U.S. Preventive Services Task Force banner
U.S. Preventive Services Task Force

You Are Here: U.S. Preventive Services Task Force > Topic Index > Screening for Prostate Cancer > Recommendation Statement


Screening for Prostate Cancer: U.S. Preventive Services Task Force Recommendation Statement (continued)

Discussion

Burden of Disease

An estimated 240,890 U.S. men received a prostate cancer diagnosis in 2011, and an estimated 33,720 men died of the disease (35). The average age of diagnosis was 67 years and the median age of those who died of prostate cancer from 2003 through 2007 was 80 years; 71% of deaths occurred in men older than 75 years (1). Black men have a substantially higher prostate cancer incidence rate than white men (232 vs. 146 cases per 100,000 men) and more than twice the prostate cancer mortality rate (56 vs. 24 deaths per 100,000 men, respectively) (35).

Prostate cancer is a clinically heterogeneous disease. Autopsy studies have shown that approximately one third of men aged 40 to 60 years have histologically evident prostate cancer (36); the proportion increases to as high as three fourths in men older than 85 years (37). Most cases represent microscopic, well-differentiated lesions that are unlikely to be of clinical importance. Increased frequency of PSA testing, a lower threshold for biopsy, and an increase in the number of core biopsies obtained all increase the detection of lesions that are unlikely to be of clinical significance.

Scope of Review

The previous evidence update, done for the USPSTF in 2008, found insufficient evidence that screening for prostate cancer improved health outcomes, including prostate cancer–specific and all-cause mortality, for men younger than 75 years. In men aged 75 years or older, the USPSTF found adequate evidence that the incremental benefits of treatment of screen-detected prostate cancer are small to none and that the harms of screening and treatment outweigh any potential benefits (38). After the publication of initial mortality results from 2 large randomized, controlled trials of prostate cancer screening, the USPSTF determined that a targeted update of the direct evidence on the benefits of PSA-based screening for prostate cancer should be done (39). In addition, the USPSTF requested a separate systematic review of the benefits and harms of treatment of localized prostate cancer (10). Since the release of the USPSTF's draft recommendation statement on prostate cancer screening and its supporting systematic evidence reviews, updated results from the ERSPC and PLCO trials and data on harms related to prostate biopsy from the ProtecT trial have become available; these publications were used to inform this final recommendation statement.

Accuracy of Screening

The conventional PSA cutoff of 4.0 μg/L detects many cases of prostate cancer; however, some cases will be missed. Using a lower cutoff detects more cases of cancer, but at the cost of labeling more men as potentially having cancer. For example, decreasing the PSA cutoff to 2.5 μg/L would more than double the number of U.S. men aged 40 to 69 years with abnormal results (16), and most of these would be false-positive results. It also increases the likelihood of detection of indolent tumors with no clinical importance. Conversely, increasing the PSA cutoff to greater than 10.0 μg/L would reduce the number of men aged 50 to 69 years with abnormal results from approximately 1.2 million to roughly 352,000 (16). There is no PSA cutoff at which a man can be guaranteed to be free from prostate cancer (40).

There are inherent problems with the use of needle biopsy results as a reference standard to assess the accuracy of prostate cancer screening tests. Biopsy detection rates vary according to the number of biopsies done during a single procedure; the more biopsies done, the more cancer cases detected. More cancer cases detected with a “saturation” biopsy procedure (≥20 core biopsies) tend to increase the apparent specificity of an elevated PSA level; however, many of the additional cancer cases detected this way are unlikely to be clinically important. Thus, the accuracy of the PSA test for detecting clinically important prostate cancer cases cannot be determined with precision.

Variations of PSA screening, including the use of age-adjusted PSA cutoffs, free PSA, and PSA density, velocity, slope, and doubling time, have been proposed to improve detection of clinically important prostate cancer cases. However, no evidence has demonstrated that any of these testing strategies improve health outcomes, and some may even generate harms. One study found that using PSA velocity in the absence of other indications could lead to 1 in 7 men having a biopsy with no increase in predictive accuracy (41).

Effectiveness of Early Detection and Treatment

Two poor-quality (high risk of bias) randomized, controlled trials initiated in the 1980s in Sweden each demonstrated a nonstatistically significant trend toward increased prostate cancer mortality in groups invited to screening (21, 22). A third poor-quality (high risk of bias) trial from Canada showed similar results when an intention-to-screen analysis was used (20). The screening protocols for these trials varied; all included 1 or more PSA tests with cutoffs ranging from 3.0 to 10.0 μg/L; in addition, digital rectal examination and transrectal ultrasonography were variably used.

