Screening for Hypertension in Children and Adolescents to Prevent Cardiovascular Disease

abstract

BACKGROUND AND OBJECTIVE: The prevalence of hypertension is increasing in children, and may persist into adulthood. This systematic review was conducted for the US Preventive Services Task Force recommendation on the effectiveness of screening asymptomatic children and adolescents for hypertension in order to prevent cardiovascular disease.

METHODS: Eligible studies were identified from Medline and the Cochrane Library (through July 2012). We included trials and controlled observational studies in asymptomatic children and adolescents on the effectiveness and harms of screening and treatment, as well as accuracy of blood pressure measurement. One author extracted study characteristics and results, which were checked for accuracy by a second author.
RESULTS: No studies evaluated the effects of screening for hypertension on health outcomes. Two studies of screening tests for elevated blood pressure reported moderate sensitivities ($0.65,0.72$) and specificities ($0.75,0.92$). Sensitivities and specificities of child hypertension for the later presence of adult hypertension (7 studies) were wide ranging ($0-0.63$ and $0.77-1.0$, respectively), and associations between child hypertension and carotid intima media thickening and proteinuria in young adults (3 studies) were inconsistent. Seven studies reported that drug interventions effectively lowered blood pressure in adolescents over short follow-up periods. No serious treatmentrelated adverse effects were reported.
CONCLUSIONS: There is no direct evidence that screening for hypertension in children and adolescents reduces adverse cardiovascular outcomes in adults. Additional studies are needed to improve diagnosis and risk stratification of children with elevated blood pressure and to quantify risks and benefits of interventions. Pediatrics 2013;131:490525

AUTHORS: Matthew Thompson, MD, MPH, DPhil, a, ${ }^{\text {ab }}$ Tracy
Dana, MLS, ${ }^{\text {a }}$ Christina Bougatsos, MPH, ${ }^{\text {a }}$ Ian Blazina, MPH, ${ }^{\text {a }}$ and Susan L. Norris, MD, MPH, MSc ${ }^{\text {a }}$
${ }^{a}$ Oregon Evidence-Based Practice Center, Oregon Health and Science University, Portland, Oregon; and ${ }^{b}$ Department of Primary Care Health Sciences, Oxford University, Oxford, United Kingdom

KEY WORDS

hypertension, children, adolescents, screening, treatment, drug, lifestyle

ABBREVIATIONS

ADAPT—Dietary/Exercise Alteration Program Trial
Cl—confidence interval
DBP—diastolic blood pressure
OR—odds ratio
RCT—randomized controlled trial
SBP—systolic blood pressure USPSTF-US Preventive Services Task Force

Dr Thompson made substantial contributions to conception and design, acquisition of data, analysis and interpretation of data, drafted the article and revised it critically for important intellectual content, and gave final approval of the version to be published. He is guarantor for this article. Ms Dana and Bougatsos, Mr Blazina, and Dr Norris made substantial contributions to conception and design, acquisition of data, analysis and interpretation of data, revised the article critically for important intellectual content, and gave final approval of the version to be published.

The staff at the Agency for Healthcare Research Quality and members of the US Preventive Services Task Force developed the scope of the work and reviewed draft manuscripts. Approval from the Agency for Healthcare Research Quality was required before the manuscript was submitted for publication, but the authors are solely responsible for the content and the decision to submit it for publication.
www.pediatrics.org/cgi/doi/10.1542/peds.2012-3523
doi:10.1542/peds.2012-3523
Accepted for publication Dec 19, 2012
Address correspondence to Matthew Thompson, MD, MPH, DPhil, Department of Primary Care Health Sciences, Oxford University, New Radcliffe House, Woodstock Road, Oxford OX2 6GG, UK. E-mail: matthew.thompson@phc.ox.ac.uk

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).
Copyright © 2013 by the American Academy of Pediatrics
FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.
FUNDING: This review was supported by the Agency for Healthcare Research Quality for the US Preventive Services Task Force under contract 290-2007-10057-I to support the work of the US Preventive Services Task Force.

Between 1% and 5% of children and adolescents have hypertension, and its prevalence has risen in the United States by 1% to 2% over recent decades. ${ }^{1-4}$ Hypertension is usually asymptomatic, and a significant proportion of children with hypertension are undiagnosed. ${ }^{5,6}$ Screening children and adolescents for elevated blood pressure could identify hypertension at an early stage where interventions could be initiated, potentially decreasing the rate of progression of hypertension from childhood to adulthood and reducing the clinical consequences of hypertension in adulthood.?
The strongest risk factor for primary hypertension in children of all ages and both genders is elevated $\mathrm{BMI}{ }^{8-14}$; children who are overweight or obese have a two- to threefold increased risk of hypertension. ${ }^{8-10}$ This increased risk is particularly concerning given that $\sim 17 \%$ of children and adolescents in the United States are now obese ${ }^{15}$ and have higher risk of other cardiovascular risk factors such as an adverse lipid profile and insulin resistance. ${ }^{16}$ Other risk factors for primary hypertension include low birth weight, gender, ethnicity, and a positive family history. ${ }^{2,3,9,10,17-19}$

Secondary hypertension is most commonly related to underlying renal parenchymal or renovascular disease; less common causes include aortic coarctation and endocrine disorders. ${ }^{20}$, ${ }^{21}$ Elevated blood pressure is usually only 1 clinical manifestation of the underlying disorder, and treatment is typically directed at correcting the underlying cause.

For the majority of children and adolescents, the rationale for identifying elevated blood pressure lies in the potential to stratify risk of future cardiovascular disease. There is convincing evidence that structural and functional changes in the cardiovascular system, which indicate early atherosclerosis, can be detected in adolescents and young adults. What is less clear are the nature and magnitude of the relationship between elevated blood pressure and other cardiovascular risk factors in children or adolescents and cardiovascular risk in adults. Cohort studies that have followed children to young adulthood suggest that adiposity, insulin resistance, and an adverse lipid profile progress at an increased rate in prehypertensive and hypertensive children and adolescents compared with normotensive children. ${ }^{7,22,23}$

AIMS OF THIS REVIEW

The purpose of this systematic review is to provide the US Preventive Services Task Force (USPSTF) with evidence to update their 2003 recommendation on screening for high blood pressure in children and adolescents. ${ }^{24}$ The larger review is available at www.uspreventiveservicestaskforce.org. ${ }^{25}$ With the input of members of the USPSTF, we developed an analytic framework (Fig 1) and key questions to guide our literature search and review.

1. Is screening for hypertension in children/adolescents effective in delaying the onset or reducing adverse health outcomes related to hypertension?
2. What is the diagnostic accuracy of screening tests for elevated blood pressure in children/adolescents?
3. What is the association between hypertension in children/adolescents and hypertension and other intermediate outcomes in adults?
4. What are the adverse effects of screening for hypertension in children/ adolescents, including labeling and anxiety?
5. What is the effectiveness of drug, nondrug, and combination interventions

FIGURE 1
Analytic framework and key questions. ${ }^{\text {a }}$ The assessment and treatment of secondary hypertension is beyond the scope of this review. ${ }^{\mathrm{b}}$ Includes left ventricular hypertrophy, urinary albumin excretion (microalbuminuria), intima media thickness (measured at carotid and/or femoral arteries), and retinal vascular changes. KQ, key question.
for treating primary hypertension in children/adolescents?
6. What is the effectiveness of drug, nondrug, and combination interventions initiated for the treatment of primary hypertension in children/ adolescents for reducing blood pressure and other intermediate outcomes in adults?
7. What is the effectiveness of drug, nondrug, and combination interventions initiated for the treatment of primary hypertension in children/ adolescents for reducing adverse health outcomes in adults related to primary hypertension?
8. What are the adverse effects of drug, nondrug, and combination interventions for treating primary hypertension in children/adolescents?

METHODS

This review was developed by the Oregon Evidence-Based Practice Center under contract with the Agency for Healthcare Research Quality (contract 290-2007-10057-I) and follows the systematic review methods of the USPSTF. ${ }^{26,27}$

Search Strategies

We searched the Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews (through July 2012) and Medline (1946 to July 9, 2012) for relevant studies and systematic reviews, and manually reviewed reference lists for relevant citations (Appendix 1).

Study Selection and Processes

Papers were selected for full review if they met predefined inclusion criteria (Appendix 2). Controlled studies of screening for hypertension in asymptomatic children and adolescents were included. For studies of diagnostic accuracy, eligible studies included a reference standard comparison and provided
adequate data to reproduce contingency tables. Evidence from randomized placebo-controlled trials was used to assess the efficacy of treatments on multiple outcomes, including blood pressure, other intermediate health outcomes, and final health outcomes, in childhood, adolescence, and adulthood. Studies with <30 participants and studies of interventions for the treatment of obesity and lipid disorders in children were excluded, because these populations are considered in other USPSTF recommendations..28,29 To assess harms of treatment, studies without a comparison or a placebo group were included. Studies of secondary hypertension were excluded, although some studies included proportions of participants with secondary hypertension.
All citations identified through searches and other sources were independently reviewed by 2 authors for inclusion and exclusion. Discrepancies at the full-text level were resolved through consensus. One author extracted data on the patient population, study design, testing methods, analysis, follow-up, and results, and a second author checked data extraction for accuracy.

Quality Assessment and Synthesis

By using predefined criteria developed by the USPSTF, 262 authors rated the quality of studies (good, fair, poor) and resolved discrepancies by consensus. Authors assessed the overall strength of the body of evidence for each key question as good, fair, or poor by using methods developed by the USPSTF on the basis of the number, quality, and sample size of studies, as well as the consistency of results among studies and directness of the evidence. ${ }^{26}$ The limited number of studies and the heterogeneity of study designs, interventions, and diagnostic tests precluded meta-analyses; results are therefore summarized qualitatively as means or as ranges, as appropriate.

RESULTS

Our literature search identified a total of 6435 citations, of which we reviewed 1059 full-text publications and included 34 studies (Fig 2).

Key Question 1: Is Screening for Hypertension in Children/ Adolescents Effective in Delaying the Onset or Reducing Adverse Health Outcomes Related to Hypertension?

No randomized trials compared health outcomes related to hypertension in screened versus nonscreened child or adolescent populations.

Key Question 2: What Is the Diagnostic Accuracy of Screening Tests for Elevated Blood Pressure in Children and Adolescents?

We identified 2 fair-quality studies that provided data on the diagnostic accuracy of screening tests (Appendix 3). 30,31 Compared with a reference standard of 24-hour ambulatory measurement, office-based blood pressure measurement (3 measurements at each of 2 clinic visits) had a sensitivity of 0.65 (95% confidence interval [CI], 0.450.80) and a specificity of $0.75(95 \% \mathrm{Cl}$, $0.63-0.84) .{ }^{31}$ The positive predictive value was 0.37 ($95 \% \mathrm{Cl}, 0.28-0.47$) and the negative predictive value was 0.63 ($95 \% \mathrm{Cl}, 0.53-0.72$). All 105 participants (mean age, 13 years) had been referred for evaluation at a specialty clinic, so they may not have been representative of screened populations of asymptomatic children. In addition, ambulatory measurement is not yet an internationally accepted reference standard in children and adolescents. A second study examined a random sample of 9017 eighth graders, of whom about 10\% (900/9017) had blood pressure >95 th percentile on initial screening, whereas the remainder (8117/9017) were normotensive. ${ }^{30}$ At follow-up in 10th grade, the sensitivity

FIGURE 2
Literature search flow diagram. ${ }^{\text {a }}$ Cochrane databases include the Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic
 did not provide enough data to recreate 2×2 tables or calculate sensitivity and specificity.
and specificity of initial elevated blood pressure for persistent elevation of blood pressure were 0.72 ($95 \% \mathrm{Cl}$, $0.65-0.78$) and 0.92 ($95 \% \mathrm{Cl}, 0.91-0.92$), respectively; however, the positive predictive value was low (0.17 [$95 \% \mathrm{Cl}$, $0.15-0.20]$). This study primarily followed only the sample of children whose initial screening test was positive rather than the entire population, which may have biased the diagnostic accuracy in this study.
In addition, 12 studies compared ≥ 1 measurement of blood pressure with subsequent reference measurements but did not meet our inclusion criteria because either they failed to apply the reference tests to participants who initially screened negative or they did not use an acceptable reference standard. ${ }^{11,32-42}$ Positive predictive values among these studies ranged from 0.04 to 0.53 . The reasons for this heterogeneity were unclear but did not appear
to be related to varying prevalence of hypertension, method or device used for testing, or thresholds used to define positive tests.

Key Question 3: What Is the Association Between Hypertension in Children/Adolescents and Hypertension and Other Intermediate Outcomes in Adults?

