet, consumption of dietary added sugars, genetic factors, age, and male sex. ${ }^{16,19-21}$ Elevated TG is associated with overweight and obesity, physical inactivity, smoking, excess alcohol intake, high carbohydrate diet, other diseases like diabetes and nephritic syndrome, medications such as corticosteroids or estrogens, and genetic factors. ${ }^{16}$ Hyperlipidemia is also associated with conditions such as human immunodeficiency virus infection, renal transplant, and use of certain medications, such as antipsychotic medications and anti-HIV protease inhibitors. ${ }^{22-24}$

Non-HDL-C (i.e., TC - HDL-C) is a measure that includes all potentially atherogenic lipoprotein particles, including LDL, VLDL, intermediate-density lipoprotein, and lipoprotein(a), which may be a more accurate predictor of CHD risk than LDL-C. ${ }^{25-27}$ Apolipoprotein-B directly measures the total number of atherogenic particles, though it is unclear whether it is superior to HDL-C as a marker of CHD risk. ${ }^{25,28,29}$ In addition, non-HDL-C is easier and less costly to measure. In 2008, the USPSTF recommended screening with a fasting or nonfasting HDL-C, with either the TC or a measure of LDL-C. ${ }^{4}$

Other potential risk factors for CVD include alternative lipid measures such as apolipoproteins, TC-to-HDL ratio, and other lipoprotein levels and non-lipid factors such as inflammatory markers (e.g., C-reactive protein [CRP] and homocysteine) and thrombogenic factors (e.g., fibrinogen, antithrombin III, and factor V Leiden). ${ }^{16}$ In 2009, a USPSTF evidence review of nine emerging risk factors, including CRP, leukocyte count, homocysteine, and lipoprotein levels, found that evidence was insufficient to support their use to re-classify intermediate-risk persons for CVD as high-risk, although it found evidence for CRP to be promising. ${ }^{1}$

Rationale for Preventive Treatment

CVD is often associated with a prolonged asymptomatic phase, is highly prevalent, and is an important cause of mortality and morbidity in adults 40 years of age and older. Treatment of persons at higher risk for CVD with statins could prevent future events, including MI and stroke, and improve morbidity, mortality, and quality of life.

Interventions/Treatment

Statins are a class of drugs that work by inhibiting the 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) enzyme, the rate limiting step in the manufacture of cholesterol. Statins reduce LDL-C, TC, and TG; slightly increase HDL-C; and are also thought to have anti-inflammatory and other plaque stabilization effects. ${ }^{30}$

Seven statins are available in the United States: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin. The statins, dose ranges, and relative potency (based on average lipid lowering effects) are shown in Table 1. ${ }^{30}$ Potential harms of statins include hepatotoxicity (ranging from mild transaminitis to hepatic failure), ${ }^{31}$ muscle injury (ranging from myalgia to overt rhabdomyolysis), ${ }^{32}$ renal dysfunction, ${ }^{33}$ and diabetes. Adverse effects on behavior and cognition ${ }^{34}$ and increased risk of cancer ${ }^{35}$ have also been linked with statins, but not clearly established, with some studies showing no association. In the case of cognition, some studies suggest that statins may reduce risk of dementia.

Current Clinical Practice

Approximately 36 million Americans are currently treated with statins. ${ }^{30}$ Recommendations on the use of statins for prevention of CVD are evolving. Prior to 2013, treatment in the United States generally followed a guideline from the Adult Treatment Panel III (ATP-III), which recommended global risk evaluation (either based on risk factor counting or using a global calculator to estimate 10-year risk) to guide use of lipid-lowering therapy. ${ }^{16}$ LDL-C thresholds for initiation of lipid lowering therapy varied from ≥ 130 to $\geq 190 \mathrm{mg} / \mathrm{dL}$, depending on the assessed risk category (defined as low, based on estimated risk of $<10 \%$ for a CVD event after 10 years; intermediate, based on estimated 10% to 20% risk; or high, based on estimated risk $>20 \%$). Drug options for lipid lowering included statins, bile acid sequestrants, nicotinic acid, and fibrates, though statins were designated as the initial drug of choice given proven efficacy for lowering LDL-C and evidence showing improved clinical outcomes. Therapy with a statin or other lipid-lowering therapy was targeted to achieve goal LDL-C levels that varied from <100 to $<160 \mathrm{mg} / \mathrm{dL}$, depending on the risk category.

Updated guidelines from the American College of Cardiology (ACC) and the American Heart Association (AHA) on lipid lowering therapy were issued at the end of 2013, and differ from ATP-III in a number of ways. ${ }^{30}$ In the new guideline, statins are the recommended first-line lipid-lowering therapy to reduce CVD risk, as evidence on effectiveness of lipid lowering therapy for primary prevention at improving clinical outcomes is strongest for statins. Target populations for statin therapy were re-defined as four groups: persons with atherosclerotic CVD, persons with LDL-C $\geq 190 \mathrm{mg} / \mathrm{dL}$, persons 40 to 75 years of age with diabetes and LDL-C 70 to $189 \mathrm{mg} / \mathrm{dL}$ or persons not in the previous three categories with an estimated 10 -year risk of CVD of 7.5 percent or higher. In the latter group, shared decision-making is recommended prior to initiation of statin therapy. Rather than managing statin therapy to achieve an LDL-C target, the ACC/AHA recommends fixed dose statin therapy, with the intensity (based on the dose and potency of the statin used) of therapy determined by the risk profile. Finally, the new guideline recommended the use of a newly developed global risk calculator to estimate risk.

Release of the updated guideline has generated debate regarding the accuracy of the new risk calculator, the abandonment of LDL-C target based treatment strategies, and the threshold used to select patients for therapy. ${ }^{36,37}$ Research indicates that application of the ACC/AHA guidelines substantially increases the proportion of patients eligible for treatment with statins compared with the ATP-III guideline. ${ }^{38-40}$ Much of the increase in eligibility is attributable to the lower 10year CVD risk threshold in the ACC/AHA guideline, with age a major driver of risk.

Recommendations of Other Groups

The ATP-III and updated ACC/AHA guidelines are discussed above.
The Mayo Clinic Task Force recommendations on use of statins are generally consistent with the ACC/AHA, though lifestyle modification alone is suggested patients who are likely to be successful at reducing risk to <7.5 percent. ${ }^{41}$ In the United Kingdom, the National Institute for Health Care and Excellence (NICE) ${ }^{42}$ recommends statin use in those with 10 -year risk ≥ 10 percent based on the QRISK calculator (see Contextual Question 2). In line with the NICE recommendation, the Joint British Societies recommend statin therapy in individuals with a 10year CVD risk ≥ 10 percent. ${ }^{43}$ In 2011, the Task Force for the Management of Dyslipidaemias of the European Society of Cardiology and the European Atherosclerosis Society recommended use of lipid-lowering therapy (including, but not limited to, statins) based on assessed CVD risk, targeted to LDL-C levels of <70 to $<115 \mathrm{mg} / \mathrm{dL}$, depending on the risk level. ${ }^{44}$ The 2012 Canadian Cardiovascular Society recommends treatment with health behavior modification and statins in persons with high 10-year risk ($\geq 20 \%$) based on Framingham risk factors, or moderate risk (≥ 10 to $<20 \%$) and LDL-C $\geq 135.3 \mathrm{mg} / \mathrm{dL}^{45}$ Among those with low risk ($<10 \%$), statin use was only recommended in those with genetic dyslipidemia or LDL-C $\geq 193.3 \mathrm{mg} / \mathrm{dL}$. The International Atherosclerosis Society recommends no cholesterol-lowering medication for persons at low-risk ($<15 \%$ 10-year risk); for those at higher risk, use was optional (risk 15 to 24%) or generally (risk 25 to 40%) or universally (risk $>40 \%$) recommended. ${ }^{46}$

Chapter 2. Methods

Key Questions and Analytic Framework

Using established methods, ${ }^{4}$ the USPSTF determined the scope and Key Questions for this review. Investigators created an analytic framework with the Key Questions and the patient populations, interventions, and outcomes reviewed (Figure 1).

Key Questions

1a. What are the benefits of treatment with statins in reducing the incidence of CHD- or CVArelated morbidity or mortality or all-cause mortality in asymptomatic adults age 40 years or older without prior CVD events?
1 b . What are the benefits of treatment with statins that target LDL cholesterol versus other treatment strategies in adults age 40 years or older without prior CVD events?
1c. Do the benefits of treatment with statins in adults age 40 years or older without prior CVD events vary by subgroups defined by demographic or clinical characteristics (e.g., specific cardiovascular risk factors, patients with familial hyperlipidemia, or 10-year cardiovascular risk)?
2. What are the harms of treatment with statins in adults age 40 years or older without prior CVD events?
3. How do benefits and harms vary according to potency of statin treatment?

Two Contextual Questions were also requested by the USPSTF to help inform the report. Contextual Questions are not reviewed using systematic review methodology. ${ }^{4}$ Rather, the approach to Contextual Questions is to focus on evidence from key, high-quality studies.

Contextual Questions

1. What is the comparative accuracy of different cardiovascular risk assessment methods?
2. How do lipid levels change over time in adults 40 years of age or older?

Search Strategies

We searched the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, and Ovid MEDLINE to November 2015 for relevant studies and systematic reviews, with no start date limitations. Search strategies are available in Appendix A1. We also reviewed reference lists of relevant articles.

Study Selection

At least two reviewers independently evaluated each study to determine inclusion eligibility. We selected studies on the basis of inclusion and exclusion criteria developed for each Key Question (Appendix A2). The population for all Key Questions was adults ages 40 years and older without prior CVD events (e.g., MI, angina, revascularization, stroke, or transient ischemic attack), or in which the proportion of patients with prior CVD events was <10 percent. We included studies that compared treatment versus no treatment or usual care without a statin and assessed effects on all-cause mortality, CHD or stroke-related morbidity or mortality, or harms (including muscle injury, cognitive loss, diabetes, and hepatic injury), including studies that compared effects in subgroups defined by demographic (e.g., age, sex, or race) or clinical characteristics (e.g., specific cardiovascular risk factors, lipid parameters, or 10-year or lifetime cardiovascular risk). We also included studies that compared treatment strategies with statins to target LDL-C levels versus other treatment strategies and that evaluated how benefits and harms vary according to potency of statin treatment. For all Key Questions, we included randomized controlled trials (RCTs) of statin therapy versus placebo or no statin. For Key Question 2, we included controlled observational studies reporting harms of statin use compared with nonuse. We included one meta-analysis of individual patient data that evaluated the association between degree of LDL-C lowering and clinical outcomes, ${ }^{47}$ as the data were not available for us to perform this analysis. Otherwise, we reviewed reference lists of systematic reviews to identify potentially relevant studies. The selection of literature is summarized in the literature flow diagram (Appendix A3). Appendix A4 lists excluded studies with reasons for exclusion.

Data Abstraction and Quality Rating

We abstracted details about the study design, patient population, setting, screening method, interventions, analysis, followup, and results. Two investigators independently applied criteria developed by the USPSTF ${ }^{4}$ to rate the quality of each study as good, fair, or poor (Appendix A5). Discrepancies were resolved through a consensus process. When risk estimates were not reported for individual studies, we calculated relative risks (RR) and 95 percent confidence intervals (CI) if adequate data (number of events and sample sizes) were provided.

Data Synthesis

We conducted meta-analyses to calculate risk ratios for effects of statins on clinical outcomes using the DerSimonian-Laird random effects model with Review Manager Version 5.2 software (The Cochrane Collaboration Nordic Cochrane Centre, Copenhagen, Denmark). Statistical heterogeneity was assessed using the I^{2} statistic. ${ }^{48}$ For stroke, we excluded hemorrhagic strokes when data permitted. When statistical heterogeneity was present, we performed sensitivity analysis with the profile likelihood method using Stata 10.1 (Stata Corp., College Station, TX, United States), as the DerSimonian-Laird model can result in overly narrow confidence intervals in this situation. ${ }^{49}$ We performed additional sensitivity and stratified analyses based on study quality, exclusion of trials that enrolled patients with prior CVD events, duration of followup, intensity of statin therapy (based on the ACC/AHA guideline), ${ }^{30}$ mean TC and LDL-C at
baseline, and whether the trial was stopped early. We constructed funnel plots to detect small sample effects (a marker for potential publication bias), for analyses with >10 trials. ${ }^{50}$

We assessed the aggregate internal validity (quality) of the body of evidence for each Key Question (good, fair, poor) using methods developed by the USPSTF, based on the number, quality and size of studies, consistency of results between studies, and directness of evidence. ${ }^{4}$

External Review

The draft report was reviewed by content experts (Appendix A6), USPSTF members, AHRQ Project Officers, and collaborative partners.

Chapter 3. Results

Key Question 1a. What Are the Benefits of Treatment With Statins in Reducing the Incidence of CHD- or CVA-Related Morbidity or Mortality, or All-Cause Mortality, in Asymptomatic Adults Age 40 and Older Without Prior CVD Events?

Summary

In adults at increased cardiovascular risk but without prior CVD events, 18 RCTs with 6 months to 5 years of followup evaluated effects of statins versus placebo or no statin. Statins were associated with reduced risk of all-cause mortality (14 trials; RR $0.83,95 \%$ CI 0.76 to $0.92 ; \mathrm{I}^{2}=0$ percent; absolute risk difference [ARD] $-0.41 \%, 95 \%$ CI -0.68 to -0.14%, number needed to treat [NNT] 244 after 1 to 5 years), cardiovascular mortality (nine trials, RR $0.64,95 \%$ CI 0.49 to $0.84 ; \mathrm{I}^{2}=43 \%$; ARD $-0.46 \%, 95 \%$ CI -0.83 to -0.09%; NNT 217 after 2 to 5 years), stroke (12 trials; RR $0.72,95 \%$ CI 0.61 to $0.84 ; \mathrm{I}^{2}=0 \%$; ARD $-0.37 \%, 95 \%$ CI -0.53 to -0.20%, NNT 270 after 6 months to 5 years), MI (11 trials; RR $0.63,95 \%$ CI 0.56 to $0.71 ; \mathrm{I}^{2}=0 \%$; ARD -0.93%, 95% CI -1.41 to -0.45%, NNT 108 after 2 to 5 years), revascularization (six trials; RR 0.63 , 95% CI 0.54 to $0.72 ; \mathrm{I}^{2}=0 \%$; ARD $-0.75 \%, 95 \%$ CI -0.98 to -0.52%, NNT 133 after 2 to 5 years), and composite cardiovascular outcomes (12 trials; RR $0.69,95 \%$ CI 0.61 to $0.77 ; \mathrm{I}^{2}=37 \%$; ARD $1.47 \%, 95 \%$ CI -1.95 to -0.99%, NNT 68 after 1 to 5 years). Findings were robust in sensitivity analysis based on study quality, duration of followup, mean lipid levels at baseline, and other factors.

Evidence

Eighteen randomized trials (in 51 publications) assessed the effects of statins on health outcomes in adults at increased cardiovascular risk, but without prior CVD events (Appendix B [trial name abbreviations], Appendix C1). ${ }^{51-101}$ Duration of followup ranged from 1 to 5 years (median 3 years) in 17 trials, and one trial followed patients for 6 months. ${ }^{91}$ Two trials ${ }^{59,73}$ with planned 5year followup were stopped after 2 and 3 years due to observed cardiovascular benefits among patients randomized to statins. One other trial with planned 4 -year followup was also stopped 2 years prior to anticipated study completion due to observed benefits in the statin group, although median duration of followup for enrolled participants was 4 years. ${ }^{69}$ Seventeen trials compared a statin versus placebo and one trial ${ }^{82}$ compared a statin plus cholesterol-lowering diet versus diet alone. Four trials used a 2×2 factorial design in which, in addition to randomization to statin therapy versus placebo, patients were also randomized to treatment with warfarin versus placebo, ${ }^{51}$ different antihypertensive regimens, ${ }^{59}$ lifestyle interventions versus usual care, ${ }^{72}$ or fosinopril versus placebo. ${ }^{94}$

The statins evaluated in the trials were pravastatin (five trials), ${ }^{66,81,82,94,95}$ atorvastatin (four trials), ${ }^{59,62,65,68}$ rosuvastatin (three trials), ${ }^{63,73,92}$ lovastatin (two trials), ${ }^{51,53}$ simvastatin (two
trials) ${ }^{71,91}$ and fluvastatin (one trial). ${ }^{72}$ Cerivastatin was initially used in one trial, but later switched to simvastatin when cerivastatin was withdrawn from the market due to reports of fatal rhabdomyolysis. ${ }^{64}$ We identified no trials evaluating pitavastatin. Fourteen trials used fixed-dose statin therapy. ${ }^{59,62-64,66,68,71-73,81,91,92,94,95}$ Based on the classification method in the 2013 ACC/AHA guideline, ${ }^{30}$ the statin therapy in these studies were classified as low-intensity in one trial, ${ }^{72}$ moderate-intensity in nine trials, ${ }^{59,62,64,66,68,71,81,94,95}$ and high-intensity in three trials. ${ }^{63,73,92}$ One trial randomized patients to different doses of atorvastatin (10, 20, 40, or 80 mg , corresponding to moderate-intensity or high-intensity therapy), ${ }^{65}$ and one trial randomized patients to different doses of simvastatin (10 or 40 mg ; for low-intensity or moderate-intensity). ${ }^{91}$ Dose titration was performed in three trials. ${ }^{51,53,82}$ In one trial, patients were randomized to lovastatin $20 \mathrm{mg} /$ day (low-intensity), and could be titrated to $40 \mathrm{mg} /$ day (moderate-intensity) for a target LDL-C level of $<110 \mathrm{mg} / \mathrm{dL}$. ${ }^{53}$ In another trial, patients were initially randomized to lovastatin $20 \mathrm{mg} /$ day (low-intensity) and could be titrated to $10 \mathrm{mg} /$ day (also low-intensity) or 40 $\mathrm{mg} /$ day (moderate-intensity) for a target LDL-C level of 90 to $110 \mathrm{mg} / \mathrm{dL} .{ }^{51}$ In the third trial, patients were initially randomized to pravastatin $10 \mathrm{mg} / \mathrm{day}$, which could be titrated to 20 $\mathrm{mg} /$ day for a target TC of $<220 \mathrm{mg} / \mathrm{dL}$ (both doses low-intensity). ${ }^{82}$

The trials enrolled between 95 and 17,802 study participants (median 864 , total sample 58,639 participants). The mean ages of participants ranged from 51 to 66 years. Four trials ${ }^{63,64,91,94}$ permitted enrollment of persons younger than 40 years of age and one trial ${ }^{71}$ did not specify ages for inclusion, but none reported the proportion of participants who were younger adults. Three trials only enrolled men ${ }^{72,81,95}$ and one trial only enrolled women. ${ }^{65}$ In the remaining trials, the proportion of women ranged from 15 to 69 percent (median 39%). In 12 studies that reported race, the predominant racial group was white (range 59% to 99%).

Criteria for enrollment varied across trials (Table 2); however, all trials enrolled patients at increased cardiovascular risk. In six trials, presence of dyslipidemia was the main criterion for enrollment, although definitions for dyslipidemia varied. ${ }^{53,65,81,82,91,95}$ In these trials, baseline mean TC ranged from 5221 to $272 \mathrm{mg} / \mathrm{dL}$, LDL-C from 150 to $192 \mathrm{mg} / \mathrm{dL}$, and HDL-C from 36 to $62 \mathrm{mg} / \mathrm{dL}$. Three trials were restricted to patients with early cerebrovascular disease (at baseline, mean TC ranged from 229 to $263 \mathrm{mg} / \mathrm{dL}$, LDL-C from 154 to $182 \mathrm{mg} / \mathrm{dL}$, and HDL-C from 46 to $59 \mathrm{mg} / \mathrm{dL}$). ${ }^{51,66,92}$ Four trials were restricted to patients with diabetes. ${ }^{62,64,68,71}$ Three of these trials excluded diabetics with severe dyslipidemia (inclusion restricted to patients with LDL-C $<160 \mathrm{mg} / \mathrm{dL}^{62,64}$ or TC 155 to $267 \mathrm{mg} / \mathrm{dL}^{68}$); in these trials, mean TC at baseline ranged from 195 to $217 \mathrm{mg} / \mathrm{dL}$, LDL-C from 114 to $139 \mathrm{mg} / \mathrm{dL}$, and HDL-C from 47 to $55 \mathrm{mg} / \mathrm{dL}$. The fourth trial did not report lipid parameters for inclusion, but reported higher mean TC and LDLC levels (mean TC at baseline 235 to $243 \mathrm{mg} / \mathrm{dL}$, LDL-C 168 to $171 \mathrm{mg} / \mathrm{dL}$, and mean HDL-C 39 to $43 \mathrm{mg} / \mathrm{dL}$). ${ }^{71}$ Two trials focused on patients with hypertension (mean TC at baseline 212 to $232 \mathrm{mg} / \mathrm{dL}$, LDL-C 131 to $151 \mathrm{mg} / \mathrm{dL}$, and HDL-C 49 to $50 \mathrm{mg} / \mathrm{dL}$). ${ }^{59,72}$ One trial enrolled patients with mild to moderate aortic stenosis (at baseline, mean TC $205 \mathrm{mg} / \mathrm{dL}$, LDL-C 120 to $124 \mathrm{mg} / \mathrm{dL}$, and HDL-C $62 \mathrm{mg} / \mathrm{dL}$, ${ }^{63}$ one trial enrolled patients with microalbuminuria (at baseline, mean TC $224 \mathrm{mg} / \mathrm{dL}$, mean LDL-C 155 to $159 \mathrm{mg} / \mathrm{dL}$, and mean HDL-C $39 \mathrm{mg} / \mathrm{dL}$), ${ }^{94}$ and one trial enrolled patients with elevated CRP level ($\geq 2.0 \mathrm{mg} / \mathrm{dL}$) and non-elevated LDL-C $<130 \mathrm{mg} / \mathrm{dL}$). ${ }^{73}$ Three trials included some patients with a history of clinical CVD, but were included because the proportion was below our pre-defined threshold of 10 percent (Appendix C1). ${ }^{59,81,94}$

Five trials were rated good-quality, ${ }^{63,68,73,81,95}$ one trial poor-quality, ${ }^{71}$ and the remaining 12 trials rated fair-quality (Appendix C2). ${ }^{51,53,59,62,64-66,72,82,91,92,94}$ Methodological limitations in the fairquality trials included unclear methods of randomization and/or allocation concealment and unclear blinding of outcome assessors, care providers and/or study participants. The poor-quality trial also did not report attrition. Only two trials ${ }^{51,91}$ reported no industry funding; the remaining trials were either fully or partially industry-funded.

All-Cause Mortality

Fourteen trials reported all-cause mortality (Appendix C1 Table 3). ${ }^{51,53,59,62,64,65,68,72,73,81,82,92,94,95}$ Absolute event rates ranged from 0 to 5 percent in the statin groups and 0 to 6 percent in control groups. Statins were associated with statistically significant reduction in risk of all-cause mortality versus placebo in two trials. The large JUPITER trial ${ }^{73}$ ($\mathrm{n}=17,802 ; 2$ years followup), which enrolled patients with elevated CRP levels and LDL-C levels $<130 \mathrm{mg} / \mathrm{dL}$, reported a hazard ratio (HR) of 0.80 after 2 years of statin therapy (95% CI 0.69 to 0.97 ; ARD -0.6%). The smaller ACAPS trial ($\mathrm{n}=919 ; 3$ years followup), ${ }^{51}$ which enrolled persons with early cerebrovascular disease, also found reduced risk of all-cause mortality with statin therapy, though the estimate was less precise (RR $0.12,95 \%$ CI 0.02 to 0.99 ; ARD -0.02%). Pooling evidence from all trials resulted in a very similar risk estimate to that in the JUPITER trial (RR 0.83 after 1 to 5 years, 95% CI 0.76 to $0.92 ; \mathrm{I}^{2}=0 \%$; ARD $-0.41 \%, 95 \%$ CI -0.68 to $-0.14 ; \%$ $I^{2}=13 \%$; Appendix D Figure 1). Across studies, the NNT ranged from 47 to 294 over 2 to 5 years in eight trials and six trials reported no benefit from statins; pooled NNT was 244 . The risk estimate was heavily influenced by the JUPITER and ASCOT-LLA studies, both of which were stopped early and which together accounted for about half of the total sample as well as mortality events. The point estimates and ARDs from ASCOT-LLA (3.6% vs. 4.1% after 3 years, RR 0.80 , 95% CI 0.71 to 1.05 ; ARD -0.5%), which focused on patients with hypertension, was similar to the point estimate from JUPITER.

Results were similar in sensitivity analyses (Table 4). Excluding results from JUPITER and both JUPITER and ASCOT-LLA had little effect on pooled estimates (RR $0.85,95 \%$ CI 0.76 to 0.95 ; $\mathrm{I}^{2}=0 \%$ and RR $0.84,95 \%$ CI 0.73 to $0.96 ; \mathrm{I}^{2}=0 \%$, respectively). Restricting the analysis to goodquality studies ${ }^{68,73,81,95}$ also did not affect estimates (RR $0.79,95 \%$ CI 0.69 to $0.90 ; \mathrm{I}^{2}=0 \%$), and results were similar when trials were stratified according to duration of followup ≤ 3 years (RR $0.83,95 \%$ CI 0.72 to $\left.0.94 ; \mathrm{I}^{2}=0 \%\right)^{51,59,64,65,73,81,92}$ versus >3 years (RR $0.84,95 \%$ CI 0.73 to 0.97 ; $\left.\mathrm{I}^{2}=0 \%\right) .{ }^{53,62,68,72,82,94,95}$ There were also no differences in estimates when three trials ${ }^{59,81,94}$ that included patients with prior CVD were excluded (RR $0.82,95 \%$ CI 0.73 to $0.91 ; \mathrm{I}^{2}=0 \%$) or when two trials ${ }^{62,73}$ that enrolled patients with mean baseline $\mathrm{TC}<200 \mathrm{mg} / \mathrm{dL}$ were excluded (RR 0.83 , 95% CI 0.74 to $0.93 ; \mathrm{I}^{2}=0 \%$). Results were also similar when trials were stratified according to baseline LDL-C $<160 \mathrm{mg} / \mathrm{dL}$ versus $\geq 160 \mathrm{mg} / \mathrm{dL}$ (RR $0.84,95 \%$ CI 0.76 to $0.93 ; \mathrm{I}^{2}=0 \%$ versus RR $0.79,95 \%$ CI 0.62 to $1.01 ; \mathrm{I}^{2}=0 \%$).

Cardiovascular Mortality

Cardiovascular mortality was reported in nine trials (Appendix C1 Table 3). ${ }^{51,53,59,63,73,81,82,94,95}$ The effect of statin use on cardiovascular mortality was somewhat inconsistent. Although the large JUPITER ($n=17,802$) and WOSCOPS $(n=6,595)$ trials found a statistically significant
difference between statins versus placebo and risk of cardiovascular mortality (0.9% vs. 1.8% after 2 years, HR $0.53,95 \%$ CI 0.40 to 0.69 and 1.5% vs. 2.2% after 5 years, RR $0.68,95 \%$ CI 0.48 to 0.98 , respectively). AFCAPS/TexCAPS ($n=6,605$), and MEGA ($n=7,832$) reported similar point estimates that did not reach statistical significance (0.5% vs. 0.8% after 5 years, RR $0.68,95 \%$ CI 0.37 to 1.26 and 0.3% vs. 0.5% after 5 years, RR $0.63,95 \%$ CI 0.30 to 1.33), and ASCOT-LLA ($\mathrm{n}=10,305$) found no effect (1.4% vs. 1.6% after 3 years, RR $0.90,95 \%$ CI 0.66 to 1.23). In pooled analysis, statin therapy was associated with decreased risk of cardiovascular mortality (RR 0.64 after 2 to 5 years, 95% CI 0.49 to 0.84) but statistical heterogeneity was present ($\mathrm{I}^{2}=43 \%$) (Appendix D Figure 2). The pooled ARD was -0.46 percent (95% CI -0.83 to $-0.09 \% ; \mathrm{I}^{2}=70 \%$) and pooled NNT was 217 (range 8 to 1,000 in eight trials; one trial found no benefit with statin therapy). Analysis using the profile likelihood method resulted in a similar pooled estimate (RR $0.66,95 \%$ CI 0.50 to $0.84 ; \mathrm{I}^{2}=25 \%$).

Findings were similar in sensitivity analyses (Table 4). Restricting the analysis to good-quality trials ${ }^{63,73,81,95}$ resulted in a similar risk estimate and did not reduce statistical heterogeneity (RR $0.55,95 \%$ CI 0.37 to $0.81 ; \mathrm{I}^{2}=47 \%$). The point estimates were similar when studies were stratified according to duration ≤ 3 years (RR $0.66,95 \%$ CI 0.40 to 1.08$)^{51,59,73,81}$ or >3 years (RR $0.63,95 \%$ CI 0.44 to 0.90), although heterogeneity remained ($\mathrm{I}^{2}=66 \%$ and 23%, respectively). Removing three trials ${ }^{59,81,94}$ that included a small proportion of people with prior CVD events also did not affect the risk estimate or reduce heterogeneity (RR $0.56,95 \%$ CI 0.42 to 0.75 ; $\left.\mathrm{I}^{2}=34 \%\right)$. Heterogeneity was reduced $\left(\mathrm{I}^{2}=31 \%\right)$ when excluding the JUPITER trial, ${ }^{73}$ which enrolled people with baseline $\mathrm{TC}<200 \mathrm{mg} / \mathrm{dL}$, and was stopped early, though the pooled estimate was similar (RR $0.69,95 \%$ CI 0.51 to 0.93). The estimate was also similar when excluding both JUPITER ${ }^{73}$ and ASCOT-LLA ${ }^{59}$ (RR $0.61,95 \%$ CI 0.42 to $0.88 ; \mathrm{I}^{2}=21 \%$).

Stroke

Twelve trials reported incidence of fatal and nonfatal stroke (Appendix C1 Table 3). ${ }^{51,59,62,63,68,}$ ${ }^{71,73,81,82,91,94,95}$ One trial reported results separately for non-hemorrhagic and hemorrhagic stroke; ${ }^{82}$ the other trials did not clearly specify the type of stroke. Results from individual trials generally favored statin therapy over placebo or no statin, though estimates were not always statistically significant. Although four trials enrolled patients with mild cerebrovascular disease at baseline, none was designed to evaluate effects of statin on risk of stroke, given relatively small sample sizes ($\mathrm{n}=250$ to 919) and relatively short duration of followup (6 months to 3 years) ${ }^{51,64,66,91}$ Two ${ }^{51,91}$ of these trials reported stroke events, though one trial only reported one event. ${ }^{91}$

Statins were associated with decreased risk of fatal or nonfatal stroke (RR 0.72 after 6 months to 5 years, 95% CI 0.61 to $0.84 ; \mathrm{I}^{2}=0 \%$; Appendix D Figure 3). The pooled ARD was -0.37 percent (95% CI -0.53 to $-0.20 \% ; \mathrm{I}^{2}=0 \%$) for a NNT to prevent one fatal or nonfatal stroke of 270 (NNT range 11 to 625 in ten trials after 1 to 5 years; two trials reported no benefit with statin therapy). A good-quality systematic review reported a similar risk estimate (10 trials; RR 0.78 , 95% CI 0.68 to $\left.0.89 ; \mathrm{I}^{2}=26 \%\right) .{ }^{102}$

Findings were similar in sensitivity analyses (Table 4). There were no clear differences in pooled estimates when one poor-quality trial ${ }^{71}$ was excluded from the analysis (RR $0.72,95 \% \mathrm{CI}$
0.62 to $0.85 ; \mathrm{I}^{2}=0 \%$), when one trial with six month duration of followup was excluded (RR $0.72,95 \%$ CI 0.61 to $0.84 ; \mathrm{I}^{2}=0 \%$), and when studies were stratified according to duration of followup ≤ 3 years (RR $0.64,95 \%$ CI 0.51 to $0.80 ; \mathrm{I}^{2}=0 \%$) or >3 years (RR $0.81,95 \%$ CI 0.64 to $1.01 ; \mathrm{I}^{2}=0 \%$). Removing three trials ${ }^{59,81,94}$ that included people with prior CVD events (RR 0.70 , 95% CI 0.58 to $0.86 ; \mathrm{I}^{2}=0 \%$) or two trials ${ }^{62,73}$ that enrolled patients with mean baseline TC <200 $\mathrm{mg} / \mathrm{dL}$ also did not affect the estimate (RR $0.73,95 \%$ CI 0.61 to $0.88 ; \mathrm{I}^{2}=0 \%$). Estimates were also similar when trials were stratified according to baseline LDL-C $<160 \mathrm{mg} / \mathrm{dL}$ versus ≥ 160 $\mathrm{mg} / \mathrm{dL}$ (RR $0.69,95 \%$ CI 0.58 to $0.83 ; \mathrm{I}^{2}=5 \%$ vs. RR $0.83,95 \%$ CI 0.58 to $1.19 ; \mathrm{I}^{2}=0 \%$, respectively). Estimates were also similar when JUPITER (RR $0.75,95 \%$ CI 0.63 to 0.89 ; $\mathrm{I}^{2}=0 \%$) and both JUPITER and ASCOT-LLA (RR $0.78,95 \%$ CI 0.62 to $0.97 ; \mathrm{I}^{2}=0 \%$) were excluded.

When stratified by fatal and nonfatal stroke, statins were associated with decreased risk of nonfatal (three trials; RR $0.57,95 \%$ CI 0.41 to $0.81 ; \mathrm{I}^{2}=0 \%$; ARD, $-0.32 \%, 95 \% \mathrm{CI},-0.52$ to 0.12%) ${ }^{68,73,91}$ and fatal stroke (two trials; RR $0.38,95 \%$ CI 0.12 to $1.22 ; \mathrm{I}^{2}=0 \%$; ARD, -0.11%, 95% CI, -0.38 to $0.15 \%),{ }^{68,73}$ although few trials reported separate results for fatal and nonfatal stroke, estimates were imprecise, and the difference in risk of fatal stroke was not statistically significant.

Myocardial Infarction

Eleven trials reported incidence of fatal and nonfatal MI (Appendix C1 Table 3). ${ }^{51,53,59,62,63,66,68,}$ ${ }^{73,81,82,95}$ Results from individual trials were mixed, but most large trials found statin use associated with a significant reduction in risk of MI. For example, risk estimates in the AFCAPS/TexCAPS (2% vs. 3%; RR 0.60 , 95% CI 0.43 to 0.83), ASCOT-LLA (1.7% vs. 2.9%; RR $0.67,95 \%$ CI 0.53 to 0.84), JUPITER (0.3% vs. 0.7 percent; HR 0.35 , 95% CI 0.22 to 0.58) MEGA (0.5% vs. 0.8%; HR $0.52,95 \%$ CI 0.29 to 0.94), and WOSCOPS (5.3% vs. 7.5%; RR $0.70,95 \%$ CI 0.58 to 0.84) trials all favored statin use. Differences between statin and placebo groups in smaller trials such as ACAPS (1.1% vs. 1.1%; RR $1.00,95 \%$ CI 0.29 to 3.42), ASTRONOMER (0% vs. 2.2%; RR $0.14,95 \%$ CI 0.008 to 2.76), CAIUS (1.3% vs. 1.3%; RR $1.02,95 \%$ CI 0.15 to 7.15), KAPS (1.4% vs. 3.8%; RR $0.36,95 \%$ CI 0.09 to 1.39) were not statistically significant. In pooled analysis, statins were associated with decreased risk of MI (RR 0.63 after 2 to 5 years, 95% CI 0.56 to $0.71 ; \mathrm{I}^{2}=0 \%$; Appendix D Figure 4); ARD - 0.93 percent (95% CI -1.41 to $-0.45 \% ; \mathrm{I}^{2}=73 \%$. The pooled NNT was 108 to prevent one MI; NNT ranged from 45 to 256 in nine trials and two trials reported no benefit with statin therapy. Five trials rated good-quality reported results consistent with the overall pooled estimate (RR 0.57, 95\% CI 0.45 to $\left.0.73, \mathrm{I}^{2}=25 \%\right) .{ }^{63,68,73,81,95}$

Findings were similar in sensitivity analyses (Table 4). Restricting the analysis to the six trials ${ }^{53}$, $62,63,68,82,95$ with >3 years followup did not affect the estimate (RR $0.65,95 \%$ CI 0.56 to 0.75) but eliminated heterogeneity $\left(\mathrm{I}^{2}=0 \%\right)$. Excluding two trials ${ }^{59,81}$ that enrolled some participants with a history of CVD events (RR $0.63,95 \%$ CI 0.55 to $0.72 ; \mathrm{I}^{2}=0 \%$), and excluding two trials ${ }^{62,73}$ that enrolled patients with baseline TC $<200 \mathrm{mg} / \mathrm{dL}\left(\mathrm{RR} 0.64,95 \%\right.$ CI 0.57 to $0.73 ; \mathrm{I}^{2}=0 \%$) had little effect on estimates. Estimates were also similar when JUPITER (RR $0.65,95 \%$ CI 0.58 to 0.74 ; $\mathrm{I}^{2}=0 \%$) and both JUPITER and ASCOT-LLA (RR $0.65,95 \%$ CI 0.56 to $0.75 ; \mathrm{I}^{2}=0 \%$) were excluded.

Seven trials reported separate results for fatal and/or nonfatal MI. ${ }^{51,53,66,73,81,82,95}$ When analyzed separately, estimates for fatal MI (RR $0.70,95 \%$ CI 0.50 to $0.99 ; I^{2}=0 \%$; ARD, $-0.16 \%, 95 \%$ CI -0.42% to 0.11%) and nonfatal MI (RR $0.64,95 \%$ CI 0.46 to $0.91, I^{2}=50 \%$; ARD, $-0.46 \%, 95 \%$ CI -0.90% to -0.02%) were similar.

Revascularization

Incidence of revascularization was reported in six trials (Appendix C1 Table 3). ${ }^{53,68,73,81,82,95}$ The four largest trials, AFCAPS/TexCAPS,,${ }^{53}$ JUPITER, ${ }^{73}$ MEGA, ${ }^{82}$ and WOSCOPS,,${ }^{95}$ all reported significantly reduced risk of revascularization with statins (RR 0.54 to 0.67). The two smaller trials reported similar risk estimates (RR 0.70 and 0.79), though differences were not statistically significant. When results were pooled, statins were associated with reduced risk for revascularization (RR 0.63 after 2 to 5 years, 95% CI 0.54 to $0.72 ; \mathrm{I}^{2}=0 \%$; Appendix D Figure 5). The ARD was -0.75 percent (95% CI -0.98 to $-0.52 ; \mathrm{I}^{2}=0 \%$; NNT range 65 to 204, pooled NNT 133). Findings were similar in sensitivity analyses (Table 4). Restricting the analysis to the four good-quality trials did not affect this estimate (RR $0.60,95 \%$ CI 0.49 to $0.73 ; \mathrm{I}^{2}=0 \%$). ${ }^{68,73 \text {, }}$ ${ }^{81,95}$ Excluding two trials ${ }^{73,81}$ that had followup of 3 years or less resulted in a similar estimate (RR $0.65,95 \%$ CI 0.55 to $0.77 ; \mathrm{I}^{2}=0 \%$). Results were similar in the subgroup of four trials in which mean baseline LDL-C was $<160 \mathrm{mg} / \mathrm{dL}$ (RR $0.62,95 \%$ CI 0.53 to $0.73, \mathrm{I}^{2}=0 \%$) (Table 3).

Composite Cardiovascular Outcomes

Twelve trials reported on composite cardiovascular outcomes (Appendix C1 Table 3). ${ }^{51,53,59,62,}$ 64,68,71-73,82,94,95 In two trials, the composite outcomes were not well-defined. ${ }^{64,71}$ and in the remainder of the studies the composite outcome definition varied (Appendix C1). In general, statin therapy was associated with decreased risk of composite cardiovascular outcomes versus placebo or no statin. Despite the variability in how cardiovascular outcomes were defined, we pooled rates of composite cardiovascular outcomes, as event rates for some individual outcomes were low in many trials. When pooled, statin therapy significantly reduced incidence of composite cardiovascular outcomes compared with placebo (RR 0.69, 95% CI 0.61 to 0.77 ; $I^{2}=37 \%$; Appendix D Figure 6). ARDs ranged from -2.26 percent to -0.35 percent over one to five years followup and the pooled ARD was -1.47 percent, 95% CI -1.95 to -0.99% (NNT range 8 to 286 ; pooled NNT 68). Excluding JUPITER (RR $0.70,95 \%$ CI 0.62 to $0.80 ; \mathrm{I}^{2}=32 \%$) and both JUPITER and ASCOT-LLA (RR $0.70,95 \%$ CI 0.59 to $0.83 ; \mathrm{I}^{2}=39 \%$) resulted in similar estimates (Table 4).

Assessments for Publication Bias

We did not identify funnel plot asymmetry based on funnel plots for all-cause mortality, cardiovascular mortality, fatal and nonfatal stroke, and fatal and nonfatal MI (Appendix D Figures 7-D11).

Key Question 1b. What Are the Benefits of Treatment With Statins That Target LDL Cholesterol vs. Other Treatment Strategies in Adults 40 Years or Older Without Prior CVD Events?

Summary

No study directly compared treatment with statins titrated to attain target cholesterol levels versus other (e.g., fixed-dose) treatment strategies. There were no clear differences in risk of allcause or cardiovascular mortality, MI, or stroke between three trials of statins versus placebo or no statin that permitted limited dose titration of statins and 15 trials of fixed-dose statin therapy.

Evidence

No trial directly compared treatment with statins titrated to attain target cholesterol levels versus other (e.g., fixed-dose) treatment strategies. In three of 18 trials of statins versus placebo or no statin in patients without prior cardiovascular events, limited dose titration of statins was permitted, providing some indirect comparisons against trials of fixed-dose statins (Appendix C1 Table 2). ${ }^{51,53,82}$ ACAPS enrolled participants with early carotid atherosclerosis, ${ }^{51}$ and AFCAPS/TexCAPS ${ }^{53}$ and MEGA ${ }^{82}$ enrolled patients with hyperlipidemia without a prior history of CVD. In ACAPS, patients were initially randomized to lovastatin $20 \mathrm{mg} /$ day, and could be titrated up to $40 \mathrm{mg} /$ day or down to $10 \mathrm{mg} /$ day after 5 months to achieve a target LDL-C of 90 to $110 \mathrm{mg} / \mathrm{dL} .{ }^{51}$ In AFCAPS/TexCAPS, patients were initially randomized to lovastatin at 20 $\mathrm{mg} /$ day, with titration to $40 \mathrm{mg} /$ day if LDL-C exceeded $110 \mathrm{mg} / \mathrm{dL}$ at 3 months followup. ${ }^{53}$ In MEGA, patients were initially randomized to pravastatin $10 \mathrm{mg} /$ day, which could be titrated to $20 \mathrm{mg} /$ day for a target TC of $<220 \mathrm{mg} / \mathrm{dL} .{ }^{82}$ Baseline LDL-C levels in the trials ranged from mean 150 to $157 \mathrm{mg} / \mathrm{dL}$ and TC from mean 221 to $242 \mathrm{mg} / \mathrm{dL}$.

There were no clear differences in estimates between the trials that permitted limited dose titration to achieve target cholesterol levels and those that used fixed-dose therapy. Pooled estimates for trials that permitted limited dose titration were primarily based on AFCAPS/TexCAPS ${ }^{53}$ and MEGA, ${ }^{82}$ as estimates from ACAPS ${ }^{51}$ were very imprecise, due to small numbers of deaths and cardiovascular events. When trials were stratified according to whether they permitted limited dose titration, the pooled estimates were very similar for all-cause mortality (RR $0.78,95 \%$ CI 0.48 to $1.28, \mathrm{I}^{2}=75 \%$ for trials that permitted limited dose titration versus RR $0.83,95 \%$ CI 0.75 to $0.92, \mathrm{I}^{2}=0 \%$ for the fixed-dose trials) cardiovascular mortality (RR $0.61,95 \%$ CI 0.37 to $1.02, \mathrm{I}^{2}=9 \%$ versus RR $0.65,95 \%$ CI 0.46 to $0.91, \mathrm{I}^{2}=58 \%$, respectively), composite cardiovascular outcomes (RR $0.63,95 \%$ CI 0.53 to $0.76, \mathrm{I}^{2}=0 \%$ versus RR $0.70,95 \%$ CI 0.60 to $0.82, \mathrm{I}^{2}=47 \%$, respectively) and fatal or nonfatal MI (RR $0.60,95 \%$ CI 0.45 to $0.79, \mathrm{I}^{2}=0 \%$ versus RR $0.64,95 \%$ CI 0.56 to $0.73, \mathrm{I}^{2}=0 \%$, respectively). In addition, for all-cause mortality, among the trials that permitted limited dose titration, results from AFCAPS/TexCAPS (RR $1.04,95 \%$ CI 0.76 to 1.41) and MEGA (RR $0.71,95 \%$ CI 0.51 to 1.00) showed some inconsistency. For fatal or non-fatal stroke, there were no clear differences between the trials that permitted limited dose titration (RR $0.42,95 \%$ CI 0.07 to $2.59, \mathrm{I}^{2}=50 \%$)
and the fixed dose trials (RR $0.72,95 \%$ CI 0.61 to $0.85, \mathrm{I}^{2}=0 \%$), but AFCAPS/TexCAPS did not report effects on stroke and ACAPS only reported five events, all of which occurred in the placebo arm. MEGA, which reported 82 nonhemorrhagic strokes, reported a RR of 0.83 ($95 \% \mathrm{CI}$ 0.57 to 1.20). ${ }^{82}$

Key Question 1c. Do the Benefits of Treatment With Statins in Adults Age 40 Years or Older Without Prior CVD Events Vary by Subgroups Defined by Demographic or Clinical Characteristics?

Summary

Six trials stratified results according to predefined subgroups based on demographic or clinical characteristics, including age, sex, race, lipid parameters, hypertension, diabetes, metabolic syndrome, cardiovascular risk score, renal impairment, and CRP levels. There were no clear differences in relative risk estimates associated with statin therapy versus placebo or no statin in subgroups defined by demographic and clinical factors, though absolute benefits were greater in higher-risk groups.

Evidence

Six trials of statins versus placebo or no statin in patients without prior cardiovascular events reported results stratified according to baseline demographic characteristics or clinical characteristics (Appendix C1 Table 5). ${ }^{53,59,68,73,82,95}$ Prespecified subgroups varied across trials. Analyses tended to focus on composite cardiovascular outcomes, presumably because of higher numbers of events, though three trials reported subgroup effects on specific cardiovascular outcomes. ${ }^{68,73,82}$

Demographic Characteristics

Age
Twelve trials of statins versus placebo restricted enrollment to persons ≤ 75 years of age ${ }^{53,62,65,66,}$ $68,72,81,82,91,92,94,95$ four trials enrolled patients up to 79 to 82 years of age (mean 58 to 63 years), ${ }^{51,}$ $59,63,64$ and two trials reported no upper limit for age (mean 61 years ${ }^{71}$ and median 66 years ${ }^{73}$).

Six trials evaluated how effects of statins versus placebo or no statin varied in subgroups defined by age. ${ }^{53,59,68,73,82,95}$ In all trials, statins were associated with reduced risk of cardiovascular events when patients were stratified according to age (older or younger than $55,60,65$, or 70 years of age), though some estimates were imprecise. The cardiovascular outcomes evaluated were primarily composite and varied across trials (Table 5). There was no clear pattern to suggest an effect of age on risk estimates. None of the trials that enrolled patients >75 years of age reported results in this subgroup.

Although age had no clear effect on risk estimates, the absolute benefit associated with statin therapy was higher in older persons, due to a higher risk of events (Table 5). For example, in the JUPITER trial, for the composite outcome of cardiovascular events, ARD between statin and placebo groups was -0.0106 (NNT 94) in people age <70 years and -0.0162 (NNT 62) in people age ≥ 70 years. Similar trends for CHD events were observed in the CARDS and ASCOT-LLA trials, with ARDs of -1.77 percent (NNT 56) and -2.13 percent (NNT 47) in people age <65 and age ≥ 65 years, and -0.78 (NNT 128) and -1.22 percent (NNT 82) in those age ≤ 60 and age >60 years. ${ }^{59,68}$

Sex

Five trials evaluated how effects of statins versus placebo or no statin varied according to sex (Table 5). ${ }^{53,59,68,73,82}$ In these trials, the proportion of participants that were female ranged from 15% to 69%. None found clear evidence of an effect of sex on risk estimates on (variably defined) composite cardiovascular outcomes. JUPITER also reported effects of sex on specific cardiovascular outcomes. ${ }^{73}$ It found statin versus placebo associated with lower risk of nonfatal stroke in men (HR $0.33,95 \%$ CI 0.17 to 0.63 ; ARD -0.45%, NNT 222) than women (HR 0.84 , 95% CI 0.45 to 1.58 ; ARD -0.10%, NNT 1,$000 ;$ p for interaction between men and women $=0.04$), although the opposite pattern was observed for risk of revascularization or hospitalization (HR $0.63,95 \%$ CI 0.46 to 0.86 ; ARD - 0.75%, NNT 133 vs. HR $0.24,95 \%$ CI 0.11 to 0.51 ; ARD -0.74%, NNT 135 , respectively; p for interaction $=0.01$). One other trial that evaluated effects of statins in men versus women found no difference in effect on incidence of stroke. ${ }^{82}$

Race

Among trials of statins versus placebo or no statin in patients without prior cardiovascular events, whites made up the majority of study participants among the 12 studies that reported race. ${ }^{51,53,59,62-65,68,73,91,92,94}$

In nine trials, the proportion of participants that were white was greater than 85 percent. ${ }^{51,53,59,62-}$ ${ }^{65,68,73,91,92,94}$ In the other three trials, the proportion of participants that were white ranged from 59 to 71 percent. ${ }^{64,73,92}$ One of the trials that did not report race was conducted in Japan. ${ }^{82}$

Only the JUPITER trial evaluated clinical outcomes stratified according to race. ${ }^{73,76}$ Estimates were similar for white ($\mathrm{n}=12,683$) and non-white ($\mathrm{n}=5,117$, including black, Hispanic, and Asian) persons for a composite outcome that included cardiovascular mortality, nonfatal MI, nonfatal stroke, revascularization, and hospitalization for angina (HR $0.55,95 \%$ CI 0.43 to 0.69 and HR $0.63,95 \%$ CI 0.41 to 0.99 , p for interaction $=0.57$; Table 5). Estimates were less precise, with no clear differences, on more specific cardiovascular outcomes (such as all-cause mortality, cardiovascular mortality, MI, stroke, and revascularization) or when the non-white group was further stratified by black $(\mathrm{n}=2,224)$ or Hispanic ($\mathrm{n}=2,261$) race (Appendix C1). Estimates for Asian race were not reported separately, due to a small sample.

Clinical Characteristics

Lipid Parameters

Five trials (AFCAPS/TexCAPS, ASCOT, JUPITER, MEGA, WOSCOPS) reported effects of statin treatment on cardiovascular outcomes in subgroups defined by baseline lipid levels. ${ }^{53,59,82,}$ ${ }^{103,104}$ Estimates favored statin therapy in all lipid subgroups, with no clear pattern suggesting differential risk estimates according to baseline total, LDL-C, HDL-C, or TG levels (Table 6). Although the MEGA trial ${ }^{82}$ found no difference in risk of CHD events between statins versus no statins in patients with baseline LDL-C $<155 \mathrm{mg} / \mathrm{dL}$ (HR $0.90,95 \%$ CI 0.56 to 1.44) and decreased risk in patients with baseline LDL-C $>155 \mathrm{mg} / \mathrm{dL}$ (HR $0.54,95 \%$ CI 0.35 to 0.81), the interaction was not statistically significant $(\mathrm{p}=0.06)$ and the four other trials did not report a similar pattern.

We also found no clear differences in risk estimates when trials of statins versus placebo in sensitivity and stratified analyses according to baseline TC, HDL-C, or triglyceride levels, though statistical heterogeneity was reduced in some cases (see Key Question 1a).

Hypertension

Two trials ($\mathrm{n}=17,802$ and 7,832) reported effects of statins versus placebo or no statin on cardiovascular outcomes stratified by the presence of hypertension at baseline (Table 6). ${ }^{73,82}$ Neither trial found clear differences in risk estimates in patients with or without hypertension.

Two trials ($\mathrm{n}=10,305$ and 568) of statins versus placebo specifically enrolled patients with hypertension. ${ }^{59,72}$ Effects on most outcomes in these trials were generally consistent with other trials of statins versus placebo, though one of the trials (ASCOT-LLA) found no statistically significant effect of statins versus placebo on cardiovascular mortality (RR $0.90,95 \%$ CI 0.66 to 1.23). ${ }^{59}$

Cardiovascular Risk Score

Two trials reported effects of statins versus placebo or no statin on cardiovascular outcomes stratified by the baseline cardiovascular risk score (Table 6). ${ }^{53,56,73}$ In the JUPITER trial, there were no differences in risk estimates in patients with a Framingham 10-year risk <10 percent or >10 percent, ${ }^{73}$ and in AFCAPS/TexCAPS, there were no differences in risk estimates in patients with a 10 -year risk >20 percent versus <20 percent. ${ }^{53,56}$ In AFCAPS/TexCAPS, the absolute reduction in risk was 6.64 per 1,000 person-years in the higher-risk group and 3.29 per 1,000 person-years in the lower-risk group. ${ }^{56}$

An analysis on the association between degree of lipid lowering achieved and clinical outcomes may provide indirect evidence about effects of statin therapy intensity in patient groups defined by baseline cardiovascular risk. ${ }^{47}$ Based on data from 22 trials of statins versus placebo or no statin (including trials of patients with prior cardiovascular events), it reported similar estimates for effects of LDL-C lowering with a statin on risk of major cardiovascular events (nonfatal MI, CHD death, stroke, or coronary revascularization) across patient subgroups defined by projected

5-year risk of cardiovascular events ($<5 \%, \geq 5$ to $<10 \%, \geq 10$ to $<20 \%, \geq 20$ to $<30 \%$, and $\geq 30 \%$). The RR per $39 \mathrm{mg} / \mathrm{dL}$ reduction in LDL-C ranged from 0.62 to 0.79 across subgroups. In patients with a 5 -year risk of <10 percent, each $39 \mathrm{mg} / \mathrm{dL}$ reduction in LDL-C was associated with an absolute reduction in major cardiovascular events of about 11 per 1,000 patients over 5 years. Estimates were also consistent across cardiovascular risk subgroups for specific cardiovascular outcomes (including major coronary events [non-fatal MI and CHD death], fatal or nonfatal stroke, and coronary revascularization). Estimates for all-cause and cardiovascular mortality in patients with <5 percent projected cardiovascular risk were too imprecise to determine effects of LDL-C lowering.

Renal Dysfunction

Three trials reported effects of statins versus placebo or no statin on cardiovascular outcomes in patients with baseline renal dysfunction (Table 6). ${ }^{53,59,68}$ In all trials, point estimates favored statin therapy, although some estimates were imprecise and did not reach statistical significance. In the two trials that reported results stratified according to presence or absence of renal dysfunction, there were no clear differences in risk estimates. ${ }^{53,59}$

Diabetes

Two trials reported effects of statins versus placebo or no statin on cardiovascular outcomes stratified according to diabetes status (Table 6). ${ }^{59,82}$ Estimates favored statin therapy in both trials in persons with and without diabetes, with no clear differences in risk estimates.

Four trials of statin therapy versus placebo were restricted to patients with diabetes ${ }^{62,64,68,71}$ and five trials excluded diabetic patients. ${ }^{53,65,73,91,92}$ Pooled estimates were similar in the trials of persons with diabetes and those that excluded persons with diabetes for all-cause mortality (three trials; RR $0.84,95 \%$ CI 0.64 to $1.09 ; \mathrm{I}^{2}=5 \%$ and four trials; RR $0.86,95 \%$ CI 0.73 to 1.01 ; $\mathrm{I}^{2}=1 \%$, respectively), fatal and nonfatal stroke (three trials; RR $0.71,95 \%$ CI 0.50 to $1.01 ; \mathrm{I}^{2}=0 \%$ and two trials; RR $0.54,95 \%$ CI 0.36 to $0.82 ; \mathrm{I}^{2}=0 \%$, respectively), and fatal and nonfatal MI (two trials; RR $0.64,95 \%$ CI 0.43 to $0.97 ; \mathrm{I}^{2}=38 \%$ and two trials; RR $0.48,95 \%$ CI 0.29 to 0.79 ; $I^{2}=68 \%$, respectively).

Metabolic Syndrome

Two trials reported effects of statins versus placebo or no statin on cardiovascular outcomes in patients stratified according to presence of the metabolic syndrome (Table 6). ${ }^{59,73}$ In both trials, risk estimates favored statin therapy in persons with or without the metabolic syndrome, with no clear differences in risk estimates.