The more recently published PLCO and ERSPC trials were the principal trials considered by the USPSTF. The fair-quality prostate component of the PLCO trial randomly assigned 76,685 men aged 55 to 74 years to annual PSA screening for 6 years (and concomitant digital rectal examination for 4 years) or to usual care. It used a PSA cutoff of 4.0 μg/L. Diagnostic follow-up for positive screening test results and treatment choices were made by the participant and his personal physician; 90% of men with prostate cancer diagnoses received active treatment (surgery, radiation, hormonal therapy, or some combination). After 7 years (complete follow-up), a nonstatistically significant trend toward increased prostate cancer mortality was seen in the screened group (RR, 1.14 [CI, 0.75 to 1.70]) compared with men in the control group (19). Similar findings were seen after 13 years (RR, 1.09 [CI, 0.87 to 1.36]) (23). The primary criticism of this study relates to the high contamination rate; approximately 50% of men in the control group received at least 1 PSA test during the study, although the investigators increased both the number of screening intervals and the duration of follow-up to attempt to compensate for the contamination effects. In addition, approximately 40% of participants had received a PSA test in the 3 years before enrollment, although subgroup analyses stratified by history of PSA testing before study entry did not reveal differential effects on prostate cancer mortality rates (19). Contamination may attenuate differences in the 2 groups but would not explain both an increased prostate cancer incidence and mortality rate in men assigned to screening.

The fair-quality ERSPC trial randomly assigned 182,160 men aged 50 to 74 years from 7 European countries to PSA testing every 2 to 7 years or to usual care. Prostate-specific antigen cutoffs ranged from 2.5 to 4.0 μg/L, depending on study center (1 center used a cutoff of 10.0 μg/L for several years). Subsequent diagnostic procedures and treatment also varied by center. Sixty six percent of men who received a prostate cancer diagnosis chose immediate treatment (surgery, radiation therapy, hormonal therapy, or some combination). Among all men who were randomly assigned, there was a borderline reduction in prostate cancer mortality in the screened group after a median follow-up of 9 years (RR, 0.85 [CI, 0.73 to 1.00]) (4). Similar results were reported after 11 years of follow-up and were statistically significant (RR, 0.83 [CI, 0.72 to 0.94]) (15). After a median follow-up of 9 years in a prespecified subgroup analysis limited to men aged 55 to 69 years, a statistically significant reduction in prostate cancer deaths was seen in the screened group (RR, 0.80 [CI, 0.65 to 0.98]) (4). After 11 years of follow-up, a similar reduction was seen (RR, 0.79 [CI, 0.45 to 0.85]); the authors estimated that 1055 men needed to be invited to screening and 37 cases of prostate cancer needed to be detected to avoid 1 death from prostate cancer (15). Of the 7 individual centers included in the mortality analysis, 2 (Sweden and the Netherlands) demonstrated statistically significant reductions in prostate cancer deaths with PSA screening. The magnitude of effect was considerably greater in these 2 centers than in other countries (Figure). Primary criticisms of this study relate to inconsistencies in age requirements, screening intervals, PSA thresholds, and enrollment procedures used among the study centers, as well as the exclusion of data from 2 study centers in the analysis. There is also concern that differential treatments between the study and control groups may have had an effect on outcomes. Of note, men in the screened group were more likely than men in the control group to have been treated in a university setting, and a control participant with high-risk prostate cancer was more likely than a screened participant to receive radiotherapy, expectant management, or hormonal therapy instead of radical prostatectomy (42). Furthermore, ascertainment of cause of death in men with a diagnosis of prostate cancer included men whose prostate cancer was detected at autopsy. How this cause-of-death adjudication process may affect estimates is unknown, but previous research has demonstrated difficulties in accurately ascertaining cause of death and that small errors could have an important effect on results (43, 44).

After publication of the initial ERSPC mortality results, a single center from within that trial (Göteburg, Sweden) reported data separately. Outcomes for 60% of this center's participants were reported as part of the full ERSPC publication, and the subsequent country-specific results within the ERSPC trial reflect the separately reported results from Sweden (which included some men not included in the overall ERSPC trial) (45).