Ten Iongitudinal studies provided evidence on the association between elevated blood pressure or hypertension in childhood and elevated blood pressure, hypertension, or intermediate outcomes in adults (Appendix 4).7,43-51 These studies used different thresholds for defining elevated blood pressure and hypertension in childhood and different definitions of hypertension in adults. The sensitivities and specificities of elevated blood pressure or hypertension in childhood for predicting adult hypertension ranged from

0 to 0.63 and 0.77 to 1 , respectively, depending on thresholds. ${ }^{45,47,51}$ Positive predictive values (ie, the probability of adult hypertension given the presence of elevated blood pressure or hypertension in childhood) ranged from 0.19 to $0.65 .{ }^{45,47}$ Five studies reported significant associations between elevated blood pressure in childhood and hypertension in adults, with odds ratios (ORs) ranging from 1.1 to $4.5^{7,47}$ and relative risks ranging from 1.5 to $9.43,44,48$ Two studies reported conflicting findings on the association between childhood hypertension and carotid intima media thickness in young adults. Systolic blood pressure (SBP) >80 th percentile in adolescence was mildly associated with carotid intima media thickness in adulthood in 1 study (regression coefficient, $0.013 ; P<.001$). ${ }^{50}$ A second study, however, found no increased risk of carotid intima media thickness in adulthood related to
elevated systolic blood pressure in childhood (highest quartile versus lower 3 quartiles: OR, $1 ; 95 \% \mathrm{Cl}, 0.80-$ 1.25), although the level of SBP elevation is not defined in this study. ${ }^{49}$ Childhood hypertension was significantly associated with microalbuminuria in black but not white adults in a single study. ${ }^{46}$ We found no evidence for associations between diagnosed hypertension in childhood and other intermediate or final health outcomes.

Key Question 4: What Are the

 Adverse Effects of Screening for Hypertension in Children and Adolescents, Including Labeling and Anxiety?One small good-quality study compared 85 children (10-18 years of age) with elevated blood pressure identified by screening to children matched by age and gender from the same community. ${ }^{52}$ The only outcome reported was rates of school absenteeism, which did not differ significantly between the 2 groups.

Key Question 5: What Is the

 Effectiveness of Drug, Nondrug, and Combination Interventions for Treating Primary Hypertension in Children and Adolescents?Fourteen fair-quality randomized controlled trials (RCTs) ${ }^{33,53-66}$ (in 15 publications) of treatment of hypertension in children and adolescents met inclusion criteria (Table 1; Appendix 5). The proportion of children with primary hypertension ranged from $31 \%{ }^{54}$ to $56 \% 55$; however, most studies did not report the proportion of participants with secondary hypertension. $53,57-60,62,64-66$

Drug Interventions

All seven included trials of drug interventions examined different drugs. ${ }^{53-59}$ Most compared active drug (in different doses) to placebo, with follow-up of only 4 weeks. The magnitude of effects
on SBP and diastolic blood pressure (DBP) varied and were not consistently different from changes in blood pressure in the placebo group (or these differences were not reported).
Five studies ${ }^{53,54,57-59}$ reported the percentage of participants achieving target blood pressure at the end of the follow-up period, and all noted an increase in those who achieved target levels with the active drug (range 15$86 \%$ of subjects). However, 26\% to 47\% of children in the placebo groups also achieved normal blood pressure at the end of the study period. ${ }^{53-59}$ Most studies reported significant reductions in mean SBP (range, 1.9-10.2 mm Hg) and DBP (range, 0.4-8.1 mm Hg). Eplerenone ($50 \mathrm{mg} /$ day) produced a small increase in mean SBP and no change in DBP. ${ }^{55}$ Most studies had limitations, most notably the failure to report the statistical significance of differences between treatment groups in addition to within-group treatment differences. Also, comparison among studies was difficult because of varying drug dosages.

Drug Plus Lifestyle Interventions

The school-based A Dietary/Exercise Alteration Program Trial (ADAPT) examined the effectiveness of a multicomponent, school-based intervention, including nutrition education for and promotion of diet modification to children and parents; expanded community availability of low-sodium foods in grocery stores, restaurants, and school lunches; a school-based exercise program; and propranolol and chlorthalidone compared with a no intervention group. ${ }^{60,61}$ This complex intervention resulted in a significant decrease in both SBP and DBP at the 6-month follow-up (mean SBP change: -7.6 mm Hg [$P<.0001$]; mean DBP change: $-6.9 \mathrm{~mm} \mathrm{Hg}[P<.01]$) compared with the control group. At 30 months, however, SBP increased from baseline in
both the intervention (1.4 mm Hg) and control groups (3.5 mm Hg), although DBP remained below baseline levels (mean change: -4.2 mm Hg in the intervention group and -3.3 mm Hg in the control group).

Lifestyle Interventions

Most of the six trials examining lifestyle interventions included support related to the interventions (eg, regular checkins) in addition to diet, exercise, or meditation. ${ }^{33,62-66}$ Only 1 study demonstrated statistically significant reductions in blood pressure compared with untreated controls. ${ }^{64}$ This small, school-based RCT compared the effects of 5 versus 3 weekly physical education classes in hypertensive children and reported that blood pressure decreased significantly more in participants receiving 5 weekly classes over the 8 -month follow-up period (mean between-group difference in $\mathrm{SBP}=-4.9$ mm Hg and DBP $=-3.8 \mathrm{~mm} \mathrm{Hg} ; P<.05$ for both outcomes). ${ }^{64}$ In another trial, a low-sodium diet combined with personalized support from a nutritionist and/or potassium chloride supplementation was effective in reducing blood pressure compared with usual care plus placebo at 36 months among girls but not among boys. ${ }^{66}$ Other studies of meditation, ${ }^{63}$ relaxation, ${ }^{33}$ and dietary changes ${ }^{62,65}$ reported no significant differences between intervention and control groups.

Key Question 6: What Is the Effectiveness of Drug, Nondrug, and Combination Interventions Initiated for the Treatment of Primary Hypertension in Children/ Adolescents for Reducing Blood Pressure and Other Intermediate Outcomes in Adults?

No RCTs examined the effectiveness of interventions for hypertension in children or adolescents for reducing blood pressure or other intermediate outcomes in adults.

TABLE 1 Effect of Interventions on Blood Pressure: Reported Mean Differences From Baseline and/or Placebo

Author, Year, Duration	Interventions	Baseline (mm Hg)		Follow-up (mm Hg)		Mean Difference: Follow-up Versus Baseline (mm Hg)		Mean Difference at Follow-up: Intervention Versus Placebo (mm Hg)		
		SBP	DBP	SBP	DBP	SBP	DBP	SBP	DBP	
Drug interventions										
Batisky et al 2007^{76} (4 wk)	Metoprolol $0.2 \mathrm{mg} / \mathrm{kg}$	131.4	76.3	126.2	73.2	-5.2	-3.1	-4.6	-6.1	
	Metoprolol $1.0 \mathrm{mg} / \mathrm{kg}$	135.0	81.0	127.3	76.1	-7.7	-4.9	-3.5	-3.2	
	Metoprolol $2.0 \mathrm{mg} / \mathrm{kg}$	130.60	76.7	124.3	69.2	-6.3	-7.5	-0.2	-10.1	
	Placebo	132.7	81.4	130.8	79.3	-1.9	-2.1	-	-	
Flynn et al $2004{ }^{54}$ (4 wk)	Amlodipine 2.5 mg	$137.9^{\text {a }}$	$74.2^{\text {a }}$	Not reported		-6.9	-4.2	Not reported		
	Amlodipine 5 mg					-8.7	-4.4			
	Placebo					-3.6	-0.4	-	-	
Li et al $2010^{55}(4 \mathrm{wk})$	Eplerenone 25 mg	125.0	71.3	124.1	70.7	-0.9	-0.6	-5.4	0.8	
	Eplerenone 50 mg	125.7	70.9	126.2	70.9	0.5	0.0	-3.3	1.0	
	Eplerenone 100 mg	128.1	70.3	127.0	69.4	-1.1	-0.9	-2.5	-0.5	
	Placebo (mean, all arms)	128.7	70.4	129.5	69.9	0.8	-0.5	-	-	
Sorof et al $2002{ }^{56}$ (4 wk)	Bisoprolol + hydrochlorothiazide (all doses)	133.8	83.0	124.0	76.0	-9.8	-7.0	-4.5	-3.5	
	Placebo	133.8	81.8	128.5	79.5	-5.3	-2.3	-	-	
Trachtman et al 2003^{57} (3 wk)	Felodipine 2.5 mg			Not reported				-0.7	-2.1	
	Felodipine 5 mg					-0.1		-4.6		
	Felodipine 10 mg					-1.1		1.3		
	Placebo	Not reported	83.1	Not reported	81.0		Not reported	-2.1	-	-
Trachtman et al 2008^{58} (4 wk)	Candesartan (all doses)		Not reported				-10.2	-6.6	Not r	orted
	Placebo						-3.7	-1.8	-	-
Wells et al 2010^{59} (4 wk)	Telmisartan, low-dose	132.0	79.0	123.0	71.3	-9.7	-8.1	-3.6	-4.2	
	Telmisartan, high-dose	131.0	78.4	117.0	70.6	-14	-7.8	-8.5	-4.9	
	Placebo	130.0	78.4	126.0	75.5	-6	-3.5	-	-	
Drug plus lifestyle interventions										
Berenson et al $1983{ }^{60}$ (6 mo)	ADAPT program	116.6	77.7	109.0	70.8	-7.6	-6.9	-6.5	-3.6	
	Control	118.5	78.3	115.5	74.4	-3.0	-3.9	-	-	
Berenson et al $1990{ }^{61}(30 \mathrm{mo})^{\text {b }}$	ADAPT program	116.6	77.7	118.0	73.5	1.4	-4.2	-3.6	-1.7	
	Control	118.5	78.5	122.0	75.2	3.5	-3.3	-	-	
Lifestyle interventions										
Couch et al 2008^{62} (6 mo)	DASH diet	129.4	80.4	120.1	75.2	-9.3	-5.2	0.1	-1.2	
	Routine care	124.3	81.7	120.0	76.4	-4.3	-5.3	-	-	
Ewart et al 1987^{33} (9 mo)	Relaxation training	127.0	79.1	118.6	72.9	-8.4	-6.2	-2.3	-3.1	
	No intervention	126.5	80.4	120.9	76.0	-5.6	-4.4	-	-	
Gregoski et al 2011^{63} (3 mo)	Meditation	119.4	68.1	116.6	66.3	-2.8	-1.8	-4.4	-2.4	
	LifeSkills training	119.6	68.0	119.8	68.2	0.2	0.2	-1.2	-0.5	
	Regular health education	121.4	69.3	121.0	68.7	-0.4	-0.6	-	-	
Hansen et al 1991 ${ }^{64}$ (3 mo)	Extra physical education classes			Not reported				-4.9	-3.8	
	No extra classes							-	-	
Howe et al 1991 ${ }^{65}$ (4 wk)	Low sodium diet	$115.0^{\text {a }}$	$60.1^{\text {a }}$	112.6	59.1	Not reported		-1.2	-0.9	
	High sodium diet			113.8	60			-	-	

DASH, Dietary Approaches to Stop Hypertension; -, indicates that data is not available.
a Values for total cohort; data not stratified according to treatment group.
${ }^{\text {b }}$ Continuation of Berenson et al 1983 study.

Abstract

Key Question 7: What Is the Effectiveness of Drug, Nondrug, and Combination Interventions Initiated for the Treatment of Primary Hypertension in Children/ Adolescents for Reducing Adverse Health Outcomes in Adults Related to Primary Hypertension?

No RCTs examined the effectiveness of interventions for hypertension in children or adolescents for reducing clinical outcomes in adults.

Key Question 8: What Are the

 Adverse Effects of Drug, Nondrug, and Combination Interventions for Treating Primary Hypertension in Children and Adolescents?
Drug Interventions

Twelve trials reported adverse events with drug therapy (Appendix 6). ${ }^{53-59,67-71}$ One study was rated good quality ${ }^{67}$; the remainder were of fair quality. ${ }^{53-55,57-59,68-71}$ Four of the studies included children with primary hypertension, ${ }^{53,57-59}$ whereas the remainder included children with primary or secondary hypertension. ${ }^{54,55,67-71}$ The number of children enrolled in the studies ranged from 76 to 304 , the mean age ranged from 12 to 14 years, and the duration of follow-up for reporting adverse events ranged from 4 weeks to 1 year.