Other Characteristics

The AFCAPS/TexCAPS trial stratified results according to baseline LDL and CRP levels in a post-hoc analysis. ${ }^{99}$ In patients with $\mathrm{LDL}<149 \mathrm{mg} / \mathrm{dL}$, statin therapy was associated with decreased risk of acute major coronary events in those with CRP $>0.16 \mathrm{mg} / \mathrm{dL}$ (RR $0.58,95 \% \mathrm{CI}$ 0.34 to 0.98) but not in those with $\mathrm{CRP}<0.16 \mathrm{mg} / \mathrm{dL}$ (RR $1.08,95 \%$ CI 0.56 to 2.08); although
the interaction among statin therapy, baseline lipid level, and CRP level did not reach statistical significance ($\mathrm{p}=0.06$) (Table 6). ${ }^{99}$ In patients with LDL $\geq 149 \mathrm{mg} / \mathrm{dL}$, statin therapy was associated with reduced risk of major coronary events in patients with CRP $<0.16 \mathrm{mg} / \mathrm{dL}$ (RR $0.38,95 \% \mathrm{CI} 0.21$ to 0.70) and $\mathrm{CRP}>0.16 \mathrm{mg} / \mathrm{dL}(\mathrm{RR} 0.68,95 \% \mathrm{CI} 0.42$ to 1.10$)$.
Subsequently, the JUPITER trial, which enrolled patients with CRP $\geq 2.0 \mathrm{mg} / \mathrm{L}$ at baseline and LDL-C $<130 \mathrm{mg} / \mathrm{dL}$, found statin therapy associated with decreased risk of all-cause mortality (RR $0.80,95 \%$ CI 0.67 to 0.96), cardiovascular mortality (RR $0.53,95 \%$ CI 0.41 to 0.69) and other cardiovascular outcomes versus placebo. ${ }^{73}$ Three trials reported no interaction between effects of statins versus placebo and body mass index (BMI). ${ }^{59,79,86}$ The MEGA trial also reported no interaction between effects of statins and smoking status (smokers: HR 0.69, 95\% CI 0.42 to 1.13 versus non-smokers: HR $0.64,95 \%$ CI 0.43 to 0.96). ${ }^{86}$ JUPITER found similar effects of statin therapy on the primary composite cardiovascular endpoint in the subgroup patients with elevated CRP and no other risk factors other than increased age (HR 0.63, 95\% CI 0.44 to 0.92) and the overall sample (HR $0.56,95 \%$ CI 0.46 to 0.69). ${ }^{73}$

No trial reported stratified results for patients with or without familial hypercholesterolemia.

Key Question 2. What Are the Harms of Statins in Adults 40 Years of Age or Older Without Prior CVD Events?

Summary

Sixteen trials reported harms of statin treatment versus placebo or no statin in adults without prior CVD events. Statin therapy was not associated with increased risk of withdrawal due to adverse events (eight trials; RR $1.03,95 \%$ CI 0.83 to $1.28 ; \mathrm{I}^{2}=70 \%$; ARD, $0.46 \%, 95 \% \mathrm{CI},-0.90$ to 1.83%), serious adverse events (six trials; RR $0.99,95 \%$ CI 0.94 to $1.04 ; \mathrm{I}^{2}=0 \% ;$ ARD, 0.14%, 95% CI, -0.51 to 0.78%), any cancer (nine trials; RR $1.04,95 \%$ CI 0.90 to $1.22 ; \mathrm{I}^{2}=45 \%$; ARD, $0.19 \%, 95 \%$ CI, -0.39 to 0.78%), new-onset diabetes (five trials; RR $1.04,95 \%$ CI 0.88 to 1.24 , $\mathrm{I}^{2}=61 \%$; ARD, $0.11 \%, 95 \% \mathrm{CI},-0.42$ to 0.64%); myalgia (seven trials; RR $0.96,95 \% \mathrm{CI} 0.79$ to $1.16 ; \mathrm{I}^{2}=42 \%$; ARD, $0.03 \%, 95 \% \mathrm{CI},-0.53$ to 0.60%), or elevated aminotransferases (11 trials; RR $1.10,95 \%$ CI 0.90 to $1.35 ; \mathrm{I}^{2}=0 \%$; ARD, $0.08 \%, 95 \% \mathrm{CI},-0.04$ to $\left.0.19 \%\right)$. Evidence on the association between statins and renal or cognitive harms was sparse, but did not clearly indicate increased risk. Few serious adverse events were reported.

Evidence

Sixteen trials (in 18 publications) and two observational studies reported harms of statin treatment in adults 40 years of age or older without prior CVD events (Appendix C1). ${ }^{51,53,59,63-66,}$ ${ }^{72,73,81,82,91,92,94,95,100,101,105-107}$ Sample sizes ranged from 250 to 17,802, and mean age ranged from 53 to 66 years. Mean LDL-C levels at baseline ranged from 108 to $192 \mathrm{mg} / \mathrm{dL}$. Most trials (10 of 16) evaluated moderate-potency statin therapy ${ }^{53,59,64-66,81,91,94,95,101}$; five trials assessed lowpotency statin therapy, ${ }^{51,53,72,82,91}$ and four trials assessed high-potency statin therapy. ${ }^{63,65,73,92}$

Withdrawal Due to Adverse Events

Eight trials reported withdrawal due to adverse events (Table 7). ${ }^{51,53,81,82,91,92,94,101}$ Seven trials found no difference between statins versus placebo in rates of withdrawal due to adverse events. In one trial (the MEGA trial) patients who received statins were more likely than patients receiving placebo to withdraw due to adverse events (11.0% vs. 8.4%; RR $1.31,95 \%$ CI 1.15 to 1.51). ${ }^{82}$ The pooled estimate showed no difference in risk (eight trials; RR $1.03,95 \%$ CI 0.83 to $1.28 ; \mathrm{I}^{2}=70 \%$; ARD, $0.46 \%, 95 \% \mathrm{CI},-0.90$ to 1.83%; Appendix D Figure 12).

Serious Adverse Events

Seven trials reported risk of serious adverse events (Table 7). ${ }^{53,63,65,72,73,92,101}$ There were no significant differences between treatment and placebo groups reported in any trial or when trials were pooled (six trials; RR $0.99,95 \%$ CI 0.94 to $1.04 ; \mathrm{I}^{2}=0 \%$; ARD, $0.14 \%, 95 \% \mathrm{CI},-0.51$ to 0.78%; Appendix D Figure 13). Rates of serious adverse events on statins varied substantially between trials (from $0.9 \%{ }^{92}$ to 34%), ${ }^{53}$ due to variability in how serious adverse events were defined, methods used to ascertain adverse events, duration of followup, and other factors.

Cancer

Ten trials (in 11 publications) reported risk of cancer (Table 7). ${ }^{51,53,63,64,66,68,73,81,82,95,101}$ Nine trials reported any incident cancer, with none finding significant differences between statins and placebo in risk. ${ }^{53,63,64,66,73,81,82,95,101}$ Rates of any cancer with statin therapy ranged from 0.5 percent to 7.6 percent. Incidence of fatal cancer was reported in four trials. ${ }^{51,53,68,73}$ The JUPITER trial found statins associated with lower risk of fatal cancer versus placebo ($0.4 \% \mathrm{vs} .0 .7 \%$; RR $0.60,95 \%$ CI 0.40 to 0.92$).{ }^{73}$ The other three trials reported no differences.

In pooled analyses, there were no difference between statin therapy and placebo or no statin in risk of any cancer (nine trials; RR $1.04,95 \%$ CI 0.90 to $1.22 ; \mathrm{I}^{2}=45 \%$; ARD, $0.19 \%, 95 \% \mathrm{CI}$, 0.39 to 0.78%; Appendix D Figure 14) or fatal cancer (four trials; RR $0.78,95 \%$ CI 0.45 to $1.37 ; \mathrm{I}^{2}=70 \%$; ARD, $-0.21 \%, 95 \% \mathrm{CI},-0.68$ to 0.25%; Appendix D Figure 15).

New-Onset Diabetes

Three trials (in four publications) and two observational studies reported risk of new-onset diabetes (Table 7). ${ }^{59,73,100,105-107}$ Unpublished data on risk of diabetes from two other trials of statins in adults without prior cardiovascular events (MEGA and AFCAPS/TexCAPS) were also reported in a systematic review. ${ }^{108}$ Based on a pooled analysis of published and unpublished trial data, there was no difference in risk of diabetes (five trials; RR 1.04, 95% CI 0.88 to 1.24 , $I^{2}=61 \%$; ARD, $0.11 \%, 95 \%$ CI, -0.42 to 0.64%; Appendix D Figure 16). Analysis using the profile likelihood method resulted in a similar estimate (RR 1.04, 95% CI 0.84 to 1.2). Results from these studies were inconsistent. The JUPITER trial found an increased risk of diabetes with statin use (3.0% vs. 2.4%; RR $1.25,95 \%$ CI 1.05 to 1.49). ${ }^{73}$ In stratified analysis, participants with ≥ 1 diabetes risk factor (including the metabolic syndrome, impaired fasting glucose, BMI $>30 \mathrm{~kg} / \mathrm{m}^{2}$ and $\mathrm{HbA} 1 \mathrm{c}>6.0 \%$) were at higher risk of than those without diabetes risk factors (HR $1.28,95 \%$ CI 1.07 to 1.54 vs. HR $0.99,95 \%$ CI 0.45 to 2.21). ${ }^{105}$

The other trials found no clear association between statin use and increased risk of diabetes. The WOSCOPS trial found statin use associated with reduced risk of diabetes (1.9% vs. 2.8%; HR $0.70,95 \%$ CI 0.50 to 0.98), ${ }^{100}$ and the ASCOT-LLA trial found no statistically significant difference in risk (3.0% vs. 2.6%; RR $1.15,95 \%$ CI 0.91 to 1.44). ${ }^{59}$ Both trials (MEGA and AFCAPS/TexCAPS) with unpublished data on risk of diabetes found no association between statin use and diabetes (5.7% vs. 5.3%, RR $1.07,95 \%$ CI 0.87 to 1.32 and 2.3% vs. 2.3%, RR $0.98,95 \% \mathrm{CI} 0.71$ to 1.35).

Based on a pooled analysis of published and unpublished data, we found no difference in risk of diabetes (RR 1.04, 95% CI 0.88 to $1.24, I^{2}=61 \%$; Appendix D Figure 16). Analysis using the profile likelihood method reduced heterogeneity slightly (RR 1.04, 95% CI 0.84 to 1.25 ; $I^{2}=49 \%$).

Potential reasons for the discrepancy in estimates of diabetes risk include differences in the methods used to diagnose diabetes and differences in the potency of the statins evaluated. In JUPITER, diabetes was based on physician report. ${ }^{105}$ In WOSCOPS, ${ }^{100}$ diagnosis of diabetes was based on a fasting plasma glucose of $>126 \mathrm{mg} / \mathrm{dL}$ on at least two occasions with an increase of at least $36 \mathrm{mg} / \mathrm{dL}$ from baseline, and in ASCOT-LLA ${ }^{59}$ as a fasting plasma glucose of $>126 \mathrm{mg} / \mathrm{dL}$. Methods for diagnosing diabetes in the two trials were physician report, use of medication, or fasting plasma glucose of $>126 \mathrm{mg} / \mathrm{dL}$. The pooled estimate was similar in a sensitivity analysis in which WOSCOPS diabetes incidence was based on less stringent alternative criteria for diabetes ${ }^{108}$ that excluded the requirement for an increase of at least $36 \mathrm{mg} / \mathrm{dL}$ from baseline (RR $1.07,95 \%$ CI 0.94 to $\left.1.24, \mathrm{I}^{2}=43 \%\right)$. JUPITER was the only trial to evaluate use of a highpotency statin (see Key Question 3).

Two large, observational studies also found mixed evidence on statin use and diabetes. A matched case-control study that used the United Kingdom General Practice Research Database (GPRD) to identify 588 diabetes cases and 2,063 matched controls (patients with prior MI excluded) found an odds ratio (OR) of 1.01 (95% CI 0.80 to 1.40) with statin use versus nonuse, after adjustment for BMI, hypertension, steroid use, smoking history and number of visits to general practitioners within three years. ${ }^{106}$ However, an analysis from the Women's Health Initiative (WHI) of 10,834 postmenopausal women using statins and 143,006 women with no statin use and no history of self-reported CVD found statin use significantly increased risk of incident diabetes (adjusted HR $1.48,95 \%$ CI 1.38 to 1.59). ${ }^{107}$ The WHI results included multivariate adjustment for age, race/ethnicity, education, smoking history, BMI, physical activity, alcohol use, energy intake, family history of diabetes and use of hormone therapy. The studies used slightly different methods to determine presence of diabetes. The GPRD used computerized medical records of two or more prescriptions of insulin or an oral hypoglycemic or at least three recorded entries of diet management for diabetes. ${ }^{106}$ Cases with a new diabetes diagnosis within 90 days of first treatment for hyperlipidemia were excluded. The WHI relied on self-reported new diabetes diagnosis based on patient questionnaires. ${ }^{107}$

Muscle-Related Harms

Myalgia was reported in seven trials, ${ }^{53,64,65,81,92,95,101}$ rhabdomyolysis in seven trials, ${ }^{53,59,65,73,82,}$ ${ }^{92,101}$ and myopathy in three trials (Table 7). ${ }^{53,73,101}$ One small trial found statins associated with
decreased risk of myalgia versus placebo (RR $0.53,95 \% \mathrm{CI} 0.31$ to 0.90) though how myalgia was defined was not reported in this study; ${ }^{64}$ the other six trials reported no difference between groups (seven trials, RR $0.96,95 \%$ CI 0.79 to $1.16 ; \mathrm{I}^{2}=42 \%$; ARD, $0.03 \%, 95 \% \mathrm{CI},-0.53$ to 0.60%; Appendix D Figure 17). Rates of myalgia with statin therapy ranged from 0.3 to 22.8 percent. There was also no increased risk of myalgias in two trials that evaluated high-potency statin therapy (RR $1.03,95 \%$ CI 0.97 to 1.11^{73} and RR $1.05,95 \%$ CI 0.73 to 1.52^{92}).

None of the trials found a significant difference between statins versus placebo in risk of rhabdomyolysis, although the number of events was very small (three events in one study, ${ }_{59,73}$ one event in two studies, ${ }^{59,73}$ and none in four studies). ${ }^{65,82,92,101}$ The pooled estimate for rhabdomyolysis showed no difference, but the estimate was imprecise and based on only three trials that reported events (RR 1.33, 95% CI 0.30 to $5.95 ; \mathrm{I}^{2}=0 \%$; ARD, $0.00 \%, 95 \%$ CI -0.03 to 0.03%; Appendix D Figure 18). Two trials found no difference between statins versus placebo in risk of myopathy (RR $0.99,95 \%$ CI 0.06 to 16^{101} and RR $3.0,95 \%$ CI 0.12 to 73.64), ${ }^{73}$ and another trial reported no cases of myopathy in either group. ${ }^{53}$ There was no difference in risk of myopathy, based on the two trials that reported at least one events (RR 1.10, $95 \% \mathrm{CI} 0.47$ to $2.59 ; \mathrm{I}^{2}=0 \%$; Appendix D Figure 19).

Liver-Related Harms

Eleven studies reported no difference between statin therapy versus placebo in risk of elevations in alanine aminotransferase (ALT) or aspartate aminostranferase (AST), although the definitions for transaminase elevations varied (degree of elevation, AST and/or ALT, single or repeatedly elevated levels) (Table 7). ${ }^{51,53,63-65,68,73,81,82,92,95}$ There was no difference between statin therapy versus placebo or no statin in risk of aminotransferase elevations based on any definition (11 trials; RR $1.10,95 \%$ CI 0.90 to $1.35 ; \mathrm{I}^{2}=0 \%$; ARD, $0.08 \%, 95 \% \mathrm{CI},-0.04$ to 0.19%; Appendix D Figure 20) or when the analysis was restricted to trials that reported risk of experiencing an ALT >3 times the upper limit of normal, the most consistently used definition (five trials; RR 1.11, 95% CI 0.78 to $\left.1.57 ; \mathrm{I}^{2}=0 \%\right) .{ }^{63,64,68,73,81,92,95}$ One trial reported no difference between statins versus placebo in risk of (undefined) hepatic disorders (RR 1.16, 95\% CI 0.96 to 1.41). ${ }^{73}$ Very few serious liver-related harms were reported.

Other Harms

Two trials of primary prevention populations reported no difference between statins (one using high-intensity rosuvastatin ${ }^{73}$ and one using moderate-intensity atorvastatin) ${ }^{59}$ versus placebo in risk of renal impairment (HR $1.29,95 \%$ CI 0.76 to 2.19^{59} and RR $1.11,95 \%$ CI 0.99 to 1.26). ${ }^{73}$ One trial reported the effect of statin treatment on a series of cognitive tests. ${ }^{91}$ The study found that statin-treated patients showed less improvement on tests previously shown to be sensitive to statin treatment (group difference in mean change of summary z-scores $0.18,95 \% \mathrm{CI} 0.07$ to $0.29 ; \mathrm{p}=0.002$) and on several other tests (group difference in mean change of summary z -scores $0.17,95 \%$ CI 0.05 to $0.29 ; p=0.007$), but not on tests previously shown to be statin-insensitive (group difference in mean change of summary z-scores $0.02,95 \%$ CI -0.07 to $0.10 ; p=0.72$), although the clinical importance of these findings is difficult to interpret (Table 7).

Key Question 3. How Do Benefits and Harms Vary According to Potency of Statin Treatment?

Summary

Direct evidence on clinical outcomes associated with differential intensity of statin therapy is extremely limited. The two trials of statin therapy of different intensities were underpowered to evaluated clinical outcomes.

Based on trials of statins versus placebo or no statin, risk estimates for all-cause mortality were similar in trials of low-intensity (RR $0.72,95 \%$ CI 0.52 to $1.00 ; \mathrm{I}^{2}=0 \%$), moderate-intensity (RR $0.84,95 \%$ CI 0.74 to $0.96 ; \mathrm{I}^{2}=0 \%$) and high-intensity (RR $0.80,95 \%$ CI 0.67 to $0.97 ; \mathrm{I}^{2}=0 \%$) statins. For other clinical outcomes, there were too few trials of low- and high-intensity statins to conduct meaningful comparisons. A meta-analysis of randomized trials based on individual patient data found an association between the degree of LDL-C lowering and reduced risk of clinical outcomes. Evidence on effects of statin intensity on harms was sparse. The only trial to find statin therapy associated with an increased risk of diabetes used high-intensity statin therapy.

Evidence

In 18 trials of statins versus placebo or no statin, statin intensity (based on 2013 ACC/AHA guideline categories) ${ }^{30}$ was low ($<30 \%$ estimated average LDL-C lowering) in three trials, ${ }^{72,82,91}$ moderate (30% to $<50 \%$ average LDL-C lowering) in nine trials, ${ }^{59,62,64-66,68,71,81,91,94,95}$ and high ($\geq 50 \%$ LDL-C lowering) in three trials (Table 2). ${ }^{63,65,73,92}$ Two of the trials ${ }^{65,82}$ evaluated fixeddose statin regimens in multiple categories and one of the trials permitted dose titration within the low-intensity category. ${ }^{82}$ Two other trials initiated patients at low-intensity therapy, but permitted dose titration to moderate intensity if target cholesterol levels were not achieved. ${ }^{51,53}$

Benefits

Direct evidence on clinical outcomes associated with differential intensity of statin therapy is extremely limited. The two trials of statin therapy at different intensities were underpowered to evaluated clinical outcomes ${ }^{65,91}$ One trial of women ($n=485$ randomized to statin therapy) with moderate hyperlipidemia reported no deaths in women randomized to either atorvastatin 10 or 20 $\mathrm{mg} /$ day (moderate-intensity) or 40 or $80 \mathrm{mg} /$ day (high-intensity). ${ }^{65}$ The other trial, which enrolled men or women ($n=206$ randomized to statin therapy) with moderate hyperlipidemia, reported no stroke events in patients randomized to simvastatin $10 \mathrm{mg} /$ day (low-intensity) and one event in patients randomized to $40 \mathrm{mg} /$ day (moderate-intensity). ${ }^{91}$ A third trial, which initially randomized patients to lovastatin $20 \mathrm{mg} /$ day (low-intensity), did not report on differences in clinical outcomes between patients ($\mathrm{n}=1,647$) who remained on low-intensity therapy versus those who were titrated ($\mathrm{n}=1,657$) to $40 \mathrm{mg} /$ day (moderate-intensity therapy). ${ }^{53}$ It also found no difference in risk of ALT and AST elevations more than 3 times the upper limit of normal (0.7% vs. 0.4%; RR $1.64,95 \%$ CI 0.64 to 4.23).

Indirect comparisons of trials of statins versus placebo or no statin stratified according to the intensity of therapy were also limited. For all-cause mortality, risk estimates were similar in trials of low-intensity (RR $0.72,95 \%$ CI 0.52 to $1.00 ; \mathrm{I}^{2}=0 \%$; ARD, $-0.55 \%, 95 \% \mathrm{CI},-1.10$ to 0.00%), moderate-intensity (RR $0.84,95 \%$ CI 0.74 to $0.96 ; \mathrm{I}^{2}=0 \%$; ARD, $-0.62 \%, 95 \% \mathrm{CI},-1.11$ to 0.12% and high-intensity (RR $0.80,95 \%$ CI 0.67 to $0.97 ; I^{2}=0 \%$; ARD, $-0.44 \%, 95 \%$ CI, -0.70% to -0.18%). For other clinical outcomes, there were too few trials of low- and high-intensity statins to conduct meaningful comparisons.

An analysis on the association between degree of lipid lowering achieved and clinical outcomes may also provide some indirect evidence about effects of statin therapy intensity. ${ }^{47}$ Based on data from 22 trials of statins versus placebo or no statin (including some trials that included patients with prior cardiovascular events), the Cholesterol Treatment Trialists' Collaboration found LDLC lowering with a statin associated with decreased risk of all-cause mortality (RR $0.91,95 \% \mathrm{CI}$ 0.88 to 0.93 per $36 \mathrm{mg} / \mathrm{dL}$ reduction in LDL-C) and a composite outcome of major cardiovascular events (nonfatal MI, CHD death, stroke, or coronary revascularization; RR 0.79, 95% CI 0.77 to 0.81 per $36 \mathrm{mg} / \mathrm{dL}$ reduction in LDL-C). The estimate was similar when the analysis was restricted to participants without a history of vascular disease (RR $0.75,95 \% \mathrm{CI}$ 0.70 to 0.80). Estimates were also consistent for specific cardiovascular outcomes (including major coronary events [non-fatal MI and CHD death], fatal or nonfatal stroke, and coronary revascularization).

Harms

Evidence on how harms of statin therapy vary according to statin potency is limited. JUPITER, the only study among those that reported diabetes incidence to evaluate high-intensity statin therapy (rosuvastatin $20 \mathrm{mg} /$ day), reported a significantly increased risk of diabetes with statin use. ${ }^{73,105}$ There was no increased risk of diabetes with statin use when combining results from the ASCOT-LLA and WOSCOPS trials of moderate intensity statin therapy (atorvastatin $10 \mathrm{mg} /$ day and pravastatin $40 \mathrm{mg} /$ day $)$: RR $0.90\left(95 \%\right.$ CI 0.55 to $\left.1.48 ; \mathrm{I}^{2}=83 \%\right) .{ }^{59,95}$ The MEGA trial, which used low-intensity statin therapy (pravastatin $10-20 \mathrm{mg} /$ day) ${ }^{82}$ and the AFCAPS/TexCAPS trial, ${ }^{53}$ which used low to moderate-intensity statin therapy (lovastatin 20 to $40 \mathrm{mg} /$ day) also found no association between statin therapy and increased risk of diabetes.

Analysis of patient-level data from primary prevention trials found no association between the degree of LDL lowering and risk of cancer or cancer mortality. ${ }^{47}$

Contextual Question 1. What Is the Comparative Accuracy of Different Cardiovascular Risk Assessment Methods?

A number of tools are available to predict global cardiovascular risk, ${ }^{109-117}$ although there is variability in the populations, risk factors, and outcomes addressed (Table 8). ${ }^{118,119}$ Until recently, the most commonly used risk calculator in the United States was the ATP-III modification of the Framingham Risk Score (FRS). ${ }^{111}$ The ATP-III modification was more accurate than prior models developed using Framingham cohort data, in part because it excluded diabetics and focused on "hard" CHD events (MI and CHD death). The Framingham Risk Score
(FRS) ATP-III model includes age, total and HDL cholesterol, smoking, systolic blood pressure, and antihypertensive medication use in sex-specific equations. The FRS ATP-III model performed well when externally validated against multiple United States cohorts, though accuracy was decreased when it was applied to populations substantially different from the source cohort, such as Japanese American and Hispanic men and Native American women, for whom it overestimated risk. ${ }^{120}$

Although other risk assessment calculators generally include the same "traditional" risk factors as the FRS ATP-III, some also include other risk factors, such as presence of diabetes, family history of early CHD, or CRP levels. However, a systematic review that focused on direct (within-study) comparisons of established risk assessment models found that differences in the area under the receiver operating curve were generally small (only 10 of 56 comparisons exceeded a 5\% relative difference). ${ }^{121}$ Analyses based on other discrimination, calibration, and reclassification statistics were less consistent. A limitation of head-to-head comparisons is that models were developed to predict different outcomes; models performed worse in head-to-head comparisons when the analysis was based on an outcomes not used in its original development.

In 2013, the ACC/AHA Pooled Cohort Equation risk calculator was introduced with the release of new statin therapy guidelines. ${ }^{109,122}$ The ACC/AHA Pooled Cohort Equation was developed based on pooled data from five large cohort studies that included white and black men and women, including the Framingham and Framingham Offspring studies. Important differences between the ACC/AHA Pooled Cohort Equation and the FRS ATP-III modification are that it includes diabetes as a risk factor and stroke events as a hard cardiovascular outcome (in addition to MI and CHD death). The ACC/AHA Pooled Cohort Equation uses race- and sex-specific equations for black and white persons, though equations are not available for other ethnic subpopulations. Although the developers of the ACC/AHA Pooled Cohort found that it performed relatively well in the pooled derivation cohort with regard to discrimination (Cstatistic 0.71 to 0.82 , stratified by black or white race and sex) and calibration (calibration chisquare 6.4 to 7.2), it performed less well in two more contemporary external validation cohorts (C-statistic 0.56 to 0.66 in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort and 0.67 to 0.77 in The Multi-Ethnic Study of Atherosclerosis (MESA) cohort; calibration chi-square 45 to 67 and 15 to 24 , respectively). The MESA cohort differed from the derivation cohorts in that it included Asians and Hispanics; in addition followup was limited to 6 years in the MESA cohort and 4 years in the REGARDS cohort. A subsequent analysis of the REGARDS cohort using 5-year data reported better predictive accuracy, with a C-statistic of 0.72 (95% CI 0.70 to 0.75) and Hosmer-Lemeshow chi-square of 19.9. Calibration was further improved when the analysis was limited to the subset of the population $(\mathrm{n}=6,121 / 18,498)$ with Medicare-linked data (Hosmer-Lemeshow chi-square 11.4), but discrimination was slightly reduced (C-statistic $0.65,95 \% \mathrm{CI} 0.62$ to 0.67). ${ }^{123}$

An analysis by investigators not involved in the development of the ACC/AHA Pooled Cohort Equation found that it over-estimated risk by 75 to 150 percent in three external United States cohorts (the Women's Health Study, the Physicians' Health Study, and the WHI Observational Study), with the greatest degree of overestimation in persons in the highest risk group (10-year risk $\geq 10 \%$). ${ }^{36}$ Some critiques of this analysis include its use of cohorts with lower risk of cardiovascular events than observed in the general population, potential imprecision due to
patient self-report for some risk factors, and publication as an editorial without detailed methods or peer review. ${ }^{37}$ A subsequent analysis on the Women's Health Study cohort found that the degree of overestimation was similar after adjusting for intervention effects of statins and revascularization, and that underascertainment of cardiovascular events was unlikely due to the high rate of followup ($>97 \%$). ${ }^{124}$ An analysis of the Framingham cohort found that persons eligible for statin therapy based on the 2013 ACC/AHA guideline (eligibility based on the Pooled Cohort Equation) were at higher risk for CVD events that persons eligible for statin therapy based on the ATP-III guideline (eligibility based on Framingham risk factors and LDL thresholds) (HR relative to persons not statin eligible $6.8,95 \%$ CI 3.8 to 11.9 vs. $3.1,95 \% 1.9$ to 5.0, respectively). ${ }^{40}$

Contextual Question 2. How Do Lipid Levels Change Over Time in Adults 40 Years of Age or Older?

Few longitudinal studies have assessed how lipid levels change over time in adults age 40 years and older. Cohort studies conducted in the United States and Europe showed relatively small changes over time in lipid levels, though changes appeared more pronounced in women than in men. In analysis of 2,912 FRS participants, the mean biennial difference in serial cholesterol measurements among individuals 45 to 54 years at enrollment was $3.3 \pm 6.9 \mathrm{mg} / \mathrm{dL}$ in men and $7.3 \pm 7.6 \mathrm{mg} / \mathrm{dL}$ in women. ${ }^{125}$ For individuals age 55 to 64 years at enrollment, changes were somewhat less pronounced: $2.0 \pm 7.4 \mathrm{mg} / \mathrm{dL}$ in men and $3.6 \pm 8.2 \mathrm{mg} / \mathrm{dL}$ in women. Including all adults 30 to 62 years of age at enrollment, in persons with $\mathrm{TC}<200 \mathrm{mg} / \mathrm{dL}$, the rate of change was higher $6.7 \pm 5.6 \mathrm{mg} / \mathrm{dL}$ for men and $9.2 \pm 6.6 \mathrm{mg} / \mathrm{dL}$ for women) than those with initial cholesterol $\geq 240 \mathrm{mg} / \mathrm{dL}(0.6 \pm 7.4 \mathrm{mg} / \mathrm{dL}$ for men and $3.7 \pm 11.2 \mathrm{mg} / \mathrm{dL}$ for women $)$. In the Nijmegen Cohort Study ($n=2,335$), conducted in the Netherlands, TC levels increased an average of 4.5 percent over 18 years among men 40 years of age at baseline, but were essentially stable in men 45 to 50 years of age at baseline. ${ }^{126}$ In women, TC levels increased 16 percent after 18 years among those 40 to 44 years of age at baseline and 12 percent for those 45 to 50 years at baseline. In the Rancho Bernardo Heart and Chronic Disease study, which analyzed lipid levels in 917 residents in the United States age 50 to 93 years, TC, HDL-C, and LDL-C levels all decreased at ~ 1 percent per year over an 8 -year period. ${ }^{127}$

A factor that complicates interpretation of longitudinal data on lipid levels is differentiating true, long-term changes from short-term biological variation or analytic error. In an analysis of cholesterol data from the Long-Term Intervention with Pravastatin in Ischemic Disease study of patients with past coronary heart disease randomized to pravastatin versus placebo, mean cholesterol levels increased about 0.5 percent per year over the 5 years following the initial intervention period. ${ }^{128}$ However, the short-term biological and analytical variability was about 7 percent, and it took nearly 4 years for the long-term variation to exceed the short-term variation, indicating a weak signal-to-noise ratio and a high likelihood of false-positive increases with frequent retesting of cholesterol levels. A retrospective Japanese study of serial lipid levels over 4 years among persons not taking lipid-lowering therapy found that the signal-to-noise ratio remained below one through 3 years for TC, HDL-C, and LDL-C, but exceeded one for the ratio of TC to HDL-C and LDL-C to HDL-C. ${ }^{128}$

Studies measuring the tracking coefficient, a measure of the tendency of individuals to maintain their rank or position in a group over time (coefficients >0.50 indicating more stable levels), also indicate relative long-term stability of cholesterol levels. In the Tromsø Study, the tracking coefficient over 16 years for HDL cholesterol in $>18,000$ Norwegian subjects 39 to 61 years of age at enrollment ranged from 0.53 to 0.62 in men and from 0.66 to 0.69 in women. ${ }^{129}$ The tracking coefficient for TC was somewhat higher for TC in men (0.69 to 0.73) but similar to HDL cholesterol in women (0.65 to 0.66). TG levels were less stable (tracking coefficient 0.43 to 0.45 for men and 0.45 to 0.51 for women). Results were similar in the Austrian Vorarlberg Health Monitoring and Promotion Programme study ($\mathrm{n}=149,650$), with tracking coefficients for total cholesterol of 0.63 to 0.66 in both men and women 45 years and older, and 0.59 to 0.63 for triglycerides. ${ }^{130}$

Chapter 4. Discussion

Summary of Review Findings

Table 9 summarizes the evidence reviewed for this update. In adults at increased cardiovascular risk but without prior cardiovascular events, statin therapy was associated with reduced risk of clinical outcomes compared with placebo or no statin use, based on pooled evidence from 18 trials with 6 months to 5 years followup. Although the trials evaluated diverse patient populations (e.g., patients with hyperlipidemia, diabetes, hypertension, early cerebrovascular disease, elevated CRP, and others), findings were generally consistent across trials in favoring statin therapy versus placebo or no statin for various individual cardiovascular outcomes (NNT to prevent 1 event that ranged from 108 [MI] to 270 [stroke]) and for composite cardiovascular outcomes (NNT 68). Pooled results indicated a decreased risk of all-cause mortality (14 trials; RR $0.83,95 \%$ CI 0.76 to $0.92 ; \mathrm{I}^{2}=0 \%$; ARD -0.41%, NNT 244 after 1 to 5 years), cardiovascular mortality (nine trials; RR $0.64,95 \%$ CI 0.49 to $0.84 ; \mathrm{I}^{2}=43 \%$; ARD -0.46%, NNT 217 after 2 to 5 years), stroke (12 trials; RR $0.72,95 \%$ CI 0.61 to $0.84 ; I^{2}=0 \%$; ARD -0.37%, NNT 270 after 6 months to 5 years), MI (11 trials; RR $0.63,95 \%$ CI 0.56 to $0.71 ; \mathrm{I}^{2}=0 \%$; ARD -0.93%, NNT 108 after 2 to 5 years), revascularization (six trials; RR $0.63,95 \%$ CI 0.54 to $0.72 ; \mathrm{I}^{2}=0 \%$; ARD 0.75%, NNT 133 after 2 to 5 years) and composite cardiovascular outcomes (12 trials; RR 0.69 , 95% CI 0.61 to $0.77 ; \mathrm{I}^{2}=37 \%$; ARD -1.47%, NNT 68 after 1 to 5 years). Findings were generally robust in sensitivity and stratified analyses based on trial quality, duration of followup, baseline total or LDL-C levels, exclusion of trials stopped early, and exclusion of trials that enrolled a small proportion of patients with prior cardiovascular events. A challenge in interpreting the NNT is that estimates vary across studies depending on the baseline risk of the population and the duration of followup, which varied across trials.

Our findings regarding benefits of statin therapy were generally consistent with recent highquality systematic reviews ${ }^{102,131-133}$ that primarily focused on patients without prior cardiovascular events, though there was variability in inclusion criteria (e.g., inclusion of trials in which a small proportion of patients had prior cardiovascular events, trials of patients with specific conditions such as severe kidney disease, or trials of statins for prevention of noncardiovascular outcomes [e.g., Alzheimer's disease]), use of individual patient data, ${ }^{131}$ and methods for analyzing outcomes (e.g., events that occurred during statin therapy or inclusion of events that occurred after treatment was discontinued). For all-cause mortality, our point estimate was very similar to the estimates reported in recent systematic reviews, ${ }^{102,131,132}$ though in one of the reviews the difference was not statistically significant (RR $0.91,95 \%$ CI 0.83 to 1.01). ${ }^{131}$

Effects of statins also appeared to be similar in patient subgroups defined according to demographic characteristics such as age, sex, and race, and clinical characteristics such as presence of diabetes or renal dysfunction. For hypertension, two trials found no clear differences in estimates of effects of statins when patients were stratified according to presence or absence of hypertension. ${ }^{73,82}$ However, the large ASCOT-LLA trial ($\mathrm{n}=10,305$), which enrolled patients with treated or untreated hypertension and at least three other cardiovascular risk factors, found statin therapy associated with no clear effect on CV mortality (HR $0.90,95 \%$ CI 0.66 to 1.23), though results for other cardiovascular outcomes and all-cause mortality were generally
consistent with other trials. The ALLHAT-LLT ($\mathrm{n}=10,355$) trial, which focused on patients with stage 1 or 2 hypertension and at least one other cardiovascular risk factor, was excluded because ~ 15 percent of patients had prior coronary heart disease. It found no clear effects of statin therapy versus placebo on all-cause mortality, cardiovascular mortality, stroke, or fatal or nonfatal MI (RR estimates 0.91 to 0.99), though the confidence intervals encompassed the point estimate based on other trials of primary prevention. ${ }^{134}$ Challenges in interpreting the results of ALLHAT-LLA are use of an open-label design with high crossover (resulting in a modest reduction in LDL-C of about $24 \mathrm{mg} / \mathrm{dL}$ with statin therapy) and lower than projected sample size, resulting in decreased statistical power. ${ }^{135}$

For effects in subgroups defined by sex, our findings are in accordance with a pooled analysis on the effects of statins in women enrolled in JUPITER, ${ }^{73}$ AFCAPS/TexCAPS, ${ }^{53}$ and MEGA, ${ }^{82}$ which reported pooled estimates for all-cause mortality (RR $0.78,95 \%$ CI 0.53 to 1.15) for allcause mortality and cardiovascular events (RR $0.63,95 \% \mathrm{CI} 0.49$ to 0.82) that were similar to our pooled estimates. ${ }^{80}$ Results from a good-quality systematic review on the effect of statins in women that included trials ${ }^{134,136}$ in which >10 percent of the population had prior CVD events also reported similar estimates for all-cause mortality (three studies; RR 0.90, 95% CI 0.60 to $1.35 ; \mathrm{I}^{2}=11 \%$) and CHD events (six studies; RR $0.78,95 \%$ CI 0.64 to $0.96 ; \mathrm{I}^{2}=7 \%$). ${ }^{137}$

Benefits did not appear to be restricted to patients with severely elevated lipids, as similar effects were observed in subgroups stratified according to baseline TC or LDL-C, ${ }^{53,59,82,95,104}$ and were observed in trials that excluded patients with severe dyslipidemia but who had other cardiovascular risk factors. ${ }^{59,62,64,68,73}$ Similarly, trials that stratified patients according to a baseline global cardiovascular risk score reported similar risk estimates in those classified as higher and lower assessed risk. ${ }^{53,73}$ Given similar relative risk estimates, however, the absolute benefits of statin therapy will be greater in patients at higher baseline risk. This has implications for determining the cardiovascular risk threshold used to select patients for statin treatment (e.g., 10 -year risk $>7.5 \%$ vs. $>10 \%$). In JUPITER, which enrolled patients with LDL-C levels <130 $\mathrm{mg} / \mathrm{dL}$ and CRP level $\geq 2.0 \mathrm{mg} / \mathrm{L}$, a post-hoc analysis found that the incidence of cardiovascular events in patients with at least one additional cardiovascular risk factor was nearly twice as high as in those without additional risk factors (15.5 vs. 7.7 per 1000 patient-years), ${ }^{104,138}$ resulting in a NNT to prevent one cardiovascular event about twice as high in the subgroup without additional risk factors, based on a similar estimate of effect. ${ }^{73}$

We found no evidence that statin treatment in adults without prior cardiovascular events is associated with increased risk of withdrawal due to adverse events, serious adverse events, cancer, or elevated liver enzymes versus placebo or no statin therapy. Our findings are generally consistent with recent systematic reviews, some of which also included trials of statins for secondary prevention. ${ }^{34,35,102,139}$ Similar to other meta-analyses of trials of primary and secondary prevention, ${ }^{31,140}$ we found no increased risk of muscle-related harms with statin use, although some observational studies of patients on statins for various indications found an increased risk of myopathy compared with nonuse. ${ }^{141}$ While none of the included trials found increased risk of myalgia in statin-treated patients, one recent trial of healthy, statin-naïve subjects reported an increased risk of myalgia using predefined criteria (including resolution after discontinuation of study drug and recurrence on rechallenge) with high-intensity statin therapy (atorvastatin 80 $\mathrm{mg} /$ day) versus placebo for 6 months that was just below the threshold for statistical significance
$(9.4 \%$ vs. 4.6%, RR $2.03,95 \%$ CI 0.97 to 4.26$) .{ }^{142}$
In contrast with systematic reviews of primary and secondary prevention trials that reported a slightly increased risk of diabetes with statin therapy (OR 1.09, 95\% CI 1.02 to $1.17,{ }^{108,143}$ and RR $1.13,95 \%$ CI 1.03 to 1.23), ${ }^{144}$ we found no increased risk of diabetes in five trials of patients without prior cardiovascular events (RR $1.04,95 \%$ CI 0.88 to $1.24 ; \mathrm{I}^{2}=61 \%$). Another systematic review that limited analysis to primary prevention trials also found no increased risk of diabetes with statin use (four trials; RR $1.05,95 \%$ CI 0.84 to 1.32). ${ }^{132}$ However, results of individual primary prevention trials were inconsistent, with one large trial (JUPITER) showing increased risk of diabetes (3.0 vs. 2.4%, RR $1.25,95 \%$ CI 1.05 to 1.49). ${ }^{73}$ A difference between JUPITER and the other trials in our analysis is that it was the only one to evaluate high-potency statin therapy. Other analyses that included trials of statins for secondary prevention have suggested an association between intensity of statin dose and risk of incident diabetes. ${ }^{132,143,145,146}$ In JUPITER, the risk of diabetes was increased in patients with risk factors for diabetes at baseline, but not in persons without diabetes risk factors. Based on JUPITER, among patients with diabetes risk factors, 134 cardiovascular events were prevented for every 54 incident cases of diabetes, while among persons without diabetes risk factors, 86 cardiovascular events were prevented among patients and no incident cases of diabetes were diagnosed. ${ }^{105}$ One mechanism by which statins may increase risk of diabetes is through a modest increase in body weight. ${ }^{147,148}$

Evidence on the association between statin use in adults without prior cardiovascular events and renal or cognitive harms was sparse, but found no clear increase in risk. Our findings are consistent with a recent systematic review of RCTs and observational studies on the effect of statins on cognition that found no effect on incidence of Alzheimer's disease or dementia and no differences in performance on tests of procedural memory, attention, motor speed, global cognitive performance, executive function, declarative memory, processing speed, or visuoperception. ${ }^{34}$ Unlike our review, this systematic review included trials of patients receiving statins for any reason, including for prevention of cognitive decline or dementia and for secondary prevention following a cardiovascular event. A recent cohort study in which most patients receiving statin therapy had a history of cardiovascular disease found that statins and nonstatin lipid lower drugs were associated with similar risk of acute memory loss in the first 30 days following exposure, suggesting that either all lipid lower drugs cause acute memory loss or that the observed association is due to detection bias rather than a causal association. ${ }^{149}$

Recent guidelines from the ACC/AHA ${ }^{30}$ differ from prior ATP-III guidelines ${ }^{16}$ in recommending fixed-dose statin therapy with the intensity of therapy determined by cardiovascular risk factors, rather than titration of statin therapy to achieve target LDL-C levels. We identified no study that directly compared treatment with statins titrated to attain target cholesterol levels versus other fixed-dose or other treatment strategies. Although indirect comparisons based on trials of statins versus placebo or no statin that permitted dose titration compared with those that used fixed-dose therapy showed no clear differences in risk of all-cause or cardiovascular mortality, MI, or stroke, only three ${ }^{51,53,82}$ of 18 trials permitted limited dose limited (no trial involved titration from low intensity to high intensity statin therapy and one of the trials only titrated within the low intensity category), precluding strong conclusions.

Little direct evidence was available to determine effects of statin therapy intensity on clinical
outcomes or adverse events. Two trials that directly compared different statin intensities were underpowered to evaluated clinical outcomes. ${ }^{65,91}$ Indirect comparisons based on trials of statins versus placebo or no statin stratified according to the intensity of therapy were also limited, as most trials evaluated moderate-intensity therapy. For all-cause mortality, risk estimates were similar in trials of low-intensity (RR $0.72,95 \%$ CI 0.52 to $1.00 ; \mathrm{I}^{2}=0 \%$), moderate-intensity (RR $0.84,95 \%$ CI 0.74 to $0.96 ; \mathrm{I}^{2}=0 \%$) and high-intensity (RR $0.80,95 \%$ CI 0.67 to $0.97 ; \mathrm{I}^{2}=0 \%$) statins. For other clinical outcomes, there were too few trials of low- and high-intensity statins to conduct meaningful comparisons. A meta-analysis of individual patient data found an association between the degree of LDL-C lowering and reduced risk of clinical outcomes, potentially providing indirect evidence regarding the relative effectiveness of higher versus lower intensity statin therapy. ${ }^{47}$ Although this analysis included trials of patients with prior cardiovascular events, estimates were similar in patients with an estimated 5 -year risk of <5 percent or 5 to 10 percent, a subgroup unlikely to include those with prior cardiovascular events. A good-quality systematic review also found no clear effects of statin intensity on benefits or harms outcomes, but categorized different statins as low- (fluvastatin, lovastatin, pravastatin, simvastatin) or high(atorvastatin and rosuvastatin) potency without consideration of statin dose or estimated lipid lowering effect. ${ }^{132}$

Limitations

Our review had some limitations. Statistical heterogeneity was present in several pooled analyses. Therefore, we used the Dersimonian-Laird random effects model to pool studies. The Dersimonian-Laird random effects model may result in confidence intervals that are too narrow when heterogeneity is present, particularly when the number of studies is small. ${ }^{49}$ Therefore, we repeated analyses in which statistical heterogeneity was present using the profile likelihood method, which resulted in similar findings. To address statistical heterogeneity, we also performed sensitivity and subgroup analyses based on study quality, duration of followup, intensity of statin therapy, baseline lipid levels, and exclusion of trials which enrolled some patients with prior cardiovascular events. Although statistical heterogeneity remained present in some analyses, results were generally robust in sensitivity and stratified analyses.

We did not have access to individual patient data. Therefore, our findings are based on analyses of study-level data and our ability to analyze effects in subgroups was restricted to published reports. An individual patient data meta-analysis that found that the effect of statins for primary prevention on all-cause mortality did not reach statistical significance (RR $0.91,95 \% \mathrm{CI} 0.83$ to 1.01), though the estimate favored statins. ${ }^{131}$ Because it had access to individual patient data, it was able to include some trials that we excluded because >10 percent of the population had prior cardiovascular events. ${ }^{134,150}$ For trials that we included in which <10 percent of patients had prior cardiovascular events, it was also able to separately analyze patients without prior cardiovascular events; our analyses were based on results for the whole population. However, excluding the latter trials from our analyses did not affect our findings.

We also used indirect comparisons when direct evidence was unavailable or limited to evaluate effects of titrated versus fixed-dose statin therapy, intensity of statin therapy, and subgroup effects. Although findings based on indirect comparisons were generally consistent with
available direct evidence, results based on indirect comparisons should be interpreted with caution. ${ }^{151}$

We also excluded non-English language articles, which could result in language bias. However, some research suggests that English-language restriction has little effect on the conclusions of systematic reviews of topics other than complementary medicine, and we did not identify any large non-English trials of statins versus placebo referenced in other systematic reviews. ${ }^{152,153}$ We only formally assessed for publication bias using statistical and graphical methods to assess for small sample effects when there were at least 10 studies, as research indicates that such methods can be misleading with smaller numbers of studies. ${ }^{50} \mathrm{We}$ found no evidence of small sample effects in these analyses, but cannot exclude the possibility of publication bias in analyses based on smaller numbers of trials. Only two trials received no industry funding. ${ }^{51,91}$ Although research has found an association between receipt of industry funding and biased estimates, ${ }^{154-156}$ analyses of statin trials have found no association between funding source and degree of LDL lowering. ${ }^{157}$

Emerging Issues/Next Steps

Determining the optimal methods for assessing cardiovascular risk has recently received increased scrutiny. Although the ACC/AHA guideline recommends the use of the newly developed Pooled Cohort Equation to predict risk, ${ }^{30}$ some validation studies have found that it over predicts cardiovascular risk. ${ }^{36,158}$ There is also ongoing interest in use of newer methods to supplement traditional risk factors for predicting cardiovascular risk, such as measurement of coronary artery calcium score, measurement of carotid intimal media thickness, CRP levels, and alternative lipid measures, ${ }^{1,109}$

Other clinical practices around use of statins may also be changing due to the release of the 2013 ACC/AHA guideline. ${ }^{30}$ Recommendations in the ACC/AHA guideline differ substantially from the ATP-III guideline in recommending fixed-intensity statin therapy without specific LDL-C targets. Adoption of these recommendations could substantially impact practices related to lipid level and other monitoring in patients on therapy. The ACC/AHA also recommends a lower threshold for initiation of treatment with a statin in patients without prior cardiovascular events, which analyses indicate would substantially increase the number of patients eligible for therapy. ${ }^{36,38-40}$

Although pitavastatin was recently approved by the Food and Drug Administration (FDA), no trial of statin therapy in patients without prior cardiovascular events evaluated this drug. Drugs in the proprotein convertase subtilisin-kexin type 9 (PCSK9) class have also been recently approved by the FDA for use with diet and maximally tolerated statin therapy in persons with FH or clinical atherosclerotic CVD who require additional LDL cholesterol lowering. The PCSK9 drugs reduce LDL cholesterol levels by ~ 60 percent compared with standard therapy including maximally tolerated statins, although evidence on effects on clinical outcomes is limited at this time. ${ }^{159,160}$ More research is needed to understand the benefits and harms of this class of drugs in persons without prior CV events, including persons who cannot tolerate statin therapy.

Relevance for Priority Populations

Statin therapy appears to be similarly effective in younger and older adults, based on relative risk estimates. Because risk of cardiovascular events increases with age, however, statin therapy in older adults is associated with greater absolute benefits. For example, in the JUPITER trial, the number needed to treat to prevent one cardiovascular event was 62 in persons ≥ 70 years of age and 94 in persons younger than $70{ }^{73}$ The trials of statin therapy included in this report reported no increased risk of muscle-related, liver-related, renal, oncologic, or cognitive adverse events versus placebo, but only one trial evaluated potential interactions between age and adverse events (it found no statistically significant interaction). ${ }^{73}$ However, older persons may be at increased risk for adverse events due to use of concomitant medications or comorbidities, warranting additional research to fully understand the balance of benefits to harms in this population. Evidence regarding benefits and harms of statin therapy in persons older than 80 years of age is very limited, as most trials were restricted to younger patients, and trials that did enroll patients older than 80 years of age, results were not reported for this subgroup. ${ }^{161} \mathrm{We}$ identified one trial of fluvastatin versus placebo in which half of the study population ($\mathrm{n}=1,229$) was age ≥ 75 years. However, it was not designed to assess clinical outcomes and did not meet inclusion criteria. ${ }^{162}$

Evidence on effects of statin therapy in racial minorities was very limited. The only trial to report effects of statin therapy versus placebo stratified by racial group found no differences between estimates for white and non-white (primarily black or Hispanic) persons. ${ }^{73}$ In trials that reported race, whites were the predominant group.

Future Research

Several research gaps limit the full understanding of benefits and harms of statin therapy. Trials that directly compare titrated statin therapy to target lipid levels versus fixed-dose therapy would help to inform optimal dosing strategies. Trials that directly compare higher versus lower intensity statin therapy and are powered to assess clinical outcomes are also needed. Additional research would be helpful for more definitively determining whether statin therapy is associated with increased risk of diabetes or cognitive harms. More research is also needed to clarify benefits and harms of statins in subgroups including persons >80 years of age. Evidence to determine whether effectiveness of statin therapy varies in racial and ethnic minorities remains sparse.

Additional research is needed to validate the predictive accuracy of the Pooled Cohort Equation to predict cardiovascular risk, in order to help guide optimal methods for risk assessment. Studies that compare strategies based on global risk assessment scores versus presence of defined cardiovascular risk factors could help to further clarify optimal methods to select patients for statin therapy. Research is also needed to better understand how frequently cardiovascular risk assessment (including lipid testing) should be performed, ideally by directly comparing how different assessment intervals impact use of statin therapy as well as subsequent clinical outcomes.

Conclusions

In adults at increased cardiovascular risk but without prior cardiovascular events, statin therapy is associated with reduced risk of all-cause and cardiovascular mortality and cardiovascular events. Benefits appear present across diverse demographic and clinical subgroups, with greater absolute benefits in patients at higher baseline risk, and do not appear to be restricted to patients with marked hyperlipidemia.