Few randomized, controlled trials have compared treatments for localized prostate cancer with watchful waiting. A randomized, controlled trial of 695 men with localized prostate cancer (Scandinavian Prostate Cancer Group Study 4) reported an absolute reduction in the risk for distant metastases (11.7% [CI, 4.8% to 18.6%]) in patients assigned to radical prostatectomy versus watchful waiting after 15 years of follow-up. An absolute reduction in prostate cancer mortality (6.1% [CI, 0.2% to 12.0%]) and a trend toward a reduction in all-cause mortality (6.6% [CI, -1.3% to 14.5%]) were also seen over this period. Subgroup analysis suggests that the benefits of prostatectomy were limited to men aged 65 years or younger. The applicability of these findings to cancer detected by PSA-based screening is limited, because only 5% of participants were diagnosed with prostate cancer through some form of screening, 88% had palpable tumors, and more than 40% presented with symptoms (13, 17). An earlier, poor-quality study found no mortality reduction from radical prostatectomy versus watchful waiting after 23 years of follow-up (46). Another randomized trial of 214 men with localized prostate cancer detected before initiation of PSA screening that compared EBRT versus watchful waiting presented preliminary mortality results after completion of the evidence review. At 20 years, the observed survival did not differ between men randomly assigned to watchful waiting and EBRT (31% vs. 35%; P = 0.26). Prostate cancer mortality at 15 years was high in each group but did not differ between groups (23% vs. 19%; P = 0.51). External beam radiotherapy did reduce distant progression and recurrence-free survival (25).

Preliminary results from PIVOT have also become available since the evidence review was completed. PIVOT, conducted in the United States, included men with prostate cancer detected after the initiation of widespread PSA testing and, thus, included a much higher percentage of men with screen-detected prostate cancer. The trial randomly assigned 731 men aged 75 years or younger (mean age, 67 years) with a PSA level less than 50 μg/L (mean, 10 μg/L) and clinically localized prostate cancer to radical prostatectomy versus watchful waiting. One third of participants were black. On the basis of PSA level, Gleason score, and tumor stage, approximately 43% had low-risk tumors, 36% had intermediate-risk tumors, and 21% had high-risk tumors. After a median follow-up of 10 years, prostate cancer–specific or all-cause mortality did not statistically significantly differ between men treated with surgery versus observation (absolute risk reduction, 2.7% [CI, -1.3% to 6.2%] and 2.9% [CI, -4.1% to 10.3%], respectively). Subgroup analysis found that the effect of radical prostatectomy compared with observation for both overall and prostate cancer–specific mortality did not vary by patient characteristics (including age, race, health status, Charlson comorbidity index score, or Gleason score), but there was variation by PSA level and possibly tumor risk category. In men in the radical prostatectomy group with a PSA level greater than 10 μg/L at diagnosis, there was an absolute risk reduction of 7.2% (CI, 0.0% to 14.8%) and 13.2% (CI, 0.9% to 24.9%) for prostate cancer–specific and all-cause mortality, respectively, compared with men in the watchful waiting group. However, prostate cancer–specific or all-cause mortality was not reduced among men in the radical prostatectomy group with PSA levels of 10 μg/L or less or those with low-risk tumors, and potential (nonstatistically significant) increased mortality was suggested when compared with the watchful waiting group (12).

Harms of Screening and Treatment

False-positive PSA test results are common and vary depending on the PSA cutoff used and frequency of screening. After 4 PSA tests, men in the screening group of the PLCO trial had a 12.9% cumulative risk of receiving at least 1 false-positive result (defined as a PSA level greater than 4.0 μg/L and no prostate cancer diagnosis after 3 years) and a 5.5% risk of having at least 1 biopsy due to a false-positive result (47). Men with false-positive PSA test results are more likely than control participants to worry specifically about prostate cancer, have a higher perceived risk for prostate cancer, and report problems with sexual function for up to 1 year after testing (48). In 1 study of men with false-positive PSA test results, 26% reported that they had experienced moderate to severe pain during the biopsy; men with false-positive results were also more likely to have repeated PSA testing and additional biopsies during the 12 months after the initial negative biopsy (49). False-negative results also occur, and there is no PSA level that effectively rules out prostate cancer. This has, in part, led to recommendations for doing prostate biopsy at lower PSA thresholds than previously used in randomized screening trials (for example, <2.5 μg/L).

Harms of prostate biopsy reported by the Rotterdam center of the ERSPC trial include persistent hematospermia (50.4%), hematuria (22.6%), fever (3.5%), urinary retention (0.4%), and hospitalization for signs of prostatitis or urosepsis (0.5%) (50). The ProtecT study, an ongoing randomized, controlled trial evaluating the effectiveness and acceptability of treatments for men with PSA-detected, localized prostate cancer, found that 32% of men experienced pain; fever; blood in the urine, semen, or stool; infection; transient urinary difficulties; or other issues requiring clinician follow-up after prostate biopsy that they considered a “moderate or major problem.” At 7 days after biopsy, 20% of men reported that they would consider a future biopsy a “moderate or major problem” and 1.4% of men were hospitalized for complications (6). Similar findings were reported at 30 days after biopsy in a U.S. study of older, predominately white male Medicare beneficiaries (51).