Serious adverse events were rarely reported, and there were no deaths in any of the studies. One study of metoprolol reported 1 case each of pneumonia and metometrorrhagia. ${ }^{53}$ Another study reported a case of near syncope and an elevated creatinine in a patient who received an incorrect dose of telmisartan. A third study reported 8 serious adverse events among 304 patients, although none were considered to be treatment related. ${ }^{55}$

Adverse event data were often poorly reported, and most studies reported noncomparative data from open-label extensions of RCTs. Five studies of monotherapy reported similar rates of
adverse events in the intervention (range, 27-77\%) and placebo groups (range, 25-66\%).55,57,59,67,68 Children taking a combination of bisoprolol plus hydrochlorothiazide had lower overall rates of adverse events compared with placebo (53-75\%, $P=.05$) after 12 weeks of follow-up. ${ }^{56}$ Withdrawals caused by adverse events ranged from 0% to 7% in children receiving active treatments ${ }^{53,54,56-59,67-71}$ and 0% to 6.2% in placebo groups. $53,56,58,59,67,68$ Headache was the most common specific adverse event in most studies: rates ranged from 2% to 33% in children receiving active treatments, ${ }^{53,56,57,59,68,71}$ but only 2 studies reported rates for the placebo group. One study reported that no headaches occurred in the placebo group compared with 11\% of active treatment patients, ${ }^{59}$ whereas in a second study, headache was reported in 31% versus 26\% (placebo versus combination treatment, significance not reported). ${ }^{56}$ Other commonly reported adverse events associated with active treatments were cough, upper respiratory infections, and gastrointestinal events, including nausea and diarrhea, although specific rates were not always reported. $53,54,56-59,68-71$
Two studies pooled adverse event data from selected drug trials submitted to the Food and Drug Administration over a 7-year period; however, neither study used standard systematic review methods. ${ }^{72,73}$ Pooled patient-level data from 1707 children from 10 placebocontrolled RCTs of 10 different active agents ${ }^{72}$ revealed similar rates of adverse events between active treatment (0.83 events per patient) and placebo groups (0.76 per patient) after 2 to 4 weeks of follow-up (betweengroup $P=.37$). Pooled data from 8 RCTs of hypertensive children revealed no difference in the incidence of cough between active treatment and placebo groups (3% in both groups; $P=.86$). ${ }^{73}$

Other Interventions

The fair-quality ADAPT of a propranolol and chlorthalidone/lifestyle intervention described in key question 54 reported no adverse events. ${ }^{60,61}$ No studies of lifestyle modification alone reported adverse events.

DISCUSSION

Direct evidence linking screening of children and adolescents for hypertension and delaying the onset or reducing the risk cardiovascular outcomes in adults is not available, and indirect evidence is sparse and of variable quality. We did not identify evidence for the effectiveness of interventions used to treat primary hypertension in children on lowering blood pressure levels or reducing adverse health outcomes in adults. A summary of the evidence is provided in Table 2
High-quality data on the diagnostic accuracy of blood pressure measurement to detect hypertension were also sparse and suggest moderate sensitivities (0.65 and 0.72), with somewhat higher specificities (0.75 and 0.92). These data suggest that many children who have elevated blood pressure on screening will not have hypertension. There are also some data to suggest that hypertension in childhood is associated with hypertension in young adults (0R range, 1.1-4.5; relative risk range, $1.5-9$) or has low to moderate sensitivities (0 and 0.63) and specificities (0.77 and 1) for predicting adult hypertension. Moreover, the association between childhood hypertension and carotid intima media thickness and microalbuminura in young adults was also inconclusive, and direct evidence on other intermediate or final health outcomes was lacking.
The effectiveness of antihypertensive medications in children and adolescents has been examined in 7 trials, all of which were small and of short duration, and each examined a different

TABLE 2 Summary of Evidence

| Number of Studies
 (Overall Quality) | Limitations | Consistency |
| :---: | :---: | :---: | | Applicability to |
| :---: |
| Primary Care |\quad Summary of Findings

No studies NA NA NA NA

Key question 2: What is the diagnostic accuracy of screening tests for elevated blood pressure in children/adolescents?
2 trials (poor) Studies were flawed or not directly applicable Consistent Low Sensitivity and specificity of office-based to an asymptomatic US population. Only $1 \quad$ screening for hypertension was 0.65 and included a comparison with a gold standard 0.75 (positive predictive value, 0.37) of ambulatory monitoring. compared with ambulatory screening in 1 study of a referred population.
A second, school-based study comparing an initial positive screen to subsequent diagnosis of hypertension had sensitivity (0.72) and specificity (0.92), but the positive predictive value was lower (0.17).
Key question 3: What is the association between hypertension in children/adolescents and hypertension and other intermediate outcomes in adults?
10 cohort studies (poor) Studies used different thresholds for defining Inconsistent Moderate Sensitivities and specificities of elevated blood elevated blood pressure and hypertension pressure or hypertension from childhood to in children and different definitions of adult hypertension ranged from 0 to 0.66 and hypertension in adults. Studies had specificities of 0.77 to 1 . PPVs ranged from methodologic shortcomings. 0.19 to 0.65 . Five studies reported significant associations between elevated blood pressure in childhood and hypertension in adults, with ORs ranging from 1.1 to 4.5 and RRs of 1.5 to 9 . Two studies reported associations between childhood hypertension and carotid intima media thickness in young adults, with conflicting findings. One study reported a significant association between childhood hypertension and microalbuminuria only in black individuals.
Key question 4: What are the adverse effects of screening for hypertension in children/adolescents, including labeling and anxiety?
1 study (poor) Evidence limited to results from 1, good-quality NA (1 study) High Children labeled as hypertensive did not miss study
more days of school in the year after diagnosis compared with prelabeling or compared with nonhypertensive children. Other harms associated with screening were not reported.
Key question 5: What is the effectiveness of drug, nondrug, and combination therapies for treating primary hypertension in children/adolescents?
14 RCTs (poor) Longest drug study duration was only 4 wk Consistent Moderate Children achieving normotensive status (on the basis of varying definitions) ranged from 15% to 86% in patients taking drug treatments and
11% to 48% in patients taking placebo.
For many studies, the proportion of children with secondary hypertension was unclear
(range 2-10 mm Hg), and mean DBP (range $0.4-8 \mathrm{~mm} \mathrm{Hg}$) with some drugs and dosages. The difference between intervention and placebo groups ranged from 0 to 9 mm Hg for SBP and 0.5 to 10 mm Hg for DBP. However, reductions were often only at higher doses of active treatments, and studies only lasted for 4 wk.
One school-based study of a drug plus lifestyle intervention reported a significant, sustained reduction in blood pressure in the combination group versus the control group.
Studies of nondrug therapies were limited, and only 1 study examining the effect of additional physical education classes in school reported a sustained mean reduction in blood pressure in for both boys and girls.

TABLE 2 Continued

Number of Studies (Overall Quality)	Limitations	Consistency	Applicability to Primary Care

Key question 6: What is the effectiveness of drug, nondrug, and combination therapies initiated for the treatment of primary hypertension in children/adolescents for reducing blood pressure and other intermediate outcomes in adults?
No studies NA NA NA NA

Key question 7: What is the effectiveness of drug, nondrug, and combination therapies initiated for the treatment of primary hypertension in children/adolescents for reducing adverse health outcomes in adults related to primary hypertension?
No studies NA NA NA NA

Key question 8: What are the adverse effects of drug, nondrug, and combination therapies for treating primary hypertension in children/adolescents?
15 studies (13 RCTs, 2 FDA Numerous trials from key question 5 did not Consistent Moderate Studies of antihypertensive drugs in children analyses) (fair) report comparative events rates between active treatment and placebo arms, and adverse event rates overall ere not welland adolescents generaly reported no significant difference between active treatments and placebo in adverse event rates or in withdrawals due to adverse events. In one study, a combination of bisoprolol and hydrochlorothiazide was associated with lower adverse event rates than placebo.
Four studies reported serious adverse events, although with the exception of 1 case of syncope due to a dosing error, serious adverse events were generally not deemed treatment related. Analysis of FDA data revealed no significant difference between drug treatments and placebo in the incidence of specific adverse events, including headache (the most commonly reported adverse event), cardiac events, gastrointestinal events, and cough.
No studies reported on harms associated with nondrug treatments.
FDA, Food and Drug Administration; NA, not applicable; PPV, positive predictive value; RR, relative risk.
agent. Most importantly, their antihypertensive effects varied in magnitude, were not consistently present for a given agent for both SBP and DBP, and were not consistently different from placebo or from baseline. Blood pressures in placebo groups often improved along with those of the intervention group, suggesting regression to the mean. From the limited data we identified, medications appeared to be well tolerated, with no serious adverse effects.

Interventions for treating elevated blood pressure that involve lifestyle interventions alone or in combination with an antihypertensive medication found inconsistent results. Of the 3 studies that had positive results, increased physical education at school was effective at reducing blood pressure in 1 study, ${ }^{64}$ whereas in a second longer-term school-based study, the
effects of an antihypertensive combined with a complex lifestyle program (the ADAPT program) were not sustained, ${ }^{60,61}$ and finally, a low sodium diet combined with personalized support was only effective in girls. ${ }^{66}$
The most important potential limitation of this review was the absence of any evidence to address several of the key questions and the limited quantity and quality of evidence for others. This lack of evidence inevitably limits the conclusions that can be drawn from this review. Second, our search strategy, although rigorous, may have failed to identify relevant studies. We used citation searching of included articles and reviewed all articles identified by the expert reviewers to augment our search strategy. We limited our search to English language publications, which could have limited eligible studies. We cannot exclude the possibility of
publication and selective reporting biases, but we were not able to formally test for this. In addition, by including only studies where the interventions were directed against treatment of hypertension (eg, rather than obesity), indirect evidence was excluded. Finally, identified studies had multiple deficiencies in reporting and methodology, which limited the data available for analysis and interpretation. Limitations included the lack of studies that examined 1 intervention in >1 trial or obvious clinical heterogeneity, precluding the use of meta-analyses.
Future research in this area needs to address the following major gaps in the current state of evidence.

- Diagnostic accuracy of blood pressure measurement in primary care and community settings for screening children of varying ages and characteristics. This includes
identifying the number, frequency, and timing of readings needed to confirm or rule out hypertension. ${ }^{74}$
- Adverse effects of screening, including health care utilization, burden on the family, and discomfort and anxiety for the child and family.
- Epidemiologic studies to describe the natural history of elevated blood pressure and hypertension in children and adolescents, identifying factors that predict persistence into adulthood, and regression to normal based on baseline characteristics such as age, BMI, and pattern of blood pressure. Such studies need to use current definitions of hypertension and be of sufficient duration to draw clinically useful conclusions. ${ }^{74,75}$
- Epidemiologic studies to better define thresholds used to define hypertension in children and adolescents and their association with both structural (eg, carotid intima media thickening, left ventricular mass) and functional (eg, arterial stiffening) markers of target end organ damage related to hypertension.
- Longer-term trials of benefits and risks of all antihypertensive agents (as monotherapy and in combination) and evidence for both shortand long-term safety. Given the expected duration of antihypertensive therapy, the absence of longterm safety data is a significant limitation.
- Large, controlled, good-quality trials of feasible nondrug interventions for children and adolescents using more sophisticated approaches to complex interventions to identify components that provide the greatest benefit over prolonged periods.

CONCLUSIONS

The prevalence of hypertension in children and adolescents is increasing in the United States, largely driven by increased BMI. Screening children for elevated blood pressure or hypertension has the potential to shift the management of hypertension to younger age groups and potentially reduce future cardiovascular disease risk in adults. However, at present, the evidence needed to support these practices is limited. Although it would be logistically (and ethically) very challenging to demonstrate the effects of interventions in children and adolescents

J Pediatr. 2009;155(2):299-300, author reply 299-300
5. Brady TM, Solomon BS, Neu AM, Siberry GK, Parekh RS. Patient-, provider-, and cliniclevel predictors of unrecognized elevated blood pressure in children. Pediatrics. 2010;125(6). Available at: www.pediatrics. org/cgi/content/full/125/6/e1286
6. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis of hypertension in children and adolescents. JAMA. 2007;298(8):874-879
7. Sun SS, Grave GD, Siervogel RM, Pickoff AA, Arslanian SS, Daniels SR. Systolic blood pressure in childhood predicts hyperten-
with elevated blood pressure on cardiovascular outcomes occurring many decades later in adults, there are clearly a number of outstanding research gaps that can be addressed by feasible research designs in a much shorter time frame. Increasingly, blood pressure is being viewed within a paradigm of overall cardiovascular risk stratification, along with other risk factors, such as lipid profiles, insulin resistance, and BMI. ${ }^{16}$ We anticipate that addressing these current gaps in the evidence for blood pressure will be critical to add to clinicians' ability to identify children and adolescents with increased cardiovascular risk and also to offer a balanced assessment of the overall benefit of interventions to reduce this risk and prevent future cardiovascular disease.