References

1. Helfand M, Buckley DI, Freeman M, et al. Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151(7):496-507.
2. Pignone MP, Phillips CJ, Atkins D, et al. Screening and treating adults for lipid disorders. Am J Prev Med. 2001;20(3 Suppl):77-89.
3. Pignone MP, Phillips CJ, Lannon CM, et al. Screening for Lipid Disorders. AHRQ Publication No. 01-S004. Rockville (MD): Agency for Healthcare Research and Quality: 2001. Available at: http://www.ahrq.gov/downloads/pub/prevent/pdfser/lipidser.pdf.
4. U.S. Preventive Services Task Force. Screening for Lipid Disorders in Adults:

Recomendation Statement. AHRQ Publication No. 08-05114-EF-2. Rockville (MD): Agency for Healthcare Research and Quality; 2008. Available at: http://www.uspreventiveservicestaskforce.org/uspstf08/lipid/lipidrs.htm.
5. Chou R, Dana T, Blazina I, et al. Screening for Lipid Disorders in Younger Adults: Systematic Review to Update the 2008 U.S. Preventive Services Task Force Recommendation. Rockville, MD: Agency for Healthcare Research \& Quality; in press.
6. Mensah GA, Brown DW. An overview of cardiovascular disease burden in the United States. Health Aff (Millwood). 2007;26(1):38-48.
7. Hoyert DL. 75 years of mortality in the United States, 1935-2010. NCHS Data Brief. 2012(88):1-8.
8. Minino AM. Death in the United States, 2011. NCHS Data Brief. 2013(115):1-8.
9. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics-2013 update a report from the American Heart Association. Circulation. 2013;127(1):e6-e245.
10. Hoyert DL, Xu J. Deaths: preliminary data for 2011. Natl Vital Stat Rep. 2012;61(6):165.
11. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2-e220.
12. Centers for Disease Control and Prevention. Prevalence of coronary heart disease--United States, 2006-2010. MMWR. 2011;60(40):1377-81.
13. Davies MJ. The pathophysiology of acute coronary syndromes. Heart. 2000;83(3):361-6.
14. Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am Heart J. 1986;111(2):38390.
15. Lecerf JM, de Lorgeril M. Dietary cholesterol: from physiology to cardiovascular risk. Br J Nutr. 2011;106(1):6-14.
16. National Institutes of Health. Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). NIH Publication No. 02-5215. National Cholesterol Education Program; 2002. Available at: http://www.nhlbi.nih.gov/guidelines/cholesterol/atp3 rpt.htm.
17. Sheifer SE, Gersh BJ, Yanez ND, et al. Prevalence, predisposing factors, and prognosis of clinically unrecognized myocardial infarction in the elderly. J Am Coll Cardiol. 2000;35(1):119-26.
18. Sigurdsson E, Thorgeirsson G, Sigvaldason H, et al. Unrecognized myocardial infarction: epidemiology, clinical characteristics, and the prognostic role of angina pectoris: the Reykjavik Study. Ann Intern Med. 1995;122(2):96-102.
19. Welsh JA, Sharma A, Abramson JL, et al. Caloric sweetener consumption and dyslipidemia among us adults. JAMA. 2010;303(15):1490-7.
20. Toth PP, Potter D, Ming EE. Prevalence of lipid abnormalities in the United States: the National Health and Nutrition Examination Survey 2003-2006. J Clin Lipidol. 2012;6(4):325-30.
21. Centers for Disease Control and Prevention. Cholesterol: Risk Factors. Available at: http://www.cdc.gov/cholesterol/risk factors.htm.
22. Coffey S. Dyslipidemia. Clinical Guide: Comorbidities and Complications. U.S. Department of Health and Human Services, Health Resources and Services
Administration. Available at: http://hab.hrsa.gov/deliverhivaidscare/clinicalguide11/cg602 dyslipidemia.html.
23. Stein JH. Dyslipidemia in the era of HIV protease inhibitors. Prog Cardiovasc Dis. 2003;45(4):293-304.
24. Saari K, Koponen H, Laitinen J, et al. Hyperlipidemia in persons using antipsychotic medication: a general population-based birth cohort study. J Clin Psychiatry. 2004;65(4):547.
25. Sniderman AD, Williams K, Contois JH, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4(3):337-45.
26. Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993-2000.
27. Robinson JG, Wang S, Smith BJ, et al. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol. 2009;53(4):316-22.
28. Ramjee V, Sperling LS, Jacobson TA. Non-high-density lipoprotein cholesterol versus apolipoprotein B in cardiovascular risk stratification: do the math. J Am Coll Cardiol. 2011;58(5):457-63.
29. Arsenault BJ, Mora S, Nestel PJ, et al. Clinician's Corner. Association of LDL Cholesterol, Non - HDL Cholesterol, and Apolipoprotein B Levels With Risk of Cardiovascular Events. JAMA. 2012;307(12).
30. Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;63(25 Pt B):2889-934.
31. Kashani A, Phillips CO, Foody JM, et al. Risks associated with statin therapy a systematic overview of randomized clinical trials. Circulation. 2006;114(25):2788-97.
32. Thompson PD, Clarkson PM, Rosenson RS. An assessment of statin safety by muscle experts. Am J Cardiol. 2006;97(8):S69-S76.
33. Alsheikh-Ali AA, Ambrose MS, Kuvin JT, et al. The safety of rosuvastatin as used in common clinical practice: a postmarketing analysis. Circulation. 2005;111(23):3051-7.
34. Richardson K, Schoen M, French B, et al. Statins and Cognitive Function: A Systematic Review. Ann Intern Med. 2013;159(10):688-97.
35. Dale KM, Coleman CI, Henyan NN, et al. Statins and cancer risk: a meta-analysis. JAMA. 2006;295(1):74-80.
36. Ridker PM, Cook NR. Statins: new American guidelines for prevention of cardiovascular disease. Lancet. 2013;382(9907):1762-5.
37. Lloyd-Jones DM, Goff D, Stone NJ. Statins, risk assessment, and the new American prevention guidelines. Lancet. 2013;383(9917):600-2.
38. Karmali KN, Goff DC, Jr., Ning H, et al. A systematic examination of the 2013 ACC/AHA pooled cohort risk assessment tool for atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2014;64(10):959-68.
39. Miedema MD, Lopez FL, Blaha MJ, et al. Eligibility for statin therapy according to new cholesterol guidelines and prevalent use of medication to lower lipid levels in an older US Cohort: the Atherosclerosis Risk in Communities Study Cohort. JAMA Intern Med. 2015;175(1):138-40.
40. Pursnani A, Massaro JM, D'Agostino RB, Sr., et al. Guideline-Based Statin Eligibility, Coronary Artery Calcification, and Cardiovascular Events. JAMA. 2015;314(2):134-41.
41. Lopez-Jimenez F, Simha V, Thomas RJ, et al. A summary and critical assessment of the 2013 AA/AHA guideline on the treatment of the blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: filling the gaps. Mayo Clin Proc. 2014;89(9):1257-78.
42. National Institute for Health and Care Excellence (NICE). Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. 2014. Available
at: http://www.nice.org.uk/guidance/cg181.
43. Board J. Joint British Societies' consensus recommendations for the prevention of cardiovascular disease (JBS3). Heart. 2014;100(Suppl 2):ii1-ii67.
44. The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology and the European Atherosclerosis Society. ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J. 2011;32:1769-818.
45. Anderson TJ, Gregoire J, Hegele RA, et al. 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29:151-67.
46. International Atherosclerosis Society. Global recommendations for the management of dyslipidemia. Available at: http://www.athero.org/download/IASPPGuidelines_FullReport 2.pdf.
47. Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):58190.
48. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Br Med J. 2003;327(7414):557-60.
49. Cornell JE, Mulrow CD, Localio R, et al. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med. 2014;160(4):267-70.
50. Sterne JA, Sutton AJ, Ioannidis J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.
51. Furberg CD, Adams HP, Jr., Applegate WB, et al. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation. 1994;90(4):1679-87.
52. ACAPS Group. Rationale and design for the Asymptomatic Carotid Artery Plaque Study (ACAPS). Control Clin Trials. 1992;13:293-314.
53. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of
AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279(20):1615-22.
54. Downs JR, Beere PA, Whitney E, et al. Design \& rationale of the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Am J Cardiol. 1997;80(3):287-93.
55. Downs JR, Clearfield M, Tyroler HA, et al. Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TEXCAPS): additional perspectives on tolerability of longterm treatment with lovastatin. Am J Cardiol. 2001;87(9):1074-9.
56. Gotto AM, Jr., Whitney E, Stein EA, et al. Application of the National Cholesterol Education Program and joint European treatment criteria and clinical benefit in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Eur Heart J. 2000;21(19):1627-33.
57. Gotto AM, Jr., Whitney E, Stein EA, et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation. 2000;101(5):47784.
58. Gotto AM, Jr. Establishing the benefit of statins in low-to-moderate--risk primary prevention: the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Atheroscler Suppl. 2007;8(2):3-8.
59. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361(9364):114958.
60. Sever PS, Dahlof B, Poulter NR, et al. Rationale, design, methods and baseline demography of participants of the Anglo-Scandinavian Cardiac Outcomes Trial. ASCOT investigators. J Hypertens. 2001;19(6):1139-47.
61. Sever PS, Poulter NR, Dahlof B, et al. Reduction in cardiovascular events with atorvastatin in 2,532 patients with type 2 diabetes: Anglo-Scandinavian Cardiac Outcomes Trial--lipid-lowering arm (ASCOT-LLA). Diabetes Care. 2005;28(5):1151-7.
62. Knopp RH, d'Emden M, Smilde JG, et al. Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus (ASPEN). Diabetes Care. 2006;29(7):1478-85.
63. Chan KL, Teo K, Dumesnil JG, et al. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121(2):30614.
64. Beishuizen ED, van de Ree MA, Jukema JW, et al. Two-year statin therapy does not alter the progression of intima-media thickness in patients with type 2 diabetes without manifest cardiovascular disease. Diabetes Care. 2004;27(12):2887-92.
65. Bone HG, Kiel DP, Lindsay RS, et al. Effects of atorvastatin on bone in postmenopausal women with dyslipidemia: a double-blind, placebo-controlled, dose-ranging trial. J Clin Endocrinol Metab. 2007;92(12):4671-7.
66. Mercuri M, Bond MG, Sirtori CR, et al. Pravastatin reduces carotid intima-media thickness progression in an asymptomatic hypercholesterolemic mediterranean population: the Carotid Atherosclerosis Italian Ultrasound Study. Am J Med. 1996;101(6):627-34.
67. Sirtori CR, Bianchi G, Bond MG, et al. Pravastatin intervention trial on carotid artery atherosclerosis in patients with mild hypercholesterolemia: the CAIUS study. Int J Card Imaging. 1995;11(Suppl 2):119-24.
68. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685-96.
69. Colhoun HM, Thomason MJ, Mackness MI, et al. Design of the Collaborative AtoRvastatin Diabetes Study (CARDS) in patients with type 2 diabetes. Diabet Med. 2002;19(3):201-11.
70. Neil HAW, DeMicco DA, Luo D, et al. Analysis of efficacy and safety in patients aged 65-75 years at randomization: Collaborative Atorvastatin Diabetes Study (CARDS). Diabetes Care. 2006;29(11):2378-84.
71. Heljić B, Velija-Asimi Z, Kulic M. The statins in prevention of coronary heart diseases in type 2 diabetics. Bosn J Basic Med Sci. 2009;9(1):71-6.
72. Anderssen SA, Hjelstuen AK, Hjermann I, et al. Fluvastatin and lifestyle modification for reduction of carotid intima-media thickness and left ventricular mass progression in drugtreated hypertensives. Atherosclerosis. 2005;178(2):387-97.
73. Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195207.
74. Ridker PM, Fonseca FAH, Genest J, et al. Baseline characteristics of participants in the JUPITER trial, a randomized placebo-controlled primary prevention trial of statin therapy among individuals with low low-density lipoprotein cholesterol and elevated highsensitivity C-reactive protein. Am J Cardiol. 2007;100(11):1659-64.
75. Ridker PM, Group JS. Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated highsensitivity C-reactive protein: rationale and design of the JUPITER trial. Circulation. 2003;108(19):2292-7.
76. Albert MA, Glynn RJ, Fonseca FAH, et al. Race, ethnicity, and the efficacy of rosuvastatin in primary prevention: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Am Heart J. 2011;162(1):106-14.e2.
77. Glynn RJ, Koenig W, Nordestgaard BG, et al. Rosuvastatin for primary prevention in older persons with elevated C-reactive protein and low to average low-density lipoprotein
cholesterol levels: exploratory analysis of a randomized trial. Ann Intern Med. 2010;152(8):488-96.
78. Ridker PM, Macfadyen JG, Nordestgaard BG, et al. Rosuvastatin for primary prevention among individuals with elevated high-sensitivity c-reactive protein and 5% to 10% and 10% to $20 \% 10$-year risk. Implications of the Justification for Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial for "intermediate risk". Circulation. 2010; 3(5):447-52.
79. Koenig W, Ridker PM. Rosuvastatin for primary prevention in patients with European systematic coronary risk evaluation risk $>5 \%$ or Framingham risk $>20 \%$: post hoc analyses of the JUPITER trial requested by European health authorities. Eur Heart J. 2011;32(1):75-83.
80. Mora S, Glynn RJ, Hsia J, et al. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia: results from the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) and meta-analysis of women from primary prevention trials. Circulation. 2010;121(9):1069-77.
81. Salonen R, Nyyssonen K, Porkkala E, et al. Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation. 1995;92(7):175864.
82. Nakamura H, Arakawa K, Itakura H, et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet. 2006;368(9542):1155-63.
83. Tajima N, Kurata H, Nakaya N, et al. Pravastatin reduces the risk for cardiovascular disease in Japanese hypercholesterolemic patients with impaired fasting glucose or diabetes: diabetes subanalysis of the Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) Study. Atherosclerosis. 2008;199(2):45562.
84. Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) Study Group. Design and baseline characteristics of a study of primary prevention of coronary events with pravastatin among Japanese with mildly elevated cholesterol levels. Circ J. 2004;68(9):860-7.
85. Uchiyama S, Nakaya N, Mizuno K, et al. Risk factors for stroke and lipid-lowering effect of pravastatin on the risk of stroke in Japanese patients with hypercholesterolemia: analysis of data from the MEGA Study, a large randomized controlled trial. J Neurol Sci. 2009;284(1-2):72-6.
86. Kushiro T, Mizuno K, Nakaya N, et al. Pravastatin for cardiovascular event primary prevention in patients with mild-to-moderate hypertension in the Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) Study. Hypertension. 2009;53(2):135-41.
87. Mizuno K, Nakaya N, Ohashi Y, et al. Usefulness of pravastatin in primary prevention of cardiovascular events in women: analysis of the Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA study). Circulation. 2008;117(4):494-502.
88. Nakaya N, Mizuno K, Ohashi Y, et al. Low-dose pravastatin and age-related differences in risk factors for cardiovascular disease in hypercholesterolaemic Japanese: analysis of
the management of elevated cholesterol in the primary prevention group of adult Japanese (MEGA study). Drugs Aging. 2011;28(9):681-92.
89. Nakamura H, Mizuno K, Ohashi Y, et al. Pravastatin and cardiovascular risk in moderate chronic kidney disease. Atherosclerosis. 2009;206(2):512-7.
90. Nishiwaki M, Ikewaki K, Ayaori M, et al. Risk reductions for cardiovascular disease with pravastatin treatment by dyslipidemia phenotype: a post hoc analysis of the MEGA Study. J Cardiol. 2013;61(3):196-200.
91. Muldoon MF, Ryan CM, Sereika SM, et al. Randomized trial of the effects of simvastatin on cognitive functioning in hypercholesterolemic adults. Am J Med. 2004;117(11):823-9.
92. Crouse JR, 3rd, Raichlen JS, Riley WA, et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA. 2007;297(12):1344-53.
93. Crouse J, Grobbee DE, O'Leary DH, et al. Measuring effect on intima medial thickness: a evaluation of rosuvastatin in subclinical artherosclerosis - the rationale and methodology of the METEOR Study. Cardiovasc Drugs Ther. 2004;18:231-8.
94. Asselbergs FW, Diercks GFH, Hillege HL, et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004;110(18):2809-16.
95. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333(20):1301-7.
96. Clearfield M, Whitney EJ, Weis S, et al. Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS): baseline characteristics and comparison with USA population. J Cardiovasc Risk. 2000;7(2):125-33.
97. Clearfield M, Downs JR, Weis S, et al. Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS): efficacy and tolerability of long-term treatment with lovastatin in women. J Womens Health Gend Based Med. 2001;10(10):971-81.
98. Kendrick J, Shlipak MG, Targher G, et al. Effect of lovastatin on primary prevention of cardiovascular events in mild CKD and kidney function loss: a post hoc analysis of the Air Force/Texas Coronary Atherosclerosis Prevention Study. Am J Kidney Dis. 2010;55(1):42-9.
99. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med. 2001;344(26):1959-65.
100. Freeman DJ, Norrie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001;103(3):357-62.
101. Newman CB, Szarek M, Colhoun HM, et al. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARDS). Diab Vasc Dis Res. 2008;5(3):177-83.
102. Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;1:CD004816. DOI: 10.1002/14651858.CD004816.pub5.
103. Shepherd J. The West of Scotland Coronary Prevention Study: a trial of cholesterol reduction in Scottish men. Am J Cardiol. 1995;76(9):113C-7C.
104. U.S. Food \& Drug Administration Division of Metabolism and Endocrinology Products (DMEP). Memorandum: 15 Decemeber 2008, Advisory Committee meeting for rosuvastatin Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Available
at: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/D rugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM193831.pdf.
105. Ridker PM, Pradhan A, MacFadyen JG, et al. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380(9841):565-71.
106. Jick SS, Bradbury BD. Statins and newly diagnosed diabetes. Br J Clin Pharmacol. 2004;58(3):303-9.
107. Culver AL, Ockene IS, Balasubramanian R, et al. Statin use and risk of diabetes mellitus in postmenopausal women in the Women's Health Initiative. Arch Intern Med. 2012;172(2):144-52.
108. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735-42.
109. Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2935-59.
110. Chambless LE, Folsom AR, Sharrett AR, et al. Coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC) study. J Clin Epidemiol. 2003;56(9):880-90.
111. National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-421.
112. D'Agostino RB, Sr., Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743-53.
113. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation. 2002;105(3):310-5.
114. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475-82.
115. Ridker PM, Buring JE, Rifai N, et al. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611-9.
116. Ridker PM, Paynter NP, Rifai N, et al. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation. 2008;118(22):2243-51, 4p following 51.
117. Conroy RM, Pyorala K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):9871003.
118. Matheny M, McPheeters M, Glasser A, et al. Systematic Review of Cardiovascular Disease Risk Assessment Tools. Rockville, MD: Agency for Healthcare Research \& Quality; 2011. Available at: http://www.ncbi.nlm.nih.gov/books/NBK56166/.
119. U.S. Preventive Services Task Force. Aspirin Use for the Primary Prevention of Cardiovascular Events: Final Research Plan. AHRQ Publication No. 13-05195-EF-5. 2013. Available
at: http://www.uspreventiveservicestaskforce.org/uspstaf13/asprcardio/asprcardfinalrespl an.htm.
120. D'Agostino S, R. B., Grundy S, Sullivan LM, et al. Validation of the framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA. 2001;286(2):180-7.
121. Siontis GC, Tzoulaki I, Siontis KC, et al. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:e3318.
122. Preiss D, Kristensen SL. The new pooled cohort equations risk calculator. Can J Cardiol. 2015;31(5):613-9.
123. Muntner P, Colantonio LD, Cushman M, et al. Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations. JAMA. 2014;311(14):1406-15.
124. Cook NR, Ridker PM. Further insight into the Cardiovascular Risk Calculator: the roles of statins, revascularizations, and underascertainment in the Women's Health Study. JAMA Intern Med. 2014;Published online October 6, 2014.
125. Kreger BE, Odell PM, D'Agostino RB, et al. Long-term intraindividual cholesterol variability: natural course and adverse impact on morbidity and mortality--the Framingham Study. Am Heart J. 1994;127(6):1607-14.
126. Bakx JC, van den Hoogen HJ, Deurenberg P, et al. Changes in serum total cholesterol levels over 18 years in a cohort of men and women: The Nijmegen Cohort Study. Prev Med. 2000;30(2):138-45.
127. Ferrara A, Barrett-Connor E, Shan J. Total, LDL, and HDL cholesterol decrease with age in older men and women. The Rancho Bernardo Study 1984-1994. Circulation. 1997;96(1):37-43.
128. Glasziou PP, Irwig L, Heritier S, et al. Monitoring cholesterol levels: measurement error or true change? Ann Intern Med. 2008;148(9):656-61.
129. Wilsgaard T, Jacobsen BK, Schirmer H, et al. Tracking of cardiovascular risk factors: the Tromso study, 1979-1995. Am J Epidemiol. 2001;154(5):418-26.
130. Ulmer H, Kelleher C, Diem G, et al. Long-term tracking of cardiovascular risk factors among men and women in a large population-based health system: the Vorarlberg Health Monitoring \& Promotion Programme. Eur Heart J. 2003;24(11):1004-13.
131. Ray KK, Seshasai SRK, Erqou S, et al. Statins and all-cause mortality in high-risk primary prevention: a meta-analysis of 11 randomized controlled trials involving 65,229 participants. Arch Intern Med. 2010;170(12):1024-31.
132. Tonelli M, Lloyd A, Clement F, et al. Efficacy of statins for primary prevention in people at low cardiovascular risk: A meta-analysis. CMAJ. 2011;183(16):E1189-E202.
133. Stone NJ, Robinson J, Lichtenstein AH, et al. Evidence Report: Managing high blood cholesterol in adults-systematic evidence review from the cholesterol expert panel, 2013. US Department of Health and Human Services; 2013. Available at: http://www.nhlbi.nih.gov/sites/www.nhlbi.nih.gov/files/cholesterol-in-adults.pdf.
134. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA. 2002;288(23):2998-3007.
135. Hennekens CH. The ALLHAT-LLT and ASCOT-LLA trials: are the discrepancies more apparent than real? Curr Atheroscler Rep. 2004;6(1):9-11.
136. Group HPSC. Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. J Vasc Surg. 2007;45(4):645-54.e1.
137. Bukkapatnam RN, Gabler NB, Lewis WR. Statins for primary prevention of cardiovascular mortality in women: a systematic review and meta-analysis. Prev Cardiol. 2010;13(2):84-90.
138. Kaul S, Morrissey RP, Diamond GA. By Jove! What is a clinician to make of JUPITER? Arch Intern Med. 2010;170(12):1073-7.
139. Bonovas S, Filioussi K, Flordellis CS, et al. Statins and the risk of colorectal cancer: a meta-analysis of 18 studies involving more than 1.5 million patients. J Clin Oncol. 2007;25(23):3462-8.
140. Finegold JA, Manisty CH, Goldacre B, et al. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebo-controlled trials to aid in individual patient choice. Eur J Prev Cardiolog. 2014;21(4):464-74.
141. Macedo AF, Taylor F, Casas JP, et al. Unintended effects of statins from observational studies in the general population: systematic review and meta-analysis. BMC Med. 2014;12(51).
142. Parker BA, Capizzi JA, Grimaldi AS, et al. Effect of statins on skeletal muscle function. Circulation. 2013;127(1):96-103.
143. Preiss D, Sattar N. Statins and the risk of new-onset diabetes: a review of recent evidence. Curr Opin Lipidol. 2011;22(6):460-6.
144. Rajpathak SN, Kumbhani DJ, Crandall J, et al. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32(10):1924-9.
145. Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305(24):2556-64.
146. Dormuth CR, Filion KB, Paterson JM, et al. Higher potency statins and the risk of new diabetes: multicentre, observational study of administrative databases. BMJ. 2014;348:g3244.
147. Holmes MV, Lange LA, Palmer T, et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am J Hum Genet. 2014;94(2):198-208.
148. Swerdlow DI, Preiss D, Kuchenbaecker KB, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2014.
149. Strom BL, Schinnar R, Karlawish J, et al. Statin Therapy and Risk of Acute Memory Impairment. JAMA Intern Med. 2015;175(8):1399-405.
150. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360(9346):1623-30.
151. Song F, Xiong T, Parekh-Bhurke S, et al. Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study. BMJ. 2011;343:d4909.
152. Morrison A, Polisena J, Husereau D, et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care. 2012;28(02):138-44.
153. Pham B, Klassen TP, Lawson ML, et al. Language of publication restrictions in systematic reviews gave different results depending on whether the intervention was conventional or complementary. J Clin Epidemiol. 2005;58(8):769-76. e2.
154. Lundh A, Sismondo S, Lexchin J, et al. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2012;12; doi: 10.1002/14651858.MR000033.pub2.
155. Sismondo S. Pharmaceutical company funding and its consequences: a qualitative systematic review. Contemp Clin Trials. 2008;29(2):109-13.
156. Golder S, Loke YK. Is there evidence for biased reporting of published adverse effects data in pharmaceutical industry-funded studies? Br J Clin Pharmacol. 2008;66(6):767-73.
157. Naci H, Dias S, Ades AE. Industry sponsorship bias in research findings: a netword meta-analysis of LDL cholesterol redution in randomized trials of statins. BMJ. 2014;349:g5741.
158. Kavousi M, Leening MJ, Nanchen D, et al. Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA. 2014;311(14):1416-23.
159. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500-9.
160. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489-99.
161. Strandberg TE, Kolehmainen L, Vuorio A. Evaluation and treatment of older patients with hypercholesterolemia: a clinical review. JAMA. 2014;312(11):1136-44.
162. Bruckert E, Lievre M, Giral P, et al. Short-term efficacy and safety of extended-release fluvastatin in a large cohort of elderly patients. Am J Geriatr Cardiol. 2003;12(4):225-31.

Figure 1. Analytic Framework

Abbreviations: CVD= cardiovascular disease; CHD= coronary heart disease; CVA= cerebrovascular accident (stroke); KQ=key question.

Table 1. Statin Dosing and ACC/AHA Classification of Intensity

	Dosages		
Statins	$\begin{array}{c}\text { Low-intensity statins } \\ \text { (LDL lowering <30\%) }\end{array}$	$\begin{array}{c}\text { Moderate-intensity statins } \\ \text { (LDL lowering } 30 \% \text { to }<50 \% \text {) }\end{array}$	$\begin{array}{c}\text { High-intensity statins } \\ \text { (LDL lowering >50\%) }\end{array}$
Atorvastatin	NA	10 to 20 mg	40 to 80 mg

Source: ACC/AHA, 2013.
Note: Dosages shown are total daily dosages; exceptions are noted.
Abbreviations: ACC=American College of Cardiology; AHA=American Heart Association; LDL=low density lipoprotein; $N A=n o t$ applicable; $m g=$ milligram.

Table 2. Study Characteristics of Randomized, Clinical Trials of Statins vs. Placebo or No Statins

Study name, Author, year Reference Quality	Inclusion criteria	Duration of followup	Statin intensity	Interventionandcomparator(Ns)	Patient population							
					Mean age	Sex (\% female)	Race (\%)	$\begin{gathered} \text { Mean } \\ \text { baseline } \end{gathered}$	$\begin{array}{\|c} \hline \text { Mean } \\ \text { baseline } \\ \text { HDL } \end{array}$	$\begin{array}{\|c\|} \hline \text { Mean } \\ \text { baseline } \\ \text { TC } \\ \hline \end{array}$	\qquad baseline TG	Risk factors
ACAPS Furberg, 1994 ${ }^{51}$ Fair	Age 40 to 79 years Early carotid atherosclerosis LDL 160 to $189 \mathrm{mg} / \mathrm{dL}$ with 0 or 1 risk factor or LDL 130 to $159 \mathrm{mg} / \mathrm{dL}$ with >1 risk factor at baseline or after intensive dietary treatment Triglycerides $\leq 400 \mathrm{mg} / \mathrm{dL}$	3 years	Low (20 mg) and Moderate (40 mg)	Lovastatin 20 mg/day, titrated to 40 $\mathrm{mg} /$ day for target LDL 90 to $110 \mathrm{mg} / \mathrm{dL}$ ($\mathrm{n}=460$) Placebo ($\mathrm{n}=459$)	62 years	50\%	$\begin{aligned} & \hline \text { White } \\ & 93 \% \end{aligned}$	$\begin{aligned} & 156 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Men 45.8 $\mathrm{mg} / \mathrm{dL}$ Women 58.3 $\mathrm{mg} / \mathrm{dL}$	$\begin{aligned} & \hline 235 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 138 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Diabetes 2\% Smoker 12\% Hypertension 31\% Mean BMI men $25.9 \mathrm{~kg} / \mathrm{m}^{2}$ Mean BMI women $25.7 \mathrm{~kg} / \mathrm{m}^{2}$
AFCAPS/ TexCAPS Downs, 1998^{53} Fair	Age 45 to 73 years (men) or 55 to 73 years (women) TC 180 to $264 \mathrm{mg} / \mathrm{dL}$ LDL cholesterol 130 to $190 \mathrm{mg} / \mathrm{dL}$ HDL cholesterol $\leq 45 \mathrm{mg} / \mathrm{dL}$ (men) or $\leq 47 \mathrm{mg} / \mathrm{dL}$ (women) Triglycerides $\leq 400 \mathrm{mg} / \mathrm{dL}$ Also included patients with LDL 125 to 129 $\mathrm{mg} / \mathrm{dL}$ if TC to HDL ratio >6.0	5 years	Low (20 mg) and Moderate (40 m)	Lovastatin 20 mg/day, titrated to $20-$ $40 \mathrm{mg} /$ day for target LDL of ≤ 2.84110 mg/dL ($\mathrm{n}=3,304$) Placebo ($n=3,301$)	58 years	15\%	$\begin{aligned} & \hline \text { White } \\ & 89 \% \end{aligned}$	$\begin{aligned} & 150 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 36 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 221 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 158 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Diabetes 3\% Smoker 12.5\% Mean SBP 138 mmHg Mean DBP 78 mmHg Mean BMI men 27 $\mathrm{kg} / \mathrm{m}^{2}$ Mean BMI women $26 \mathrm{~kg} / \mathrm{m}^{2}$ Daily aspirin use 17\%
ASCOT-LLA Sever, 2003 ${ }^{59}$ Fair	Age 40 to 79 years Untreated or treated hypertension TC $\leq 251 \mathrm{mg} / \mathrm{dL}$ No current fibrate or stain use At least 3 CVD risk factor; Triglycerides $<399 \mathrm{mg} / \mathrm{dL}$	3 years	Moderate	Atorvastatin $10 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=5,168$) Placebo ($n=5,137$)	63 years	19\%	$\begin{aligned} & \text { White } \\ & 95 \% \end{aligned}$	$\begin{aligned} & 131 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 212 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 147 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	LVH 14\% Other ECG abnormalities 14% PVD 5\% Other CVD 4\% Diabetes 25\% Smoker 33\% Mean BMI 28.6 $\mathrm{kg} / \mathrm{m}^{2}$ History of stroke or TIA 10\% Mean number of risk factors 4

Table 2. Study Characteristics of Randomized, Clinical Trials of Statins vs. Placebo or No Statins

Study name, Author, year Reference Quality	Inclusion criteria	Duration of followup	Statin intensity	Intervention and comparator (Ns)	Patient population							
					Mean age	Sex (\% female)	Race (\%)	Mean baseline LDL	Mean baseline HDL	Mean baseline TC	Mean baseline TG	Risk factors
ASPEN Knopp, 2006 ${ }^{62}$ Fair	Age 40 to 75 years Diabetes LDL <160 mg/dL	4 years	Moderate	Atorvastatin $10 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=959^{*}$) Placebo ($\mathrm{n}=946^{*}$)	60 years	38\%	White 84\% Black 7.5\%	$\begin{aligned} & 114 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 195 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 145 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Diabetes 100\%; duration 8 years Smoker 13\% Mean SBP 133 mmHg Mean DBP 77 mmHg Mean BMI 29 $\mathrm{kg} / \mathrm{m}^{2}$
ASTRON-OMER Chan, 2010 ${ }^{63}$ Good	Age 18 to 82 years Asymptomatic mild or moderate aortic stenosis (aortic valve velocity 2.5 to $4.0 \mathrm{~m} / \mathrm{s}$) No clinical indications for statin use (CAD, cerebrovascular disease, peripheral vascular disease, diabetes) Lipids within target levels for respective risk categories according to Canadian guidelines	4 years	High	Rosuvastatin $40 \mathrm{mg} /$ day ($\mathrm{n}=136$) Placebo ($\mathrm{n}=135$)	58 years	38\%	White 99\%	$\begin{aligned} & 122 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 205 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 111 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Smoker 11\% Mean BP 129/71 mmHg Mean BMI 28 $\mathrm{kg} / \mathrm{m}^{2}$
$\begin{aligned} & \text { Beishuizen, } \\ & 2004^{64} \\ & \text { Fair } \end{aligned}$	Age 30 to 80 years Type 2 diabetes duration at least 1 year No history of CVD TC 155 to 267 $\mathrm{mg} / \mathrm{dLTriglycerides}$ $\leq 531 \mathrm{mg} / \mathrm{dL}$	2 years	Moderate	Cerivastatin $0.4 \mathrm{mg} / \mathrm{day}$; after mean 15 months, switched to simvastatin 20 mg/day ($\mathrm{n}=125$) Placebo ($\mathrm{n}=125$)	59 years	53\%	White 68\% Asian 19\% Other 13\%	$\begin{aligned} & \hline 135 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 215 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 164 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Diabetes 100\% Current smoker 24\% Hypertension 51\% Mean BMI 31.0 $\mathrm{kg} / \mathrm{m}^{2}$

Table 2. Study Characteristics of Randomized, Clinical Trials of Statins vs. Placebo or No Statins

Study name, Author, year Reference Quality	Inclusion criteria	Duration of followup	Statin intensity	Intervention and comparator (Ns)	Patient population							
					Mean age	Sex (\% female)	Race (\%)	Mean baseline LDL 157	Mean baseline HDL	Mean baseline TC	Mean baseline TG	Risk factors
Bone, 2007 ${ }^{65}$ Fair	Women age 40 to 75 years $\mathrm{LDL} \geq 130 \mathrm{mg} / \mathrm{dL}$ and $<190 \mathrm{mg} / \mathrm{dL}$ No history of diabetes or CHD Criteria modified during trial to women with \geq LDL 160 $\mathrm{mg} / \mathrm{dL}$ and ≥ 2 CVD risk factors	1 year	Moderate (10 to 20 mg) and High (40 to 80 mg)	Atorvastatin $10 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=118$) Atorvastatin $20 \mathrm{mg} /$ day ($\mathrm{n}=121$) Atorvastatin $40 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=124$) Atorvastatin $80 \mathrm{mg} /$ day ($\mathrm{n}=122$) Placebo ($\mathrm{n}=119$)	59 years	100\% overall	White 88\%	$\begin{aligned} & \hline 157 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 54 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 243 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 141 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Current or former smoker 47\%
CAIUS Mercuri, $1996{ }^{66}$ Fair	Age 45 to 65 years LDL 150 to $250 \mathrm{mg} / \mathrm{dL}$ Triglycerides <250 $\mathrm{mg} / \mathrm{dL}$ No symptomatic CAD, At least one carotid artery lesion	3 years	Moderate	$\begin{aligned} & \text { Pravastatin } 40 \\ & \mathrm{mg} / \text { day } \\ & (\mathrm{n}=151) \\ & \text { Placebo } \\ & (\mathrm{n}=154) \end{aligned}$	55 years	47\%	NR	$\begin{aligned} & 181 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 53 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 262 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 138 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Smoker 24\% Mean SBP 134 mmHg Mean DBP 82 mmHg Mean BMI 25 $\mathrm{kg} / \mathrm{m}^{2}$ Family history of CVD 45\%
CARDS Colhoun, 2004 ${ }^{68}$ Good	Age 40 to 75 years Diabetes and at least one additional risk factor for CHD No previous CVD events BMI <35 HbA1c $<12 \%$ SBP <200 mm Hg DBP $<110 \mathrm{~mm} \mathrm{Hg}$ Not receiving any other lipid-lowering medication LDL $\leq 160 \mathrm{mg} / \mathrm{dL}$, Triglycerides ≤ 600 $\mathrm{mg} / \mathrm{dL}$	4 years	Moderate	Atorvastatin $10 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=1,428$) Placebo ($n=1,410$)	62 years	32\%	$\begin{aligned} & \hline \text { White } \\ & 95 \% \end{aligned}$	$\begin{aligned} & 118 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 55 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 207 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Median 150 mg/dL	Diabetes 100\%; Mean duration 8 years Smoker 23\% Mean SBP 144 mmHg Mean DBP 83 mmHg Mean BMI 29 $\mathrm{kg} / \mathrm{m}^{2}$

Table 2. Study Characteristics of Randomized, Clinical Trials of Statins vs. Placebo or No Statins

Study name, Author, year Reference Quality	Inclusion criteria	\qquad	Statin intensity	Intervention and comparator (Ns)	Patient population							
					Mean age	Sex (\% female)	Race (\%)	$\begin{array}{\|c} \hline \begin{array}{c} \text { Mean } \\ \text { baseline } \\ \text { LDL } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Mean } \\ \text { baseline } \\ \text { HDL } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Mean } \\ \text { baseline } \\ \text { TC } \\ \hline \end{array}$	\qquad	Risk factors
Heljić, 2009 ${ }^{71}$ Poor	Obese patients with diabetes Without preexisting CHD Triglycerides ≤ 266 $\mathrm{mg} / \mathrm{dL}$ States LDL used as entry criterion but values NR	1 year	Moderate	Simvastatin $40 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=45$) Placebo ($n=50$)	61 years	58\%	NR	$\begin{aligned} & 170 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 239 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 217 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	```Mean BP <140/90 mmHg Mean BMI 31.6 kg/m```
HYRIM Anderssen, 2005^{72} Fair	Men age 40 to 74 years Receiving drug treatment for hypertension TC 174 to $309 \mathrm{mg} / \mathrm{dL}$ Triglycerides <399 $\mathrm{mg} / \mathrm{dL}$ BMI 25 to $35<1 \mathrm{~h} /$ week of regular exercise	4 years	Low	Fluvastatin 40 $\mathrm{mg} /$ day ($\mathrm{n}=142$) Fluvastatin 40 mg/day + lifestyle intervention physical activity plus dietary intervention ($\mathrm{n}=141$) Placebo ($\mathrm{n}=143$) Placebo + lifestyle intervention ($\mathrm{n}=142$)	$\begin{aligned} & 57 \\ & \text { years } \end{aligned}$	0\%	NR	$\begin{aligned} & 150 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 49 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 230 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 158 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Smoker 16\% Mean SBP 141 mmHg Mean DBP 88 mmHg Mean BMI $29 \mathrm{~kg} / \mathrm{m}^{2}$
JUPITER Ridker, 2008 ${ }^{73}$ Good	Men age ≥ 50 years or women age ≥ 60 years No history of CVD LDL < $130 \mathrm{mg} / \mathrm{dL}$ CRP $\geq 2.0 \mathrm{mg} / \mathrm{L}$ Triglycerides <500 $\mathrm{mg} / \mathrm{dL}$	2 years	High	Rosuvastatin $20 \mathrm{mg} /$ day ($\mathrm{n}=8,901$) Placebo ($n=8,901$)	Median 66 years in each arm	39\%	White 71\% Black 13\% Hispanic 13\% Other 4\%	Median 108 $\mathrm{mg} / \mathrm{dL}$ in each arm	Median $49 \mathrm{mg} / \mathrm{dL}$ in each arm	Median 186 $\mathrm{mg} / \mathrm{dL}$ in intervention group; median 185 $\mathrm{mg} / \mathrm{dL}$ in placebo arm	Median 118 $\mathrm{mg} / \mathrm{dL}$ in each arm	Median HbA1c 5.7% in each arm Smoker 16\% Median BP 134/80 mmHg in each arm Median BMI $28 \mathrm{~kg} / \mathrm{m}^{2}$ in each arm Median CRP 4.2 mg / L in intervention arm; $4.3 \mathrm{mg} / \mathrm{L}$ in placebo arm Family history of

Table 2. Study Characteristics of Randomized, Clinical Trials of Statins vs. Placebo or No Statins

Study name, Author, year Reference Quality	Inclusion criteria	$\begin{array}{\|l} \text { Duration } \\ \text { of } \\ \text { followup } \\ \hline \end{array}$	Statin intensity	Interventionandcomparator(Ns)	Patient population							
					Mean age	Sex (\% female)	Race (\%)	$\begin{gathered} \text { Mean } \\ \text { baseline } \\ \text { LDL } \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { baseline } \\ \text { HDL } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Mean } \\ \text { baseline } \\ \text { TC } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Mean } \\ \text { baseline } \\ \text { TG } \end{gathered}$	Risk factors
												CHD 12\% Metabolic syndrome 42\% Daily aspirin use 17%
KAPS Salonen, 1995^{81} Good	Men age 42, 48, 54, or 60 years LDL ≥ 164 $\mathrm{mg} / \mathrm{dL}$ TC <8.0308 $\mathrm{mg} / \mathrm{dL}$ BMI $<32 \mathrm{~kg} / \mathrm{m}^{2}$ ALT <1.5 ULN	3 years	Moderate	Pravastatin 40 mg/day ($\mathrm{n}=224$) Placebo ($\mathrm{n}=223$)	58 years	0\%	NR	$\begin{aligned} & 189 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 259 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	151 mg/dL	Prior MI 7.5\% Diabetes 2.5\% Current smokers 27\% Hypertension 33\%
MEGA Nakamura, 2006^{82} Fair	Age 40 to 70 years TC 220 to $270 \mathrm{mg} / \mathrm{dL}$ No history of CHD or stroke	5 years	Low	Intensive lipid control with diet + pravastatin 10 $\mathrm{mg} / \mathrm{day}$, titrated up to $20 \mathrm{mg} / \mathrm{day}$ for target TC $<220 \mathrm{mg} / \mathrm{dL}$ $(\mathrm{n}=3,866)$ Standard lipid control with diet only ($\mathrm{n}=3,966$)	$\begin{aligned} & \hline 58 \\ & \text { years } \end{aligned}$	69\%	NR	$\begin{aligned} & \hline 157 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 242 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 128 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Diabetes 21\% Smoker 21\% Hypertension 42\% Mean BMI 24 $\mathrm{kg} / \mathrm{m}^{2}$
METEOR Crouse, 2007 ${ }^{92}$ Fair	Men age 45 to 70 years or women age 55 to 70 years LDL 120 to <190 $\mathrm{mg} / \mathrm{dL}$ if age only risk factor, or LDL 120 to $<160 \mathrm{mg} / \mathrm{dL}$ with ≥ 2 CHD risk factors and 10-year risk of CHD events <10\% HDL $\leq 60 \mathrm{mg} / \mathrm{dL}$ Triglycerides <500 $\mathrm{mg} / \mathrm{dL}$ Maximum CIMT 1.2 to $<3.5 \mathrm{~mm}$	2 years	High	Rosuvastatin $40 \mathrm{mg} /$ day ($\mathrm{n}=702$) Placebo ($n=282$)	$\begin{aligned} & 57 \\ & \text { years } \end{aligned}$	40\%	$\begin{array}{\|l\|} \hline \text { White } \\ 60 \% \end{array}$	$\begin{aligned} & 155 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 229 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 128 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Smokers 3.9\% Hypertension 20\% $\mathrm{BMI}>30 \mathrm{~kg} / \mathrm{m}^{2}$ 20\% Family history of CHD 9.6\% Metabolic syndrome 15\% ≥ 2 risk factors 34%

Table 2. Study Characteristics of Randomized, Clinical Trials of Statins vs. Placebo or No Statins

Study name, Author, year Reference Quality	Inclusion criteria	Duration of followup	Statin intensity	Intervention and comparator (Ns)	Patient population							
					Mean age	Sex (\% female)	Race (\%)	$\begin{gathered} \text { Mean } \\ \text { baseline } \\ \text { LDL } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Mean } \\ \text { baseline } \\ \text { HDL } \end{array}$	$\begin{array}{\|c\|} \hline \text { Mean } \\ \text { baseline } \\ \text { TC } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { Mean } \\ \text { baseline } \\ \text { TG } \\ \hline \end{array}$	Risk factors
$\begin{aligned} & \text { Muldoon, } 2004^{91} \\ & \text { Fair } \end{aligned}$	Generally healthy men and women ages 35 to70 years LDL-C 160 and 220 $\mathrm{mg} / \mathrm{dL}$	6 months	Low (10 mg) and Moderate (40 mg)	Simvastatin $40 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=103$) Simvastatin $10 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=103$) Placebo ($\mathrm{n}=102$)	54 years	52\%	White 86\%	$\begin{aligned} & 181 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	51 $\mathrm{mg} / \mathrm{dL}$	$\begin{aligned} & \hline 263 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 151 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	NR
PREVEND-IT Asselbergs, 2004^{94} Fair	28 to 75 years of age Persistent microalbuminuria (urine albumin >10 mg / L in 1 early morning spot sample and 15 to $300 \mathrm{mg} / 24 \mathrm{~h}$ in 224 h samples) Blood pressure <160/100 and no antihypertensive medication TC $<309 \mathrm{mg} / \mathrm{dL}$ or $<193 \mathrm{mg} / \mathrm{dL}$ if previous MINo lipid lowering medication	4 years	Moderate	$\begin{aligned} & \text { Pravastatin } 40 \\ & \text { mg (} \mathrm{n}=433 \text {) } \\ & \text { Plabo } \\ & (\mathrm{n}=431) \end{aligned}$	52 years	35\%	White 96\%	$\begin{aligned} & 157 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 39 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 224 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 120 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Prior CVD event 3\% (MI 0.4\%) Diabetes 3\% Smoker 40\% Mean SBP 131 mmHg Mean DBP 77 mmHg Mean BMI 26 $\mathrm{kg} / \mathrm{m}^{2}$ Use of aspirin \& antiplatelet agents 2.5\%
WOSCOPS Shepherd, 1995^{95} Good	Men aged 45 to 64 years At risk for CAD TC $>251 \mathrm{mg} / \mathrm{dL}$ LDL-C >155 mg/dL with at least 1 value 173 to $232 \mathrm{mg} / \mathrm{dL}$ No significant CAD	5 years	Moderate	$\begin{aligned} & \text { Pravastatin } 40 \\ & \mathrm{mg} / \text { day } \\ & (\mathrm{n}=3,302) \\ & \text { Placebo } \\ & (\mathrm{n}=3,293) \end{aligned}$	55 years	0\%	NR	$\begin{aligned} & 192 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	44 $\mathrm{mg} / \mathrm{dL}$	$\begin{aligned} & \hline 272 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & \hline 163 \\ & \mathrm{mg} / \mathrm{dL} \end{aligned}$	Smoker 44\% Mean SBP 136 mmHg Mean DBP 84 mmHg Mean BMI $26 \mathrm{~kg} / \mathrm{m}^{2}$

Primary prevention patients only.
Abbreviations: ACAPS=Asymptomatic Carotid Artery Progression Study; AFCAPS/TexCAPS=Air Force/Texas Coronary Atherosclerosis Prevention Study;
ALT=alanine aminotransferase; ASCOT-LLA=Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm; ASPEN=Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-insulin Dependent Diabetes Mellitus; ASTRONOMER=Aortic Stenosis Progression Observation: Measuring Effects of Rosuvastatin; BMI=body mass index; BP=blood pressure; CAD=coronary artery disease; CAIUS=Carotid Atherosclerosis Italian Ultrasound Study;
CARDS=Collaborative Atorvastatin Diabetes Study; CHD=coronary heart disease; CIMT=carotid intima-media thickness; CRP=c-reactive protein;
$C V D=$ cardiovascular disease; DBP=diastolic blood pressure; dL=deciliter; ECG=electrocardiogram; h=hour; HbA1c=hemoglobin type A1c; HDL=high density

Table 2. Study Characteristics of Randomized, Clinical Trials of Statins vs. Placebo or No Statins

lipoprotein; HDL-C=high density lipoprotein cholesterol; HYRIM=Hypertension High Risk Management; JUPITER=Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; KAPS=Kuopio Atherosclerosis Prevention Study; kg=kilogram; L=liter; LDL=low density lipoprotein; LDL-C=low density lipoprotein cholesterol; LVH=left ventricular hypertrophy; m=meter; MEGA=Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; METEOR=Measuring Effects on Intima-Media Thickness: an Evaluation of Rosuvastatin; MI=myocardial infarction; mg=milligram; mm Hg=millimeters of mercury; mmol=millimol; n=sample size; NR=not reported; PREVEND-IT=Prevention of Renal and Vascular Endstage Disease Intervention Trial; PVD=peripheral vascular disease; $s=s e c o n d$; SBP=systolic blood pressure; TC=total cholesterol; TG=triglycerides; TIA=transient ischemic attack; ULN=upper limit of normal; vs=versus; WOSCOPS=West of Scotland Coronary Prevention Study Group.

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
$\begin{aligned} & \text { ACAPS } \\ & \text { Furberg, } 1994^{51} \\ & 3 \text { years } \\ & \text { Fair } \end{aligned}$	Statin 2\% (1/460) Comparator 1.7\% (8/459) RR 0.12 (95\% CI 0.02 to 0.99) ARD -1.53\% (95\% CI -2.80 to -0.25) NNT 65	Statin 0\% (0/460) Comparator 1.3\% (6/459) RR 0.08 (95\% CI 0.004 to 1.36) ARD -1.31\% (95\% CI -2.43 to -0.19) NNT 76	Fatal and nonfatal stroke: Statin 0\% (0/460) Comparator 1.1\% (5/459) RR 0.09 ($95 \% \mathrm{Cl} 0.01$ to 1.64) ARD -1.09\% (95\% CI - 2.13 to -0.05) NNT 92	Nonfatal MI: Statin 1.1\% (5/460) Comparator 1.1\% (5/459) RR 1.00 ($95 \% \mathrm{CI} 0.29$ to $3.42)$ ARD 0\% (95\% CI-1.34 to 1.34) NNT not estimable	NR	Major CV event: Statin 1.1\%(5/460) Comparator 3.1\% (14/459) RR 0.36 ($95 \% \mathrm{Cl} 0.13$ to 0.98) ARD -1.96 (95\% CI -3.80 to -0.13) NNT 51
AFCAPS/ TexCAPS Downs, 1998^{53} 5 years Fair	Statin 2.4\% (80/3,304). Comparator 2.3\% (77/3,301) RR 1.04 (95\% CI 0.76 to 1.41) ARD 0.09\% (95\% CI - 0.64 to 0.82) NNH 1,111	Statin 0.5\% (17/3,304) Comparator 0.8% $(25 / 3,301)$ RR 0.68 (95\% CI 0.37 to 1.26$)$ ARD $-0.24 \% ~(95 \% ~ C I$ -0.63 to 0.14$)$ NNT 417	NR	Fatal and nonfatal MI: Statin 1.7\% $(57 / 3,304)$ Comparator 2.9\% (95/3,301) RR 0.60 ($95 \% \mathrm{Cl} 0.43$ to 0.83) ARD -1.15\% (95\% CI -1.88 to -0.43) NNT 87	Statin 3.2\% (106/3,304) Comparator 4.8\% (157/3,301) RR 0.67 (95\% CI 0.53 to 0.86) ARD -1.55\% (95\% CI -2.49 to -0.61) NNT 65	Major coronary event: Statin $3.5 \%(116 / 3,304)$ Comparator 5.5\% (183/3,301) RR 0.63 (95\% CI 0.50 to 0.80) ARD -2.03\% (95\% CI -3.03 to -1.03) NNT 45
$\begin{aligned} & \text { ASCOT-LLA } \\ & \text { Sever, } 2003^{59} \\ & 3 \text { years } \\ & \text { Fair } \end{aligned}$	Statin 3.6\% (185/5,168) Comparator 4.1\% (212/5,137) HR 0.87 (95\% CI 0.71 to 1.06) RR 0.87 (95\% CI 0.71 to 1.05) ARD -0.55\% (95\% CI -1.29 to 0.20) NNT 182	Statin 1.4\% (74/5,168) Comparator 1.6\% $(82 / 5,137)$ HR 0.90 ($95 \% \mathrm{Cl} 0.66$ to 1.23) RR 0.90 (95\% CI 0.66 to 1.23) ARD -0.16\% ($95 \% \mathrm{Cl}-0.64$ to 0.31) NNT 625	Fatal and nonfatal stroke: Statin $1.7 \%(87 / 5,168)$ Comparator 2.3\% (121/5,137) HR 0.73 (95\% CI 0.59 to 0.96) RR 0.71 (95\% CI 0.54 to 0.94) ARD -0.67\% (95\% CI - 1.22 to -0.13) NNT 149	Fatal and nonfatal MI^{\dagger} : Statin 2.2\% (114/5, 168) Comparator 3.3\% (171/5,168) RR 0.67 (95\% CI 0.53 to 0.84) ARD -1.10\% (95\% CI -1.73 to -0.47) NNT 91	NR	Fatal CHD, nonfatal MI, chronic stable angina, unstable angina, or fatal and nonfatal heart failure: Statin $3.4 \%(178 / 5,168)$ Comparator 4.8\% (247/5,137) HR 0.71 ($95 \% \mathrm{Cl} 0.59$ to 0.86) ARD -1.36\% (95\% CI -2.13 to -0.60) NNT 74
ASPEN Knopp, 2006 ${ }^{62}$ 4 years Fair	$\begin{aligned} & \text { Statin } 4.6 \% ~(44 / 959) \\ & \text { Comparator 4.3\% } \\ & \text { (41/946) } \\ & \text { RR } 1.06 \text { (95\% CI } \\ & 0.70 \text { to } 1.60) \\ & \text { ARD 0.25\% (95\% CI } \\ & -1.60 \text { to 2.11) } \\ & \text { NNH } 400 \end{aligned}$	NR	Fatal and nonfatal stroke: Statin 2.8\% (27/959) Comparator 3.1\% (29/946) RR 0.92 ($95 \% \mathrm{Cl} 0.55$ to 1.54) ARD -0.25\% (95\% CI - 1.77 to 1.27) NNT 400	Fatal and nonfatal MI: Statin 2.9\% (28/959) Comparator 3.6\% (34/946) RR 0.81 ($95 \% \mathrm{Cl} 0.50$ to 1.33) ARD -0.67\% (95\% CI -2.27 to 0.92) NNT 149	NR	CV event: Statin 10.4\% (100/959) Comparator 10.8\% (102/946) HR 0.97 (95\% CI 0.74 to 1.28) ARD - 0.35% ($95 \% \mathrm{Cl}$ - 3.12 to 2.41) NNT 286

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
ASTRONOMER Chan, 2010 ${ }^{63}$ 4 years Good	NR	Statin 1.9\% (2/103) Comparator 15.2\% (12/79) RR 0.13 (95\% CI 0.03 to 0.55) ARD -13.25\% (95\% CI -21.6 to - 4.90) NNT 8	Fatal and nonfatal stroke: Statin 0\% (0/134) Comparator 0.7\% (1/135) RR 0.34 ($95 \% \mathrm{Cl} 0.01$ to 8.17) ARD -0.74\% (95\% CI - 2.77 to 1.29) NNT 135	Fatal and nonfatal MI: Statin 0\% (0/134) Comparator 2.2\% (3/135) RR 0.14 ($95 \% \mathrm{Cl} 0.008$ to 2.76) ARD -2.22\% (95\% CI -5.07 to 0.63) NNT 45	NR	NR
$\begin{aligned} & \text { Beishuizen, } \\ & 2006^{64} \\ & 2 \text { years } \\ & \text { Fair } \end{aligned}$	Statin 2.9\% (3/103) Comparator 5.1\% (4/79) RR 0.58 (95\% CI 0.13 to 2.50) ARD -2.15\% (95\% CI -7.79 to 3.67) NNT 47	NR	NR	NR	NR	Unspecified CV events: Statin 1.9\% (2/103) Comparator 15.1\% (12/79) RR 0.13 ($95 \% \mathrm{Cl} 0.03$ to 0.55) ARD 13.25\% (95\% CI 21.60 to -4.90) NNT 8
$\begin{aligned} & \text { Bone, } 2007^{65} \\ & 1 \text { year } \\ & \text { Fair } \end{aligned}$	Statin 0\% (0/485) Comparator 0\% (0/119) RR 0.25 (95\% CI 0.005 to 12) ARD 0\% (95\% CI 1.19 to 1.19) NNT not estimable	NR	NR	NR	NR	NR

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
CAIUS Mercuri, 1996^{66} 3 years Fair	NR	NR	NR	Fatal and nonfatal MI: Statin 1.3\% (2/151) Comparator 1.3\% (2/154) RR 1.02 ($95 \% \mathrm{CI} 0.15$ to 7.15) ARD 0.03\% (95\% CI -2.53 to 2.58) NNH 3,333 Fatal MI: Statin 0.6\% (1/151) Comparator 0\% (0/154) RR 3.06 ($95 \% \mathrm{Cl} 0.13$ to 75) ARD 0.66\% (95\% CI -1.15 to 2.47) NNH 152 Nonfatal MI: Statin 0.6\% (1/151) Comparator 1.3\% (2/154) RR 0.51 ($95 \% \mathrm{Cl} 0.05$ to 5.57) ARD -0.64\% (95\% CI -2.84 to 1.57) NNT 156	NR	NR

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
CARDS Colhoun, 2004 ${ }^{68}$ 4 years Good	Statin 4.3\% (61/1428) Comparator 5.8\% (82/1410) HR 0.73 (95\% CI 0.52 to 1.01) RR 0.73 (95\% CI 0.53 to 1.01); ARD -1.54\% (95\% CI -3.15 to 0.07) NNT 65	NR	Fatal and nonfatal stroke: Statin 1.5\% (21/1,428) Comparator 2.5\% (35/1,410) RR 0.59 ($95 \% \mathrm{Cl} 0.35$ to 1.01) ARD -1.01\% (95\% CI - 2.04 to 0.01) NNT 99 Fatal stroke: Statin 0.07\% $(1 / 1,428)$ Comparator 0.3\% (5/1,410) RR 0.20 (95\% CI 0.02 to 1.69) ARD - 0.28% ($95 \% \mathrm{Cl}$ - 0.52 to 0.05) NNT 357 Nonfatal stroke: Statin 1\% (20/1,428) Comparator 2\% (30/1,410) RR 0.66 ($95 \% \mathrm{Cl} 0.38$ to 1.15) ARD - 0.73% ($95 \% \mathrm{CI}$ - 1.70 to 0.24) NNT 137	Fatal and nonfatal MI: Statin 2.3\% (33/1428) Comparator 4.3\% (61/1410) RR 0.53 (95\% CI 0.35 to 0.81) ARD -2.02\% (95\% CI -3.33 to -0.70) NNT 50 Fatal MI: Statin $0.6 \%(8 / 1,428)$ Comparator 1.4\% (20/1,410) RR 0.40 ($95 \% \mathrm{CI} 0.17$ to 0.89) ARD -0.86\% (95\% CI -1.59 to -0.13) NNT 116 Nonfatal MI: Statin 1.8\% $(25 / 1,428)$ Comparator 2.9\% (41/1,410) RR 0.58 ($95 \% \mathrm{CI} 0.36$ to 0.95) ARD 0.33\% (95\% CI -0.59 to 1.25) NNH 303	Statin 1.7\% (24/1,428) Comparator 2.4\% (34/1,410) HR 0.69 (95\% CI 0.41 to 1.16) ARD -0.73\% (95\% $\mathrm{CI}-1.77$ to 0.31) NNT 137	MI , unstable angina, CHD death or resuscitated cardiac arrest: Statin 3.6\% $(51 / 1,428)$ Comparator 5.5\% (77/1,410) HR 0.64 ($95 \% \mathrm{Cl} 0.45$ to 0.91) ARD -1.89\% (95\% CI -3.42 to -0.36) NNT 53
Heljić, 2009 ${ }^{\text {/1 }}$ 1 year Poor	NR	NR	Fatal and nonfatal stroke: Statin 8.9\% (4/45) Comparator 18.0\% (9/50) RR 0.49 ($95 \% \mathrm{Cl} 0.16$ to 1.49) ARD -9.11\% (95\% CI - 22.62 to 4.40) NNT 11	NR	NR	Unspecified coronary events: Statin 6.7\% (3/45) Comparator 14.0\% (7/50) RR 0.48 ($95 \% \mathrm{Cl} 0.13$ to 1.73) ARD -7.33\% (95\% CI 19.40 to 4.73) NNT 14

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
HYRIM Anderssen, 2005^{72} 4 years Fair	$\begin{aligned} & \text { Statin 1.4\% (4/283) } \\ & \text { Comparator } 1.8 \% \\ & (5 / 285) \\ & \text { RR 0.81 (} 95 \% \mathrm{CI} 0.22 \\ & \text { to 3.0) } \\ & \text { ARD }-0.34 \% ~(95 \% \mathrm{CI} \\ & -2.39 \text { to } 1.71 \text {) } \\ & \text { NNT } 294 \end{aligned}$	NR	NR	NR	NR	MI , sudden death, angina, CVA, TIA, or heart failure: Statin 3.9\% (11/283) Comparator 5.3\% (15/285) RR 0.74 ($95 \% \mathrm{Cl} 0.35$ to 1.58) ARD -1.38\% (95\% CI -4.81 to 2.06) NNT 72
JUPITER Ridker, 2008 ${ }^{73}$ 2 years Good	Statin 2.2\% (198/8,901) Comparator 2.8\% $(247 / 8,901)$ HR 0.80 (95\% CI 0.67 to 0.97) RR 0.80 ($95 \% \mathrm{Cl} 0.67$ to 0.96) ARD -0.55\% (95\% CI -1.01 to -0.09) NNT 182	Statin 0.9\% (83/8,901) Comparator 1.8\% (157/8,901) HR 0.53 (95\% CI 0.40 to 0.69) RR 0.53 (95\% CI 0.41 to 0.69$)^{+}$ ARD -0.83\% (95\% CI -1.17 to -0.49) NNT 120	Fatal or nonfatal stroke: Statin $0.4 \%(33 / 8,901)$ Comparator 0.7\% (64/8,901) HR 0.52 ($95 \% \mathrm{Cl} 0.34$ to 0.79) RR 0.53 ($95 \% \mathrm{Cl} 0.35$ to 0.81) ARD -0.33\% (95\% CI - 0.54 to -0.11) NNT 303 Fatal stroke: Statin $0.03 \%(3 / 8,901)$ Comparator 0.06\% $(6 / 8,901)$ RR 0.50 ($95 \% \mathrm{Cl} 0.13$ to 2.00) ARD - 0.03% ($95 \% \mathrm{Cl}$ - 0.10 to 0.03) NNT 3,333 Nonfatal stroke: Statin 0.3\% $(30 / 8,901)$ Comparator 0.7\% (58/8,901) RR 0.52 ($95 \% \mathrm{Cl} 0.33$ to 0.80) ARD - 0.31% ($95 \% \mathrm{CI}$ - 0.52 to -0.11) NNT 323	Fatal and nonfatal MI: Statin $0.3 \%(31 / 8,901)$ Comparator 0.7\% (69/8,901) HR 0.35 ($95 \% \mathrm{Cl} 0.22$ to 0.58) RR 0.45 ($95 \% \mathrm{Cl} 0.56$ to 0.71) ARD -0.43\% (95\% CI -0.65 to -0.21) NNT 233 Fatal MI: Statin 0.1\% $(9 / 8,901)$ Comparator 0.07\% $(7 / 8,901)$ RR 1.29 (95\% CI 0.48 to 3.45) ARD 0.02\% (95\% CI-0.07 to 0.11) NNH 5,000 Nonfatal MI: Statin $0.2 \%(22 / 8,901)$ Comparator 0.7\% (62/8,901) HR 0.35 ($95 \% \mathrm{Cl} 0.22$ to 0.58) RR 0.35 (95\% CI 0.22 to 0.58) ARD - $0.45 \%(95 \% \mathrm{CI}=0.65$ to -0.25) NNT 222	Statin 0.8\% (71/8,901) Comparator 1.5\% (131/8,901) HR 0.54 (95\% CI 0.41 to 0.72) RR 0.54 (95\% CI 0.41 to 0.72) ARD -0.67\% (95\% CI -0.99 to -0.36) NNT 149	Nonfatal MI, nonfatal CVA, hospitalization for unstable angina, arterial revascularization or CV mortality: Statin 2\% $(142 / 8,901)$ Comparator 3\% (251/8,901) HR 0.56 ($95 \% \mathrm{Cl} 0.46$ to 0.69) ARD -1.16\% (95\% CI -1.59 to -0.72) NNT 86