The high likelihood of false-positive results from the PSA test, coupled with its inability to distinguish indolent from aggressive tumors, means that a substantial number of men undergo biopsy and are overdiagnosed with and overtreated for prostate cancer. The number of men who have biopsies is directly related to the number of men having PSA testing, the threshold PSA level used to trigger a biopsy, and the interval between PSA tests. Estimates derived from the ERSPC and PLCO trials suggest overdiagnosis rates of 17% to 50% of prostate cancer cases detected by the PSA test (3, 52, 53). Overdiagnosis is of particular concern because, although these men cannot benefit from any associated treatment, they are still subject to the harms of a given therapy. Evidence indicates that nearly 90% of U.S. men diagnosed with clinically localized prostate cancer through PSA testing have early treatment (primarily radical prostatectomy and radiation therapy) (7, 8).

Radical prostatectomy is associated with a 20% increased absolute risk for urinary incontinence and a 30% increased absolute risk for erectile dysfunction compared with watchful waiting (that is, increased 20% above a median rate of 6% and 30% above a median rate of 45%, respectively) after 1 to 10 years (9, 10). Perioperative deaths or cardiovascular events occur in approximately 0.5% or 0.6% to 3% of patients, respectively (9, 10). Comparative data on outcomes using different surgical techniques are limited; 1 population-based observational cohort study using the SEER database and Medicare-linked data found that minimally invasive or robotic radical prostatectomy for prostate cancer was associated with higher risks for genitourinary complications, incontinence, and erectile dysfunction than open radical prostatectomy (54).

Radiation therapy is associated with a 17% absolute increase in risk for erectile dysfunction (that is, increased 17% above a median rate of 50%) and an increased risk for bowel dysfunction (for example, fecal urgency or incontinence) compared with watchful waiting after 1 to 10 years; the effect on bowel function is most pronounced in the first few months after treatment (9, 10).

Localized prostate cancer is not an FDA-approved indication for androgen deprivation therapy, and clinical outcomes for older men receiving this treatment for localized disease are worse than for those who are conservatively managed (55). Androgen deprivation therapy is associated with an increased risk for impotence compared with watchful waiting (absolute risk difference, 43%), as well as systemic effects, such as hot flashes and gynecomastia (9, 10). In advanced prostate cancer, androgen deprivation therapy may generate other serious harms, including diabetes, myocardial infarction, or coronary heart disease; however, these effects have not been well-studied in men treated for localized prostate cancer. A recent meta-analysis of 8 randomized, controlled trials in men with nonmetastatic high-risk prostate cancer found that androgen deprivation therapy was not associated with increased cardiac mortality (56).

Estimate of Magnitude of Net Benefit

All but 1 randomized trial has failed to demonstrate a reduction in prostate cancer deaths with the use of the PSA test, and several—including the PLCO trial—have suggested an increased risk in screened men, potentially due to harms associated with overdiagnosis and overtreatment. In a prespecified subgroup of men aged 55 to 69 years in the ERSPC trial, a small (0.09%) absolute reduction in prostate cancer deaths was seen after a median follow-up of 11 years. The time until any potential cancer-specific mortality benefit (should it exist) for PSA-based screening emerges is long (at least 9 to 10 years), and most men with prostate cancer die of causes other than prostate cancer (57). No prostate cancer screening study or randomized trial of treatment of screen-detected cancer has demonstrated a reduction in all-cause mortality through 14 years of follow-up.

The harms of PSA-based screening for prostate cancer include a high rate of false-positive results and accompanying negative psychological effects, high rate of complications associated with diagnostic biopsy, and—most important—a risk for overdiagnosis coupled with overtreatment. Depending on the method used, treatments for prostate cancer carry the risk for death, cardiovascular events, urinary incontinence, erectile dysfunction, and bowel dysfunction. Many of these harms are common and persistent. Given the high propensity for physicians and patients to elect to treat screen-detected cancer, limiting estimates of the harms of PSA testing to the harms of the blood test alone, without considering other diagnostic and treatment harms, does not reflect current clinical practice in the United States.