ACKNOWLEDGMENTS

The authors thank the responsible Medical Officer at the Agency of Healthcare Research and Quality, Iris MabryHernandez, MD, MPH, and US Preventive Services Task Force members Kirsten Bibbins-Domingo, PhD, MD, David Grossman, MD, MPH, Bernadette Melnyk, PhD, RN, CPNP/NPP, and Wanda Nicholson, MD, MPH. We also thank Matthew Gillman, MD, for providing clinical expertise.
sion and metabolic syndrome later in life. Pediatrics. 2007;119(2):237-246
8. Rosner B, Cook N, Portman R, Daniels S, Falkner B. Blood pressure differences by ethnic group among United States children and adolescents. Hypertension. 2009;54(3): 502-508
9. Falkner B, Gidding SS, Ramirez-Garnica G, Wiltrout SA, West D, Rappaport EB. The relationship of body mass index and blood pressure in primary care pediatric patients. J Pediatr. 2006;148(2):195-200
10. Sorof JM, Lai D, Turner J, Poffenbarger T, Portman RJ. Overweight, ethnicity, and the
prevalence of hypertension in school-aged children. Pediatrics. 2004;113(3 pt 1):475482
11. Moore WE, Eichner JE, Cohn EM, Thompson DM, Kobza CE, Abbott KE. Blood pressure screening of school children in a multiracial school district: the Healthy Kids Project. Am J Hypertens. 2009;22(4):351-356
12. Chiolero A, Cachat F, Burnier M, Paccaud F, Bovet P. Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight. J Hypertens. 2007;25(11):2209-2217
13. Liao CC, Su TC, Chien KL, et al. Elevated blood pressure, obesity, and hyperlipidemia. J Pediatr. 2009;155(1):79-83, 83, e1
14. Jago R, Harrell JS, McMurray RG, Edelstein S, El Ghormli L, Bassin S. Prevalence of abnormal lipid and blood pressure values among an ethnically diverse population of eighth-grade adolescents and screening implications. Pediatrics. 2006;117(6):20652073
15. Centers for Disease Control and Prevention. Overweight and obesity: data and statistics. Available at: www.cdc.gov/obesity/childhood/data.html. Accessed December 3, 2012
16. Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index systematic review and meta-analysis. BMJ. 2012;345:e4759
17. Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291(17):2107-2113
18. Jung FF, Ingelfinger JR. Hypertension in childhood and adolescence. Pediatr Rev. 1993;14(5):169-179
19. Hohn AR, Dwyer KM, Dwyer JH. Blood pressure in youth from four ethnic groups: the Pasadena Prevention Project. J Pediatr. 1994;125(3):368-373
20. Flynn JT. Evaluation and management of hypertension in childhood. Prog Pediatr Cardiol. 2001;12(2):177-188
21. Viera AJ, Neutze DM. Diagnosis of secondary hypertension: an age-based approach. Am Fam Physician. 2010;82(12): 1471-1478
22. Srinivasan SR, Myers L, Berenson GS. Changes in metabolic syndrome variables since childhood in prehypertensive and hypertensive subjects: the Bogalusa Heart Study. Hypertension. 2006;48(1):33-39
23. Rademacher ER, Jacobs DR Jr, Moran A, Steinberger J, Prineas RJ, Sinaiko A. Relation of blood pressure and body mass index during childhood to cardiovascular
risk factor levels in young adults. J Hypertens. 2009;27 (9):1766-1774
24. US Preventive Services Task Force. Guide to Clinical Preventive Services: Periodic Updates. 3rd ed. Rockville, MD: Agency for Healthcare Research and Quality; 2003
25. Thompson M, Bougatsos C, Dana T, Blazina I, Norris S. Screening for Hypertension in Children and Adolescents to Prevent Cardiovascular Disease: Systematic Review for the U.S. Preventive Services Task Force. Rockville, MD: Agency for Healthcare Research and Quality
26. Harris RP, Helfand M, Woolf SH, et al; Methods Work Group, Third US Preventive Services Task Force. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001;20(3 suppl):21-35
27. US Preventive Services Task Force. Procedure manual: section 4 evidence report development. Available at: www.uspreventiveservicestaskforce. org/uspstf08/methods/procmanual4.htm. Accessed December 3, 2012
28. Whitlock EP, O'Connor EA, Williams SB, Beil TL, Lutz KW. Effectiveness of weight management interventions in children: a targeted systematic review for the USPSTF. Pediatrics. 2010;125(2). Available at: www. pediatrics.org/cgi/content/full/125/2/ e396
29. Haney EM, Huffman LH, Bougatsos C, Freeman M, Steiner RD, Nelson HD. Screening and treatment for lipid disorders in children and adolescents: systematic evidence review for the US Preventive Services Task Force. Pediatrics. 2007;120(1). Available at: www.pediatrics.org/cgi/content/full/120/1/ e189
30. Fixler DE, Laird WP. Validity of mass blood pressure screening in children. Pediatrics. 1983;72(4):459-463
31. Stergiou GS, Nasothimiou E, Giovas P, Kapoyiannis A, Vazeou A. Diagnosis of hypertension in children and adolescents based on home versus ambulatory blood pressure monitoring. J Hypertens. 2008;26 (8):1556-1562
32. Berenson GS, Dalferes E Jr, Savage D, Webber LS, Bao W. Ambulatory blood pressure measurements in children and young adults selected by high and low casual blood pressure levels and parental history of hypertension: the Bogalusa Heart Study. Am J Med Sci. 1993;305(6): 374-382
33. Ewart CK, Harris WL, Iwata MM, Coates TJ, Bullock R, Simon B. Feasibility and effectiveness of school-based relaxation in lowering blood pressure. Health Psychol. 1987; 6(5):399-416
34. Fixler DE, Laird WP, Fitzgerald V, Stead S, Adams R. Hypertension screening in schools: results of the Dallas study. Pediatrics. 1979;63(1):32-36
35. Kelsall JE, Watson AR. Should school nurses measure blood pressure? Public Health. 1990;104(3):191-194
36. Michaud PA. Adolescent hypertension: a follow-up study in the community. Rev Epidemiol Sante Publique. 1989;37(1):23-28
37. Miller FS III, Record NB Jr. Hypertension control in rural Maine. Franklin County high blood pressure program. J Maine Med Assoc. 1976;67(9):280-283
38. Rames LK, Clarke WR, Connor WE, Reiter MA, Lauer RM. Normal blood pressure and the evaluation of sustained blood pressure elevation in childhood: the Muscatine study. Pediatrics. 1978;61(2):245-251
39. Reichman LB, Cooper BM, Blumenthal S, et al. Hypertension testing among high school students. I. Surveillance procedures and results. J Chronic Dis. 1975;28(3):161171
40. Sailors EL. Project "hypertension alert". J Sch Health. 1983;53(6):374-376
41. Sinaiko AR, Gomez-Marin 0, Prineas RJ. "Significant" diastolic hypertension in prehigh school black and white children. The children and adolescent blood pressure program. Am J Hypertens. 1988;1(2):178180
42. Stern B, Heyden S, Miller D, Latham G, KIimas A, Pilkington K. Intervention study in high school students with elevated blood pressures. Dietary experiment with polyunsaturated fatty acids. Nutr Metab. 1980; 24(3):137-147
43. Bao W, Threefoot SA, Srinivasan SR, Berenson GS. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa Heart Study. Am J Hypertens. 1995;8(7):657-665
44. Beckett LA, Rosner B, Roche AF, Guo S. Serial changes in blood pressure from adolescence into adulthood. Am J Epidemiol. 1992;135(10):1166-1177
45. Gillman MW, Cook NR, Rosner B, et al. Identifying children at high risk for the development of essential hypertension. J Pediatr. 1993;122(6):837-846
46. Hoq S, Chen W, Srinivasan SR, Berenson GS. Childhood blood pressure predicts adult microalbuminuria in African Americans, but not in whites: the Bogalusa Heart Study. Am J Hypertens. 2002;15(12):1036-1041
47. Juhola J, Magnussen CG, Viikari JSA, et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in

Young Finns Study. J Pediatr. 2011;159(4): 584-590
48. Lauer RM, Clarke WR, Mahoney LT, Witt J. Childhood predictors for high adult blood pressure. The Muscatine Study. Pediatr Clin North Am. 1993;40(1):23-40
49. Li S, Chen W, Srinivasan SR, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003;290 (17):2271-2276
50. Raitakari OT, Juonala M, Kähönen M, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003;290(17): 2277-2283
51. Shear CL, Burke GL, Freedman DS, Webber LS, Berenson GS. Designation of children with high blood pressure-considerations on percentile cut points and subsequent high blood pressure: the Bogalusa Heart Study. Am J Epidemiol. 1987;125(1):73-84
52. Stenn PG, Noce A, Buck C. A study of the labelling phenomenon in school children with elevated blood pressure. Clin Invest Med. 1981;4(3-4):179-181
53. Batisky DL, Sorof JM, Sugg J, et al; Toprol-XL Pediatric Hypertension Investigators. Efficacy and safety of extended release metoprolol succinate in hypertensive children 6 to 16 years of age: a clinical trial experience. J Pediatr. 2007;150(2):134-139, 139, e1
54. Flynn JT, Newburger JW, Daniels SR, et al; PATH-1 Investigators. A randomized, placebocontrolled trial of amlodipine in children with hypertension. J Pediatr. 2004;145(3): 353-359
55. Li JS, Flynn JT, Portman R, et al. The efficacy and safety of the novel aldosterone antagonist eplerenone in children with hypertension: a randomized, double-blind, doseresponse study. J Pediatr. 2010;157(2):282287
56. Sorof JM, Cargo P, Graepel J, et al. Betablocker/thiazide combination for treatment of hypertensive children: a randomized double-blind, placebo-controlled trial. Pediatr Nephrol. 2002;17(5):345-350
57. Trachtman H, Frank R, Mahan JD, et al. Clinical trial of extended-release felodipine in pediatric essential hypertension. Pediatr Nephrol. 2003;18(6):548-553
58. Trachtman H, Hainer JW, Sugg J, Teng R, Sorof JM, Radcliffe J; Candesartan in Children with Hypertension (CINCH) Investigators. Efficacy, safety, and phar-
macokinetics of candesartan cilexetil in hypertensive children aged 6 to 17 years. J Clin Hypertens (Greenwich). 2008;10(10): 743-750
59. Wells TG, Portman R, Norman P, Haertter S, Davidai G, Fei Wang . Safety, efficacy, and pharmacokinetics of telmisartan in pediatric patients with hypertension. Clin Pediatr (Phila). 2010;49(10):938946
60. Berenson GS, Voors AW, Webber LS, et al. A model of intervention for prevention of early essential hypertension in the 1980s. Hypertension. 1983;5(1):41-54
61. Berenson GS, Shear CL, Chiang YK, Webber LS, Voors AW. Combined Iow-dose medication and primary intervention over a 30 month period for sustained high blood pressure in childhood. Am J Med Sci. 1990; 299(2):79-86
62. Couch SC, Saelens BE, Levin L, Dart K, Falciglia G, Daniels SR. The efficacy of a clinicbased behavioral nutrition intervention emphasizing a DASH-type diet for adolescents with elevated blood pressure. J Pediatr. 2008;152(4):494-501
63. Gregoski MJ, Barnes VA, Tingen MS, Harshfield GA, Treiber FA. Breathing awareness meditation and LifeSkills Training programs influence upon ambulatory blood pressure and sodium excretion among African American adolescents. J Adolesc Health. 2011;48(1):59-64
64. Hansen HS, Froberg K, Hyldebrandt N, Nielsen JR. A controlled study of eight months of physical training and reduction of blood pressure in children: the Odense schoolchild study. BMJ. 1991;303(6804): 682-685
65. Howe PR, Cobiac L, Smith RM. Lack of effect of short-term changes in sodium intake on blood pressure in adolescent schoolchildren. J Hypertens. 1991;9(2):181-186
66. Sinaiko AR, Gomez-Marin 0, Prineas RJ. Effect of low sodium diet or potassium supplementation on adolescent blood pressure. Hypertension. 1993;21(6 pt 2):989994
67. Hazan L, Hernández Rodriguez OA, Bhorat AE, Miyazaki K, Tao B, Heyrman R; Assessment of Efficacy and Safety of Olmesartan in Pediatric Hypertension Study Group. A double-blind, dose-response study of the efficacy and safety of olmesartan medoxomil in children and adolescents with hypertension. Hypertension. 2010;55(6):13231330
68. Li JS, Berezny K, Kilaru R, et al. Is the extrapolated adult dose of fosinopril safe and effective in treating hypertensive children? Hypertension. 2004;44(3):289-293
69. Shahinfar S, Cano F, Soffer BA, et al. A double-blind, dose-response study of losartan in hypertensive children. Am J Hypertens. 2005;18(2 pt 1):183-190
70. Soffer B, Zhang Z, Miller K, Vogt BA, Shahinfar S. A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of lisinopril for children with hypertension. Am J Hypertens. 2003;16(10): 795-800
71. Wells T, Frame V, Soffer B, et al; Enalapril Pediatric Hypertension Collaborative Study Group. A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of enalapril for children with hypertension. J Clin Pharmacol. 2002;42(8): 870-880
72. Smith PB, Li JS, Murphy MD, Califf RM, Benjamin DK Jr. Safety of placebo controls in pediatric hypertension trials. Hypertension. 2008;51(4):829-833
73. Baker-Smith CM, Benjamin DK Jr, Califf RM, Murphy MD, Li JS, Smith PB. Cough in pediatric patients receiving angiotensinconverting enzyme inhibitor therapy or angiotensin receptor blocker therapy in randomized controlled trials. Clin Pharmacol Ther. 2010;87(6):668-671
74. Chen X, Wang Y, Appel LJ, Mi J. Impacts of measurement protocols on blood pressure tracking from childhood into adulthood: a metaregression analysis. Hypertension. 2008;51(3):642-649
75. Tirosh A, Afek A, Rudich A, et al. Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension. 2010;56(2):203209
76. Batisky DL. Obesity and the role of lifestyle and dietary intervention in the management of pediatric hypertension. J Med Liban. 2010;58(3):171-174
77. Juonala M, Viikari JSA, Hutri-Kähönen N, et al. The 21-year follow-up of the Cardiovascular Risk in Young Finns Study: risk factor levels, secular trends and east-west difference. J Intern Med. 2004;255(4):457468
78. Frank GC, Farris RP, Ditmarsen P, Voors AW, Berenson GS. An approach to primary preventive treatment for children with high blood pressure in a total community. J Am Coll Nutr. 1982;1(4):357-374