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
KAPS Salonen, 1995^{81} 3 years Good	$\begin{aligned} & \text { Statin 1.9\% (4/214) } \\ & \text { Comparator 1.4\% } \\ & \text { (3/212) } \\ & \text { RR } 1.32 \text { (} 95 \% \mathrm{CI} 0.30 \\ & \text { to } 5.83 \text {) } \\ & \text { ARD } 0.45 \% ~(95 \% \mathrm{CI}- \\ & 1.96 \text { to } 2.87 \text {) } \\ & \text { NNH } 222 \end{aligned}$	Statin 0.9\% (2/214) Comparator 0.9\% (2/212) RR 0.99 (95\% CI 0.14 to 6.97$)^{\ddagger}$ ARD -0.01\% (95\% CI -1.84 to 1.82) NNT 1,000	Fatal and nonfatal stroke: Statin 0.9\% (2/214) Comparator 1.9\% (4/212) RR 0.50 ($95 \% \mathrm{Cl} 0.09$ to 2.70) ARD -0.95\% (95\% CI - 3.19 to 1.29) NNT 105	Fatal and nonfatal MI: Statin 1.4\% (3/214) Comparator 3.8\% (8/212) RR 0.36 ($95 \% \mathrm{Cl} 0.09$ to 1.39) ARD -2.37\% (95\% CI -5.38 to 0.64) NNT 42 Fatal MI: Statin 0\% (0/214) Comparator 0.9\% (2/212) RR 0.20 ($95 \% \mathrm{Cl} 0.01$ to 4.14) ARD -0.94\% (95\% CI -2.53 to 0.64) NNT 106 Nonfatal MI: Statin 1.4\% (3/214) Comparator 2.8\% (6/212) RR 0.50 ($95 \% \mathrm{Cl} 0.12$ to 1.97) ARD -1.43\% (95\% CI -4.16 to 1.30) NNT 70	Statin 1.9\% (4/214) Comparator 2.4\% (5/212) RR 0.79 (95\% CI 0.22 to 2.91) ARD -0.49\% (95\% CI -3.22 to 2.24) NNT 204	NR

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
MEGA Nakamura, 2006^{82} 5 years Fair	All-cause mortality: Statin 1.4\% (55/3,866) Comparator 2.0\% (79/3,966) HR 0.72 ($95 \% \mathrm{Cl} 0.51$ to 1.01) RR 0.71 (95\% CI 0.51 to 1.00) ARD -0.57\% (95\% CI -1.14 to 0.00) NNT 175	Statin 0.3\% (11/3,866) Comparator 0.5\% (18/3,966) HR 0.63 (95% CI 0.30 to 1.33) RR 0.63 (95\% CI 0.30 to 1.33) ARD -0.17\% (95\% CI -0.44 to 0.10) NNT 588	Fatal and nonfatal stroke (nonhemorrhagic only): Statin 0.9\% $(34 / 3,866)$ Comparator 1.2\% $(48 / 3,966)$ RR 0.73 (95\% CI 0.47 to 1.13) ARD - 0.33% ($95 \% \mathrm{Cl}$ - 0.78 to 0.12) NNT 303 Fatal and nonfatal stroke (non-hemorrhagic or hemorrhagic): Statin 1.3\% (50/3866) Comparator 1.6\% (62/3966) RR 0.83 (95\% CI 0.57 to 1.20) ARD - 0.27% ($95 \% \mathrm{Cl}$ - 0.80 to 0.26) NNT 370	Fatal and nonfatal MI: Statin $0.5 \%(18 / 3,866)$ 0.8\% (33/3,966) HR 0.52 ($95 \% \mathrm{Cl} 0.29$ to 0.94) RR 0.53 ($95 \% \mathrm{CI} 0.29$ to 0.95) ARD -0.39\% (95\% CI -0.74 to -0.04) NNT 256 Fatal MI: Statin 0.05\% $(2 / 3,866)$ Comparator 0.07\% $(3 / 3,966)$ RR 0.68 (95\% CI 0.11 to 4.09) ARD -0.02\% (95\% CI -0.14 to 0.09) NNT 5,000 Nonfatal MI: Statin 0.4\% $(16 / 3,866)$ Comparator 0.7\% $(30 / 3,966)$ RR 0.55 ($95 \% \mathrm{CI} 0.30$ to 1.00) ARD -0.34\% (95\% CI -0.68 to -0.01) NNT 294	Statin 1.0\% (39/3,866) Comparator 1.7\% (66/3,966) HR 0.60 (95\% CI 0.41 to 0.89) ARD -0.66\% (95\% CI -1.16 to -0.15) NNT 152	Fatal and nonfatal MI, cardiac and sudden death, coronary revascularization or angina: Statin 1.7\% $(66 / 3,866)$ v Comparator 2.5\% (101/3,966) HR 0.67 ($95 \% \mathrm{Cl} 0.40$ to 0.91) ARD -0.84\% (95\% CI -1.48 to -0.20) NNT 119
METEOR Crouse, 2007 ${ }^{92}$ 2 years Fair	```Statin 0.1\% (1/700) Comparator 0\% (0/281) RR 1.21 (95\% CI 0.05 to 30) ARD 0.14\% (95\% CI - 0.46 to 0.74) NNH 714```	NR	NR	NR	NR	NR

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
Muldoon, 2004 ${ }^{91}$ 6 months Fair	NR	NR	Nonfatal stroke: Statin 0.5\% (1/206) Comparator 0\% (0/102) RR 1.49 (95\% CI 0.06 to 36) ARD 0.49\% (95\% CI -1.29 to 2.26) NNH 204	NR	NR	NR
PREVEND-IT Asselbergs, 2004^{94} 4 years Fair	Statin 3.0\% (13/433) Comparator 2.8% (12/431) RR 1.05 (95\% CI 0.50 to 2.34) ARD 0.22% (95\% CI - 2.02 to 2.45$)$ NNH 455	Statin 0.9\% (4/433) Comparator 0.9\% (4/431) RR 1.00 (95\% CI 0.25 to 3.95) ARD 0\% (95\% CI 1.28 to 1.27) NNT not estimable	Fatal and nonfatal stroke: Statin 1.6\% (7/433) Comparator 0.9\% (4/431) RR 1.74 (95\% CI 0.51 to 5.91) ARD 0.69\% (95\% CI -0.80 to 2.18) NNH 145	NR	NR	CV mortality or hospitalization for CV morbidity: Statin 4.8\% (21/433) Comparator 5.6\% (24/431) RR 0.87 ($95 \% \mathrm{Cl} 0.49$ to 1.54) ARD -0.72\% (95\% CI -3.68 to 2.24) NNT 139

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Study name Author, year* Followup Quality	All-cause mortality	CV mortality	Stroke	MI	Revascularization	Composite CV outcomes
WOSCOPS Shepherd, 1995^{95} 5 years Good	Statin 3.2\% (106/3,302) Comparator 4.1\% (135/3,293) RR 0.78 (95\% CI 0.61 to 1.01) ARD -0.89% (95\% CI -1.80 to 0.02$)$ NNT 112	Statin 1.5\% (50/3,302) Comparator 2.2\% (73/3,293) RR 0.68 (95\% CI 0.48 to 0.98) ARD $-0.70 \% ~(95 \% ~ C I ~$ -1.36 to -0.05$)$ NNT 143	Fatal or nonfatal stroke: Statin 1.4\% $(46 / 3,302)$ Comparator 1.5\% (51/3,293) RR 0.90 (95\% CI 0.61 to 1.34) ARD -0.16\% (95\% CI - 0.74 to 0.43) NNT 625	Fatal or nonfatal MI^{\dagger} : Statin 5.3\% (174/3,302) Comparator 7.5\% (248/3,293) RR 0.70 (95\% CI 0.58 to 0.84) ARD -1.89\% (95\% CI -2.97 to -0.82) NNT 53 Fatal MI: Statin 1.2\% $(38 / 3,302)$ Comparator 1.6\% (52/3,293) RR 0.72 ($95 \% \mathrm{Cl} 0.47$ to 1.08) ARD -0.43\% (95\% CI -0.99 to 0.13) NNT 233 Nonfatal MI: Statin 4.3\% $(143 / 3,302)$ Comparator 6.2\% (204/3,293) RR 0.70 (95\% CI 0.57 to 0.86) ARD -1.86\% (95\% CI -2.94 to -0.79) NNT 54	Statin 1.5\% $(51 / 3,302)$ Comparator 2.4\% (80/3,293) RR 0.64 (95\% CI 0.45 to 0.90) ARD -0.88\% (95\% $\mathrm{CI}-1.56$ to -0.21) NNT 114	CHD mortality + nonfatal MI: Statin $5.3 \%(174 / 3,302)$ 7.5\% (248/3,293) R Comparator R 0.70 (95\% Cl 0.58 to 0.84) ARD -2.26\% (95\% CI -3.44 to -1.08) NNT 44
Pooled risk estimate	$\begin{aligned} & 14 \text { trials } \\ & \text { RR } 0.83(0.76 \text { to } \\ & \left.0.92 ; I^{2}=0 \%\right) \\ & \text { ARD }-0.41 \%(95 \% \mathrm{CI} \\ & -0.68 \text { to }-0.14) \\ & \text { NNT } 244 \end{aligned}$	$\begin{aligned} & 9 \text { trials } \\ & \text { RR } 0.64(95 \% \mathrm{CI} 0.49 \\ & \text { to } \left.0.84 ; I^{2}=43 \%\right) \\ & \text { ARD }-0.46 \%(95 \% \mathrm{CI} \\ & -0.83 \text { to }-0.09) \\ & \text { NNT } 217 \end{aligned}$	12 trials RR 0.72 (95\% CI 0.61 to 0.84; $\mathrm{I}^{2}=0 \%$) ARD -0.37\% (95\% CI 0.53 to -0.20) NNT 270	```11 trials RR 0.63 (95\% CI 0.56 to 0.71; \(I^{2}=0 \%\)) ARD -0.93\% (95\% CI -1.41 to -0.45) NNT 108```	$\begin{aligned} & 6 \text { trials } \\ & \text { RR } 0.63(95 \% \text { CI } \\ & 0.54 \text { to 0.72; } \\ & \left.\mathrm{I}^{2}=0 \%\right) \\ & \text { ARD }-0.75 \%(95 \% \\ & \text { CI }-0.98 \text { to }-0.52) \\ & \text { NNT } 133 \\ & \hline \end{aligned}$	12 trials RR 0.69 (95\% CI 0.61 to 0.77; $I^{2}=37 \%$ ARD -1.47\% (95\% CI -1.95 to -0.99) NNT 68

*Primary publication.
\dagger Nonfatal MI, silent MI and fatal CHD.
\ddagger Composite of fatal Ml and other CV mortality.
Abbreviations: ACAPS=Asymptomatic Carotid Artery Progression Study; AFCAPS/TexCAPS=Air Force/Texas Coronary Atherosclerosis Prevention Study; ARD=absolute risk difference; ASCOT-LLA=Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm; ASPEN=Atorvastatin Study for Prevention of

Table 3. Clinical Outcomes and Pooled Risk Estimates From Randomized, Controlled Trials of Statins vs. Placebo

Coronary Heart Disease Endpoints in Non-insulin Dependent Diabetes Mellitus; ASTRONOMER=Aortic Stenosis Progression Observation: Measuring Effects of Rosuvastatin; CAIUS=Carotid Atherosclerosis Italian Ultrasound Study; CARDS=Collaborative Atorvastatin Diabetes Study; CHD=coronary heart disease;
$\mathrm{CI}=$ confidence interval; $\mathrm{CV}=$ cardiovascular; HR=hazard ratio; HYRIM=Hypertension High Risk Management; JUPITER=Justification for the Use of Statins in Prevention= and Intervention Trial Evaluating Rosuvastatin; KAPS=Kuopio Atherosclerosis Prevention Study; MEGA=Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; METEOR=Measuring Effects on Intima-Media Thickness=an Evaluation of Rosuvastatin; MI=myocardial infarction; NNH=number needed to harm; NNT=number needed to treat; NR=not reported; PREVEND-IT=Prevention of Renal and Vascular Endstage Disease Intervention Trial; RR=relative risk; TIA=transient ischemic attack; vs.=versus; WOSCOPS=West of Scotland Prevention Study Group.

Table 4. Sensitivity Analysis: Pooled Estimates for Statins vs. Placebo

Analysis	All-cause mortality	CV mortality	Stroke	Myocardial infarction	Revascularization	Composite CV outcomes
All trials						
RR (95\% CI)	$\begin{aligned} & 0.83(0.76 \text { to } 0.92) \\ & \left.\right\|^{2}=13 \% \end{aligned}$	$\begin{aligned} & 0.64(0.49 \text { to } 0.84) \\ & 1^{2}=43 \% \end{aligned}$	$\begin{aligned} & 0.72(0.61 \text { to } 0.84) \\ & \mathrm{I}^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.63(0.56 \text { to } 0.71) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.63(0.54 \text { to } 0.72) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.69(0.61 \text { to } 0.77) \\ & \left.\right\|^{2}=37 \% \end{aligned}$
ARD (95\% CI)	-0.41\% (-0.68 to -0.14\%)	-0.46\% (-0.83 to -0.09\%)	$\begin{aligned} & -0.37 \%(-0.53 \text { to } \\ & -0.20 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.93 \%(-1.41 \text { to } \\ & -0.45 \%) \end{aligned}$	$\begin{aligned} & -0.75 \%(-0.98 \text { to } \\ & -0.52 \%) \end{aligned}$	-1.47\% (-1.95 to -0.99\%)
Number of trials	$14^{51,53,59,62,64,65,68,72,73,81,}$ 82,92,94,95	$9^{51,53,59,63,73,81,82,94,95}$	$\begin{aligned} & 12^{51,59,62,63,68,11, / 3,} \\ & 81,82,91,94,95 \end{aligned}$	$11^{51,53,59,62,63,66,68,73,81,}$ 82,95	$6^{53,68, / 3,81,82,95}$	$12^{51,53,59,62,64,68,11-/ 3,82,94,95}$
Excluding trials stopped early						
RR (95\% CI)	$\begin{aligned} & 0.84(0.73 \text { to } 0.96) \\ & \left.\right\|^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.61(0.42 \text { to } 0.88) \\ & 1^{2}=21 \% \end{aligned}$	$\begin{aligned} & 0.78(0.62 \text { to } 0.97) \\ & \left.\right\|^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.65(0.56 \text { to } 0.75) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.66(0.56 \text { to } 0.78) \\ & \mathrm{I}^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.70(0.59 \text { to } 0.83) \\ & 1^{2}=39 \% \end{aligned}$
ARD (95\% CI)	-0.36\% (-0.74 to 0.02\%)	-0.45\% (-0.95 to 0.05\%)	$\begin{aligned} & -0.36 \%(-0.66 \text { to } \\ & 0.07 \%) \end{aligned}$	$\begin{aligned} & -1.07 \%(-1.79 \text { to } \\ & -0.34 \%) \end{aligned}$	$\begin{aligned} & -0.84 \%(-1.19 \text { to } \\ & -0.50 \%) \end{aligned}$	-1.68\% (-2.47 to -0.90\%)
Number of trials	12 94,95	$7^{51,53,63,81,82,94,95}$	$10^{51,62,63,68,71,81,82,}$ 91,94,95	$9^{51,53,62,63,666,68,81,82,95}$	$5^{53,68,81,82,95}$	$10^{51,53,62,64,68,71,72,82,94,95}$
Good-quality trials						
RR (95\% CI)	$\begin{aligned} & 0.79(0.69 \text { to } 0.90) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.55(0.37 \text { to } 0.81) \\ & \mathrm{I}^{2}=47 \% \end{aligned}$	$\begin{aligned} & 0.67(0.52 \text { to } 0.86) \\ & I^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.57(0.45 \text { to } 0.73) \\ & 1^{2}=25 \% \end{aligned}$	$\begin{aligned} & 0.60(0.49 \text { to } 0.73) \\ & I^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.65(0.57 \text { to } 0.74) \\ & \left.\right\|^{2}=0 \% \end{aligned}$
ARD (95\% CI)	-0.65\% (-1.04 to -0.25\%)	-0.79\% (-1.66 to 0.09\%)	$\begin{aligned} & -0.34 \%(-0.54 \text { to } \\ & -0.14 \%) \end{aligned}$	$\begin{aligned} & -1.64 \%(-3.16 \text { to } \\ & -0.11 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.71 \%(-0.98 \text { to } \\ & -0.44 \%) \end{aligned}$	-1.61\% (-2.44 to -0.77\%)
Number of trials	$4^{68, / 3,81,95}$	$4^{63,73,81,95}$	$5^{63,68,73,81,95}$	$5^{63,68,73,81,95}$	$4^{68, / 3,81,95}$	$3^{68,73,95}$
Followup >3 years						
RR (95\% CI)	$\begin{aligned} & 0.84(0.73 \text { to } 0.97) \\ & \left.\right\|^{2}=0 \% \end{aligned}$	$\begin{aligned} & \text { 0.63 (95\% CI } 0.44 \text { to } 0.90) \\ & \mathrm{I}^{2}=23 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 0.81(0.64 \text { to } 1.01) \\ & \left.\right\|^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.65(0.56 \text { to } 0.75) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.65(0.55 \text { to } 0.77) \\ & I^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.72(0.64 \text { to } 0.82) \\ & \mathrm{I}^{2}=16 \% \\ & \hline \end{aligned}$
ARD (95\% CI)	-0.44\% (-0.82 to -0.07\%)	-0.36\% (-0.91 to 0.20\%)	$\begin{aligned} & \text {-0.30\% (-0.62 to } \\ & 0.01 \%) \end{aligned}$	$\begin{aligned} & -1.25 \%(-2.12 \text { to } \\ & -0.38 \%) \end{aligned}$	$\begin{aligned} & -0.86 \%(-1.23 \text { to } \\ & -0.49 \%) \end{aligned}$	-1.49\% (-2.11 to -0.87\%)
Number of trials	$7^{53,62,68,72,82,94,95}$	$5^{53,63,82,94,95}$	$6^{62,63,68,82,94,95}$	$6^{53,62,63,68,82,95}$	$4^{53,68,82,95}$	$7^{53,62,68,72,82,94,95}$
Patients with prior CV disease excluded						
RR (95\% CI)	$\begin{aligned} & 0.82(0.73 \text { to } 0.91) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.56(0.42 \text { to } 0.75) \\ & 1^{2}=34 \% \end{aligned}$	$\begin{aligned} & 0.70(0.58 \text { to } 0.86) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.63(0.55 \text { to } 0.72) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.62(0.54 \text { to } 0.72) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.67(95 \% \mathrm{Cl} 0.58 \text { to } 0.78) \\ & \mathrm{I}^{2}=45 \% \end{aligned}$
ARD (95\% CI)	-0.42\% (-0.76 to -0.09\%)	-0.62\% (-1.13 to -0.11\%)	$\begin{aligned} & -0.35 \%(-0.52 \text { to } \\ & -0.17 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.86 \%(-1.39 \text { to } \\ & -0.34 \%) \end{aligned}$	$\begin{aligned} & -0.75 \%(-0.98 \text { to } \\ & -0.52 \%) \end{aligned}$	-1.57\% (-2.18 to -0.96\%)
Number of trials	$11^{51,53,62,64,65,68,72,73,82,92,}$ 95	$6^{51,53,63,73,82,95}$	$\underset{91,95}{91,62,63,68,71, / 3,82,}$	$9^{51,53,62,63,666,68,73,82,95}$	$5^{53,68,73,82,95}$	$10^{51,53,62,64,68,71-73,82,95}$
Baseline mean LDL-C <160 mg/dL						
RR (95\% CI)	$\begin{aligned} & 0.84(0.76 \text { to } 0.93) \\ & \left.\right\|^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.61(0.42 \text { to } 0.88) \\ & I^{2}=56 \% \end{aligned}$	$\begin{aligned} & 0.69(0.58 \text { to } 0.83) \\ & \left.\right\|^{2}=5 \% \end{aligned}$	$\begin{aligned} & 0.61(0.53 \text { to } 0.70) \\ & 1^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.62(0.53 \text { to } 0.73) \\ & I^{2}=0 \% \end{aligned}$	$\begin{aligned} & 0.68(0.59 \text { to } 0.79) \\ & \left.\right\|^{2}=47 \% \end{aligned}$
ARD (95\% CI)	-0.38\% (-0.67 to -0.09\%)	-0.45\% (-0.88 to -0.02\%)	$\begin{aligned} & -0.40 \%(-0.59 \text { to } \\ & -0.21 \%) \end{aligned}$	$\begin{aligned} & -0.78 \%(-1.21 \text { to } \\ & -0.35 \%) \end{aligned}$	$\begin{aligned} & -0.76 \% ~(-1.08 \text { to } \\ & -0.45 \%) \end{aligned}$	-1.36\% (-1.83 to -0.88\%)
Number of trials	$12_{92,94,53,59,62,64,65,68,72,73,82,}$	$7^{51,53,59,63,13,82,94}$	$8^{51,59,62,63,68,73,82,94}$	$8^{51,53,99,62,63,68,73,82}$	$4^{53,68,73,82}$	$10^{51,53,59,62,64,68,72,73,82,94}$

Abbreviations: ARD=absolute risk difference; Cl=confidence interval; CV=cardiovascular; LDL-C=low-density lipoprotein-cholesterol; RR=relative risk/risk difference.

Table 5. Statins vs. Placebo: Effects in Subgroups Based on Demographic Characteristics

Study Name, Quality Outcome	Age	Sex	Race
AFCAPS/TexCAPS ${ }^{58}$, Fair			
Acute major coronary events	<65 years RR 0.58 ≥ 65 years RR 0.71 CI not reported, though result for ≥ 65 described as not significant	Men RR 0.63 ($95 \% \mathrm{Cl} 0.50$ to 0.81) ARD -2.18\% (95\% CI -3.32 to -1.04) NNT 46 Women RR 0.54 ($95 \% \mathrm{Cl} 0.22$ to 1.35) ARD -1.21\% (95\% CI -2.95 to 0.53) NNT 83	NR
ASCOT-LLA ${ }^{59}$, Fair			
Nonfatal MI + fatal CHD	≤ 60 years HR 0.66 ($95 \% \mathrm{Cl} 0.41$ to 1.06) ARD -0.78\% ($95 \% \mathrm{Cl}-1.66$ to 0.10) NNT 128 >60 years HR 0.64 ($95 \% 0.47$ to 0.86) ARD -1.22\% ($95 \% \mathrm{CI}-2.01$ to -0.43) NNT 82	Men HR 0.59 ($95 \% \mathrm{Cl} 0.44$ to 0.77) ARD -1.35\% (95\% CI -2.03 to -0.67) NNT 74 Women HR 1.10 ($95 \% \mathrm{Cl} 0.57$ to 2.12) ARD 0.07% (95% CI -1.14 to 1.29) NNH 1429	NR
CARDS ${ }^{68}$, Good			
CHD event, stroke and revascularization	<65 years vs ≥ 65 years p for interaction $=0.58$	Men vs. women p for interaction $=0.59$	NR
Acute coronary events	<65 years RR 0.62 ($95 \% \mathrm{Cl} 0.38$ to 1.02) ARD -1.77\% (95\% CI -3.58 to 0.04) NNT 56 ≥ 65 years RR 0.68 ($95 \% \mathrm{Cl} 0.42$ to 1.11) ARD -2.13\% (95\% CI -4.80 to 0.55) NNT 47	NR	NR
Coronary revascularization	<65 years RR 0.85 ($95 \% \mathrm{Cl} 0.46$ to 1.59) ARD -0.36\% ($95 \% \mathrm{Cl}-1.78$ to 1.06) NNT 278 ≥ 65 years RR 0.45 ($95 \% \mathrm{Cl} 0.17$ to 1.17) ARD -1.28\% (95\% CI -2.79 to 0.22) NNT 78	NR	NR

Table 5. Statins vs. Placebo: Effects in Subgroups Based on Demographic Characteristics

Study Name, Quality Outcome	Age	Sex	Race
Stroke	<65 years RR 0.53 ($95 \% \mathrm{CI} 0.23$ to 1.24) ARD -0.82 ($95 \% \mathrm{Cl}-1.92$ to 0.27) NNT 122 ≥ 65 years RR 0.53 ($95 \% \mathrm{Cl} 0.27$ to 1.03) ARD -2.04\% (95\% CI -4.12 to 0.05) NNT 49	NR	NR
JUPITER ${ }^{\text {/3,/r6,71,80}}$, Good			
CV events	≤ 65 years vs. >65 years $\overline{\mathrm{C}} \mathrm{V}$ events: no difference by age; p for interaction $=0.32$ <70 years HR 0.51 ($95 \% \mathrm{Cl} 0.38$ to 0.69) ARD -1.06\% ($95 \% \mathrm{Cl}-1.51$ to -0.61) NNT 94 ≥ 70 years HR 0.61 ($95 \% \mathrm{Cl} 0.46$ to 0.82) ARD -1.62\% (95\% CI -2.56 to -0.67) NNT 62	Men HR 0.58 ($95 \% \mathrm{Cl} 0.45$ to 0.73) ARD -1.38\% (95\% CI -1.97 to -0.79) NNT 99 Women HR 0.54 ($95 \% \mathrm{Cl} 0.37$ to 0.80) ARD -0.94\% ($95 \% \mathrm{Cl}-1.53$ to -0.34) NNT 106 p for interaction $=0.80$	White HR 0.55 ($95 \% \mathrm{Cl} 0.43$ to 0.69) Non-White HR 0.63 (95\% CI 0.41 to 0.99); p for interaction=0.57
All-cause mortality	<70 years HR 0.80 ($95 \% \mathrm{Cl} 0.60$ to 1.04) ARD -0.38% ($95 \% \mathrm{CI}-0.84$ to 0.08) NNT 263 ≥ 70 years HR 0.80 ($95 \% \mathrm{CI} 0.62$ to 1.04) ARD -0.97\% (95\% CI -2.02 to 0.08) NNT 103	Men HR 0.82 ($95 \% \mathrm{Cl} 0.66$ to 1.03) ARD -0.56\% ($95 \% \mathrm{CI}-1.17$ to 0.06) NNT 179 Women HR 0.77 ($95 \% \mathrm{CI} 0.55$ to 1.06) ARD -0.53\% (95\% CI -1.20 to 0.14) NNT 189 p for interaction $=0.74$	NR
CV mortality	<70 years HR 0.79 ($95 \% \mathrm{Cl} 0.39$ to 1.58) ARD -0.06% ($95 \% \mathrm{CI}-0.25$ to 0.12) NNT 1,667 ≥ 70 years HR 0.83 ($95 \% \mathrm{Cl} 0.47$ to 1.48) ARD -0.16\% (95\% CI -0.62 to 0.31) NNT 625	Men HR 0.44 (95\% CI 0.31 to 0.61) ARD -1.11\% ($95 \% \mathrm{Cl}-1.55$ to -0.67) NNT 90 Women HR 0.73 ($95 \% \mathrm{Cl} 0.48$ to 1.13) ARD -0.37% ($95 \% \mathrm{CI}-0.90$ to 0.15) NNT 270 p for interaction $=0.06$	NR

Table 5. Statins vs. Placebo: Effects in Subgroups Based on Demographic Characteristics

Study Name, Quality Outcome	Age	Sex	Race
Stroke	<70 years HR 0.45 ($95 \% \mathrm{Cl} 0.22$ to 0.91) ARD - 0.23% ($95 \% \mathrm{CI}-0.42$ to -0.03) NNT 435 ≥ 70 years HR 0.55 ($95 \% \mathrm{Cl} 0.33$ to 0.93) ARD -0.62\% (95% CI -1.16 to -0.08) NNT 161	Men HR 0.37 (95\% CI 0.21 to 0.67) ARD -0.47 ($95 \% \mathrm{Cl}-0.73$ to -0.20) Women HR 0.77 ($95 \% \mathrm{Cl} 0.42$ to 1.42) ARD -0.16 (95\% CI -0.52 to 0.21) p for interaction $=0.09$	White HR 0.45 (95\% CI 0.38 to 0.69) Non-White HR 0.67 ($95 \% \mathrm{Cl} 0.33$ to 1.35)
Nonfatal Stroke	NR	Men HR 0.33 ($95 \% \mathrm{Cl} 0.17$ to 0.63) ARD - 0.45% ($95 \% \mathrm{Cl}-0.70$ to -0.20) NNT 222 Women HR 0.84 ($95 \% \mathrm{Cl} 0.45$ to 1.58) ARD -0.10\% ($95 \% \mathrm{Cl}-0.46$ to 0.26) NNT 1,000 p for interaction $=0.04$	NR
MI	<70 years HR 0.37 ($95 \% \mathrm{Cl} 0.20$ to 0.69) ARD -0.39\% ($95 \% \mathrm{CI}-0.62$ to -0.16) NNT 256 ≥ 70 years HR 0.55 ($95 \% \mathrm{Cl} 0.31$ to 1.00) ARD - 0.47% (95% CI -0.95 to -0.00) NNT 213	Men HR 0.42 ($95 \% \mathrm{Cl} 0.26$ to 0.71) ARD -0.52\% ($95 \% \mathrm{CI}-0.82$ to -0.22) NNT192 Women HR 0.54 ($95 \% \mathrm{Cl} 0.25$ to 1.18) ARD -0.24\% ($95 \% \mathrm{Cl}-0.55$ to 0.06) NNT 417 p for interaction $=0.60$	White HR 0.42 ($95 \% \mathrm{Cl} 0.26$ to 0.67) Non-White HR 0.68 ($95 \% \mathrm{Cl} 0.24$ to 1.91)
Nonfatal MI	NR	Men HR 0.29 ($95 \% \mathrm{Cl} 0.16$ to 0.54) ARD -0.61\% (95\% CI -0.89 to -0.33) NNT164 Women HR 0.56 ($95 \% \mathrm{Cl} 0.24$ to 1.33) ARD -0.18\% ($95 \% \mathrm{Cl}-0.45$ to 0.09) NNT 556 p for interaction $=0.24$	NR

Table 5. Statins vs. Placebo: Effects in Subgroups Based on Demographic Characteristics

Study Name, Quality Outcome	Age	Sex		Race
Revascularization/ hospitalization	<70 years HR 0.54 ($95 \% \mathrm{Cl} 0.38$ to 0.77) ARD -0.65\% ($95 \% \mathrm{CI}-1.02$ to -0.28) NNT 154 ≥ 70 years HR 0.51 ($95 \% \mathrm{Cl} 0.33$ to 0.80) ARD -0.98 ($95 \% \mathrm{Cl}-1.62$ to -0.34) NNT 102	```Men HR 0.63 (95\% CI 0.46 to 0.86) ARD -0.75\% (95\% CI -1.22 to -0.28) NNT 133 Women HR 0.24 (\(95 \% \mathrm{Cl} 0.11\) to 0.51) ARD -0.74\% (95\% CI -1.11 to -0.38) NNT 135 p for interaction \(=0.01\)```	NR	
MEGA ${ }^{82}$, Fair				
CHD	<60 years HR 0.81 ($95 \% \mathrm{Cl} 0.49$ to 1.32) ≥ 60 years HR 0.59 (95\% CI 0.40 to 0.88)	Men vs. women HR 0.63 ($95 \% \mathrm{CI} 0.42$ to 0.95) Women HR 0.71 (95\% CI 0.44 to 1.14)	NR	
Stroke	NR	Men HR 0.67 ($95 \% \mathrm{CI} 0.37$ to 1.22) Women HR 0.63 (95\% CI 0.36 to 1.10)	NR	
WOSCOPS 95, Good				
Nonfatal MI + fatal CHD	<55 years RR 0.57 (95\% CI 0.59 to 0.94) ARD -2.60\% (95\% CI -4.08 to -1.12) NNT 38 >55 years RR 0.57 (95\% CI 0.42 to 0.79) ARD -2.50\% (95\% CI -4.45 to -0.55) NNT 40	NR	NR	

Abbreviations: AFCAPS/TexCAPS=Air Force/Texas Coronary Atherosclerosis Prevention Study; ARD=absolute risk difference; ASCOT=Anglo-Scandinavian
Cardiac Outcomes Trial; CARDS=Collaborative Atherosclerosis Italian Ultrasound Study; CHD: coronary heart disease; CI=confidence interval; CV=cardiovascular; HR=hazard ratio; JUPITER= Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; MEGA= Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; MI=myocardial infarction; NNH=number needed to harm; NNT=number needed to treat; NR=not reported; RCT=randomized clinical trial; RR=relative risk; WOSCOPS=West of Scotland Prevention Study Group; vs.=versus.

Table 6. Statins vs. Placebo: Effects in Subgroups Based on Clinical Characteristics

Study name, Quality Outcome	Lipid parameters	Hypertension	Cardiovascular risk score	Renal dysfunction	Diabetes	Metabolic syndrome	Other characteristics
AFCAPS/TexCAPS ${ }^{53}$, Fair							
Acute major coronary events	LDL-C <149.1 mg/dL RR 0.74 (95\% CI 0.49 to 1.11) LDL-C $\geq 149.1 \mathrm{mg} / \mathrm{dL}$ RR 0.53 ($95 \% \mathrm{Cl} 0.37$ to 0.77) p for interaction $=0.88$ LDL-C $\leq 141.9 \mathrm{mg} / \mathrm{dL}$ ARR 0.34 LDL-C 142-156.9 mg/dL ARR 0.36 vs. LDL-C $\geq 157 \mathrm{mg} / \mathrm{dL}$ ARR 0.41 HDL-C $\leq 34.4 \mathrm{mg} / \mathrm{dL}$ ARR 0.45 HDL-C 34.8-39.1 mg/dL ARR 0.44 HDL-C $39.8 \mathrm{mg} / \mathrm{dL}$ ARR 0.15	NR	Low, mild, or moderate risk [$<20 \%$ 10-year CHD risk] 5.18 vs. 8.47 events/1,000 personyears (RR 0.61, 95\% Cl 0.45 to 0.82) High or very high risk [$\mathbf{2 0 \%}$ 10-year CHD risk] 12.99 vs. 19.63 events $/ 1,000$ personyears (RR 0.66, 95\% Cl 0.45 to 0.97)	$\begin{aligned} & \text { Mild CKD (eGFR<60 } \\ & \text { ml/minute } \left.1.73 \mathrm{~m}^{2}\right)^{*} \\ & \text { ARR } 0.32\left(95 \% \mathrm{Cl}^{4}\right. \\ & 0.10 \text { to } 1.11) \end{aligned}$	NR	NR	LDL $\geq 149.1 \mathrm{mg} / \mathrm{dL}$ and CRP <0.16 vs $>0.16 \mathrm{mg} / \mathrm{dL}$ RR 0.38 (95\% CI 0.21 to 0.70) vs. 0.68 (95\% CI 0.42 to 1.10) LDL < 149.1 mg/dL and CRP <0.16 vs. >0.16 mg/dL RR 1.08 (95\% CI 0.56 to 2.08) vs. 0.58 (95\% CI 0.34 to 0.98)
ASCOT^{59}, Fair							
Nonfatal MI + fatal CHD	NR	NR	NR	Renal dysfunction HR 0.61 (95\% CI 0.44 to 0.84) No renal dysfunction HR 0.70 ($95 \% \mathrm{Cl} 0.47$ to 1.04)	Diabetes HR 0.84 (95\% CI 0.55 to 1.29) No diabetes HR 0.56 (95\% CI 0.41 to 0.77) p for interaction= 0.14	Metabolic syndrome HR 0.77 (95\% Cl 0.52 to 1.12) No metabolic syndrome HR 0.56 (95\% Cl 0.40 to 0.79)	Smoker HR 0.56 (95\% CI 0.37 to 0.85) Nonsmoker HR 0.70 (95\% CI 0.51 to 0.96) BMI $<30 \mathrm{~kg} / \mathrm{m}^{2}$ HR 0.59 (95\% CI 0.39 to 0.90) $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ HR 0.67 (95\% CI 0.49 to 0.92)
Total CV events and procedures	NR	NR	NR	NR	Diabetes HR 0.77 (95\% CI 0.61 to 0.98) No diabetes HR 0.80 (95\% CI 0.68 to 0.94) p for interaction= 0.82	NR	NR

Table 6. Statins vs. Placebo: Effects in Subgroups Based on Clinical Characteristics

Study name, Quality Outcome	Lipid parameters	Hypertension	Cardiovascular risk score	Renal dysfunction	Diabetes	Metabolic syndrome	Other characteristics
Fatal and nonfatal stroke	NR	NR	NR	NR	Diabetes HR 0.67 (95\% CI 0.41 to 1.09) No diabetes HR 0.76 (95\% CI 0.55 to 1.06) p for interaction= 0.66	NR	NR
Overall lipid parameters	TC <193 mg/dL: HR 0.63 ($95 \% \mathrm{Cl} 0.37$ to 1.10) TC 193-228 mg/dL: HR 0.62 (95\% CI 0.42 to 0.90) TC $\geq 232 \mathrm{mg} / \mathrm{dL}$: HR 0.69 ($95 \% \mathrm{Cl} 0.45$ to 1.05) LDL-C < $130 \mathrm{mg} / \mathrm{dL}$: HR 0.69 (95\% CI 0.45 to 1.06) LDL-C $\geq 130 \mathrm{mg} / \mathrm{dL}$: HR $0.70(95 \% \mathrm{Cl} 0.50$ to 0.97)	NR	NR	NR	NR	NR	NR
CARDS ${ }^{101}$, Good							
All-cause mortality	NR	NR	NR	Renal dysfunction AHR 0.86 (95% CI 0.51 to 1.45) No renal dysfunction HR 0.65 ($95 \% \mathrm{Cl} 0.42$ to 1.00)	NR	NR	NR
CVD	NR	NR	NR	Renal dysfunction AHR 0.57 (95\% CI 0.35 to 0.94) No renal dysfunction HR 0.65 ($95 \% \mathrm{Cl} 0.47$ to 0.91)	NR	NR	NR
CHD	NR	NR	NR	Renal dysfunction AHR 0.65 (95\% CI 0.36 to 1.17) No renal dysfunction HR 0.64 ($95 \% \mathrm{Cl} 0.41$ to 0.99)	NR	NR	NR

Table 6. Statins vs. Placebo: Effects in Subgroups Based on Clinical Characteristics

Study name, Quality Outcome	Lipid parameters	Hypertension	Cardiovascular risk score	Renal dysfunction	Diabetes	Metabolic syndrome	Other characteristics
Stroke	NR	NR	NR	Renal dysfunction AHR 0.38 (95\% CI 0.15 to 0.99) No renal dysfunction HR 0.62 (95\% CI 0.33 to 1.18); p for interaction $=0.20$	NR	NR	NR
Revascularization	NR	NR	NR	Renal dysfunction AHR 0.40 (95\% CI 0.14 to 1.15) No renal dysfunction HR 0.84 (95% CI 0.45 to 1.54)	NR	NR	NR
JUPITER ${ }^{\text {/3,104 }}$, Good							
CV events	LDL-C $\leq 100 \mathrm{mg} / \mathrm{dL}$: HR 0.65 (95\% CI 0.46 to 0.91) LDL-C >100 mg/dL: HR 0.52 (95\% CI 0.40 to 0.67) HDL-C $<40 \mathrm{mg} / \mathrm{dL}$: HR 0.50 (95\% CI 0.33 to 0.76) HDL-C $\geq 40 \mathrm{mg} / \mathrm{dL}$: HR 0.58 (95\% CI 0.46 to 0.74) Triglycerides <200 $\mathrm{mg} / \mathrm{dL}:$ HR $0.56(95 \% \mathrm{Cl}$ 0.45 to 0.71) Triglycerides ≥ 200 $\mathrm{mg} / \mathrm{dL}:$ HR $0.56(95 \% \mathrm{Cl}$ 0.34 to 0.91)	Hypertension vs. no hypertension no difference; p for interaction= 0.53	Framingham $\leq 10 \%$ vs. $>10 \%$ no difference; p for interaction=0.99	NR	NR	Metabolic syndrome vs. no metabolic syndrome no difference; p for interaction=0. 14	Smoker vs. nonsmoker no difference; p for interaction=0.63 BMI <25 vs. 25-29 vs. $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$ no difference; p for interaction $=0.70$ Elevated Creactive protein with no other risk factors other than increased age: HR 0.63 (95\% CI 0.44 to 0.92)

Table 6. Statins vs. Placebo: Effects in Subgroups Based on Clinical Characteristics

Study name, Quality Outcome	Lipid parameters	Hypertension	Cardiovascular risk score	Renal dysfunction	Diabetes	Metabolic syndrome	Other characteristics
MEGA ${ }^{82}$, Fair							
CHD	Cholesterol < $\mathbf{2 4 0} \mathbf{~ m g} / \mathrm{dL}$ HR 0.63 ($95 \% \mathrm{Cl} 0.39$ to 1.01) Cholesterol > $\mathbf{2 4 0} \mathbf{~ m g} / \mathrm{dL}$ HR 0.70 ($95 \% \mathrm{Cl} 0.46$ to 1.05) LDL-C < 155 mg/dL HR 0.90 ($95 \% \mathrm{Cl} 0.56$ to 1.44) LDL-C >155 mg/dL HR 0.54 ($95 \% \mathrm{Cl} 0.35$ to 0.81); p for interaction $=0.06$ HDL- < $54.9 \mathrm{mg} / \mathrm{dL}$ HR 0.69 ($95 \% \mathrm{Cl} 0.47$ to 1.01) HDL-C $\mathbf{> 5 4 . 9} \mathbf{~ m g} / \mathrm{dL}$) HR 0.64 ($95 \% \mathrm{Cl} 0.38$ to 1.10) Triglycerides <119.6 mg/dL HR 0.58 (95\% CI 0.33 to 1.01) Triglycerides >119.6 mg/dL HR 0.72 ($95 \% \mathrm{Cl} 0.49$ to 1.04)	Hypertension HR 0.75 (95\% CI 0.51 to 1.11) No hypertension HR 0.56 (95\% CI 0.33 to 0.93) p for interaction= 0.81	NR	Moderate CKD (eGFR 30 to <60 $\left.\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}\right)^{*}$ $3 \%(21 / 1,471)$ vs. 6% $(40 / 1,507)$ HR 0.52 (95\% CI 0.31 to 0.89)	Diabetes HR 0.64 (95\% CI 0.41 to 1.01) No diabetes HR 0.69 (95\% CI 0.45 to 1.05)	NR	BMI $\mathbf{< 2 4} \mathbf{~ k g} / \mathbf{m}^{2}$ HR 0.69 (95\% CI 0.45 to 1.06) BMI $\geq \mathbf{2 4} \mathbf{~ k g} / \mathrm{m}^{2}$ HR 0.65 (95\% CI 0.42 to 1.01)
Stroke	NR	Hypertension HR 0.57 (95\% CI 0.27 to 1.19) No hypertension HR 0.68 (95\% CI 0.42 to 1.11)	NR	Moderate CKD (eGFR 30 to <60 $\left.\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}\right)^{*}$ $1 \%(8 / 1,471)$ vs. 4% $(29 / 1,507)$ HR 0.27 ($95 \% \mathrm{Cl} 0.12$ to 0.59)	$\begin{aligned} & \text { HR } 0.69(95 \% \mathrm{Cl} \\ & 0.35 \text { to } 1.36) \text { vs. } \\ & \text { HR } 0.63 \text { (95\% CI } \\ & 0.38 \text { to } 1.04) \end{aligned}$	NR	Smoker HR 0.62 (95\% CI 0.27 to 1.42) Nonsmoker HR 0.67 (95\% CI 0.42 to 1.06)
CVD	NR	NR	NR	Moderate CKD (eGFR 30 to <60 $\left.\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}\right)^{*}$ $5 \%(33 / 1,471)$ vs. 10\% (71/1,507) HR 0.45 ($95 \% \mathrm{Cl} 0.30$ to 0.69)	NR	NR	NR

Table 6. Statins vs. Placebo: Effects in Subgroups Based on Clinical Characteristics

Study name, Quality Outcome	Lipid parameters	Hypertension	Cardiovascular risk score	Renal dysfunction	Diabetes	Metabolic syndrome	Other characteristics
All-cause mortality	NR	NR	NR	$\begin{aligned} & \text { Moderate CKD (eGFR } \\ & 30 \text { to }<60 \\ & \left.\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}\right)^{*} \\ & 2 \%(16 / 1,471) \text { vs. } 5 \% \\ & (34 / 1,507) \\ & \text { HR } 0.49(95 \% \mathrm{CI} 0.27 \\ & \text { to } 0.89) \end{aligned}$	NR	NR	NR
WOSCOPS ${ }^{95}$, Good							
Nonfatal MI + fatal CHD	Cholesterol >269 mg/dL RRR 27\% (95\% CI 4 to 44\%) Cholesterol < $\mathbf{2 6 9} \mathbf{~ m g} / \mathrm{dL}$ RRR 36\% (95\% CI 15 to 51\%) LDL-C >189 mg/dL RRR 27\% (95\% CI 6 to 43\%) LDL-C < $189 \mathrm{mg} / \mathrm{dL}$ RRR 37\% (95\% CI 15 to 53\%) HDL-C $<43 \mathrm{mg} / \mathrm{dL}$ RRR 31\% (95\% CI 11 to 46\%) HDL-C >43 mg/dL RRR 33\% (95\% CI 9 to 51\%) Triglyceride $>148 \mathbf{~ m g} / \mathrm{dL}$ RRR 32\% (95\% CI 12 to 47\%) Triglyceride < $148 \mathbf{m g} / \mathrm{dL}$ RRR 29\% (95\% Cl 4 to 48\%)	NR	NR	NR	NR	NR	Smoker RRR 31\% (95\% CI 12 to 47\%) Nonsmoker RRR 31\% (95\% CI 6 to 48\%)

*No comparison for non-CKD subjects reported.
Abbreviations: AFCAPS/TexCAPS=Air Force/Texas Coronary Atherosclerosis Prevention Study; AHR=adjusted hazard ratio; ARR=adjusted relative risk;
ASCOT=Anglo-Scandinavian Cardiac Outcomes Trial; BMI=body mass index; CARDS=Collaborative Atorvastatin Diabetes Study; CHD=coronary heart disease; $\mathrm{Cl}=$ confidence interval; CKD=chronic kidney disease; CV=cardiovascular; dL=deciliter; eGFR=estimated glomerular filtration rate; HDL-C=high density lipoprotein cholesterol; HR=hazard ratio; JUPITER=Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; L=liter; LDL-C=low density lipoprotein-C; m=meter; MEGA=Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; mg=milligram; Ml=myocardial infarction; $\mathrm{ml}=$ milliliter; mmol=millimole; $\mathrm{mR}=$ not reported; $\mathrm{RR}=$ relative risk; RRR=relative risk reduction; vs.=versus; WOSCOPS=West of Scotland Prevention Study Group.

Table 7. Harms of Statins vs. Placebo in Randomized, Controlled Trials

Study name Author, year Followup Quality	Withdrawals due to adverse events	Any serious adverse events	Cancer	Diabetes	Muscle-related harms	Other serious harms
ACAPS Furberg, 1994 ${ }^{51}$ 3 years Fair	Statin 0.7\% (3/460) Comparator 0.4\% (2/459) RR 1.79 (95\% CI 0.30 to 11)	NR	Fatal cancer: Statin 0\% (0/460) Comparator 0.7\% (3/459) RR 0.14 ($95 \% \mathrm{Cl} 0.007$ to 2.75)	NR	NR	ALT elevation ≥ 2 times ULN: Statin 1.3\% (6/460) Comparator 1.3\% (6/459) RR 1.00 ($95 \% \mathrm{Cl} 0.32$ to 3.07)
AFCAPS/ TexCAPS Downs, 1998^{53} 5 years Fair	Statin 13.6\% (449/3,304) Comparator 13.8\% (455/3,301) RR 0.99 (95\% CI 0.87 to 1.11)	Statin 34.2\% (1,131/3,304) Comparator 34.1\% (1,126/3,301) RR 1.00 (95\% CI 0.94 to 1.07)	Any cancer: Statin 7.6\% (252/3,304) Comparator 7.8\% (259/3,301) RR 0.97, $95 \% \mathrm{Cl} 0.82$ to 1.15) Fatal cancer: Statin 1\% (48/3,304) Comparator 1\% $(34 / 3,301)$ RR 1.41 (95\% Cl 0.91 to 2.19)	Statin 2.3\% (72/3094) Comparator 2.4\% (74/3117) RR 0.98 (95\% CI 0.71 to 1.35$)^{\ddagger}$	Myalgia: Statin 0.3\% (10/3,304) Comparator 0.3\% (10/3,301) RR 1.00 (95\% CI 0.42 to 2.40) Rhabdomyolosis: Statin 0.03\% (1/3,304) Comparator 0.06\% $(2 / 3,301)$ RR 0.50 (95% CI 0.05 to 5.51) Myopathy: Statin 0\% Comparator 0\%	ALT or AST elevation ≥ 3 times ULN on consecutive visits: Statin 0.6\% (18/3242) Comparator 0.3\% (11/3248) RR 1.64 ($95 \% \mathrm{Cl} 0.78$ to 3.47)
$\begin{aligned} & \text { ASCOT-LLA } \\ & \text { Sever, } 2003^{59} \\ & 3 \text { years } \\ & \text { Fair } \end{aligned}$	NR	NR	NR	Statin 3.0\% (154/5,168) Comparator 2.6\% (134/5,137) HR 1.15 (95\% CI 0.91 to 1.44)	Rhabdomyolysis: Statin $0.02 \%(1 / 5,168)$ Comparator 0\% (0/5,137) RR 3.00 (95\% CI 0.12 to 74)	Renal impairment: Statin $0.6 \%(31 / 5,158)$ Comparator 0.5\% $(24 / 5,137)$ HR 1.29 (95\% CI 0.76 to 2.19)
ASTRONOMER Chan, 2010^{63} 4 years Good	NR	Statin 30.6\% (41/134) Comparator 35.6\% (48/135) RR 0.86 (95\% CI 0.61 to 1.21)	Any cancer: Statin 1.5\% (2/134) Comparator 2.2\% (3/135) RR 0.67 ($95 \% \mathrm{Cl} 0.11$ to 3.96)	NR	NR	ALT elevation >3 times ULN: Statin 1.5\% (2/134) Comparator 2.2\% (3/135) RR 0.67 ($95 \% \mathrm{Cl} 0.11$ to 3.96) AST elevation ≥ 3 times ULN: Statin 0.7\% (1/134) Comparator 0.7\% (1/135) RR 1.01 ($95 \% \mathrm{CI} 0.06$ to 16)
$\begin{aligned} & \text { Beishuizen, } \\ & 2000^{64} \\ & 2 \text { years } \\ & \text { Fair } \end{aligned}$	NR	NR	Any cancer: Statin 3.9\% (4/103) Comparator 5.1\% (4/79) RR 0.77 ($95 \% \mathrm{Cl} 0.20$ to 2.97)	NR	Myalgia: Statin 17.5\% (18/103) Comparator 32.9\% (26/79) RR 0.53 (95\% CI 0.31 to $0.90)$	ALT elevation ≥ 3 times ULN: Statin 1.0\% (1/103) Comparator 0\% (0/79) RR 2.31 ($95 \% \mathrm{CI} 0.10$ to 56)

Table 7. Harms of Statins vs. Placebo in Randomized, Controlled Trials

Study name Author, year* Followup Quality	Withdrawals due to adverse events	Any serious adverse events	Cancer	Diabetes	Muscle-related harms	Other serious harms
Bone, 2007^{65} 1 year Fair	NR	Statin 1.9\% (9/485) Comparator 2.5\% (3/119) RR 0.73 (95\% CI 0.20 to 2.68)	NR	NR	Myalgia: Statin 12.6\% (61/485) Comparator 6.7\% (8/119) RR 1.87 (95\% CI 0.92 to 3.80) Rhabdomyolysis: Statin 0\% (0/485) Comparator 0\% (0/119) RR 0.25 (95\% CI 0.005 to 12)	ALT or AST elevation ≥ 3 times ULN: Statin $0.4 \%(2 / 485)$ Comparator 0\% (0/119) RR $1.23(95 \% \mathrm{Cl} 0.06$ to 26$)$
CAIUS Mercuri, 1996^{66} 3 years Fair	NR	NR	Any cancer: Statin 2.0\% (3/151) Comparator 2.6\% (4/154) RR 0.76 ($95 \% \mathrm{Cl} 0.17$ to 3.36)	NR	NR	NR
CARDS Colhoun, $2004^{68,101}$ 4 years Good	Statin 8.5\% (122/1,428) Comparator 10.3\% (145/1,410) RR 0.83 (95\% CI 0.66 to 1.04)	Statin 1.3\% (19/1,428) Comparator 1.4\% (20/1,410) RR 0.94 (95\% CI 0.50 to 1.75)	Any cancer: Statin 4.8\% $(69 / 1,428)$ Comparator 5.1\% (72/1,410) RR 0.95 (95\% CI 0.69 to 1.31) Fatal cancer: Statin 1.4\% $(20 / 1,428)$ Comparator 2.1\% (30/1,410) RR 0.66 ($95 \% \mathrm{Cl} 0.38$ to 1.15)	NR	Myalgia: Statin 4.3\% $(61 / 1,428)$ Comparator 5.1\% (72/1,410) RR 0.83 (95\% CI 0.60 to 1.17) Rhabdomyolysis: Statin 0\% (0/1,428) Comparator 0\% (0/1,410) RR 0.99 (95\% CI 0.02 to 50) Myopathy: Statin 0.07\% $(1 / 1,428)$ Comparator 0.07\% (1/1,410) RR 0.99 (95\% CI 0.06 to 16)	ALT elevation ≥ 3 times ULN: Statin 1.2\% (17/1,428) Comparator 1.0\% (14/1,410) RR 1.20 ($95 \% \mathrm{Cl} 0.59$ to 2.42) AST elevation ≥ 3 times ULN: Statin 0.4\% $(6 / 1,428)$ Comparator 0.3\% (4/1,410) RR 1.48 ($95 \% \mathrm{Cl} 0.42$ to 5.24)
HYRIM Anderssen, 2005^{72} 4 years Fair	NR	Serious adverse event rates were similar between groups; data not reported	NR	NR	NR	NR