The mortality benefits of PSA-based prostate cancer screening through 11 years are, at best, small and potentially none, and the harms are moderate to substantial. Therefore, the USPSTF concludes with moderate certainty that the benefits of PSA-based screening for prostate cancer, as currently used and studied in randomized, controlled trials, do not outweigh the harms.

How Does Evidence Fit With Biological Understanding?

Prostate-specific antigen–based screening and subsequent treatment, as currently practiced in the United States, presupposes that most asymptomatic prostate cancer cases will ultimately become clinically important and lead to poor health outcomes and that early treatment effectively reduces prostate cancer–specific and overall mortality. However, long-term, population-based cohort studies and randomized treatment trials of conservatively managed men with localized prostate cancer do not support this hypothesis. A review of the Connecticut Tumor Registry, which was initiated before the PSA screening era, examined the long-term probability of prostate cancer death among men (median age at diagnosis, 69 years) whose tumors were mostly incidentally identified at the time of transurethral resection or open surgery for benign prostatic hyperplasia. Men received observation alone or early or delayed androgen withdrawal therapy. After 15 years of follow-up, the prostate cancer mortality rate was 18 deaths per 1000 person-years. For men with well-differentiated prostate cancer, it was 6 deaths per 1000 person-years; far more of these men had died of causes other than prostate cancer (75% vs. 7%) (58). An analysis of the SEER database after the widespread introduction of PSA-based screening examined the risk for death in men with localized prostate cancer who did not have initial attempted curative therapy. The 10-year prostate cancer mortality rate for well- or moderately-differentiated tumors among men aged 66 to 69 years at diagnosis was 0% to 7%, depending on tumor stage, versus 0% to 22% for other causes. The relative proportion of deaths attributable to other causes compared with prostate cancer increased substantially with age at prostate cancer diagnosis (59). In the only randomized, controlled trial comparing early intervention versus watchful waiting that included men primarily detected by PSA testing, prostate cancer mortality at 12 years or more was infrequent (7%) and did not differ between men randomly assigned to surgery versus observation (12).

Return to Contents

Update of Previous USPSTF Recommendation

This recommendation replaces the 2008 recommendation (38). Whereas the USPSTF previously recommended against PSA-based screening for prostate cancer in men aged 75 years and older and concluded that the evidence was insufficient to make a recommendation in younger men, the USPSTF now recommends against PSA-based screening for prostate cancer in all age groups.

Return to Contents

Recommendations of Others

The American Urological Association recommends that PSA screening, in conjunction with a digital rectal examination, should be offered to asymptomatic men aged 40 years or older who wish to be screened, if estimated life expectancy is greater than 10 years (60). It is currently updating this guideline (61). The American Cancer Society emphasizes informed decision making for prostate cancer screening: men at average risk should receive information beginning at age 50 years, and black men or men with a family history of prostate cancer should receive information at age 45 years (62). The American College of Preventive Medicine recommends that clinicians discuss the potential benefits and harms of PSA screening with men aged 50 years or older, consider their patients' preferences, and individualize screening decisions (63). The American Academy of Family Physicians is in the process of updating its guideline, and the American College of Physicians is currently developing a guidance statement on this topic.

Return to Contents

Appendix: U.S. Preventive Services Task Force

Members of the U.S. Preventive Services Task Force at the time this recommendation was finalized* are Virginia A. Moyer, MD, MPH, Chair (Baylor College of Medicine, Houston, Texas); Michael L. LeFevre, MD, MSPH, Co-Vice Chair (University of Missouri School of Medicine, Columbia, Missouri); Albert L. Siu, MD, MSPH, Co-Vice Chair (Mount Sinai School of Medicine, New York, New York; James J. Peters Veterans Affairs Medical Center, Bronx, New York); Linda Ciofu Baumann, PhD, RN (University of Wisconsin, Madison, Wisconsin); Kirsten Bibbins-Domingo, PhD, MD (University of California, San Francisco, San Francisco, California); Susan J. Curry, PhD (University of Iowa College of Public Health, Iowa City, Iowa); Mark Ebell, MD, MS (University of Georgia, Athens, Georgia); Glenn Flores, MD (University of Texas Southwestern, Dallas, Texas); Adelita Gonzales Cantu, RN, PhD (University of Texas Health Science Center, San Antonio, Texas); David C. Grossman, MD, MPH (Group Health Cooperative, Seattle, Washington); Jessica Herzstein, MD, MPH (Air Products, Allentown, Pennsylvania); Joy Melnikow, MD, MPH (University of California, Davis, Sacramento, California); Wanda K. Nicholson, MD, MPH, MBA (University of North Carolina School of Medicine, Chapel Hill, North Carolina); Douglas K. Owens, MD, MS (Stanford University, Stanford, California); Carolina Reyes, MD, MPH (Virginia Hospital Center, Arlington, Virginia); and Timothy J. Wilt, MD, MPH (University of Minnesota and Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota). Former USPSTF members who contributed to the development of this recommendation include Ned Calonge, MD, MPH, and Rosanne Leipzig, MD, PhD.