Database: Ovid Medline(R) and Ovid OLDMEDLINE(R)
1 Hypertension or hypertension.mp.
2 prehypertension.mp.
3 pre-hypertension.mp.
42 or 3
5 high blood pressure.mp.
6 or/1-5
7 Mass screening
86 and 7
9 Limit 8 to (English language and humans)
10 Limit 9 to "all child (0 to 18 years)"
119 and (child\$ or pediatri\$ or adolescen\$ or school-age).mp.
1210 or 11
Database: EBM Reviews: Cochrane Central Register of Controlled Trials
1 Hypertension/ or hypertension.mp.
2 prehypertension.mp.
3 pre-hypertension.mp.
42 or 3
5 high blood pressure.mp.
6 or/1-5
7 Mass screening/
86 and 7
98 and (child\$ or pediatri\$ or school or adolescen\$ or teen\$).mp.
Diagnostic accuracy
Database: Ovid Medline(R) and Ovid OLDMEDLINE(R)
1 Hypertension/
2 prehypertension.mp. or Prehypertension/
31 or 2
4 Blood pressure determination/
5 sensitivity.mp.
6 specificity.mp.
75 and 6
8 "Sensitivity and specificity"/
97 or 8
103 and 9
114 and 9
1210 or 11
13 Limit 12 to "all child (0 to 18 years)"
Database: EBM Reviews: Cochrane Central Register of Controlled Trials
1 Hypertension/
2 prehypertension.mp. or Prehypertension/
31 or 2
4 Blood pressure determination/
5 sensitivity.mp.
6 specificity.mp.
75 and 6
8 "Sensitivity and specificity"/
97 or 8
103 and 9
114 and 9
1210 or 11
1312 and (child\$ or pediatr\$ or school or adolescen\$ or teen\$).mp.

Tracking

Database: Ovid Medline(R) and Ovid OLDMEDLINE
1 "cardiovascular risk in young finns".mp.
2 "bogalusa heart".mp.
3 muscatine.mp.
4 ("childhood determinants of adult health" or cdah).mp. [mp=title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]
5or/1-4
65 and (child\$ or pediatric\$ or adolescen\$).mp. [mp=title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]

Screening

7 blood pressure.mp. or Blood Pressure/
8 Hypertension/ or hypertension.mp.
97 or 8
109 and (child\$ or pediatric\$ or adolescen\$).mp.
1110 and adult\$.mp. [mp=title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]
12 Longitudinal studies/
1311 and 12
146 or 13
15 "Amsterdam Growth and Health Longitudinal Study".mp.
1615 and (child\$ or pediatric\$ or adolescen\$).mp.
1714 or 16
1817 not pregnancy.mp. [mp=title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]
1917 not infan\$.mp. [mp=title, abstract, original title, name of substance word, subject heading word, protocol supplementary concept, rare disease supplementary concept, unique identifier]
2018 or 19
21 Limit 20 to (English language and humans)
22 Atherosclerosis/
23 Vascular diseases/
24 Albuminuria/
25 Cerebrovascular disorders/
26 Hypertrophy, Left ventricular/
27 Hypertension/
28 or/22-27
2921 and 28
Interventions
Database: Ovid Medline(R) and Ovid OLDMEDLINE(R)
1 Hypertension/dh, de, dt, pc, rt, rh, su, th [Diet Therapy, Drug Effects, Drug Therapy, Prevention \& Control, Radiotherapy, Rehabilitation, Surgery, Therapy]
2 Wt Loss/
3 Exercise/
4 dietary modification.mp. or Food Habits/
5 Diet, sodium-restricted/
6 Angiotensin-Converting Enzyme Inhibitors/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
7 Angiotensin II Type 1 Receptor Blockers/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
8 Labetalol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
9 Adrenergic β-Antagonists/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
10 Atenolol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
11 Bisoprolol/ad, ae, tu [Administration \& Dosage, Adverse Effects, Therapeutic Use]
12 Metoprolol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
13 Propranolol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
14 Calcium Channel Blockers/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
15 Amlodipine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
16 Felodipine/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
17 Isradipine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
18 Nifedipine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
19 Clonidine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
20 Diuretics/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
21 Hydrochlorothiazide/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
22 Chlorthalidone/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
23 Furosemide/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
24 Spironolactone/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
25 Triamterene/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity] (
26 Amiloride/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
27 Adrenergic α-Antagonists/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
28 Doxazosin/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
29 Prazosin/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
30 Vasodilator Agents/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
31 Hydralazine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
32 Minoxidil/ad, ae, po, tu [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use]
33 Captopril/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
34 Enalapril/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]

Screening

35 Fosinopril/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
36 Lisinopril/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
37 Losartan/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
38 (benazepril or quinapril or irbesartan or terazosin).mp.
39 or/2-38
40 Hypertension/
4139 and 40
421 or 41
43 Limit 42 to (English language and humans)
44 Limit 43 to "all child (0 to 18 years)"
Database: EBM Reviews: Cochrane Central Register of Controlled Trials
1 Wt Loss/
2 Exercise/
3 dietary modification.mp. or Food Habits/
4 Diet, Sodium-Restricted/
5 Angiotensin-Converting Enzyme Inhibitors/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity] 6 Angiotensin II Type 1 Receptor Blockers/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
7 Labetalol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
8 Adrenergic β-Antagonists/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
9 Atenolol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
10 Bisoprolol/ad, ae, tu [Administration \& Dosage, Adverse Effects, Therapeutic Use]
11 Metoprolol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
12 Propranolol/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
13 Calcium Channel Blockers/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
14 Amlodipine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
15 Felodipine/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
16 Isradipine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
17 Nifedipine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
18 Clonidine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
19 Diuretics/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
20 Hydrochlorothiazide/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
21 Chlorthalidone/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
22 Furosemide/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
23 Spironolactone/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
24 Triamterene/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
25 Amiloride/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
26 Adrenergic α-Antagonists/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
27 Doxazosin/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
28 Prazosin/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
29 Vasodilator Agents/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
30 Hydralazine/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
31 Minoxidil/ad, ae, po, tu [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use]
32 Captopril/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
33 Enalapril/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
34 Fosinopril/ad, ae, tu, to [Administration \& Dosage, Adverse Effects, Therapeutic Use, Toxicity]
35 Lisinopril/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
36 Losartan/ad, ae, po, tu, to [Administration \& Dosage, Adverse Effects, Poisoning, Therapeutic Use, Toxicity]
37 (benazepril or quinapril or irbesartan or terazosin).mp.
38 or/1-37
39 Blood Pressure/
4038 and 39
Systematic reviews
Database: EBM Reviews: Cochrane Database of Systematic Reviews
1 hypertension.ti.
2 blood pressure.ti.
31 or 2
43 and (child\$ or pediatri\$ or school or adolescen\$ or teen\$).mp.
54 not (neonat\$ or newborn or infan\$).ti.
65 not (pregnan\$ or postpartum).ti.

APPENDIX 2 Inclusion and Exclusion Criteria

	Key Questions	Inclusion Criteria	Exclusion Criteria
Settings	All	Primary care clinics, well-child/adolescent visits, school or community-based screening	Pediatric specialty/subspecialty clinics, inpatient, or Iong-term care settings, emergency or urgent care facilities
Populations	1,2 and 4	Asymptomatic, otherwise healthy children and adolescents, 0-18 y of age, with no known diagnosis of hypertension	Pregnant adolescents
	3 and 5-8:	Primary hypertension defined as average blood pressure between 95th percentile and 5 mm Hg above the 99th percentile	Majority of study population included secondary hypertension
Interventions	1-4:	Blood pressure measurements using auscultatory or oscillometric devices that can be performed in a primary care clinic	24-h, ambulatory, or home-based blood pressure measurements. Diagnostic tests or investigations used to identify or confirm possible causes of secondary hypertension
	5-8:	Drug: Antihypertensive medications which are currently FDAapproved for use in children/adolescents	Interventions for treatment of secondary hypertension
		Lifestyle: Diet, exercise, etc.	Interventions where reduction in blood pressure was not a primary objective of the study (eg, weight loss studies)
Outcomes	4, 5, and 6:	Blood pressure	Measures of cognitive function
		Left ventricular hypertrophy (defined using left ventricular mass index and/or measures of left ventricular geometry)	Blood pressure variability, such as diurnal variations or nocturnal blood pressure dipping
		Urinary albumin excretion (microalbuminuria)	Arterial wall dysfunction, including measures of arterial stiffness, pulse wave velocity, or augmentation index
		Intima-medial thickness (measured at carotid and/or femoral arteries)	Metabolic measures, eg, measures of impaired glucose tolerance, levels of insulin, lipid profiles, homocysteine levels
		Retinal vascular changes	uric acid levels
			Inflammatory markers including C-reactive protein Body changes in weight or BMI
	1 and 7:	Severe visual impairment	Studies reporting intermediate outcomes
		Stage IV or V chronic kidney disease	
		Cardiovascular events, including ischemic heart disease, heart failure	
		Cerebrovascular events, including hemorrhagic and thrombotic stroke, Hypertensive encephalopathy	
		Mortality (all-cause and disease-specific)	
	2	Measures of predictive validity of screening tests (eg, predictive value, likelihood ratios, sensitivity, specificity)	Studies that do not provide enough data to recreate 2×2 tables or calculate sensitivity and specificity
			Studies that do not use a true reference standard for comparison
	3	Measures of association (eg, odds ratio; risk ratio, sensitivity, specificity, correlation or regression coefficients)	Studies not reporting measures of association
	8	Side effects of hypertension treatments or interventions	-
Study designs	1	Randomized controlled trials, controlled clinical trials, observational studies with a comparison group (eg, comparative cohort and case-control studies), and systematic reviews	Study designs other than those specified
	2	Studies of predictive validity that compare with a reference standard (eg, ambulatory monitoring)	Study designs other than those specified
	3	Longitudinal cohort and epidemiology studies	Study designs other than those specified
	4 and 8	Randomized controlled trials, controlled clinical trials, observational studies with a comparison group (eg, large cohort and case-control studies), and systematic reviews. If none were identified, uncontrolled before-after studies were examined.	Study designs other than those specified
	5-7	Randomized controlled trials, controlled clinical trials, observational studies with a comparison group (eg, large cohort and case-control studies), and systematic reviews	Study designs other than those specified

APPENDIX 3 Diagnostic Accuracy of Screening for Elevated Blood Pressure in Children and Adolescents

Study, Year	Screening Test	Reference Standard	Definition of a Positive Screening Examination	Population	Sensitivity	Specificity	Positive Predictive Value	Negative Predictive Value	Quality Rating
Fixler and Laird 1983^{30}	Three measures with mercury manometer measured at least 4 wk apart	Initial screening results compared with subsequent measures	SBP or DBP ≥ 95 th percentile based on normative levels for the study population	$n=9017 ; \text { eighth }$ graders with followup at 10th grade; mean age not reported; all were in eighth grade at time of initial screening: 53\% male, 44\% black, 42% white, 14\% Hispanic	Initial positive screen versus subsequent screens: 0.72 (95% CI, 0.65-0.78)	Initial positive screen versus subsequent positive screening test: 0.92 ($95 \% \mathrm{Cl}$, 0.91-0.92)	Initial positive screen versus subsequent positive screening test: 0.17 ($95 \% \mathrm{Cl}$, 0.15-0.2)	Initial positive screen versus subsequent positive screening test: 0.993 ($95 \% \mathrm{Cl}$, 0.991-0.994)	Fair
Stergiou et al 2008^{31}	Three averaged measurements with mercury sphygmomanometer, measured in nondominant arm in sitting position after 5 min at rest	24-h ambulatory blood pressure measurements	SBP or DBP ≥ 95 th percentile based on US normative blood pressure tables	$N=102 ; 100 \%$ referred for screening; mean age 13 y (SD, 3; range, 6-18); 63\% male; race not reported	Positive ambulatory result versus positive clinic result: 0.65 (95\% Cl, 0.450.80)	Positive ambulatory result versus positive clinic result: 0.75 (95\% Cl, 0.630.84)	Positive ambulatory result versus positive clinic result: 0.37 ($95 \% \mathrm{Cl}, 0.28-$ 0.47)	Positive ambulatory result versus positive clinic result: 0.63 ($95 \% \mathrm{Cl}, 0.53-$ 0.72)	Fair