Table 7. Harms of Statins vs. Placebo in Randomized, Controlled Trials

Study name Author, year Followup Quality	Withdrawals due to adverse events	Any serious adverse events	Cancer	Diabetes	Muscle-related harms	Other serious harms
JUPITER Ridker, 2008^{73} 2 years Good	NR	Statin 15.2\% (1,352/8,901) Comparator 15.5\% (1,377/8,901) RR 0.98 (95\% CI 0.92 to 1.05)	Any cancer: Statin 3.3\% $(298 / 8,901)$ Comparator 3.5\% (314/8,901) RR 0.95 (95\% CI 0.81 to 1.11) Fatal cancer: Statin 0.4\% $(35 / 8,901)$ Comparator 0.7\% (58/8,901) RR 0.60 (95\% CI 0.40 to 0.92)	Statin 3.0\% $(270 / 8,901)$ Comparator 2.4\% (216/8,901) RR 1.25 (95\% CI 1.05 to 1.49)	Myalgia: Statin 16.0\% (1,421/8,901) Comparator 15.4\% (1,375/8,901) RR 1.03 (95\% CI 0.97 to 1.11) Rhabdomyolysis: Statin <0.1\% (1/8,901) Comparator 0\% $(0 / 8,901)$ Myopathy: Statin 0.1\% (10/8,901) Comparator 0.1\% (9/8,901) RR 1.11 (95\% CI 0.45 to 2.73)	Renal disorder: Statin 6.0\% $(535 / 8,901)$ Comparator 5.4\% (480/8,901) RR 1.11 (95\% CI 0.99 to 1.26) Hepatic disorder: Statin $2.4 \%(216 / 8,901)$ Comparator 2.1\% (186/8,901) RR 1.16 (95\% CI 0.96 to 1.41) ALT elevation ≥ 3 times ULN on consecutive visits: Statin $0.3 \%(23 / 8,901)$ Comparator 0.2\% $(17 / 8,901)$ RR 1.46 ($95 \% \mathrm{Cl} 0.95$ to 2.25)
KAPS Salonen, 1995^{81} 3 years Good	Statin 3.6\% (8/224) Comparator 5.4\% (12/223) RR 0.66 (95\% CI 0.28 to 1.59)	NR	Any cancer: Statin 0.5\% (1/212) Comparator 0\% (0/212) RR 3.00 ($95 \% \mathrm{Cl} 0.12$ to 73)	NR	Myalgia: Statin 22.8\% Comparator 20.2\% (numerators and denominators not reported)	ALT ≥ 3 times ULN: Statin 1.8\% (4/212) Comparator 1.3\% (3/212) RR 1.45 ($95 \% \mathrm{Cl} 0.96$ to 2.20)
MEGA Nakamura, 2006^{82} 5 years Fair	Statin 11.0\% (425/3,866) Comparator 8.4\% (332/3,966) RR 1.31 (95\% CI 1.15 to 1.51)	NR	Any cancer: Statin 3.1\% (119/3,866) Comparator 3.2\% (126/3,966) HR 0.97 (95\% CI 0.76 to 1.25)	Statin 5.7\% (172/3013) Comparator 5.3\% (164/3073) RR 1.07 (95\% CI 0.87 to 1.32$)^{\dagger}$	Rhabdomyolysis: Statin 0\% Comparator 0\%	ALT >100 IU/L: Statin 2.8\% (107/3866) Comparator 2.8\% (104/3966) RR 1.06 ($95 \% \mathrm{Cl} 0.81$ to 1.38) AST >100 IU/L: Statin $1.3 \%(50 / 3,866)$ Comparator 1.4\% $(55 / 3,966)$ RR 0.93 (95\% CI 0.64 to 1.36)

Table 7. Harms of Statins vs. Placebo in Randomized, Controlled Trials

Study name Author, year Followup Quality	Withdrawals due to adverse events	Any serious adverse events	Cancer	Diabetes	Muscle-related harms	Other serious harms
METEOR Crouse, 2007 ${ }^{92}$ 2 years Fair	Statin 11.3\% (79/700) Comparator 7.8\% (22/281) RR 1.44 (95\% CI 0.92 to 2.27)	Statin 0.9\% (6/700) Comparator 0\% (0/281) RR 5.23 (95\% CI 0.30 to 93)	NR	NR	Myalgia: Statin 12.7\% (89/700) Comparator 12.1\% (34/281) RR 1.05 (95\% CI 0.73 to 1.52) Rhabdomyolysis: Statin 0\% Comparator 0\%	ALT ≥ 3 times ULN on at least 2 occasions: Statin 0.6\% (4/700) Comparator 0.4\% (1/281) RR 1.61 ($95 \% \mathrm{CI} 0.18$ to 14)
Muldoon, $2004{ }^{9}$ 6 months Fair	Statin 3.9\% (4/103) Statin 2.9\% (3/103) Comparator 0\% (0/102) Sal	NR	NR	NR	NR	NR
$\begin{aligned} & \text { PREVEND-IT }{ }^{94} \\ & \text { Fair } \end{aligned}$	Statin 3.0\% (13/433) Comparator 5.1\% (22/431) RR 0.59 (95\% CI 0.30 to 1.15)	NR	NR	NR	NR	NR
WOSCOPS Shepherd, 1995^{95} 5 years Good	NR	NR	Any cancer: Statin 5.0\% $(166 / 3,302)$ Comparator 3.2\% (106/3,293) RR 1.56 (95\% CI 1.23 to 1.98)	Diabetes: Statin 1.9\% (57/2,999) Comparator 2.8\% $(82 / 2,975)$ HR 0.70 (95\% CI 0.50 to 0.98)	Myalgia: Statin 0.6\% (19/3,302) Comparator 0.6\% $(20 / 3,293)$ RR 0.95 (95\% CI 0.51 to 1.77)	ALT elevation >3 times ULN: Statin $0.5 \%(16 / 3,302)$ Comparator 0.6\% $(20 / 3,293)$ RR 1.08 ($95 \% \mathrm{Cl} 0.41$ to 1.54) AST elevation ≥ 3 times ULN: Statin 0.8\% $(26 / 3,302)$ Comparator 0.4\% (12/3,293) RR 1.18 (95\% CI 0.92 to 1.50)

Table 7. Harms of Statins vs. Placebo in Randomized, Controlled Trials

Study name Author, year Followup Quality	Withdrawals due to adverse events	Any serious adverse events	Cancer	Diabetes	Muscle-related harms	Other serious harms
Pooled risk estimate	$\begin{aligned} & \hline 8 \text { trials } \\ & \mathrm{N}=22,980 \\ & \text { RR 1.03 (95\% CI } 0.83 \\ & \text { to 1.28) } \\ & \mathrm{I}^{2}=70 \% \\ & \text { ARD } 0.46 \% \text { (} 95 \% \mathrm{CI}- \\ & 0.90 \% \text { to } 1.83 \% \text {) } \end{aligned}$	```6 trials \(\mathrm{N}=34,231\) RR 0.99 (95\% CI 0.94 to 1.04) \(I^{2}=0 \%\) ARD 0.14\% (95\% CI -0.51 to 0.78\%)```	Any cancer: 9 trials $N=44,651$ RR 1.04 ($95 \% \mathrm{Cl} 0.90$ to $\begin{aligned} & \text { 1.22) } \\ & \mathrm{I}^{2}=45 \% \end{aligned}$ ARD 0.19\% (95\% CI -0.39 to 0.78\%) Fatal cancer: 4 trials $\mathrm{N}=28,392$ RR 0.78 (95\% CI 0.45 to 1.37) $1^{2}=70 \%$ ARD -0.21\% (95\% CI -0.68 to 0.25\%)	$\begin{aligned} & 5 \text { trials }^{\top} \\ & \mathrm{N}=47,773 \\ & \text { RR 1.04 (} 95 \% \text { CI } 0.88 \\ & \text { to 1.24) } \\ & I^{2}=61 \% \\ & \text { ARD } \end{aligned}$	Myalgia: 7 trials $\mathrm{N}=38,831$ RR 0.96 (95\% CI 0.79 to 1.16) $I^{2}=42 \%$ ARD 0.03\% (95\% CI - 0.53 to 0.60\%) Rhabdomyolysis: 3 trials $\mathrm{N}=46,972$ RR 1.33 (95\% CI 0.30 to 5.95) $I^{2}=0 \%$ ARD 0.00\% (95\% CI - 0.03 to 0.03\%) Myopathy: 2 trials $N=20,661$ RR 1.10 (95\% CI 0.47 to $\begin{aligned} & 2.59) \\ & 1^{2}=0 \% \end{aligned}$ ARD 0.01\% (95\% CI - 0.08 to 0.10\%)	Liver enzyme abnormalities, any definition: 11 trials $N=45,315$ RR 1.10 ($95 \% \mathrm{Cl} 0.90$ to $1.35)$ $I^{2}=0 \%$ ARD 0.08\% (95\% CI -0.04 to 0.19%)

* Primary publication.
\dagger Including unpublished data from Sattar et al. ${ }^{108}$
Abbreviations: ACAPS=Asymptomatic Carotid Artery Progression Study; AFCAPS/TexCAPS=Air Force/Texas Coronary Atherosclerosis Prevention Study ; ALT=aspartate aminotransferase; ASCOT-LLA=Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm; ASPEN=Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-insulin Dependent Diabetes Mellitus; AST=alanine aminotransferase; ASTRONOMER=Aortic Stenosis Progression Observation=Measuring Effects of Rosuvastatin; CAIUS=Carotid Atherosclerosis Italian Ultrasound Study; CARDS=Collaborative Atorvastatin Diabetes Study; $\mathrm{Cl}=$ confidence interval; HR=hazard ratio; HYRIM=Hypertension High Risk Management; IU=international unit; JUPITER=Justification for the Use of Statins in Prevention and Intervention Trial Evaluating Rosuvastatin; KAPS=Kuopio Atherosclerosis Prevention Study; L=liter; MEGA=Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; METEOR=Measuring Effects on Intima-Media Thickness: an Evaluation of Rosuvastatin; NR=not relevant; PREVEND-IT=Prevention of Renal and Vascular Endstage Disease Intervention Trial; RR=relative risk; ULN=upper limit of normal; vs.=versus; WOSCOPS=West of Scotland Prevention Study Group.

Table 8. Selected Cardiovascular Risk Calculators

Calculator	Risk factors included in calculator	Outcomes predicted
$\begin{aligned} & \text { ACC/AHA } \\ & \text { Pooled Cohort } \\ & \text { Equation }{ }^{109} \end{aligned}$	- Age - Total and HDL cholesterol - Systolic blood pressure - Antihypertensive treatment - Diabetes - Smoker	10-year risk for hard cardiovascular event: - Nonfatal MI - CHD death - Fatal or nonfatal CVA
ARIC ${ }^{110}$	- Sex - Age - Race - Smoking - Total and HDL cholesterol	10-year risk for CHD event: - Definite or probable hospitalized MI - Definite CHD death - Unrecognized MI based on ECG - Coronary revascularization
Framingham Risk Score (ATP III modification) ${ }^{111}$	- Age - Total and HDL cholesterol - Smoking - Systolic blood pressure - Antihypertensive medication use - Equations are sex-specific	10-year risk for hard CHD event: - MI - CHD death
$\begin{aligned} & \text { Framingham } \\ & \text { CVD }{ }^{112} \end{aligned}$	- Age - Total and HDL cholesterol - Systolic blood pressure - Antihypertensive treatment - Smoking - Diabetes - Equations are sex-specific	10-year risk of CVD, consisting of: - CHD events (coronary death, MI, coronary insufficiency, and angina) - Cerebrovascular events (ischemic CVA, hemorrhagic CVA, and TIA) - Peripheral artery disease - Heart failure
PROspective Cardiovascular Munster (PROCAM) ${ }^{113}$	- Age - LDL and HDL cholesterol - Smoking - Systolic blood pressure - Family history - Diabetes - Triglycerides	10-year risk of major coronary event: - Sudden cardiac death - Definite fatal or nonfatal MI
QRISK2 ${ }^{114}$	- Ethnicity - Sex - Age - Smoking - Systolic blood pressure - Ratio of total cholesterol to HDL cholesterol - Body mass index - CHD in first degree relative <60 years of age - Townsend deprivation score - Antihypertensive treatment - Rheumatoid arthritis - Chronic kidney disease - Diabetes - Atrial fibrillation	10-year risk of cardiovascular events: - CHD (angina and MI) - Cerebrovascular events (CVA or transient ischemic attack)
Reynolds $^{\dagger 115,116}$	- Age - HbA1c if diabetic (women only) - Smoking - Systolic blood pressure - Total and HDL cholesterol - hsCRP - Parental history of MI at <60 years of age	10-year risk of CV events: - MI - CVA - Coronary revascularization - Cardiovascular death

Table 8. Selected Cardiovascular Risk Calculators

Calculator	Risk factors included in calculator	Outcomes predicted
SCORE ${ }^{1 / 1}$	- Age - Sex - Total cholesterol or total-HDL cholesterol ratio - Smoking - Systolic blood pressure - From high or low risk regions in Europe	10-year risk of fatal cardiovascular event - Fatal MI - Fatal CVA - Fatal aneurysm

*Specific for men.
\dagger Separate calculators for men and women.
Abbreviations: ACC=American College of Cardiology; AHA=American Heart Association; ARIC=Atherosclerosis Risk in Communities; ATP III=Adult Treatment Panel III; CHD=coronary heart disease; CVA=cerebrovascular accident; CVD=cardiovascular disease; HbA1c=hemoglobin A1c; HDL=high density lipoprotein; hsCRP= high sensitivity Creactive protein; LDL=low desnisty lipoprotein; $\mathrm{MI}=$ myocardial infarction; PROCAM=Prospective Cardiovascular Münster; SCORE=Systematic Coronary Risk Evaluation; TIA=transient ischemic attack.

Number of studies and study design	Sample size	Summary of findings	Consistency ${ }^{*}$	Applicability	Limitations	Overall quality
Key Question 1a. Benefits						
18 RCTs	Total: $n=59,050$ - All-cause mortality: $\mathrm{n}=58,426$ - CV mortality: $\mathrm{n}=51,530$ - Stroke: $\mathrm{n}=50,158$ - $\mathrm{MI}: \mathrm{n}=55,832$ - Revascularization: $n=42,098$ - Composite CV outcomes: $n=56,510$	In adults at increased CV risk but without prior CVD events, statins were associated with reduced risk of: - All-cause mortality (14 trials; RR $0.83,95 \% \mathrm{CI}$ 0.76 to $0.92 ;\left.\right\|^{2}=0 \%$; absolute risk difference 0.41%, NNT 244) - Cardiovascular mortality (9 trials, RR 0.64, $95 \% \mathrm{Cl} 0.49$ to $0.84 ; \mathrm{I}^{2}=43 \%$; absolute risk difference -0.46\%; NNT 217) - Stroke (12 trials; RR $0.72,95 \% \mathrm{Cl} 0.61$ to 0.84 ; $\mathrm{I}^{2}=0 \%$; absolute risk difference -0.37%, NNT 270) - MI (11 trials; RR 0.63, $95 \% \mathrm{Cl} 0.56$ to 0.71; $I^{2}=0 \%$; absolute risk difference -0.93%, NNT 108) - Revascularization (6 trials; RR $0.63,95 \% \mathrm{Cl}$ 0.54 to $0.72 ; \mathrm{I}^{2}=0 \%$; absolute risk difference 0.75%, NNT 133) - Composite CV outcomes (12 trials; RR 0.69, $95 \% \mathrm{Cl} 0.61$ to $0.77 ; \mathrm{I}^{2}=37 \%$; absolute risk difference-1.47\%, NNT 68) Findings were robust in sensitivity analysis based on quality, duration of follow-up, mean lipid levels at baseline, and other factors.	Consistent	High applicability to U.S. primary care settings All studies enrolled participants with ≥ 2 CVD risk factors; 3 studies included $<10 \%$ of study participants with prior CVD events	No study with duration >5 years; variability in inclusion criteria, statins therapy, and outcomes assessed Quality: 5 goodquality trials, 12 trials fair-quality, 1 trial poor-quality Estimates precise	Good
Key Question 1b. Treating to Target Versus Fixed-dose Statin Therapy						
No studies (direct); 18 RCTs (indirect)	$\mathrm{n}=59,050$	No study directly compared treatment with statins titrated to attain target cholesterol levels versus other treatment strategies. There were no clear differences in risk of allcause or cardiovascular mortality, MI, or stroke between 3 trials of statins versus placebo or no statin that permitted limited dose titration of statins and 15 trials of fixed-dose statin therapy.	Consistent	High applicability to U.S. primary care settings	No direct evidence Limited indirect evidence from 3 trials of statin versus placebo that permitted dose titration Quality: See Key Question 1a Estimates precise	Poor

Number of studies and study design	Sample size	Summary of findings	Consistency ${ }^{*}$	Applicability	Limitations	Overall quality
Key Question 1c. Subgroups						
6 RCTs	Total: $\mathrm{n}=51,997$ - Sex: $\mathrm{n}=45,382$ - Age: $\mathrm{n}=51,977$ - Race: $\mathrm{n}=17,802$ - Baseline lipids: $n=34,175$ - CV risk score: $\mathrm{n}=24,407$ - Baseline hypertension: $\mathrm{n}=25,634$ - Renal dysfunction: $\mathrm{n}=16,910$ - Diabetes: $\mathrm{n}=18,137$ - Metabolic syndrome: n=28,107	6 trials found no clear differences in relative risk estimates associated with statin therapy versus placebo or no statin in subgroups defined by demographic and clinical factors, though absolute benefits were greater in higher-risk groups.	Consistent	High applicability to U.S. primary care settings Study participants were primarily white race with little age variation (range 51 to 66 years)	Limited evidence on specific clinical outcomes in subgroups Quality: 3 goodquality trials, 3 fair-quality trials Estimates precise	Fair
Key Question 2. Harms						
16 RCTs and 2 observational studies	Total: $n=69,060(n=57,050$ in RCTs) - Withdrawal due to adverse events: $\mathrm{n}=20,884$ - Serious adverse events: $n=29,099$ - Any cancer: $\mathrm{n}=42,849$ - Myalgia: $\mathrm{n}=35,607$ - Elevated aminotransferase: $n=44,936$ - Diabetes: $\mathrm{n}=46,378$	Evidence from trials found statin therapy was not associated with increased risk of: - Withdrawal due to adverse events (8 trials; RR $1.03,95 \% \mathrm{Cl} 0.83$ to $1.28 ; \mathrm{I}^{2}=70 \%$) - Serious adverse events (6 trials; RR 0.99, 95% CI 0.94 to $\left.1.04 ;\left.\right\|^{2}=0 \%\right)$ - Cancer (9 trials; RR 1.04, 95% CI 0.90 to 1.22; $I^{2}=45 \%$), diabetes (5 trials; RR 1.04, $95 \% \mathrm{Cl}$ 0.88 to $1.24 ;\left.\right\|^{2}=61 \%$) - Myalgia (7 trials; RR 0.96, 95\% CI 0.79 to 1.16; $1^{2}=42 \%$) - Elevated transaminases (11 trials; RR 1.10, $95 \% \mathrm{Cl} 0.90$ to $1.35 ; \mathrm{I}^{2}=0 \%$) Evidence on the association between statins and renal or cognitive harms was sparse, but did not clearly indicate increased risk. Evidence from observational studies was mixed on risk of incident diabetes with statin use (adjusted OR 1.01, 95\% CI 0.80 to 1.4 and adjusted HR 1.48, 95% CI 1.38 to 1.59).	Consistent	High applicability to U.S. primary care settings All studies enrolled participants with ≥ 2 CVD risk factors; most trials assessed moderate-potency statins	Harms are often inconsistently reported; no study with duration >5 years Quality: 5 goodquality trials, 11 fair-quality trials Estimates precise	Good

Table 9. Summary of Evidence

Number of studies and study design	Sample size	Summary of findings	Consistency*	Applicability	Limitations	Overall quality
Key Question 3. Statin Potency						
2 RCTs (direct) 18 RCTs (indirect)	$\begin{aligned} & \mathrm{n}=912 \text { (direct), } \mathrm{n}=59,050 \\ & \text { (indirect) } \end{aligned}$	2 trials of statin therapy at different intensities were underpowered to evaluated clinical outcomes. Based on trials of statins versus placebo or no statin, risk estimates for all-cause mortality were similar in trials of low (RR $0.72,95 \% \mathrm{Cl} 0.52$ to 1.00; $\mathrm{I}^{2}=0 \%$), moderate ($\mathrm{RR} 0.84,95 \% \mathrm{CI} 0.74$ to $\left.0.96 ; I^{2}=0 \%\right)$ and high intensity (RR $0.80,95 \% \mathrm{Cl}$ 0.67 to $0.97 ;\left.\right\|^{2}=0$) statins. For other clinical outcomes, there were too few trials of low- and high-intensity statins to conduct meaningful comparisons.	Consistent	High applicability to U.S. primary care settings Of 2 trials providing direct evidence, one was conducted in women and the other in people with early CVA at baseline	2 trials that directly compared different intensities of statin therapy were underpowered and only reported incidence of CVA. Too few trials of low and high intensity statins to evaluate differences in most clinical outcomes based on indirect evidence. Quality: 6 goodquality trials, 12 fair-quality trials, 1 poor-quality trial, 2 good-quality observational studies Estimates precise	Fair

* Studies were considered consistent if the I-square was <30\% or the I-square was $30-60 \%$ but $>75 \%$ of studies reported estimates in the same direction.

Abbreviations: $\mathrm{CHD}=$ coronary heart disease; $\mathrm{CI}=$ confidence interval; $\mathrm{CV}=$ cardiovascular; $\mathrm{CVA}=$ cerebrovascular accident; $\mathrm{CVD}=$ cardiovascular disease; $\mathrm{MI}=$ myocardial infarction; $\mathrm{NA}=$ not applicable; $\mathrm{NNT}=$ number needed to treat; $\mathrm{RCT}=$ randomized clinical trial; RR=relative risk.

Randomized, Controlled Trials and Controlled Observational Studies

Ovid MEDLINE(R) and Ovid OLDMEDLINE(R) and Cochrane Central Register of Controlled Trials

1. exp Hydroxymethylglutaryl-CoA Reductase Inhibitors/
2. (atorvastatin or fluvastatin or lovastatin or pitavastatin or pravastatin or rosuvastatin or simvastatin).mp.
[mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
3. (lipitor or lescol or mevacor or livalo or pravachol or crestor or zocor).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
4. 2 or 3
5. 1 or 4
6. exp Cardiovascular Diseases/
7. (cardiovascular or coronary or heart or mortality or CHD or CVD).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
8. 6 or 7
9. 5 and 8
10. Primary Prevention/
11. prevent\$.mp.
12. 9 and (10 or 11)
13. limit 12 to humans
14. limit 13 to English language
15. limit 13 to abstracts
16. 14 or 15
17. limit 16 to (clinical trial, all or clinical trial or comparative study or controlled clinical trial or randomized controlled trial)
18. 16 and (random\$ or control\$ or cohort).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
19. 17 or 18

Systematic Reviews

Ovid MEDLINE(R) without Revisions

1. exp Hydroxymethylglutaryl-CoA Reductase Inhibitors/
2. (atorvastatin or fluvastatin or lovastatin or pitavastatin or pravastatin or rosuvastatin or simvastatin).mp.
[mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
3. (lipitor or lescol or mevacor or livalo or pravachol or crestor or zocor).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
4. 2 or 3
5. 1 or 4
6. exp Cardiovascular Diseases/
7. (cardiovascular or coronary or heart or mortality or CHD or CVD).mp. [mp=title, abstract, original title, name of substance word, subject heading word, keyword heading word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier]
8. 6 or 7
9.5 and 8
9. Primary Prevention/
10. prevent\$.mp.
11. 9 and (10 or 11)
12. limit 12 to humans
13. limit 13 to English language

Appendix A1. Search Strategies

15. limit 13 to abstracts
16. 14 or 15
17. limit 16 to (meta analysis or systematic reviews)
18. limit 16 to evidence based medicine reviews
19. 17 or 18

Cochrane Database of Systematic Reviews

1. statin\$.ti.
2. limit 1 to full systematic reviews

	Include	Exclude
Key Question 1. Benefits		
Population	Asymptomatic adults (age ≥ 40 years) without prior CVD events (e.g., myocardial infarction, angina, revascularization, CVA, or transient ischemic attack), including persons who are at increased risk for CVD events based on 10-year or lifetime individualized CVD risk level or presence of specific CVD risk factors	Populations in other age groups or with a prior CVD-related event
Interventions	Statins	Other drugs or non-drug interventions (e.g., diet, exercise)
Comparators	No treatment or usual care without statin	Other comparators not listed as included
Outcomes	CHD and/or CVA-related morbidity or mortality; allcause mortality	Intermediate outcomes (e.g., lipid levels, measures of atherosclerosis such as intima media thickness)
Study Design	Randomized clinical trials	Other study designs
Settings	Primary care or primary care-generalizable	Settings not generalizable to primary care; studies outside the stated timeframe
Key Question 2. Harms		
Population	Asymptomatic adults (age ≥ 40 years) without prior CVD events (e.g., myocardial infarction, angina, revascularization, CVA, or transient ischemic attack), including persons who are at increased risk for CVD events based on 10-year or lifetime individualized CVD risk level or presence of specific CVD risk factors	Populations in other age groups or with a prior CVD-related event
Interventions	Statins	Other drugs or non-drug interventions (e.g., diet, exercise)
Comparators	Placebo	Other comparators not listed as included
Outcomes	Side effects from drug interventions, such as myopathy, rhabdomyolysis, myalgia, cognitive loss, diabetes, elevations in liver function tests or creatine phosphokinase levels	Adverse events not related to statin use
Study Design	Randomized clinical trials, and controlled observational studies reporting harms	Other study designs
Settings	Primary care or primary care-generalizable	Settings not generalizable to primary care; studies outside the stated timeframe
Key Question 3. Statin Potency		
Population	Asymptomatic adults (age ≥ 40 years) without prior CVD events (e.g., myocardial infarction, angina, revascularization, CVA, or transient ischemic attack), including persons who are at increased risk for CVD events based on 10-year or lifetime individualized CVD risk level or presence of specific CVD risk factors	Populations in other age groups or with a prior CVD-related event
Interventions	Statins	Other drugs or non-drug interventions (e.g., diet, exercise)
Comparators	Higher vs. lower-potency statin therapy	Other comparators not listed as included
Outcomes	CHD- and/or CVA-related morbidity or mortality; allcause mortality. Side effects from drug interventions, such as myopathy, rhabdomyolysis, myalgia, cognitive loss, diabetes, and elevations in liver function tests or creatine phosphokinase levels	Outcomes not listed as included
Study Design	Randomized clinical trials	Other study designs
Settings	Primary care or primary care-generalizable	Settings not generalizable to primary care; studies outside the stated timeframe

Abbreviations: CHD=coronary heart disease; CVA=cardiovascular accident (stroke); CVD=cardiovascular disease; $K Q=k e y$ question.

Appendix A3. Literature Flow Diagram

*Cochrane databases include the Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews.
\dagger Studies may be included for more than one Key Question.
Abbreviations: CHD= coronary heart disease; CVA= cerebrovascular accident; CVD= cardiovascular disease; KQ= key question; LDL-C= low-density lipoprotein cholesterol.
Note: Indirect evidence not shown in figure.

Key to Exclusion Codes

Code 3
Code 4
Code 5
Code 6
Code 7
Code 8
Code 9

Code 12
Code 13
Code 14

Wrong population
Wrong intervention
Wrong outcomes
Wrong study design for Key Question
Not a study
Not English language but possibly relevant
Wrong population (proportion of patients with prior CVD events at baseline was $>10 \%$)
In systematic review, not directly used
Wrong comparison
Using original studies instead (e.g., meta-analysis, compiled study data, or data from another publication)
Unable to obtain full-text (abstract only)

Baseline risk factors and their association with outcome in the West of Scotland Coronary Prevention Study. The West of Scotland Coronary Prevention Study Group. Am J Cardiol.
1997;79(6):756-62.
Exclusion: 6

Compliance and adverse event withdrawal: their impact on the West of Scotland Coronary Prevention
Study. Eur Heart J. 1997;18(11):1718-24.
Exclusion: 6
Effects of pravastatin in patients with serum total cholesterol levels from 5.2 to $7.8 \mathrm{mmol} /$ liter (200 to $300 \mathrm{mg} / \mathrm{dl}$) plus two additional atherosclerotic risk factors. The Pravastatin Multinational Study Group for Cardiac Risk Patients. Am J Cardiol.
1993;72(14):1031-7.
Exclusion: 5

The effects of pravastatin on hospital admission in hypercholesterolemic middle-aged men: West of Scotland Coronary Prevention Study. J Am Coll Cardiol. 1999;33(4):909-15.
Exclusion: 5

Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation. 1998;97(15):14405.

Exclusion: 6
Pravastatin use and risk of coronary events and cerebral infarction in Japanese men with moderate hypercholesterolemia: the Kyushu Lipid Intervention Study. J Atheroscler Thromb. 2000;7(2):110-21.
Exclusion: 13

Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med. 1998;339(19):1349-57.
Exclusion: 9
Rosuvastatin for cardiovascular prevention: too many uncertainties. Prescrire Int. 2009;18(102):176.

Exclusion: 7

Screening experience and baseline characteristics in the West of Scotland Coronary Prevention Study. The WOSCOPS Study Group. West of Scotland Coronary Prevention Study. Am J Cardiol. 1995;76(7):485-91.
Exclusion: 5
Afonso L, Veeranna V, Zalawadiya S, et al. Predictors of residual cardiovascular risk in patients on statin therapy for primary prevention. Cardiology. 2011;119(4):187-90.
Exclusion: 13
Agarwal V, Phung OJ, Tongbram V, et al. Statin use and the prevention of venous thromboembolism: a meta-analysis. Int J Clin Pract. 2010;64(10):1375-83.
Exclusion: 14

Alberton M, Wu P, Druyts E, et al. Adverse events associated with individual statin treatments for cardiovascular disease: an indirect comparison metaanalysis. QJM. 2012;105(2):145-57.
Exclusion: 14

ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHATLLT). JAMA. 2002;288(23):2998-3007.

Exclusion: 9

Amarenco P. Atorvastatin in prevention of stroke and transient ischaemic attack. Expert Opin
Pharmacother. 2007;8(16):2789-97.
Exclusion: 7

Amarenco P, Benavente O, Goldstein LB, et al. Results of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial by stroke subtypes. Stroke. 2009;40(4):1405-9.
Exclusion: 3

Amarenco P, Goldstein LB, Callahan A, 3rd, et al. Baseline blood pressure, low- and high-density lipoproteins, and triglycerides and the risk of vascular events in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Atherosclerosis. 2009;204(2):515-20.
Exclusion: 3

Amarenco P, Goldstein LB, Messig M, et al. Relative and cumulative effects of lipid and blood pressure control in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels trial. Stroke. 2009;40(7):2486-92.
Exclusion: 3

Amarenco P, Goldstein LB, Sillesen H, et al. Coronary heart disease risk in patients with stroke or transient ischemic attack and no known coronary heart disease: findings from the Stroke Prevention by Aggressive Reduction in Cholesterol Levels
(SPARCL) trial. Stroke. 2010;41(3):426-30.
Exclusion: 3

Amarenco P, Goldstein LB, Szarek M, et al. Effects of intense low-density lipoprotein cholesterol reduction in patients with stroke or transient ischemic attack: the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke. 2007;38(12):3198-204.
Exclusion: 3
Amarenco P, Labreuche J. Lipid management in the prevention of stroke: review and updated metaanalysis of statins for stroke prevention. Lancet neurol. 2009;8(5):453-63.
Exclusion: 14

Amarenco P, Tonkin AM. Statins for stroke prevention: disappointment and hope. Circulation. 2004;109(23 Suppl 1):III44-9.
Exclusion: 14

Amarenco P, Tonkin AM. Statins prevent strokes in high-risk patients. J Fam Pract. 2004;53(7):522.
Exclusion: 14

Anon. Establishing the benefit of statins in low-to-moderate-risk primary prevention: The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Atheroscler Suppl. 2007;8(2 SPEC. ISS.):3-8.
Exclusion: 14

Anonymous. Atorvastatin significantly reduces cardiovascular disease and stroke in people with type 2 diabetes. Evidence-based Healthcare \& Public Health. 2005;9(1):40-1.
Exclusion: 14
Arad Y, Spadaro LA, Roth M, et al. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial.[Erratum appears in J Am Coll Cardiol. 2011 Oct 18;58(17):1832]. J Am Coll Cardiol. 2005;46(1):166-72.

Exclusion: 4

Arampatzis CA, Goedhart D, Serruys PW, et al. Fluvastatin reduces the impact of diabetes on longterm outcome after coronary intervention--a Lescol Intervention Prevention Study (LIPS) substudy. Am Heart J. 2005;149(2):329-35.
Exclusion: 3

Ardigo D, Vaccaro O, Cavalot F, et al. Effectiveness of treat-to-target strategy for LDL-cholesterol control in type 2 diabetes: Post-hoc analysis of data from the MIND.IT study. Eur J Prev Cardiolog. 2014;21(4):456-63.

Exclusion: 4

Ardoin SP, Schanberg LE, Sandborg CI, et al. Secondary analysis of APPLE study suggests atorvastatin may reduce atherosclerosis progression in pubertal lupus patients with higher C reactive protein. Ann Rheum Dis. 2014;73(3):557-66.

Exclusion: 3

Armani A, Toth PP. The CARDS trial: diabetic patients dealt a winning hand. Curr Atheroscler Rep. 2006;8(5):429-32.
Exclusion: 7

Armani A, Toth PP. SPARCL: the glimmer of statins for stroke risk reduction. Curr Atheroscler Rep. 2007;9(5):347-51.
Exclusion: 7
Armitage J, Bowman L, Collins R, et al. Effects of simvastatin 40 mg daily on muscle and liver adverse effects in a 5-year randomized placebo-controlled trial in 20,536 high-risk people. BMC Clin
Pharmacol. 2009;9:6.
Exclusion: 9
Arsenault BJ, Barter P, DeMicco DA, et al. Prediction of cardiovascular events in statin-treated stable coronary patients of the treating to new targets randomized controlled trial by lipid and non-lipid biomarkers. PLoS ONE. 2014;9(12)
Exclusion: 3
Athyros VG, Tziomalos K, Karagiannis A, et al. Atorvastatin: safety and tolerability. Expert Opin Drug Saf. 2010;9(4):667-74.
Exclusion: 7

Aung PP, Maxwell HG, Jepson RG, et al. Lipidlowering for peripheral arterial disease of the lower limb. Cochrane Database Syst Rev.
2007(4):CD000123.
Exclusion: 3
Baigent C, Landray M, Leaper C, et al. First United Kingdom Heart and Renal Protection (UK-HARP-I) study: biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. Am J Kidney Dis. 2005;45(3):473-84.
Exclusion: 3
Bak AA, Huizer J, Leijten PA, et al. Diet and pravastatin in moderate hypercholesterolaemia: a randomized trial in 215 middle-aged men free from cardiovascular disease. J Intern Med.
1998;244(5):371-8.
Exclusion: 5

Ballard KD, Parker BA, Capizzi JA, et al. Increases in creatine kinase with atorvastatin treatment are not associated with decreases in muscular performance.
Atherosclerosis. 2013;230(1):121-4.
Exclusion: 5
Bang CN, Gislason GH, Greve AM, et al. Statins reduce new-onset atrial fibrillation in a first-time myocardial infarction population: a nationwide propensity score-matched study. Eur J Prev
Cardiolog. 2014;21(3):330-8.
Exclusion: 3

Bang CN, Okin PM. Statin treatment, new-onset diabetes, and other adverse effects: a systematic review. Curr Cardiol Rep. 2014;16(3):461.
Exclusion: 6
Barylski M, Nikfar S, Mikhailidis DP, et al. Statins decrease all-cause mortality only in CKD patients not requiring dialysis therapy--a meta-analysis of 11 randomized controlled trials involving 21,295 participants. Pharmacol Res. 2013;72:35-44.
Exclusion: 14

Barylski M, Nikolic D, Banach M, et al. Statins and new-onset diabetes. Curr Pharm Des.
2014;20(22):3657-64.
Exclusion: 7

Bays H, Cohen DE, Chalasani N, et al. An assessment by the Statin Liver Safety Task Force: 2014 update. J Clin Lipidol. 2014;8(3 Suppl):S47-57. Exclusion: 7

Beishuizen ED, Jukema JW, Tamsma JT, et al. No effect of statin therapy on silent myocardial ischemia in patients with type 2 diabetes without manifest cardiovascular disease. Diabetes Care. 2005;28(7):1675-9. Exclusion: 14

Bellamy MF, Pellikka PA, Klarich KW, et al. Association of cholesterol levels, hydroxymethylglutaryl coenzyme-A reductase inhibitor treatment, and progression of aortic stenosis in the community. J Am Coll Cardiol.
2002;40(10):1723-30.
Exclusion: 6

Berthold HK, Unverdorben S, Zittermann A, et al. Age-dependent effects of atorvastatin on biochemical bone turnover markers: a randomized controlled trial in postmenopausal women. Osteoporos Int.
2004;15(6):459-67.
Exclusion: 5

Bjarnason NH, Riis BJ, Christiansen C. The effect of fluvastatin on parameters of bone remodeling. Osteoporos Int. 2001;12(5):380-4.
Exclusion: 5

Blankenhorn DH, Azen SP, Kramsch DM, et al. Coronary angiographic changes with lovastatin therapy. The Monitored Atherosclerosis Regression Study (MARS). Ann Intern Med. 1993;119(10):96976.

Exclusion: 9

Blauw GJ, Lagaay AM, Smelt AH, et al. Stroke, statins, and cholesterol. A meta-analysis of randomized, placebo-controlled, double-blind trials with HMG-CoA reductase inhibitors. Stroke. 1997;28(5):946-50.
Exclusion: 14
Boekholdt SM, Hovingh GK, Mora S, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol. 2014;64(5):485-94.
Exclusion: 3

Bogiatzi C, Hackam DG, McLeod AI, et al. Secular trends in ischemic stroke subtypes and stroke risk factors. Stroke. 2014;45(11):3208-13.
Exclusion: 6
Bouchard M-H, Dragomir A, Blais L, et al. Impact of adherence to statins on coronary artery disease in primary prevention. Br J Clin Pharmacol.
2007;63(6):698-708.
Exclusion: 13
Bradford RH, Shear CL, Chremos AN, et al. Expanded Clinical Evaluation of Lovastatin (EXCEL) study results. I. Efficacy in modifying plasma lipoproteins and adverse event profile in 8245 patients with moderate hypercholesterolemia. Arch Intern Med. 1991;151(1):43-9.
Exclusion: 12

Browning JD. Statins and hepatic steatosis:
perspectives from the Dallas Heart Study.
Hepatology. 2006;44(2):466-71.
Exclusion: 5
Bruckert E, Ferrieres J. Evidence supporting primary prevention of cardiovascular diseases with statins:
Gaps between updated clinical results and actual practice. Arch Cardiovasc Dis. 2014;107(3):188-200.

Exclusion: 7

Bruckert E, Lievre M, Giral P, et al. Short-term efficacy and safety of extended-release fluvastatin in a large cohort of elderly patients. Am J Geriatr Cardiol. 2003;12(4):225-31.
Exclusion: 12
Bukkapatnam RN, Gabler NB, Lewis WR. Statins for primary prevention of cardiovascular mortality in women: a systematic review and meta-analysis. Prev Cardiol. 2010;13(2):84-90.
Exclusion: 14

Bulbulia R, Bowman L, Wallendszus K, et al. Effects on 11-year mortality and morbidity of lowering LDL cholesterol with simvastatin for about 5 years in 20,536 high-risk individuals: a randomised controlled trial. Lancet. 2011;378(9808):2013-20.
Exclusion: 9

Calderon RM, Cubeddu LX, Goldberg RB, et al. Statins in the treatment of dyslipidemia in the presence of elevated liver aminotransferase levels: a therapeutic dilemma. Mayo Clin Proc.
2010;85(4):349-56.

Exclusion: 7

Callahan A, Amarenco P, Goldstein LB, et al. Risk of stroke and cardiovascular events after ischemic stroke or transient ischemic attack in patients with type 2 diabetes or metabolic syndrome: secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Arch Neurol. 2011;68(10):1245-51.
Exclusion: 3

Carlsson CM, Papcke-Benson K, Carnes M, et al. Health-related quality of life and long-term therapy with pravastatin and tocopherol (vitamin E) in older adults. Drugs Aging. 2002;19(10):793-805.
Exclusion: 6

Chang J, Ahn JE, Landsman N, et al. Efficacy of contemporary medical management for asymptomatic carotid artery stenosis. Am Surg. 2013;79(10):987-91.
Exclusion: 9

Chang YH, Hsieh MC, Wang CY, et al. Reassessing the benefits of statins in the prevention of cardiovascular disease in diabetic patients--a systematic review and meta-analysis. Rev. 2013;10(2-3):157-70.
Exclusion: 14
Charlton-Menys V, Betteridge DJ, Colhoun H, et al. Apolipoproteins, cardiovascular risk and statin response in type 2 diabetes: the Collaborative Atorvastatin Diabetes Study (CARDS). Diabetologia. 2009;52(2):218-25. Exclusion: 5

Cheezum MK, Hulten EA, Smith RM, et al. Changes in preventive medical therapies and CV risk factors after CT angiography. JACC Cardiovasc Imaging. 2013;6(5):574-81.
Exclusion: 5

Chen YH, Feng B, Chen ZW. Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp Clin Endocrinol Diabetes. 2012;120(2):116-20.
Exclusion: 14

Cho Y, Choe E, Lee YH, et al. Risk of diabetes in patients treated with HMG-CoA reductase inhibitors. Metabolism. 2015;64(4):482-8.
Exclusion: 13

Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet.
2012;380(9841):581-90.

Exclusion: 6

Clearfield M, Downs JR, Lee M, et al. Implications from the Air Force/Texas Coronary Atherosclerosis Prevention Study for the Adult Treatment Panel III guidelines. Am J Cardiol. 2005;96(12):1674-80. Exclusion: 7

Colhoun HM, Betteridge DJ, Durrington PN. Atorvastatin delays first MI for patients with diabetes. J Fam Pract. 2004;53(12):956.
Exclusion: 14

Colhoun HM, Betteridge DJ, Durrington PN, et al. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am J Kidney Dis. 2009;54(5):8109.

Exclusion: 14

Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361(9374):2005-16.

Exclusion: 9

Colquhoun D, Keech A, Hunt D, et al. Effects of pravastatin on coronary events in 2073 patients with low levels of both low-density lipoprotein cholesterol and high-density lipoprotein cholesterol: results from the LIPID study. Eur Heart J. 2004;25(9):771-7.
Exclusion: 9

Conrad MF, Baloum V, Mukhopadhyay S, et al.
Progression of asymptomatic carotid stenosis despite optimal medical therapy. J Vasc Surg.
2013;58(1):128-35.e1.
Exclusion: 3

Corrao G, Ibrahim B, Nicotra F, et al. Statins and the risk of diabetes: evidence from a large populationbased cohort study. Diabetes Care. 2014;37(8):222532.

Exclusion: 13

Crouse JR, 3rd, Byington RP, Bond MG, et al. Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). Am J Cardiol. 1995;75(7):455-9.

Exclusion: 9

Cui Y, Watson DJ, Girman CJ, et al. Effects of increasing high-density lipoprotein cholesterol and decreasing low-density lipoprotein cholesterol on the incidence of first acute coronary events (from the Air Force/Texas Coronary Atherosclerosis Prevention Study). Am J Cardiol. 2009;104(6):829-34.

Exclusion: 6

Cushman M, McClure LA, Lakoski SG, et al. Eligibility for statin therapy by the JUPITER trial criteria and subsequent mortality. Am J Cardiol. 2010;105(1):77-81.
Exclusion: 6

Daida H, Nohara R, Hata M, et al. Can intensive lipid-lowering therapy improve the carotid intimamedia thickness in Japanese subjects under primary prevention for cardiovascular disease?: The JART and JART extension subanalysis. J Atheroscler Thromb. 2014;21(7):739-54.

Exclusion: 5

de Vries FM, Denig P, Pouwels KB, et al. Primary prevention of major cardiovascular and cerebrovascular events with statins in diabetic patients: a meta-analysis. Drugs. 2012;72(18):236573.

Exclusion: 14

DeFilippis AP, Bansal S, Blumenthal RS. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2008;358(2):194-5.
Exclusion: 7

Deharo P, Pankert M, Quilici J, et al. Safety and effectiveness of the association ezetimibe-statin (E-S) versus high dose rosuvastatin after acute coronary syndrome: The SAFE-ES study. Ann Cardiol Angeiol (Paris). 2014;63(4):222-7.

Exclusion: 3

Dey S, Mukherjee D. Clinical perspectives on the role of anti-platelet and statin therapy in patients with vascular diseases. Curr Vasc Pharmacol.
2003;1(3):329-33.

Exclusion: 7

Di Lullo L, Addesse R, Comegna C, et al. Effects of fluvastatin treatment on lipid profile, C-reactive protein trend, and renal function in dyslipidemic patients with chronic renal failure. Adv Ther. 2005;22(6):601-12.

Exclusion: 5

Diercks GF, Janssen WM, van Boven AJ, et al. Rationale, design, and baseline characteristics of a trial of prevention of cardiovascular and renal disease with fosinopril and pravastatin in nonhypertensive, nonhypercholesterolemic subjects with microalbuminuria (the Prevention of REnal and Vascular ENdstage Disease Intervention Trial [PREVEND IT]). Am J Cardiol. 2000;86(6):635-8. Exclusion: 5

Doggen CJ, Lemaitre RN, Smith NL, et al. HMG CoA reductase inhibitors and the risk of venous thrombosis among postmenopausal women. J
Thromb Haemost. 2004;2(5):700-1.
Exclusion: 6
Drewes YM, Poortvliet RK, Blom JW, et al. Homocysteine levels and treatment effect in the PROspective Study of Pravastatin in the Elderly at Risk. J Am Geriatr Soc. 2014;62(2):213-21.

Exclusion: 9

Everett BM, Glynn RJ, MacFadyen JG, et al. Rosuvastatin in the prevention of stroke among men and women with elevated levels of C-reactive protein: justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER). Circulation. 2010;121(1):143-50.
Exclusion: 14

Fabregas M, Berges I, Fina F, et al. Effectiveness of an intervention designed to optimize statins use: a primary prevention randomized clinical trial. BMC
Fam Pract. 2014;15:135.
Exclusion: 5

Fang W-t, Li H-J, Zhang H, et al. The role of statin therapy in the prevention of atrial fibrillation: a metaanalysis of randomized controlled trials. Br J Clin Pharmacol. 2012;74(5):744-56.
Exclusion: 14

Fassett RG, Robertson IK, Ball MJ, et al. Effect of atorvastatin on kidney function in chronic kidney disease: a randomised double-blind placebocontrolled trial. Atherosclerosis. 2010;213(1):218-24.
Exclusion: 5

Fauchier L, Clementy N, Babuty D. Statin therapy and atrial fibrillation: systematic review and updated meta-analysis of published randomized controlled trials. Curr Opin Cardiol. 2013;28(1):7-18.
Exclusion: 14

Fauchier L, Pierre B, de Labriolle A, et al.
Antiarrhythmic effect of statin therapy and atrial fibrillation a meta-analysis of randomized controlled trials. J Am Coll Cardiol. 2008;51(8):828-35.
Exclusion: 14

Feldman HH, Doody RS, Kivipelto M, et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology. 2010;74(12):956-64.
Exclusion: 5

Fellstrom B, Holdaas H, Jardine AG, et al. Effect of rosuvastatin on outcomes in chronic haemodialysis patients: baseline data from the AURORA study. Kidney Blood Press Res. 2007;30(5):314-22.
Exclusion: 3
Fellstrom B, Holdaas H, Jardine AG, et al. Cardiovascular disease in patients with renal disease: the role of statins. Curr Med Res Opin. 2009;25(1):271-85.

Exclusion: 7

Fellstrom B, Zannad F, Schmieder R, et al. Effect of rosuvastatin on outcomes in chronic haemodialysis patients - design and rationale of the AURORA study. Curr Control Trials Cardiovasc Med. 2005;6(1):9.
Exclusion: 3
Fellstrom BC, Jardine AG, Schmieder RE, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med.
2009;360(14):1395-407.
Exclusion: 3

Feng Z, Rui H, Jingyi R, et al. The relationship between lipid-lowing efficacy, plasma concentrations and safety of short-term simvastatin and atorvastatin therapy with different dosages in Chinese population. J Am Coll Cardiol.64(16 SUPPL. 1):C107.
Exclusion: 15

Ford I, Murray H, Packard CJ, et al. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2007;357(15):147786.

Exclusion: 13

Freeman DJ, Robertson M, Brown EA, et al. Incident venous thromboembolic events in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). BMC geriatr. 2011;11:8.
Exclusion: 9

Fu JH, Mok V, Lam W, et al. Effects of statins on progression of subclinical brain infarct. Cerebrovasc
Dis. 2010;30(1):51-6.
Exclusion: 5

Gagne JJ, Choudhry NK, Kesselheim AS, et al. Comparative effectiveness of generic and brandname statins on patient outcomes: a cohort study. Ann Intern Med. 2014;161(6):400-7.
Exclusion: 13

Gehlbach P, Li T, Hatef E. Statins for age-related macular degeneration. Cochrane Database Syst Rev. 2015(2)
Exclusion: 5
Genest J, Pedersen TR. Prevention of cardiovascular ischemic events: high-risk and secondary prevention. Circulation. 2003;107(15):2059-65.
Exclusion: 7

Ghattas AE, Pimenta J. Efficacy of atorvastatin when not administered daily. Arq Bras Cardiol.
2007;89(5):294-300.
Exclusion: 13

Glynn RJ, Danielson E, Fonseca FAH, et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med.
2009;360(18):1851-61.
Exclusion: 5
Goldfine AB. Statins: Is it really time to reasses benefits and risks? N Engl J Med. 2012;366:1752-5. Exclusion: 7

Goldstein LB, Amarenco P, Szarek M, et al. Hemorrhagic stroke in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels study. Neurology. 2008;70(24 Pt 2):2364-70.
Exclusion: 3

Gotto AM, Jr. Insights on treating an over-the-counter-type subgroup: data from the Air Force/Texas Coronary Atherosclerosis Prevention Study Population. Am J Cardiol. 2000;85(12A):8E14 E .
Exclusion: 14

Gotto AM, Jr. Lipid management in patients at moderate risk for coronary heart disease: insights from the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Am J Med. 1999;107(2A):36S-9S.

Exclusion: 14

Gotto AM, Jr., Boccuzzi SJ, Cook JR, et al. Effect of lovastatin on cardiovascular resource utilization and costs in the Air Force/Texas Coronary
Atherosclerosis Prevention Study
(AFCAPS/TexCAPS). AFCAPS/TexCAPS Research Group. Am J Cardiol. 2000;86(11):1176-81.
Exclusion: 5
Grant RW, Meigs JB. Prevalence and treatment of low HDL cholesterol among primary care patients with type 2 diabetes: an unmet challenge for cardiovascular risk reduction. Diabetes Care. 2007;30(3):479-84.

Exclusion: 6

Group HPSC. Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. J Vasc Surg. 2007;45(4):645-54.e1.
Exclusion: 9

Guclu F, Ozmen B, Hekimsoy Z, et al. Effects of a statin group drug, pravastatin, on the insulin resistance in patients with metabolic syndrome. Biomed Pharmacother. 2004;58(10):614-8.
Exclusion: 13

Gupta R, Plantinga LC, Fink NE, et al. Statin use and sepsis events [corrected] in patients with chronic kidney disease.[Erratum appears in JAMA. 2008 Feb 20;299(7):765]. JAMA. 2007;297(13):1455-64.
Exclusion: 6

Gutierrez J, Ramirez G, Rundek T, et al. Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis. Arch Intern Med. 2012;172(12):909-19.
Exclusion: 3

Guyton JR, Bays HE, Grundy SM, et al. An assessment by the Statin Intolerance Panel: 2014 update. J Clin Lipidol. 2014;8(3 Suppl):S72-81. Exclusion: 7

Hackam DG. Should a statin be routinely prescribed for primary prevention of cardiovascular disease in diabetes mellitus? CMAJ. 2004;171(8):857.
Exclusion: 7
Han Y. Multicenter randomized controlled study of rosuvastatin for prevention of contrast induced acute kidney injury in patients with diabetes and slight to moderate renal insufficiency \{TRACK-D).
clinicaltrialsgov/ct2/show/NCT00786136. 2011
Exclusion: 5
Han Y, Zhu G, Han L, et al. Short-Term Rosuvastatin Therapy for Prevention of Contrast-Induced Acute Kidney Injury in Patients With Diabetes and Chronic Kidney Disease. J Am Coll Cardiol.63(1):62-70.

Exclusion: 5

Hayashi T, Kubota K, Kawashima S, et al. Efficacy of HMG-CoA reductase inhibitors in the prevention of cerebrovascular attack in 1016 patients older than 75 years among 4014 type 2 diabetic individuals. Int J Cardiol. 2014;177(3):860-6.

Exclusion: 6

Heart Protection Study Collaborative G. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7-22.

Exclusion: 9

Heart Protection Study Collaborative Group. The effects of cholesterol lowering with simvastatin on cause-specific mortality and on cancer incidence in 20,536 high-risk people: a randomised placebocontrolled trial [ISRCTN48489393]. BMC Med. 2005;3:6.

Exclusion: 9

Hedblad B, Wikstrand J, Janzon L, et al. Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: Main results from the Beta-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS). Circulation. 2001

Exclusion: 4

Herd JA, Ballantyne CM, Farmer JA, et al. Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoprotein and Coronary Atherosclerosis Study [LCAS]). Am J Cardiol. 1997;80(3):278-86.

Exclusion: 9

Herrington DM, Vittinghoff E, Lin F, et al. Statin therapy, cardiovascular events, and total mortality in the Heart and Estrogen/Progestin Replacement Study (HERS). Circulation. 2002;105(25):2962-7.

Exclusion: 9

Hippisley-Cox J, Coupland C. Unintended effects of statins in men and women in England and Wales: population based cohort study using the QResearch database. BMJ. 2010;340:c2197.
Exclusion: 13

Hitman GA, Colhoun H, Newman C, et al. Stroke prediction and stroke prevention with atorvastatin in the Collaborative Atorvastatin Diabetes Study (CARDS). Diabet Med. 2007;24(12):1313-21.
Exclusion: 14

Hlatky M. The cost-effectiveness of rosuvastatin therapy JUPITER (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). J Am Coll Cardiol. 2011;57(7):792-3. Exclusion: 7

Holdaas H, Fellstrom B, Holme I, et al. Effects of fluvastatin on cardiac events in renal transplant patients: ALERT (Assessment of Lescol in Renal Transplantation) study design and baseline data. J Cardiovasc Risk. 2001;8(2):63-71.

Exclusion: 9

Holmberg B, Brannstrom M, Bucht B, et al. Safety and efficacy of atorvastatin in patients with severe renal dysfunction. Scand J Urol Nephrol.
2005;39(6):503-10.
Exclusion: 3

Hong SJ, Chang HJ, Park S, et al. Impact of atorvastatin treatment in first-degree relatives of patients with premature coronary artery disease with endothelial dysfunction: A double-blind, randomized, placebo-controlled crossover trial. Clin Cardiol. 2013;36(8):480-5.
Exclusion: 5

Huang C-C, Chan W-L, Chen Y-C, et al. Statin use and hospitalization in patients with chronic obstructive pulmonary disease: a nationwide population-based cohort study in Taiwan. Clin Ther. 2011;33(10):1365-70.

Exclusion: 5

Huerta C, Johansson S, Wallander MA, et al. Risk factors and short-term mortality of venous thromboembolism diagnosed in the primary care setting in the United Kingdom. Arch Intern Med. 2007;167(9):935-43.

Exclusion: 6

Ito MK. Dyslipidemia: management using optimal lipid-lowering therapy. Ann Pharmacother.
2012;46(10):1368-81.
Exclusion: 7

Izzo R, de Simone G, Trimarco V, et al. Primary prevention with statins and incident diabetes in hypertensive patients at high cardiovascular risk. Nutr Metab Cardiovasc Dis. 2013;23(11):1101-6. Exclusion: 5

Jonathan E, Derrick B, Emma L, et al. C-reactive protein concentration and the vascular benefits of statin therapy: an analysis of 20,536 patients in the Heart Protection Study. Lancet. 2011;377(9764):46976.

Exclusion: 9

Jukema JW, Bruschke AV, van Boven AJ, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation. 1995;91(10):2528-40.
Exclusion: 9

Karas RH, Kashyap ML, Knopp RH, et al. Long-term safety and efficacy of a combination of niacin extended release and simvastatin in patients with dyslipidemia: the OCEANS study. Am J Cardiovasc Drugs. 2008;8(2):69-81.
Exclusion: 4

Karimi S, Hough A, Beckey C, et al. Results of a safety initiative for patients on concomitant amiodarone and simvastatin therapy in a Veterans Affairs medical center. J Manage Care Pharm. 2010;16(7):472-81.
Exclusion: 6
Kaur N, Pandey A, Negi H, et al. Effect of HDLraising drugs on cardiovascular outcomes: a systematic review and meta-regression. PLoS ONE. 2014;9(4):e94585. Exclusion: 4

Kim J, McEvoy JW, Nasir K, et al. Critical review of high-sensitivity C-reactive protein and coronary artery calcium for the guidance of statin allocation: head-to-head comparison of the JUPITER and St. Francis Heart Trials. Circ Cardiovasc Qual Outcomes. 2014;7(2):315-22.
Exclusion: 7

Kinsella A, Raza A, Kennedy S, et al. The impact of high-dose statin therapy on transendothelial neutrophil migration and serum cholesterol levels in healthy male volunteers. Eur J Clin Pharmacol. 2011;67(11):1103-8.
Exclusion: 5

Kitzmiller JP, Sullivan DM, Phelps MA, et al. CYP3A4/5 combined genotype analysis for predicting statin dose requirement for optimal lipid control. Drug Metabol Drug Interact. 2013;28(1):5963.