* For a list of current Task Force members, go to http://www.uspreventiveservicestaskforce.org/about.htm.

Return to Contents

References

1. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, et al. SEER Cancer Statistics Review, 1975–2008. Bethesda, MD: National Cancer Institute; 2011. Accessed at http://seer.cancer.gov/csr/1975_2008/index.html on 6 October 2011.
2. Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349:215-24.
3. Miller AB. New data on prostate-cancer mortality after PSA screening [Editorial]. N Engl J Med. 2012;366:1047-8.
4. Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320-8.
5. Lin K, Lipsitz R, Miller T, Janakiraman S; U.S. Preventive Services Task Force. Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update for the U.S. Preventive Services Task Force. Ann Intern Med. 2008;149:192-9.
6. Rosario DJ, Lane JA, Metcalfe C, Donovan JL, Doble A, Goodwin L, et al. Short term outcomes of prostate biopsy in men tested for cancer by prostate specific antigen: prospective evaluation within ProtecT study. BMJ. 2012;344:d7894.
7. Welch HG, Albertsen PC. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst. 2009;101:1325-9.
8. Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol. 2010;28:1117-23.
9. Chou R, Croswell JM, Dana T, Bougatsos C, Blazina I, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155(11):762-71.
10. Chou R, Dana T, Bougatsos C, Fu R, Blazina I, et al. Treatments for Localized Prostate Cancer: Systematic Review to Update the 2002 U.S. Preventive Services Task Force Recommendation. Evidence Synthesis No. 91. AHRQ Publication No. 12-05161-EF-2. Rockville, MD: Agency for Healthcare Research and Quality; 2011.
11. Ganz PA, Barry JM, Burke W, Col NF, Corso PS, Dodson E, et al. National Institutes of Health State-of-the-Science Conference: role of active surveillance in the management of men with localized prostate cancer. Ann Intern Med. 2012;156:591-595.
12. Wilt TJ. The VA/NCI/AHRQ Cooperative Studies Program #407: Prostate cancer Intervention Versus Observation Trial (PIVOT): main results from a randomized trial comparing radical prostatectomy to watchful waiting in men with clinically localized prostate cancer. Paper presented at: 107th Annual Meeting of the American Urological Association; May 2011; Washington, DC.
13. Bill-Axelson A, Holmberg L, Ruutu M, Garmo H, Stark JR, et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. 2011;364:1708-17.
14. Woloshin S, Schwartz LM. The benefits and harms of mammography screening: understanding the trade-offs. JAMA. 2010;303:164-5.
15. Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al; ERSPC Investigators. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366:981-90.
16. Welch HG, Schwartz LM, Woloshin S. Prostate-specific antigen levels in the United States: implications of various definitions for abnormal. J Natl Cancer Inst. 2005;97:1132-7.
17. Bill-Axelson A, Holmberg L, Filén F, Ruutu M, Garmo H, et al. Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian Prostate Cancer Group-4 randomized trial. J Natl Cancer Inst. 2008;100:1144-54.
18. Collin SM, Metcalfe C, Donovan J, Lane JA, Davis M, Neal D, et al. Associations of lower urinary tract symptoms with prostate-specific antigen levels, and screen-detected localized and advanced prostate cancer: a case-control study nested within the UK population-based ProtecT (Prostate testing for cancer and Treatment) study. BJU Int. 2008;102:1400-6.
19. Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS, Chia D, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360:1310-9.
20. Labrie F, Candas B, Cusan L, Gomez JL, Bélanger A, et al. Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial. Prostate. 2004;59:311-8.
21. Sandblom G, Varenhorst E, Rosell J, Löfman O, Carlsson P. Randomised prostate cancer screening trial: 20 year follow-up. BMJ. 2011;342:d1539.
22. Kjellman A, Akre O, Norming U, Törnblom M, Gustafsson O. 15-year followup of a population based prostate cancer screening study. J Urol. 2009;181:1615-21.
23. Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS, Chia D, Church TR, et al; PLCO Project Team. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J Natl Cancer Inst. 2012;104:125-32.