Outcomes

Quality Considerations			
Recruitment	Attrition: \% with complete data, \% of original N at follow-up	Measurement Mothod Stated for Time Periods?	Statistical Analysis and
Adjusted Variables			

Blood pressure outcomes

Bao et al 1995 ${ }^{43}$. Booglusa Heart Study (15 y)
>80 th percentile
SBP $>140 \mathrm{~mm} \mathrm{Hg}$ or DBP $>90 \mathrm{~mm} \mathrm{Hg}$ or ever treated for hypertension

Beckett et al 1992^{44}; Fels SBP not defined Longitudinal
Study (20 y)

DBP $>90 \mathrm{~mm} \mathrm{Hg}$

Hypertension at follow-up, baseline highest SBP quintile versus other SBP quintiles:
18\% (54/301) vs. 5% (60/ 1204); risk ratio 3.6; 95% CI, 2.5-5.1
Hypertension at follow-up, baseline highest DBP quintile versus other DBP quintiles:
15\% (45/301) vs. 6% (72/ 1204); risk ratio 2.5; 95\% Cl, 1.8-3.6
DBP 80 vs .60 mm Hg at age 15 and presence of hypertension at age 35:
Males: risk ratio 3.0; females: risk ratio 4.5
DBP 85 vs. 60 mm Hg at age 15 and presence of hypertension at age 35:
Males: risk ratio 3.9;
females: risk ratio 6.6
DBP 90 vs. 60 mm Hg at age 15 and presence of hypertension at age 35
Males: risk ratio 4.9;

Author, Year, and Study Name (Follow-up)	Definition of HTN in Childhood	Definition of HTN in Adulthood	Outcomes	Quality Considerations			
				Recruitment	Attrition: \% with complete data, \% of original N at follow-up	Measurement Method Stated for Both Time Periods?	Statistical Analysis and Adjusted Variables
$\begin{aligned} & \text { Gillman et al 199345; Study not } \\ & \text { named (12 y) } \end{aligned}$	>90 th percentile (SBP: 113 mm Hg , within study)	>90 th percentile (SBP: 139 mm Hg , within study)	```Positive predictive value, sensitivity, and specificity of BP at age 10 predicting BP \(>\) 90th percentile at age 20: SBP, males: \(>\) 75th percentile (108 mm Hg): \(0.26,0.59,0.80\) \(>90\) th percentile (113 \(\mathrm{mm} \mathrm{Hg}): ~ 0.35,0.33,0.93\) \(>95\) th percentile (117 mm Hg): \(0.44,0.17,0.97\) \(>99\) th percentile (123 \(\mathrm{mm} \mathrm{Hg}): ~ 0.58,0.04,>0.99\) SBP, females: \(>75\) th percentile (108 \(\mathrm{mm} \mathrm{Hg}): ~ 0.27,0.66,0.79\) \(>90\) th percentile (114 mm Hg): 0.39, 0.36, 0.94 \(>95\) th percentile (118 mm Hg): \(0.48,0.20,0.98\) \(>99 t h\) percentile (125 mm Hg): \(0.65,0.04,>0.99\) DBP, males: \(>75\) th percentile (68 \(\mathrm{mm} \mathrm{Hg}): 0.21,0.34,0.82\) \(>90\) th percentile (71 \(\mathrm{mm} \mathrm{Hg}): 0.24,0.16,0.93\) \(>95\) th percentile (73 \(\mathrm{mm} \mathrm{Hg}): 0.27,0.08,0.97\) \(>99\) th percentile (77 mm Hg): \(0.34,0.01,>0.99\) DBP, females \(>75\) th percentile (67 mm Hg): \(0.19,0.49,0.77\) \(>90\) th percentile (71 mm Hg): \(0.24,0.23,0.92\) \(>95\) th percentile (74 mm Hg): \(0.30,0.10,0.98\) \(>99\) th percentile (78 \(\mathrm{mm} \mathrm{Hg}): ~: 0.38,0.02,>0.99\)```	Children from a single school in East Boston, MA; sampling method unclear	6\% (20/337) attrition	Yes	not applicable

Author, Year, and Study Name (Follow-up)	Definition of HTN in Childhood	Definition of HTN in Adulthood	Outcomes	Quality Considerations			
				Recruitment	Attrition: \% with complete data, \% of original N at follow-up	Measurement Method Stated for Both Time Periods?	Statistical Analysis and Adjusted Variables
Juhola et al 2011^{47}; Cardiovascular Risk in Young Finns Study (27 y)	≥ 95 th percentile	Unclear	Prehypertension or hypertension in adulthood and $\mathrm{BP} \geq 95$ th percentile in childhood: Female, ages 6 and 9: OR 2.4 (95\% Cl, 1.1-5.2) Female, ages 12, 15, and 18: OR 2.3 ($95 \% \mathrm{Cl}, 1.6-3.5$)	Finnish children and adolescents aged 3,6 , 9,12 , and 15 y randomly sampled from 5 cities	38.7\% (1392/3596) lost to follow-up at 27 y		Logistic regression; age, sex, race, study year
Other publication: Juonala et al 2004^{77}			Males, ages 6 and 9: OR 2.8 (95\% Cl, 1.5-5.1) Males, ages 12, 15, and 18: OR 2.1 ($95 \% \mathrm{Cl}, 1.5-3.1$) PPV, sensitivity, specificity of BP $>95 \%$ percentile in childhood and hypertension in adulthood All ages 6-18: 0.44; 0.1; 0.97				
Lauer et al 1993^{48}; Muscatine Study (unclear)	Unclear; results reported for >90th percentile	SBP or DBP >90 th percentile (cohort specific)	24% of children with BP >90 th percentile had $B P$ >90 th percentile in adulthood; risk ratio 2.4 $(P<.001)$ 39% of children with SBP >90 th percentile had SBP >80th percentile in adulthood; risk ratio 1.9 ($P<.001$) 17\% of children with DBP $>$ 90th percentile had DBP >90th percentile in adulthood; risk ratio 1.7 ($P<.001$) 32% of children with DBP $>$ 90th percentile had DBP $>$ 80th percentile in adulthood; risk ratio 1.5 ($P<.001$)	Unclear; data from 2445 subjects who completed baseline and follow-up surveys (number at baseline not reported)	No loss (Cohort selected based on availability of data)	Yes	not applicable

Author, Year, and Study Name (Follow-up)	Definition of HTN in Childhood	Definition of HTN in Adulthood	Outcomes	Quality Considerations			
				Recruitment	Attrition: \% with complete data, \% of original N at follow-up	Measurement Method Stated for Both Time Periods?	Statistical Analysis and Adjusted Variables
Shear et al 1987^{51}; Bogalusa Heart Study (8 y)	Not reported	$\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$	SBP \geq 80th percentile at years 1,4 , and 6 and hypertensive at followup: Sensitivity: 0.27; Specificity: 0.95 DBP \geq 80th percentile at years 1,4 , and 6 and hypertensive at followup: Sensitivity: 0.33; Specificity: 0.96 SBP ≥ 90 th percentile at years 1,4 , and 6 and hypertensive at followup:	Data from 1501 subjects who completed baseline and follow-up surveys (of 4238 subjects at baseline)	No loss (cohort selected based on availability of data; 35% of original subjects completed both surveys)		not applicable

Sensitivity: 0.13 ; Specificity:
0.99

DBP ≥ 90 th percentile at years 1,4 , and 6 and hypertensive at follow-
up:
Sensitivity: 0.07; Specificity: 0.99

SBP ≥ 95 th percentile at years 1,4 , and 6 and hypertensive at follow up:
Sensitivity: 0.07; Specificity: 1.0

DBP ≥ 95 th percentile at years 1,4 , and 6 and hypertensive at follow
up:
Sensitivity: 0.0; Specificity:

APPENDIX 4 Continued

Author, Year, and Study Name (Follow-up)	Definition of HTN in Childhood	Definition of HTN in Adulthood	Outcomes	Quality Considerations			
				Recruitment	Attrition: \% with complete data, \% of original N at follow-up	Measurement Method Stated for Both Time Periods?	Statistical Analysis and Adjusted Variables
Sun et al 2007^{7}; Fels Longitudinal Study (unclear)	Least-squares means determined according to age and gender (absolute values not reported)	$\begin{aligned} & \text { SBP }>130 \mathrm{~mm} \mathrm{Hg} \text { and/ } \\ & \text { or DBP }>85 \mathrm{~mm} \mathrm{Hg} \end{aligned}$	Odds of hypertension at > 30 y of age given SBP exceeding criterion values at single examination in childhood: Males 5-7 y old males: 3.8 (95% Cl, 1.5-9.7) 8-13 y old males: 3.5 (95\% CI, 1.5-8.3) $14-18$ y old males: 1.1 (95% CI, 0.5-2.4) Females 5-7 y old females: 4.5 (95\% Cl, 1.1-17.7) 8-13 y old females: 2.7 (95% Cl, 1.0-7.1) 14-18 y old females:3.8 (95\% CI, 1.2-12.7)	Unclear; data from 493 subjects who completed baseline and follow-up surveys (of 976 at baseline)	8\% loss to follow-up in Fels Longitudinal Study overall; data from 51% of original subjects	Yes	not applicable

Author, Year, and Study Name (Follow-up)	Definition of HTN in Childhood	Definition of HTN in Adulthood	Outcomes	Quality Considerations			
				Recruitment	Attrition: \% with complete data, \% of original N at follow-up	Measurement Method Stated for Both Time Periods?	Statistical Analysis and Adjusted Variables
Hoq et al 2002 ${ }^{46}$; Bogalusa Heart Study (16 y)	≥ 90 th percentile for age, ethnicity, and gender	≥ 90 th percentile for age, ethnicity, and gender	Annual change in BP on adulthood urinary albumin/creatinine ratio by ethnicity: Childhood SBP by ethnicity: Blacks: regression coefficient 0.016 ($P=.05$) Whites: regression coefficient -0.002 ($P=$.78) Annual change in SBP from childhood to adulthood by ethnicity: Blacks: regression coefficient 0.315 ($P=$.002) Whites: regression coefficient -0.045 ($P=$.55) Childhood DBP by ethnicity: Blacks: regression coefficient 0.026 ($P=$.012) Whites: regression coefficient -0.002 ($P=$.761) Annual change in DBP from childhood to adulthood by ethnicity: Blacks: regression coefficient 0.292 ($P=$.016) Whites: regression coefficient 0.063 ($P=.5$)	Unclear; data from 2122 subjects who completed baseline and follow-up surveys (of 3865 at baseline)	No loss (cohort selected based on availability of data; data from 55% of original subjects)	Yes	Logistic regression; sex, childhood age, BMI, BP, annual change in BP
Li et al 2003^{49}; Bogalusa Heart Study (22 y)	Not reported	Not reported	Odds of carotid intima media thickness in upper quartile given SBP risk factor (not defined): childhood (14-17 y): 1.00 ($95 \% \mathrm{Cl}, 0.80-1.25$)	Unclear; data from 486 subjects who completed baseline and follow-up surveys and carotid artery ultrasound (of 3865 at baseline)	NR (94\% [486/516] had data available); data from 13% of original subjects)	Yes	Logistic regression; age, race, sex

Author, Year, and Study Name (Follow-up)	Definition of HTN in Childhood	Definition of HTN in Adulthood	Outcomes	Quality Considerations			
				Recruitment	Attrition: \% with complete data, \% of original N at follow-up	Measurement Method Stated for Both Time Periods?	Statistical Analysis and Adjusted Variables
Raitakari et al 2003^{50}; Cardiovascular Risk in Young Finns Study (21 y)	≥ 80 th percentile	≥ 80 th percentile	Relationship between SBP >80 th percentile at age 12-18 (mean age 14.9 y) and carotid intima media thickness 21 y later: regression coefficient 0.013 (SE 0.003); $P<.001$	Finnish children and adolescents aged 3,6 , 9,12 , and 15 y randomly sampled from 5 cities	38% (1367/3596) lost to follow-up at 21 y	Yes	Logistic regression; age, sex

BMI, body mass index; BP, blood pressure; DBP, diastolic blood pressure; NR , not reported; PPV, positive predictive value; SBP, systolic blood pressure.