Exclusion: 13
Kizer JR, Madias C, Wilner B, et al. Relation of different measures of low-density lipoprotein cholesterol to risk of coronary artery disease and death in a meta-regression analysis of large-scale trials of statin therapy. Am J Cardiol.
2010;105(9):1289-96.
Exclusion: 14
Koizumi J, Shimizu M, Miyamoto S, et al. Effect of pravastatin-induced LDL-cholesterol reduction on coronary heart disease and cerebrovascular disease in Japanese: Hokuriku lipid coronary heart disease study-pravastatin atherosclerosis trial (Holicos-PAT). J Atheroscler Thromb. 2002;9(5):251-9.
Exclusion: 6

Kokudai M, Inui N, Takeuchi K, et al. Effects of statins on the pharmacokinetics of midazolam in healthy volunteers. J Clin Pharmacol.
2009;49(5):568-73.
Exclusion: 5

Kostis WJ, Cheng JQ, Dobrzynski JM, et al. Metaanalysis of statin effects in women versus men. J Am Coll Cardiol. 2012;59(6):572-82.
Exclusion: 14
Kriekard P, Gharacholou SM, Peterson ED. Primary and secondary prevention of cardiovascular disease in older adults: a status report. Clin Geriatr Med. 2009;25(4):745-55.

Exclusion: 7

Lacut K, Le Gal G, Abalain JH, et al. Differential associations between lipid-lowering drugs, statins and fibrates, and venous thromboembolism: role of drug induced homocysteinemia? Thromb Res. 2008;122(3):314-9.

Exclusion: 6

Lauer MS. Primary prevention of atherosclerotic cardiovascular disease: the high public burden of low individual risk. JAMA. 2007;297(12):1376-8.
Exclusion: 7

Lee DH, Markwardt S, Goeres L, et al. Statins and physical activity in older men: The osteoporotic fractures in men study. JAMA Intern Med. 2014 Exclusion: 9

Lee JD, Morrissey JR, Mikhailidis DP, et al. CARDS on the table: should everybody with type 2 diabetes take a statin? Curr Med Res Opin. 2005;21(3):35762.

Exclusion: 7

Lemaitre RN, Psaty BM, Heckbert SR, et al. Therapy with hydroxymethylglutaryl coenzyme a reductase inhibitors (statins) and associated risk of incident cardiovascular events in older adults: evidence from the Cardiovascular Health Study. Arch Intern Med. 2002;162(12):1395-400.
Exclusion: 6
Leuschen J, Mortensen EM, Frei CR, et al. Association of statin use with cataracts: a propensity score-matched analysis. JAMA Ophthalmol. 2013;131(11):1427-34.
Exclusion: 5

Lewis JH, Mortensen ME, Zweig S, et al. Efficacy and safety of high-dose pravastatin in hypercholesterolemic patients with well-compensated chronic liver disease: Results of a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Hepatology. 2007;46(5):1453-63.
Exclusion: 3

Li L, Sun T, Zhang P, et al. Statins for primary prevention of venous thromboembolism. Cochrane Database Syst Rev. 2011(12):CD008203.
Exclusion: 14

Li L, Zhang P, Tian JH, et al. Statins for primary prevention of venous thromboembolism. Cochrane Database Syst Rev. 2014;12:CD008203.
Exclusion: 14

Logue J, Murray HM, Welsh P, et al. Obesity is associated with fatal coronary heart disease independently of traditional risk factors and deprivation. Heart. 2011;97(7):564-8.

Exclusion: 5

Lv HL, Jin DM, Liu M, et al. Long-term efficacy and safety of statin treatment beyond six years: a metaanalysis of randomized controlled trials with extended follow-up. Pharmacol Res. 2014;81:64-73. Exclusion: 9

Lye M, Valacio R, Reckless JP, et al. Elderly patients with hypercholesterolaemia: a double-blind study of the efficacy, safety and tolerability of fluvastatin. Coron Artery Dis. 1998;9(9):583-90.
Exclusion: 5

Mabuchi H, Kita T, Matsuzaki M, et al. Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia and coronary heart disease: secondary prevention cohort study of the Japan Lipid Intervention Trial (J-LIT). Circ J. 2002;66(12):1096-100.
Exclusion: 6

Maitland-van der Zee AH, Boerwinkle E, Arnett DK, et al. Absence of an interaction between the angiotensin-converting enzyme insertion-deletion polymorphism and pravastatin on cardiovascular disease in high-risk hypertensive patients: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Am Heart J. 2007;153(1):54-8.
Exclusion: 9

Maitland-van der Zee A-H, Lynch A, Boerwinkle E, et al. Interactions between the single nucleotide polymorphisms in the homocysteine pathway (MTHFR 677C>T, MTHFR 1298 A>C, and CBSins) and the efficacy of HMG-CoA reductase inhibitors in preventing cardiovascular disease in high-risk patients of hypertension: the GenHAT study. Pharmacogenet Genomics. 2008;18(8):651-6.
Exclusion: 9

Maitland-van der Zee A-H, Peters BJM, Lynch AI, et al. The effect of nine common polymorphisms in coagulation factor genes (F2, F5, F7, F12 and F13) on the effectiveness of statins: the GenHAT study. Pharmacogenet Genomics. 2009;19(5):338-44. Exclusion: 9

Maitland-van der Zee A-H, Stricker BH, Klungel OH , et al. The effectiveness of hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) in the elderly is not influenced by apolipoprotein E genotype. Pharmacogenetics. 2002;12(8):647-53.
Exclusion: 3
Mancini GB. [Limitation of atherosclerosis in coronary arteries with pravastatin (PLAC 1)]. Rev Esp Cardiol. 1995;48 Suppl 2:11-3.
Exclusion: 8
Manktelow BN, Potter JF. Interventions in the management of serum lipids for preventing stroke recurrence. Cochrane Database Syst Rev. 2009(3):CD002091.
Exclusion: 3
Mansi IA, Mortensen EM, Pugh MJ, et al. Incidence of musculoskeletal and neoplastic diseases in patients on statin therapy: results of a retrospective cohort analysis. Am J Med Sci. 2013;345(5):343-8.
Exclusion: 6

Margolis KL, Davis BR, Baimbridge C, et al. Longterm follow-up of moderately hypercholesterolemic hypertensive patients following randomization to pravastatin vs usual care: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). J Clin Hypertens
(Greenwich). 2013;15(8):542-54.
Exclusion: 9

Margolis KL, Dunn K, Simpson LM, et al. Coronary heart disease in moderately hypercholesterolemic, hypertensive black and non-black patients randomized to pravastatin versus usual care: the antihypertensive and lipid lowering to prevent heart attack trial (ALLHAT-LLT). Am Heart J. 2009;158(6):948-55.
Exclusion: 9
Martinez C, Legrand V, Kulbertus H. [Moderate hypercholesterolemia and coronary disease: the MAAS study and the 4S study]. Rev Med Liege. 1995;50(1):35-40.
Exclusion: 8

Matsushima T, Nakaya N, Mizuno K, et al. The effect of low-dose pravastatin in metabolic syndrome for primary prevention of cardiovascular disease in Japan: a post hoc analysis of the MEGA study. J Cardiovasc Pharmacol Ther. 2012;17(2):153-8.
Exclusion: 6

Matsushita Y, Sugihara M, Kaburagi J, et al. Pravastatin use and cancer risk: a meta-analysis of individual patient data from long-term prospective controlled trials in Japan. Pharmacoepidemiol Drug Saf. 2010;19(2):196-202.

Exclusion: 14

Matsuzaki M, Kita T, Mabuchi H, et al. Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia. Circ J. 2002;66(12):108795.

Exclusion: 13

McAlister FA, Majumdar SR, Lin M, et al. Cholesterol end points predict outcome in patients with coronary disease: quality improvement metrics from the enhancing secondary prevention in coronary artery disease (ESP-CAD) trial. Can J Cardiol. 2014;30(12):1627-32.
Exclusion: 3
McConnachie A, Walker A, Robertson M, et al. Long-term impact on healthcare resource utilization of statin treatment, and its cost effectiveness in the primary prevention of cardiovascular disease: A record linkage study. Eur Heart J. 2014;35(5):290-8. Exclusion: 5

McElduff P, Jaefarnezhad M, Durrington PN. American, British and European recommendations for statins in the primary prevention of cardiovascular disease applied to British men studied prospectively. Heart. 2006;92(9):1213-8.
Exclusion: 7

Mikus CR, Boyle LJ, Borengasser SJ, et al. Simvastatin impairs exercise training adaptations. J Am Coll Cardiol. 2013;62(8):709-14.
Exclusion: 5

Mills EJ, O'Regan C, Eyawo O, et al. Intensive statin therapy compared with moderate dosing for prevention of cardiovascular events: a meta-analysis of >40 000 patients. Eur Heart J. 2011;32(11):140915.

Exclusion: 3

Mills EJ, Rachlis B, Wu P, et al. Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. J Am Coll Cardiol.
2008;52(22):1769-81.
Exclusion: 14

Mizuno K, Nakaya N, Teramoto T, et al. Usefulness of LDL-C-related parameters to predict
cardiovascular risk and effect of pravastatin in mild-to-moderate hypercholesterolemia.[Erratum appears in J Atheroscler Thromb. 2012;19(9):881]. J
Atheroscler Thromb. 2012;19(2):176-85.
Exclusion: 14
Mohler ER, 3rd, Hiatt WR, Creager MA. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation. 2003;108(12):1481-6.

Exclusion: 3

Mora S, Glynn RJ, Ridker PM. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation. 2013;128(11):1189-97.

Exclusion: 14

Morishita R, Itakura H, Nakaya N, et al. Risk factors for cardiovascular events in Japanese patients treated with fluvastatin from the long-term event monitoring (LEM) study. Curr Vasc Pharmacol. 2012;10(2):17886.

Exclusion: 13

Mulders TA, Sivapalaratnam S, Stroes ESG, et al. Asymptomatic individuals with a positive family history for premature coronary artery disease and elevated coronary calcium scores benefit from statin treatment: a post hoc analysis from the St. Francis Heart Study. JACC Cardiovasc Imaging.
2012;5(3):252-60.
Exclusion: 13
Naci H, Brugts JJ, Fleurence R, et al. Comparative effects of statins on major cerebrovascular events: a multiple-treatments meta-analysis of placebocontrolled and active-comparator trials. QJM. 2013;106(4):299-306.
Exclusion: 14
Naci H, Brugts JJ, Fleurence R, et al. Comparative benefits of statins in the primary and secondary prevention of major coronary events and all-cause mortality: a network meta-analysis of placebocontrolled and active-comparator trials. Eur J Prev Cardiolog. 2013;20(4):641-57.

Exclusion: 13
Nakamura H. The design and background characteristics of the study on the primary prevention of coronary events with pravastatin among Japanese with mildly elevated cholesterol levels. (Japanese Mega Study). Atherosclerosis. 2000;151(1):136.
Exclusion: 14
Nakamura H. [Primary prevention trial by lowering hyperlipidemia on the cardiovascular disease (MEGA Study)]. Nihon Ronen Igakkai zasshi. 2009; Jpn J Geriatr. 46(1):18-21.

Exclusion: 8

Nakamura H, Group MS. Primary prevention of cardiovascular diseases among hypercholesterolemic Japanese with a low dose of pravastatin. Atheroscler Suppl. 2007;8(2):13-7.

Exclusion: 14

Nash DT. Meeting national cholesterol education goals in clinical practice--a comparison of lovastatin and fluvastatin in primary prevention. Am J Cardiol. 1996;78(6A):26-31.
Exclusion: 13

Neil A, Cooper J, Betteridge J, et al. Reductions in all-cause, cancer, and coronary mortality in statintreated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J. 2008;29(21):2625-33.

Exclusion: 6

Nissen SE. The Jupiter trial: key findings, controversies, and implications. Curr Cardiol Rep. 2009;11(2):81-2.
Exclusion: 7

Nomura S, Shouzu A, Omoto S, et al. Losartan and simvastatin inhibit platelet activation in hypertensive patients. J Thromb Thrombolysis. 2004;18(3):177-85. Exclusion: 6

Oliver MF. Statins prevent coronary heart disease.[Erratum appears in Lancet 1996 Jan 6;347(8993):68]. Lancet. 1995;346(8987):1378-9. Exclusion: 7

O'Regan C, Wu P, Arora P, et al. Statin therapy in stroke prevention: a meta-analysis involving 121,000 patients. Am J Med. 2008;121(1):24-33.
Exclusion: 14

Owen OG. The collaborative atorvastatin diabetes study: preliminary results. Int J Clin Pract. 2005;59(1):121-3.
Exclusion: 14

Packard CJ, Ford I, Robertson M, et al. Plasma lipoproteins and apolipoproteins as predictors of cardiovascular risk and treatment benefit in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Circulation. 2005;112(20):305865.

Exclusion: 3

Panichi V, Mantuano E, Paoletti S, et al. Effect of simvastatin on plasma asymmetric dimethylarginine concentration in patients with chronic kidney disease. J Nephrol. 2008;21(1):38-44.
Exclusion: 5
Papademetriou V, Piller LB, Ford CE, et al. Characteristics and lipid distribution of a large, highrisk, hypertensive population: the lipid-lowering component of the Antihypertensive and LipidLowering Treatment to Prevent Heart Attack Trial (ALLHAT). J Clin Hypertens (Greenwich). 2003;5(6):377-84.
Exclusion: 9
Paradisi G, Bracaglia M, Basile F, et al. Effect of pravastatin on endothelial function and endothelial progenitor cells in healthy postmenopausal women. Clin Exp Obstet Gynecol. 2012;39(2):153-9.

Exclusion: 5

Park WJ, Jo S-H, Kim S-A, et al. Rationale and design of STOP DVT study: rosuvastatin for the prevention of deep vein thrombosis in patients undergoing total knee replacement arthroplasty--a prospective randomized open-label controlled trial. Contemp Clin Trials. 2011;32(5):779-82.

Exclusion: 5

Parra A, Kreiter KT, Williams S, et al. Effect of prior statin use on functional outcome and delayed vasospasm after acute aneurysmal subarachnoid hemorrhage: a matched controlled cohort study.
Neurosurgery. 2005;56(3):476-84; discussion -84.
Exclusion: 5
Patel JM, Snaith C, Thickett DR, et al. Randomized double-blind placebo-controlled trial of $40 \mathrm{mg} /$ day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial). Crit Care. 2012;16(6)
Exclusion: 3

Paulsen L, Matthesen SK, Bech JN, et al. Acute effects of atorvastatin on glomerular filtration rate, tubular function, blood pressure, and vasoactive hormones in patients with type 2 diabetes. J Clin Pharmacol. 2010;50(7):816-22.
Exclusion: 5

Pedersen TR. Prevention of cardiovascular disease: the Scandinavian experience. Aging Clin Exp Res. 1998;10(2):167.
Exclusion: 3

Peeters G, Tett SE, Conaghan PG, et al. Is statin use associated with new joint-related symptoms, physical function, and quality of life? Results from two population-based cohorts of women. Arthritis Care Res (Hoboken). 2015;67(1):13-20.
Exclusion: 5
Pehlivanidis AN, Athyros VG, Demitriadis DS, et al. Heart rate variability after long-term treatment with atorvastatin in hypercholesterolaemic patients with or without coronary artery disease. Atherosclerosis. 2001;157(2):463-9.
Exclusion: 3

Pena JM, Aspberg S, MacFadyen J, et al. Statin therapy and risk of fracture: results from the JUPITER randomized clinical trial. JAMA Intern Med. 2015;175(2):171-7.
Exclusion: 5

Perreault S, Dragomir A, Blais L, et al. Impact of adherence to statins on chronic heart failure in primary prevention. Br J Clin Pharmacol. 2008;66(5):706-16.
Exclusion: 6

Perreault S, Dragomir A, Blais L, et al. Impact of better adherence to statin agents in the primary prevention of coronary artery disease. Eur J Clin Pharmacol. 2009;65(10):1013-24.
Exclusion: 6

Perreault S, Ellia L, Dragomir A, et al. Effect of statin adherence on cerebrovascular disease in primary prevention. Am J Med. 2009;122(7):647-55. Exclusion: 6

Peters TK, Muratti EN, Mehra M. Fluvastatin in primary hypercholesterolemia: efficacy and safety in patients at high risk. An analysis of a clinical trial database. Am J Med. 1994;96(6A):79S-83S.
Exclusion: 3

Petretta M, Costanzo P, Perrone-Filardi P, et al Impact of gender in primary prevention of coronary heart disease with statin therapy: a meta-analysis. Int J Cardiol. 2010;138(1):25-31.
Exclusion: 14

Petri MA, Kiani AN, Post W, et al. Lupus
Atherosclerosis Prevention Study (LAPS). Ann
Rheum Dis. 2011;70(5):760-5.
Exclusion: 5

Pitt B, Mancini GB, Ellis SG, et al. Pravastatin limitation of atherosclerosis in the coronary arteries (PLAC I): reduction in atherosclerosis progression and clinical events. PLAC I investigation. J Am Coll Cardiol. 1995;26(5):1133-9.
Exclusion: 3

Poluzzi E, Piccinni C, Carta P, et al. Cardiovascular events in statin recipients: impact of adherence to treatment in a 3-year record linkage study. Eur J Clin Pharmacol. 2011;67(4):407-14.
Exclusion: 9

Pons-Rejraji H, Brugnon F, Sion B, et al. Evaluation of atorvastatin efficacy and toxicity on spermatozoa, accessory glands and gonadal hormones of healthy men: a pilot prospective clinical trial. Reprod Biol Endocrinol. 2014;12:65.
Exclusion: 5

Rabinowich L, Steinvil A, Leshem-Rubinow E, et al. Adherence to statins is associated with reduced incidence of idiopathic venous thromboembolism: real-life data from a large healthcare maintenance organisation. Heart. 2012;98(24):1817-21.
Exclusion: 13

Raikou M, McGuire A, Colhoun HM, et al. Costeffectiveness of primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes: results from the Collaborative Atorvastatin Diabetes Study (CARDS). Diabetologia. 2007;50(4):733-40.
Exclusion: 5
Rajpathak SN, Kumbhani DJ, Crandall J, et al. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32(10):1924-9.
Exclusion: 14
Ramcharan AS, Van Stralen KJ, Snoep JD, et al. HMG-CoA reductase inhibitors, other lipid-lowering medication, antiplatelet therapy, and the risk of venous thrombosis. J Thromb Haemost.
2009;7(4):514-20.
Exclusion: 6

Ramsey SD, Clarke LD, Roberts CS, et al. An economic evaluation of atorvastatin for primary prevention of cardiovascular events in type 2 diabetes. Pharmacoeconomics. 2008;26(4):329-39. Exclusion: 6

Rapezzi C, Biagini E, Bellis P, et al. Exploring the gap between National Cholesterol Education Program guidelines and clinical practice in secondary care: results of a cross-sectional study involving over 10 000 patients followed in different specialty settings across Italy. J Cardiovasc Med (Hagerstown). 2008;9(9):878-87. Exclusion: 9

Ray K. Statin diabetogenicity: guidance for clinicians. Cardiovasc. 2013;12 Suppl 1:S3.
Exclusion: 7

Ray KK, Seshasai SRK, Erqou S, et al. Statins and all-cause mortality in high-risk primary prevention: a meta-analysis of 11 randomized controlled trials involving 65,229 participants. Arch Intern Med. 2010;170(12):1024-31.
Exclusion: 14

Rejnmark L, Buus NH, Vestergaard P, et al. Effects of simvastatin on bone turnover and BMD: a 1-year randomized controlled trial in postmenopausal osteopenic women. J Bone Miner Res.
2004;19(5):737-44.
Exclusion: 5

Ridker PM, Genest J, Boekholdt SM, et al. HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial. Lancet.
2010;376(9738):333-9.
Exclusion: 14

Ridker PM, Glynn RJ. The JUPITER Trial: responding to the critics. Am J Cardiol. 2010;106(9):1351-6.
Exclusion: 7

Ridker PM, MacFadyen J, Cressman M, et al. Efficacy of rosuvastatin among men and women with moderate chronic kidney disease and elevated highsensitivity C-reactive protein: a secondary analysis from the JUPITER (Justification for the Use of Statins in Prevention-an Intervention Trial Evaluating Rosuvastatin) trial. J Am Coll Cardiol. 2010;55(12):1266-73.
Exclusion: 14

Rizzo M, Rini GB. Statins, fracture risk, and bone remodeling: What is true? Am J Med Sci. 2006;332(2):55-60.

Exclusion: 7

Robinson JG, Wang S, Smith BJ, et al. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol. 2009;53(4):316-22.
Exclusion: 13
Rosenson RS, Baker SK, Jacobson TA, et al. An assessment by the Statin Muscle Safety Task Force: 2014 update. J Clin Lipidol. 2014;8(3 Suppl):S58-71. Exclusion: 7

Ruggenenti P, Perna A, Tonelli M, et al. Effects of add-on fluvastatin therapy in patients with chronic proteinuric nephropathy on dual renin-angiotensin system blockade: the ESPLANADE trial. Clin J Am Soc Nephrol. 2010;5(11):1928-38.
Exclusion: 4

Sasaki M, Gan WL, Kawasaki R, et al. Effect of simvastatin on retinal vascular caliber: The AgeRelated Maculopathy Statin Study. Acta Ophthalmol. 2013;91(5):e418-e9.
Exclusion: 5
Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. The Lancet.
2010;375(9716):735-42.

Exclusion: 14

Savarese G, Gotto AM, Jr., Paolillo S, et al. Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. J Am Coll Cardiol. 2013;62(22):2090-9.

Exclusion: 14

Sawayama Y, Shimizu C, Maeda N, et al. Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). J Am Coll Cardiol. 2002;39(4):610-6.

Exclusion: 9

Scarpioni R, Ricardi M, Melfa L, et al. Dyslipidemia in chronic kidney disease: are statins still indicated in reduction cardiovascular risk in patients on dialysis treatment? Cardiovasc Ther. 2010;28(6):361-8.
Exclusion: 7

Segura J, Ruilope LM. Rosuvastatin, C-reactive protein, LDL cholesterol, and the JUPITER trial. Lancet. 2009;374(9683):26; author reply -7.
Exclusion: 7

Serebruany VL. Extreme all-cause mortality in JUPITER requires reexamination of vital records. Cardiology. 2011;120(2):84-8.
Exclusion: 7

Sever P, Dahlof B, Poulter N, et al. Potential synergy between lipid-lowering and blood-pressure-lowering in the Anglo-Scandinavian Cardiac Outcomes Trial.[Erratum appears in Eur Heart J. 2007 Jan;28(1):142]. Eur Heart J. 2006;27(24):2982-8. Exclusion: 14

Sever PS. Lipid-lowering therapy and the patient with multiple risk factors: what have we learned from the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)? Am J Med. 2005;118 Suppl 12A:3-9. Exclusion: 14

Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Drugs. 2004;64 Suppl 2:43-60.
Exclusion: 14

Sgueglia GA, Crea F. The risks of a new hypothesis: why did JUPITER patients have almost twice the predicted event rate of reduction? J Cardiovasc Med (Hagerstown). 2011;12(1):66-70.
Exclusion: 7

Sheng X, Murphy MJ, MacDonald TM, et al. Effect of statins on total cholesterol concentrations, cardiovascular morbidity, and all-cause mortality in chronic obstructive pulmonary disease: a populationbased cohort study. Clin Ther. 2012;34(2):374-84.

Exclusion: 6

Sheng X, Murphy MJ, MacDonald TM, et al. The comparative effectiveness of statin therapy in selected chronic diseases compared with the remaining population. BMC Public Health. 2012;12:712.
Exclusion: 6

Sheng X, Murphy MJ, MacDonald TM, et al. Effect of statins on total cholesterol concentrations and cardiovascular outcomes in patients with diabetes mellitus: a population-based cohort study. Eur J Clin Pharmacol. 2012;68(8):1201-8.
Exclusion: 6

Sheng X, Murphy MJ, Macdonald TM, et al. Effectiveness of statins in chronic kidney disease. QJM. 2012;105(7):641-8.
Exclusion: 6
Sheng X, Murphy MJ, Macdonald TM, et al. Effectiveness of statins on total cholesterol and cardiovascular disease and all-cause mortality in osteoarthritis and rheumatoid arthritis. J Rheumatol. 2012;39(1):32-40.

Exclusion: 6

Sheng X, Wei L, Murphy MJ, et al. Statins and total (not LDL) cholesterol concentration and outcome of myocardial infarction: results from a meta-analysis and an observational study. Eur J Clin Pharmacol. 2009;65(11):1071-80.
Exclusion: 14
Shepherd J. Pravastatin event reduction analysis. Am
J Manag Care. 1998;4(4 SUPPL. I):S192-S9.
Exclusion: 7
Shepherd J. Statins for primary prevention: strategic options to save lives and money. J R Soc Med. 2004;97(2):66-71.
Exclusion: 7
Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360(9346):1623-30.

Exclusion: 9

Shepherd J, Cobbe SM, Ford I, et al. Preventing coronary heart disease with pravastatin. Natl Med J
India. 1996;9(2):77.
Exclusion: 7

Shepherd J, Gaw A, West of Scotland Coronary Prevention Study G. The anatomy of a clinical trial. The West of Scotland Coronary Prevention Study.
Med Princ Pract. 2002;11 Suppl 2:17-30.
Exclusion: 7

Shepherd J, Kastelein JP, Bittner VA, et al. Intensive lipid lowering with atorvastatin in patients with coronary artery disease, diabetes, and chronic kidney disease. Mayo Clin Proc. 2008;83(8):870-9.
Exclusion: 3
Shiba T, Sakamoto K, Ito C, et al. Beneficial effect of pitavastatin on the incidence of diabetes in women with impaired glucose tolerance: Sub-analysis of jpredict. Diabetes. 2014;63(13)
Exclusion: 15
Simoons ML, Saelman JP. Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS). Lancet. 1994;344(8923):633-8.
Exclusion: 9

Skerrett PJ, Pasternak RC. ALLHAT-LLT: questions, questions, and more questions (and some answers). Curr Atheroscler Rep. 2004;6(5):375-80.

Exclusion: 9

Smeeth L, Douglas I, Hall AJ, et al. Effect of statins on a wide range of health outcomes: a cohort study validated by comparison with randomized trials. Br J Clin Pharmacol. 2009;67(1):99-109.

Exclusion: 6

Sondermeijer BM, Boekholdt SM, Rana JS, et al. Clinical implications of JUPITER in a contemporary European population: the EPIC-Norfolk prospective population study. Eur Heart J. 2013;34(18):1350-7.

Exclusion: 6

Sorensen HT, Horvath-Puho E, Sogaard KK, et al. Arterial cardiovascular events, statins, low-dose aspirin and subsequent risk of venous thromboembolism: a population-based case-control study. J Thromb Haemost. 2009;7(4):521-8.
Exclusion: 6
Steg PG, Tissot C-M. Statins in the elderly: what evidence of their benefit in prevention? Arch Cardiovasc Dis. 2010;103(2):61-5.
Exclusion: 7

Stegmayr BG, Brannstrom M, Bucht S, et al. Lowdose atorvastatin in severe chronic kidney disease patients: a randomized, controlled endpoint study. Scand J Urol Nephrol. 2005;39(6):489-97.
Exclusion: 9

Strippoli GFM, Navaneethan SD, Johnson DW, et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ.
2008;336(7645):645-51.
Exclusion: 14

Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;1:CD004816. DOI: 10.1002/14651858.CD004816.pub5.

Exclusion: 14

Taylor FC, Huffman M, Ebrahim S. Statin therapy for primary prevention of cardiovascular disease.
JAMA. 2013;310(22):2451-2.
Exclusion: 7
Teo KK, Burton JR, Buller CE, et al. Long-term effects of cholesterol lowering and angiotensinconverting enzyme inhibition on coronary atherosclerosis: The Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT). Circulation. 2000;102(15):1748-54.
Exclusion: 9

Teramoto T, Kitagawa Y, Daida H, et al. APPROACH-J study: design, rationale, and baseline data of the affirmation primary prevention with pravastatin in reduction of occlusive atherosclerotic complications in hypercholesterolemia--Japan study. J Atheroscler Thromb. 2011;18(12):1054-61.
Exclusion: 7
Teramoto T, Nakaya N, Yokoyama S, et al. Association between lowering low-density lipoprotein cholesterol with pravastatin and primary prevention of cardiovascular disease in mild to moderate hypercholesterolemic Japanese. J Atheroscler Thromb. 2010;17(8):879-87.
Exclusion: 14
Ting RZW, Yang X, Yu LWL, et al. Lipid control and use of lipid-regulating drugs for prevention of cardiovascular events in Chinese type 2 diabetic patients: a prospective cohort study. Cardiovasc. 2010;9:77.
Exclusion: 6

Tonelli M, Lloyd A, Clement F, et al. Efficacy of statins for primary prevention in people at low cardiovascular risk: A meta-analysis. CMAJ. 2011;183(16):E1189-E202.
Exclusion: 14

Trompet S, van Vliet P, de Craen AJ, et al. Pravastatin and cognitive function in the elderly. Results of the PROSPER study. J Neurol. 2010;257(1):85-90.
Exclusion: 9

Vaucher J, Marques-Vidal P, Preisig M, et al. Population and economic impact of the 2013 ACC/AHA guidelines compared with European guidelines to prevent cardiovascular disease. Eur Heart J. 2014;35(15):958-9.

Exclusion: 7

Wang W, Zhang B. Statins for the prevention of stroke: a meta-analysis of randomized controlled trials. PLoS ONE. 2014;9(3):e92388.
Exclusion: 14

Wang Z, Ge J. Managing hypercholesterolemia and preventing cardiovascular events in elderly and younger Chinese adults: focus on rosuvastatin. Clin Interv Aging. 2014;9:1-8.
Exclusion: 7

Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353(3):238-48.
Exclusion: 9
Weng TC, Yang YHK, Lin SJ, et al. A systematic review and meta-analysis on the therapeutic equivalence of statins. J Clin Pharm Ther. 2010;35(2):139-51.
Exclusion: 14

Wu XD, Zeng K, Xue FQ, et al. Statins are associated with reduced risk of gastric cancer: a meta-analysis. Eur J Clin Pharmacol.
2013;69(10):1855-60.
Exclusion: 14

Yang CC, Jick SS, Jick H. Statins and the risk of idiopathic venous thromboembolism. Br J Clin Pharmacol. 2002;53(1):101-5.
Exclusion: 6

Yang Q, Qi X, Li Y. The preventive effect of atorvastatin on atrial fibrillation: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2014;14:99.
Exclusion: 5

Yu O, Eberg M, Benayoun S, et al. Use of statins and the risk of death in patients with prostate cancer. J Clin Oncol. 2014;32(1):5-11.
Exclusion: 9

Yue J, Zhang X, Dong B, et al. Statins and bone health in postmenopausal women: a systematic review of randomized controlled trials. Menopause. 2010;17(5):1071-9.

Exclusion: 14

Yun KH, Shin I, Park EM, et al. Effect of additional statin therapy on endothelial function and prognosis in patients with vasospastic angina. Korean Circ J. 2008;38
Exclusion: 5
Yusuf S, Lonn E, Bosch J. Lipid lowering for primary prevention. Lancet. 2009;373(9670):1152-5. Exclusion: 7

Zanchetti A, Crepaldi G, Bond MG, et al. Different effects of antihypertensive regimens based on fosinopril or hydrochlorothiazide with or without lipid lowering by pravastatin on progression of asymptomatic carotid atherosclerosis: principal results of PHYLLIS--a randomized double-blind trial. Stroke. 2004;35(12):2807-12.
Exclusion: 4

Zellweger MJ, Maraun M, Osterhues HH, et al. Progression to overt or silent cad in asymptomatic patients with diabetes mellitus at high coronary risk: Main findings of the prospective multicenter bardot trial with a pilot randomized treatment substudy. JACC Cardiovasc Imaging. 2014;7(10):1001-10.

Exclusion: 4

Zoungas S, Curtis A, Tonkin A, et al. Statins in the elderly: an answered question? Curr Opin Cardiol. 2014;29(4):372-80.
Exclusion: 7

Criteria for Assessing Internal Validity of Individual Studies

The Methods Work Group for the US Preventive Services Task Force (USPSTF) developed a set of criteria by which the internal validity of individual studies could be evaluated. The USPSTF accepted the criteria, and the associated definitions of quality categories, that relate to internal validity at its September 1999 meeting.
This appendix describes the criteria relating to internal validity and the procedures that topic teams follow for all updates and new assessments in making these judgments.
All topic teams use initial "filters" to select studies for review that deal most directly with the question at issue and that are applicable to the population at issue. Thus, studies of any design that use outdated technology or that use technology that is not feasible for primary care practice may be filtered out before the abstraction stage, depending on the topic and the decisions of the topic team. The teams justify such exclusion decisions if there could be reasonable disagreement about this step. The criteria below are meant for those studies that pass this initial filter.

Presented below are a set of minimal criteria for each study design and then a general definition of three categories: "good," "fair," and "poor," based on those criteria. These specifications are not meant to be rigid rules but rather are intended to be general guidelines, and individual exceptions, when explicitly explained and justified, can be made. In general, a "good" study is one that meets all criteria well. A "fair" study is one that does not meet (or it is not clear that it meets) at least one criterion but has no known "fatal flaw." "Poor" studies have at least one fatal flaw.

Randomized Controlled Trials and Cohort Studies

Criteria:

- Initial assembly of comparable groups:
o For RCTs: adequate randomization, including first concealment and whether potential confounders were distributed equally among groups.
o For cohort studies: consideration of potential confounders with either restriction or measurement for adjustment in the analysis; consideration of inception cohorts.
- Maintenance of comparable groups (includes attrition, cross-overs, adherence, contamination).
- Important differential loss to follow-up or overall high loss to follow-up.
- Measurements: equal, reliable, and valid (includes masking of outcome assessment).
- Clear definition of interventions.
- All important outcomes considered.
- Analysis: adjustment for potential confounders for cohort studies, or intention to treat analysis for RCTs.

Definition of ratings based on above criteria:

Good: Meets all criteria: Comparable groups are assembled initially and maintained throughout the study (follow-up at least 80 percent); reliable and valid measurement instruments are used and applied equally to the groups; interventions are spelled out clearly; all important outcomes
are considered; and appropriate attention to confounders in analysis. In addition, for RCTs, intention to treat analysis is used.

Fair: Studies will be graded "fair" if any or all of the following problems occur, without the fatal flaws noted in the "poor" category below: Generally comparable groups are assembled initially but some question remains whether some (although not major) differences occurred with followup; measurement instruments are acceptable (although not the best) and generally applied equally; some but not all important outcomes are considered; and some but not all potential confounders are accounted for. Intention to treat analysis is done for RCTs.

Poor: Studies will be graded "poor" if any of the following fatal flaws exists: Groups assembled initially are not close to being comparable or maintained throughout the study; unreliable or invalid measurement instruments are used or not applied at all equally among groups (including not masking outcome assessment); and key confounders are given little or no attention. For RCTs, intention to treat analysis is lacking.

Source: U.S. Preventive Services Task Force Procedure Manual. Available at: http://www.uspreventiveservicestaskforce.org/uspstf08/methods/procmanual.htm

Conrad B. Blum, MD

Professor of Medicine, Columbia University Medical Center
Scott Grundy, MD, PhD
Professor of Internal Medicine, Assistant Chief of Medical Service, University of Texas Southwestern; VA Medical Center, Dallas

Donald M. Lloyd-Jones, MD, ScM

Senior Associate Dean for Clinical and Translational Research; Chair, Department of Preventive Medicine; Director, Northwestern University Clinical and Translational Sciences Institute

Rita Redberg, FACC, MSC, MD
Professor of Medicine, Director of Women’s Cardiovascular Services, University California, San Francisco

Paul M. Ridker, MD, MPH
Professor of Medicine, Harvard Medical School; Director, Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital

Neil J. Stone, MD
Professor of Medicine-Cardiology, Feinberg School of Medicine, Northwestern University

Abbreviation	Trial Name
ACAPS	Asymptomatic Carotid Artery Progression Study
AFCAPS/TexCAPS	Air Force/Texas Coronary Atherosclerosis Prevention Study
ASCOT-LLA	Anglo-Scandinavian Cardiac Outcomes Trial - Lipid Lowering Arm
ASPEN	Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-insulin Dependent Diabetes Mellitus
ASTRONOMER	Aortic Stenosis Progression Observation: Measuring Effects of Rosuvastatin
CAIUS	Carotid Atherosclerosis Italian Ultrasound Study
CARDS	Collaborative Atorvastatin Diabetes Study
HYRIM	Hypertension High Risk Management
JUPITER	Justification for the Use of Statins in Prevention: and Intervention Trial Evaluating Rosuvastatin
KAPS	Kuopio Atherosclerosis Prevention Study
MEGA	Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese
METEOR	Measuring Effects on Intima-Media Thickness: an Evaluation of Rosuvastatin
PREVEND-IT	Prevention of Renal and Vascular Endstage Disease Intervention Trial
WOSCOPS	West of Scotland Prevention Study Group

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
ACAPS							
$\begin{aligned} & \text { Furberg, } \\ & 1994^{51} \end{aligned}$	RCT	4 centers United States	Followup: 3 years	A. Lovastatin 20 $\mathrm{mg} /$ day, titrated to 10 to $40 \mathrm{mg} /$ day for target LDL 2.31 to $2.85 \mathrm{mmol} / \mathrm{L}$ (90 to $110 \mathrm{mg} / \mathrm{dL})(\mathrm{n}=460)$ B. Placebo ($n=459$) Low intensity	A vs. B Mean age 62 vs. 61 years 50% vs. 49% female Race: 91% vs. 94% White; other races not reported Baseline CVD risk factors: 2% vs. 2% diabetes 8% vs. 15% smoker 30% vs. 32% hypertension Mean BMI 26.0 vs. 25.8 (men); 26.2 vs. 25.2 (women) $\mathrm{kg} / \mathrm{m}^{2}$ Mean total cholesterol: 236.1 vs. $236.2 \mathrm{mg} / \mathrm{dL}$ Mean LDL 157.1 vs. $155.6 \mathrm{mg} / \mathrm{dL}$ Mean HDL 45.4 vs. 45.7 (men); 59.0 vs. 58.1 (women) mg/dL	Age 40 to 79 with early carotid atherosclerosis and elevated LDL Excluded: history of MI, stroke or angina.	Screened: 15,415 Eligible: 1,075 Enrolled: 919 Analyzed: 919
AFCAPS/TexCAPS							
Downs, 1998^{53} Other publications: Downs, 2001^{55} Gotto, 2000^{56} Gotto, 2000^{57} Gotto 2007^{58} Ridker, 2001^{99}	RCT	2 centers United States	5 years	A. Lovastatin 20-40 mg ($\mathrm{n}=3,304$) B. Placebo ($n=3,301$) Low to moderate intensity	A vs. B Mean age 58 vs. 58 years 15% vs. 15% female Race: 89% vs. 89% White; other races not reported Baseline CVD risk factors: 3% vs. 2% diabetes 13% vs. 12% smoker Mean SBP 138 vs. 138 mm Hg Mean DBP 78 vs. 78 mm Hg Mean BMI 27 vs. 27 (men); 26 vs. 26 (women) $\mathrm{kg} / \mathrm{m}^{2}$ 35% vs. 35% HDL cholesterol $<0.91 \mathrm{mmol} / \mathrm{L}(35 \mathrm{mg} / \mathrm{dL})$: 17% vs. 17% daily aspirin use	Inclusion: Men aged 45 to 73 years and postmenopausal women aged 55 to 73 years; total cholesterol 4.65 to 6.82 $\mathrm{mmol} / \mathrm{L}, \mathrm{LDL}$ cholesterol 3.36 to $4.91 \mathrm{mmol} / \mathrm{L}$, and HDL cholesterol ≤ 1.16 $\mathrm{mmol} / \mathrm{L}$ (men) or ≤ 1.22 $\mathrm{mmol} / \mathrm{L}$ (women), and triglycerides $\leq 4.52 \mathrm{mmol} / \mathrm{L}$ Excluded: Uncontrolled hypertension, secondary hyperlipidemia, type 1 or 2 diabetes mellitus either managed with insulin or associated with a glycohemoglobin (A1c) level of $\geq 10 \%$, body weight $>50 \%$ greater than desirable limit, history of definite MI , angina, claudication, CVA, or TIA.	Screened: 102,800 Eligible: Not reported Enrolled: 6,605 Analyzed: 6,540 Withdrawals: 32\% (2,138/6,605) Loss to followup: $0.6 \%(4 / 6,605)$

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
ASCOT-LLA							
Sever, 2003 ${ }^{59}$ Other publication: Sever, 2001^{60}	RCT	718 centers Denmark, Finland, Ireland, Norway, Sweden, United Kingdom	Median followup 3 years (planned duration 5 years; study stopped early due to observed CHD benefit in atorvastatin arm)	A. Atorvastatin 10 $\mathrm{mg} /$ day $(\mathrm{n}=5,168)$ B. Placebo ($n=5,137$) Moderate intensity	A vs. B Mean age 63 vs. 63 years 19% vs. 19% female Race: 95% vs. 95% White; other races not reported Baseline CVD risk factors: LVH 14\% vs. 14% Other ECG abnormalities 14% vs. 14\% Peripheral vascular disease 5\% vs. 5% Other CVD 4\% vs. 4% 25% vs. 24% diabetes 33% vs. 32% smoker Mean BMI 28.6 vs. $28.7 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol 5.5 vs. 5.5 $\mathrm{mmol} / \mathrm{L}$ Mean LDL 3.4 vs. $3.4 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.3 vs. $1.3 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.7 vs. 1.6 $\mathrm{mmol} / \mathrm{L}$ History of stroke or TIA 10% vs. 9\% Mean number of risk factors 4 vs. 4	Age 40 to 79 years with untreated (SBP >160 mm Hg and/or DBP >100 mm Hg) or treated (SBP >140 mm Hg and/or DBP >90 mm Hg) hypertension; total cholesterol $\leq 6.5 \mathrm{mmol} / \mathrm{L}$; no current fibrate or stain use; at least 3 CVD risk factors (LVH or other ECG abnormalities; type 2 diabetes; peripheral arterial disease; stroke or TIA; male sex; age >55 years; microalbuminuria or proteinuria; smoking; ratio of total cholesterol to HDL 6 or higher; premature family history of CHD).	Screened: 19,342 Eligible: 10,305 Enrolled: 10,305 Analyzed: 10,186 Withdrawals: 0.1\% (14/10,305) Loss to followup: $0.2 \%(17 / 10,305)$

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
Sever, 2005 ${ }^{61}$	See above	See above	3 years	Diabetes only A. Atorvastatin 10 $\mathrm{mg} /$ day $(\mathrm{n}=1,258$) B. Placebo ($\mathrm{n}=1,274$)	A vs. B-Diabetes Mean age 64 vs. 64 years 23% vs. 24% female Race: 90% vs. 91% White; other races not reported Baseline CVD risk factors: Mean number of risk factors 4 vs . 4 20% vs. 20% smoker Mean BMI 30.3 vs. $30.1 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol (TC) 5.3 vs . $5.3 \mathrm{mmol} / \mathrm{L}$ Mean LDL 3.3 vs. $3.3 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.2 vs. $1.2 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.9 vs. 1.9 $\mathrm{mmol} / \mathrm{L}$ History of stroke or TIA 7\% vs. 8\% LVH 6\% vs. 5\% Other ECG abnormalities 14% vs. 15\% Peripheral vascular disease 6\% vs. 5% Other CVD 4\% vs. 3\%	See above	See above
ASPEN							
Knopp, 2006 ${ }^{62}$	RCT	70 centers 14 countries	Median study duration: 4 years	A. Atorvastatin 10 $\mathrm{mg} /$ day ($\mathrm{n}=1,211$; 959 primary prevention) B. Placebo ($\mathrm{n}=1,199$; 946 primary prevention) Moderate intensity	A vs. B Mean age 60 vs. 60 years 38% vs. 37% female Race: 84% vs. 84% White, 8% vs. 7\% Black Baseline CVD risk factors: 100\% diabetes; duration 8 vs. 8 years 12% vs. 14% smoker Mean SBP 133 vs. 133 mm Hg Mean DBP 77 vs. 77 mm Hg Mean BMI 28.9 vs. $28.8 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol 195 vs. 195 $\mathrm{mg} / \mathrm{dL}$ Mean LDL 114 vs. $114 \mathrm{mg} / \mathrm{dL}$ Mean HDL-C 48 vs. $47 \mathrm{mg} / \mathrm{dL}$	Age 40 to 75 years with diabetes and LDL ≤ 140 $\mathrm{mg} / \mathrm{dL}$ Exclude: MI, HbA1c >10\%, acute liver disease, severe renal dysfunction, congestive heart failure, pregnancy, alcohol or drug abuse.	Screened: 3,598 Eligible: 2,411 Enrolled: 2,410 Analyzed: 2,410 (1,905 primary prevention) Loss to followup: $2 \%(56 / 2,410)$

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
ASTRONOMER							
Chan, 2010 ${ }^{63}$	RCT	23 centers Canada	Median followup 4 years	A. Rosuvastatin 40 $\mathrm{mg} /$ day ($\mathrm{n}=136$) B. Placebo ($n=135$) High intensity	A vs. B Mean age 58 vs. 58 years 39% vs. 37% female Race: 98% vs. 99% White; other races not reported Baseline CVD risk factors: 11% vs. 10% smoker Mean BP 129/77 vs. $128 / 65 \mathrm{~mm}$ Hg Mean BMI 27.7 vs. $28.5 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol 5.3 vs. 5.3 mmol/L Mean LDL 3.2 vs. $3.1 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.2 vs. 1.3 $\mathrm{mmol} / \mathrm{L}$ Mean HDL 1.6 vs. $1.6 \mathrm{mmol} / \mathrm{L}$	Age 18 to 82 years with asymptomatic mild or moderate aortic stenosis (aortic valve velocity 2.5 to $4.0 \mathrm{~m} /$ second) with no clinical indications for statin use (CAD, cerebrovascular disease, peripheral vascular disease, diabetes)	Screened: 380 Eligible: 290 Enrolled: 272 Analyzed: 269 Withdrawals: 54\% (146/272) Loss to followup: 1\% (3/272)
$\begin{aligned} & \text { Beishuizen, } \\ & 2004^{64} \end{aligned}$	RCT	2 centers The Netherlands	2 years	A. Cerivastatin 0.4 $\mathrm{mg} /$ day; after mean 15 months, switched to simvastatin 20 $\mathrm{mg} /$ day due to withdrawal of cerivastatin from the market. Blinding was maintained. ($\mathrm{n}=125$) B. Placebo ($n=125$) Moderate intensity	A vs. B Mean age 58 vs. 58 years 51% vs. 54% female Race: 66\% vs. 69% White; 22% vs. 16% Asian; 11% vs. 15% other Baseline CVD risk factors: 100\% diabetes 22% vs. 26% current smoker 48% vs. 53% hypertension Mean BMI 31.0 vs. $31.0 \mathrm{~kg} / \mathrm{m}^{2}$ Mean LDL 3.4 vs. $3.6 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.23 vs. $1.21 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.8 vs. 1.9 $\mathrm{mmol} / \mathrm{L}$	Age 30 to 80 years with type 2 diabetes duration at least 1 year with no history of CVD.	Screened: 302 Eligible: 250 Enrolled: 250 Analyzed: 182 Withdrawals: 27\% (68/250) Loss to followup: Not reported

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
Bone, 2007 ${ }^{65}$	RCT	62 centers United States	1 year	A. Atorvastatin 10 to $80 \mathrm{mg} /$ day ($\mathrm{n}=485$) A1.10 mg/day ($\mathrm{n}=118$) A2. $20 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=121$) A3. $40 \mathrm{mg} / \mathrm{day}$ $(n=124)$ A4. $80 \mathrm{mg} / \mathrm{day}$ ($\mathrm{n}=122$) B. Placebo ($n=119$) Moderate and high intensity	A1 vs. A2 vs. A3 vs. A4 vs. B Mean age 59 vs. 59 vs. 59 vs. 58 vs. .59 years 100\% female (all groups) Race: 92% vs. 81% vs. 89% vs. 86% vs. 90% White; other races not reported Baseline CVD risk factors: 48% vs. 41% vs. 50% vs. 51% vs. 46% current or former smoker Mean total cholesterol 6.2 vs. 6.3 vs. 6.3 vs. 6.3 vs. $6.3 \mathrm{mmol} / \mathrm{L}$ Mean LDL 4.0 vs. 4.1 vs. 4.0 vs. $4.0 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.6 vs. 1.5 vs. 1.6 vs. $1.5 \mathrm{vs} .1 .5 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.4 vs. 1.6 vs. 1.6 vs. 1.7 vs. $1.6 \mathrm{mmol} / \mathrm{L}$	Women age 40 to 75 years with LDL ≥ 3.4 $\mathrm{mmol} / \mathrm{L}$ and $<4.9 \mathrm{mmol} / \mathrm{L}$ with no history of diabetes, CHD or \geq LDL $4.1 \mathrm{mmol} / \mathrm{L}+2 \mathrm{CVD}$ risk factors.	Screened: Not reported Eligible: Not reported Enrolled: 626 Analyzed: 604 Withdrawals: 27\% (167/626) Loss to followup: Not reported
CAIUS							
Mercuri, 1996 ${ }^{66}$ Other publication: Sirtori, 1995^{67}	RCT	7 centers Italy	3 years	A. Pravastatin 40 $\mathrm{mg} /$ day ($\mathrm{n}=151$) B. Placebo $(n=154)$ Moderate Intensity	A vs. B Mean age 55 vs. 55 years 44% vs. 49% female Race not reported Baseline CVD risk factors: 27% vs. 21% smoker Mean SBP 133 vs. 134 mm Hg Mean DBP 82 vs. 81 mm Hg Mean BMI 24.6 vs. $24.7 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol 6.72 vs. $6.80 \mathrm{mmol} / \mathrm{L}$ Mean LDL 4.66 vs. $4.71 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.35 vs. $1.38 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.56 vs. 1.55 $\mathrm{mmol} / \mathrm{L}$ 46% vs. 44% family history of CVD	Age 45 to 65 years with elevated LDL and no symptomatic coronary artery disease and at least one carotid artery lesion.	Screened: Not reported Eligible: Not reported Enrolled 305 Analyzed: Unclear Withdrawals: 14\% (42/305) Loss to followup: Not reported

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
CARDS							
$\begin{aligned} & \text { Colhoun, } \\ & 2004^{68} \end{aligned}$ Other publications: Colhoun, 2002^{69} Newman, $2008{ }^{101}$ Neil, 2006 ${ }^{70}$	RCT	132 centers United Kingdom	4 years	A. Atorvastatin 10 $\mathrm{mg} /$ day $(\mathrm{n}=1,428$) B. Placebo ($\mathrm{n}=1,410$) Moderate intensity	A vs. B Mean age 62 vs. 62 years 32% vs. 32% female Race: 95% vs. 94% White; other races not reported Baseline CVD risk factors: 100\% diabetes; mean duration 8 vs. 8 years 22% vs. 23% smoker Mean SBP 144 vs. 144 mm Hg Mean DBP 83 vs. 83 mm Hg Mean BMI 28.7 vs. $28.8 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol 5.36 vs. $5.35 \mathrm{mmol} / \mathrm{L}$ Mean LDL 3.04 vs. $3.02 \mathrm{mmol} / \mathrm{L}$ Mean HDL-C 1.39 vs. $1.42 \mathrm{mmol} / \mathrm{L}$	Age 40 to 75 years, with diabetes and at least one additional risk factor for CHD, without previous CVD events; BMI <35, HbA1C <12\%, SBP <200 mm Hg , DBP <110 mm Hg , and not receiving any other lipid-lowering medication.	Screened: 4,053 Eligible: 2,838 Enrolled: 2,838 Analyzed: 2,838 Loss to followup: 0.8\% (24/2,838)
Heljić, 2009 ${ }^{\text {/1 }}$	RCT	Setting NR Bosnia	1 year	A. Simvastatin 40 $\mathrm{mg} /$ day $(\mathrm{n}=45$) B. Placebo $(\mathrm{n}=50)$ Moderate intensity	Not stratified by intervention group Mean age 61 years Female 58\% Race not reported Baseline CVD risk factors : Mean BMI $31.6 \mathrm{~kg} / \mathrm{m}^{2}$ Mean BP <140/90 mm Hg Avs. B Mean total cholesterol 6.29 vs. $6.09 \mathrm{mmol} / \mathrm{L}$ Mean LDL 4.34 vs. $4.43 \mathrm{mmol} / \mathrm{L}$	Include: Obese patients with diabetes, without preexisting coronary heart disease Exclude: serious heart, liver, or kidney problems; renal transplant; recent history of drug or alcohol abuse; HbA1C >10\%, blood pressure >140/90 $\mathrm{mm} \mathrm{Hg}, \mathrm{BMI}>35$, triglycerides $>3.0 \mathrm{mmol} / \mathrm{L}$.	Screened: Not reported Eligible: Not reported Enrolled: 95 Analyzed: 95

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
HYRIM							
$\begin{aligned} & \text { Anderssen, } \\ & 2005^{72} \end{aligned}$	RCT	Number of centers unclear Norway	4 years	2×2 factorial design: A1: Fluvastatin 40 $\mathrm{mg} /$ day $(\mathrm{n}=142)$ A2: Fluvastatin 40 $\mathrm{mg} /$ day + lifestyle intervention (physical activity plus dietary intervention) ($\mathrm{n}=141$) B1: Placebo ($\mathrm{n}=143$) B2: Placebo + lifestyle intervention ($\mathrm{n}=142$) Low intensity	A1 vs. A2 vs. B1 vs. B2 Mean age 57 vs. 58 vs. 58 vs. 56 years 0\% female Race not reported Baseline CVD risk factors: 8% vs. 24% vs. 13% vs. 18% smoker Mean BMI 29.3 vs. 29.1 vs. 29.0 vs. $29.3 \mathrm{~kg} / \mathrm{m}^{2}$ Mean SBP 140 vs. 142 vs. 141 vs. 140 mm Hg Mean DBP 88 vs. 88 vs. 88 vs. 88 mm Hg Mean total cholesterol 5.84 vs. 6.02 vs. 5.95 vs. $5.99 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.27 vs. 1.26 vs. 1.29 vs. $1.27 \mathrm{mmol} / \mathrm{L}$ Mean LDL 3.78 vs. 3.97 vs. 3.86 vs. $3.91 \mathrm{mmol} / \mathrm{L}$	Inclusion: Men age 40 to 74 years receiving drug treatment for hypertension, with total cholesterol 4.5 to $8.0 \mathrm{mmol} / \mathrm{L}$, triglyceride $<4.5 \mathrm{mmol} / \mathrm{L}, \mathrm{BMI} 25$ to 35 , and $<1 \mathrm{hr} / \mathrm{wk}$ of regular exercise. Exclusions: MI, angina, stroke, CHF, type 1 diabetes mellitus, history of coronary intervention, need for lipid-lowering drugs other than study drug, impaired hepatic/renal function or malignancy, history of alcohol or drug abuse, vegetarian diet or diet with high omega-3 intake, inability to exercise.	Screened: Unclear Eligible: Unclear Randomized: 568 Analyzed: 568 Loss to follow-up: Not reported

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
JUPITER							
Ridker, 2008 ${ }^{\text {/3 }}$ Other publications: Ridker, 2003 ${ }^{75}$ Ridker, 2007^{74}	RCT	$1,315$ centers 26 countries in North, Central and South America, Europe and Africa	Median followup 2 years (planned duration 5 years; study stopped early due to observed CV event rate benefit in rosuvastatin arm)	A. Rosuvastatin 20 $\mathrm{mg} /$ day ($\mathrm{n}=8,901$) B. Placebo ($n=8,901$) High intensity	A vs. B Median age 66 vs. 66 years 39% vs. 38% female Race: 71% vs. 71% White; 12% vs. 13\% Black; 13\% vs. 13\% Hispanic; 4\% vs. 4% other Baseline CVD risk factors: Median HbA1c 5.7 vs. 5.7% 16% vs. 16% smoker Median BP 134/80 vs. $134 / 80 \mathrm{~mm}$ Hg Median BMI 28.3 vs. $28.4 \mathrm{~kg} / \mathrm{m}^{2}$ Median total cholesterol 186 vs. $185 \mathrm{mg} / \mathrm{dL}$ Median LDL 108 vs. 108 mg/dL Median HDL 49 vs. $49 \mathrm{mg} / \mathrm{dL}$ Median triglycerides 118 vs. 118 $\mathrm{mg} / \mathrm{dL}$ Median CRP 4.2 vs. $4.3 \mathrm{mg} / \mathrm{L}$ 11% vs. 12% family history of CHD 41% vs. 42% metabolic syndrome 17% vs. 17% daily aspirin use	Men age ≥ 50 years; women age ≥ 60 years; no history of CVD; LDL <130 mg/dL; CRP $\geq 2.0 \mathrm{mg} / \mathrm{L}$; triglyceride $<500 \mathrm{mg} / \mathrm{dL}$ Excluded: previous or current use of lipid-lowering therapy; hormone replacement therapy; hepatic dysfunction; creatine kinase $>3 x$ ULN; creatinine $>2.0 \mathrm{mg} / \mathrm{dL}$; diabetes; uncontrolled HTN; cancer within 5 years of enrollment; uncontrolled hypothyroidism; history of alcohol or drug abuse; inflammatory disease; use of immunosuppressants	Screened: 89,890 Eligible: 17,802 Enrolled: 17,802 Analyzed: 17,802 Withdrawals: Not reported Loss to followup: $0.5 \%(81 / 17,802)$