24. Wilt TJ, MacDonald R, Rutks I, Shamliyan TA, Taylor BC, Kane RL. Systematic review: comparative effectiveness and harms of treatments for clinically localized prostate cancer. Ann Intern Med. 2008;148:435-48.
25. Widmark A. Prospective randomized trial comparing external beam radiotherapy versus watchful waiting in early prostate cancer (T1b-T2, pN0, grade 1-2, M0). Paper presented at: 53rd Annual Meeting of the American Society for Therapeutic Radiology and Radiation Oncology; October 2011; Miami, FL.
26. The ProtecT trial—Evaluating the effectiveness of treatment for clinically localised prostate cancer [clinical trial]. Accessed at www.controlled-trials.com/ISRCTN20141297 on 27 April 2012.
27. Wilt TJ, Brawer MK, Barry MJ, Jones KM, Kwon Y, et al. The Prostate cancer Intervention Versus Observation Trial: VA/NCI/AHRQ Cooperative Studies Program #407 (PIVOT): design and baseline results of a randomized controlled trial comparing radical prostatectomy to watchful waiting for men with clinically localized prostate cancer. Contemp Clin Trials. 2009;30:81-7.
28. Moore AL, Dimitropoulou P, Lane A, Powell PH, Greenberg DC, et al. Population-based prostate-specific antigen testing in the UK leads to a stage migration of prostate cancer. BJU Int. 2009;104:1592-8.
29. Theoret MR, Ning YM, Zhang JJ, Justice R, Keegan P, Pazdur R. The risks and benefits of 5α-reductase inhibitors for prostate-cancer prevention. N Engl J Med. 2011;365:97-9.
30. Catalona WJ. Early diagnosis of prostate cancer through PSA testing saves lives. Paper presented at: 107th Annual Meeting of the American Urological Association; May 2011; Washington, DC.
31. Johansson E, Steineck G, Holmberg L, Johansson JE, Nyberg T, Ruutu M, et al; SPCG-4 Investigators. Long-term quality-of-life outcomes after radical prostatectomy or watchful waiting: the Scandinavian Prostate Cancer Group-4 randomised trial. Lancet Oncol. 2011;12:891-9.
32. Fransson P, Damber JE, Widmark A. Health-related quality of life 10 years after external beam radiotherapy or watchful waiting in patients with localized prostate cancer. Scand J Urol Nephrol. 2009;43:119-26.
33. Crawford ED, Grubb R 3rd, Black A, Andriole GL Jr, Chen MH, Izmirlian G, et al. Comorbidity and mortality results from a randomized prostate cancer screening trial. J Clin Oncol. 2011;29:355-61.
34. Bach PB, Vickers AJ. Do the data support the comorbidity hypothesis for the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial results? [Letter]. J Clin Oncol. 2011;29:e387.
35. American Cancer Society. Cancer Facts & Figures 2011. Atlanta: American Cancer Society; 2011. Accessed at www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-029771.pdf on 30 April 2012.
36. Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol. 1993;150:379-85.
37. Grönberg H. Prostate cancer epidemiology. Lancet. 2003;361:859-64.
38. U.S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2008;149:185-91.
39. Lin K, Croswell JM, Koenig H, Lam C, Maltz A. Prostate-Specific Antigen-Based Screening for Prostate Cancer: An Evidence Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 90. AHRQ Publication No. 12-05160-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2011.
40. Thompson IM, Ankerst DP, Chi C, Lucia MS, Goodman PJ, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005;294:66-70.
41. Vickers AJ, Till C, Tangen CM, Lilja H, Thompson IM. An empirical evaluation of guidelines on prostate-specific antigen velocity in prostate cancer detection. J Natl Cancer Inst. 2011;103:462-9.
42. Wolters T, Roobol MJ, Steyerberg EW, van den Bergh RC, Bangma CH, et al. The effect of study arm on prostate cancer treatment in the large screening trial ERSPC. Int J Cancer. 2010;126:2387-93.
43. Dubben HH. Trials of prostate-cancer screening are not worthwhile. Lancet Oncol. 2009;10:294-8.
44. Newschaffer CJ, Otani K, McDonald MK, Penberthy LT. Causes of death in elderly prostate cancer patients and in a comparison nonprostate cancer cohort. J Natl Cancer Inst. 2000;92:613-21.
45. Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, et al. Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. Lancet Oncol. 2010;11:725-32.
46. Iversen P, Madsen PO, Corle DK. Radical prostatectomy versus expectant treatment for early carcinoma of the prostate. Twenty-three year follow-up of a prospective randomized study. Scand J Urol Nephrol Suppl. 1995;172:65-72.