Author, Year (Quality Rating)	Study Design and Setting Duration	N	Demographic Characteristics	Intervention	Proportion of Patients Achieving ≤ 95 th Percentile of Blood Pressure for Age, Gender, and Height	Blood Pressure (mm Hg)
Drug interventions						
Batisky et al 2007^{53} (fair)	RCT	140	Mean age 13 (SD 2.8) y	Group A: Metoprolol ER $0.2 \mathrm{mg} / \mathrm{kg}$	Groups A-C pooled: 46\% (95\% CI, 3755)	Mean change from baseline, SBP:
	28 sites		70\% male	Group B: Metoprolol ER $1.0 \mathrm{mg} / \mathrm{kg}$	Group B: 26% (95\% CI, 8-44)	Group A: -5.2 ($95 \% \mathrm{Cl},-7.7$ to -2.6)
	United States		26\% black	Group C: Metoprolol ER $2.0 \mathrm{mg} / \mathrm{kg}$		Group B: -7.7 ($95 \% \mathrm{Cl},-11.3$ to -4.0)
	4 wk		Mean SBP: 132 mm Hg	Group D: Placebo		Group C: -6.3 ($95 \% \mathrm{Cl},-8.7$ to -3.8)
			Mean DBP: 78 mm Hg			Group D: -1.9 ($95 \% \mathrm{Cl},-5.5$ to 1.8)
			74% BMI $\geq 95 \%$ percentile			Mean change from baseline, DBP: Group A: -3.1 ($95 \% \mathrm{Cl},-5.7$ to -0.5)
						Group B: -4.9 ($95 \% \mathrm{Cl},-8.6$ to -1.3)
						Group C: -7.5 ($95 \% \mathrm{Cl},-10.0$ to -5.0)
						Group D: -2.1 (95\% Cl, -5.7 to 1.5)
Flynn et al 2004^{54} (fair)	RCT crossover	268	Mean age 12 (SD 3.3) y	Study Phase 2 (included placebo comparison)	SBP	Phase 2 results
	49 sites in North and South America		$\begin{aligned} & \text { Mean SBP: } 137.9 \text { (SD 12.7) } \\ & \text { mm Hg } \end{aligned}$	Group A: Amlodipine $2.5 \mathrm{mg} /$ day	Group A: 40\%	Mean change from baseline, SBP:
	4 wk		$\begin{aligned} & \text { Mean DBP: } 74.2 \text { (SD 11.6) } \\ & \text { mm Hg } \end{aligned}$	Group B: Amlodipine $5.0 \mathrm{mg} /$ day	Group B: 35\%	$\begin{aligned} & \text { Group A: }-6.9 \pm 12.5(P=N S)(P=.05 \\ & \text { versus placebo) } \end{aligned}$
			31.3\% (84/268) primary hypertension	Group C: Placebo	Group C: 30\%	$\begin{aligned} & \text { Group B: }-8.7 \pm 13.3(P=\text { NS })(-3.6 \\ & \pm 12.7, P=.01 \text { versus placebo }) \end{aligned}$
					DBP	Group C: $-3.6 \pm 12.7(P=$ NS $)$
					Group A: 42\%	Mean change from baseline, DBP:
					Group B: 75\%	Group A: $-4.2 \pm 10.7(P=N S)$
					Group C: 48\%	Group B: $-4.4 \pm 10.2(P=$ NS)
						Group C: -0.4 ± 11.0 ($P=$ NS)
Li et al 2010^{55} (fair)	RCT	304	Mean age not reported (53\% <12 y)	Study Phase B (included placebo comparison)	NR	Phase B results
	43 sites in the US, India, South Africa, Russia, and Dominican Republic		63\% male	Group A: Eplerenone 25 mg once daily		Least-squares mean change from baseline, SBP:
	4 wk		35\% black	Group B: Eplerenone 25 mg twice daily		Group A: $P=$ NS
			57\% white	Group C: Eplerenone 25 mg bid for 2 wk followed by 50 mg bid for 4 wk		Group B: 2.76 ($95 \% \mathrm{Cl},-5.5$ to 0; $P=$.048 versus placebo)
			11\% Hispanic	Group D: Placebo		Group C: $P=$ NS
			8\% Asian 56\% primary hypertension			Least-squares mean change from baseline (any group), DBP: $P=$ NS

Author, Year (Quality Rating)	Study Design and Setting Duration	N	Demographic Characteristics	Intervention	Proportion of Patients Achieving ≤ 95 th Percentile of Blood Pressure for Age, Gender, and Height	Blood Pressure ($\mathrm{mm} \mathrm{Hg} \mathrm{)}$
Sorof et al 2002^{56} (fair)	RCT	94	Mean age 14 y	Group A: Bisoprolol fumarate 2.5+ hydrochlorothiazide 6.25	NR	Least squares mean change from baseline, SBP:
	Clinical trial from 22 sites in United States and Brazil		57\% male	Group B: Bisoprolol 5 mg + hydrochlorothiazide 6.25 mg		Groups A-C pooled: -9.3 ($P<.05$ versus placebo)
	4 wk		43\% white	Group C.:: Bisoprolol fumarate 10 mg + hydrochlorothiazide 6.25 mg		Group D: -4.9
			41\% black	Group D: Placebo		Least-squares mean change from baseline, DBP:
			14\% Hispanic			Groups A-C pooled: -7.2 ($P<.05$ versus placebo)
			1\% Asian			Group D: -2.7
			1\% multiracial			
			Mean BMI $=28$			
Trachtman et al 2003^{57} (fair)	RCT	133	Mean age 12 y (SD 3)	Group A: 2.5 mg felodipine ER	BP ≤ 90 th percentile	Mean difference SBP at follow-up versus placebo ($95 \% \mathrm{Cl}$):
	Clinical trial at 30 sites in the United States		60\% male	Group B: 5 mg felodipine ER	Group A: 15\%	Group A: -0.71 (-4.8 to $3.38 ; P=$ NS)
	3 wk		39\% black	Group C: 10 mg felodipine ER, titrated to target dose	Group B: 18\%	Group B: -0.06 (-4.6 to 3.3; $P=$ NS)
				Group D: Placebo	Group C: 19\%	Group C: -1.73 (-6.58 to 3.13; $P=$ NS)
					Group D: 11\%	Mean difference DBP at follow-up versus placebo ($95 \% \mathrm{Cl}$): Group A: -2.07 (-6.82 to 2.69; $P=$ NS) Group B: -4.64 (-9.18 to 0.09; $P<$.05)
						Group C: 1.31 (-3.56 to 6.11; $P=$ NS)
Trachtman et al 2008^{58} (fair)	RCT	240	Mean age not reported (29\% $<12 \mathrm{y} ; 71 \%>12 \mathrm{y})$	Group A: Candesartan 2/4 mg	Group A: 54\%	Least-squares mean change from baseline, SBP:
	Clinical trial at 42 sites in United States and Europe		71\% male		Group B: 62\%	Groups A-C: -10.22 ($P<.0001$ versus placebo)
	4 wk		69% BMI ≥ 95 th percentile	Group B: Candesartan 8/16 mg	Group C: 65%	Group D: -3.66
			47\% black	Group C: Candesartan 16/32 mg	Group D: 31\%	Least squares mean change from baseline, DBP:
			45\% white	Group D: Placebo		```Groups A-C: -6.56 (\(P=.0029\) versus placebo) Group D: -1.8```

Author, Year (Quality Rating)	Study Design and Setting Duration	N	Demographic Characteristics	Intervention	Proportion of Patients Achieving ≤ 95 th Percentile of Blood Pressure for Age, Gender, and Height	Blood Pressure (mm Hg)
$\begin{aligned} & \text { Wells et al } 2010^{59} \\ & \text { (fair) } \end{aligned}$	RCT	77	Mean age: 14 y (SD 3 y)	Group A: Telmisartan $1 \mathrm{mg} / \mathrm{kg} /$ day (low-dose group)	$\begin{aligned} & \text { Group A: 50\% (6-<12 y); 68\% } \\ & \quad(12-<18 \mathrm{y}) \end{aligned}$	Adjusted mean difference SBP at follow-up versus placebo ($95 \% \mathrm{Cl}$):
	Clinical trial at 16 sites in United States, Brazil, and Mexico		57\% male	Group B: Telmisartan $1 \mathrm{mg} / \mathrm{kg} /$ day, titrated up to $2 \mathrm{mg} / \mathrm{k} /$ day after 1 wk (high-dose group)	$\begin{aligned} & \text { Group B: } 86 \%(6-<12 \text { y); } 79 \% \\ & \quad(12-<18 \text { y) } \end{aligned}$	Group A: $-3.6(-9.2$ to 1.9, $P=$ NS)
	4 wk		51\% white 37\% black	Group C: Placebo	$\begin{aligned} & \text { Group C: } 33 \%(6-<12 \text { y); } 27 \% \\ & \quad(12-<18 \text { y) } \end{aligned}$	Group B -8.5 (-14 to -3.0, $P=.0027$)
						Adjusted mean difference DBP at follow-up versus placebo: Group A: $-4.5(-9.5$ to $0.4, P=\mathrm{NS})$ Group B: $-4.8(-9.7$ to $0, P=.051)$
Drug plus lifestyle interventions						
Berenson et al 1983^{60} (fair)	RCT	150	NR	ADAPT Program	NR	Mean change from baseline, SBP:
	School-based in United Sates			Group A: Propranolol 20-40 mg + chlorthalidone 6.25-12.5 mg + nutrition education and promotion of dietary modification		Group A: -7.6
Other publication: Frank et al 1982^{78}	6 mo			Group B: Hypertensive control group with no treatment		Group B: -3.0 Mean change from baseline, DBP: Group A: -6.9 Group B: -3.9
Berenson et al 1990^{61} (fair)	RCT School-based in United States	150	Mean age 12 y 55% male	Same as above	NR	Adjusted mean difference, SBP: Group A versus Group B: - 3.6 (SD 1.12; $P<.01)$
Continuation of Berenson et al 1983^{60}	30 mo		47\% white Mean SBP 117.7 mm Hg Mean DBP 78.1 mm Hg			Adjusted mean difference DBP: Group A versus Group B: -1.7 (SD 0.82; $P<.05)$
Lifestyle interventions						
Diet						
Couch et al 2008^{62} (fair)	RCT	57	Mean age 14 y	Group A: DASH-type diet modified for adolescent population + counseling	NR	Mean difference at follow-up, SBP:
	Cincinnati Children's Hospital Medical Center, United States		63\% male	Group B: Counseling alone		Group A versus Group B: 0.1
	6 mo		Mean SBP 128.7 mm Hg Mean DBP 80.5 mm Hg			Mean difference at follow-up, DBP:
						Group A versus Group B: -1.2 Proportion achieving normotensive status: Group A 61\% versus Group B 44\%; $P=$ NS
Howe et al 1991^{65} (fair)	RCT crossover	103	Mean age 13 y (range 11-14y)	Group A: Low-sodium diet ($<75 \mathrm{mmol} /$ day) + counseling	NR	No significant differences in SBP or DBP between diets; baseline values not reported
	School-based		Mean SBP 115.0 mm Hg	Group B: High-sodium diet (>150 $\mathrm{mmol} /$ day) diet + counseling		
	Adelaide, Australia 2 phases of 4 wk each		Mean DBP 60.1 mm Hg			

Author, Year (Quality Rating)	Study Design and Setting Duration	N	Demographic Characteristics	Intervention	Proportion of Patients Achieving ≤ 95 th Percentile of Blood Pressure for Age, Gender, and Height	Blood Pressure (mm Hg)
Sinaiko et al 1993^{66} (fair)	RCT	210	Mean age 13 y	Group A: Low sodium diet ($<70 \mathrm{mmol}$ / day)	NR	Changes in SBP:
	St. Paul and Minneapolis public schools, United States		50\% male	Group B: Potassium chloride supplementation		Boys: No significant differences in rates of increase in SBP between low sodium, potassium supplement, and placebo groups.
	3 y		Mean SBP 113.8 mm Hg	Group C: Participant's usual diet + placebo		Girls: Significant difference in SBP between low sodium group (slight overall decrease) and the placebo group (significant increase from baseline). No other differences between groups.
			Mean DBP 65.1 mm Hg			Changes in DBP:
						Boys: No significant differences in rates of increase in BP between low sodium, potassium supplement, and placebo groups
						Girls: The low sodium group was the only group that had rates of increase in DBP compared with placebo that were significantly greater than zero
Exercise						
Hansen et al 1991^{64} (fair)	RCT	137	Age range 9-11 y	Group A: 3 extra lessons per week of an ordinary school physical education program	NR	Mean difference at follow-up, SBP:
			Other demographic characteristics: NR	Group B: No extra physical education lessons		Group A versus Group B: -4.9 ; $P<.05$
	School-based					Mean difference at follow-up, DBP:
	8 mo					
Meditation						