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
Koenig, 2011 ${ }^{\text {19 }}$	See above	See above	See above	A. Rosuvastatin 20 $\mathrm{mg} /$ day ($\mathrm{n}=786$) B. Placebo $(\mathrm{n}=772)$ High intensity	A vs. B-Framingham 10-year risk >20\% Mean age 74 vs. 74 years 17% vs. 15% female Race: 68% vs. 67% White; 15% vs. 14% Black; 14% vs. 17% Hispanic; 2\% vs. 2% other Baseline CVD risk factors: 87% vs. 86% hypertension 31% vs. 31% current smoker 8% vs. 11% family history of CHD 60% vs. $60 \% \mathrm{HDL}<1.0 \mathrm{mmol} / \mathrm{L}$ BMI 28 vs. $28 \mathrm{~kg} / \mathrm{m}^{2}$ 68% vs. 69% metabolic syndrome Mean Framingham 10-year risk score 25 vs. 25 Mean SCORE 10-year risk score 14 vs. 14	See above	See above
Koenig, 2011	See above	See above	See above	A. Rosuvastatin 20 $\mathrm{mg} /$ day ($\mathrm{n}=4,619$) B. Placebo ($n=4,683$) High Intensity	A vs. B-SCORE 10-year risk $\geq 5 \%$ - Extrapolated Model Mean age 70 vs. 70 years 32% vs. 31% female Race: 72\% vs. 72\% White; 14\% vs. 14% Black; 10% vs. 10% Hispanic; 2\% vs. 3\% other Baseline CVD risk factors: 67% vs. 67% hypertension 21% vs. 22% current smoker 10% vs. 10% family history of CHD 22% vs. $22 \% \mathrm{HDL}<1.0 \mathrm{mmol} / \mathrm{L}$ Mean BMI 28 vs. $28 \mathrm{~kg} / \mathrm{m}^{2}$ 41% vs. 41% metabolic syndrome Mean Framingham 10-year risk score 16 vs. 16 Mean SCORE 10 -year risk score 9 vs. 9	See above	See above

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
Koenig, 2011 ${ }^{19}$	See above	See above	See above	A. Rosuvastatin 20 $\mathrm{mg} /$ day ($\mathrm{n}=3,130$) B. Placebo ($n=3,177$) High intensity	A vs. B - SCORE 10-year risk $\geq 5 \%$ - Capped Model Mean age 67 vs .67 years 12% vs. 11% female Race: 74% vs. 74% White; 14% vs. 14% Black; 7% vs. 7% Hispanic; 4% vs. 4% other Baseline CVD risk factors: 69% vs. 68\% hypertension 30% vs. 31% current smoker 10% vs. 10% family history of CHD 24% vs. 24% HDL < $1.0 \mathrm{mmol} / \mathrm{L}$ Mean BMI 28 vs. $28 \mathrm{~kg} / \mathrm{m}^{2}$ 40% vs. 40% metabolic syndrome Mean Framingham 10-year risk score 16 vs. 16 Mean SCORE 10-year risk score 10 vs. 10	See above	See above
KAPS							
$\begin{aligned} & \text { Salonen, } \\ & 1995^{81} \end{aligned}$	RCT	Community -based enrollment Finland	3 years	A. Pravastatin 40 $\mathrm{mg} /$ day ($\mathrm{n}=224$) B. Placebo ($n=223$) Moderate intensity	A vs. B Mean age 57 vs. 58 years 0% vs. 0\% female Race not reported Baseline CVD risk factors: 9% vs. 6% prior MI 3% vs. 2% diabetes 28% vs. 25% current smokers 35% vs. 31% hypertension Mean total cholesterol 6.7 vs. 6.7 $\mathrm{mmol} / \mathrm{L}$ Mean LDL 4.9 vs. $4.9 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.2 vs. $1.2 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.7 vs. 1.7 $\mathrm{mmol} / \mathrm{L}$	LDL $\geq 4.25 \mathrm{mmol} / \mathrm{L}$, total cholesterol $<8.0 \mathrm{mmol} / \mathrm{L}$, BMI $<32 \mathrm{~kg} / \mathrm{m}^{2}$, ALT <1.5 ULN	Screened: 987 Eligible: 606 Enrolled: 447 Analyzed: 424 Withdrawals: 9\% (39/447) Loss to followup: $5 \%(23 / 447)$

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
MEGA							
Nakamura, 2006^{82} Other publications: Tajima, 2008 ${ }^{83}$ MEGA Study Group 2004^{84}	RCT	924 centers Japan	Mean followup 5 years	A. Intensive lipid control with diet + pravastatin 10 $\mathrm{mg} /$ day, maximum titration $20 \mathrm{mg} /$ day ($\mathrm{n}=3,866$) B. Standard lipid control with diet only ($n=3,966$) Low intensity	A vs. B Mean age 58 vs. 58 years 69\% female Race not reported Baseline CVD risk factors: 21% vs. 21% diabetes 21% vs. 20% smoker 42% vs. 42% hypertension Mean BMI 23.8 vs. $23.8 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol (TC) 6.27 vs. $6.27 \mathrm{mmol} / \mathrm{L}$ Mean LDL 4.05 vs. $4.05 \mathrm{mmol} / \mathrm{L}$ Mean HDL 1.49 vs. $1.49 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.44 vs. 1.44 $\mathrm{mmol} / \mathrm{L}$	Age 40 to 70 years with hypercholesterolemia (TC 220 to $270 \mathrm{mg} / \mathrm{dL}$) with no history of CHD or stroke	Screened: 15,210 Eligible: 8,214 Enrolled: 8,214 Analyzed: 7,832 Withdrawals: 10\% (851/8,214) Loss to followup: $1 \%(102 / 8,214)$
$\begin{aligned} & \hline \text { Mizuno, } \\ & 2008^{87} \end{aligned}$	See above	See above	See above	Women only A. Intensive lipid control with diet + pravastatin 10 $\mathrm{mg} /$ day, maximum titration $20 \mathrm{mg} /$ day ($n=2,638$) B. Standard lipid control with diet only ($\mathrm{n}=2,718$) Low intensity	A vs. B - Women Mean age 60 vs. 60 years Race not reported Baseline CVD risk factors: 43% vs. 43% hypertension 18% vs. 18% diabetes 6% vs. 6% smoker Mean BMI 23.7 vs. $23.7 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol (TC) 6.3 vs. $6.3 \mathrm{mmol} / \mathrm{L}$ Mean LDL 4.1 vs. $4.1 \mathrm{mmol} / \mathrm{L}$ Mean triglycerides 1.3 vs. 1.3 mmol/L Mean HDL 1.5 vs. $1.5 \mathrm{mmol} / \mathrm{L}$	See above	See above

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
METEOR							
Crouse, 2007 ${ }^{92}$	RCT	30 centers United States and Europe	2 years	A. Rosuvastatin 40 $\mathrm{mg} /$ day ($\mathrm{n}=702$) B. Placebo $(n=282)$ High intensity	A vs. B Mean age 57 vs. 57 years 40% vs. 41% female Race: 60% vs. 59% White; other races not reported Baseline CVD risk factors: 3% vs. 6% smokers 20% vs. 21% hypertension 20% vs. $21 \% \mathrm{BMI}>30 \mathrm{~kg} / \mathrm{m}^{2}$ 7% vs. $4 \% \mathrm{HDL} \geq 1.55 \mathrm{mmol} / \mathrm{L}$ 9% vs. 11% family history of CHD 15% vs. 16% metabolic syndrome 32% vs. $39 \% \geq 2$ risk factors	Men age 45 to 70 years or women age 55 to 70 years with CHD risk factor LDL 3.1 to $<4.9 \mathrm{mmol} / \mathrm{L}+$ age or LDL 3.1 to $<4.1 \mathrm{mmol} / \mathrm{L}+\geq 2$ CHD risk factors + 10-year CHD risk <10\%. Excluded: use of lipid-lowering medication, history of CHD, diabetes, uncontrolled hypertension, familial hypercholesterolemia, 10year CHD risk $\geq 10 \%$	Screened: 5,751 Eligible: 1,280 Enrolled: 984 Analyzed: 981 Withdrawals: 25\% (246/984) Loss to followup: 2\% (21/984)
$\begin{aligned} & \text { Muldoon, } \\ & 2004^{91} \end{aligned}$	RCT	Single center United States	Study duration: 6 months	A. Simvastatin 40 $\mathrm{mg} /$ day ($\mathrm{n}=103$) B. Simvastatin 10 $\mathrm{mg} /$ day ($\mathrm{n}=103$) C. Placebo ($\mathrm{n}=102$) Low and moderate intensity	A vs. B vs. C Mean age: 54 vs. 53 vs. 54 years 50% vs. 53% vs. 53% female 84% vs. 85% vs. 89% White; other races not reported Mean total cholesterol: 266 vs. 261 vs. $261 \mathrm{mg} / \mathrm{dL}$ Mean LDL-C: 183 vs. 180 vs. $180 \mathrm{mg} / \mathrm{dL}$ Mean HDL-C: 53 vs. 50 vs. 51 $\mathrm{mg} / \mathrm{dL}$ Mean triglycerides: 152 vs. 152 vs. $150 \mathrm{mg} / \mathrm{dL}$	Generally healthy men and women, aged 35 to 70 years, with LDL-C between 160 and $220 \mathrm{mg} / \mathrm{dL}$ Exclude: Secondary hyperlipidemia, severe hypertriglyceridemia, CAD, stroke, diabetes, untreated hypertension, cancer, or major psychiatric conditions; current use of lipid-lowering medication, psychotropic medication, glucocorticoid, or opioid	Screened: 1,227 Eligible: 443 Enrolled: 308 Analyzed: 283

Study name Author, year	Study design	No. of centers, Country	Study duration Mean followup	Interventions	Patient characteristics	Inclusion/ Exclusion criteria	Number screened Number eligible Number enrolled Number analyzed Withdrawals Loss to followup
PREVEND-IT							
$\begin{aligned} & \text { Asselbergs, } \\ & 2004^{94} \end{aligned}$	RCT	1 center Netherlands	46 months (~ 4 years)	A. Pravastatin 40 mg ($\mathrm{n}=433$) B. Placebo ($n=431$) Moderate intensity Study also included fosinopril ($n=431$) and matching placebo ($n=433$) arms; results for which are outside the scope of this report	A vs. B Mean age 52 vs. 51 32% vs. 38% female 95% vs. 97% White; other races not reported Baseline CVD risk factors: 2\% vs. 4% prior CVD event 3% vs. 2% diabetes 42 vs. 38 smoker Mean SBP 131 vs. 130 mm Hg Mean DBP 77 vs. 76 mm Hg Mean total cholesterol 5.8 vs. 5.8 $\mathrm{mmol} / \mathrm{L}$ Mean HDL 1.0 vs. $1.0 \mathrm{mmol} / \mathrm{L}$ Mean LDL 4.1 vs. $4.0 \mathrm{mmol} / \mathrm{L}$ Mean BMI 26 vs. $26 \mathrm{~kg} / \mathrm{m}^{2}$ 1% vs. 4% use of aspirin \& antiplatelet agents	Age 28 to 75 years with persistent microalbuminuria (urine albumin $>10 \mathrm{mg} / \mathrm{L}$ in 1 early morning spot sample and $15-300 \mathrm{mg} / 24$ hours in 2, 24 hour samples), blood pressure <160/100 and no antihypertensive medication, total cholesterol $<8.0 \mathrm{mmoL} / \mathrm{L}$ or <5.0 if previous MI, and no lipid lowering medication. Exclusions: creatinine clearance $<60 \%$ normal age-adj value; use of ACEi or ARB	Screened: Not reported Eligible: 1439 Randomized: 864 Analyzed: 864 Loss to followup: Not reported
WOSCOPS							
Shepherd, 1995^{95} Other publication: Freeman, 2001^{100}	RCT	Multicenter (number NR) United Kingdom	Mean study duration: 5 years	A. Pravastatin 40 mg/day ($\mathrm{n}=3,302$) B. Placebo ($n=3,293$) Moderate intensity	A vs. B Mean age 55 vs. 55 years 0% female Race not reported Baseline CVD risk factors: 44% vs. 44% smoker Mean SBP 136 vs. 135 mm Hg Mean DBP 84 vs. 84 mm Hg Mean BMI 26.0 vs. $26.0 \mathrm{~kg} / \mathrm{m}^{2}$ Mean total cholesterol (mg/dL): 272 vs. 272 Mean LDL 192 vs. 192 mg/dL Mean HDL 44 vs. $44 \mathrm{mg} / \mathrm{dL}$	Men aged 45 to 64 years at risk for CAD with total cholesterol $\geq 251 \mathrm{mg} / \mathrm{dL}$, LDL-C >155 mg/dL, free of significant CAD	Screened: 81,161 Eligible: Not reported Enrolled: 6,595 Analyzed: 6,595 Withdrawal: 29% $(1,925 / 6,595)$

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
ACAPS			
Furberg, 1994 ${ }^{51}$	CV mortality All-cause mortality	A vs. B CV mortality: $0 \%(0 / 460)$ vs. $1 \%(6 / 459)$; RR 0.08 ($95 \% \mathrm{Cl} 0.004$ to 1.36) All-cause mortality: 0.2% (1/460) vs. 2% ($8 / 459$); RR 0.12 ($95 \% \mathrm{Cl} 0.02$ to 0.99) Fatal and nonfatal stroke: $0 \%(0 / 460)$ vs. 1% (5/459); RR 0.09 ($95 \% \mathrm{CI} 0.005$ to 1.64) Nonfatal MI: 1% ($5 / 460$) vs. 1\% (5/459); RR 1.00 ($95 \% \mathrm{Cl} 0.29$ to 3.42) CHD mortality: 0% ($0 / 460$) vs. $0.9 \% ~(4 / 459)$; RR 0.11 ($95 \% \mathrm{Cl} 0.006$ to 2.05)	Not reported
AFCAPS/TexCAPS			
Downs, 1998^{53} Other publications: Downs, 2001 ${ }^{55}$ Gotto, 2000^{56} Gotto, 2000^{57} Gotto 2007^{58} Ridker, 2001 ${ }^{99}$	Major coronary event (fatal or nonfatal myocardial infarction, unstable angina, sudden cardiac death) Fatal or nonfatal coronary revascularization Unstable angina MI CV event Coronary event CV mortality CHD mortality All-cause mortality	A vs. B Major coronary event: $4 \%(116 / 3,304)$ vs. 6% (183/3,301); RR 0.63 ($95 \% \mathrm{CI} 0.50$ to 0.80) Revascularization: 3\% $(106 / 3,304)$ vs. 5% ($157 / 3,301$); RR 0.67 ($95 \% \mathrm{Cl} 0.53$ to 0.86) Unstable angina: $2 \%(60 / 3,304)$ vs. $3 \%(87 / 3301)$; RR 0.69 ($95 \% \mathrm{Cl} 0.50$ to 0.95) Fatal and nonfatal MI: $2 \%(57 / 3,304)$ vs. 3% ($95 / 3,301$); RR 0.60 ($95 \% \mathrm{Cl} 0.43$ to 0.83) CV event: $6 \%(194 / 3304)$ vs. $8 \%(255 / 3,301)$; RR 0.76 ($95 \% \mathrm{Cl} 0.63$ to 0.91) Coronary event: 5\% $(163 / 3,304)$ vs. 7% (215/3301); RR 0.76 ($95 \% \mathrm{CI} 0.62$ to 0.92) CV mortality: $0.5 \%(17 / 3,304)$ vs. $0.8 \%(25 / 3,301)$; RR 0.68 ($95 \% \mathrm{Cl} 0.37$ to 1.26) CHD mortality: $0.3 \%(11 / 3,304)$ vs. 0.5% ($15 / 3,301$); RR 0.73 ($95 \% \mathrm{Cl} 0.34$ to 1.59) All-cause mortality: $2 \%(80 / 3,304)$ vs. 2% (77/3,301); RR 1.04 ($95 \% \mathrm{Cl} 0.76$ to 1.41)	A vs. B - Major coronary event Men: 4\% (109/2,805) vs. $6 \%(170 / 2,803)$; RR 0.63 ($95 \% \mathrm{Cl} 0.50$ to 0.81) Women: $1 \%(7 / 499)$ vs. $3 \%(13 / 498)$; RR 0.54 (95% CI 0.22 to 1.35) Age <65: RR 0.58 Age ≥ 65 : RR 0.71 LDL < $149.1 \mathrm{mg} / \mathrm{dL}:$ RR 0.74 ($95 \% \mathrm{CI} 0.49$ to 1.11) LDL $\geq 149.1 \mathrm{mg} / \mathrm{dL}$: RR 0.53 ($95 \% \mathrm{Cl} 0.37$ to 0.77) LDL $\geq 149.1 \mathrm{mg} / \mathrm{dL}$ and CRP <0.16 mg/dL: RR $0.38(95 \% \mathrm{Cl}$ 0.21 to 0.70) LDL $\geq 149.1 \mathrm{mg} / \mathrm{dL}$ and CRP >0.16 mg/dL: RR 0.68 ($95 \% \mathrm{Cl}$ 0.42 to 1.10) LDL < $149.1 \mathrm{mg} / \mathrm{dL}$ and CRP < $0.16 \mathrm{mg} / \mathrm{dL}$: RR 1.08 ($95 \% \mathrm{CI}$ 0.56 to 2.08) LDL < $149.1 \mathrm{mg} / \mathrm{dL}$ and CRP >0.16 mg/dL: RR 0.58 ($95 \% \mathrm{Cl}$ 0.34 to 0.98) LDL $\leq 3.67 \mathrm{mmol} / \mathrm{L}:$ ARR 0.34 LDL 3.68 to $4.05 \mathrm{mmol} / \mathrm{L}$: ARR 0.36 LDL $\geq 4.06 \mathrm{mmol} / \mathrm{L}$: ARR 0.41 HDL $\leq 0.89 \mathrm{mmol} / \mathrm{L}:$ ARR 0.45 HDL 0.90 to $1.01 \mathrm{mmol} / \mathrm{L}$: ARR 0.44 HDL $\geq 1.03 \mathrm{mmol} / \mathrm{L}$: ARR 0.15 Mild CKD (eGFR<60 mL/min $/ 1.73 \mathrm{~m}^{2}$): adjusted RR 0.32 (95% Cl 0.10 to 1.11) <20\% 10-year CHD risk (based on European guidelines): RR 0.61 ($95 \% \mathrm{Cl} 0.45$ to 0.82) >20\% 10-year CHD risk (based on European guidelines): RR $0.66(95 \% \mathrm{Cl} 0.45$ to 0.97$)$

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
ASCOT-LLA			
Sever, $2003{ }^{59}$ Other publication: Sever, $2001{ }^{60}$	Nonfatal MI + fatal CHD CV events and procedures (CV mortality, nonfatal MI, unstable angina, chronic stable angina, life threatening arrhythmia; silent nonfatal heart failure; nonfatal stroke; PAD; revascularization; retinal vascular thrombosis) Coronary events (fatal CHD, nonfatal MI, chronic stable angina, unstable angina, fatal and nonfatal heart failure) Fatal CHD	A vs. B Nonfatal MI + fatal CHD: 2\% (100/5,168) vs. 3\% (1,54/5,137); HR 0.64 ($95 \% \mathrm{Cl} 0.50$ to 0.83) Fatal and nonfatal MI (nonfatal MI, silent MI or fatal CHD): $(114 / 5,168)$ vs. $(171 / 5,168)$; RR 0.67 ($95 \% \mathrm{Cl}$ 0.53 to 0.84) CV events and procedures: $8 \%(389 / 5,168)$ vs. 10% ($\mathrm{n}=486 / 5,137$); HR 0.79 ($95 \% \mathrm{Cl} 0.69$ to 0.90) Coronary events: $3 \%(178 / 5,168)$ vs. 5% (247/5,137); HR 0.71 ($95 \% \mathrm{Cl} 0.59$ to 0.86) All-cause mortality: $4 \%(185 / 5,168)$ vs. 4% (212/5137); HR 0.87 ($95 \% \mathrm{CI} 0.71$ to 1.06) CV mortality: $1 \%(74 / 5,168)$ vs. $2 \%(82 / 5,137)$; HR 0.90 ($95 \% \mathrm{Cl} 0.66$ to 1.23) Fatal and nonfatal stroke: $2 \%(87 / 5,168)$ vs. 2% (121/5,137); HR 0.73 ($95 \% \mathrm{Cl} 0.59$ to 0.96)	A vs. B - Nonfatal MI + fatal CHD Diabetes: $3 \%(38 / 1,258)$ vs. $4 \%(46 / 1,274)$; HR 0.84 ($95 \% \mathrm{CI}$ 0.55 to 1.29) No diabetes: $2 \%(62 / 3,914)$ vs. $3 \%(108 / 3,863)$; HR 0.56 (95\% Cl 0.41 to 0.77); p for interaction=0.14 Smoker: $2 \%(35 / 1,718)$ vs. $4 \%(60 / 1,656)$; HR 0.56 ($95 \% \mathrm{Cl}$ 0.37 to 0.85) No smoking: $2 \%(65 / 3,450)$ vs. $3 \%(94 / 3,418)$; HR $0.70(95 \% \mathrm{Cl}$ 0.51 to 0.96) Obese: 2\% (35) vs. 3\% (59); HR 0.59 ($95 \% \mathrm{CI} 0.39$ to 0.90) Not obese: 2% ($n=65$) vs. $3 \%(n=95)$; HR 0.67 ($95 \% \mathrm{Cl} 0.49$ to 0.92) LVH: 2\% (15/744) vs. 3\% (22/729); HR 0.67 (95\% CI 0.35 to 1.29) No LVH: $2 \%(85 / 4,424)$ vs. $3 \%(132 / 4,408)$; HR 0.64 ($95 \% \mathrm{CI}$ 0.49 to 0.84) Age ≤ 60 years: $2 \%(29 / 1,882)$ vs. $2 \%(43 / 1,853)$; HR 0.66 (95\% Cl 0.41 to 1.06) Age >60 years: $2 \%(71 / 3,286)$ vs. $3 \%(111 / 3,284)$; HR 0.64 ($95 \% 0.47$ to 0.86) Women: 2\% (19/979) vs. 2\% (18/963); HR 1.10 ($95 \% \mathrm{Cl} 0.57$ to 2.12) Men: 2\% (81/4,189) vs. 3\% (137/4,174); HR 0.59 ($95 \% \mathrm{Cl} 0.44$ to 0.77) Obese: 2\% vs. 3%; HR 0.59 ($95 \% \mathrm{CI} 0.39$ to 0.90)* Not obese: 2% vs. 3%; HR 0.67 ($95 \% \mathrm{CI} 0.49$ to 0.92)* Vascular disease: 3% vs. 4%; HR 0.80 ($95 \% \mathrm{Cl} 0.45$ to 1.42)* No vascular disease: 2\% vs. 3%; HR 0.61 ($95 \% \mathrm{CI} 0.46$ to $0.81)^{*}$ Renal dysfunction: 2\% vs. 3\%; HR 0.61 ($95 \% \mathrm{Cl} 0.44$ to 0.84)* No renal dysfunction: 2\% vs. 3\%; HR 0.70 ($95 \% \mathrm{Cl} 0.47$ to 1.04)* Metabolic syndrome: 2\% vs. 3%; HR 0.77 ($95 \% \mathrm{CI} 0.52$ to 1.12)* No metabolic syndrome: 2% vs. 3%; HR 0.56 ($95 \% \mathrm{Cl} 0.40$ to $0.79)^{*}$

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
Sever, 2005 ${ }^{61}$	See above	See above	A vs. B - Diabetes
			Total CV events and procedures: $9 \%(116 / 1,258)$ vs. 12% (151/1,275); HR 0.77 ($95 \% \mathrm{Cl} 0.61$ to 0.98)
			Individual outcomes:
			Fatal CHD: $1 \%(17 / 1,258)$ vs. $0.8 \%(10 / 1,275)$; HR 1.72 (95% CI 0.79 to 3.76)
			Fatal stroke: $0.4 \%(5 / 1,258)$ vs. $0.8 \%(10 / 1,275)$; HR 0.51 (95% CI 0.17 to 1.48)
			Other CV mortality: $0.3 \%(4 / 1,258)$ vs. $0.1 \%(1 / 1,275)$; HR 4.07 ($95 \% \mathrm{Cl} 0.45$ to 36)
			Nonfatal MI: 2\% (22/1,258) vs. $3 \%(36 / 1,275)$; HR 0.62 (95% CI 0.37 to 1.06)
			Unstable angina: $0.7 \%(9 / 1,258)$ vs. $0.9 \%(12 / 1,275)$; HR 0.76 ($95 \% \mathrm{Cl} 0.31$ to 1.81)
			Chronic stable angina: 0.7% ($9 / 1,258$) vs. $2 \%(19 / 1,275)$; HR
			0.48 (95\% CI 0.22 to 1.06)
			Arrhythmia: $0.2 \%(3 / 1,258)$ vs. $0.1 \%(1 / 1,275)$; HR 3.07 ($95 \% \mathrm{CI}$
			0.32 to 30) Nonfatal heart failure: $1 \%(15 / 1,258)$ vs. $1 \%(13 / 1,275)$; HR
			1.18 (95\% CI 0.56 to 2.49)
			Nonfatal stroke: 2\% (23/1,258) vs. 2\% (31/1,275); HR 0.76 (95\% CI 0.44 to 1.30)
			PAD: 0.8% (10/1,275) vs. 0.9% (12/1,275); HR 0.85 ($95 \% \mathrm{Cl}$
			0.37 to 1.97) Retinal vascular thromboses: $0.2 \%(1 / 1,258)$ vs. 0.1%
			(1/1,275); HR 1.03 (95\% CI 0.06 to 17)
			Revascularization: $1 \%(13 / 1,258)$ vs. $2 \%(26 / 1,275)$; HR 0.51 ($95 \% \mathrm{CI} 0.26$ to 0.99)
			TIA: $0.4 \%(5 / 1,258)$ vs. $1 \%(13 / 1,275)$; HR 0.39 ($95 \% \mathrm{CI} 0.14$ to 1.10)
			Stroke: $2 \%(27 / 1,258)$ vs. $3 \%(41 / 1,275)$; HR 0.84 (95% CI 0.55 to 1.29)

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
Sever, 2005 ${ }^{\text {61 }}$	See above	See above	A vs. B - Diabetes Total CV events and procedures: Age ≤ 60 years: $5 \%(20 / 425)$ vs. $9 \% ~(34 / 391)$; HR 0.52 ($95 \% \mathrm{Cl}$ 0.31 to 0.92) Age >60 years: $12 \%(96 / 833)$ vs. 13% (117/883); HR 0.87 (95\% CI 0.66 to 1.14) Women: 9\% (26/289) vs. 10\% (31/311); HR 0.90 ($95 \% \mathrm{CI} 0.53$ to 1.51) Men: 9\% (90/969) vs. 13% (120/963); HR 0.74 ($95 \% \mathrm{CI} 0.56$ to 0.97) LDL $<3.46 \mathrm{mmol} / \mathrm{L}: 9 \%$ vs. 9%; HR 0.93 ($95 \% \mathrm{CI} 0.65$ to 1.34$)^{*}$ LDL $\geq 3.46 \mathrm{mmol} / \mathrm{L}: 11 \%$ vs. 16%; HR 0.69 ($95 \% \mathrm{Cl} 0.48$ to 0.98)* HDL <1.3 mmol/L: 9\% vs. 13%; HR 0.72 ($95 \% \mathrm{CI} 0.52$ to 0.98$)^{*}$ HDL $\geq 1.3 \mathrm{mmol} / \mathrm{L}: 9 \%$ vs. 11%; HR 0.87 ($95 \% \mathrm{CI} 0.50$ to 1.28)* Triglycerides <1.4 mmol/L: 9\% vs. 13\%; HR 0.64 ($95 \% \mathrm{Cl} 0.42$ to 0.97)* Triglycerides $\geq 1.4 \mathrm{mmol} / \mathrm{L}$: 10% vs. 11%; HR 0.90 ($95 \% \mathrm{CI} 0.65$ to 1.24$)^{*}$ Glucose $<5.6 \mathrm{mmol} / \mathrm{L}$: 6% vs. 10%; HR 0.59 ($95 \% \mathrm{CI} 0.19$ to 1.81)* Glucose $\geq 5.6 \mathrm{mmol} / \mathrm{L}: 10 \%$ vs. 12%; HR 0.81 ($95 \% \mathrm{Cl} 0.62$ to 1.05)* A vs. B - Diabetes vs. no diabetes Total CV events and procedures: HR 0.77 ($95 \% \mathrm{Cl} 0.61$ to 0.98) vs. HR 0.80 ($95 \% \mathrm{Cl} 0.68$ to 0.94); p for interaction= $=0.82$ Fatal and nonfatal stroke: HR 0.67 ($95 \% \mathrm{Cl} 0.41$ to 1.09) vs. HR 0.76 ($95 \% \mathrm{Cl} 0.55$ to 1.06); p for interaction=0.66
ASPEN			
Knopp, 2006 ${ }^{62}$	CVD mortality MI Stroke Non-CV mortality Interventional procedures Hospitalization for angina	A vs. B CV mortality, fatal or nonfatal MI, angina or fatal or nonfatal heart failure: 10% (100/959) vs. 11% (102/946); RR 0.97 ($95 \% \mathrm{Cl} 0.75$ to 1.26) Fatal and nonfatal MI: 3% (28/959) vs. 4% (34/946); RR 0.81 ($95 \% \mathrm{Cl} 0.50$ to 1.33) Fatal and nonfatal stroke: 3% (27/959) vs. 3% (29/946); RR 0.92 (95% CI 0.55 to 1.54) Interventional procedure: 5% (44/959) vs. 5% (47/946); RR 0.92 ($95 \% \mathrm{CI} 0.62$ to 1.38) Hospitalization for angina: $2 \%(21 / 959)$ vs. 2% (15/946); RR 1.38 (95% CI 0.72 to 2.66) All-cause mortality: $5 \%(44 / 959)$ vs. 4% (41/946); RR 1.06 ($95 \% \mathrm{Cl} 0.70$ to 1.60)	Not reported

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
ASTRONOMER			
Chan, 2010 ${ }^{63}$	CV mortality MI Stroke	A vs. B CV mortality: $2 \%(2 / 134)$ vs. $4 \%(5 / 135)$; RR 0.40 (95\% CI 0.08 to 2.04) Fatal and nonfatal MI: $0 \%(0 / 134)$ vs. $2 \%(3 / 135)$; RR 0.14 ($95 \% \mathrm{Cl} 0.008$ to 2.76) Fatal and nonfatal stroke: $0 \%(0 / 134)$ vs. 1% (1/135); RR 0.34 ($95 \% \mathrm{Cl} 0.01$ to 8.17)	Not reported
$\begin{aligned} & \text { Beishuizen, } \\ & 2004^{64} \end{aligned}$	CV events Coronary events All-cause mortality	A vs. B CV events: 2\% (2/103) vs. 15\% (12/79); RR 0.13 ($95 \% \mathrm{CI} 0.03$ to 0.55) Coronary events: 0% ($0 / 103$) vs. $5 \% ~(4 / 79)$; RR 0.09 ($95 \% \mathrm{Cl} 0.005$ to 1.56) All-cause mortality: $3 \%(3 / 103)$ vs. $5 \%(4 / 79)$ RR $0.58(95 \% \mathrm{Cl} 0.13 \text { to } 2.50)$	Not reported
Bone, 2007 ${ }^{65}$	All-cause mortality	A vs. B All-cause mortality: 0\% (0/485) vs. 0\% (0/119); RR 0.25 ($95 \% \mathrm{Cl} 0.005$ to 12) Nonfatal stroke: $0.2 \%(1 / 485)$ vs. $0 \% ~(0 / 119) ; R R$ 0.74 ($95 \% \mathrm{Cl} 0.03$ to 18)	Not reported
Mercuri, 1996^{66} Other publication: Sirtori, 1995^{67}	MI Angina	A vs. B Fatal MI: $0.6 \%(1 / 151)$ vs. 0% ($0 / 154$); RR 3.06 ($95 \% \mathrm{Cl} 0.13$ to 75) Nonfatal MI: 0.6% (1/151) vs. 1\% (2/154); RR 0.51 ($95 \% \mathrm{CI} 0.05$ to 5.57) Fatal and nonfatal MI: $1 \%(2 / 151)$ vs. $1 \%(2 / 154)$; RR 1.02 ($95 \% \mathrm{CI} 0.15$ to 7.15) Angina: 0.6\% (1/151) vs. 0\% (0/154); RR 3.06 (95\% CI 0.13 to 75)	Not reported

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
		0.16 to 1.49)	
HYRIM			
$\begin{aligned} & \text { Anderssen, } \\ & 2005^{22} \end{aligned}$	All-cause mortality CVD events (MI, sudden death, angina, stroke, TIA, heart failure) Major cardiac events (cardiac death, MI, coronary intervention)	A vs. B All-cause mortality: $1 \%(4 / 283)$ vs. 2% ($5 / 285$); RR 0.81 ($95 \% \mathrm{Cl} 0.22$ to 3.0) CVD events: $4 \%(11 / 283)$ vs. $5 \%(15 / 285)$; RR 0.74 ($95 \% \mathrm{Cl} 0.35$ to 1.58) Major cardiac events: 2% (6/283) vs. 3% (9/285); RR 0.67 ($95 \% \mathrm{CI} 0.24$ to 1.86)	Not reported
JUPITER			
Ridker, 2008 ${ }^{\text {/3 }}$ Other publications: Ridker, 2003 ${ }^{75}$ Ridker, 2007^{74}	CV events (nonfatal MI, nonfatal stroke, hospitalization for unstable angina, arterial revascularization, CV mortality) Nonfatal MI Nonfatal stroke Fatal and nonfatal stroke Revascularization Hospitalization for unstable angina MI , stroke or CV mortality All-cause mortality	A vs. B CV events: $2 \%(142 / 8,901)$ vs. $3 \%(251 / 8,901)$; HR 0.56 ($95 \% \mathrm{CI} 0.46$ to 0.69) Fatal and nonfatal MI: $0.3 \%(31 / 8,901)$ vs. 0.7% (69/8,901); HR 0.35 ($95 \% \mathrm{Cl} 0.22$ to 0.58) Fatal MI: 0.1\% (9/8,901) vs. $0.07 \%(7 / 8,901)$; RR 1.29 ($95 \% \mathrm{Cl} 0.48$ to 3.45) Nonfatal MI: $0.2 \%(22 / 8,901)$ vs. $0.7 \%(62 / 8,901)$: HR 0.35 ($95 \% \mathrm{Cl} 0.22$ to 0.58) Fatal or nonfatal stroke: $0.4 \%(33 / 8,901)$ vs. 0.7% (64/8,901); HR 0.52 ($95 \% \mathrm{Cl} 0.34$ to 0.79) Fatal stroke: $0.03 \%(3 / 8,901)$ vs. $0.06 \%(6 / 8,901)$; RR 0.50 ($95 \% \mathrm{Cl} 0.13$ to 2.00) Nonfatal stroke: $0.3 \%(30 / 8,901)$ vs. 0.7% ($58 / 8,901$); HR 0.52 ($95 \% \mathrm{Cl} 0.33$ to 0.80) Revascularization: $0.8 \%(71 / 8,901)$ vs. 1% ($131 / 8,901$); HR 0.54 ($95 \% \mathrm{Cl} 0.41$ to 0.72) Hospitalization for unstable angina: $0.2 \%(16 / 8,901)$ vs. $0.3 \%(27 / 8,901)$; HR 0.59 ($95 \% \mathrm{Cl} 0.32$ to 1.10) MI, stroke or CV mortality: $0.9 \%(83 / 8,901)$ vs. 2% ($157 / 8,901$); HR 0.53 ($95 \% \mathrm{CI} 0.40$ to 0.69) All-cause mortality: $2 \%(198 / 8,901)$ vs. 3% (247/8,901); HR 0.80 ($95 \% \mathrm{Cl} 0.67$ to 0.97)	A vs. B CV events: HR depicted graphically. Significantly fewer events in rosuvastatin group vs. placebo for all subgroups with no differences between subgroups: gender (male, female - see also Mora 2010), age (<70 years, ≥ 70 years - see also Glynn 2010), smoking status, race (white, nonwhite - see also Albert 2011), geographic region (US/Canada, other regions), hypertension, family history of CHD, BMI $<25,25$ to 29 or ≥ 30, metabolic syndrome, Framingham risk score ($\leq 10 \%,>10 \%$ see also Koenig 2011) ATP-III risk factor ($0, \geq 1$), time of event (≤ 24 months, >24 months)

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
Glynn, 2010 ${ }^{\prime \prime}$	See above	See above	A vs. B - Age (<70 years vs. ≥ 70 years) CV events: $1 \%(67 / 6,023)$ vs. 2\% (132/6,084); HR 0.51 (95% CI 0.38 to 0.69) and $3 \%(75 / 2,878)$ vs. $4 \%(119 / 2,817)$; HR 0.61 ($95 \% \mathrm{CI} 0.46$ to 0.82) All-cause mortality: $1 \%(90 / 6,023)$ vs. $2 \%(114 / 6,084)$; HR 0.80 ($95 \% \mathrm{Cl} 0.60$ to 1.04) and $4 \%(108 / 2,878)$ vs. $5 \%(133 / 2,817)$; HR 0.80 ($95 \% \mathrm{Cl} 0.62$ to 1.04) CV mortality: $0.2 \%(14 / 6,023)$ vs. $0.3 \%(18 / 6,084)$; HR 0.79 ($95 \% \mathrm{Cl} 0.39$ to 1.58) and $0.7 \%(21 / 2,878)$ vs. $0.9 \%(25 / 2,817)$; HR 0.83 ($95 \% \mathrm{Cl} 0.47$ to 1.48) Stroke: $0.2 \%(11 / 6,023)$ vs. $0.4 \%(25 / 6,084)$; HR 0.45 ($95 \% \mathrm{CI}$ 0.22 to 0.91) and $0.8 \%(22 / 2,878)$ vs. $1 \%(39 / 2,817)$; HR 0.55 ($95 \% \mathrm{CI} 0.33$ to 0.93) MI: $0.2 \%(14 / 6,023)$ vs. $0.6 \%(38 / 6,084)$; HR $0.37(95 \% \mathrm{CI} 0.20$ to 0.69) and $0.6 \%(17 / 2,878)$ vs. $1 \%(30 / 2,817)$; HR 0.55 (95% Cl 0.31 to 1.00) Revascularization/hospitalization: $0.8 \%(46 / 6,023)$ vs. 1% ($86 / 6,084$); HR 0.54 ($95 \% \mathrm{CI} 0.38$ to 0.77) and $1 \%(30 / 2,878)$ vs. 2% ($57 / 2,817$); HR 0.51 ($95 \% \mathrm{Cl} 0.33$ to 0.80)
Mora, 2010 ${ }^{\text {80 }}$	See above	See above	A vs. B - Sex (men vs. women; p for between-group heterogeneity)All-cause mortality: $138 / 5,475 \mathrm{vs}$. $170 / 5,526$; HR 0.82 ($95 \% \mathrm{Cl} 0.66$ to 1.03) vs. 60/3,426 vs. 77/3,375; HR 0.77 ($95 \% \mathrm{Cl} 0.55$ to 1.06); $\mathrm{p}=0.74 \mathrm{CV}$ mortality: $47 / 5,475$ vs. 109/5,526; HR 0.44 ($95 \% \mathrm{Cl} 0.31$ to 0.61) vs. $36 / 3,426$ vs. 48/3,375; HR 0.73 (95% CI 0.48 to 1.13); $p=0.06$ Fatal and nonfatal MI: 21/5,475 vs. $50 / 5,526$; HR 0.42 ($95 \% \mathrm{Cl} 0.26$ to 0.71) vs. $10 / 3,426$ vs. $18 / 3,375$; HR 0.54 ($95 \% \mathrm{Cl} 0.25$ to 1.18); $\mathrm{p}=0.60$ Nonfatal $\mathrm{MI}: 14 / 5,475$ vs. $48 / 5,526$; HR 0.29 ($95 \% \mathrm{Cl}$ 0.16 to 0.54) vs. $8 / 3,426$ vs. $14 / 3,375$; $\mathrm{HR} 0.56(95 \% \mathrm{CI} 0.24$ to 1.33); $p=0.24$ Fatal and nonfatal stroke: $15 / 5,475$ vs. $41 / 5,526$; HR 0.37 ($95 \% \mathrm{CI} 0.21$ to 0.67) vs. $18 / 3,426$ vs. $23 / 3,375$; HR 0.77 ($95 \% \mathrm{Cl} 0.42$ to 1.42); p=0.09Nonfatal stroke: $12 / 5,475 \mathrm{vs}$. $37 / 5,526$; HR 0.33 ($95 \% \mathrm{CI} 0.17$ to 0.63) vs. $18 / 3,426$ vs. 21/3,375; HR 0.84 ($95 \% \mathrm{CI} 0.45$ to 1.58); $p=0.04$ Revascularization/hospitalization: 68/5,475 vs. 110/5,526; HR 0.63 ($95 \% \mathrm{CI} 0.46$ to 0.86) vs. $8 / 3,426$ vs. $33 / 3,375$; HR 0.24 ($95 \% \mathrm{CI} 0.11$ to 0.51); p=0.01CV events: $103 / 5,475$ vs. $181 / 5,526$; HR 0.58 ($95 \% \mathrm{Cl} 0.45$ to 0.73) vs. $39 / 3,426$ vs. $70 / 3,375$; HR 0.54 ($95 \% \mathrm{CI} 0.37$ to 0.80); $\mathrm{p}=0.80$

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
Albert, 2011 ${ }^{\text {/6 }}$	See above	See above	A vs. B - Race/ethnicity
			White: ($n=12,683$)
			CV events (n vs. n): 111 vs . 201; HR 0.55 (95\% CI 0.43 to 0.69)
			MI: 25 vs. 59; HR 0.42 ($95 \% \mathrm{Cl} 0.26$ to 0.67)
			Stroke: 20 vs. 44; HR 0.45 ($95 \% \mathrm{Cl} 0.27$ to 0.77)
			Revascularization/hospitalization: 68 vs. 132; HR 0.52 ($95 \% \mathrm{CI}$ 0.38 to 0.69)
			CV mortality: 58 vs. 113; HR 0.51 ($95 \% \mathrm{CI} 0.37$ to 0.70)
			Venous thromboembolism: 31 vs. 55; 114 vs.140; HR 0.56 ($95 \% \mathrm{CI} 0.36$ to 0.87)
			All-cause mortality: HR 0.81 (95\% CI 0.63 to 1.04)
			Black: ($n=2,224$)
			CV events: 16 vs. 26; HR 0.65 ($95 \% \mathrm{CI} 0.35$ to 1.22) MI: 5 vs. 3: HR 1.76 (95% CI 0.42 to 7.38)
			MI: 5 vs. 3; HR 1.76 (95\% (0.42 to 7.38) 1.60)
			Revascularization/hospitalization: 4 vs. 4; HR 1.02 ($95 \% \mathrm{CI} 0.26$ to 4.08)
			CV mortality: 13 vs. 23 ; HR 0.60 ($95 \% \mathrm{Cl} 0.31$ to 1.19)
			Venous thromboembolism: 3 vs. 1; HR 3.04 (95\% CI 0.32 to 29)
			All-cause mortality: 48 vs. 71 ; HR 0.71 ($95 \% \mathrm{Cl} 0.49$ to 1.02) Hispanic: $(n=2,261)$
			CV events: 8 vs. 14; HR 0.58 (95\% CI 0.25 to 1.39)
			MI: 0 vs. 3; HR not reported
			Stroke: 5 vs. 7; HR 0.73 ($95 \% \mathrm{CI} 0.23$ to 2.31)
			Revascularization/hospitalization: 1 vs. 4; HR 0.26 ($95 \% \mathrm{Cl} 0.03$ to 2.29)
			CV mortality: 7 vs. 12; HR 0.60 (95\% CI 0.24 to 1.52)
			Venous thromboembolism: 0 vs. 3; HR not reported
			All-cause mortality: 19 vs. 23; HR 0.85 ($95 \% \mathrm{Cl} 0.46$ to 1.56) All nonwhite (Black, Hispanic and Asian):($n=5,117$)
			CV events: 31 vs. 50 ; HR 0.63 ($95 \% \mathrm{CI} 0.41$ to 0.99)
			MI: 6 vs. 9; HR 0.68 (95\% CI 0.24 to 1.91)
			Stroke: 13 vs. 20; HR 0.67 (95\% CI 0.33 to 1.35)
			Revascularization/hospitalization: 8 vs.11; HR 0.74 ($95 \% \mathrm{Cl}$ 0.30 to 1.84)
			CV mortality: 24 vs. 55 ; HR 0.58 ($95 \% \mathrm{Cl} 0.36$ to 0.95)
			Venous thromboembolism: 3 vs. 5 ; HR 0.61 ($95 \% \mathrm{CI} 0.15$ to $255)$
			2.55) All-cause mortality: 84 vs. 107. HR $0.80(95 \% \mathrm{CI} 0.60$

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
Ridker, 2010 ${ }^{18}$	See above	See above	A vs. B - Baseline risk estimate (Framingham and
			Reynolds)
			CV events:
			Framingham 10-year risk $<5 \%$ (total $n=2,791$; n vs. n events): 6 vs. 0; HR 0.64 ($95 \% \mathrm{Cl} 0.23$ to 1.81)
			-Men ($n=173$): No events in either group
			-Women (n=2,618): 6 vs. 9; HR 0.65 (95\% CI 0.23 to 1.84)
			Framingham 10-year risk 5 to 10\% ($\mathrm{n}=6,091$): 32 vs. 59 ; HR
			-Men ($\mathrm{n}=3,566$): 21 vs. 34; HR 0.89 (95\% Cl 0.37 to 1.10)
			-Women ($\mathrm{n}=2,525$): 11 vs .25 HR 0.44 (95\% CI 0.22 to 0.89)
			Framingham 10-year risk 11 to $20 \%(n=7,340)$: 74 vs. 145 ; HR 0.51 ($95 \% \mathrm{CI} 0.39$ to 0.68)
			-Men ($\mathrm{n}=5,936$): 58 vs. 114; HR 0.52 (95\% CI 0.38 to 0.71)
			-Women ($\mathrm{n}=1,404$): 16 vs. 31 ; HR 0.50 (95\% CI 0.27 to 0.91)
			Framingham 10-year risk >20\% ($\mathrm{n}=1,555$): 29 vs. 38 ; HR 0.70 ($95 \% \mathrm{Cl} 0.43$ to 1.14)
			-Men ($\mathrm{n}=1,313$): 23 vs. 33; HR 0.67 (95\% CI 0.39 to 1.14)
			-Women ($\mathrm{n}=242$): 6 vs. 5 ; HR 0.87 (95\% CI 0.26 to 2.88)
			Reynolds 10 -year risk $<5 \%$ ($n=3,583$): 9 vs. 14; HR 0.62 (95% CI 0.27 to 1.43)
			-Men ($\mathrm{n}=944$): 1 vs. 4 ; HR 0.25 (95\% CI 0.03 to 2.25)
			-Women ($\mathrm{n}=2,639$): 8 vs. 10; HR 0.76 (95\% CI 0.30 to 1.94)
			Reynolds 10-year risk 5 to $10 \%(n=6,436)$: 30 vs. 69; HR 0.45 ($95 \% \mathrm{Cl} 0.29$ to 0.68)
			-Men ($\mathrm{n}=3,785$): 21 vs. 43 ; HR 0.51 (95\% CI 0.30 to 0.86)
			-Women ($\mathrm{n}=2,651$): 9 vs. 26; HR 0.35 (95\% CI 0.16 to 0.74)
			Reynolds 10 -year risk 11 to 20% ($n=5040$): 59 vs. 87 ; HR 0.65 ($95 \% \mathrm{CI} 0.47$ to 0.90)
			-Men ($\mathrm{n}=3,889$): 43 vs. 63; HR 0.65 (95\% CI 0.44 to 0.96)
			-Women (n=1,151): 16 vs. 24; HR 0.65 (95\% CI 0.35 to 1.23)
			Reynolds 10-year risk >20\% ($\mathrm{n}=2651$): 42 vs. 81; HR 0.55 (95% Cl 0.38 to 0.80)
			-Men ($\mathrm{n}=2,324$): 36 vs. 71 ; HR 0.54 (95\% CI 0.36 to 0.81)
			-Women ($\mathrm{n}=327$): 6 vs. 10; HR 0.61 (95\% CI 0.22 to 1.68)

Study name Author, year	Outcomes assessed		Clinical health outcomes: subgroups

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
KAPS			
Salonen, 1995 ${ }^{81}$	MI CV mortality Non-CV mortality All-cause mortality Stroke	A vs. B All-cause mortality: 2\% (4/214) vs. 1\% (3/212); RR 1.32 ($95 \% \mathrm{CI} 0.30$ to 5.83) Fatal and nonfatal MI: $1 \%(3 / 214)$ vs. $4 \%(8 / 212)$; RR 0.36 ($95 \% \mathrm{Cl} 0.09$ to 1.39) Fatal MI: 0\% (0/214) vs. 0.9% (2/212); RR 0.20 ($95 \% \mathrm{CI} 0.01$ to 4.14) Nonfatal MI: 1\% (3/214) vs. 3\% (6/212); RR 0.50 (95% CI 0.12 to 1.97) Other CV mortality: 0.9% (2/214) vs. $0 \% ~(0 / 212)$; RR 5.00 ($95 \% \mathrm{CI} 0.24$ to 104) Stroke: 0.9\% (2/214) vs. 2\% (4/212); RR 0.50 (95% CI 0.09 to 2.70) Non CV mortality: $0.5 \%(1 / 214)$ vs. $0.9 \% ~(2 / 212)$; RR 0.50 ($95 \% \mathrm{Cl} 0.05$ to 5.47) Revascularization: 2\% (4/214) vs. 2\% (5/212); RR 0.79 ($95 \% \mathrm{Cl} 0.22$ to 2.91)	Not reported
MEGA			
Nakamura, 2006^{82} Other publications: Tajima, 2008 ${ }^{83}$ MEGA Study Group 2004 ${ }^{84}$	All-cause mortality CHD (fatal and nonfatal MI, cardiac and sudden death, coronary revascularization, angina) Stroke Cardiovascular disease Cerebral infarction	A vs. B - All MEGA patients All-cause mortality: $3 \%(55 / 3,866)$ vs. $4 \%(79 / 3,966)$; HR 0.72 (95\% CI 0.51 to 1.01) CV mortality: $0.5 \%(11 / 3,866)$ vs. $1 \%(18 / 3,966)$; HR 0.63 (95% CI 0.30 to 1.33) Any CV event: $6 \%(125 / 3,866)$ vs. $8 \%(172 / 3,966)$; HR 0.74 ($95 \% \mathrm{Cl} 0.59$ to 0.94) Any CHD: $3 \%(66 / 3,866)$ vs. $5 \%(101 / 3,966)$; HR 0.67 ($95 \% \mathrm{CI} 0.40$ to 0.91) Fatal and nonfatal MI: $1 \%(18 / 3,866)$ vs. 2% (33/3,966); HR 0.52 (95% CI 0.29 to 0.94) Fatal MI: $0.05 \%(2 / 3,866)$ vs. $0.07 \%(3 / 3,966)$; RR 0.68 ($95 \% \mathrm{Cl} 0.11$ to 4.09) Nonfatal MI: $0.4 \%(16 / 3,866)$ vs. $0.7 \%(30 / 3,966)$; RR 0.55 ($95 \% \mathrm{Cl} 0.30$ to 1.00) Cardiac sudden death: $0.2 \%(5 / 3,866)$ vs. 0.5% (10/3,966); HR 0.51 ($95 \% \mathrm{Cl} 0.18$ to 1.50) Stroke: $3 \%(50 / 3,866)$ vs. $3 \%(62 / 3,966)$: HR 0.83 ($95 \% \mathrm{CI} 0.57$ to 1.21) Angina: $2 \%(46 / 3,866)$ vs. $3 \%(57 / 3,966)$; HR 0.83 ($95 \% \mathrm{Cl} 0.56$ to 1.23) Revascularization: $(39 / 3,866)$ vs. $(66 / 3,966)$; HR 0.60 ($95 \% \mathrm{Cl} 0.41$ to 0.89)	A vs. B-All MEGA patients CHD Men: HR 0.63 ($95 \% \mathrm{Cl} 0.42$ to 0.95) Women: HR 0.71 ($95 \% \mathrm{Cl} 0.44$ to 1.14) Age <60 years: HR 0.81 ($95 \% \mathrm{Cl} 0.49$ to 1.32) Age ≥ 60 years: HR 0.59 ($95 \% \mathrm{Cl} 0.40$ to 0.88) TC $<6.21 \mathrm{mmol} / \mathrm{L}: \mathrm{HR} 0.63$ ($95 \% \mathrm{Cl} 0.39$ to 1.01) TC $\geq 6.21 \mathrm{mmol} / \mathrm{L}:$ HR 0.70 ($95 \% \mathrm{Cl} 0.46$ to 1.05) LDL < $4.01 \mathrm{mmol} / \mathrm{L}$: HR 0.90 ($95 \% \mathrm{CI} 0.56$ to 1.44) LDL $\geq 4.01 \mathrm{mmol} / \mathrm{L}$: HR 0.54 ($95 \% \mathrm{Cl} 0.35$ to 0.81) Triglycerides: <1.35 mmol/L: HR 0.58 ($95 \% \mathrm{Cl} 0.33$ to 1.01) Triglycerides $\geq 1.35 \mathrm{mmol} / \mathrm{L}$: HR 0.72 ($95 \% \mathrm{Cl} 0.49$ to 1.04) HDL < $1.42 \mathrm{mmol} / \mathrm{L}$: HR 0.69 ($95 \% \mathrm{CI} 0.47$ to 1.01) HDL $\geq 1.42 \mathrm{mmol} / \mathrm{L}: \mathrm{HR} 0.64(95 \% \mathrm{CI} 0.38$ to 1.10$)$ Diabetes: HR 0.64 ($95 \% \mathrm{Cl} 0 ; 41$ to 1.01) No diabetes: HR 0.69 ($95 \% \mathrm{Cl} 0.45$ to 1.05) Hypertension: HR 0.75 ($95 \% \mathrm{Cl} 0.51$ to 1.11) No hypertension: HR 0.56 ($95 \% \mathrm{CI} 0.33$ to 0.93) $\mathrm{BMI}<24 \mathrm{~kg} / \mathrm{m}^{2}$: HR 0.69 ($95 \% \mathrm{Cl} 0.45$ to 1.06) BMI $\geq 24 \mathrm{~kg} / \mathrm{m}^{2}$: HR 0.65 ($95 \% \mathrm{Cl} 0.42$ to 1.01) Current/past smoking: HR 0.69 ($95 \% \mathrm{CI} 0.42$ to 1.13) No current/past smoking: HR $0.64(95 \% \mathrm{CI} 0.43$ to 0.96$)$

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
$\begin{aligned} & \text { Uchiyama, } \\ & 2009^{85} \end{aligned}$	See above	See above	A vs. B - All MEGA patients Stroke Men: HR 0.67 ($95 \% \mathrm{Cl} 0.37$ to 1.22) Women: HR 0.63 ($95 \% \mathrm{Cl} 0.36$ to 1.10) Age < 55 years: HR 1.70 ($95 \% \mathrm{Cl} 0.65$ to 4.40) Age ≥ 55 to <60 years: HR 0.89 ($95 \% \mathrm{Cl} 0.35$ to 2.25) Age ≥ 60 to <65 years: HR 0.47 ($95 \% \mathrm{Cl} 0.21$ to 1.03) Age ≥ 65 years: HR 0.43 ($95 \% \mathrm{Cl} 0.21$ to 0.91) Diabetes: HR 0.69 ($95 \% \mathrm{CI} 0.35$ to 1.36) No diabetes: HR 0.63 ($95 \% \mathrm{Cl} 0.38$ to 1.04) Hypertension: HR 0.57 ($95 \% \mathrm{Cl} 0.27$ to 1.19) No hypertension: HR 0.68 ($95 \% \mathrm{CI} 0.42$ to 1.11) $\mathrm{BMI}<25 \mathrm{~kg} / \mathrm{m}^{2}$: HR 0.79 ($95 \% \mathrm{Cl} 0.46$ to 1.34) BMI $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$: HR 0.47 ($95 \% \mathrm{Cl} 0.25$ to 0.91) Smoking: HR 0.62 ($95 \% \mathrm{CI} 0.27$ to 1.42) No smoking: HR 0.67 ($95 \% \mathrm{Cl} 0.42$ to 1.06)
Kushiro, 2009 ${ }^{\text {86 }}$	See above	A vs. B - Patients with hypertension at baseline All-cause mortality: $2 \%(24 / 1,613)$ vs. $2 \%(32 / 1,664)$; RR 0.77 ($95 \% \mathrm{Cl} 0.46$ to 1.31) CHD: $2 \%(35 / 1,613)$ vs. $3 \%(51 / 1,664)$; RR 0.69 ($95 \% \mathrm{Cl} 0.45$ to 1.06) MI: 0.7% (12/1,613) vs. $1 \%(16 / 1,664)$; RR 0.77 ($95 \% \mathrm{Cl} 0.37$ to 1.63) Stroke: 2\% (27/1,613) vs. 2\% (31/1,664); RR 0.90 ($95 \% \mathrm{Cl} 0.54$ to 1.50) CVD: 4\% (63/1,613) vs. $6 \%(98 / 1,664)$; RR 0.66 ($95 \% \mathrm{Cl} 0.49$ to 0.90); NNT/5 years: 50 Cerebral infarction: $2 \%(16 / 1,613)$ vs. 4% (31/1,664); RR 0.53 (95% CI 0.29 to 0.97); NNT/5 years: 115	A vs. B - Patients with hypertension at baseline CHD Men: 1\% (7/487) vs. 3\% (17/509); RR 0.43 (95% CI 0.18 to $1.03)$ vs. women: $8 \%(9 / 1,126)$ vs. $1 \%(14 / 1,155)$; RR 0.66 ($95 \% \mathrm{Cl} 0.29$ to 1.52); p for interaction=0.47 Diabetes: $0.9 \%(3 / 322)$ vs. $3 \%(10 / 346)$; RR 0.32 ($95 \% \mathrm{Cl} 0.09$ to 1.16) vs. no diabetes: $1 \%(13 / 1,291)$ vs. $2 \%(21 / 1,318)$; RR $0.63(95 \% \mathrm{Cl} 0.32$ to 1.26); p for interaction=0.34 BMI $<25 \mathrm{~kg} / \mathrm{m}^{2}: 0.8 \%$ ($7 / 926$) vs. $2 \% ~(14 / 963$); RR 0.54 ($95 \% \mathrm{Cl}$ 0.22 to 1.32) vs. $\mathrm{BMI} \geq 25 \mathrm{~kg} / \mathrm{m}^{2}: 1 \%$ ($8 / 681$) vs. 2% (16/698); RR 0.51 ($95 \% \mathrm{CI} 0.22$ to 1.19); p for interaction=0.99 Current/past smoking: 1\% (4/349) vs. 4\% (14/332); RR 0.27 ($95 \% \mathrm{Cl} 0.09$ to 0.82) vs. no current/past smoking: 1\% (12/1,261) vs. 1% (17/1,332); RR 0.75 ($95 \% \mathrm{Cl} 0.36$ to 1.55); p for interaction=0.12