47. Croswell JM, Kramer BS, Kreimer AR, Prorok PC, Xu JL, et al. Cumulative incidence of false-positive results in repeated, multimodal cancer screening. Ann Fam Med. 2009;7:212-22.
48. McNaughton-Collins M, Fowler FJ Jr, Caubet JF, Bates DW, Lee JM, et al. Psychological effects of a suspicious prostate cancer screening test followed by a benign biopsy result. Am J Med. 2004;117:719-25.
49. Fowler FJ Jr, Barry MJ, Walker-Corkery B, Caubet JF, Bates DW, et al. The impact of a suspicious prostate biopsy on patients’ psychological, socio-behavioral, and medical care outcomes. J Gen Intern Med. 2006;21:715-21.
50. Raaijmakers R, Kirkels WJ, Roobol MJ, Wildhagen MF, Schröder FH. Complication rates and risk factors of 5802 transrectal ultrasound-guided sextant biopsies of the prostate within a population-based screening program. Urology. 2002;60:826-30.
51. Loeb S, Carter HB, Berndt SI, Ricker W, Schaeffer EM. Complications after prostate biopsy: data from SEER-Medicare. J Urol. 2011;186:1830-4.
52. Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. 2010;102:605-13.
53. Draisma G, Boer R, Otto SJ, van der Cruijsen IW, Damhuis RA, et al. Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst. 2003;95:868-78.
54. Hu JC, Gu X, Lipsitz SR, Barry MJ, D’Amico AV, et al. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009;302:1557-64.
55. Lu-Yao GL, Albertsen PC, Moore DF, Shih W, Lin Y, et al. Survival following primary androgen deprivation therapy among men with localized prostate cancer. JAMA. 2008;300:173-81.
56. Nguyen PL, Je Y, Schutz FA, Hoffman KE, Hu JC, Parekh A, et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA. 2011;306:2359-66.
57. Lu-Yao G, Stukel TA, Yao SL. Changing patterns in competing causes of death in men with prostate cancer: a population based study. J Urol. 2004;171:2285-90.
58. Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293:2095-101.
59. Lu-Yao GL, Albertsen PC, Moore DF, Shih W, Lin Y, et al. Outcomes of localized prostate cancer following conservative management. JAMA. 2009;302:1202-9.
60. Carroll P, Albertsen PC, Greene K, Babaian RJ, Carter HB, et al. Prostate-Specific Antigen Best Practice Statement: 2009 Update. Linthicum, MD: American Urological Assocation; 2009. Accessed at http://www.auanet.org/content/guidelines-and-quality-care/clinical-guidelines/main-reports/psa09.pdf on 6 October 2011.
61. American Urological Association. AUA responds to new recommendations on prostate cancer screening [Press release]. Linthicum, MD: American Urological Association; 7 October 2011.
62. Wolf AM, Wender RC, Etzioni RB, Thompson IM, D’Amico AV, et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin. 2010;60:70-98.
63. Lim LS, Sherin K; ACPM Prevention Practice Committee. Screening for prostate cancer in U.S. men: ACPM position statement on preventive practice. Am J Prev Med. 2008;34:164-70.
64. Kilpeläinen TP, Tammela TL, Määttänen L, Kujala P, Stenman UH, Ala-Opas M, et al. False-positive screening results in the Finnish prostate cancer screening trial. Br J Cancer. 2010;102:469-74.

Return to Contents

Copyright and Source Information

Disclaimer: Recommendations made by the USPSTF are independent of the U.S. government. They should not be construed as an official position of the Agency for Healthcare Research and Quality or the U.S. Department of Health and Human Services.

Financial Support: The USPSTF is an independent, voluntary body. The U.S. Congress mandates that the Agency for Healthcare Research and Quality support the operations of the USPSTF.

Requests for Single Reprints: Reprints are available from the USPSTF Web site (www.uspreventiveservicestaskforce.org).

Source: This article was first published in Annals of Internal Medicine (Ann Intern Med 2012;22 May).

Return to Contents

AHRQ Publication No. 12-05160-EF-2
Current as of May 2012


Internet Citation:

U.S. Preventive Services Task Force. Screening for Prostate Cancer: Final Recommendation Statement. AHRQ Publication No. 12-05160-EF-2. http://www.uspreventiveservicestaskforce.org/prostatecancerscreening/prostatefinalrs.htm



USPSTF Program Office   540 Gaither Road, Rockville, MD 20850