Author, Year (Quality Rating)	Study Design and Setting Duration	N	Demographic Characteristics	Intervention	Proportion of Patients Achieving ≤ 95 th Percentile of Blood Pressure for Age, Gender, and Height	Blood Pressure (mm Hg)
Gregoski et al 2011^{63} (fair)	RCT	166	Mean age 15 y	Group A: Breathing awareness meditation	NR	Mean 24-h SBP at 3-mo follow-up:
	School-based in United States		59\% female	Group B: LifeSkills training (weekly 50min sessions focusing on training in problem-solving skills, reflective listening, conflict resolution, anger management to enhance social skills and assertiveness)		Group A versus Group B versus Group C:
	3 mo		100\% black	Group C: Health education control		116.6 vs 119.8 vs 121.0
			Mean SBP 118.9 mm Hg			Group A versus Group B: $P=$ NS
			Mean DBP 63.6 mm Hg			Group A versus Group C: $P=.05$
						Mean 24-h DBP at 3-mo follow-up: Group A versus Group B versus Group C:
						66.3 vs 68.2 vs 68.7; $P=\mathrm{NS}$ for all comparisons
Progressive muscle relaxation						
Ewart et al 1987^{33} (fair)	RCT	159	BMI range: 19.0-31.2	Group A: Progressive muscle	NR	No significant differences between
	2 large US Baltimore City public high schools		Mean age 15 y (range 13-17 y)	relaxation ($12 \mathrm{wk}, 15-20 \mathrm{~min}, 4 \mathrm{~d} /$ wk) provided in school		SBP and DBP between treatment and control groups
	9 mo		60\% male			
			55\% black			

[^0]

Author, Year (Quality Rating)	Relevance	Type of Study Setting and Duration	Mean Age (SD) (y)	Number Randomized or Analyzed	Intervention	AEs
Hazan et al 2010^{67} (good)	Primary hypertension 75\% (225/ 302); Patients with clinically significant medical condition or chronic disease, malignant or severe hypertension excluded	RCT Clinical trial at 61 sites; 2 cohorts stratified by race 2-wk washout period Phase 1: 3-wk dosing study Phase 2: 2-wk withdrawal study	12.2 (2.97)	422 screened 302 randomized	Olmesartan medoxomil	Any adverse event: olmesartan 33/93 (36\%) versus placebo 27/89 (30) Incidence of specific AEs not reported; headache most common
Li et al 2004^{68} (fair)	Hypertensive (20.9\% with renal etiology, otherwise not reported), or high-normal blood pressure in the presence of associated clinical condition such as diabetes mellitus	Dose-ranging RCT; 78 clinical centers in United States, Russia, Israel Phase A: 10-day run-in	12.1 (2.6)	376 screened	Fosinopril	Overall study withdrawals across all 4 phases of study due to AEs: 5/253 (2\%) Phase C: Incidence of AEs similan between placebo (33.9\%) and combined fosinopril treatment groups (34.3\%)
		Phase B: 4-wk dose-ranging		253 randomized		Phase D: Specific AEs:
		Phase C: 2-wk withdrawal versus placebo				Headache: 51/253 (20\%)
		Phase D: 1-y open-label safety phase				Nasopharyngitis: 24/253 (10\%) Cough: 23/253 (9\%)
						Pharyngitis: 22/253 (9\%) Abdominal pain: 16/253 (6\%)

Author, Year (Quality Rating)	Relevance	Type of Study Setting and Duration	Mean Age (SD) (y)	Number Randomized or Analyzed	Intervention	AEs
Soffer et al 2003^{70} (fair)	Hypertension; unclear severity of underlying kidney disease (study entry required glomerural filtration rate ≥ 30 $\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$)	Dose-ranging RCT	Mean not reported 47\% $<6-12$ y, 53\% 13-16	115 randomized	Lisinopril	Withdrawals due to AEs: 1/115 (<1\%)
		Phase 1 randomized to 3 different doses, phase 2 randomized washout	y			Drug-related AEs: 14/115 (12\%)
		Multisite (number and location not reported); 29 days				Headache: 4/115 (4\%)
						Gastrointestinal (abdominal pain, diarrhea, nausea and/or vomiting): 2/115 (2\%)
						Dizziness: 2/115 (2\%)
						Cough: 1/115 (<1\%)
Sorof et al 2002^{56} (fair)	Excluded severe hypertension and correctable secondary hypertension	RCT	13.8 (3.1)	```94 randomized (62 treatment + 32 placebo)```	B/HT ($n=62$):	B/HT group had fewer overall AEs than placebo group, 33/62 (53\%) vs $24 / 32$ (75\%) ($P=.047$) and fewer serious AEs, 1/62 (2\%) vs $5 / 32(16 \%)(P=.016)$
		Clinical trial from 22 centers in United States and Brazil				B/HT group:
		2-wk run-in, 8-wk titration period, - wk dose maintenance period, 2-wk tapering period			B $2.5 \mathrm{mg} / \mathrm{HT} 6.25 \mathrm{mg}$	Most common AE was headache (26\%)
					B $5 \mathrm{mg} / \mathrm{HT} 6.25 \mathrm{mg}$	1 patient had severe hypertension, and discontinued the study.
					B $10 \mathrm{mg} / \mathrm{HT} 6.25 \mathrm{mg}$	Placebo group:
						Most common AE was headache (31\%)
					Placebo ($n=32$)	2 patients had severe hypertension, and discontinued the study
Trachtman et al 2003^{57} (fair)	Excluded secondary hypertension	RCT	12.1 (2.7)	133 randomized	ER felodipine	1 withdrawal due to "heart racing"; heart rate was 96 bpm and ECG normal; and 1 withdrawal due to vomiting the first dose (5 mg)
		Clinical trial at 30 sites in the United States			$2.5 \mathrm{mg}(n=33), 5 \mathrm{mg}(n=340$, or $10 \mathrm{mg}(n=31)$, titrated to target dose over 2-3 wk, depending on dosage Placebo ($n=35$)	\%reporting AEs: placebo 66\% and $64 \%, 56 \%$, and 77% in the felodine ER $2.5 \mathrm{mg}, 5.0 \mathrm{mg}$, and 10 mg groups, respectively
		1- to 3 -wk screening period, 2- to 3-wk dose titration period, 3wk maintenance study				Most common AEs were headaches (33\%), respiratory infections (12\%), and nausea (10\%)
						Pedal edema was noted in 2 (2\%) of patients

Author, Year (Quality Rating)	Relevance	Type of Study Setting and Duration	Mean Age (SD) (y)	Number Randomized or Analyzed	Intervention	AEs
Trachtman et al 2008^{58} (fair)	Excluded secondary hypertension	RCT	\% Age > 12 y: 70.8\%	240 randomized	4 wk trial:	$3 / 240$ patients in the 4 wk trial and $5 / 233$ patients in the 52 wk study discontinued due to AEs, specifically hypotension, arm fracture, dizziness, headache, low white blood cell count, and progression of underlying renal disease (2 patients)
	Other hypertensives, except for other angiotension receptor blockers, were permitted	Clinical trial at 42 sites in United States and Europe			Candesartan doses 2, 8, and 16 $\mathrm{mg} /$ day for those $<50 \mathrm{~kg}$, and 4,16 , and $32 \mathrm{mg} /$ day for those $\geq 50 \mathrm{~kg}$	Most common AEs: headache, upper respiratory infection, dizziness, cough, and sore throat
		4-wk trial and 1-y open-label study			Placebo	
					Open label study:	
					Candesartan at 4 or $8 \mathrm{mg} /$ day to start, but later adjusted to control BP	
Wells et al 2002^{71} (fair)	Severe or symptomatic hypertension excluded	Dose-ranging RCT 2-wk dose ranging phase and 2- wk placebo controlled washout phase	Median 12 y	110 enrolled	Enalapril	Drug-related AEs: 12/110 (11\%)
						Dizziness: 4/110 (4\%)
						Headache: 2/110 (2\%)
						Cough: 3/110 (3\%)
						No incidence of renal failure, angioedema or hyperkalemia 5 laboratory AEs possibly, probably or definitely related to study drug

Author, Year (Quality Rating)	Relevance	Type of Study Setting and Duration	Mean Age (SD) (y)	Number Randomized or Analyzed	Intervention	AEs
Wells et al 2010^{59} (fair)	Excluded secondary hypertension	RCT	14 (2.5)	115 enrolled	Telmisartan low dose ($1 \mathrm{mg} / \mathrm{kg} /$ day) ($n=30$) and high dose (1 $\mathrm{mg} / \mathrm{kg} /$ day titrated up to $2 \mathrm{mg} /$ k/day after 1 wk) $(n=31)$	Any AE:
		Clinical trial at 16 centers in United States, Brazil, and Mexico		77 randomized	Placebo ($n=16$)	High-dose patients: 41.9\%
		4 wk , after 2-wk washout period				Low dose patients: 41.7\%
						Placebo patients: 31.3\%
						Significance not reported
						2 patients discontinued due to AEs, both in the high dose group: 1 patient who experienced a serious AE (near syncope and moderate increase in blood urea nitrogen and serum creatinine) who received an excessive dose in error; and 1 patient due to moderateintensity dizziness, weakness, and headache
Drug plus lifestyle interventions						
Berenson et al 1983^{60} (fair)	BP >90 th percentile for height, control group with blood pressure <80 th percentiles and the 50-60th percentile for comparison (based on centiles derived from study)	"Close to clinical trial"	12	150 (50 high blood pressure treatment group, 50 high blood pressure comparison group, 50 medium blood pressure comparison group)	Group A:	AEs reported as very low
						incidence with no major
						complications
	Excluded children with evidence of secondary hypertension	School-based$6 \text { mo }$			Propranolol	1 temporary withdrawal from active treatment due to nightmares
					$20 \mathrm{mg} /$ day for children $<40 \mathrm{~kg}$, $40 \mathrm{mg} /$ day for those $>40 \mathrm{~kg}+$ chlorthalidone	
					6.25 mg per day for children $<40 \mathrm{~kg}, 12.5 \mathrm{mg} /$ day for those	
					$>40 \mathrm{~kg}+$ nutrition education and promotion of dietary	
					modification to children and	
					parents	
					Group B (high BP elevation at baseline):	
					No treatment	
					Group C (medium BP elevation at baseline):	
					No treatment	

Author, Year (Quality Rating)	Relevance	Type of Study Setting and Duration
Other clinical studies Baker-Smith et al 2010^{73} (not rated)	(FDA analyses) Mild to moderate hypertension	Nonsystematic review and meta- 13 analysis of data from 8 trials submitted to FDA between 1998 and 2005 (original studies not cited)
		2 wk (median)
Smith et al 2008^{72} (not rated)	Unclear; severe hypertension and significant renal disease excluded	Nonsystematic review and meta- 12.1 analysis of data from 10 RCTs submitted to FDA between 1998 and 2005 (original studies not cited) 2 to 4 wk (varied by trial)

1299 analyzed (42\% placebo +

 analysis of data from 8 trials submitted to FDA between 1998 and 2005 (originalstudies not cited)

2 wk (median)

Nonsystematic review and meta
12.1 ta from 10 RCTs 1998 and 2005 (orisinal
studies not cited)
2 to 4 wk (varied by trial)

58\% active drug)

active 685 p

ACEs (6 datasets) and ARBs (2 datasets), including benazepril ($n=85$), enalapril ($n=101$), fosinopril ($n=222$), lisinopril ($n=104$), quinapril ($n=112$), ramipril ($n=217$), irbesartan ($n=293$), losartan ($n=165$)

Dosages not reported

Subjects who reported cough in the ACE group: (17/524, 3.2\%); ARB group (4/224, 1.8\%), $P=.34$
Placebo versus active treatment ($n=1022$; mean doses not reported): amlodipine ($n=258$), benazepril ($n=85$), enalapril ($n=101$), felodipine $(n=133$), fosinopril ($n=235$), irbesartan ($n=295$), lisinopri ($n=104$), Iosartan ($n=165$), quinapril ($n=112$), ramilpril ($n=219$) placebo $(n=685)$

Subjects who reported cough in the cohort receiving active drugs (21/748, 2.8\%) vs placebo (14/551, 2.5\%), $P=.86$

No significant difference between groups for any AEs
Any AE: 235/685 (34\%) vs 382 1022 (37\%)
Hypertension: 3/685 (4\%) vs 1/ 1022 (>1\%)
Hypotension: 0/235 (0\%) vs 3/ 1022 (>1\%)
Cardiac: 8/685 (1\%) vs 16/1022 (2\%)
Neuropsychological: 13/685 (2\%) vs 26/1022 (3\%)
Headache: 113/685 (17\%) vs 179/ 1022 (18\%)
Syncope: 15/685 (2\%) vs 31/1022 (3\%)
Gastrointestinal: 54/685 (8\%) vs 90/1022 (9\%)
Asthma: 11/685 (2\%) vs 12/1022 (1\%)
Elevated LFT: 7/685 (1\%) vs 7/ 1022 (>1\%)
Muscle aches: 11/685 (2\%) vs 17/ 1022 (2\%)

[^0]: BP, blood pressure; DASH, Dietary Approaches to Stop Hypertension; ER, extended release; NR, not reported; NS, not significant