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
Mizuno, 2008 ${ }^{\text {8/ }}$	See above	See above	A vs. B - Women (CHD, stroke for all women - see above) CV events: $4 \%(51 / 2,638)$ vs. $6 \%(74 / 2,718)$; HR 0.72 ($95 \% \mathrm{Cl}$ 0.50 to 1.02) Cerebral infarction: $1 \%(14 / 2,638)$ vs. $2 \%(20 / 2,718)$; HR 0.73 (95\% CI 0.37 to 1.45) CV mortality: $0.3 \%(4 / 2,638)$ vs. $0 / 3 \%(4 / 2,718)$; RR 1.03 (95% CI 0.26 to 4.12) All-cause mortality: $2 \%(22 / 2,638)$ vs. $3 \%(3 / 3,718)$; HR 0.59 ($95 \% \mathrm{Cl} 0.35$ to 0.997) CHD: by age -Age ≥ 60 years: $3 \%(16 / 1,380)$ vs. $5 \%(30 / 1,425)$; HR 0.55 ($95 \% \mathrm{CI} 0.30$ to 1.01) -Age ≥ 55 years: $2 \%(22 / 2,039)$ vs. $4 \%(35 / 2,126)$; HR 0.64 ($95 \% \mathrm{Cl} 0.38$ to 1.10) -Age ≥ 50 years: $2 \%(25 / 2,493)$ vs. $3 \%(36 / 2,602)$; HR 0.72 ($95 \% \mathrm{Cl} 0.43$ to 1.19) Stroke: by age -Age ≥ 60 years: $1 \%(9 / 1,380)$ vs. $4 \%(26 / 1,425)$; HR 0.36 (95% Cl 0.17 to 0.77) -Age ≥ 55 years: $2 \%(14 / 2,039)$ vs. $3 \%(31 / 2,126)$; HR 0.47 ($95 \% \mathrm{CI} 0.25$ to 0.89) -Age ≥ 50 years: $2 \%(19 / 2,493)$ vs. $3 \%(33 / 2,602)$; HR 0.60 ($95 \% \mathrm{CI} 0.34$ to 1.06) All-cause mortality: by age -Age ≥ 60 years: $2 \%(15 / 1,380)$ vs. $5 \%(30 / 1,425)$; HR 0.52 ($95 \% \mathrm{Cl} 0.28$ to 0.97) -Age ≥ 55 years: $2 \%(18 / 2,039)$ vs. $4 \%(36 / 2,126)$; HR 0.52 ($95 \% \mathrm{CI} 0.30$ to 0.92) -Age ≥ 50 years: $2 \%(22 / 2,493)$ vs. $3 \%(39 / 2,602)$; HR 0.59 ($95 \% \mathrm{Cl} 0.35$ to 1.00)

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
Nakaya, 2011 ${ }^{\text {88 }}$	See above	See above	A vs. B - Age (also see results from Nakamura 2006)
			CHD
			-Age ≥ 65 : 5% (19/887) vs. 7% (30/927); HR 0.66 (95% CI 0.37 to 1.17)
			-Age ≥ 60 : $4 \%(33 / 1,818)$ vs. $6 \%(53 / 1,873)$; HR 0.64 (95\% CI
			0.41 to 0.98$)$
			```-Age \geq55: 4% (42/2,676) vs. 5% (67/2,782); HR 0.64 (95% CI 0.44 to 0.95)```
			-Age $\geq 50: 3 \%(52 / 3,357)$ vs. $5 \%(76 / 3,489)$; HR 0.72 (95\% CI
			0.50 to 1.02)
			-Age $\geq 45: 4 \%(57 / 3,708)$ vs. $5 \%(81 / 3,819)$; HR 0.73 ( $95 \% \mathrm{Cl}$ 0.52 to 1.02)
			O.52 to 1.02) Stroke
			-Age $\geq 65$ : $3 \%$ (10/887) vs. 6\% (24/927); HR 0.44 (95\% CI 0.21
			to 0.92)
			-Age $\geq 60$ : $2 \%(19 / 1,818)$ vs. $5 \%(44 / 1,873)$; HR 0.44 ( $95 \% \mathrm{Cl}$ 0.26 to 0.76)
			-Age $\geq 55$ : $2 \%(27 / 2,676)$ vs. $4 \%(54 / 2,782)$; HR 0.52 (95\% CI
			0.33 to 0.83)
			-Age $\geq 50$ : $2 \%(35 / 3,489)$ vs. $4 \%(58 / 3,489)$; HR $0.63(95 \% \mathrm{CI}$
			-Age $\geq 45$ : $2 \%(37 / 3,708)$ vs. $4 \%(60 / 3,819)$; HR 0.64 (95\% CI
			0.43 to 0.97)
			All-cause mortality
			-Age $\geq 65$ : 5\% (21/887) vs. 7\% (31/927); HR 0.71 (95\% CI 0.41 to 1.24)
			-Age $\geq 60: 4 \%(30 / 1,818)$ vs. $5 \%(47 / 1,873)$; HR $0.66(95 \% \mathrm{Cl}$
			-Age $\geq 55$ : $3 \%(37 / 2,676$ ) vs. $5 \%(58 / 2,782)$; HR 0.67 (95\% CI
			0.44 to 1.01)
			- Age $\geq 50: 3 \%(43 / 3,357)$ vs. $4 \%(65 / 3,489)$; HR $0.70(95 \% \mathrm{CI}$ 0.48 to 1.03$)$
			-Age $\geq 45: 3 \%(43 / 3,708)$ vs. $4 \%(65 / 3,819)$; HR 0.69 (95\% CI
			0.47 to 1.02)
			CVD
			-Age $\geq 65$ : $9 \%$ (33/887) vs. 14\% (57/927); HR 0.69 (95\% CI 0.39 to 0.93)
			- Men: $20 \%$ (17/203) vs. $21 \%$ (21/218); HR 0.85 ( $95 \%$ CI 0.45 to 1.60 )
			- Women: $5 \%$ (16/684) vs. $11 \%$ (36/709); HR 0.47 ( $95 \% \mathrm{CI}$ 0.26 to 0.84)
			```-Age \geq60: 7% (60/1,818) vs. 12% (100/1,873); HR 0.61 (95% CI 0.44 to 0.84)```
			- Men: 16% (30/438) vs. 21% (41/448); HR 0.72 ($95 \% \mathrm{CI} 0.45$ to 1.15)

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
			- Women: $5 \%(30 / 1,380)$ vs. $9 \%(59 / 1,425)$; HR $0.53(95 \% \mathrm{CI}$ 0.34 to 0.82) -Age $\geq 55: 7 \%(77 / 2,676)$ vs. $10 \%(125 / 2,782)$; HR 0.63 ($95 \% \mathrm{CI}$ 0.48 to 0.84) - Men: 13% (36/637) vs. 19\% (55/656); HR 0.67 (95% CI 0.44 to 1.02) - Women: $5 \%(41 / 2,039)$ vs. $7 \%(70 / 2,126)$ HR 0.61 ($95 \% \mathrm{Cl}$ 0.41 to 0.89) -Age ≥ 50 : $6 \%(94 / 3,357)$ vs. $9 \%(142 / 3,489)$; HR 0.69 (95\% CI 0.53 to 0.90) - Men: 12\% (45/864) vs. 18\% (68/887); HR 0.70 (95% CI 0.48 to 1.02) - Women: 4\% (49/2,493) vs. 6\% (74/2,602); HR 0.68 ($95 \% \mathrm{CI}$ 0.48 to 0.98) -Age ≥ 45 : $6 \%(101 / 3,708)$ vs. $9 \%(148 / 3,819)$; HR 0.71 ($95 \% \mathrm{Cl}$ 0.55 to 0.91) - Men: 11\% (50/1,087) vs. 15\% (74/1,107); HR 0.71 ($95 \% \mathrm{CI}$ 0.50 to 1.02) - Women: 4\% (51/2,621) vs. 6\% (74/2,712); HR 0.70 (95\% CI 0.50 to 1.00)
$\begin{aligned} & \text { Nakamura, } \\ & 2009^{89} \end{aligned}$	See above	See above	A vs. B-CKD (Moderate CKD = glomerular filtration rate 30 to <60 $\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$) CHD: $3 \%(21 / 1,471)$ vs. $6 \%(40 / 1,507)$; HR 0.52 ($95 \% \mathrm{CI} 0.31$ to 0.89) Stroke: 1\% (8/1,471) vs. $4 \%(29 / 1,507)$; HR 0.27 (95% CI 0.12 to 0.59) CVD: 5\% (33/1,471) vs. 10\% (71/1,507); HR 0.45 (95% CI 0.30 to 0.69) All-cause mortality: $2 \%(16 / 1,471)$ vs. $5 \%(34 / 1,507)$; HR 0.49 ($95 \% \mathrm{CI} 0.27$ to 0.89)
$\begin{aligned} & \text { Nishiwaki, } \\ & 2013^{90} \end{aligned}$	See above	See above	A vs. B-Dyslipidemia phenotype CHD -Type Ila: $2 \%(30 / 2,755)$ vs. $4 \%(49 / 2,834)$; aRR 0.38 ($p=0.04$) -Type llb: $5 \%(23 / 1,017)$ vs. $6 \%(29 / 1,024)$; aRR 0.18 ($p=0.48$) Stroke -Type Ila: $2 \%(28 / 2,755)$ vs. $3 \%(41 / 2,834)$; aRR 0.29 ($p=0.16$) -Type llb: $2 \%(10 / 1,017)$ vs. $4 \%(19 / 1,024)$; aRR 0.46 ($p=0.11$) CVD -Type Ila: $5 \%(63 / 2,755)$ vs. $7 \%(93 / 2,834)$; aRR 0.31 ($p=0.02$) -Type llb: $8 \%(35 / 1,017)$ vs. 12\% ($52 / 1,024$); aRR 0.31 ($p=0.09$) All-cause mortality -Type Ila: $3 \%(31 / 2,755)$ vs. $3 \%(41 / 2,834)$; aRR 0.21 ($p=0.32$) -Type llb: $3 \%(12 / 1,017)$ vs. $4 \%(20 / 1,024)$; aRR 0.39 ($p=0.18$)

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
METEOR			
Crouse, $2007{ }^{\text {92 }}$	All-cause mortality	A vs. B All-cause mortality: $0.1 \%(1 / 700)$ vs. $0 \%(0 / 281)$; RR 1.21 (95\% CI 0.05 to 30)	Not reported
$\begin{aligned} & \hline \text { Muldoon, } \\ & 2004^{91} \end{aligned}$	Stroke Withdrawal due to adverse events, cognitive dysfunction: tests previously shown to be influenced by statin treatment (statin sensitive; digit vigilance, recurrent words, Elithorn mazes, and grooved pegboard), tests shown to be insensitive to statin treatment, and tests that have not been previously examined with respect to statin use (new tests; mirror tracer and 4-word shortterm memory)	A vs. B vs. C Nonfatal stroke: $1 \%(1 / 103)$ vs. 0% ($0 / 103$) vs. 0% (0/102); A+B vs. C: RR 1.49 (95% CI 0.06 to 36)	Not reported
PREVEND-IT			
$\begin{aligned} & \text { Asselbergs, } \\ & 2004^{94} \end{aligned}$	CV mortality MI Heart failure Peripheral vascular disease Stroke All-cause mortality	A vs. B CV mortality: 0.9% (4/433) vs. 0.9% (4/431); RR 1.00 ($95 \% \mathrm{Cl} 0.25$ to 3.95) Nonfatal MI and/or myocardial ischemia: 2\% (8/433) vs. 4% ($15 / 431$); RR 0.53 ($95 \% \mathrm{Cl} 0.23$ to 1.24) Heart failure: $0.2 \%(1 / 433)$ vs. $0.2 \%(1 / 431)$; RR 1.00 ($95 \% \mathrm{Cl} 0.06$ to 16) Peripheral vascular disease: $0.5 \%(2 / 433)$ vs. 0.2% (1/431); RR 1.99 (95% CI 0.18 to 22) Fatal and nonfatal stroke: 2% (7/433) vs. 0.9% (4/431); RR 1.74 ($95 \% \mathrm{Cl} 0.51$ to 5.91) All-cause mortality: 3% (13/433) vs.3\% (12/431); RR 1.08 ($95 \% \mathrm{Cl} 0.50$ to 2.34)	Not reported

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Outcomes assessed	Clinical health outcomes	Clinical health outcomes: subgroups
WOSCOPS			
Shepherd, 1995^{95} Other publication: Freeman, 20011^{100}	CHD mortality + nonfatal MI CHD mortality PTCA or CABG Stroke CV mortality Non-CV mortality All-cause mortality	A vs. B CHD mortality + nonfatal MI: $5 \%(174 / 3,302)$ vs. 8% (248/3,293); RR 0.70 ($95 \% \mathrm{Cl} 0.58$ to 0.84) Fatal MI: 1\% (38/3,302) vs. 2\% (52/3,293); RR 0.72 ($95 \% \mathrm{CI} 0.47$ to 1.08) Nonfatal MI: $4 \%(143 / 3,302)$ vs. $6 \%(204 / 3,293)$; RR 0.70 ($95 \% \mathrm{CI} 0.57$ to 0.86) CHD mortality: $1 \%(38 / 3,302)$ vs. $2 \%(52 / 3,293)$; RR 0.73 ($95 \% \mathrm{Cl} 0.48$ to 1.10) Revascularization: $2 \%(51 / 3,302)$ vs. $2 \%(80 / 3,293)$; RR 0.64 ($95 \% \mathrm{Cl} 0.45$ to 0.90) Stroke: $1 \%(46 / 3,302)$ vs. $2 \%(51 / 3,293)$; RR 0.90 ($95 \% \mathrm{CI} 0.61$ to 1.34) CV mortality: $2 \%(50 / 3,302)$ vs. $2 \%(73 / 3,293)$; RR 0.68 ($95 \% \mathrm{Cl} 0.48$ to 0.98) Non-CV mortality: $2 \%(56 / 3,302)$ vs. $2 \%(62 / 3,293)$; RR 0.90 ($95 \% \mathrm{Cl} 0.63$ to 1.29) All-cause mortality: $3 \%(106 / 3,302)$ vs. 4% (135/3,293); RR 0.78 ($95 \% \mathrm{Cl} 0.61$ to 1.01)	Incidence of primary endpoint <55 years vs. ≥ 55 years RRR 40\% (95\% Cl 16 to 56\%) vs. 27\% (95\% CI 8 to 43\%) Smoker vs. nonsmoker RRR 31\% (95\% CI 12 to 47\%) vs. 31% ($95 \% \mathrm{Cl} 6$ to 48\%) ≥ 2 risk factors vs. <2 risk factors RRR 20\% (95\% CI -13 to 43\%) vs. 37% ($95 \% \mathrm{Cl} 20$ to 50\%) Cholesterol $\geq 269 \mathrm{mg} / \mathrm{dL}$ vs. $<269 \mathrm{mg} / \mathrm{dL}$ RRR 27% ($95 \% \mathrm{Cl} 4$ to 44%) vs. 36% ($95 \% \mathrm{Cl} 15$ to 51%) LDL-C $\geq 189 \mathrm{mg} / \mathrm{dL}$ vs. $<189 \mathrm{mg} / \mathrm{dL}$ RRR 27% ($95 \% \mathrm{Cl} 6$ to 43%) vs. 37% ($95 \% \mathrm{Cl} 15$ to 53%) HDL-C $<43 \mathrm{mg} / \mathrm{dL}$ vs. $\geq 43 \mathrm{mg} / \mathrm{dL}$ RRR 31\% (95\% CI 11 to 46\%) vs. 33\% (95\% CI 9 to 51\%) Triglyceride $\geq 148 \mathrm{mg} / \mathrm{dL}$ vs. $<148 \mathrm{mg} / \mathrm{dL}$ RRR 32\% (95\% CI 12 to 47\%) vs. 29\% (95\% CI 4 to 48\%) Prior vascular disease vs. no prior vascular disease RRR 33% ($95 \% \mathrm{CI} 15$ to 46%) vs. 29% ($95 \% \mathrm{Cl}-4$ to 51%)

Study name Author, year	Adverse events	Quality rating	Funding source
ACAPS			
Furberg, 1994 ${ }^{51}$	A vs. B Cancer mortality: 0% ($0 / 460$) vs. 0.7% (3/460); RR 0.14 ($95 \% \mathrm{Cl} 0.007$ to 2.75) ALT elevation ≥ 2 times ULN: $1 \%(6 / 460)$ vs. $1 \%(6 / 459)$; RR 1.00 ($95 \% \mathrm{Cl} 0.32$ to 3.07) Withdrawal due to adverse events: $0.7 \%(3 / 460)$ vs. $0.4 \% ~(2 / 459)$	Fair	NHLBI
AFCAPS/TexCAPS			
Downs, 1998^{53} Other publications: Downs, 2001 ${ }^{55}$ Gotto, 2000^{56} Gotto, 2000^{57} Gotto 2007^{58} Ridker, 2001 ${ }^{99}$	A vs. B Any serious AEs: $34 \%(1,131 / 3,304)$ vs. $34 \%(1,126 / 3,301)$; RR 1.00 ($95 \% \mathrm{CI} 0.94$ to 1.07) Withdrawals due to AEs: $14 \%(449 / 3,304)$ vs. $14 \%(455 / 3,301)$; RR $0.99(95 \% \mathrm{Cl} 0.87$ to 1.11) Any cancer: $7.6 \%(252 / 3,304)$ vs. $7.8 \%(2,59 / 3,301)$; 15.1 vs. 15.6 cases/1,000 patientyears; RR 0.97 ($95 \% \mathrm{Cl} 0.82$ to 1.15) Cancer mortality: $1 \%(48 / 3,304)$ vs. $1 \%(34 / 3,301)$; RR 1.41 ($95 \% \mathrm{Cl} 0.91$ to 2.19) Myalgia resulting in discontinuation: $0.3 \%(10 / 3,304)$ vs. $0.3 \%(10 / 3,301)$; RR 1.0 ($95 \% \mathrm{Cl}$ 0.42 to 2.40) Rhabdomyolosis: $0.03 \%(1 / 3,304)$ vs. $0.06 \%(2 / 3,301)$; RR 0.50 ($95 \% \mathrm{CI} 0.05$ to 5.51) ALT or AST elevation >3 times ULN on consecutive visits: 0.6% (18/3,242) vs. 0.3% (11/3,248); p=NS	Fair	Merck \& Co
ASCOT-LLA			
Sever, $2003{ }^{59}$ Other publication: Sever, 2001^{60}	A vs. B Fatal rhabdomyolysis: $0.02 \%(1 / 5,168)$ vs. $0 \%(0 / 5,137)$; RR 3.00 ($95 \% \mathrm{CI} 0.12$ to 74) Diabetes: $3 \%(154 / 5,168)$ vs. $3 \%(134 / 5,137)$; HR 1.15 ($95 \% \mathrm{CI} 0.91$ to 1.44) Renal impairment: $0.6 \%(31 / 5,158)$ vs. $0.5 \%(24 / 5,137)$; HR 1.29 ($95 \% \mathrm{CI} 0.76$ to 2.19) "Rates of liver-enzyme abnormalities did not differ between patients assigned atorvastatin or placebo"	Fair	Various pharmaceutical companies
ASPEN			
Knopp, 2006 ${ }^{62}$	Not reported for primary prevention subgroup	Fair	Pfizer
ASTRONOMER			
Chan, 2010 ${ }^{63}$	A vs. B Any serious AE: 23\% (41/134) vs. 27\% (48/135); RR 0.86 ($95 \% \mathrm{Cl} 0.61$ to 1.21) Cancer: 2\% (2/134) vs. 3% (3/135); RR 0.67 ($95 \% \mathrm{CI} 0.11$ to 3.96) ALT elevation ≥ 3 times ULN: 1.5% (2/134) vs. 2.2% ($3 / 135$); $p=$ NS AST elevation ≥ 3 times ULN: 0.7% (1/134) vs. 0.7% ($1 / 135$); $p=$ NS	Good	Canadian Institutes of Health Research; AstraZeneca Canada
Beishuizen, 2004 ${ }^{64}$	A vs. B Cancer: 4% (4/103) vs. 5% (4/79); RR 0.77 ($95 \% \mathrm{Cl} 0.20$ to 2.97) Myalgia: 17\% (18/103) vs. 33% (26/79); RR 0.53 ($95 \% \mathrm{Cl} 0.31$ to 0.90) ALT elevation ≥ 3 times ULN: 1% (1/103) vs. 0% ($0 / 79$); $p=$ NS	Fair	Bayer, Merck

Study name Author, year	Adverse events	Quality rating	Funding source
Bone, 2007 ${ }^{65}$	A1 vs. A2 vs. A3 vs. A4 vs. B Serious AEs: $0.8 \%(1 / 118)$ vs. $3 \%(4 / 121)$ vs. $2 \%(2 / 124)$ vs. $2 \%(2 / 122)$ vs. $3 \%(3 / 119)$ A1 vs. B: RR 0.34 ($95 \% \mathrm{Cl} 0.04$ to 3.19) A2 vs. B: RR 1.31 ($95 \% \mathrm{Cl} 0.30$ to 5.73) A3 vs. B: RR 0.64 ($95 \% \mathrm{Cl} 0.11$ to 3.76) A4 vs. B: RR 0.65 ($95 \% \mathrm{Cl} 0.11$ to 3.82) All A vs. B Serious AEs: 2\% (9/485) vs. 3\% (3/119); RR 0.73 (95% CI 0.20 to 2.68) Myalgia: 12.6\% (61/485) vs. 6.7\% (8/119); RR 1.87 (95% CI 0.92 to 3.80) Rhabdomyolosis: 0% ($0 / 485$) vs. 0% ($0 / 119$); RR 0.25 ($95 \% \mathrm{Cl} 0.005$ to 12) ALT or AST elevation ≥ 3 times ULN: 0.4% (2/485) vs. 0% ($0 / 119$); p=NS	Fair	Pfizer
CAIUS			
Mercuri, 1996 Other publication: Sirtori 1995^{67}	Cancer: 2\% (3/151) vs. 3\% (4/154); RR 0.76 (95\% CI 0.17 to 3.36)	Fair	Bristol-Myers Squibb; Italian National research Council
CARDS			
Colhoun, 2004 ${ }^{68}$ Other publications: Colhoun, $2002{ }^{69}$ Newman, 2008^{101} Neil, 2006^{70}	A vs. B Any adverse event: $97 \%(1,390 / 1,428)$ vs. $98 \%(1,376 / 1,410)$; RR 1.00 ($95 \% \mathrm{CI} 0.99$ to 1.01) Serious adverse event: $1 \%(19 / 1,428)$ vs. $1 \%(20 / 1,410)$ RR 0.94 ($95 \% \mathrm{CI} 0.50$ to 1.75) Withdrawals due to adverse event: $8 \%(122 / 1,428)$ vs. $10 \%(145 / 1,410)$; RR $0.83(95 \% \mathrm{Cl}$ 0.66 to 1.04) Any cancer: $4.8 \%(69 / 1,428)$ vs. $5.1 \%(72 / 1,410)$; RR 0.95 ($95 \% \mathrm{CI} 0.69$ to 1.31) Fatal cancer: $1 \%(20 / 1,428)$ vs. $2 \%(30 / 1,410)$; RR 0.66 ($95 \% \mathrm{Cl} 0.38$ to 1.15) Myopathy: $0.07 \%(1 / 1,428)$ vs. $0.07 \%(1 / 1,410)$ RR 0.99 ($95 \% \mathrm{Cl} 0.06$ to 16) Myalgia: $4 \%(61 / 1428)$ vs. $5 \%(72 / 1,410)$; RR 0.83 ($95 \% \mathrm{Cl} 0.60$ to 1.17) Rhabdomyolysis: $0 \%(0 / 1,428)$ vs. $0 \%(0 / 1,410)$; RR 0.99 ($95 \% \mathrm{Cl} 0.02$ to 50) ALT elevation >3 times ULN: $1 \%(17 / 1,428)$ vs. $1 \%(14 / 1,410)$ AST elevation >3 times ULN: $0.4 \%(6 / 1,428)$ vs. $0.3 \%(4 / 1,410)$	Good	Diabetes UK, UK Department of Health, Pfizer
Heljić, 2009 ${ }^{\text {/1 }}$	Not reported	Poor	NR
HYRIM			
Anderssen, 2005 ${ }^{\text {/2 }}$	Overall incidence of any adverse events or serious adverse events was "similar" between groups, data not reported 1 case of CPK elevation >10x upper limit of normal in placebo arm; no cases of rhabdomyolysis	Fair	Novartis Pharma AG, Ulleval University Hospital, Norwegian University of Physical Education, Throne Holst Legacy

Study name Author, year	Adverse events	Quality rating	Funding source
JUPITER			
Ridker, 2008 ${ }^{\text {/3 }}$ Other publications: Ridker, $2003{ }^{75}$ Ridker, $2007{ }^{74}$	A vs. B Serious adverse events: $15 \%(1,352 / 8,901)$ vs. $15 \%(1,377 / 8,901)$; RR 0.98 ($95 \% \mathrm{CI} 0.92$ to 1.05) Cancer: $3 \%(298 / 8,901)$ vs. $4 \%(314 / 8,901)$ RR 0.95 ($95 \% \mathrm{CI} 0.81$ to 1.11) Cancer mortality: $0.4 \%(35 / 8,901)$ vs. $0.7 \%(58 / 8,901)$ RR 0.60 ($95 \% \mathrm{CI} 0.40$ to 0.92) Renal disorder: $6 \%(535 / 8,901)$ vs. $5 \%(480 / 8,901)$; RR 1.11 ($95 \% \mathrm{CI} 0.99$ to 1.26) Bleeding: $3 \%(258 / 8,901)$ vs. $3 \%(275 / 8,901)$; RR 0.94 ($95 \% \mathrm{Cl} 0.79$ to 1.11) Hepatic disorder: $2 \%(216 / 8,901)$ vs. $2 \%(186 / 8,901)$; RR 1.16 ($95 \% \mathrm{Cl} 0.96$ to 1.41) Diabetes: $3 \%(270 / 8,901)$ vs. 2\% (216/8,901); RR 1.25 (95% CI 1.05 to 1.49) Stroke: $0.1 \%(6 / 8,901)$ vs. $0.1 \% ~(9 / 8,901)$; RR 0.67 (95% CI 0.24 to 1.87) ALT elevation ≥ 3 times ULN on consecutive visits: $0.3 \%(23 / 8,901)$ vs. $0.2 \% ~(17 / 8901)$; $\mathrm{p}=\mathrm{NS}$ Myalgia: $16 \%(1,421 / 8,901)$ vs. $15.4 \%(1,375 / 8,901)$; RR 1.03 ($95 \% \mathrm{CI} 0.97$ to 1.11) Rhabdomyolysis: $<0.1 \%(1 / 8,901)$ vs. $0 \%(0 / 8,901)$ Myopathy: $0.1 \%(10 / 8,901)$ vs. $0.1 \%(9 / 8,901)$; RR 1.11 (95% CI 0.45 to 2.73)	Good	AstraZeneca
Glynn, 2010 ${ }^{\prime \prime}$	A vs. B - Age (<70 years vs. ≥ 70 years) For all adverse events assessed (serious adverse events, myopathy, rhabdomyolysis, cancer, diabetes, GI , renal or hepatic disorder, event rates were higher in placebo groups but no difference between <70 vs ≥ 70 year; p for interaction >0.10 for all comparisons	See above	See above
Mora, 2010 ${ }^{\text {80 }}$	A vs. B-Sex Tests for heterogeneity not significant for between group difference for any harm including serious AEs, cancer, diabetes, rhabdomyolysis and myopathy.	See above	See above
Albert, 2011 ${ }^{\text {/6 }}$	A vs. B-Race/ethnicity Diabetes diagnosis more likely in Blacks vs. Whites: HR 1.38 (95\% CI 1.04 to 1.85)	See above	See above
Koenig, 2011 ${ }^{\text {/9 }}$	A vs. B - Framingham 10-year risk $\mathbf{> 2 0 \%}$ Any adverse event: 80\% (626/786) vs. 80\% (617/772); RR 1.0 (95\% CI 0.95 to 1.05) Serious adverse events: 20% ($154 / 786$) vs. 20% ($153 / 772$); RR 0.99 ($95 \% \mathrm{CI} 0.81$ to 1.21) Myalgia: $6 \%(46 / 786)$ vs. 5% ($41 / 772$); RR 1.10 ($95 \% \mathrm{Cl} 0.73$ to 1.66) Myositis: $0 \%(0 / 786)$ vs. 0.1% (1/772); RR 0.33 ($95 \% \mathrm{CI} 0.01$ to 8.03) Myopathy: No cases in either group Rhabdomyolysis: No cases in either group Newly diagnosed cancer: 5\% (46/786) vs. 5\% (41/772); RR 1.10 ($95 \% \mathrm{CI} 0.73$ to 1.66) Cancer mortality: $1 \%(9 / 786)$ vs. 1% (11/772); RR 0.81 (95% CI 0.34 to 1.93) Gastrointestinal disorder: $26 \%(206 / 786)$ vs. 28% (214/772); RR 0.95 ($95 \% \mathrm{Cl} 0.80$ to 1.11) Renal disorder: 13% (100/786) vs. 11% ($87 / 772$); RR 1.13 ($95 \% \mathrm{CI} 0.86$ to 1.48) Hepatic disorder: 2\% (19/786) vs. 2\% (14/772); RR 1.33 (95% CI 0.67 to 2.64) Diabetes: $3 \%(24 / 786)$ vs. 4% (34/772); RR 0.69 ($95 \% \mathrm{Cl} 0.42$ to 1.16)	See above	See above

Study name Author, year	Adverse events	Quality rating	Funding source
Koenig, 2011 ${ }^{\text {9 }}$ (cont'd)	A vs. B - SCORE $\geq 5 \%$ Extrapolated Model Any adverse event: 80\% (3,681/4,619) vs. 79\% (3,704/4,683); RR 1.01 ($95 \% \mathrm{Cl} 0.999$ to 1.03) Serious adverse events: $19 \%(855 / 4,619)$ vs. $19 \%(878 / 4,683)$; RR 0.99 ($95 \% \mathrm{CI} 0.91$ to 1.07) Myalgia: 8\% (363/4,619) vs. 7\% (303/4,683); RR 1.21 ($95 \% \mathrm{Cl} 1.05$ to 1.41) Myositis: $0.1 \%(3 / 4,619)$ vs. $0.1 \%(3 / 4,683)$; RR 1.01 ($95 \% \mathrm{CI} 0.20$ to 5.02) Myopathy: $0 \%(0 / 4,619)$ vs. $<0.001 \%(1 / 4,683)$; RR 0.34 ($95 \% \mathrm{CI} 0.01$ to 8.30) Rhabdomyolysis: $<0.001 \%(1 / 4,619)$ vs. $0 \%(0 / 4,683)$; RR 3.04 ($95 \% \mathrm{Cl} 0.12$ to 75) Newly diagnosed cancer: $4 \%(195 / 4,619)$ vs. $5 \%(212 / 4,683)$; RR 0.93 ($95 \% \mathrm{CI} 0.77$ to 1.13) Cancer mortality: $0.6 \%(29 / 4,619)$ vs. $1 \%(48 / 4,683)$; RR 0.61 ($95 \% \mathrm{CI} 0.39$ to 0.97) GI disorder: 26\% (1,184/4,619) vs. 25\% (1,175/4,683); RR 1.02 ($95 \% \mathrm{CI} 0.95$ to 1.10) Renal disorder: $11 \%(487 / 4,619)$ vs. $11 \%(523 / 4,683)$; RR 0.94 ($95 \% \mathrm{CI} 0.84$ to 1.06) Hepatic disorder: 2\% (103/4,619) vs. 2\% (101/4,683); RR 1.03 ($95 \% \mathrm{CI} 0.79$ to 1.36) Diabetes: $3 \%(131 / 4,619)$ vs. 3% ($116 / 4,683$); RR 1.15 ($95 \% \mathrm{Cl} 0.89$ to 1.47) A vs. B-SCORE $\geq 5 \%$ Capped Model Any adverse event: $80 \%(2,490 / 3,130)$ vs. 79%; $(2,510 / 3,177)$; RR 1.01 ($95 \% \mathrm{CI} 0.98$ to 1.03) Serious adverse events: $17 \%(5,44 / 3,130)$ vs. $19 \% ~(587 / 3,177)$; RR 0.94 ($95 \% \mathrm{CI} 0.85$ to 1.05) Myalgia: 7\% (233/3,130) vs. 6\% (183/3,177); RR 1.12 ($95 \% \mathrm{Cl} 0.93$ to 1.36) Myositis: $0.1 \%(3 / 3,130)$ vs. $0.1 \%(2 / 3,177)$; RR 1.52 ($95 \% \mathrm{Cl} 0.25$ to 9.11) Myopathy: $0 \%(0 / 3,130)$ vs. $<0.001 \%(1 / 3,177)$; RR 0.34 ($95 \% \mathrm{Cl} 0.01$ to 8.30) Rhabdomyolysis: $<0.001 \%(1 / 3,130)$ vs. $0 \%(0 / 3,177)$; RR 3.05 ($95 \% \mathrm{Cl} 0.12$ to 75) Newly diagnosed cancer: $4 \%(116 / 3,130)$ vs. $5 \%(145 / 3,177)$; RR 0.81 ($95 \% \mathrm{CI} 0.64$ to 1.03) Cancer mortality: $0.6 \%(19 / 3,130)$ vs. $1 \%(40 / 3,177)$; RR 0.48 ($95 \% \mathrm{CI} 0.28$ to 0.84) GI disorder: 24\% (763/3,130) vs. 23\% (737/3,177); RR 1.06 ($95 \% \mathrm{Cl} 0.96$ to 1.15) Renal disorder: $11 \%(355 / 3,130)$ vs. $11 \%(354 / 3,177)$; RR 1.02 ($95 \% \mathrm{CI} 0.89$ to 1.17) Hepatic disorder: $2 \%(65 / 3,130)$ vs. 2\% (57/3,177); RR 1.16 ($95 \% \mathrm{Cl} 0.81$ to 1.65) Diabetes: $3 \%(84 / 3,130)$ vs. $3 \%(83 / 3,177)$; RR 1.03 (95% CI 0.76 to 1.39)	See above	See above
KAPS			
Salonen, 1995 ${ }^{\text {81 }}$	A vs. B Cancer: 0.5\% (1/212) vs. 0% ($0 / 212$); RR 3.00 ($95 \% \mathrm{Cl} 0.12$ to 73) ALT ≥ 3 times ULN: 1.8% (4/212) vs. 1.3% ($3 / 212$); p=NS Myalgia: 22.8% vs. 20.2% (numerators and denominators not reported)	Good	Academy of Finland; Bristol-Myers Squibb Pharmaceutical research Institute
MEGA			
Nakamura, 2006 ${ }^{82}$ Other publications: Tajima, 2008 ${ }^{83}$ MEGA Study Group 2004^{84}	A vs. B Cancer: $3 \%(119 / 3,866)$ vs. $3 \%(126 / 3,966)$; HR 0.97 ($95 \% \mathrm{CI} 0.76$ to 1.25) Withdrawals: $11 \%(425 / 3,866)$ vs. $8 \%(332 / 3,966)$; RR 1.31 (95% CI 1.15 to 1.51) ALT >100 IU/L: $2.8 \%(107 / 3,866)$ vs. $2.8 \%(104 / 3,966) ; p=N S$ AST >100 IU/L: $1.3 \%(50 / 3,866)$ vs. $1.4 \%(55 / 3,966) ; p=N S$ Rhabdomyolysis: 0\% vs. 0\%	Fair	Japanese Ministry of Healt, Labor and Welfare; Sankyo Co Ltd.

Appendix C1. Evidence Table of Randomized, Controlled Trials of Statins

Study name Author, year	Adverse events	Quality rating	Funding source
Kushiro, 2009 ${ }^{\text {86 }}$	A vs. B - Patients with hypertension at baseline Severe adverse events: $13 \%(212 / 1,613)$ vs. $12 \%(206 / 1,664)$ Cancer: $3 \%(51 / 1,613)$ vs. $3 \%(51 / 1,664)$ Rhabdomyolysis: No cases in either group	See above	See above
Mizuno, 2008 ${ }^{8 /}$	A vs. B - Women All cancer: $6 \%(74 / 2,638)$ vs. $6 \%(78 / 2,718)$; HR 0.98 ($95 \% \mathrm{Cl} 0.71$ to 1.35) Gastrointestinal cancer: 2\% (31/2,638) vs. 3\% (38/2,718); HR 0.84 ($95 \% \mathrm{Cl} 0.52$ to 1.35) Respiratory: $0.3 \%(4 / 2,638)$ vs. $0.4 \%(6 / 2,718)$; HR 0.69 ($95 \% \mathrm{CI} 0.20$ to 2.46) Breast: $0.7 \%(10 / 2,638)$ vs. $1 \%(15 / 2,718)$; HR 0.69 ($95 \% \mathrm{Cl} 0.31$ to 1.53) Genitourinary: $1 \%(14 / 2,638)$ vs. 0.7% (10/2,718); HR 1.45 ($95 \% \mathrm{CI} 0.64$ to 3.27)	See above	See above
Nakaya, 2011 ${ }^{88}$	A vs. B - Age Serious adverse events Age < 45 -Men: 7\% (10/141) vs. 4\% (5/141) -Women: 12\% (2/17) vs. 0\% (0.6) Age 45 to 49 -Men: 7\% (16/223) vs. $4 \%(8 / 220)$ -Women: $9 \%(11 / 128)$ vs. $5 \%(5 / 110)$ Age 50 to 54 -Men: 11% (25/227) vs. $7 \%(17 / 231)$ -Women: 6\% (27/454) vs. 7\% (31/476) Age 55-59 -Men: 10\% (19/199) vs. 14\% (28/208) -Women: 9\% (61/659) vs. 7\% (52/701) Age 60-64 -Men: 14\% (32/235) vs. 18\% (41/230) -Women: 10\% (68/696) vs. 9\% (62/716) Age ≥ 65 -Men: 25\% (50/203) vs. 25% (54/218) -Women: 12\% (83/684) vs. 13\% (92/709)	See above	See above
Nakamura, 2009 ${ }^{89}$	No difference between groups in any or specific cancer (data not shown)	See above	See above
METEOR			
Crouse, $2007{ }^{92}$	A vs. B Serious AEs: 0.9% (6/700) vs. 0\% (0/281); RR 5.23 ($95 \% \mathrm{Cl} 0.30$ to 93) Withdrawals due to AEs: 11% (79/700) vs. 8\% (22/281); RR 1.44 ($95 \% \mathrm{Cl} 0.92$ to 2.27) Myalgia: $13 \%(89 / 700)$ vs. $12 \%(34 / 281)$; RR 1.05 (95% CI 0.73 to 1.52) ALT >3 times ULN on at least 2 occasions: 0.6% (4/700) vs. $0.4 \% ~(1 / 281) ; p=N S$ Rhabdomyolysis: 0\% vs. 0\%	Fair	AstraZeneca

Study name Author, year	Adverse events	Quality rating	Funding source
Muldoon, 2004 ${ }^{\text {91 }}$	A vs. B vs. C Withdrawal due to adverse events: $3.9 \%(4 / 103)$ vs. $2.9 \%(3 / 103)$ vs. $0 \%(0 / 102)$ Withdrawal due to serious adverse event (stroke): $1 \%(1 / 103)$ vs. 0% ($0 / 103$) vs. $0(0 / 102)$ C vs. A+B Group difference in mean change of summary z-scores, statin-sensitive tests: 0.18 (95\% CI 0.07 to 0.29); $p=0.002$ Group difference in mean change of summary z-scores, statin-insensitive tests: 0.02 (95% $\mathrm{Cl}-0.07$ to 0.10); $\mathrm{p}=0.72$ Group difference in mean change of summary z-scores, new tests: 0.17 ($95 \% \mathrm{Cl} 0.05$ to 0.29); $p=0.007$ Performance improved in the placebo group but not the statin-exposed group on the Elithorn Maze ($p=0.02$), Recurrent Words ($p=0.04$), and 4-Word Short-Term Memory $(p=0.05)$ tests. However, groups differed at baseline on the Recurrent Words test.	Fair	National Institutes of Health Public Health Service
PREVEND-IT			
Asselbergs, 2004 ${ }^{\text {94 }}$	A vs. B Withdrawal due to adverse events: $3.0 \%(13 / 433)$ vs. $5.1 \%(22 / 431)$	Fair	Dutch Kidney Foundation, Netherlands Heart Foundation, and an unrestricted grant of Bristol Myers Squibb
WOSCOPS			
Shepherd, 1995^{95} Other publication: Freeman, 2001 ${ }^{100}$	A vs. B Cancer: $5 \%(166 / 3,302)$ vs. $3 \%(106 / 3,293)$; RR 1.56 (95% CI 1.23 to 1.98) Myalgia: $0.6 \%(19 / 3,302)$ vs. $0.6 \%(20 / 3,293)$; RR 0.95 ($95 \% \mathrm{Cl} 0.51$ to 1.77) Diabetes: $1.9 \%(57 / 2,999)$ vs. $2.8 \%(82 / 2,975)$; HR 0.70 ($95 \% \mathrm{CI} 0.50$ to 0.98) ALT elevation ≥ 3 times ULN: $0.5 \%(16 / 3,302)$ vs. $0.6 \%(20 / 3,293) ; p=N S$ AST elevation ≥ 3 times ULN: $0.8 \%(26 / 3,302)$ vs. $0.4 \%(12 / 3,293) ; p=N S$	Good	Bristol-Myers Squibb

Abbreviations: ACAPS=Asymptomatic Carotid Artery Progression Study; ACEi=Angiotensin-Converting Enzyme Inhibitor; AE= adverse event;
AFCAPS/TexCAPS=Air Force/Texas Coronary Atherosclerosis Prevention Study; age-adj=age adjusted; ALT=alanine aminotransferase; ARB=Angiotensin II Receptor Blocker; ARR=adjusted relative risk; ASCOT-LLA=Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm; ASPEN=Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-insulin Dependent Diabetes Mellitus; AST=aspartate aminotransferase; ASTRONOMER=Aortic Stenosis Progression Observation: Measuring Effects of Rosuvastatin; ATP-III=adult treatment panel-III; BMI=body mass index; BP=blood pressure; CABG=coronary-artery bypass graft; CAD=coronary artery disease; CAIUS=Carotid Atherosclerosis Italian Ultrasound Study; CARDS=Collaborative Atorvastatin Diabetes Study; $\mathrm{CHD}=$ coronary heart disease; $\mathrm{CHF}=$ congestive heart failure; $\mathrm{CI}=$ confidence interval; co=corporation; $\mathrm{CKD}=$ chronic kidney disease; $\mathrm{CPK}=\mathrm{creatine}$ phosphokinase; CRP=c-reactive protein; CV=cardiovascular; CVA=cardiovascular accident; CVD=cardiovascular disease; DBP=diastolic blood pressure; dL=deciliter; ECG=electrocardiogram; eGFR=estimated glomerular filtration rate; HbA1c=hemoglobin type A1c; HDL=high density lipoprotein; HDL-C=high density lipoprotein cholesterol; HR=hazard ratio; HYRIM=Hypertension High Risk Management; IU=international unit; JUPITER=Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; KAPS=Kuopio Atherosclerosis Prevention Study; kg=kilogram; L=liter; LDL=low density lipoprotein; LDL-C=low density lipoprotein cholesterol; LVH=left ventricular hypertrophy; m=meter; MEGA=Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; METEOR=Measuring Effects on Intima-Media Thickness: an Evaluation of Rosuvastatin; mg=milligram; MI=myocardial infarction; min=minute; $\mathrm{mL}=$ milliliter; $\mathrm{mm} \mathrm{Hg}=$ millimeters of mercury; $\mathrm{mmol}=$ millimol; $\mathrm{n}=$ sample size; $\mathrm{NHLBI}=$ National Heart Lung and Blood Institute; NNT=number needed to treat; no.=number; NR=not reported; NS=not significant; PAD=peripheral artery disease; PTCA=percutaneous transluminal coronary angioplasty; PREVENDIT=Prevention of Renal and Vascular Endstage Disease Intervention Trial; RCT=randomized control trial; RR=relative risk; RRR=Relative Risk Reduction; SBP=systolic blood pressure; SCORE=Systematic Coronary Risk Evaluation; TC=total cholesterol; TIA=transient ischemic attack; UK=United Kingdom; ULN=upper limit of normal; US=United State; vs.=versus; WOSCOPS=West of Scotland Coronary Prevention Study Group.

Appendix C2. Quality Assessment of Randomized, Controlled Trials of Statins

Study name, author, year, reference	Randomization adequate?*	Allocation concealment adequate? \dagger	Groups similar at baseline?	Eligibility criteria specified?	Outcome assessors masked?	Care provider masked?	Patient masked?	Attrition and withdrawals reported?	Loss to followup: differential \ddagger / high§?	Analyze people in the groups in which they were randomized?	Quality rating
ACAPS Furberg, 1994^{51}	Yes	Unclear	Yes	Yes	Unclear	Unclear	Yes	Yes	No/No	Yes	Fair
AFCAPS/TexCAPS Downs, 1998^{53}	Unclear	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	No/Yes	Yes	Fair
ASCOT-LLA Sever, 2003^{59}	Yes	Unclear	Yes	Yes	Yes	Unclear	Yes	Yes	No/No	Yes	Fair
$\begin{aligned} & \text { ASPEN } \\ & \text { Knopp, } 2006^{62} \end{aligned}$	Unclear	Unclear	Yes	Yes	Unclear	Unclear	Yes	Yes	No/No	Yes	Fair
ASTRONOMER Chan, 2010 ${ }^{63}$	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	No/No	Yes	Good
$\begin{aligned} & \text { Beishuizen, } \\ & 2004^{64} \end{aligned}$	Yes	Unclear	Yes	Yes	Unclear	Unclear	Yes	Yes	Yes/No	No	Fair
Bone, 2007 ${ }^{\text {65 }}$	Yes	Unclear	Yes	Yes	Unclear	Unclear	Yes	Yes	No/Yes	Yes	Fair
CAIUS Mercuri, 1996^{66}	Yes	Unclear	Yes	Yes	Unclear	Unclear	Yes	Yes	Unclear/No	Yes	Fair
CARDS Colhoun, 2004^{68}	Yes	No/No	Yes	Good							
Heljić, 2009 ${ }^{\text {/1 }}$	Unclear	Unclear	Yes	Yes	Unclear	Unclear	Unclear	No	Unclear/ Unclear	Yes	Poor
HYRIM Anderssen, 2005 ${ }^{72}$	Unclear	Unclear	Yes	Yes	Unclear	Yes	Unclear	No	Unclear/ Unclear	Unclear	Fair
JUPITER Ridker, 2008^{73}	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	No/No	Yes	Good
KAPS Salonen, 1995^{81}	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	No/No	Yes	Good
MEGA Nakamura, 2006 ${ }^{82}$	Yes	Unclear	Yes	Yes	Unclear	No	No	Yes	No/No	Yes	Fair
METEOR Crouse, 2007^{92}	Unclear	Unclear	Yes	Yes	Yes	Unclear	Yes	Yes	No/No	Yes	Fair
Muldoon, $2004{ }^{\text {91 }}$	Unclear	Unclear	Yes	Yes	Unclear	Yes	Yes	Yes	No/No	Yes	Fair
$\begin{aligned} & \hline \text { PREVEND-IT } \\ & \text { Asselbergs, } 2004^{94} \end{aligned}$	Yes	Yes	No	Yes	Yes	Unclear	Unclear	Yes	Unclear/ Unclear	Yes	Fair
WOSCOPS Shepherd, 1995^{95}	Yes	No/Yes	Yes	Good							

*Adequate randomization methods include computer-generated randomization, use of a random numbers table, or coin flip.
\dagger Adequate allocation concealment methods include allocation using opaque sealed envelopes or centralized allocation by persons without contact with the patient.
$\ddagger>10 \%$ difference in loss to follow-up rate between groups.
§ $>20 \%$ overall loss to follow-up.

Appendix C2. Quality Assessment of Randomized, Controlled Trials of Statins

Abbreviations: ACAPS=Asymptomatic Carotid Artery Progression Study; AFCAPS/TexCAPS=Air Force/Texas Coronary Atherosclerosis Prevention Study; ASCOT-LLA=Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm; ASPEN=Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-insulin Dependent Diabetes Mellitus; ASTRONOMER=Aortic Stenosis Progression Observation: Measuring Effects of Rosuvastatin; CAIUS=Carotid Atherosclerosis Italian Ultrasound Study; CARDS=Collaborative Atorvastatin Diabetes Study; HYRIM=Hypertension High Risk Management; JUPITER=Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; KAPS=Kuopio Atherosclerosis Prevention Study; MEGA=Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; METEOR=Measuring Effects on Intima-Media Thickness: an Evaluation of Rosuvastatin; PREVEND-IT=Prevention of Renal and Vascular Endstage Disease Intervention Trial; WOSCOPS=West of Scotland Coronary Prevention Study Group.

Appendix D Figure 1. Meta-Analysis: Statins vs. Placebo on All-Cause Mortality

Note: See Appendix B for trial name abbreviations.

Appendix D Figure 2. Meta-Analysis: Statins vs. Placebo on Cardiovascular Mortality

Appendix D Figure 4. Meta-Analysis: Statins vs. Placebo on Fatal and Nonfatal Myocardial Infarction

Appendix D Figure 5. Meta-Analysis: Statins vs. Placebo on Revascularization

Appendix D Figure 6. Meta-Analysis: Statins vs. Placebo on Composite Cardiovascular Outcomes

	Statin		Control		Risk Ratio		Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95\% CI	M-H, Rand	95\% CI			
ACAPS* ${ }^{*}$,	5	460	14	459	1.3\%	0.36 [0.13 to 0.98]					
AFCAPS/TexCAPS ${ }^{\dagger+53}$	116	3304	183	3301	13.7\%	0.63 [0.50 to 0.80]	-				
ASCOT-LLA ${ }^{\ddagger, 59}$	178	5168	247	5137	16.1\%	0.72 [0.59 to 0.87]	-				
ASPEN ${ }^{8,62}$	100	959	102	946	11.8\%	0.97 [0.75 to 1.26]					
Beishuizen, et al., 20004 ${ }^{11,64}$	2	103	12	79	0.6\%	0.13 [0.03 to 0.55]					
CARDS ${ }^{\text {T1,68 }}$	51	1428	77	1410	8.3\%	0.65 [0.46 to 0.92]	$\square \square$				
Heljić, 2009**,71	3	45	7	50	0.8\%	0.48 [0.13 to 1.73]					
HYRIM ${ }^{\dagger+72}$	11	283	15	285	2.3\%	0.74 [0.35 to 1.58]					
JUPITER ${ }^{\ddagger \ddagger, 73}$	148	8901	251	8901	15.3\%	0.59 [0.48 to 0.72]	-				
MEGA ${ }^{\S \S, 82}$	66	3866	101	3966	9.7\%	0.67 [0.49 to 0.91]	-				
PREVEND-IT ${ }^{111,94}$	21	433	24	431	3.8\%	0.87 [0.49 to 1.54]					
WOSCOPS ${ }^{4 \pi, 95}$	174	3302	248	3293	16.2\%	0.70 [0.58 to 0.84]	-				
Total (95\% CI)		28252		28258	100.0\%	0.69 [0.61 to 0.77]	\rangle				
Total events	875		1281								
Heterogeneity: $\mathrm{Tau}^{2}=0.01$;	$C h i^{2}=17.3$	$d f=11$	(P=0.10);	${ }^{2}=37 \%$			$\begin{array}{ccc} 1 & 1 & 1 \\ 0.1 & 0.2 & 0.5 \end{array}$				
Test for overall effect: $\mathrm{Z}=6.2$	20 ($\mathrm{P}<0.0$						Favors experimental	Favors control			
* CHD event, CVA or MI											
\dagger Fatal or nonfatal MI, unstable angina or sudden cardiac death											
\ddagger Fatal CHD, nonfatal MI, chronic stable angina, unstable angina, fatal and nonfatal heart failure											
§ CV mortality, fatal or nonfatal MI, nonfatal CVA revascularization, resuscitated cardiac arrest, unstable angina											
I\| Unspecified CV events											
If Fatal CHD, MI, unstable angina or resuscitated cardiac arrest											
** Unspecified coronary events											
$\dagger \dagger \mathrm{MI}$, sudden death, CVA, TIA or heart failure											
$\ddagger \ddagger$ CV mortality, nonfatal MI, nonfatal CVA, unstable angina or revascularization											
§§ Fatal or nonfatal MI, cardiac and sudden death, revascularization or angina											
\|			CV mortality or hospitalization for CV morbidity								
\\|TIT CHD death or nonfatal MI											

Appendix D Figure 7. Funnel Plot: Risk of Bias in Randomized Trials of Statins vs. Placebo on AllCause Mortality

Appendix D Figure 8. Funnel Plot: Risk of Bias in Randomized Trials of Statins vs. Placebo on Cardiovascular Mortality

Appendix D Figure 9. Funnel Plot: Risk of Bias in Randomized Trials of Statins vs. Placebo on Fatal and Nonfatal Stroke

Appendix D Figure 10. Funnel Plot: Risk of Bias in Randomized Trials of Statins vs. Placebo on Fatal and Nonfatal Myocardial Infarction

Appendix D Figure 11. Funnel Plot: Risk of Bias in Randomized Trials of Statins vs. Placebo on Composite Cardiovascular Outcomes

Appendix D Figure 12. Meta-Analysis: Statins vs. Placebo on Withdrawals Due to Adverse Events

Study or Subgroup	Statin		Control		Weight	Risk Ratio M-H, Random, 95\% CI	Risk Ratio M-H, Random, 95\% CI			
	Events	Total	Events	Total						
AFCAPS/TexCAPS ${ }^{53}$	1131	3304	1126	3301	50.2\%	1.00 [0.94 to 1.07]				
	41	134	48	135	1.9\%	0.86 [0.61 to 1.21]				
ASTRONOMER ${ }^{63}$	9	485	3	119	0.1\%	0.74 [0.20 to 2.68]		-		
Bone, $2007{ }^{65}$	19	1428	20	1410	0.6\%	0.94 [0.50 to 1.75]				
CARDS ${ }^{68}$ JUPITER ${ }^{73}$	1352	8901	1377	8901	47.2\%	0.98 [0.92 to 1.05]				
METEOR ${ }^{92}$	6	700	0	281	0.0\%	5.23 [0.30 to 92.5]				
Total (95\% CI)	14952		14147		100.0\%	0.99 [0.94 to 1.04]	1			
Total events	2558		2574							
Heterogeneity: $\mathrm{Tau}^{2}=0.00$; $\mathrm{Chi}^{2}=2.38$, df=5 $(P=0.79) ; \mathrm{I}^{2}=0 \%$ Test for overall effect: $\mathbf{Z = 0 . 4 2}(\mathrm{P}=0.68)$							0.2	0.5	2	5
							0.2	statin	ors	

Appendix D Figure 14. Meta-Analysis: Statins vs. Placebo on Any Cancer

Appendix D Figure 15. Meta-Analysis: Statins vs. Placebo on Fatal Cancer

Appendix D Figure 16. Meta-Analysis: Statins vs. Placebo on Incident Diabetes

Appendix D Figure 18. Meta-Analysis: Statins vs. Placebo on Rhabdomyolysis

Appendix D Figure 20. Meta-Analysis: Statins vs. Placebo on Liver Enzyme Abnormalities

